
Improved Fully Polynomial
Approximation Schemes

for the Maximum Lateness Minimization
on a Single Machine with a Fixed

Operator or Machine
Non-Availability Interval

Imed Kacem1(B) and Hans Kellerer2

1 Université de Lorraine, LCOMS EA 7306, 57000 Metz, France
imed.kacem@univ-lorraine.fr

2 Institut für Statistik und Operations Research, University of Graz,
Universitätsstraße 15, 8010 Graz, Austria

hans.kellerer@uni-graz.at

http://lcoms.univ-lorraine.fr, http://www.uni-graz.at

Abstract. In this paper we consider the single machine scheduling prob-
lem with one non-availability interval to minimize the maximum lateness
where jobs have positive tails. Two cases are considered. In the first one,
the non-availability interval is due to the machine maintenance. In the
second case, the non-availibility interval is related to the operator who
is organizing the execution of jobs on the machine. The contribution
of this paper consists in an improved FPTAS for the maintenance non-
availability interval case and its extension to the operator non-availability
interval case. The two FPTASs are strongly polynomial and outperform
the recent ones by Kacem, Kellerer and Seifaddini presented in [12].

Keywords: Scheduling · Approximation Schemes · FPTAS
Maximum lateness minimization · Single machine
Non-availability interval · Dynamic programming

1 Introduction

In this paper we investigate some improvements to the previous work by Kacem,
Kellerer and Seifaddini [12]. We consider the single machine scheduling prob-
lem with one non-availability interval to minimize the maximum lateness where
jobs have positive tails. Two cases are considered. In the first one, the non-
availability interval is due to the machine maintenance. In the second case, the

Supported by the LCOMS EA 7306, a research unit of the Université de Lorraine,
and by the University of Graz.

c© Springer Nature Switzerland AG 2018
R. Cerulli et al. (Eds.): ICCL 2018, LNCS 11184, pp. 417–427, 2018.
https://doi.org/10.1007/978-3-030-00898-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00898-7_28&domain=pdf
http://orcid.org/0000-0001-6649-7257
http://orcid.org/0000-0001-7618-3956


418 I. Kacem and H. Kellerer

non-availibility interval is related to the operator who is organizing the exe-
cution of jobs on the machine. An operator non-availability period is a time
interval in which no job can start, and neither can complete. The main dif-
ference between machine non-availability (MNA) and operator non-availability
(ONA) consists in the fact that a job can be processed but cannot start neither
finish during the ONA period. However, the machine non-availability interval is
a completely forbidden period. Rapine et al. [18] have described the applications
of this problem in the planning of a chemical experiments as follows: Each exper-
iment is performed by an automatic system (a robot), during a specified amount
of time, but a chemist is required to control its start and completion. At the
beginning, the chemist launches the process (preparation step). The completion
step corresponds to the experimental analysis, which is to be done in a no-wait
mode to stop chemical reactions. Here, the automatic system is available all the
time, where the chemists may be unavailable due to planned vacations or activi-
ties. This induces operator (chemist) non-availability intervals when experiments
(jobs) can be performed by the automatic system (machine), but cannot neither
start nor complete.

The study of this family of scheduling problems has been motivated by dif-
ferent applications in logistics. First, the production scheduling by integrating
the different sources of non-availability (machine and/or operator sources) is an
important application (see for example, Brauner et al. [1], Rapine et al. [18]).
Moreover, the maximum lateness minimization in scheduling theory is known as
equivalent to the maximum delivery date minimization, where the delivery times
can be seen as transportation durations (see for example, Carlier [2], Kacem and
Kellerer [9], Dessouky and Margenthaler [4]). Other online applications can be
found in Kacem and Kellerer [11].

