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Abstract. Calculation of blood vessel or airway direction is important
for the task of tree tracking in 3D medical images. However, most exist-
ing works treat branch direction estimation as only a by-product of ves-
selness or tubularness computation. In this work, we propose a deep
learning framework for predicting tracking directions of anatomical tree
structures. We modify the deep V-Net architecture with extra layers and
leverage a novel multi-loss function that encodes direction as well as cross
sectional plane information. We evaluate our method on both 3D syn-
thetic and 3D clinical pulmonary CT datasets. On the synthetic dataset,
we outperform state of the art methods by at least 10% in direction
estimation accuracy. For the clinical dataset, we outperform competing
methods by 1–4% in mean direction accuracy and 4–10% in correspond-
ing standard deviation.

1 Introduction

Tree extraction is a crucial task in 3D medical image analysis, and accurately
extracted circulatory and respiratory trees can be further utilized in surgery
planning, registration and tree space analysis [1–3]. However, the automation
and accuracy of tree extraction still remains an open problem due to the natural
complexity and variability of the topologies of anatomical tree structures [4],
the various imaging reconstruction artifacts [5], varying image intensities along
branches, the similarity between tubular structure lumen and background tissue
lumen, and the changing geometry due to different pathologies [6–8].

One major category of tree extraction algorithms is based on iterative track-
ing, which usually starts from a given seed point near the root of the tree, predicts
the direction of the branch to track along it, detects bifurcations to spawn chil-
dren trackers, and progresses down the tree hierarchy to smaller branches until
some stopping criteria are met [9]. Although there have been several works that
tackle the important bifurcation detection step of the tracker [10,11], very few
are specifically designed to determine the direction of the branch at a given point.
Most works simply treat the problem of direction estimation as a by-product of
vesselness or tubularness calculation [12–14].
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Most existing methods on vesselness (with explicit/implicit direction predic-
tion) rely on certain assumptions made on the geometry of tubular structures.
Most Hessian based vessel enhancement filters, e.g., Frangi et al. [15] and Jerman
et al. [13,14], assumed the vessels were elongated structures. Cetin et al. [10] mea-
sured intensity distribution within an oriented cylinder-sphere combined model
and constructed a corresponding tensor representation to optimize for vessel
directions, however, their success relied on a good match between the cylinder
and the actual vessel shape. Law et al. [12] used a gradient based tensor to model
oriented flux flow and the vessel direction was also approximated by the eigen-
vector – intrinsically their assumption of vessel shapes were still straight tubes.
However, in clinical datasets, especially those exhibiting various pathologies or
abnormalities such as narrowing (e.g., in COPD [6]), aneurysms [7], and high tor-
tuosity (which might indicate diseases like arterial hypertension and strokes [8]),
the aforementioned shape assumptions might no longer hold true, which results
in incorrect direction estimates.

In contrast to the above deterministic methods, stochastic and learning based
tracking methods provide more flexibility by adjusting the prediction retrospec-
tively during the tracking process, or by using prior information learnt from the
training data [16]. Lee et al. [17] proposed to use particle filtering to track vessel
contours slice by slice, with the per-slice contour obtained by the Chan-Vese
model. Lesage et al. [18] also proposed to use particle filtering method, but in
contrast, utilized geometric flow, image features, as well as radius and direction
prior distributions to perform Bayesian inference. In these tracking processes,
vessel directions were found implicitly by subtracting neighboring points along
the detected centerlines. On the other hand, a significant number of machine
learning based methods ignore directional information completely by focusing
on pixel-wise classification [9,19,20].

The fast development of deep learning methods provides vast opportunities
in exploring the structures in 3D images from coarse to fine scales [21], however,
limited work has been done on analyzing 3D vasculature images, and none of
them estimated tree branch directions. Mirikharaji et al. [22] proposed to use an
artificial neural network trained on 2D patches to learn the probability map of
airway bifurcation locations; instead of tracking new branches, they connected
the bifurcations by minimal paths to form the whole tree. Fu et al. [23] proposed
to combine a convolutional neural network architecture with a conditional ran-
dom field model to achieve a smooth binary segmentation for retinal vessels, but
their method was only performed on 2D retinal images and no vessel direction
was estimated. Chen et al. [24] proposed to use a convolutional autoencoder for
voxel-wise cerebral arteries segmentation while completely ignoring directional
information.

We claim the following contributions are made in this paper: (i) The proposed
method, which extends V-Net [21], is the first tree branch direction prediction
deep learning method; (ii) The proposed multi-loss function is novel and specially
designed for tracking 3D tubular structures; (iii) The proposed model is trained
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and tested in a branch-specific way, which takes advantage of the “anatomical
tree statistics” [16,25] and fully utilizes statistical and geometrical information.

