
Skipping the Storage Phase in Container
Transshipment Operations

M. Flavia Monaco1(B) and Marcello Sammarra2

1 Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica,
Università della Calabria, Rende, Italy

monaco@dimes.unical.it
2 Istituto di Calcolo e Reti ad Alte Prestazioni,
Consiglio Nazionale delle Ricerche, Rende, Italy

sammarra@icar.cnr.it

Abstract. The paper deals with the problem of scheduling the load-
ing/discharging operations of two simultaneously berthed vessels, assum-
ing that some of the containers discharged from a vessel must be directly
loaded on the other one. For these containers also the stowage position
must be decided. The aim is to minimize the time needed to complete
all the operations required by the involved vessels. For this problem we
present a mathematical model, a heuristic algorithm and discuss the
computational results on a set of randomly generated instances.

Keywords: Container terminal · Direct transshipment · Stowage plan

1 Introduction

At a maritime terminal the conventional transshipment flow of containers follows
the quay-yard-(yard)-quay cycle, where the yard-to-yard movements concern
possible housekeeping operations aimed at reconfiguring the yard and recover-
ing storage spaces. From the operative point of view, the storage of the containers
in the yard is essential to decouple in time the ingoing and outgoing container
flows. Therefore the discharging and loading operations (of the same containers)
are independent and can be planned and scheduled separately and efficiently.
On the other hand, the yard is a critical resource, due to its limited capacity,
and terminal planners are concerned with the reduction of the sojourn time of
the containers in the yard (dwell-time) because that could increase the termi-
nal throughput. The dwell-times have also a relevant economic impact for the
shipping operators, since they contribute to determine the port fees. Therefore,
reducing the dwell-times is a common target for the two main operators of the
transshipment market. In view of that, we investigate the feasibility of a new
operative transshipment modality, called Direct Transshipment.

The research has been supported by Ministero dell’Istruzione, Università e Ricerca
under the PRIN 2015 research program - Grant 2015XAPRKF - Smart PORt Ter-
minals.

c© Springer Nature Switzerland AG 2018
R. Cerulli et al. (Eds.): ICCL 2018, LNCS 11184, pp. 207–221, 2018.
https://doi.org/10.1007/978-3-030-00898-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00898-7_13&domain=pdf
http://orcid.org/0000-0003-1258-3090
http://orcid.org/0000-0002-8964-9281

208 M. F. Monaco and M. Sammarra

We consider two vessels, simultaneously berthed at not necessarily adjacent
berths, and we assume that some of the containers discharged from each of them
must be directly loaded into the other, while the rest of the cargo follows the
conventional transshipment flow (quay-yard-quay). Clearly, in the direct trans-
shipment modality the unloading and loading operations are no longer inde-
pendent and the related scheduling processes are concurrent: each container to
be directly transshipped represents two dependent tasks (unloading/loading), to
be executed by different machines (quay cranes) operating on different vessels,
linked by a strict precedence relationship. In order to fully take advantage from
this operative modality, the stowage decisions for the directly transshipped con-
tainers must become a degree of freedom for the planners. This is to say that the
stowage positions of such containers and the cranes scheduling will be determined
concurrently. The Direct Container Transshipment Problem (DCTP) is then the
problem of scheduling all the vessel operations while deciding the stowage posi-
tions for the containers to be directly transshipped, so as to minimize the overall
service time of the vessels.

The paper is organized as follows. The scientific literature related to the
DCTP is discussed in Sect. 2. In Sects. 3 and 4 we state and formulate the prob-
lem. The solution algorithm is presented in Sect. 5. Section 6 discusses the com-
putational experience. Finally conclusions are drawn in Sect. 7.

2 Related Works

The direct transshipment of containers between vessels seems to be a relatively
new problem in the literature concerning the management of container terminals.
In a more wide research stream, it has some similarities with the Cross Docking
policy at a distribution terminal in a logistic network [4]. The main analogy
between them is the common need of synchronizing the arrival and departure
sequences of the carriers, while having low or possibly zero inventory levels.

The effectiveness of the direct transshipment of containers between different
means of transport has been investigated in [1] for the case of rail hubs, in [7] for
the case of trains and trucks, and in [3] for the case of mother ships and barges.
Only few papers refer to the direct ship-to-ship transshipment. In [8] the authors
consider a one-way direct transshipment between a mother vessel and a feeder,
which “moor at the same berth and utilize the same handling equipment”. Some
researchers have recently studied an analogous problem in the case of mobile
(or offshore) harbours, which are floating platforms equipped with portal cranes
and are used to perform unloading and loading operations in the open sea (see
[13]).

The only work that recognizes the effectiveness of the direct transshipment
of containers between vessels is described in [15]. The authors present a model
that integrates the berth allocation of the vessels, the yard space assignment,
and the direct transshipment plan; the aim is to minimize the operative costs of
trucks and yard cranes, as well as the delay cost of the vessels.

