)

Check for
updates

Segmentation of Head and Neck
Organs-At-Risk in Longitudinal CT Scans
Combining Deformable Registrations
and Convolutional Neural Networks

Liesbeth Vandewinckele'3, David Robben!3, Wouter Crijns®*,
and Frederik Maes!:3(59)

! KU Leuven, Department of ESAT/PSI, Kasteelpark Arenberg 10 bus 2441,
3001 Leuven, Belgium
frederik.maes@kuleuven.be
2 KU Leuven, Department of Oncology - Laboratory of Experimental Radiotherapy,
Herestraat 49 bus 7003 40, 3000 Leuven, Belgium
3 UZ Leuven, Medical Imaging Research Center, Herestraat 49 bus 7003,

3000 Leuven, Belgium

4 UZ Leuven, Radiation Oncology, Herestraat 49 bus 7003 40, 3000 Leuven, Belgium

Abstract. Automated segmentation of organs-at-risk (OAR) in follow-
up images of the patient acquired during the course of treatment could
greatly facilitate adaptive treatment planning in radiotherapy. Instead of
segmenting each image separately, the segmentation could be improved
by making use of the additional information provided by longitudinal
data of previously segmented images of the same patient. We propose
a tool for automated segmentation of longitudinal data that combines
deformable image registration (DIR) and convolutional neural networks
(CNN). The segmentation propagated by DIR from a previous image
onto the current image and the segmentation obtained by a separately
trained cross-sectional CNN applied to the current image, are given as
input to a longitudinal CNN, together with the images itself, that is
trained to optimally predict the manual ground truth segmentation using
all available information. Despite the fairly limited amount of training
data available in this study, a significant improvement of the segmen-
tations of four different OAR in head and neck CT scans was found
compared to both the results of DIR and the cross-sectional CNN sepa-
rately.

1 Introduction

Delineation of Organs-At-Risk (OAR) in a pre-treatment CT scan of the patient
is an essential step in radiotherapy (RT) planning to be able to deliver the
required dose to the target volume while at the same time minimizing the dose
to the surrounding normal tissues in order to reduce the risk of complications.
However, since the treatment is fractionated over multiple RT sessions during
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the course of several weeks, anatomical changes may occur that invalidate the
initial treatment plan. Hence, it can be useful to acquire a new CT scan during
the course of treatment and adapt the treatment to the new anatomy if needed,
which requires delineation of each of these longitudinal CT scans [1]. Manual
segmentation by a clinical expert of OAR in the head and neck (H&N) region is
time consuming and takes about 45 min up to two hours in clinical practice, since
there are on average 13 3D structures to be delineated. Moreover, the manual
delineations are prone to intra- and interobserver variations.

Automatic segmentation of OAR in longitudinal CT scans in the context of
RT planning is usually solved by using deformable image registration (DIR) [2].
An already segmented image (a so called atlas) is deformed to fit the new image
to be segmented and the delineations in the atlas are deformed in the same way to
yield a segmentation of the new image. Several choices for the atlas can be made,
but the best results are obtained with a previous CT scan from the same patient,
as the similarity between the atlas and the new CT image to be segmented is
then likely very high [2]. This strategy was applied by Zhang et al. [3], Veiga
et al. [4] and Castadot et al. [5]. Unfortunately, manual adaptation may still
be necessary, but the time needed for the adaptation is usually small compared
to manual segmentation [6]. The purpose of this work is to replace this manual
correction by a neural network that can do the needed corrections.

Convolutional neural networks (CNN) are currently the state-of-the-art neu-
ral network architectures for medical image segmentation. The segmentation is
formulated as a voxel-wise classification problem, whereby each voxel is indi-
vidually classified as belonging to a particular organ of interest based on the
intensity values within a certain neighborhood (the receptive field). A CNN for
segmentation of OAR in the H&N-region is proposed by Ibragimov et al. [7]. The
network gives state-of-the-art results for organs with recognizable boundaries in
CT-images. However, organs without recognizable boundaries are more difficult
to segment, which suggests that additional information is required.

