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Abstract. Multiple sclerosis (MS) is a disease characterized by demyeli-
nating lesions in the brain and spinal cord. Quantification of the amount
of change in MS lesions in magnetic resonance imaging (MRI) over time
is important for evaluation of drug effectiveness in clinical trials. Man-
ual analysis of such longitudinal datasets is time- and cost prohibitive,
and also prone to intra- and inter-rater variability. Accurate automated
change detection methods would be highly desirable. We propose a
new MS lesion change detection method that integrates a voxel’s multi-
sequence MR intensity with its immediate neighborhood context and the
texture of the extended neighborhood in a machine learning framework.
On our dataset of 15 patients, the proposed method had higher per-
formance (median AUC-ROC =0.97, AUC-PR = 0.43, Wilcoxon’s signed
rank test, p<0.001) than implemented baseline methods. As such, the
proposed method has potential clinical applications as an efficient, low-
cost algorithm to capture and quantify local lesion change and growth.
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1 Introduction

Multiple sclerosis (MS) is a disease of the central nervous system (CNS) that
affects over 400,000 people in the U.S. and 2.5 million people worldwide. It is
one of the leading causes of non-traumatic disability among young and middle-
aged adults [1]. Currently, MS has no cure, although there is an ongoing research
in search for improved treatment and management of the disease. The success
of such research depends on clinical trials, in which the response to treatment
and change in disease status must be quantified in an accurate and consistent
manner.

Multi-sequence magnetic resonance imaging (MRI) is the standard imaging
exam performed to analyze the white-matter lesions for diagnosis and follow-
up evaluation of MS. Quantitative evaluation of the changes in the MS lesions
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appearance requires annotation of the corresponding areas in the brain, which
when done manually is time-consuming and subjective. To address these chal-
lenges, reliable automated methods are needed.

The strategies for automated change detection can be categorized as lon-
gitudinal volumetric analysis, deformable image registration, and longitudinal
analysis of MR intensity [5]. Longitudinal volumetric analysis relies on segmen-
tation of MS lesions at each imaging timepoint independently and can only
provide global measures of the lesion change, such as the count of new lesions
and the total lesion volume difference. Deformable image registration relies on
deformation fields obtained during non-rigid alignment of the MR images at
two timepoints and can quantify local changes through analysis of enlarging
and shrinking lesions, while detection of new or disappearing lesions is limited.
The longitudinal analysis can address the issues of the previous two strategies
through rigid of affine registration being followed by intensity analysis at match-
ing anatomical sites, thus allowing for local quantification of all types of lesion
change [4]. The computational core of such analysis is detection of lesion change
for each voxel of the brain MR image set from two imaging timepoints. Although
single-timepoint MS lesion segmentation approaches have incorporated multiple
scales of spatial information for context [6], longitudinal MS lesion analysis has
been limited to change detection using voxel intensities independently [4]. Tex-
ture descriptors specifically can aid in a compact representation of a local context
of the multi-sequence MR images and, moreover, have been successfully applied
to MS lesion segmentation [11].

In this work, we propose a change detection method that incorporates the
local context of the multi-sequence MR images at three scales. The multi-scale
descriptors are extracted from the intensity information of the voxels immediate
neighborhood, and the intensity and texture information of a larger surrounding
image patch. Our experiments demonstrated that incorporating the contextual
information to change detection improved the performance at each scale and the
proposed method statistically significantly outperformed the baseline state-of-
the-art approach [8].

2 DMaterials and Methods

2.1 Dataset

We used anonymized imaging data from 15 MS patients with two imaging exams,
each with three MRI sequences: T1l-weighted (T1), T2-weighted (T2), and
fluid-attenuated inversion recovery (FLAIR), acquired at 1.5T. Pre-processing
included resampling to the common spatial resolution of 1 x 1 x 3 mm?, inhomo-
geneity correction on all sequences using N4 bias correction [10], registration of
all sequences at both timepoints to a common space [2], and intracranial volume
extraction from the T1 sequences using BET 2 [7]. The reference lesion change
labels were acquired as a consensus segmentation of the corresponding regions
by two neuroradiologists.
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2.2 MS Lesion Change Detection

For each patient, we consider six three-dimensional volumes: T1, T2, and FLAIR
at two time points. We denote intensity of a voxel v from the intracranial volume
mask for patient ¢, from the imaging study conducted at time ¢; (j = 1,2) by
Mf,j, where M € {T'1,72, FLAIR}. For common interpretations of voxel inten-
sities, each volume was normalized by computing the z-scores of the intracranial
volume intensities: . .
]\ZZ{ _ M, t_jl%fM
O M

where the mean u?M and standard deviation aij are computed as sample
statistics across the voxels in the intracranial volume mask for patient ¢ at time
t;. For each patient, dissimilarity maps were extracted by voxel-wise subtraction
of the normalized image between two time points for each imaging sequence M
as AM;, = M[> — M]}!.

