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Abstract. We propose a deformable registration algorithm based on
unsupervised learning of a low-dimensional probabilistic parameteriza-
tion of deformations. We model registration in a probabilistic and gener-
ative fashion, by applying a conditional variational autoencoder (CVAE)
network. This model enables to also generate normal or pathological
deformations of any new image based on the probabilistic latent space.
Most recent learning-based registration algorithms use supervised labels
or deformation models, that miss important properties such as diffeo-
morphism and sufficiently regular deformation fields. In this work, we
constrain transformations to be diffeomorphic by using a differentiable
exponentiation layer with a symmetric loss function. We evaluated our
method on 330 cardiac MR sequences and demonstrate robust intra-
subject registration results comparable to two state-of-the-art methods
but with more regular deformation fields compared to a recent learning-
based algorithm. Our method reached a mean DICE score of 78.3% and
a mean Hausdorff distance of 7.9 mm. In two preliminary experiments,
we illustrate the model’s abilities to transport pathological deformations
to healthy subjects and to cluster five diseases in the unsupervised defor-
mation encoding space with a classification performance of 70%.

1 Introduction

Deformable registration is an essential task in medical image analysis. It
describes the process of finding voxel correspondences in a pair of images [9].
Traditional registration approaches aim to optimize a local similarity metric
between deformed and target image, while being regularized by various energies
[9]. In order to retrieve important properties such as invertible deformation fields,
diffeomorphic registration was introduced. Among other parametrizations, one
way to parametrize diffeomorphisms are stationary velocity fields (SVF) [1].

In recent years, major drawbacks of these approaches like high computational
costs and long execution times have led to an increasing popularity of learning-
based algorithms – notably deep learning (DL). One can classify these algorithms
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as supervised or unsupervised. Due to the difficulty of finding ground truth
voxel correspondences, supervised methods need to rely on predictions from
existing algorithms [11], simulations [8] or both [6]. These methods are either
limited by the performance of the used existing algorithms or the realism of
simulations. On the other hand, unsupervised approaches make use of spatial
transformer layers (STN [3]) to warp the moving image in a differentiable way
such that loss functions can operate on the warped image (similarity metric)
and on the transformation itself (regularization) [2,4,10]. While unsupervised
approaches perform well in minimizing a similarity metric, it remains unclear if
the retrieved deformation fields are sufficiently regular which is of high interest
for intra-subject registration. Furthermore, important properties like symmetry
or diffeormorphisms [9] are still missing in DL-based approaches.

In this paper, we suggest to learn a low-dimensional probabilistic parame-
terization of deformations which is restricted to follow a prescribed distribution.
This stochastic encoding is defined by a latent code vector of an encoder-decoder
neural network and it restricts the space of plausible deformations with respect
to the training data. By using a conditional variational autoencoder (CVAE [5]),
our generative network constrains encoder and decoder on the moving image.
After training, the probabilistic encoding can be potentially used for deformation
analysis tasks such as clustering of deformations or the generation of new defor-
mations for a given image – similar to the deformations seen during training.
Furthermore, we include a generic vector field exponentiation layer to gener-
ate diffeomorphic transformations. Our framework contains an STN and can
be trained with a choice of similarity metrics. To avoid asymmetry, we use a
symmetric local cross correlation criterion. The main contributions are:

• A probabilistic formulation of the registration problem through unsupervised
learning of an encoded deformation model.

• A differentiable exponentiation and an user-adjustable smoothness layer that
ensure the outputs of neural networks to be regular and diffeomorphic.

• As a proof of concept, first experiments on deformation transport and disease
clustering.

2 Methods

The goal of image registration is to find the spatial transformation Tz : R3 → R
3,

parametrized by a d-dimensional vector z ∈ R
d, which best warps the moving

image M to match the fixed image F. Both images are defined in the spatial
domain Ω ∈ R