The DCTP we address in this paper, formerly introduced in [11], completely
differs from that described in [15]; we deal with the operative management of the

Direct Transshipment 209

direct transshipment of containers between vessels, so integrating the schedul-
ing of the quay cranes allocated to the vessels and the stowage of the directly
transshipped containers.

3 Problem Statement

In order to derive the mathematical model for the DCTP, we first need to intro-
duce the adopted notation and to detail the complex interactions between the
main decision components of the problem, from which the constraints originate.
As noted before, the management of the direct transshipment operative modality
calls for the integration of two decision processes: the scheduling of the cranes
operating on the two vessels and the stowage of the containers to be directly
transshipped. Therefore, we will model it as a Quay Crane Scheduling Problem
QCSP (see e.g. [2,14]) on a virtual vessel, with stowage constraints.

3.1 Notation

The mathematical model for the DCTP relies on the following main entities, that
are vessels (V = {A,B}), tasks (Ωv, v ∈ V), and quay cranes (Qv, v ∈ V). For
each vessel v, the set of tasks consists of three disjoint subsets Ωv = Gv∪Dv∪Lv.
Gv is the set of groups of containers, to be loaded or discharged, following the
conventional transshipment flow, also called conventional tasks; Dv is the set
of single containers discharged from v and directly transshipped to the other
vessel; Lv is the set of containers directly transshipped from the other vessel and
to be loaded into v. In the following we will refer to a container to be directly
transshipped as a DT container. The vessels V can be seen as a single virtual
vessel, with task set Ω = ΩA ∪ ΩB and crane set Q = QA ∪ QB .

In Table 1 we detail the characteristics and the attributes of vessels, tasks,
and cranes.

Some of the entries in Table 1 need to be further explained. Each element θ of
the sets Θv actually represents a single stowage slot in terms of (bay, row, tier)
coordinates; moreover each θ ∈ Θv is able to accommodate only a subset of
the containers in Lv, as indicated by the class-based stowage plan (see [12]).
Therefore we define by Θv

i ⊆ Θv, i ∈ Lv the set of slots where container i can be
stowed, and by Hv

i ⊂ Hv the set of bays where a stowage slot compatible with
the container i ∈ Lv is located, that is Hv

i = {b ∈ Hv | b = bθ, θ ∈ Θv
i }, where

bθ is the bay coordinate corresponding to θ. In passing, we observe that Hv
i can

also be defined for tasks i ∈ Gv ∪Dv, being in this case Hv
i = {b(i)} a singleton.

Finally, we define Θv(b, i) the set of slots θ ∈ Θv
i compatible with i and located

in the bay b.
Due to physical restrictions, there are tasks whose processing can not overlap

in time. For example, in the same bay unloading tasks always precede the loading
ones, while in adjacent bays simultaneous processing of tasks by different cranes
is forbidden, due to safety issues. This is to say that, for each vessel, some
temporal restrictions on task pairs are defined. They impose either precedence

210 M. F. Monaco and M. Sammarra

Table 1. Notation

Vessels

av Arrival time of vessel v ∈ V

Θv Set of slots available for stowing containers directly transshipped to the
vessel v ∈ V

Hv Set of bays of vessel v ∈ V

Tasks

pi Processing time of task i ∈ Ωv

b(i) Bay coordinate of task i ∈ Ωv

Cranes

rk Release time of crane k ∈ Qv

[sk, fk] Set of adjacent bays where crane k is allowed to operate

l0k Initial bay-position of crane k (sk ≤ l0k ≤ fk)

t̂ Time a crane takes to travel from a bay to an adjacent one

tb1b2 Time a crane takes to travel between two generic bays: tb1b2 = t̂|b1 − b2|
t0kb Time needed to the crane k to reach the bay b from its starting

bay-position: t0kb = t̂|l0k − b|
Q(b) The set of cranes k such that b ∈ [sk, fk]

or non-simultaneity constraints on the processing of the tasks. More clearly, if
there is a precedence between tasks i and j, then the processing of j can not start
before the processing of i has been completed. Conversely, a non-simultaneity
relationship between i and j imposes that either i must precede j, or j must
precede i. To model these relations we need to extend our notation.

Precedence Relationships: A first set of precedence relationships is given by

Φ =
⋃

v∈V

Φv ∪ Φ̄

where

Φv = {(i, j) | i → j, i, j ∈ Gv ∪ Dv} v ∈ V

relates to pairs of tasks belonging to the same vessel. Φv basically expresses
precedences due to the operations the tasks require and can be populated using
the stowage plan. Conversely

Φ̄ = {(i, j) | i → j, (i ∈ DA, j ∈ LB) ∨ (i ∈ DB , j ∈ LA)}

are the precedence relationships between discharging and loading operations on
different vessels for the DT containers.

