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DLMIA 2018 Preface

Welcome to the fourth edition of the MICCAI Workshop on Deep Learning in Medical
Image Analysis (DLMIA). DLMIA has become one of the most successful MICCAI
satellite events, with hundreds of attendees and more than 80 paper submissions in
2018. The fourth edition of DLMIA was dedicated to the presentation of papers
focused on the design and use of deep learning methods in medical image analysis
applications. We believe that this workshop is setting the trends and identifying the
challenges of the deep learning methods in medical image analysis. Another important
objective of the workshop is to continue and increase the connection between software
developers, researchers, and end users from diverse fields related to medical image and
signal processing, which are the main scopes of MICCAI. For the keynote talks, we
invited Prof. Hayit Greenspan from Tel Aviv University, Prof. Alison Noble from the
University of Oxford, and Mr. Christopher Semturs from Google Research – they
represent three prominent researchers in the field of deep learning in medical image
analysis. The first call of papers for the fourth DLMIA was released March 20, 2018,
and the last call on June 7, 2018, with the paper deadline set to June 15, 2018. The
submission site of DLMIA received 85 paper registrations, from which 77 papers
turned into full paper submissions, where each submission was reviewed by between
two and four reviewers. The chairs decided to select 39 out of the 77 submissions,
based on the scores and comments made by the reviewers and meta-reviewers (i.e., a
50% acceptance rate). We would like to acknowledge the financial support provided by
Nvidia, Hyperfine, Imsight, and Maxwell MRI for the realization of the work-
shop. Finally, we would like to acknowledge the support from the Australian Research
Council for the realization of this workshop (discovery project DP180103232). We
would also like to thank the program chair and Program Committee members of
DLMIA.

September 2018 Gustavo Carneiro
João Manuel R. S. Tavares

Andrew Bradley
João Paulo Papa

Vasileios Belagiannis
Jacinto C. Nascimento

Zhi Lu
Sailesh Conjeti



ML-CDS 2018 Preface

On behalf of the organizing committee, we welcome you to the 8th Workshop on
Multimodal Learning for Clinical Decision Support (ML-CDS 2018). The goal of this
series of workshops is to bring together researchers in medical imaging, medical image
retrieval, data mining, text retrieval, and machine learning/AI communities to discuss
new techniques of multimodal mining/retrieval, and their use in clinical decision
support. Although the title of the workshop has been changing slightly over the years,
the common theme preserved is the notion of clinical decision support and the need for
multimodal analysis. The previous seven workshops on this topic were well-received at
MICCAI, specifically Quebec City (2017), Athens (2016), Munich (2015), Nagoya
(2013), Nice (2012), Toronto (2011), and London (2009).

Continuing on the momentum built by these workshops, our focus remains on
multimodal learning. As has been the norm with these workshops, the papers were
submitted in eight-page double-blind format, and were accepted after the review. As in
previous years, the program featured an invited lecture by a practicing radiologist to
form a bridge between medical image interpretation and clinical informatics. This year
we brought a neurologist to tell us about problems facing decision support for neu-
rology where the modalities expand beyond diagnostic imaging to camera-grabbed
imaging (monitoring epileptic patients) and electroencephalograms (EEGs). The
workshop retained an oral format for all the presentations. The day ended with a lively
panel composed of more doctors, medical imaging researchers, and industry experts.

With less than 5% of medical image analysis techniques translating to clinical
practice, workshops on this topic have helped raise the awareness of our field to clinical
practitioners. The approach taken in the workshop is to scale it to large collections of
patient data exposing interesting issues of multimodal learning and its specific use in
clinical decision support by practicing physicians. With the introduction of intelligent
browsing and summarization methods, we hope to also address the ease-of-use in
conveying derived information to clinicians to aid their adoption. Finally, the ultimate
impact of these methods can be judged when they begin to affect treatment planning in
clinical practice.

We hope you will enjoy the proceedings we have assembled in this volume.

