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Abstract. Deep learning with convolutional neural networks (CNN)
has achieved unprecedented success in segmentation, however it requires
large training data, which is expensive to obtain. Active Learning (AL)
frameworks can facilitate major improvements in CNN performance with
intelligent selection of minimal data to be labeled. This paper proposes
a novel diversified AL based on Fisher information (FI) for the first time
for CNNs, where gradient computations from backpropagation are used
for efficient computation of FI on the large CNN parameter space. We
evaluated the proposed method in the context of newborn and adoles-
cent brain extraction problem under two scenarios: (1) semi-automatic
segmentation of a particular subject from a different age group or with
a pathology not available in the original training data, where starting
from an inaccurate pre-trained model, we iteratively label small number
of voxels queried by AL until the model generates accurate segmentation
for that subject, and (2) using AL to build a universal model gener-
alizable to all images in a given data set. In both scenarios, FI-based
AL improved performance after labeling a small percentage (less than
0.05%) of voxels. The results showed that FI-based AL significantly out-
performed random sampling, and achieved accuracy higher than entropy-
based querying in transfer learning, where the model learns to extract
brains of newborn subjects given an initial model trained on adolescents.

1 Introduction

Image segmentation plays an important role for extracting quantitative imaging
markers of disease for improved medical diagnosis and treatment. CNNs have
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been shown to be promising for medical image segmentation [1]. However, they
require large training sets to be able to generalize well. In medical applications,
labels are often only available for limited subjects who come from a healthy group
with a specific age range. Models trained on this population will not perform well
in subjects from a different age group (such as newborns or children), subjects
imaged on a different scanner or subjects with a specific disease. In order to
generalize models, annotating more images is crucial. Due to costly efforts needed
for medical annotation, active learning (AL) seems imperative enabling us to
build generalizable models with the smallest number of additional annotations.
Generally speaking, AL aims to select the most informative queries to be labeled
among a pool of unlabeled samples.

Among AL algorithms used for medical image segmentation, uncertainty
sampling has been one of the popular methods [2,3], which queries the most
uncertain samples to be labeled. It has recently been used with neural net-
works, where uncertainty was measured based on sample margins [4] or boot-
strapping [5]. For the same purpose, Wang et al. [6] used entropy function but
mixed it with weak labels. In addition, more sophisticated objectives such as
Fisher information (FI) has theoretically been shown to be beneficial for active
learning [7–9]. FI measures the amount of information carried by the observa-
tions about the underlying unknown parameter. An earlier work [10] successfully
applied FI in medical image segmentation using logistic regression. However, FI
based objective functions for AL have not previously been applied to CNN mod-
els mainly because of the significantly larger parameter space of deep learning
models which leads to intractable computations for evaluating FI.

In this paper, we propose a modified version of FI-based AL for image seg-
mentation with CNN. Modification of FI-based approach is towards making the
queries even more informative by making them as diverse as possible. We observe
that using the selected queries to fine-tune only the last few layers of a CNN can
effectively improve the initial model performance, and thus there is no need for
blending with weak labels. Furthermore, we leverage the very efficient backprop-
agation methods that exist for gradient computation in CNN models to make
evaluation of FI tractable. We formulate the proposed diversified FI-based AL for
the application of CNN based patch-wise brain extraction and compared it with
two baselines, random sampling and entropy-based querying (uncertainty sam-
pling), within two scenarios: semi-automatic segmentation and universal active
learning. Our results show that the proposed methods significantly outperform
random querying and can effectively improve the performance of a pre-trained
model by querying a very small percentage (less than 0.05%) of image voxels.
Finally, we show that the FI-based method outperforms entropy-based approach
when active querying is used for transfer learning.

2 Methods

We explain our AL method in the context of a single querying iteration, when
a parameter estimate θ̂ is already available from an initial labeled data set. We
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assume that the CNN model is capable of providing us with the class posterior
probability P(y|θ̂,x). In each iteration, selected queries will be labeled by the
expert and the model will be updated. This process repeats using the updated
model. Throughout this section, U = {x1, ...,xn} denotes the unlabeled pool of
samples and Q ⊆ U is the (candidate) query set. The goal in a querying iteration
is to generate (no more than) k > 0 most informative queries.

2.1 FI-Based AL

Fisher information (FI), defined as Ex,y

[∇θ logP(y|x,θ0)∇�
θ logP(y|x,θ0)

]
,

measures the amount of information that an observation carries about the true
model parameter θ0 ∈ R

τ . Trace of (inverse) FI serves as a useful active learn-
ing objective [8,9], where it is optimized with respect to a query distribution q
defined over the pool U (hence qi is the probability of querying xi ∈ U). Differ-
ent approximations can be introduced for tractability [7,10]. Here, we follow the
algorithm in [11] (originally used for logistic regression), which aims to solve

arg min
q∈[0,1]n

tr
[
Iq(θ0)−1

]
. (1)

This optimization has a non-linear objective, but it can be reformulated in the
form of a semi-definite programming (SDP) problem [12].