Direct Transshipment 211

Further precedence relationships for a given vessel are needed to guarantee
that the directly transshipped containers will be loaded according to the stowage
plan. To this aim we define

Φv
1 = {(i, θ) | i → θ, i ∈ Gv ∪ Dv, θ ∈ Θv} v ∈ V

Φv
2 = {(θ, i) | θ → i, θ ∈ Θv, i ∈ Gv} v ∈ V

Φv
3 = {(θ1, θ2) | θ1 → θ2, θ1, θ2 ∈ Θv} v ∈ V

The sets Φv
1 and Φv

2 induce precedence relationships between a task whose
stowage position is known and the container that will be stowed into the ship-
slot θ. The sets Φv

3 define precedence relationships between pairs of ship-slots
due to their relative positions within the same bay. As a consequence they will
induce, at runtime, also a set of precedence relations on the containers that will
be stowed there.

Non Simultaneity Relationships: Assumed δ to be the safety distance between
two adjacent cranes, expressed in number of bays, we define the set of bays that
cannot be operated simultaneously by different cranes as follows

Ψv = {(b1, b2) | b1, b2 ∈ Hv, b1 < b2, b2 − b1 ≤ δ} v ∈ V

The above sets allow to impose the non-simultaneity constraints between each
pair of tasks in close bays, even for the loading ones whose stowage bay must be
decided by the model. However, as disclosed in [2], the sets Ψv are not sufficient
to model the interferences between non adjacent cranes working on the vessel v.
To this aim we define

Δhk
b1b2(v) = max

{
t̂ ((δ + 1)(k − h) − (b2 − b1)) , 0

}
b1, b2 ∈ Hv, h, k ∈ Qv, v ∈ V

as the minimum time to elapse between the processing of any task located in
the bay b1 and any task in bay b2 by cranes h and k, respectively. Therefore

Δ̂(v) =
{
(b1, b2, h, k) | Δhk

b1b2(v) > 0
}

is the set of all combinations of bays and cranes that cause interferences on the
vessel v. Observe that if (b1, b2) ∈ Ψv, then (b1, b2, h, k) ∈ Δ̂(v) for all cranes
h, k ∈ Qv such that h ∈ Q(b1), k ∈ Q(b2). Thus, Δ̂(v) is a generalization of Ψv

and extends the corresponding definition in [2].

3.2 The Mathematical Model

The DCTP model involves both binary and continuous variables, as detailed in
Table 2. Note that, as Hv

i = {b(i)}, then αib(i) = 1, αib = 0 ∀b
= b(i) are input
data for all tasks i ∈ Gv ∪ Dv, v ∈ V .

The constraints to be imposed for each vessel v ∈ V can be stated as follows:

212 M. F. Monaco and M. Sammarra

Table 2. Variables

Continuous variables

ci ≥ 0 Completion time of task i ∈ Ωv, v ∈ V

σij ≥ 0 Transfer time of a DT container from the discharging to the
loading bay, (i, j) ∈ Φ̄

wv ≥ 0 Makespan of vessel v ∈ V

w = max
v∈V

wv The makespan of the virtual vessel

Binary variables

xijk = 1 If tasks i, j ∈ Ωv are performed consecutively by crane k,
v ∈ V

zij = 1 If task i ∈ Ωv is completed before the processing of task
j ∈ Ωv starts, v ∈ V

yiθ = 1 If container i ∈ Lv is stowed in the slot θ ∈ Θv
i , v ∈ V

αib = 1 If task i ∈ Ωv must be handled in a bay b ∈ Hv
i , v ∈ V

Crane Routing Constraints: Constraints (1) to (4) define the sequence of tasks
performed by each crane. Note that 0 and T are dummy tasks with p0 = pT = 0,
Ωv

0 = Ωv ∪{0}, Ωv
T = Ωv ∪{T} and x0Tk = 1 corresponds to an empty sequence

for crane k.
∑

j∈Ωv
T

x0jk = 1 k ∈ Qv (1)

∑

i∈Ωv
0

xiTk = 1 k ∈ Qv (2)

∑

k∈Qv

∑

j∈Ωv
T

xijk = 1 i ∈ Ωv (3)

∑

j∈Ωv
T

xijk −
∑

j∈Ωv
0

xjik = 0 i ∈ Ωv, k ∈ Qv (4)

Stowage Constraints: Constraints (5) and (6) assign a stowage position, in terms
of slot and bay, to the DT containers, while constraints (7) and (8) state the
relationships between y′s and α′s, x′s and α′s variables, respectively. Note that,
for a fixed i ∈ Lv, summing up constraints (7) on the compatible bays b ∈ Hv

i

and taking into account constraints (6), one gets
∑

θ∈Θv
i

yiθ = 1. Constraints (8)
impose that if a task must be performed in a bay b, it has to be assigned to a
crane able to operate that bay.