2 Related Works

The MNA case of this type of problems has been studied in the literature under
various criteria (a sample of these works includes Lee [15], Kacem [8], Kacem
et al. [13], Kubzin and Strusevich [14], Qi et al. [16,17], Schmidt [19], He et al.
[6]). However, few papers studied the problem we consider in this paper. Lee
[15] explored the Jackson’s sequence and proved that it is a 2-approximation.
Recently, Yuan et al. developed an interesting PTAS (Polynomial Approxima-
tion Scheme) for the studied problem [21]. Kacem [8] presented a first Fully
Polynomial Time Approximation Scheme (FPTAS) for the maximum lateness
minimization. It is well-known that an FPTAS is the best possible approximation
scheme for an NP-hard problem, unless P = NP (see for example, Kacem and
Kellerer [10], Gens and Levner [5], Ibarra and Kim [7], Sahni [20]). That is why
this paper is a good attempt to design more efficient approximation heuristics
and approximation schemes to solve the studied problem.

For the ONA case, few works have been published. Brauner et al. [1] consid-
ered the problem of single machine scheduling with ONA periods. They analyzed
this problem on a single machine with the makespan as a minimization criterion



Improved Approximation Schemes for the Maximum Lateness Minimization 419

and they showed that the problem is NP-hard with one ONA period. They also
considered the problem with K ONA periods such that the length of each ONA
period is no more than 1

λ times the total processing time of all jobs. They intro-
duced a worst-case ratio smaller than 1+ 2K

λ for the so-called algorithm LS (list
scheduling). They presented an approximation algorithm with a worst-case ratio
close to 2 + K−1

λ . The natural case of periods where the duration of the periods
is smaller than any processing time of any job, has been considered by Rapine et
al. [18]. They proved that the problem can be solved in polynomial time if there
is only one ONA period. It was shown that the problem is NP-hard if one has
K ≥ 2 small non-availability periods and the worst-case ratio of LS is no more
than K+1

2 and the problem does not admit an FPTAS for K ≥ 3 unless P = NP.
Recently, Chen et al. [3] considered the single machine scheduling with one

ONA period to minimize the total completion time. The problem is NP-hard
even if the length of the ONA period is smaller than the processing time of any
job. They have also presented an algorithm with a tight worst-case ratio of 20

17 .
They showed that the worst-case ratio of SPT is at least 5

3 .
For more details, the previous paper by Kacem, Kellerer and Seifaddini [12]

contains an overview on these problems.

3 Contributions

The contribution of this paper consists in an improved FPTAS for the mainte-
nance non-availability interval case and its extension for the ONA interval case.
The two FPTASs are strongly polynomial and they have reduced time complex-
ities compared to [12]. These contributions are summarized in Table 1 for both
cases.

This note is organized as follows. Section 4 recalls the exact formulation of the
maintenance non-availability interval case and the improved FPTAS. Section 5
is devoted to the extension to the operator non-availability interval case and to
the presentation of the associated FPTAS. Finally, Sect. 6 concludes the paper.

Table 1. Summary of results

Result Reference

MNA FPTAS: O(nlog(n) + min{n, 1/ε}3/ε2) Kacem et al. [12]

ONA FPTAS: O((n/ε)log(n) + n min{n, 1/ε}3/ε3) Kacem et al. [12]

MNA FPTAS: O(nlog(n) + min{n, 1/ε}2/ε2) This paper

ONA FPTAS: O((n/ε)log(n) + n min{n, 1/ε}2/ε3) This paper

4 Case Under MNA Interval

The considered problem (P) can be formulated as follows. We have to schedule
a set J of n jobs on a single machine, where every job j has a processing time



420 I. Kacem and H. Kellerer

pj and a tail qj (or delivery time). The machine can process at most one job
at a time and it is unavailable between T1 and T2 (i.e., (T1, T2) is a forbidden
interval). Preemption of jobs is not allowed (jobs have to be performed under
the non-resumable scenario). All jobs are ready to be performed at time 0. With
no loss of generality, we consider that all data are integers and that jobs are
indexed according to Jackson’s rule [15] (i.e., jobs are indexed in nonincreasing
order of tails). Therefore, we assume that q1 ≥ q2 ≥ . . . ≥ qn. Let Cj (S) denote
the completion time of job j in a feasible schedule S for the problem and let
ϕS(P) be the maximum lateness (or the delivery date) yielded by schedule S for
instance I of (P):

ϕS(I) = max
1≤j≤n

(Cj (S) + qj) (1)