Longitudinal data are not frequently used yet in CNN based segmentation,
although such data could provide relevant additional information. Examples of
neural networks that incorporate longitudinal data are Birenbaum et al. [§],
who used a CNN on longitudinal data for MS lesion segmentation, and Vivanti
et al. [9], who proposed an algorithm for liver tumor segmentation in follow-up
CT scans. Vivanti et al. [9] did not train their network on longitudinal data,
but only used the previous scans to define a region of interest (ROI) to give as
input to the neural network for segmenting the tumor. The benefit of defining a
ROI is that the amount of false positives will be reduced. In contrast to Vivanti
et al. [9], we propose to include the previous segmentations registered to the new
CT scan as additional features for CNN-based classification.
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2 Methods

2.1 Available Data and Preprocessing

The dataset consists of 17 sets of longitudinal H&N data. Each such set consists
of five types of images:

3x3x1 3x3x3 3x3x1 Ix1x1 Ix1x1

kernel Average kernel kernel kernel

h 60x17x17x9 60x15x15x7 90x13x13x7 90x13x13x7 14x13x13x7

28x19x19x9

Fig. 1. The proposed CNN architecture for segmentation using longitudinal data. The
size of each layer is given by # feature maps X 3D segment size.

— Ip: a previous CT scan acquired before or in week two of the RT treatment;
— I7: the current CT scan acquired in week two or four of the RT treatment;
— So,m: the clinically approved binary segmentation maps of OAR in Io;

— S1,m: the clinically approved binary segmentation maps of OAR in Iy;

— 51t the automatically generated binary segmentation maps of OAR in Ij
using the state-of-the-art cross-sectional CNN defined in [10], trained on a
separate non-longitudinal dataset (acquired on the same scanner and delin-
eated by the same observer as the longitudinal dataset).

The 17 sets of longitudinal data originate from 9 different patients. All CT
scans were acquired in our institute on the same Siemens Sensation Open CT
scanner using the same clinical protocol at 120kV. Clinically approved OAR
segmentations are available for 13 H&N structures: the brainstem, the cochlea
(left and right), the upper esophagus, the glottic area, the mandible, the extended
oral cavity, the parotid glands (left and right), the pharyngeal constrictor muscles
(PCM inferior, medial and superior), the spinal cord, the submandibular glands
(left and right) and the supraglottic larynx. All images are preprocessed to have
the same voxel size of 1 x 1 x 3 mm?® and the intensities of the CT scans are
normalized to have zero mean and unit variance over all CT scans together.

2.2 Deformable Image Registration

The first step is to align the previous image Iy and its segmentation Sy ,,, onto the
current image I using DIR, yielding the deformed image Iy, and a DIR-based
segmentation Sy, of the OAR in I;. The registration process consists of two
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steps: first rigid and then non-rigid B-spline registration. The hyperparameters
for each step are optimized in terms of a volume-weighted average of the Dice
similarity coefficients (DSC) of Sy, compared to Si, over all OAR. The most
important DIR hyperparameters are the similarity metric used, the number of
histogram bins in case mutual information is used, and the final spacing of the
B-spline control point grid. Optimal performance was obtained with mutual
information as similarity metric, with 64 bins for rigid and 32 bins for non-rigid
registration, and a final B-spline grid spacing of 16 mm. All registrations were
performed using Elastix [11].

2.3 Neural Network Architecture

The registered longitudinal images Iy, and I; and both segmentations Sy, and
S1,c are given as input to the neural network, which generates the segmentation
S1, as a prediction of the true segmentation S ,, for image I;. The longitudi-
nal neural network is built by taking into account two different considerations.
Firstly, a certain size of the receptive field is required. Secondly, the amount
of parameters must be kept as low as possible to reduce overfitting since the
amount of training data is small. The network has four convolutional layers.
The first two layers are the feature extraction part with a kernel size of (3,3,1)
and a stride of 1 and the last two layers are fully connected layers implemented
as convolutional layers with a kernel size of (1,1,1) to make the network fully
convolutional. A scheme of the architecture can be found in Fig.1. An average
pooling layer is inserted since this increases the receptive field without increasing
the amount of parameters. It has a pooling size of (3,3,3) with a stride of 1.
The amount of feature maps cannot be made too low since we expect a lot of
interactions between the inputs (and OAR) and the amount of redundant infor-
mation is not high. The amount of feature maps is set to 60 in the first layer,
90 in the subsequent layers and 14 in the output layer, one for each class (13
OAR and background). The size of the receptive field thus becomes 7 x 7 x 3
voxels or 7 x 7 x 9 mm?, which is small, implying that the neural network has
not much contextual information to base its predictions on. It only makes uses
of the intensities of both images and the available segmentations within a small
neighborhood around each voxel.