2.2 Diversified FI-Based AL

Although (1) takes into account the interaction between different samples, it is
not obvious how much diversity it includes within Q. In order to further encour-
age a well-spread probability mass function (PMF) and more diverse queries,
we included an additional covariance-dependent term −λtr

[
Covq[x]

]
into the

objective, where λ is a positive mixing coefficient. Unfortunately, adding this
term to the objective prevents us from forming a linear SDP. In order to keep
the tractability, we constrain ourselves to zero-mean PMFs, i.e., Eq[x] = 0. This
constraint makes the covariance term linear with respect to qi’s:

arg min
q∈[0,1]n

tr
[
Iq(θ0)−1

] − λ

n∑

i=1

qi x�
i xi s.t.

n∑

i=1

qi xi = 0. (2)

Following an approach similar to [11], we can get the following linear SDP:

arg min
q∈[0,1]n,t∈Rτ

t1 + ... + tτ − λ

n∑

i=1

qi x�
i xi

s.t.
∑

xi∈U
qi xi = 0 &

[∑
i qi Ai ej

e�
j tj

]
� 0, j = 1, ..., τ. (3)



86 J. Sourati et al.

where t1, .., tτ are auxiliary variables, ej is the j-th canonical vector, and Ai ∈
R

τ×τ is the conditional FI of xi, defined as

Ai :=
c∑

y=1

P(y|xi,θ0)∇θ logP(y|xi,θ0)∇�
θ logP(y|xi,θ0) (4)

Since θ0 is not known, it is replaced by the available estimate θ̂. Finally, (2)
can be slow when n (pool size) and τ (parameter length) are very large, which
is usually the case for CNN-based image segmentation. In order to speed up, we
moderate both values by (a) downsampling U by only keeping β most uncertain
samples [11,13], and (b) shrinking the parameter space by representing each
CNN layer with the average of its parameters. When the querying PMF q is
obtained, k samples will be drawn from it and the distinct samples will be used
as the queries.

3 Experimental Results

We applied the proposed method and the baselines for CNN based patch-wise
brain extraction. We use tag random for random querying, entropy for entropy-
based querying, and Fisher for FI-based querying with λ = 0.25, β = 200. In
entropy, we used Shannon entropy as the uncertainty measure. Our data sets
contain T1-weighted MRI images of two groups of subjects: (a) 66 adolescents
from age 10 to 15, and (b) 25 newborns from the Developing Human Connectome
Project [14]. The CNN model used in our experiments is shown in Fig. 1. Inputs
are axial patches of size 25 × 25 × 1. The feature vectors xi in (3) are extracted
from the output of the second FC layer.
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Fig. 1. Architecture of the CNN model used for brain extraction

We first trained an initial model using randomly selected patches from three
adolescent subjects and used it to initialize AL experiments, where k is set to
50. Each querying iteration started with an empty labeled data set L0 and an
initial model M0. At iteration i, Mi−1 was used to score samples and select the
queries. Labels of the queries were added to Li−1 to form Li, which was used to
update Mi−1 by fine-tuning only the FC layers. Accordingly, when computing
conditional FI’s in (4), we only computed gradients for the FC layers. Next we
discuss two general scenarios in evaluating the performance of AL methods.
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Table 1. F1 scores of the models obtained from querying iterations of different AL
algorithms. The scores of intermediate querying iterations are based on grid samples,
whereas the initial and final scores are reported based on full segmentation.

Initial Adolescents Newborns

85.73 ± 3.91 79.93 ± 2.92

# Queries Fisher (%) entropy (%) random (%) Fisher (%) entropy (%) random (%)

100 87.11 ± 3.04 86.85 ± 3.29 82.61 ± 5.05 84.26 ± 2.86 83.33 ± 2.84 76.4 ± 6.22

500 90.9 ± 2.07 90.62 ± 2.16 85.28 ± 3.48 86.92 ± 2.37 86.47 ± 2.29 80.75 ± 2.96

1000 92.42 ± 1.76 92.57 ± 1.64 86.71 ± 2.88 88.11 ± 2.23 87.89 ± 2.12 82.12 ± 2.84

1500 93.57 ± 1.37 93.5 ± 1.39 87.78 ± 2.44 89.07 ± 2.02 88.82 ± 2 83.11 ± 2.85

Final 95.21 ± 0.94 95.15 ± 0.9 91 ± 1.48 90.24 ± 1.84 89.88 ± 1.72 86.92 ± 2.2

3.1 Active Semi-automatic Segmentation

Here, the goal is to refine the initial pre-trained model to segment a particular
subject’s brain by annotating the smallest number of additional voxels from the
same subject. For the sake of computational simplicity, we used grid-subsampling
of voxels with a fixed grid spacing of 5, resulting in pool of unlabeled samples
with size ∼200,000 for adolescent and ∼350,000 for newborn subjects. We eval-
uated the resultant segmentation accuracy for the specific subject after each AL
iteration over grid voxels. We also reported the initial/last segmentations over
full voxels after post-processing the segmentations with CRF (for newborns),
Gaussian smoothing (with standard deviation 2), morphological closing (with
radius 2) and 3D connected component analysis.