Lesion Change Model and Voxel-Level Descriptors. We model the pres-
ence of change in a set of preregistered multi-sequence MR images as a function
of descriptors extracted from Mf; and AM;, for each imaging sequence M. With
the voxel-level lesion change represented by a random variable R, the probabil-
ities for each test patient i at voxel v are modeled as a logistic regression:

logit[P{Riy = 1}] = ag + X8_,a, I, (1)

—~~— t —~t —~1
where I* € {FLAIR ,AFLAIR,T1',AT1,T2" AT2} constitute the six
input image volumes for patient 1.

Incorporating Neighborhood Information. The first scale of the context
we incorporate into the model in Eq. (1) is the immediate neighborhood of a voxel
in the form of AFLAIR values over a K x K neighborhood of each considered
voxel. With z representing the indices of the neighborhood voxels, and these
values were used as additional descriptors to learn additional coefficients 3:

logit[P{Ri, = 1}] = ap + X5_ja,I7, + X°_, B, AFLAIRY, (2)

Incorporating Local Texture Descriptors. To incorporate a wider context,
we extracted texture descriptors from a larger L x L neighborhood of a voxel on
a AFLAIR sequence. From voxel intensities within the brain mask, descriptors
representing intensity statistics, such as mean, standard deviation, and kurtosis,
were generated. Texture-based descriptors were extracted from the gray-level
co-occurrence matrix (GLCM) of each patch using Haralick descriptors [3] and
the gray-length run-length matrix (GLRLM) descriptors [9]. This resulted in
31-dimensional vectors, which were normalized to their z-scores to obtain T,
x =1,...,31 for each selected voxel v. The logit model using these 31 descriptors
is denoted as:

logit[P{R, = 1}] = v0 + 251,17, T}, (3)
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Table 1. Median + median absolute deviation values for patient-level AUC-ROC and
AUC-PR generated across 45 independent three-fold cross-validated trials.

Metric Baseline 1 | Baseline 2 | Baseline 3 | Proposed
AUC-ROC|0.94 £ 0.04 | 0.94 +0.04 | 0.93 +0.04 | 0.97 £ 0.01
AUC-PR |0.144+0.19/0.17+0.18 | 0.29 £ 0.13 | 0.43 £0.16

Multi-scale Method. The joint multi-scale model combines the multi-sequence
voxel intensities with the immediate neighborhood and the local texture descrip-
tors. This descriptor was used as input to fit the logistic regression function:

logit[P{Ry, = 1}] = ap + X8 _ 0 IE, + X8_ | B AFLAIRY + $3L 7, TS (4)

The logistic regression model was first learned using the balanced dataset
over a selection mask, computed at voxel v for patient i as:

g 1 AFLAIR;, > cAFLAIR;
" 0 otherwise ’

In testing, the learned set of coefficients «y,...as,B1,...0s,71,-.-731 was
applied to infer the lesion change probability maps for the whole intracranial
volume of a test subject.

3 Experiments and Results

The proposed method (Eq. (4)) was compared to an implementation of the exist-
ing state-of-the-art method [8] that considers only the multi-sequence voxel
intensities (Eq. (1), referred here as Baseline 1); a method using the intensities
as well as the immediate neighborhood context information from a 3 x 3 neigh-
borhood (Eq. (2), referred to as Baseline 2); and a method using texture-based
descriptors (Eq. (3), referred to as Baseline 3).

A three-fold cross-validation scheme was used. To minimize the effect of ran-
dom variation on training and testing subsets within folds, each three-fold exper-
iment was run three times, resulting in 45 patient-level ROC and PR curves for
each method. Table 1 and Fig. 2 depict comparisons of AUC-ROC and AUC-PR
for the four methods. The higher performance of the Multi-Scale Method com-
pared to other methods was statistically significant (p < 0.001) both in terms of
AUC-ROC and AUC-PR.

3.1 Importance of Texture-Based Descriptors

Comparing Baseline 2 and the Multi-Scale Method, texture-based radiomic fea-
tures clearly contribute to the latters higher performance. Here we investigate
the discriminative power of the set of texture descriptors. Figure 3 shows the dif-
ferences in descriptor values between voxels with lesion change and voxels with
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FLAIR t1 reference

proposed

Fig. 1. A sample of the input images, manually annotated reference labels for lesion
change, and the lesion change probability map generated by the proposed method.
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Fig. 2. Distributions of patient-level AUC-ROC (left) and AUC-PR (right) values gen-
erated across 45 3-fold cross-validated trials on test patients.

no change. Since the descriptors were normalized for each patients data, the
learned coefficients v, as in Eq. (4) indicate the significance of the corresponding
descriptors in differentiating lesion change detection. Coefficients in Eq. (4) that
are consistently large in magnitude suggest that they are especially important
to generating the output lesion change probability map.