3. Typically, this is done by minimizing an objective function of the
form: arg minz F(z,M,F) = D (F,M ◦ Tz) + R(Tz) with the image similarity
D of the fixed F and the warped moving image M ◦ Tz and a spatial regularizer
R. Recent unsupervised DL-based approaches (e.g. [2,4]) mimic the optimization
of such an objective function.
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Instead, we propose to model the registration probabilistically by parametriz-
ing the deformation as a vector z to follow a prior p(z). To learn this probabilis-
tic space, we define the latent vector of dimensionality d in an encoder-decoder
neural network as this z. Given the moving and the fixed image as input, a vari-
ational inference method (CVAE [5]) is used to reconstruct the fixed by warping
the moving image. An exponentiation layer interprets the network’s output as
velocities v (an SVF) and returns a diffeomorphism φ which is used by a dense
STN to retrieve the warped image M∗. To enforce an user-adjustable level of
deformation smoothness (comparable to [7]), a convolutional Gaussian layer is
added before the exponentiation with Gaussian weights according to the vari-
ance σ2

S . During training, the network parameters are updated through back-
propagation of the gradients. The network architecture can be seen in Fig. 1a.
Finally, registration is done in a single forward path. The trained probabilistic
framework can be also used for the sampling of deformations as shown in Fig. 1b.

Fig. 1. (a) CVAE registration network during training and registration including dif-
feomorphic layer (exponentiation). Deformations are encoded in z from which velocities
are decoded while being conditioned on the moving image. (b) Decoder network for
sampling and deformation transport: Apply z-code conditioned on any new image M.

Learning a Probabilistic Deformation Encoding. Learning a generative
model typically involves a latent variable model (as in VAE), where an encoder
maps an image to its z-code – a low-dimensional latent vector, from which
a decoder aims to reconstruct the original image. Typically, the encoder and
decoder are defined as distributions qω and pγ with trainable network parame-
ters ω and γ. The network is trained by maximizing a lower bound on the data
likelihood with respect to a prior distribution p(z). We define the prior as multi-
variate unit Gaussians p(z) = N (0, I) with the identity matrix I. In CVAE [5],
encoder qω and decoder pγ distributions are additionally conditioned on extra
information (e.g. classes). We propose to frame image registration as a recon-
struction problem in which the moving image M acts as the conditioning data



104 J. Krebs et al.

and is warped to reconstruct or to match the fixed image F. Thus, the decoder
reconstructs F given z and M: pγ(F | z,M). To have z, the encoder serves as
an approximation of the intractable true posterior probability of z given F and
M and is denoted as qω(z | F,M). Since the prior p(z) is defined as multivari-
ate unit Gaussians, the encoder network predicts the mean μ ∈ R

d and diagonal
covariance σ ∈ R

d, from which z is drawn: qω(z | F,M) = N (μ(F,M), σ(F,M)).
Both distributions can be combined in a two-term loss function [5] where

the first term describes the reconstruction loss as the expected negative log-
likelihood of pγ(F | z,M). In other words, the reconstruction loss represents
a similarity metric between input F and output M∗. The second term acts as
a regularization term on the deformation latent space by forcing the encoded
distribution qω(z | F,M) to be close to the prior probability distribution p(z)
using a Kullback-Leibler (KL) divergence. The loss function results in:

l(ω, γ,F,M) = −Ez∼qω(·|F,M) [logpγ(F | z,M)]+KL [qω(z | F,M) ‖ p(z)] , (1)

where the KL-divergence can be computed in closed form [5]. Assuming a Gaus-
sian log-likelihood term of pγ is equivalent to minimizing a weighted SSD cri-
terion (cf. [5]). We propose instead to use a symmetric local cross-correlation
(LCC) criterion due to its favorable properties for registration [7] and assume
a LCC Boltzmann distribution pγ(F | z,M) ∼ exp(−λDLCC(F,M, v)) with the
LCC criterion DLCC and the weighting factor λ. Using the velocities v and a
small constant ε, which is added for numerical stability, we define:

DLCC(F,M, v) =
1
P

∑

x∈Ω

Fx ◦ exp
(
− vx

2

)
Mx ◦ exp

(
vx

2

)2

[
Fx ◦ exp

(
− vx

2

)]2 [
Mx ◦ exp

(
vx

2

)]2 + ε
, (2)

with a total number of P pixels x ∈ Ω and where ·̄ symbolizes the local mean
image derived by Gaussian smoothing with a strength of σG and kernel size k. To
help the reconstruction task, we introduce conditioning by involving M not only
as the image to be warped in the STN, but also in the first decoder layers by con-
catenating down-sampled versions of M with the filter maps on each scale. The
hypothesis is that in order to better optimize the reconstruction loss, the network
makes use of the provided extra information of M such that less anatomical but
more deformation information are conveyed by the low-dimensional latent layer,
which would make the encoding more geometry-invariant.

