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Abstract. Automated tissue classification is an essential step for quantitative
analysis and treatment of emphysema. Although many studies have been con-
ducted in this area, there still remain two major challenges. First, different
emphysematous tissue appears in different scales, which we call “inter-class
variations”. Second, the intensities of CT images acquired from different
patients, scanners or scanning protocols may vary, which we call “intra-class
variations”. In this paper, we present a novel multi-scale residual network with
two channels of raw CT image and its differential excitation component. We
incorporate multi-scale information into our networks to address the challenge
of inter-class variations. In addition to the conventional raw CT image, we use
its differential excitation component as a pair of inputs to handle intra-class
variations. Experimental results show that our approach has superior perfor-
mance over the state-of-the-art methods, achieving a classification accuracy of
93.74% on our original emphysema database.
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1 Introduction

Emphysema is a major component of chronic obstructive pulmonary disease (COPD),
which is emerging as a worldwide health problem. Generally, as shown in Fig. 1,
emphysema can be classified into three subtypes: centrilobular emphysema (CLE) that
generally appears as scattered small low attenuation areas; paraseptal emphysema
(PSE)which is shown as low attenuation areas aligned in a row along a visceral pleura [1];
and panlobular emphysema (PLE) that usually manifests as a wide range low attenuation
region with fewer and smaller lung vessels [1]. They have different pathophysiological
significance [2]. Hence, classification and quantification of emphysema are important.
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Much research has been conducted to classify the lung tissue of different emphy-
sema subtypes. One common way is based on the local intensity distribution, such as
kernel density estimation (KDE) [3]. Another class of approaches describes the mor-
phology of emphysema using texture analysis techniques [1, 4–6]. In the last years,
some attempts have revealed the potential of deep learning techniques on lung disease
classification, but it has been applied in only two studies [7, 8] for emphysema clas-
sification. The networks in these two studies are very preliminary, using two or three
convolutional layers, so they are not able to capture the high-level features. Since the
classification of emphysema mainly depends on features of texture and intensity, there
still remain two major challenges. (1) “inter-class variations”: as can be seen in Fig. 1,
different emphysematous tissue appears in different scales. Since existing methods
ignore the scales of different emphysema which are useful clues for diagnosing
emphysema, it is highly desirable to develop new models that can take full advantage
of the information from multiple scales. (2) “intra-class variations”: in clinical practice,
the intensities of CT images acquired from different patients, scanners or scanning
protocols may vary [9]. The variation in CT images will affect the classification
accuracy of emphysema, so it is necessary to design models which are robust to such
variability. In addition, existing methods for emphysema classification are limited to
extracting low-level features or mid-level features, which have limited abilities to
distinguish different patterns.

In this paper, we focus on the supervised classification of emphysema. We propose
a novel deep learning method using the multi-scale residual network (MS-ResNet) [16]
with two channels of the raw CT image and its differential excitation component. In
contrast to previous works, our proposed method discovers high-level features that can
better characterize the emphysema lesions. We incorporate multi-scale information into
our networks to address the challenge of inter-class variations. Moreover, to handle
intra-class variations, we first transform the raw image data into the differential exci-
tation domain of human perception based on weber’s law, which is robust to intensity
variability. Then we use the raw CT images and the transformed images as different
channels of the inputs of networks. The experiments show that our method can achieve
higher classification accuracy than the state-of-the-art methods. Based on the classifi-
cation results, we calculate the area percentage of each class (CLE%, PLE%, PSE%,
respectively). Then, we show the relationship between the quantitative results (area
percentages) and the forced expiratory volume in one second dividing with a predicted
value (FEV1%), which is the primary indicator of pulmonary function tests (PFTs).

Fig. 1. (a) Normal tissue (NT). (b) CLE. (c) PSE. (d) PLE.
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2 Methods

In this section, we first describe how to transform the raw CT image into the differential
excitation domain. Subsequently, we present our multi-scale residual network with two
channels of the raw CT image and its differential excitation component. An overview
of the proposed method is shown in Fig. 2.

2.1 Differential Excitation Component

Ernst Heinrich Weber, an experimental psychologist in the 19th century, observed that
the ratio of the perceived change in stimulus to the initial stimulus is a constant [10],
which is well-known as Weber’s law and can be defined as DI/I = a, where DI denotes
the perceived change in stimulus, I denotes the initial stimulus, and a is referred to as
the Weber fraction for detecting changes in stimulus.