∑

i∈Lv

yiθ = 1 θ ∈ Θv (5)

∑

b∈Hv
i

αib = 1 i ∈ Lv (6)

Direct Transshipment 213

∑

θ∈Θ(i,b)

yiθ = αib i ∈ �Lv, b ∈ Hv
i (7)

∑

k∈Q(b)

∑

j∈Ωv

xijk ≥ αib i ∈ Ωv, b ∈ Hv
i (8)

Completion Time Constraints: The completion times of the tasks are computed
through constraints (9)–(12). Here and in what follows M is a big constant.

ci − pi ≥ av i ∈ Ωv (9)

rk − cj +
∑

b∈Hv
j

αjbtl0kb + pj ≤ M(1 − x0jk) j ∈ Ωv, k ∈ Qv (10)

ci − cT ≤ M(1 − xiTk) i ∈ Ωv
0 , k ∈ Qv (11)

ci + t̂

∣∣∣∣∣∣

∑

b∈Hv
i

bαib −
∑

b∈Hv
j

bαjb

∣∣∣∣∣∣
+ pj − cj ≤ M(1 − xijk) i, j ∈ Ωv, k ∈ Qv (12)

The non linearity in constraints (12) can be easily handled replacing each of
them with the following set of constraints

ci + (αib1 + αjb2 − 1)tb1b2 + pj − cj ≤ M(1 − xijk) b1 ∈ Hv
i , b2 ∈ Hv

j (13)

Precedence Constraints: Constraints (14)–(18) impose the precedence relation-
ships between pairs of tasks.

ci + pj − cj ≤ 0 (i, j) ∈ Φv (14)
ci + pj − cj ≤ M(1 − yjθ) j ∈ Lv, θ ∈ Θv

j , (i, θ) ∈ Φv
1 (15)

cj + pi − ci ≤ M(1 − yjθ) j ∈ Lv, θ ∈ Θv
j , (θ, i) ∈ Φv

2 (16)

ci + pj − cj ≤ M(2 − yiθ1 − yjθ2) i, j ∈ Lv, θ1 ∈ Θv
i , θ2 ∈ Θv

j , (θ1, θ2) ∈ Φv
3

(17)

ci + σij + pj − cj ≤ 0 (i, j) ∈ Φ̄ (18)

In particular, (14) define the precedence between tasks whose stowage position
is known, while (15) to (18) take into account precedence relationships involving
DT containers to be loaded. The variables σij in (18) are defined through equa-
tions (19), where lFA is the last bay of vessel A, dAB is the inter-vessel distance
expressed in number of bays, and τ is the time a straddle carrier takes to cover
a ship-bay (see [5]).

σij = τ

⎛

⎝
∑

v∈V

∑

b∈Hv
j

bαjb − b(i) + lFA + dAB

⎞

⎠ (i, j) ∈ Φ̄ (19)

214 M. F. Monaco and M. Sammarra

Non Simultaneity Constraints: The relations between the completion times of
the tasks and the z′s variables are stated by constraints (20), (21), and (22).
They impose a partial time-ordering on the tasks of the same vessel. Actually,
for each pair of tasks, either i precedes j (zij = 1, zji = 0), or j precedes i
(zji = 1, zij = 0), or, finally, the processing of i and j overlap (zij = zji = 0).
Note that if i and j are tasks located in too close bays, constraints (22) avoid
that they are processed simultaneously.

ci + pj − cj ≤ M(1 − zij) i, j ∈ Ωv (20)
cj − pj − ci ≤ Mzij i, j ∈ Ωv (21)
zij + zji ≥ αib1 + αjb2 − 1 i, j ∈ Ωv, b1 ∈ Hv

i , b2 ∈ Hv
j , (b1, b2) ∈ Ψv (22)

Non Interference Constraints: For each pair of tasks i, j ∈ Ωv and for each pair
of compatible bays b1 ∈ Hv

i , b2 ∈ Hv
j , the following constraints must hold for

each pair of cranes h and k that would cause interference working simultaneously
on bays b1 and b2, that is (b1, b2, h, k) ∈ Δ̂(v):

∑

u∈Ωv
0

xuih +
∑

u∈Ωv
0

xujk + αib1 + αjb2 ≤ 3 + zij + zji (23)

ci + Δhk
b1b2(v) + pj − cj ≤ M

⎛

⎝5 − αib1 − αjb2 − zij −
∑

u∈Ωv
0

xuih −
∑

u∈Ωv
0

xujk

⎞

⎠

(24)

cj + Δhk
b1b2(v) + pi − ci ≤ M

⎛

⎝5 − αib1 − αjb2 − zji −
∑

u∈Ωv
0

xuih −
∑

u∈Ωv
0

xujk

⎞

⎠

(25)

Objective Function Definition. The objective function to be minimized is a linear
combination of two conflicting functions: the makespan of the virtual vessel,
defined by (26)–(27), and the average waiting time for the DT containers (28).

ci ≤ wv i ∈ Ωv, v ∈ V (26)

wv ≤ w v ∈ V (27)

min λw + μ
1

|Φ̄|
∑

(i,j)∈Φ̄

(cj − pj − σij − ci) (28)