September 2018 Tanveer Syeda-Mahmood
Hayit Greenspan

Anant Madabhushi
Mehdi Moradi
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UNet++: A Nested U-Net Architecture
for Medical Image Segmentation

Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh,
and Jianming Liang(B)

Arizona State University, Tempe, USA
{zongweiz,mrahmans,ntajbakh,jianming.liang}@asu.edu

Abstract. In this paper, we present UNet++, a new, more powerful
architecture for medical image segmentation. Our architecture is essen-
tially a deeply-supervised encoder-decoder network where the encoder
and decoder sub-networks are connected through a series of nested,
dense skip pathways. The re-designed skip pathways aim at reducing
the semantic gap between the feature maps of the encoder and decoder
sub-networks. We argue that the optimizer would deal with an easier
learning task when the feature maps from the decoder and encoder net-
works are semantically similar. We have evaluated UNet++ in compar-
ison with U-Net and wide U-Net architectures across multiple medical
image segmentation tasks: nodule segmentation in the low-dose CT scans
of chest, nuclei segmentation in the microscopy images, liver segmenta-
tion in abdominal CT scans, and polyp segmentation in colonoscopy
videos. Our experiments demonstrate that UNet++ with deep supervi-
sion achieves an average IoU gain of 3.9 and 3.4 points over U-Net and
wide U-Net, respectively.

1 Introduction

The state-of-the-art models for image segmentation are variants of the encoder-
decoder architecture like U-Net [9] and fully convolutional network (FCN) [8].
These encoder-decoder networks used for segmentation share a key similarity:
skip connections, which combine deep, semantic, coarse-grained feature maps
from the decoder sub-network with shallow, low-level, fine-grained feature maps
from the encoder sub-network. The skip connections have proved effective in
recovering fine-grained details of the target objects; generating segmentation
masks with fine details even on complex background. Skip connections is also
fundamental to the success of instance-level segmentation models such as Mask-
RCNN, which enables the segmentation of occluded objects. Arguably, image
segmentation in natural images has reached a satisfactory level of performance,
but do these models meet the strict segmentation requirements of medical
images?

Segmenting lesions or abnormalities in medical images demands a higher level
of accuracy than what is desired in natural images. While a precise segmentation

c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): DLMIA 2018/ML-CDS 2018, LNCS 11045, pp. 3–11, 2018.
https://doi.org/10.1007/978-3-030-00889-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00889-5_1&domain=pdf
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mask may not be critical in natural images, even marginal segmentation errors in
medical images can lead to poor user experience in clinical settings. For instance,
the subtle spiculation patterns around a nodule may indicate nodule malignancy;
and therefore, their exclusion from the segmentation masks would lower the
credibility of the model from the clinical perspective. Furthermore, inaccurate
segmentation may also lead to a major change in the subsequent computer-
generated diagnosis. For example, an erroneous measurement of nodule growth
in longitudinal studies can result in the assignment of an incorrect Lung-RADS
category to a screening patient. It is therefore desired to devise more effective
image segmentation architectures that can effectively recover the fine details of
the target objects in medical images.

To address the need for more accurate segmentation in medical images, we
present UNet++, a new segmentation architecture based on nested and dense
skip connections. The underlying hypothesis behind our architecture is that
the model can more effectively capture fine-grained details of the foreground
objects when high-resolution feature maps from the encoder network are grad-
ually enriched prior to fusion with the corresponding semantically rich feature
maps from the decoder network. We argue that the network would deal with
an easier learning task when the feature maps from the decoder and encoder
networks are semantically similar. This is in contrast to the plain skip con-
nections commonly used in U-Net, which directly fast-forward high-resolution
feature maps from the encoder to the decoder network, resulting in the fusion
of semantically dissimilar feature maps. According to our experiments, the sug-
gested architecture is effective, yielding significant performance gain over U-Net
and wide U-Net.

2 Related Work

Long et al. [8] first introduced fully convolutional networks (FCN), while U-
Net was introduced by Ronneberger et al. [9]. They both share a key idea: skip
connections. In FCN, up-sampled feature maps are summed with feature maps
skipped from the encoder, while U-Net concatenates them and add convolutions
and non-linearities between each up-sampling step. The skip connections have
shown to help recover the full spatial resolution at the network output, mak-
ing fully convolutional methods suitable for semantic segmentation. Inspired
by DenseNet architecture [5], Li et al. [7] proposed H-denseunet for liver and
liver tumor segmentation. In the same spirit, Drozdzalet al. [2] systematically
investigated the importance of skip connections, and introduced short skip con-
nections within the encoder. Despite the minor differences between the above
architectures, they all tend to fuse semantically dissimilar feature maps from
the encoder and decoder sub-networks, which, according to our experiments,
can degrade segmentation performance.