The aim is to find a feasible schedule S by minimizing the maximum lateness. We
also denote by ϕ∗(I) the minimal maximum lateness for instance I. Due to the
dominance of Jackson’s order, an optimal schedule is composed of two sequences
of jobs scheduled in nondecreasing order of their indexes [15]. If all the jobs can
be inserted before T1, the instance studied (I) has obviously a trivial optimal
solution obtained by Jackson’s rule. We therefore consider only the problems in
which all the jobs cannot be scheduled before T1. Moreover, we consider that
every job can be inserted before T1 (i.e., pj ≤ T1 for every j ∈ J). It is useful
to recall that Lee [15] explored the Jackson’s sequence JS and proved that its
deviation to the optimal maximum lateness cannot exceed the largest processing
time, which is equivalent to state that JS is a 2-approximation.

4.1 The Improved Procedure

The proposed FPTAS is based on the modification of the one proposed in [12]
by Kacem, Kellerer and Seifaddini.

First, as described in [12], we use the simplification technique based on merg-
ing small jobs proposed in [9]. We simplify the input instance I as follows. Given
an arbitrary ε > 0, with the assumption that 1/ε is integer, we split the interval
[0,maxj∈J{qj}] in 1/ε equal length intervals and we round up every tail qj to
the next multiple of εqmax (qmax = maxj∈J{qj}). The new instance is denoted
as I ′. Then, J is divided into at most 1/ε subsets J(k) (1 ≤ k ≤ 1/ε) where jobs
in J(k) have identical tails of kεqmax. The second modification consists in reduc-
ing the number of small jobs in every subset J(k). Small jobs are those having
processing times less than εP/2 where P =

∑n
j=1 pj . The reduction is done by

merging the small jobs in each J(k) so that we obtain new greater jobs having
processing times between εP/2 and εP . The small jobs are taken in the order of
their index in this merging procedure. At most, for every subset J(k), a single
small job remains. We re-index jobs according to nondecreasing order of their
tails. The new instance we obtain is denoted as I ′′. Clearly, the number of jobs
remaining in the simplified instance I ′′ is less than 3/ε. These reductions are
recalled for self-consistency and their details are available in Kacem et al. [12].



Improved Approximation Schemes for the Maximum Lateness Minimization 421

It is worthy to note that such reductions cannot increase the optimal solution
value of I too much and they can be done in linear time.

We apply a modified dynamic programming algorithm DPε to instance I ′′

using the Jackson’s sequence JS to obtain an upper bound for the maximum
lateness. The main idea of DPε is to remove a special part of the states gener-
ated by a dynamic programming algorithm. Therefore, the modified algorithm
becomes faster and yields an approximate solution instead of the optimal sched-
ule. First, we define the following parameters:

n = min{n, 3/ε},

ω1 =
⌈

4n

ε

⌉

,

ω2 =
⌈

2
ε

⌉

,

δ1 =
ϕJS (I ′′)

ω1

and
δ2 =

T1

ω2
.

We split [0, ϕJS (I ′′)) into ω1 equal subintervals I1m =
[(m − 1)δ1,mδ1)1≤m≤ω1

. We also split [0, T1) into ω2 equal subintervals I2s =
[(s − 1)δ2, sδ2)1≤s≤ω2

of length δ2. Moreover, we define the two singletons
I1ω1+1 = {ϕJS (I ′′)} and I2ω2+1 = {T1}. Our algorithm DPε generates reduced
sets X#

j of states [t, f ] where t is the total processing time of jobs assigned before
T1 in the associated partial schedule and f is the maximum lateness of the same
partial schedule. It is described in Algorithm1.

4.2 Algorithm DPε is an Improved FPTAS

Compared to the previous FPTAS presented in [12], our new algorithm keeps two
approximate states in every box I1m×I2s (1 ≤ m ≤ ω1+1, 1 ≤ s ≤ ω2+1) instead
of a single approximate state. As a consequence, the loss in terms of variable t
will be reduced as it can be shown in the proof of the following theorem. Thus,
the interval length δ2 is taken larger compared to [12]. Moreover, in the following
proof we will use a tighter recursive relation on the closeness of the approximate
states and those originally generated by the standard dynamic algorithm. As a
result, we will show that the new algorithm DPε outperforms the one provided
in [12] by a linear factor in n or 1/ε.