4 Refinement of the DCTP Model

As motivated in [2,10], the search of feasible solutions of the QCSP can be
limited to the unidirectional schedules, where all the cranes move from the bow
to the stern of the vessel, or in the opposite direction. Therefore, also in the
DCTP model (1)–(11), (13)–(28) it is possible to impose the one-way movement

Direct Transshipment 215

of all the cranes allocated to the single vessels. To this aim we introduce two
new binary variables: γv = 1 if the cranes in Qv move from the bow to the stern,
v ∈ V , and a set of additional constraints (see [10]):

∑

b∈Hv
i

bαib −
∑

b∈Hv
j

bαjb ≤ M(1 − xijk) + M(1 − γv) i, j ∈ Ωv, v ∈ V (29)

∑

b∈Hv
j

bαjb −
∑

b∈Hv
i

bαib ≤ M(1 − xijk) + Mγv i, j ∈ Ωv, v ∈ V (30)

Note that (29), (30) extend the corresponding constraints (16), (17) in [10],
also to the DT containers to be loaded, whose stowage bay is unknown.

5 Solution Algorithm

The formulation of the DCTP (1)–(11), (13)–(30) as a QCSP on a virtual vessel
with side constraints naturally drives to design a solution algorithm by suitably
modifying the Tabu Search Algorithm for the QCSP described in [10].

Given a feasible stowage plan for the DT containers, our algorithm iterates
over feasible solutions constructed by a two-phases approach:

1. Routing phase: for each crane, a feasible sequence of tasks is determined taking
into account precedence, one-way and cranes’ operative range constraints.

2. Scheduling phase: the completion time of the tasks is computed imposing
the non simultaneity and non interference constraints, and the precedence
constraints related to the DT containers.

A feasible schedule for the cranes can be represented by a disjunctive graph
with node set Ω ∪ {0, T} (see [10]), where disjunctive edges model the non
simultaneity and the non interference constraints. To perform the scheduling
phase and evaluate the makespan for the virtual vessel, we have to find the
critical path from 0 to T on such a disjunctive graph. This problem is, in general,
NP -hard, while in our case it becomes easier to solve. The one-way assumption,
in fact, uniquely identify the orientation of the disjunctive edges giving rise to
an acyclic graph.

To describe the Tabu Search algorithm for the DCTP, it is sufficient to specify
the memory mechanism and the neighbourhood structure. We adopt the attribu-
tive memory mechanism, meaning that a solution is declared tabu if at least one
of the attributes describing that solution is tabu [6]. In order to introduce the
neighbourhood structure, let us denote by (x̄, ȳ) a given feasible solution in terms
of the main scheduling variables (x) and stowage variables (y). We define swap
move the swapping of the stowage positions of two containers in Lv, v ∈ V ; N1(ȳ)
is the set of all feasible stowage configurations obtained from ȳ by performing a
swap move. Furthermore, we define shift move the shifting of a task currently
assigned to the crane k to an adjacent crane (k − 1 or k + 1), and N2(x̄) as the
set of all feasible schedules obtained from x̄ by performing a shift move. The
neighborhood of (x̄, ȳ) can now be defined as follows:

N (x̄, ȳ) = {(x̄, y) | y ∈ N1(ȳ)} ∪ {(x, ȳ) | x ∈ N2(x̄)} (31)

216 M. F. Monaco and M. Sammarra

6 Computational Experience

The Tabu Search Algorithm (TSA) has been implemented in C++. The stopping
criterion is based on a maximum number of iterations equal to 2000. The tabu
tenure has been set to 15 iterations; the diversification penalty has been set equal
to 0.05. The tests have been carried out on a machine equipped with a 3.1 GHz
Intel Core i5 CPU and 16 GB of RAM. TSA has been tested on a set of instances
randomly generated as described in the next subsection.

6.1 Instance Generator Algorithm

Let I an instance of the standard QCSP defined by: number of conventional
tasks (T), number of cranes (Q), and number of bays (B). In such an instance
each conventional task is characterized by a processing time p and a bay location
b. Given two QCSP instances, say IA and IB , called seed instances, an instance
IAB of the DCTP can be constructed as follows. First, we assume that a task
i of IA or IB with processing time pi is a group of pi containers. Let c be the
number of container classes and nc the number of DT containers of class c in
the instance IAB . For each instance IA and IB, apply the following algorithm
(DCTP-G):

1. Randomly select a class c and a bay b.
2. Randomly select in the bay b a conventional task i of class c; let pi its pro-

cessing time.
3. If nc ≤ pi, replace the task i with nc +1 tasks, where the first tasks represent

nc DT containers, while the last one, if any, represents a residual conventional
task i′ with processing time pi′ = pi − nc. GO TO 1.