Inspired by Weber’s law, which shows that human perception of a pattern depends
not only on the absolute intensity of the stimulus but also on the relative variance of the
stimulus, we transform the raw image into the differential excitation domain of human
perception which is robust to intensity variability [10]. In order to do so, we first
compute the difference between a focused pixel and its neighbors, which can be
formulated as

DIc ¼
Xp�1

i¼0

ðDIicÞ ¼
Xp�1

i¼0

ðIic � IcÞ ð1Þ

Fig. 2. Overview of the proposed approach
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where Ic is the intensity at position xc, Iic i ¼ 0; 1; . . .; p� 1ð Þ is intensity of the ith
neighbor of c, and p is the number of neighbors. The differential excitation component
of the focused pixel c is defined as

Ec ¼ arctan½ DIc
Ic þ k

� ¼ arctan½
Xp�1

i¼0

ðIic � IcÞ
Ic þ k

� ð2Þ

where k is a constant which avoids the situation in which there is zero intensity. k is set
to one in our experiments.

2.2 MS-ResNet with Raw and Excitation Channels

MS-ResNet. Due to the inter-class variations of emphysema, one target category tends
to be identified on a certain scale and the most suitable scales for different target classes
may vary. That is, we cannot find the best scale for all cases. Thus, it is essential to
incorporate information from different scales into our deep neural networks [16].

For a baseline, we build a 20-layer ResNet [11], which has been shown to achieve
the excellent performance on image classification. For the sake of adapting it to our
problem (small inputs and only 4 classes), we remove the pooling layer and modify the
configuration for some layers. Figure 2 (bottom) presents the details of our ResNet. As
shown in Fig. 2 (top), for each annotated pixel, we can extract patches with different
scales from its neighborhood. The label assigned to each patch is the same as label of
the central pixel. Note that, in this paper, different scales mean various sizes of inputs.
Figure 2 (middle) presents two ways for fusing information from different scales:
multi-scale early fusion (MSEF) and multi-scale late fusion (MSLF). For the MSEF, we
employ the independent convolutional layers for each scale. The outputs of average
pooling layers are combined and fed into a 4-way shared fully connected layer with
softmax to compute a cross entropy classification loss. For the MSLF, we train three
separate networks, each focusing on a certain scale. During the fusion step, we first sum
up the values of probability vectors yielded by different networks, and then compute
the average of them.

Fused Representation of Raw Image and its Differential Excitation Component.
As mentioned in Introduction part, there exists the challenge of intra-class variations
for emphysema classification. As shown in Fig. 2 in order to reduce the impact of
intensity variability, we first transform the raw image data into the differential exci-
tation domain of human perception, which is robust to intensity variability. Then we
use the raw CT images and their differential excitation components as different
channels of the inputs of networks.
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3 Experimental Results

3.1 Materials

Our dataset contains 101 HRCT volumes. The first part of our dataset includes 91
HRCT volumes annotated manually by two experienced radiologists and checked by
one experienced chest radiologist. Four types of patterns were annotated: CLE, PLE,
PSE, and non-emphysema (NE) which corresponds to tissue without emphysema. This
part of dataset is used for evaluation of classification accuracy shown in Sect. 3.2.
Since the first part of dataset does not include complete pulmonary function evalua-
tions, we collected additional 10 HRCT volumes from patients who have a complete
pulmonary function evaluation for a quantitative analysis of emphysema shown in
Sect. 3.3. All data came from two hospitals and were acquired using seven types of CT
machines with a slice collimation of 1 mm–2 mm, a matrix of 512 � 512 pixels, and
an in-plane resolution of 0.62 mm–0.71 mm.

3.2 Evaluation of Classification Accuracy

Experimental Setup. Our classification experiments are conducted on 91 annotated
subjects (the first part of dataset): 59 subjects (about 720,000 patches) for training, 14
subjects (about 140,000 patches) for validation, and 18 subjects (about 160,000 pat-
ches) for testing. A 20-layer ResNet is chosen as the baseline in this work (we found 8-
layer, 32-layer, 44-layer, and 56-layer ResNet decrease the performance, compared to
20-layer ResNet, on our data). We have done extensive experiments for selecting patch
sizes and the experimental results show that the most suitable scales (patch sizes) for
different target categories are different: for non-emphysema tissue, the inputs of
27 � 27 generate the best result; for CLE, the best scale is 41 � 41; for PLE and PSE,
the highest classification accuracy is obtained with inputs of size 61 � 61. Therefore,
patches of sizes 27 � 27, 41 � 41, and 61 � 61 are selected as inputs of the multi-
scale neural networks.

Single Scale versus Multiple Scales. In this section, to investigate the effect of fusi-ng
multi-scale information on the classification accuracy, we use only raw images as
inputs of networks. As shown in Table 1, both MSEF model and MSLF model out-
perform the single-scale models (27 � 27, 41 � 41, and 61 � 61). To test the sta-
tistical significance of the classification accuracy differences between single-scale
models and multi-scale models, we calculated the classification accuracy of each
patient, and then employed t-test. The results of analysis confirmed the statistically
significant (p-value < 0.05) superior performance of the multi-scale models against all
single-scale models. Fusion of multi-scale information leads to higher accuracy, so we
can conclude that the multi-scale methods are beneficial compared to the single scale
setting.