The other two recent related works are GridNet [3] and Mask-RCNN [4].
GridNet is an encoder-decoder architecture wherein the feature maps are wired in
a grid fashion, generalizing several classical segmentation architectures. GridNet,
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however, lacks up-sampling layers between skip connections; and thus, it does not
represent UNet++. Mask-RCNN is perhaps the most important meta framework
for object detection, classification and segmentation. We would like to note that
UNet++ can be readily deployed as the backbone architecture in Mask-RCNN
by simply replacing the plain skip connections with the suggested nested dense
skip pathways. Due to limited space, we were not able to include results of
Mask RCNN with UNet++ as the backbone architecture; however, the interested
readers can refer to the supplementary material for further details.

3 Proposed Network Architecture: UNet++

Figure 1a shows a high-level overview of the suggested architecture. As seen,
UNet++ starts with an encoder sub-network or backbone followed by a decoder
sub-network. What distinguishes UNet++ from U-Net (the black components in
Fig. 1(a) is the re-designed skip pathways (shown in green and blue) that connect
the two sub-networks and the use of deep supervision (shown red).

Fig. 1. (a) UNet++ consists of an encoder and decoder that are connected through a
series of nested dense convolutional blocks. The main idea behind UNet++ is to bridge
the semantic gap between the feature maps of the encoder and decoder prior to fusion.
For example, the semantic gap between (X0,0, X1,3) is bridged using a dense convolu-
tion block with three convolution layers. In the graphical abstract, black indicates the
original U-Net, green and blue show dense convolution blocks on the skip pathways, and
red indicates deep supervision. Red, green, and blue components distinguish UNet++
from U-Net. (b) Detailed analysis of the first skip pathway of UNet++. (c) UNet++
can be pruned at inference time, if trained with deep supervision. (Color figure online)
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3.1 Re-designed Skip Pathways

Re-designed skip pathways transform the connectivity of the encoder and
decoder sub-networks. In U-Net, the feature maps of the encoder are directly
received in the decoder; however, in UNet++, they undergo a dense convolu-
tion block whose number of convolution layers depends on the pyramid level.
For example, the skip pathway between nodes X0,0 and X1,3 consists of a dense
convolution block with three convolution layers where each convolution layer
is preceded by a concatenation layer that fuses the output from the previous
convolution layer of the same dense block with the corresponding up-sampled
output of the lower dense block. Essentially, the dense convolution block brings
the semantic level of the encoder feature maps closer to that of the feature maps
awaiting in the decoder. The hypothesis is that the optimizer would face an
easier optimization problem when the received encoder feature maps and the
corresponding decoder feature maps are semantically similar.

Formally, we formulate the skip pathway as follows: let xi,j denote the output
of node Xi,j where i indexes the down-sampling layer along the encoder and j
indexes the convolution layer of the dense block along the skip pathway. The
stack of feature maps represented by xi,j is computed as

xi,j =

{H (
xi−1,j

)
, j = 0

H
([[

xi,k
]j−1

k=0
,U(xi+1,j−1)

])
, j > 0

(1)

where function H(·) is a convolution operation followed by an activation func-
tion, U(·) denotes an up-sampling layer, and [ ] denotes the concatenation layer.
Basically, nodes at level j = 0 receive only one input from the previous layer
of the encoder; nodes at level j = 1 receive two inputs, both from the encoder
sub-network but at two consecutive levels; and nodes at level j > 1 receive j +1
inputs, of which j inputs are the outputs of the previous j nodes in the same
skip pathway and the last input is the up-sampled output from the lower skip
pathway. The reason that all prior feature maps accumulate and arrive at the
current node is because we make use of a dense convolution block along each
skip pathway. Figure 1b further clarifies Eq. 1 by showing how the feature maps
travel through the top skip pathway of UNet++.