4. If nc > pi, replace the selected conventional task i with pi DT containers; set
nc = nc − pi, b = b + 1 and GO TO 2.

To generate the seed instances, we have adopted the instance generator
QCSPgen developed by Meisel and Bierwirth in [9]. The interested reader is
referred to [9] for more details on the QCSPgen algorithm. Here we just mention
that, among the input parameters of QCSPgen, we have set the distribution of
the tasks within the vessel to be uniform; the density of precedence relationships
among tasks of the same bay to be one, meaning that within the same bay all
the tasks are sorted to reflect the stowage constraints. Finally we have set the
crane safety distance to be one bay. We have generated two sets of instances to
represent two kind of vessels: mother vessels and feeder vessels. The dimensions
of the seed instances are reported in Table 3, where NoI indicates the number
of instances of each type generated.

The seed-instances of Table 3 are combined each other and become the input
for the DCTP-G algorithm, either as IA or as IB , together with the number of
container classes c and the number of DT containers per class, nc, giving rise to
33 DCTP instances as detailed in Table 4.

Direct Transshipment 217

Table 3. Dimensions of the seed instances.

Type Bays Tasks Cranes NoI

Mother 20 10 3 1

Mother 20 15 3 1

Mother 20 20 4 1

Feeder 10 10 2 5

Table 4. Description of the DCTP instances.

Code IA IB c
∑

c nc NoI Direct transshipment flow

MF Mother Feeder 2 240 15 A → B

FM Feeder Mother 2 150 15 A → B

MM Mother Mother 2 250 3 A → B (115), A ← B (125)

6.2 Lower Bounds for the DCTP

In order to evaluate the effectiveness of TSA, we need to compute lower bounds
for the DCTP. The most natural way to achieve this aim is to consider a relaxed
DCTP model obtained by removing constraints (5) to (8) related to the stowage
decision. The resulting DCTP-SR relaxed problem, consisting of two standard
QCSPs linked by constraints (18), is hard to solve to optimality. Actually stan-
dard ILP solvers easily run out of memory, due to the high number of constraints
and variables. For these reasons we also relax constraints (18), getting the DCTP-
WR problem that decomposes in two QCSPs no longer dependent on each other,
and relatively easy to be solved by a standard ILP solver.

6.3 Analysis of the Results

In the following Tables 5, 6, and 7, we summarize the computational results
obtained by solving the instances described in Table 4 by our TSA, and the
corresponding DCTP-WR problems by ILOG Cplex 12.6.2., setting λ = μ = 1
in the objective function. For each instance, in the leftmost columns of the result
Tables we report: the data related to the number of bays and cranes (B-Q) of
each vessel; the number of tasks T in the form (DT containers - conventional
tasks). Observe that the instance code IAIB −α−β −γ −δ is useful to recognize
the seed instances generating it, being α − β the number of bays and tasks of
IA and γ − δ the number of bays and tasks of IB. Then we report the makespan
of the two vessels, both for the DCTP-WR and DCTP models, marking in
bold the maximum between them. As for the DT containers, in the second last
column (AvgD) we report the average waiting time between the discharging and
the loading operation. Finally, in the last column, we report the gap computed

218 M. F. Monaco and M. Sammarra

Table 5. Results on Mother-Feeder instances.

Code Vessel A Vessel B LB UB Gap%

B − Q T B − Q T wA wB wA wB AvgD

MF-20-10-10-10-1 20-3 240-10 10-2 240-6 1482 259 1530 1328 0.00 3.24

MF-20-10-10-10-2 20-3 240-10 10-2 240-6 1482 266 1482 1385 26.29 1.77

MF-20-10-10-10-3 20-3 240-10 10-2 240-7 1482 267 1484 1392 101.40 6.98

MF-20-10-10-10-4 20-3 240-10 10-2 240-5 1482 267 1482 1376 4.17 0.28

MF-20-10-10-10-5 20-3 240-10 10-2 240-6 1482 300 1482 1425 13.83 0.93

MF-20-15-10-10-1 20-3 240-13 10-2 240-7 1482 259 1485 555 77.54 5.43

MF-20-15-10-10-2 20-3 240-13 10-2 240-3 1482 266 1485 555 31.67 2.34

MF-20-15-10-10-3 20-3 240-13 10-2 240-5 1482 277 1482 543 59.23 4.00

MF-20-15-10-10-4 20-3 240-13 10-2 240-6 1482 284 1482 523 24.43 1.65

MF-20-15-10-10-5 20-3 240-13 10-2 240-7 1482 300 1485 580 60.14 4.26

MF-20-20-10-10-1 20-4 240-20 10-2 240-6 1926 259 1926 817 21.50 1.12

MF-20-20-10-10-2 20-4 240-20 10-2 240-6 1926 266 1926 759 26.29 1.37

MF-20-20-10-10-3 20-4 240-20 10-2 240-7 1926 277 1926 768 55.93 2.90

MF-20-20-10-10-4 20-4 240-20 10-2 240-5 1926 267 1926 750 4.17 0.22

MF-20-20-10-10-5 20-4 240-20 10-2 240-6 1926 300 1926 799 13.83 0.72

Table 6. Results on Feeder-Mother instances.