Single Channel versus Multiple Channels. This part compares the classification ac-
curacy between the single-channel models (use only raw images as inputs) and the
multi-channel models (use raw CT images and their differential excitation components
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as different channels of inputs). As shown in Table 2, for both single-scale setting and
multi-scale setting, the multi-channel models offer superior performance to the single-
channel models (p-value < 0.05).

Comparison to the State-of-the-Art Methods. In this section, our approaches are
compared to other state-of-the-art methods. The comparison between our methods and
the machine learning (ML) methods for emphysema classification is provided in the
first five rows. The results prove the superior performance of our methods that sig-
nificantly outperform the rest by 14% to 20%. The rest of Table 3 shows a comparison
to other deep learning methods. Since existing deep learning methods for emphysema
classification [7, 8] are very primary using only two or three convolutional layers, we
also compare our approaches with other CNNs for interstitial lung disease (ILD) clas-
sification [12, 14]. The results show that our approaches have superior performance
over other deep learning methods.

3.3 Emphysema Quantification

In this section, based on the classification results, we quantify the whole lung area of 10
subjects (the second part of dataset with complete pulmonary function evaluations) by
calculating the area percentage of each class (CLE%, PLE%, PSE%, respectively), and
show the relationship between the quantitative results (area percentages) and the forced
expiratory volume in one second dividing with a predicted value (FEV1%), which is the
primary indicator of pulmonary function tests (PFTs). Some visual results of full lung
classification are shown in Fig. 3. It can be seen that, auto-annotations (or classification
results) of proposed method are similar to annotations of radiologists (manual anno-
tations). The relationship between the quantitative results (area percentages) and
FEV1% of 10 subjects are shown in Table 4. According to [15], FEV1% is an effective
indicator that indicates both functional and symptomatic impairment of COPD.
Symptoms arise in individuals in relation to a relative loss of FEV1. More specifically,

Table 1. The comparison between the single-scale models and the multi-scale models.

27 � 27 41 � 41 61 � 61 MSEF MSLF

NE 93.19% 91.77% 86.04% 94.05% 91.98%
CLE 86.85% 88.87% 86.50% 91.17% 89.02%
PLE 83.61% 92.18% 95.06% 89.48% 93.78%
PSE 87.35% 89.52% 95.52% 95.89% 92.36%
Avg. 87.77% 90.58% 90.81% 92.68% 91.80%

Table 2. The comparison between the single-channel models and the multi-channel models.

27 � 27 41 � 41 61 � 61 MSEF MSLF

Single-channel 87.77% 90.58% 90.81% 92.68% 91.80%
Multi-channel 89.39% 91.47% 91.84% 93.74% 92.90%
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FEV1% can reflect the severity of airflow obstruction in the lungs. The lower value of
FEV1% means the more severe the airflow obstruction in the lungs. Our results show
that a larger CLE% (or PLE%) corresponds to a lower FEV1% (the more severe the
airflow obstruction in the lungs). From our experiments, we found there is no rela-
tionship between PSE% and FEV1%. According to the literature [1], PSE is often not
associated with significant symptoms or physiological impairments, which is in close
agreement with our experimental results.

Table 3. The comparison of classification accuracy (Acc.) to the state-of-the-art approaches.

ML methods Acc.

LBPINT [1] 78.67%
Texton-based [4] 79.06%
KDE [3] 76.67%
Sparse representation [5] 72.96%
JWRIULTP [6] 79.31%
DL methods Acc.
Karabulut [7] 65.51%
Pei [8] 72.34%
AlexNet-TL [12] 81.79%
GoogLeNet-TL [12] 85.75%
Wang [13] 73.62%
Anthimopoulos [14] 85.00%
Proposed method 93.74%

Fig. 3. Examples of the classification results. Each row represents a subject. (a), (e) Classification
results in coronal view. (b), (f) Typical original HRCT slices from subjects of (a), (e), respectively.
(c), (g) Auto-annotated mask of our proposed method. (d), (h) Manual annotated mask of
radiologists. Green mask: CLE lesions. Blue mask: PLE lesions. Yellow mask: PSE lesions.
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4 Conclusions

In this paper, we proposed a novel deep learning approach for emphysema classifi-
cation, using the multi-scale ResNet with two channels of raw CT image and its
differential excitation component. Our proposed approach achieved a classification
accuracy of 93.74%, which is superior to the state-of-the-art methods.
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