Theorem 1. Given an arbitrary ε > 0, the modified algorithm DPε yields an
output ϕDPε

(I ′′) such that:

ϕDPε
(I ′′) − ϕ∗ (I ′′) ≤ εϕ∗ (I ′′) . (2)



422 I. Kacem and H. Kellerer

Algorithm 1. The new proposed FPTAS DPε

The inputs of the algorithm are: ε, T1, T2, n and simplified instance I′′. The algo-
rithm returns a feasible schedule with a maximum lateness value less or equal to
(1 + ε)ϕ∗ (I′′).

i. set X#
1 = {[0, T2 + p1 + q1] , [p1, p1 + q1]}.

ii. For j ∈ {2, 3, . . . , n},

X#
j = Ø.

For every state [t, f ] in X#
j−1:

1) Put
[
t, max

{
f, T2 +

∑j
i=1 pi − t + qj

}]
in X#

j

2) Put [t + pj , max {f, t + pj + qj}] in X#
j if t + pj ≤ T1

Remove X#
j−1

Let [t, f ]m,s and [u, g]m,s be the states in X#
j such that f, g ∈ I1

m, t, u ∈ I2
s

and t and u are respectively the smallest and the greatest possible values in
subinterval I2

s .

Set X#
j =

{
[t, f ]m,s , [u, g]m,s |1 ≤ m ≤ ω1 + 1, 1 ≤ s ≤ ω2 + 1

}
.

iii. ϕDPε (I′′) = min
[t,f ]∈X#

n
{f}.

Proof. First, we recall the idea of the dynamic programming algorithm [8] which
is necessary to explain the proof. Indeed, the problem can be optimally solved
by applying the following dynamic programming algorithm DP . This algorithm
generates iteratively some sets of states. At every iteration j, a set Xj composed
of states is generated (1 ≤ j ≤ n). Each state [t, f ] in Xj can be associated to a
feasible schedule for the first j jobs. Variable t denotes the completion time of the
last job scheduled before T1 and f is the maximum lateness of the corresponding
schedule. This dynamic programming is given in Algorithm2.

Algorithm 2. The standard dynamic programming DP [8]
The inputs of the algorithm are: T1, T2, n and simplified instance I′′. The algorithm
returns a schedule with an optimal maximum lateness value ϕ∗ (I′′).

(i). Set X1 = {[0, T2 + p1 + q1] , [p1, p1 + q1]}.
(ii). For j ∈ {2, 3, . . . , n},

Xj = {}.
For every state [t, f ] in Xj−1:

1) Put
[
t, max

{
f, T2 +

∑j
i=1 pi − t + qj

}]
in Xj

2) Put [t + pj , max {f, t + pj + qj}] in Xj if t + pj ≤ T1

Remove Xj−1

(iii). ϕ∗ (P) = min[t,f ]∈Xn
{f}.



Improved Approximation Schemes for the Maximum Lateness Minimization 423

Let UB = ϕJS (T ′′) be an upper bound on the optimal maximum lateness
for problem (T ′′) obtained by Jackson’s sequence. We add the restriction that
for every state [t, f ] the relation f ≤ UB must hold.

The main idea of the FPTAS is to remove a special part of the states gener-
ated by the dynamic programming algorithm. Therefore, the modified algorithm
DPε becomes faster and yields an approximate solution instead of the optimal
schedule. The worst-case analysis of our FPTAS is based on the comparison of
the execution of algorithms DP and DPε, which can be summarized by the fol-
lowing relations. For every state [t, f ] in Xj there exists a state

[
t#, f#

]
in X#

j

such that:
t − δ2 ≤ t# ≤ t (3)

and
f# ≤ f + δ2 + jδ1 (4)

The two relations can be proved by induction on j.
First, for j = 1 we have X#

1 = X1. Therefore, the statement is trivial. Now,
assume that the statement holds true up to level j − 1. Consider an arbitrary
state [t, f ] ∈ Xj . Algorithm DP introduces this state into Xj when job j is added
to some feasible state for the first j−1 jobs. Let [t′, f ′] be the above feasible state.
Two cases can be distinguished: either [t, f ] = [t′ + pj ,max {f ′, t′ + pj + qj}] or

[t, f ] =
[
t′,max

{
f ′, T2 +

∑j
i=1 pi − t′ + qj

}]
must hold. For proving the state-

ment for level j we will distinguish two cases.