Exponentiation Layer: Generating Diffeomorphisms. In the SVF set-
ting, the transformation φ is defined as the Lie group exponential map with
respect to the velocities v: φ(x) = exp(v). For efficient computation, the scaling
and squaring algorithm is typically used [1]. In order to generate diffeomorphic
transformations φ in a neural network, we propose an exponentiation layer that
implements this algorithm in a fully differentiable way. To this end, the layer
expects a vector field as input (the velocities v) which is scaled with a factor
N which we precompute on a subset of the training data according to the for-
mulations in [1]. In the squaring step, the approximated φ0 ≈ id + v ∗ 2−N
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(with id as a regular grid) is recursively squared, N -times, from k = 1 to N :
φk = φk−1◦φk−1. The result is the diffeomorphism φN ≡ φ [1]. The squaring step
requires the composition of two vector fields on regular grids which we realized
by linear interpolation. All these computations consist of standard operations
that can be added to the computational graph and are auto-differentiable in
modern deep learning libraries. This differentiable layer can be added to any
neural network which predicts (stationary) velocity fields.

3 Experiments

We evaluate our framework on an intra-subject task of cardiac MRI cine regis-
tration where end-diastole frames are registered to end-systole frames (ED-ES)
– a very large deformation. Furthermore, we show preliminary experiments eval-
uating the learned deformation encoding: its potentials for transporting encoded
deformations from one subject to another and showing the clustering of diseases
in the encoding space. All experiments are in 3-D.

Fig. 2. Comparing registration performance: unregistered (Un), LCC-Demons (Dem),
VoxelMorph (VM) and our method in terms of RMSE and mean deformation magni-
tude and gradient, DICE and 95%-tile Hausdorff distances (HD).

We used 184 short-axis datasets acquired from different hospitals and 150
cases from the Automatic Cardiac Diagnosis Challenge (ACDC) at STACOM
20171, mixing congenital heart diseases with images from adults. We used 234
cases for training and for testing the remaining 100 cases from ACDC, that con-
tain segmentation and disease label information from five cardiac diseases. Both
information were only used for evaluation purposes. All images were sampled
with a spacing of 1.5 × 1.5 × 3.15 mm and cropped to a size of 128 × 128 × 32
voxels. These dimensions were chosen to save computation time and are not a
limitation of the framework (validated on different image sizes).

1 https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html.

https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html
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Implementation Details. The encoder of our neural network consisted of
four convolutional layers with strides (2, 2, 2, 1) (Fig. 1a). The bottleneck layers
(μ, σ, z) were fully-connected. The decoder had one fully-connected and three
deconvolutional layers, where the outputs at each layer were concatenated with
sub-sampled versions of M. Two convolutional layers and a convolutional Gaus-
sian layer with σS = 3 (kernel size 15) were placed in front of the exponentiation
and transformer layer. The latent code size d was set to 16 as a trade off between
registration quality and generalizability. This leads to a total of ∼267k trainable
parameters. L2 weight decay with a factor of 0.0001 was applied. The numbers
of iterations in the exponentiation layer was set to N = 4 in all experiments. In
training, the strength of the Gaussians for computing the LCC was set to σG = 2
with a kernel size k = 9. The loss balancing factor λ = 5000 was empirically cho-
sen such that encoded training samples roughly had zero means and variances
of 1 and the reconstruction loss was optimized. We used the Adam optimizer
with a learning rate of 0.0005 and a batch size of one. We performed online
data augmentation by randomly shifting, rotating, scaling and mirroring train-
ing images. The framework has been implemented using Keras with Tensorflow.
Training took 24 h on a NVIDIA GTX TITAN X GPU.