2.4 Neural Network Training

The neural network is trained in a supervised way using the training scheme from
Kamnitsas et al. [12], which was implemented by [13]. The training scheme does
fully-convolutional predictions on image segments, since the memory require-
ments for full 3D images and 3D networks are high. In this way, several consec-
utive segments must be given as input to the network to obtain a segmentation
of the complete image. The used evaluation metric is categorical cross-entropy.
To prevent class imbalance, the image segments are sampled from the training
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images with an equal probability to be centered at a voxel of any of the differ-
ent classes. The Adam optimizer is used with the originally proposed parame-
ters [14]. The initial learning rate is set to 0.008 and is divided by four when a
convergence plateau of the cost function is reached. This is done two times. The
weights are initialized using He’s initialization and PReLU activation functions
are used in the hidden layers. Furthermore, batch normalization is applied to all
hidden layers. A softmax function is used at the output layer. As the amount
of data available to train the network was low, regularization is quite important
in this work. Dropout is used in the last layers of the network with a dropout
probability of 0.5. The weight against Ls-regularization is equal to 0.001. Data
augmentation is done on the samples by flipping them around the sagittal plane.

2.5 Postprocessing

Postprocessing is a standard approach in literature to improve the resulting seg-
mentations of the neural network. Voxels are classified individually to belong
to the object of interest or not, without explicitly considering connectivity con-
straints. Postprocessing can be used to impose such constraints, which causes
single pixels or holes to be removed [7,8,12,15]. However, in this work, no post-
processing is used in order to be able to evaluate the intrinsic segmentation
performance of the network itself.

3 Results and Discussion

DIR took on average 15min per dataset on an Intel Xeon E5645. After regis-
tration, the segmentation of the OAR by the longitudinal CNN took on average
2-3min on a Nvidia GTX 1080 Ti.

A 6-fold cross-validation is performed on the longitudinal dataset to obtain
segmentations for all patients with the longitudinal CNN. The results of the three
segmentation approaches Sy, (DIR), Si, (cross-sectional CNN), and S;; (the
proposed longitudinal CNN) are summarized in Table1 by their average DSC
compared to the manual ground truth segmentation S ,,,. Statistical significance
between different approaches based on differences in DSC is assessed with a one-
sided, paired Wilcoxon signed-rank test with a significance level of 0.05.

DIR (Sp,) performs better than the cross-sectional CNN of [10] (S1.) in
terms of DSC for five different organs (brainstem, upper esophagus, oral cavity,
parotid glands and spinal cord), while the opposite is true for the mandible,
which is a bony structure that is clearly defined on a CT scan.

The longitudinal CNN (S, ;) performs at least as good as its both input
segmentations (except for the spinal cord). It performs better than the cross-
sectional CNN for 7 structures and better than DIR for 5 structures, includ-
ing also the mandible. Moreover, the longitudinal CNN improves the results of
both input segmentations for 4 structures: the oral cavity, the parotid glands,
the submandibular glands and the supraglottic larynx. Hence, the longitudinal
CNN not just selects the best of both segmentations, but succeeds at improving
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segmentation quality by combining the results of both inputs. An exception is
the segmentation of the spinal cord. This can be explained by an inconsistency
in the lower border of the spinal cord in the training data for the cross-sectional
CNN of [10] and for the longitudinal CNN, which makes it impossible for the
longitudinal CNN to learn a consensus.