3.2 Deep Supervision

We propose to use deep supervision [6] in UNet++, enabling the model to oper-
ate in two modes: (1) accurate mode wherein the outputs from all segmentation
branches are averaged; (2) fast mode wherein the final segmentation map is
selected from only one of the segmentation branches, the choice of which deter-
mines the extent of model pruning and speed gain. Figure 1c shows how the
choice of segmentation branch in fast mode results in architectures of varying
complexity.

Owing to the nested skip pathways, UNet++ generates full resolution feature
maps at multiple semantic levels, {x0,j , j ∈ {1, 2, 3, 4}}, which are amenable to
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deep supervision. We have added a combination of binary cross-entropy and dice
coefficient as the loss function to each of the above four semantic levels, which
is described as:

L(Y, Ŷ ) = − 1
N

N∑
b=1

(
1
2

· Yb · log Ŷb +
2 · Yb · Ŷb

Yb + Ŷb

)
(2)

where Ŷb and Yb denote the flatten predicted probabilities and the flatten ground
truths of bth image respectively, and N indicates the batch size.

In summary, as depicted in Fig. 1a, UNet++ differs from the original U-Net
in three ways: (1) having convolution layers on skip pathways (shown in green),
which bridges the semantic gap between encoder and decoder feature maps; (2)
having dense skip connections on skip pathways (shown in blue), which improves
gradient flow; and (3) having deep supervision (shown in red), which as will be
shown in Sect. 4 enables model pruning and improves or in the worst case achieves
comparable performance to using only one loss layer.

4 Experiments

Datasets: As shown in Table 1, we use four medical imaging datasets for model
evaluation, covering lesions/organs from different medical imaging modalities.
For further details about datasets and the corresponding data pre-processing,
we refer the readers to the supplementary material.

Table 1. The image segmentation datasets used in our experiments.

Dataset Images Input Size Modality Provider

Cell nuclei 670 96× 96 microscopy Data Science Bowl 2018

Colon polyp 7,379 224× 224 RGB video ASU-Mayo [10,11]

Liver 331 512× 512 CT MICCAI 2018 LiTS Challenge

Lung nodule 1,012 64× 64× 64 CT LIDC-IDRI [1]

Baseline Models: For comparison, we used the original U-Net and a customized
wide U-Net architecture. We chose U-Net because it is a common performance
baseline for image segmentation. We also designed a wide U-Net with similar
number of parameters as our suggested architecture. This was to ensure that
the performance gain yielded by our architecture is not simply due to increased
number of parameters. Table 2 details the U-Net and wide U-Net architecture.

Implementation Details: We monitored the Dice coefficient and Intersection
over Union (IoU), and used early-stop mechanism on the validation set. We also
used Adam optimizer with a learning rate of 3e−4. Architecture details for U-
Net and wide U-Net are shown in Table 2. UNet++ is constructed from the

https://www.kaggle.com/c/data-science-bowl-2018
https://competitions.codalab.org/competitions/17094
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
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Table 2. Number of convolutional kernels in U-Net and wide U-Net.

Encoder/decoder X0,0/X0,4 X1,0/X1,3 X2,0/X2,2 X3,0/X3,1 X4,0/X4,0

U-Net 32 64 128 256 512

Wide U-Net 35 70 140 280 560

original U-Net architecture. All convolutional layers along a skip pathway (Xi,j)
use k kernels of size 3 × 3 (or 3 × 3 × 3 for 3D lung nodule segmentation) where
k = 32 × 2i. To enable deep supervision, a 1× 1 convolutional layer followed by
a sigmoid activation function was appended to each of the target nodes: {x0,j |
j ∈ {1, 2, 3, 4}}. As a result, UNet++ generates four segmentation maps given an
input image, which will be further averaged to generate the final segmentation
map. More details can be founded at github.com/Nested-UNet.

Fig. 2. Qualitative comparison between U-Net, wide U-Net, and UNet++, showing
segmentation results for polyp, liver, and cell nuclei datasets (2D-only for a distinct
visualization).