Case 1: [t, f ] = [t′ + pj ,max {f ′, t′ + pj + qj}]
Since [t′, f ′] ∈ Xj−1, there exists

[
t′#, f ′#]

∈ X#
j−1 such that t′ − δ2 ≤ t′# ≤ t′

and f ′# ≤ f ′ + δ2 + (j − 1) δ1.
Consequently, the state

[
t′# + pj ,max

{
f ′#, t′# + pj + qj

}]
is feasible (since

t′# + pj ≤ t′ + pj = t ≤ T1) and it is generated by Algorithm DPε at iteration
j. However it may be removed when reducing the state subset. Let [λ, μ] and
[α, β] be the two possible states in set X#

j that remain in the same box as the
state

[
t′# + pj ,max

{
f ′#, t′# + pj + qj

}]
(with λ ≤ t′# + pj ≤ α). Hence, we

have two situations to consider: t′ + pj ≥ α or t′ + pj < α.

Subcase 1.a: t′ + pj ≥ α. In this subcase, we can verify that the state [α, β]
fulfills (3). Indeed, α ≤ t′ +pj = t and by definition α ≥ t′# +pj ≥ t′ − δ2 +pj =
t − δ2. Thus, we have

t − δ2 ≤ α ≤ t.

Subcase 1.b: t′ + pj < α. In this subcase, we can verify that the state [λ, μ]
fulfills (3). Indeed, λ ≤ t′# + pj ≤ t′ + pj = t and by definition λ ≥ α − δ2 >
t′ + pj − δ2 = t − δ2. Thus, we have

t − δ2 ≤ λ ≤ t.

On the other hand, the two values μ and β are in the same subinterval as the
value max

{
f ′#, t′# + pj + qj

}
. Therefore, the kept state will have a maximum



424 I. Kacem and H. Kellerer

lateness value less or equal to max{μ, β}. Then, we conclude that

max{μ, β} ≤ max
{
f ′#, t′# + pj + qj

}
+ δ1

≤ max {f ′ + δ2 + (j − 1) δ1, t
′ + pj + qj} + δ1

≤ max {f ′, t′ + pj + qj} + δ2 + jδ1

= f + δ2 + jδ1.

Consequently, the statement holds for level j in this case.

Case 2: [t, f ] =
[
t′,max

{
f ′, T2 +

∑j
i=1 pi − t′ + qj

}]

Since [t′, f ′] ∈ Xj−1, there exists
[
t′#, f ′#]

∈ X#
j−1 such that t′ − δ2 ≤ t′# ≤ t′

and f ′# ≤ f ′ + δ2 + (j − 1) δ1.
Consequently, the state

[
t′#,max

{
f ′#, T2 +

∑j
i=1 pi − t′# + qj

}]
is gener-

ated by Algorithm DPε in iteration j. However, it may be removed when reducing
the state subset. Let [λ′, μ′] and [α′, β′] be the states in X#

j that are kept in the
same box as [t′#,max{f ′#, T2 +

∑j
i=1 pi −t′# + qj}] and having λ′ ≤ t′# ≤ α′.

Again, we have two situations to be considered: t′ ≥ α′ or t′ < α′.

Subcase 2.a: t′ ≥ α′. In this subcase, we can verify that the state [α′, β′] fulfills
(3). Indeed, α′ ≤ t′ = t and by definition α′ ≥ t′# ≥ t′ − δ2 = t − δ2. Thus, we
have

t − δ2 ≤ α′ ≤ t.

Subcase 2.b: t′ < α′. In this subcase, we can verify that the state [λ′, μ′] fulfills
(3). Indeed, λ′ ≤ t′# ≤ t′ = t and by definition λ′ ≥ α′ − δ2 > t′ − δ2 = t − δ2.
Thus, we have

t − δ2 ≤ λ′ ≤ t.