Fig. 3. Two random examples of end-diastole to end-systole registration: (Row 1) orig-
inal images. The LCC-demons (Dem, Row 2) and VoxelMorph (VM, Row 3) versus
our method (Row 4), showing the warped moving image, the deformation field and the
Jacobian determinants. All results are in 3-D, showing the central short-axis slices.
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Registration Results. We compare our registration algorithm with the LCC-
demons [7] with manually tuned parameters (on training images) and the non-
diffeomorphic DL-based method VoxelMorph-2 [2] (VM) with a regularization
weighting parameter of 1.5, as recommended. As a surrogate measure of reg-
istration performance, we used the intensity root mean square error (RMSE),
mean DICE score and 95%-tile Hausdorff distance (HD) in mm on the following
anatomical structures: myocardium and epicardium of the left ventricle (LV-
Epi, LV-Myo), left bloodpool (BP) and heart (Heart). The LCC-demons showed
better mean DICE scores (averaged over the five structures, in %) with 79.9
compared to our algorithm with 78.3 and VM with 77.5 (cf. Fig. 2). The Voxel-
Morph algorithm reached a very low RMSE of 0.025 compared to ours (0.031)
and the demons (0.034), but could not reach the other algorithms in terms of
HD with a mean score of 9.4 mm compared to ours with 7.9 mm and the demons
with 8.2 mm. Besides these metrics, VM produced very irregular and highly non-
diffeomorphic deformation fields since 2.2% of the displacements had a negative
Jacobian determinant (cf. in Fig. 3). In general, our approach led to deformation
fields with both smaller amplitudes and smaller gradients than the demons and
the VM algorithm. Furthermore, our results were more robust as variances were
lower for all metrics compared to the demons and lower or comparable to VM.
This is also visible in Fig. 3 and further shown by the fact that HD scores are the
smallest experienced in the experiments. Average execution time per test case
was 0.32 s using the mentioned GPU and an Intel Xeon CPU E5, compared to
108 s for the demons on CPU.

Fig. 4. Transport the z-code of pathological deformations (top row: cardiomyopathy
DCM and hypertrophy HCM) to two healthy subjects (bottom rows: Normal). The
simulated deformation fields are similar compared to the pathological deformations
but are adapted to the geometry of the healthy image (e.g. translated).
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Fig. 5. Distribution of cardiac
diseases after projecting 100 z-
codes of test images on 2 CCA
components.

Deformation Encoding. For evaluating the
learned deformation encoding, we show geometry-
invariance by transporting a deformation from
one subject to another. Therefore, we take a z-
code from a pathological subject and condition
the decoder on the ED image of healthy sub-
jects (Fig. 1b). More precisely, in Fig. 4 we trans-
ported a cardiomyopathy (DCM) and hypertro-
phy (HCM) deformation to two healthy cases
(Normal). One can see the disease-specific defor-
mation (DCM: reduced cardiac contraction)
which are different from the healthy transfor-
mations. The resulting deformation fields are
adapted to the anatomy of the conditioning image and they are translation-
invariant.

In a second experiment, we used the encoded z-codes and disease information
of our cardiac test set to visualize the structure of the learned space. There-
fore, we linearly projected the 16-D z-codes to a 2-D space by using the two
most discriminative CCA components (canonical correlation analysis). We used
the ACDC classes: dilated cardiomyopathy DCM, hypertrophic cardiomyopa-
thy HCM, myocardial infarction MNF, abnormal right ventricle RV and normal
NOR. In Fig. 5, one can see that the classes of the 100 test sets are clustered in
the projected space. The five class classification accuracy reaches 70% with 10-
fold cross-validation, by using the six most discriminative CCA components and
applying support vector machine (SVM) on-top. These results which are solely
based on unsupervised deformation z-codes suggest that similar deformations
are close to each other in the deformation encoding space.

4 Conclusion

We presented an unsupervised deformable registration approach that learns a
probabilistic deformation encoding. This encoding constrains the registration
and leads to robust and accurate registration results on a large dataset of car-
diac images. Furthermore, an exponentiation layer has been introduced that
creates diffeomorphic transformations. The performance of the proposed method
was comparable and partially superior to two state-of-the-art algorithms. Our
approach produced more regular deformation fields than a DL-based algorithm.
Furthermore, first results show, that the probabilistic encoding could potentially
be used for deformation transport and clustering tasks. In future work, we plan
to further explore the deformation encoding to evaluate these tasks more deeply.
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Nonrigid image registration using multi-scale 3D convolutional neural networks.
In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne,
S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 232–239. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-66182-7 27

9. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration:
a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)

10. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Staring, M., Išgum, I.: End-to-End
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