Results: Table 3 compares U-Net, wide U-Net, and UNet++ in terms of the
number parameters and segmentation accuracy for the tasks of lung nodule
segmentation, colon polyp segmentation, liver segmentation, and cell nuclei seg-
mentation. As seen, wide U-Net consistently outperforms U-Net except for liver
segmentation where the two architectures perform comparably. This improve-
ment is attributed to the larger number of parameters in wide U-Net. UNet++
without deep supervision achieves a significant performance gain over both U-
Net and wide U-Net, yielding average improvement of 2.8 and 3.3 points in

https://github.com/MrGiovanni/Nested-UNet
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IoU. UNet++ with deep supervision exhibits average improvement of 0.6 points
over UNet++ without deep supervision. Specifically, the use of deep supervi-
sion leads to marked improvement for liver and lung nodule segmentation, but
such improvement vanishes for cell nuclei and colon polyp segmentation. This is
because polyps and liver appear at varying scales in video frames and CT slices;
and thus, a multi-scale approach using all segmentation branches (deep super-
vision) is essential for accurate segmen. Figure 2 shows a qualitative comparison
between the results of U-Net, wide U-Net, and UNet++.

Model Pruning: Figure 3 shows segmentation performance of UNet++ after
applying different levels of pruning. We use UNet++ Li to denote UNet++
pruned at level i (see Fig. 1c for further details). As seen, UNet++ L3 achieves
on average 32.2% reduction in inference time while degrading IoU by only 0.6
points. More aggressive pruning further reduces the inference time but at the
cost of significant accuracy degradation.

Table 3. Segmentation results (IoU: %) for U-Net, wide U-Net and our suggested
architecture UNet++ with and without deep supervision (DS).

Architecture Params Dataset

Cell nuclei Colon polyp Liver Lung nodule

U-Net [9] 7.76M 90.77 30.08 76.62 71.47

Wide U-Net 9.13M 90.92 30.14 76.58 73.38

UNet++ w/o DS 9.04M 92.63 33.45 79.70 76.44

UNet++ w/ DS 9.04M 92.52 32.12 82.90 77.21

Fig. 3. Complexity, speed, and accuracy of UNet++ after pruning on (a) cell nuclei,
(b) colon polyp, (c) liver, and (d) lung nodule segmentation tasks respectively. The
inference time is the time taken to process 10k test images using one NVIDIA TITAN
X (Pascal) with 12 GB memory.
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5 Conclusion

To address the need for more accurate medical image segmentation, we pro-
posed UNet++. The suggested architecture takes advantage of re-designed skip
pathways and deep supervision. The re-designed skip pathways aim at reducing
the semantic gap between the feature maps of the encoder and decoder sub-
networks, resulting in a possibly simpler optimization problem for the optimizer
to solve. Deep supervision also enables more accurate segmentation particularly
for lesions that appear at multiple scales such as polyps in colonoscopy videos.
We evaluated UNet++ using four medical imaging datasets covering lung nodule
segmentation, colon polyp segmentation, cell nuclei segmentation, and liver seg-
mentation. Our experiments demonstrated that UNet++ with deep supervision
achieved an average IoU gain of 3.9 and 3.4 points over U-Net and wide U-Net,
respectively.

Acknowledgments. This research has been supported partially by NIH under Award
Number R01HL128785, by ASU and Mayo Clinic through a Seed Grant and an Inno-
vation Grant. The content is solely the responsibility of the authors and does not
necessarily represent the official views of NIH.
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Abstract. Recently proposed techniques for semi-supervised learning
such as Temporal Ensembling and Mean Teacher have achieved state-
of-the-art results in many important classification benchmarks. In this
work, we expand the Mean Teacher approach to segmentation tasks and
show that it can bring important improvements in a realistic small data
regime using a publicly available multi-center dataset from the Magnetic
Resonance Imaging (MRI) domain. We also devise a method to solve the
problems that arise when using traditional data augmentation strategies
for segmentation tasks on our new training scheme.

1 Introduction

In the past few years, we witnessed a large growth in the development of Deep
Learning techniques, that surpassed human-level performance on some impor-
tant tasks [1], including health domain applications [2]. A recent survey [3] that
examined more than 300 papers using Deep Learning techniques in medical
imaging analysis, made it clear that Deep Learning is now pervasive across the
entire field. In [3], they also found that Convolutional Neural Networks (CNNs)
were more prevalent in the medical imaging analysis, with end-to-end trained
CNNs becoming the preferred approach.