Code Vessel A Vessel B LB UB Gap%

B − Q T B − Q T wA wB wA wB AvgD

FM-10-10-20-10-1 10-2 150-8 20-3 150-10 259 1457 373 1607 358.99 34.93

FM-10-10-20-10-2 10-2 150-8 20-3 150-10 266 1457 277 1607 325.00 32.60

FM-10-10-20-10-3 10-2 150-8 20-3 150-10 277 1457 295 1607 319.41 32.22

FM-10-10-20-10-4 10-2 150-6 20-3 150-10 273 1606 273 1606 534.82 33.30

FM-10-10-20-10-5 10-2 150-8 20-3 150-10 300 1457 335 1607 338.03 33.50

FM-10-10-20-15-1 10-2 150-8 20-3 150-15 259 1471 425 1616 413.81 37.99

FM-10-10-20-15-2 10-2 150-8 20-3 150-15 266 1471 277 1640 367.69 36.48

FM-10-10-20-15-3 10-2 150-8 20-3 150-15 277 1471 295 1640 362.10 36.10

FM-10-10-20-15-4 10-2 150-6 20-3 150-15 273 1414 273 1532 144.85 18.59

FM-10-10-20-15-5 10-2 150-8 20-3 150-15 300 1471 335 1640 380.72 37.37

FM-10-10-20-20-1 10-2 150-8 20-4 150-18 259 1926 425 1926 87.93 4.57

FM-10-10-20-20-2 10-2 150-8 20-4 150-18 266 1926 266 1926 57.54 2.99

FM-10-10-20-20-3 10-2 150-8 20-4 150-18 277 1926 295 1926 63.68 3.31

FM-10-10-20-20-4 10-2 150-6 20-4 150-19 273 1926 284 1926 35.54 1.85

FM-10-10-20-20-5 10-2 150-8 20-4 150-18 300 1926 335 1926 76.65 3.98

Table 7. Results on Mother-Mother instances.

Code Vessel A Vessel B LB UB Gap%

B − Q T B − Q T wA wB wA wB AvgD

MM-20-10-20-15-1 20-3 240-10 20-3 240-14 1482 1482 1482 1600 16.10 9.05

MM-20-10-20-20-2 20-3 240-10 20-4 240-20 1482 1926 1607 1927 158.04 8.20

MM-20-15-20-20-3 20-3 240-13 20-4 240-18 1482 1926 1972 1926 0.67 2.42

Direct Transshipment 219

as Gap% = 100 × (UB − LB)/LB where LB = max{wA, wB} and UB =
max{wA, wB} + AvgD. We do not report the computation times, since they are
about 300 s almost uniformely on all the instances.

A first oversight to the Tables shows that TSA gives satisfactory results on
all but the first two groups of instances in Table 6. Actually, very often the
overall makespan coincides with its lower bound, and the average delay of the
DT containers is small enough, resulting in a gap that does not exceed 7% for
the M-F instances, 5% for the last group of F-M instances, and 10% for the M-M
instances. In particular, the results obtained on the M-F instances (Table 5) can
be motivated as follows: the makespan of the virtual vessel is always attained at
the mother vessel, therefore the delay of the DT containers can be reduced by,
eventually, letting the cranes working on the feeder vessel wait. This is because
the makespan of the feeder can increase without affecting the objective function.
This phenomenon is especially evident in the first and fourth instances of the
first group, and in the fourth instance of the last group in Table 5.

But the delay of the DT containers could be unavoidable. In fact, it is strictly
related to their class and to the class-based stowage plan of both vessels, that is
to the data set of the seed instances and to the random procedure implemented
by DCTP-G, whose output could likely be an instance not enough suitable for
the Direct Transshipment modality. Looking, for example, at the third instance
of the first group in Table 5, we observe that the average delay of DT containers
is relatively high, in spite of the remarkable growth of the makespan of the
feeder vessel. As for the F-M instances, most of them seem to belong to the class
of instances for which the Direct Transshipment is not a convenient approach.
Actually, even for the last (end best) group of instances in Table 6, we can observe
that the delay of the DT containers is unavoidable. This is very clear for the
instance FM-10-10-20-20-2, where the makespan of both vessels is computed in
an optimal way.

The results in Table 7, related to the bi-directional flow of DT containers
between mother vessels, exhibit both the characteristics discussed before. The
minimum value of AvgD is attained at the third instance, for which the makespan
of vessel A, that was the minimum in the relaxed problem, grows so much to
become the makespan of the virtual vessel in DCTP. In the second instance,
instead, it is evident that the waiting time for the DT containers can not be
reduced any further.