On the other hand, the values μ′ and β′ are in the same subinterval as
max{f ′#, T2 +

∑j
i=1 pi −t′# + qj}. Therefore, the kept state will have a max-

imum lateness value less or equal to max{f ′#, T2 +
∑j

i=1 pi −t′# + qj} + δ1.
Moreover,

max

{

f ′#, T2 +
j∑

i=1

pi − t′# + qj

}

+ δ1 ≤ max {X,Y } + δ1

where X = f ′ + δ2 + (j − 1) δ1 and Y = T2 +
∑j

i=1 pi − t′ + δ2 + qj . Thus,

max{μ′, β′} ≤ max

{

f ′, T2 +
j∑

i=1

pi − t′ + qj

}

+ max{δ2 + jδ1, δ2 + δ1}

≤ f + δ2 + jδ1.

In conclusion, the statement holds also for level j in the second case, and this
completes our inductive proof. Now, we give the proof of Eq. (2). By definition,



Improved Approximation Schemes for the Maximum Lateness Minimization 425

the optimal solution can be associated to a state [t∗, f∗] in Xn. From Eq. (4),
there exists a state

[
t#, f#

]
in X#

n such that:

f# ≤ f∗ + δ2 + nδ1

= f∗ +
T1

ω2
+ n

ϕJS (I ′′)
ω1

= f∗ +
T1⌈
2
ε

⌉ + n
ϕJS (I ′′)

⌈
4n
ε

⌉

≤ f∗ + ε
T1

2
+ ε

ϕJS (I ′′)
4

≤ (1 + ε) ϕ∗ (I ′′) .

Since ϕDPε
(I ′′) ≤ f#, we conclude that Eq. (2) holds.

It can be easily seen that the proposed modified algorithm DPε can be imple-
mented in O

(
n log n + n2/ε2

)
time. The schedule obtained by DPε for instance

I ′′ can be easily converted into a feasible one for instance I. This can be done
in O (n) time.

To summarize, we conclude that Algorithm DPε is an FPTAS and it can be
implemented in O

(
n log n + min{n, 1/ε}2/ε2

)
time.

5 Consequences: An Improved FPTAS for the ONA Case

Here, the studied problem (Π) can be formulated as follows. An operator has to
schedule a set J of n jobs on a single machine, where every job j has a processing
time pj and a tail qj . The machine can process at most one job at a time if the
operator is available at the starting time and the completion time of such a job.
The operator is unavailable during (T1, T2). Preemption of jobs is not allowed
(jobs have to be performed under the non-resumable scenario). All jobs are ready
to be performed at time 0. Without loss of generality, we consider that all data
are integers and that jobs are indexed according to Jackson’s rule. The aim is
to find a feasible schedule S by minimizing the maximum lateness. Again, if
all the jobs can be inserted before T1, the instance studied (I) has obviously a
trivial optimal solution obtained by Jackson’s rule. We therefore consider only
the problems in which all the jobs cannot be scheduled before T1. Moreover, we
consider that every job can be inserted before T1 (i.e., pj ≤ T1 for every j ∈ J).

As it has been done in Kacem et al. [12], an FPTAS can be established for Π.
The procedure is based on guessing the so-called straddling job and its starting
time from a finite set of approximate values, which leads to O(n

ε ) auxiliary MNA
problems (P). Thus, the application of DPε to all these auxiliary problems can
lead to an improved FPTAS as the following theorem claims:

Theorem 2. Problem Π admits an FPTAS and this scheme can be implemented
in O(n (ln n) /ε + nmin{n, 3/ε}2/ε3) time.

Proof. The proof is a straightforward from [12] and Theorem 1.



426 I. Kacem and H. Kellerer

6 Conclusion

In this paper we consider the single machine scheduling problem with one non-
availability interval to minimize the maximum lateness where jobs have positive
tails. Two cases are considered. In the first one, the non-availability interval is
due to the machine maintenance. In the second case, the non-availibility inter-
val is related to the operator who is organizing the execution of jobs on the
machine. The contribution of this paper consists in an improved FPTAS for
the maintenance non-availability interval case and its extension to the opera-
tor non-availability interval case. The two FPTASs are strongly polynomial and
outperform our previous ones published in the literature.

As a research perspective, we are extending the ideas of this paper in order
to improve some existing FPTASs for other scheduling problems.