It is also evident that Deep Learning poses unique challenges, such as the
large amount of data requirement, which can be partially mitigated by using
transfer learning [4] or domain adaptation approaches [5], especially in the nat-
ural imaging domain. However, in medical imaging domain, not only the image
acquisition is expensive but also data annotations, that usually requires a very
time-consuming dedication of experts. Besides that, other challenges are still
present in the medical imaging field, such as privacy and regulations/ethical
concerns, which are also an important factor impacting the data availability.

According to [3], in certain domains, the main challenge is usually not the
availability of the image data itself, but the lack of relevant annotations/labeling
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for these images. Traditionally, systems like Picture Archiving and Communi-
cation System (PACS) [3], used in the routine of most western hospitals, store
free-text reports, and turning this textual information into accurate or struc-
tured labels can be quite challenging. Therefore, the development of techniques
that could take advantage of the vast amount of unlabeled data is paramount
for advancing the current state of practical applications in medical imaging.

Semi-supervised learning is a class of learning algorithms that can take lever-
age not only of labeled samples but also from unlabeled samples. Semi-supervised
learning is halfway between supervised learning and unsupervised learning [6],
where the algorithm uses limited supervision, usually only from a few samples
of a dataset together with a larger amount of unlabeled data.

In this work, we propose a simple deep semi-supervised learning approach
for segmentation that can be efficiently implemented. Our technique is robust
enough to be incorporated in most traditional segmentation architectures since it
decouples the semi-supervised training from the architectural choices. We show
experimentally on a public Magnetic Resonance Imaging (MRI) dataset that
this technique can take advantage of unlabeled data and provide improvements
even in a realistic scenario of small data regime, a common reality in medical
imaging.

2 Semi-supervised Segmentation Using Mean Teacher

Given that the classification cost for unlabeled samples is undefined in supervised
learning, adding unlabeled samples into the training procedure can be quite
challenging. Traditionally, there is a dataset X = (xi)i∈[n] that can be divided
into two disjoint sets: the samples Xl = (x1, . . . , xl) that contains the labels
Yl = (y1, . . . , yl), and the samples Xu = (xl+1, . . . , xl+u) where the labels are
unknown. However, if the knowledge available in p(x) that we can get from the
unlabeled data also contains information that is useful for the inference problem
of p(y|x), then it is evident that semi-supervised learning can improve upon
supervised learning [6].

Many techniques were developed in the past for semi-supervised learning,
usually creating surrogate classes as in [7], adding entropy regularization as in
[8] or using Generative Adversarial Networks (GANs) [9]. More recently, other
ideas also led to the development of techniques that added perturbations and
extra reconstruction costs in the intermediate representations [10] of the network,
yielding excellent results. A very successful method called Temporal Ensembling
[11] was also recently introduced, where the authors explored the idea of a tem-
poral ensembling network for semi-supervised learning where the predictions
of multiple previous network evaluations were aggregated using an exponential
moving average (EMA) with a penalization term for the predictions that were
inconsistent with this target, achieving state-of-the-art results in several semi-
supervised learning benchmarks.

In [12], the authors expanded the Temporal Ensembling method by averag-
ing the model weights instead of the label predictions by using Polyak averaging
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[13]. The method described in [12] is a student/teacher model, where the stu-
dent model architecture is replicated into the teacher model, which in turn, get
its weights updated as the exponential moving average of the student weights
according to:

θ′
t = αθ′

t−1 + (1 − α)θt (1)

where α is a smoothing hyperparameter, t is the training step and θ are the model
weights. The goal of the student is to learn through a composite loss function
with two terms: one for the traditional classification loss and another to enforce
the consistency of its predictions with the teacher model. Both the student and
teacher models evaluate the input data by applying noise that can come from
Dropout, random affine transformations, added Gaussian noise, among others.