7 Conclusions

In this paper we have addressed the Direct Container Transshipment Problem
(DCTP), that is the problem of scheduling the loading/discharging operations of
two vessels sharing the berthing time windows, and assuming that some contain-
ers discharged from a vessel must be directly loaded on the other one, completely
skipping the storage phase in the yard. The aim is to minimize a linear combina-
tion of the time needed to complete all the operations and the average waiting
time for the directly transshipped containers. The DCTP integrates two oper-
ative decision processes: the scheduling of the quay cranes and the stowage of

220 M. F. Monaco and M. Sammarra

the container directly transshipped. For this problem we have described a mixed
integer linear model and we have derived a Tabu Search heuristic algorithm. We
have tested the heuristic algorithm on a set of randomly generated instances.
The algorithm is able to find feasible solutions of good quality in almost all the
considered instances within a short amount of computation time, despite the
intrinsic hardness of the problem.

The DCTP generalizes the Quay Crane Scheduling Problem (QCSP). Actu-
ally, when no direct transshipment operation has to be performed, the DCTP
separates into two non-standard QCSP, where for some export containers also
the stowage position must be decided. Vice-versa, if the stowage plans of the
two involved vessels are completely known, the resulting DCTP reduces to two
independent QCSP, one for each vessel.

The direct transshipment of containers allows to reduce yard congestions
and, at the same time, the storage costs. From this point of view, it seems cer-
tainly a profitable modality for the terminal management. As for the shipping
line companies, the saving in the storage costs must be evaluated in connec-
tion with possible increasing of the berthing times. This is the focus of future
developments.

References

1. Alicke, K.: Modeling and optimization of the intermodal terminal Mega Hub. OR
Spectr. 24(2), 1–18 (2002)

2. Bierwirth, C., Meisel, F.: A fast heuristic for quay crane scheduling with interfer-
ence constraints. J. Sched. 12(4), 345–360 (2009)

3. Blumenhagen, D.: Containerization and Hinterland traffic. Marit. Policy Manag.
8(3), 197–206 (1981)

4. Chiarello, A., Gaudioso, M., Sammarra, M.: Truck synchronization at single door
cross-docking terminals. OR Spectr. 40(2), 395–447 (2018)

5. Garro, A., Monaco, M.F., Russo, W., Sammarra, M., Sorrentino, G.: Agent-based
simulation for the evaluation of a new dispatching model for the straddle carrier
pooling problem. Simulation 91(2), 181–202 (2015)

6. Gendreau, M., Potvin, J.Y.: Tabu search. In: Gendreau, M., Potvin, J.Y. (eds.)
Handbook of Metaheuristics. ISOR, vol. 146, pp. 41–59. Springer, Boston (2010).
https://doi.org/10.1007/978-1-4419-1665-5 2

7. Lee, B.K., Jung, B.J., Kim, K.H., Park, S.O.: A simulation study for designing
a rail terminal in a container port. In: Perrone, L.F., Wieland, F.P. et al. (eds.)
Proceedings of the 38th Conference on Winter Simulation, pp. 1388–1397 (2006)

8. Lian, C., Hwang, H., Gen, M.: A berth allocation planning problem with direct
transhipment consideration. J. Intell. Manuf. 23(6), 2207–2214 (2012)

9. Meisel, F., Bierwirth, C.: A unified approach for the evaluation of quay crane
scheduling models and algorithms. Comput. Oper. Res. 38(3), 683–693 (2011)

10. Monaco, M.F., Sammarra, M.: Quay crane scheduling with time windows, one-way
and spatial constraints. Int. J. Shipp. Transp. Logist. 3(4), 454–474 (2011)

11. Monaco, M.F., Sammarra, M.: The direct ship-to-ship container transshipment
problem at a maritime terminal. In: Gunther, H.-O., Kim, K.-H., Kopfer, H. (eds.)
International Conference on Logistics and Maritime Systems, LOGMS2012, pp.
79–89 (2012)

https://doi.org/10.1007/978-1-4419-1665-5_2

Direct Transshipment 221

12. Monaco, M.F., Sammarra, M., Sorrentino, G.: The terminal-oriented ship stowage
planning problem. Eur. J. Oper. Res. 239(1), 256–265 (2014)

13. Nam, H., Lee, T.: A scheduling problem for a novel container transport system: a
case of mobile harbor operation schedule. Flex. Serv. Manuf. J. 25, 576–608 (2013)

14. Sammarra, M., Cordeau, J.-F., Laporte, G., Monaco, M.F.: A tabu search algo-
rithm for the quay crane scheduling problem. J. Schedul. 10(4–5), 327–336 (2007)

15. Zeng, Q., Feng, Y., Chen, Z.: Optimizing berth allocation and storage space in
direct transshipment operations at container terminals. Marit. Econ. Logist. 19(3),
474–503 (2017)

	Skipping the Storage Phase in Container Transshipment Operations
	1 Introduction
	2 Related Works
	3 Problem Statement
	3.1 Notation
	3.2 The Mathematical Model

	4 Refinement of the DCTP Model
	5 Solution Algorithm
	6 Computational Experience
	6.1 Instance Generator Algorithm
	6.2 Lower Bounds for the DCTP
	6.3 Analysis of the Results

	7 Conclusions
	References