To study the importance of specific texture-based descriptors, a large set
of coefficients were generated using a Monte-Carlo simulation. With repeated
random sampling of image data from ten patients, 32 sets of coeflicients were
generated. A one-sample Wilcoxon signed-rank test was used to evaluate which
coefficients consistently differ most from zero (null hypothesis that the median
value is zero). The top ten descriptors (p < 0.01) were found to be homogeneity,
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sum average, sum variance, standard deviation, contrast, dissimilarity, difference
variance, difference entropy, short run-length emphasis (RE), and long run high
gray-level emphasis (GE).
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Fig. 3. Normalized descriptor values for sample voxels with lesion change (left) and
with no change (right). The voxels were randomly selected from a sample patient,
and all voxels are within the intracranial volume mask and voxel selection mask. Note
the differences in descriptor values between the two classes, which are indicative of
discriminative potential of these radiomic descriptors. In the descriptor index, GE
stands for gray-level emphasis and RE stands for run-length emphasis.

4 Discussion

We proposed a multi-scale MS lesion change detection method, which had the
highest performance when compared to three baseline methods that employed
the multi-sequence MR images at fewer scales. The proposed method differs from
others by extracting descriptors from not only the voxel itself, as in Ref. [§],
which corresponded to Baseline 1, but also at two additional spatial scales, i.e.
at immediate and extended neighborhoods. Since a radiologist annotates image
voxels not in isolation but in the context of its surrounding voxels, it is intuitive
that multi-scale context information improves lesion change detection.
Comparing Baseline 2 and the Multi-Scale Method, texture descriptors
clearly contribute to the latter’s higher performance. The Multi-Scale Method
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and Base-line 3 had higher AUC-PR than Baseline 1 and 2, suggesting that
texture-based descriptors improve the algorithms performance in the task of
differentiating lesion change areas from non-lesion change areas. The top ten
descriptors reported in the Results section (e.g. homogeneity, sum average) were
especially critical in distinguishing between areas with and without lesion change,
since their learned weights differ most from a median value of zero across multi-
ple experiments. Extracting only these descriptors resulted in comparable per-
formance (median AUC-ROC =0.97, AUC-PR =0.40) to using all 31 texture-
based descriptors (median AUC-ROC =0.97, AUC-PR =0.43), which suggests
that they may be sufficient for less computationally expensive use in a clinical
setting.

While radiomic descriptors have made progress in tumor detection and seg-
mentation for other diseases, this work is one of the first to use these descrip-
tors in MS lesion change detection and highlights the importance of specific
descriptors for this purpose. As expected, despite the significant contributions
of texture descriptors, the intensities of the central voxel and its immediate
neighborhood nonetheless contributed significantly to the performance. As per
our experiments, the proposed Multi-Scale Method outperformed Baseline 3 due
to these additional descriptors. This once again emphasizes the importance of
a multi-scale approach. As a reference point, we also evaluated the coefficients
directly provided by Ref. [8]. It resulted in a median AUC-ROC of 0.82, which
was significantly lower than the results from training on our dataset as presented
in Table 1, but the result is high enough to confirm the generalizability of such an
approach, which can be attributed to the standard image preprocessing routines
applied in both studies.

Quantitative longitudinal MS lesion analysis could provide insight into dis-
ease progression that occurs subtler and earlier than clinical markers like dete-
rioration of physical movement. In the current clinical practice, lesion analysis
is limited to recording lesion count and location. Manual annotation of the MS
lesion change is challenging due to the number of sequences (T1, T2 and FLAIR
in our study) that need to be taken into account when performing the labeling
of each potential new lesion area. Moreover, the task becomes even more time
and cost expensive in a setting of a large-scale clinical trials, where, due to the
larger number of imaging timepoints of interests, it is crucial to have a consistent
annotation in order to reliably evaluate the effectiveness of the tested treatment.
Reliable automated methods such as our approach can be used to expedite and
assist the radiologists daunting task of labeling lesion change for many patients
and provide objective evaluations in a consistent and efficient manner.

To conclude, we proposed a multi-scale MS lesion change detection method,
which incorporates not only information at voxel level, but also information from
neighborhood and texture-based descriptors from the larger patch surrounding
each voxel. The method statistically significantly improved over the state-of-
the-art method. We also showed the importance of texture-based descriptors to
effective lesion change detection, which to the best of our knowledge has not
been explored in previous works.
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