Table 1. DSC (mean + SD) for OAR segmentation in image I; based on DIR of the
previous image Ip onto the current image I1 (So,r), the cross-sectional CNN of [10]
applied to I; (Si,c) and the proposed longitudinal CNN (S ;) w.r.t. the manual expert
segmentation of I1 (Si,m), averaged over all performed predictions on N datasets.
Statistical significant results are indicated by (> 7, ¢, 1) if the result is better than So -,
S1,c or S1, respectively. Significance was assessed using a one-sided, paired Wilcoxon
signed-rank test (o = 0.05).

OAR N | So,r Si,c S,

Brainstem 17/0.88 £ 0.01 (> ¢) |0.84 % 0.03 0.88 £ 0.02 (> ¢)
Cochlea 5/0.60 £0.11 0.55 +0.12 0.67 = 0.09

Upper Esophagus 1610.64+£0.13 (> ¢) |0.58£0.12 0.62+0.12 (> ¢)
Glottic Area 15]0.57 £ 0.18 0.58 +0.22 0.56 + 0.23
Mandible 170.87 £ 0.02 0.91 4 0.02 (> r) | 0.91 £ 0.02 (> r)
Oral Cavity 15/0.88+£0.02 (> ¢) |0.87 +0.04 0.89 £ 0.02 (> r,c)
Parotid Glands 17/0.82 4 0.03 (> ¢) | 0.79 % 0.06 0.84 +0.04 (> 7, ¢)
PCM inferior 13]0.59 £ 0.10 0.53 £ 0.18 0.51 +0.24

PCM medial 15]0.48 £0.16 0.52 +£0.17 0.50 £0.12

PCM superior 10]0.42 £ 0.12 0.38 = 0.08 0.45+0.11

Spinal Cord 17,075+ 0.10 (> ¢,1) | 0.73 £ 0.10 0.73 £ 0.09 (> ¢)
Submandibular Glands |17 |0.75 4+ 0.05 0.71£0.11 0.78 £0.09 (> r,c¢)
Supraglottic Larynx 13/0.71 £ 0.08 0.64 +0.13 0.76 £0.07 (> r,c)

Some example delineations are shown in Fig. 2. We observed that the delin-
eations obtained with the longitudinal CNN mostly lie between the delineations
obtained with DIR and the cross-sectional CNN, unless a clear boundary can be
perceived in the CT scan. The longitudinal CNN can thus improve the input seg-
mentations if one systematically constitutes an oversegmentation and the other
an undersegmentation. This appears to be the case for the parotid glands seg-
mentations. Another possibility is that inaccuracies in both input segmentations
occur at different positions in the object. An example are the submandibu-
lar glands, for which the cross-sectional CNN performs well for segmenting the
upper part, while DIR performs well for the lower part. At the moment, little
can be concluded about the other organs, for which segmentation performance
is not significantly improved by the longitudinal CNN. Since the receptive field
of the proposed longitudinal CNN is limited, it has only limited ability to dif-
ferentiate between different positions in the structures to be segmented, and
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therefore has only limited ability to adapt its prediction depending on the posi-
tion. Improvements can occur if the longitudinal CNN would be able to recognize
typical errors of both types of input segmentations at different positions in the
organ. Therefore, extra hidden layers or additional pathways should be added to
the network. Since this increases the amount of parameters, extra training data
would be required.

(c) (d)
Fig. 2. Examples of OAR segmentations obtained with DIR, (So,, orange), the cross-
sectional CNN (Si,c, purple), and the longitudinal CNN (S, blue), compared to the
manual ground truth segmentations (S1 ., green), for: (a) cochlea; (b) submandibular
glands; (c) right parotid gland; (d) oral cavity. (Color figure online)
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Conclusion

We propose a manner to combine two different segmentation methods for OAR
in H&N CT scans: longitudinal DIR and a CNN trained on cross-sectional data.
Both techniques base their predictions on a different type of information: lon-
gitudinal data similarity for DIR versus learned intensity features for CNN.
Combining both methods using the proposed longitudinal CCN effectively com-
bines both sources of information. This hybrid approach was shown not only
to be able to choose the best segmentation obtained with both methods, but
also to improve the segmentation performance as achieved with either method
separately.
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