2 Methodology

Architecture: Our proposed deep learning architecture is an improvement of
V-Net [21]. The choice of V-Net is two-fold: (i) its encoding-decoding process
propagates contextual information into higher resolution layers – in our case,
the context information is the tubularity of the neighboring points; and, (ii)
our multi-loss function (introduced below) relies on cross sectional plane infor-
mation, so the prediction process implicitly involves plane segmentation and
reconstruction. We rescale all input volumes to 64∗64∗64 voxels with histogram
equalization. We use batch normalization and add three extra fully connected
layers (FCs, with output channels 1024, 64 and 4) at the end of the V-Net and
output a 4-element vector <v , R> where v predicts the direction of the vessel
in the center of the input cube, and a radius R that serves as intermediate input
in training the loss layer. The overall methodology is illustrated in Fig. 1a.

At Testing Time: A region of interest (ROI, or 3D patch, which we use in
the context interchangeably) is generated and input into the network (as shown
in red dotted box in Fig. 1a), and the output is the predicted vector of the
corresponding branch (shown as −→vgt in Fig. 1b).

Fig. 1. (a): The proposed architecture and tracking process. (b): Illustration of Bgt,−→v gt and Igt in Eq. 1.

Loss Function: We define the following multi-loss function:

L(v i
dt, R

i
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where i is the training index, gt refers to ground truth value, dt refers to model
prediction. Iigt and Iidt are corresponding gt and predicted cross sectional planes
(going through the center voxel). Bi

gt and Bi
dt are the ground truth and predicted

(using radius Ri
dt and circular expression) branch masks on the cross sectional

planes, Ri
gt and Ri

dt are the ground truth and predicted radii, as illustrated
in Fig. 1b. The four terms Ldir, Limage, Lmask, Lradius capture the errors in,
respectively, direction estimation, cross sectional image plane reconstruction,
branch internal area estimation and radius estimation. We normalize Limage and
Lmask by the patch cube size and set the weights empirically to ω1 = ω2 = ω3 =
ω4 = 1. The total loss is optimized over vi

dt and Ri
dt. Since accurate direction

prediction leads to accurate cross section plane prediction, using multiple loss
terms should theoretically increase the direction prediction accuracy.

Tree Tracking: We follow the tracking procedure in [9], which starts from a
given seed point in a branch and tracks along vessel/airway detected by the
proposed architecture. Additional tracking details are given in Sect. 3.

3 Evaluation

Synthetic Dataset: We use three different types of synthetic dataset to mimic
pathologies such as narrowing and aneurysms, and high tortuosity [6–8]: (i)
Occlusion, (ii) Torus and (iii) Leakage. Examples are shown in Fig. 2. We aug-
ment the data by rotating the volumes along each axis randomly between [0, 60◦],
using two radius values, translating along each dimension separately by three
values ([−1, 0, 1], so 9 cases in total) and adding Gaussian noise with standard
deviation from 0.005 to 0.1 (20 cases). This brings the total number of image
volumes per each category to 360. We then run a 3-fold cross validation ensuring
that augmentations of any volume are not split across the train and test sets.

Fig. 2. Synthetic examples (noise free).

Clinical Dataset: The clinical dataset is from the Extraction of Airways
from CT (EXACT) 2009 challenge1. Sixteen training volumes with binary seg-
mentations were provided by the organizers. We extracted two categories of
data: (1) ROIs, each is a cuboid containing one of the following 7 anatomical
structures: trachea, right main bronchi (RMB), left main bronchi (LMB), right
1 http://image.diku.dk/exact/index.php.

http://image.diku.dk/exact/index.php
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superior lobar bronchus (RSLB), right intermediate bronchus (RIB), left supe-
rior lobar bronchus (LSLB) and left inferior lobar bronchus (LILB); (2) patches,
each is a cube randomly sampled from the branch centerlines, with radii twice
the mean radii of the branch, intensities normalized to [0, 1], and augmented by
adding Gaussian noise with standard deviation [0.01, 0.04] with step size = 0.01.
We perform a 4-fold cross validation on the patients for training and testing.

Competing Methods: We compare with 4 state-of-the-art algorithms: (i)
OOF [12]; (ii) Tensor [10]; (iii) Jerman [13,14]; (iv) Particle filtering [17]. Since
particle filtering doesn’t directly predict the vessel direction, we use a primitive
tracking method to first trace the branch centerline, then estimate the direc-
tions. For multiscale methods, the scale ranges are set according to mean branch
scales learnt from the dataset, and all other parameters are set according to the
original paper (for airways, i.e., dark-on-bright, some parameters are inverted
accordingly). Note that although (i) and (ii) are not direction prediction meth-
ods per se, they leverage direction estimates to filter branches, which makes the
comparison fair.

Tracking Details: Both the proposed method and the competing ones use the
same initial seeds, which are selected from the ground truth branch centerlines.
By calculating the mean radii R̄ of the corresponding branch, the ROI radii are
set automatically as 2R̄.