References

1. Brauner, N., et al.: Operator non-availability periods. 4OR: Q. J. Oper. Res. 7,
239–253 (2009)

2. Carlier, J.: The one-machine sequencing problem. Eur. J. Oper. Res. 11, 42–47
(1982)

3. Chen, Y., Zhang, A., Tan, Z.: Complexity and approximation of single machine
scheduling with an operator non-availability period to minimize total completion
time. Inf. Sci. 251, 150–163 (2013)

4. Dessouky, M.I., Margenthaler, C.R.: The one-machine sequencing problem with
early starts and due dates. AIIE Trans. 4(3), 214–222 (1972)

5. Gens, G.V., Levner, E.V.: Fast approximation algorithms for job sequencing with
deadlines. Discret. Appl. Math. 3, 313–318 (1981)

6. He, Y., Zhong, W., Gu, H.: Improved algorithms for two single machine scheduling
problems. Theor. Comput. Sci. 363, 257–265 (2006)

7. Ibarra, O., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. J. ACM 22, 463–468 (1975)

8. Kacem, I.: Approximation algorithms for the makespan minimization with positive
tails on a single machine with a fixed non-availability interval. J. Comb. Optim.
17(2), 117–133 (2009)

9. Kacem, I., Kellerer, H.: Approximation algorithms for no idle time scheduling on a
single machine with release times and delivery times. Discret. Appl. Math. 164(1),
154–160 (2014)

10. Kacem, I., Kellerer, H.: Approximation schemes for minimizing the maximum late-
ness on a single machine with release times under non-availability or deadline con-
straints. Algorithmica (2018) https://doi.org/10.1007/s00453-018-0417-6

11. Kacem, I., Kellerer, H.: Semi-online scheduling on a single machine with unex-
pected breakdown. Theor. Comput. Sci. 646, 40–48 (2016)

12. Kacem, I., Kellerer, H., Seifaddini, M.: Efficient approximation schemes for the
maximum lateness minimization on a single machine with a fixed operator or
machine non-availability interval. J. Comb. Optim. 32, 970–981 (2016)

13. Kacem, I., Sahnoune, M., Schmidt, G.: Strongly fully polynomial time approxima-
tion scheme for the weighted completion time minimisation problem on two-parallel
capacitated machines. RAIRO - Oper. Res. 51, 1177–1188 (2017)

https://doi.org/10.1007/s00453-018-0417-6


Improved Approximation Schemes for the Maximum Lateness Minimization 427

14. Kubzin, M.A., Strusevich, V.A.: Planning machine maintenance in two machine
shop scheduling. Oper. Res. 54, 789–800 (2006)

15. Lee, C.Y.: Machine scheduling with an availability constraints. J. Glob. Optim. 9,
363–384 (1996)

16. Qi, X.: A note on worst-case performance of heuristics for maintenance scheduling
problems. Discret. Appl. Math. 155, 416–422 (2007)

17. Qi, X., Chen, T., Tu, F.: Scheduling the maintenance on a single machine. J. Oper.
Res. Soc. 50, 1071–1078 (1999)

18. Rapine, C., Brauner, N., Finke, G., Lebacque, V.: Single machine scheduling with
small operator-non-availability periods. J. Sched. 15, 127–139 (2012)

19. Schmidt, G.: Scheduling with limited machine availability. Eur. J. Oper. Res. 121,
1–15 (2000)

20. Sahni, S.: Algorithms for scheduling independent tasks. J. ACM 23, 116–127 (1976)
21. Yuan, J.J., Shi, L., Ou, J.W.: Single machine scheduling with forbidden intervals

and job delivery times. Asia-Pac. J. Oper. Res. 25(3), 317–325 (2008)


	Improved Fully Polynomial Approximation Schemes for the Maximum Lateness Minimization on a Single Machine with a Fixed Operator or Machine Non-Availability Interval
	1 Introduction
	2 Related Works
	3 Contributions
	4 Case Under MNA Interval
	4.1 The Improved Procedure
	4.2 Algorithm DP is an Improved FPTAS

	5 Consequences: An Improved FPTAS for the ONA Case
	6 Conclusion
	References