Table 1 shows mean and standard deviation of F1 scores in different query-
ing iterations from 25 newborns and 63 adolescents (after excluding three images
used in training M0). This table shows that Fisher and entropy raised the per-
formance significantly higher than random, and increased the initial F1 score by
labeling less than 0.05% of total voxels. Whereas, random decreased the average
score in the early iterations, which implies potential negative effect of bad query
selection. This table shows a slight difference between Fisher and entropy when
considering all the images collectively. However, we observed that Fisher actually
outperformed entropy in more than 60% of the newborn subjects (16 out of 25),
while performing almost equally on the others. Figure 2(a) shows box plots of
the difference between F1 scores of Fisher and entropy for these two groups of
subjects, where the white boxes are mostly in the positive side.

The improvements in F1 scores are shown for two selected subjects, one
from each group, in Figs. 2(b) and (c). Furthermore, in order to visualize how
differences in F1 scores may reflect in segmentations, we also showed in Fig. 3
segmentation of a slice of the subject associated with Fig. 2(b). Observe that
the pre-trained model from adolescent subjects falsely classified skull as brain,
since brains of adolescent and newborn subjects look very different in their T1-
weighted contrast. After AL querying, the methods could better distinguish these
regions but random and entropy have much more false negatives than Fisher.
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(a) F1 score difference between Fisher and entropy for two groups of newborns

(b) Example subject (Fisher>entropy) (c) Example subject (Fisher≈entropy)

Fig. 2. F1 scores reported separately for two groups of newborn subjects, when Fisher>
entropy and Fisher≈ entropy. The box-plots consider all subjects in each group, whereas
the F1 curves in (b) and (c) are for one sample subject from each group.

Fig. 3. Segmentation of a slice using M0 and models obtained in active semi-automatic
segmentation of the newborn for which F1 curves are shown in Fig. 2(b). Green bound-
aries show the ground-truth segmentation and red regions are the resulting brain extrac-
tion. (Color figure online)

3.2 Universal Active Learning

In this section, we used FI-based AL sequentially on a subset of new subjects to
further improve the initial CNN model in order to achieve a universal model that
can be used to segment all other subjects in the same data set. The goal was to
show that FI-based querying method is able to result a more generalizable model.
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We ran a sequence of FI-based AL over 11 subjects in each data set, such that the
initial model of querying iterations over one subject was the final model obtained
from the previous subject. The pre-trained model M0 described above was used
to initialize the AL algorithm for the first image. For each subject, we continued
running the querying iterations with k = 50 until 1,500 queries were labeled. The
resulting universal model was then tested on the remaining unused subjects in
the data set. Note that for the newborn dataset the problem is a transfer learning
scenario, where an initial pre-trained model from the adolescent data set was
updated using the proposed AL approach to achieve improved performance in
the newborn dataset. Results from test subjects reported in Fig. 4 show that the
initial model is significantly improved after labeling a very small portion (less
than 0.02%) of the voxels involved in the querying.
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Fig. 4. Statistics of F1 scores of universal models resulting from sequence of FI-based
querying over 11 images and the initial model M0 over the test images of adolescent and
newborn subjects. The box-plots and histograms show that except for a few adolescent
outliers, the F1 scores are significantly increased by our proposed FI-based AL.

4 Conclusion

In this paper, we presented active learning (AL) algorithms based on Fisher
information (FI) for patch-wise image segmentation using CNNs. In these new
algorithms a diversifying term was added to the querying objective based on the
FI criterion; where efficient FI evaluation was achieved using gradient computa-
tions from backpropagation on the CNN model. In the context of brain extrac-
tion, the proposed AL algorithm significantly outperformed random querying.
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We also observed that FI worked better than entropy in transfer learning, where
we actively fine-tuned a pre-trained model to adapt it to segment images from
a patient group with different characteristics (age, pathology, scanner) than the
source data set. FI-based querying was also successfully applied for creating uni-
versal CNN models for both source (adolescent) and target (newborn) data sets,
to label minimal new samples while achieving large improvement in performance.
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