Evaluation Metrics: Two metrics are used to evaluate the results. For the
tracking method, we use the asymmetric distance function proposed in [9] to
compare the ground truth centerline to the extracted centerline:

D(C1, C2) = { min
s2∈C2

dist(s1, s2)|∀s1 ∈ C1} (2)

where dist(s1, s2) is 3D Euclidean distance between voxels s1 and s2, C1 the
ground truth centerline and C2 the detected centerline (by either the proposed
method or particle filtering). D(C1, C2) returns a set of distance values for all the
points on C1, so a smaller mean value and standard deviation would indicate
a better result. For other competing methods, since they return a per-voxel
direction estimate, we use the following symmetric accuracy metric:

accu(v1, v2) = v1 · v2 (3)

where v1 and v2 are the branch direction vectors to be compared.

Experiments: The evaluation result on the synthetic dataset is shown in
Table 1. We can see a marked improvement in the proposed method over the
competing ones by at least 10% in mean direction accuracy. For the Occlu-
sion category, all competing methods performed poorly, since all these methods
assume that the foreground is always luminous. For the Torus category, we can
see the Tensor method [10] performing the worst, as it modeled the blood vessel
as cylindrical tubes, which were very different from the torus shapes in the given
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Table 1. Three fold cross validation result on synthetic dataset.

Year Occlusion Torus Leakage

OOF [12] 2008 0.11 (0.07) 0.69 (0.28) 0.21 (0.12)

Tensor [10] 2015 0.47 (0.1) 0.48 (0.037) 0.89 (0.03)

Jerman [13,14] 2016 0.44 (0.46) 0.62 (0.48) 0.45 (0.07)

Proposed with Ldir only 0.95 (0.06) 0.96 (0.09) 0.97 (0.04)

Proposed w/o Limage 0.90 (0.07) 0.95 (0.12) 0.94 (0.04)

Proposed w/o Lmask 0.93 (0.07) 0.93 (0.13) 0.97 (0.04)

Proposed w/o Lradius 0.94 (0.07) 0.93 (0.10) 0.97 (0.05)

Proposed 0.97 (0.02) 0.97 (0.06) 0.99 (0.04)

images. On the contrary, the Tensor method performed much better than other
competing methods on the Leakage category, as a long cylinder might overcome
the small leakage (but not good enough to overcome the occlusion) and found
the correct direction. It is worth noting that, although the Jerman filter could
achieve good enhancement results at tortuous and bulging branches [13,14], the
filter was not designed to deal with the direction estimation task.

We observe that by removing only one of the loss terms (other than Ldir)
actually performs worse than using only Ldir. This is not surprising when we
remember that the cross sectional plane and the direction together serve as the
Frenet frame, so removing one term would invalidate the frame representation.
Since Limage contains the most information on the cross sectional plane, remov-
ing it leads to the worst performance. The improvement in prediction accuracy
of the multi-loss function supports our hypothesis that all four terms contribute
to the result, given their complementary nature.

Figure 3a shows an example where an airway centerline tree is extracted
using our proposed method (red curves) and compared to the ground truth tree
centerlines (yellow curves). Figure 3b shows a qualitative comparison between
the tracking result, along branch LIB, between the particle filtering and the
proposed method. The mean and standard deviation of distance errors of each
branch are shown in Fig. 4. The proposed method achieves a lower error mean
and standard deviation on every anatomical branch.

The results in Table 2 are consistent with the synthetic data results. The
proposed method outperforms all the competing methods on all branches.

We run our experiments on a Nvidia GTX GeForce 12 GB TITAN GPU, and
the processing time per patch at testing stage is 0.04 s.
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Fig. 3. (a): Whole tree extracted. (b): Centerlines tracked by proposed algorithm and
competing particle filtering algorithm on LIB. (Color figure online)

Fig. 4. Distance error bar between GT centerlines and detected centerlines.

Table 2. Direction accuracy (mean and standard deviation) on airway branches of
different levels.

Level 1 Level 2 Level 3

Trachea LMB RMB LILB LSLB RSLB RIB

OOF [12] 0.19

(0.18)

0.24

(0.24)

0.29

(0.26)

0.30

(0.24)

0.42(0.31) 0.40

(0.31)

0.43

(0.28)

Tensor [10] 0.86

(0.15)

0.60

(0.20)

0.78

(0.15)

0.68

(0.22)

0.34

(0.29)

0.33

(0.26)

0.82

(0.13)

Jerman

[13,14]

0.91

(0.17)

0.93

(0.16)

0.90

(0.18)

0.87

(0.22)

0.87

(0.17)

0.86

(0.21)

0.88

(0.18)

Proposed 0.92

(0.11)

0.95

(0.07)

0.93

(0.08)

0.89

(0.15)

0.91

(0.08)

0.90

(0.11)

0.90

(0.10)
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4 Conclusion and Future Work

We proposed the first deep learning architecture for estimating anatomical tree
branch directions, which is a critical step for the common tracking-based tree
extraction methods. Our proposed loss function is unique in that it follows the
geometry of the target structure (i.e. the curvilinear tree branches) by using
branch direction agreement and cross sectional image information, based on a
Frenet frame of reference. In future work, we intend to apply our model on other
anatomical trees, such as cerebral vasculature and coronary vessels.
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