In this work, we extend the mean teacher technique [12] to semi-supervised
segmentation. To the best of our knowledge, this is the first time that this semi-
supervised method was extended for segmentation tasks. Our changes to extend
the mean teacher [12] technique for segmentation are simple: we use different
loss functions both for the task and consistency and also propose a new method
for solving the augmentation issues that arises from this technique when used for
segmentation. For the consistency loss, we use a pixel-wise binary cross-entropy,
formulated as

C(θ) = Ex∈X [−y log(p) + (1 − y) log(1 − p)] , (2)

where p ∈ [0, 1] is the output (after sigmoid activation) of the student model
f(x; θ) and y ∈ [0, 1] is the output prediction for the same sample from the
teacher model f(x; θ′), where θ and θ′ are student and teacher model param-
eters respectively. The consistency loss can be seen as a pixel-wise knowledge
distillation [14] from the teacher model. It is important to note that both labeled
samples from Xl and unlabeled samples from Xu contribute for the consistency
loss C(θ) calculation. We used binary cross-entropy, instead of the mean squared
error (MSE) used by [12] because the binary cross-entropy provided an improved
model performance for the segmentation task. We also experimented with con-
fidence thresholding as in [15] on the teacher predictions, however, it didn’t
improve the results.

For the segmentation task, we employed a surrogate loss for the Dice
Similarity Coefficient, called the Dice loss, which is insensitive to imbalance and
was also employed by [16] on the same segmentation task domain we experiment
in this paper. The Dice Loss, computed per mini-batch, is formulated as

L(θ) = − 2
∑

i piyi∑
i pi +

∑
i yi

, (3)

where pi ∈ [0, 1] is the ith output (after sigmoid non-linearity) and yi ∈ {0, 1} is
the corresponding ground truth. For the segmentation loss, only labeled samples
from Xl contribute for the L(θ) calculation. As in [12], the total loss used is the
weighted sum of both segmentation and consistency losses. An overview detailing
the components of the method can be seen in the Fig. 1, while a description of
the training algorithm is described in the Algorithm1.
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Fig. 1. An overview with the components of the proposed method based on the mean
teacher technique. (1) A data augmentation procedure g(x; φ) is used to perturb the
input data (in our case, a MRI axial slice), where φ is the data augmentation param-
eter (i.e. N (0, φ) for a Gaussian noise), note that different augmentation parameters
are used for student and teacher models. (2) The student model. (3) The teacher
model that is updated with an exponential moving average (EMA) from the student
weights. (4) The consistency loss used to train the student model. This consistency
will enforce the consistency between student predictions on both labeled and unlabelled
data according to the teacher predictions. (5) The traditional segmentation loss, where
the supervision signal is provided to the student model for the labeled samples.

2.1 Segmentation Data Augmentation

In segmentation tasks, data augmentation is very important, especially in the
medical imaging domain where data availability is limited, variability is high and
translational equivariance is desirable. Traditional augmentation methods such
as affine transformations (rotation, translation, etc.) that change the spatial con-
tent of the input data, as opposed to pixel-wise additive noise, for example, are
also applied with the exact same parameters on the label to spatially align input
and ground truth, both subject to a pixel-wise loss. This methodology, however,
is unfeasible in the mean teacher training scheme. If two different augmentations
(one for the student and another for the teacher) causes spatial misalignment, the
spatial content between student and teacher predictions will not match during
the pixel-wise consistency loss.

To avoid the misalignment during the consistency loss, such transformations
can be applied with the same parametrization both to the student and teacher
model inputs. However, this wouldn’t take advantage of the stronger invariance
to transformations that can be introduced through the consistency loss. For that
reason, we developed a solution that applies the transformations in the teacher in
a delayed fashion. Our proposed method is based on the application of the same
augmentation procedure g(x;φ) before the model forward pass only for the stu-
dent model, and then after model forward pass in the teacher model predictions,
making thus both prediction maps aligned for the consistency loss evaluation,
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Algorithm 1. Semi-supervised segmentation algorithm.
Require: xi = training samples

Require: yi = labels for the labeled inputs i ∈ Yl

Require: t = global step (initialized with zero)

Require: w(t) = consistency weight ramp-up function

Require: fθ(·) = neural network model with parameters θ

Require: gφ(·) = stochastic input augmentation procedure with parameters φ

for k in [1, num epochs] do

for each minibatch B do

zi∈B ← fθ(gφ(xi∈B)) � evaluate augmented inputs with student model

z̃i∈B ← fθ′ (gφ′ (xi∈B)) � teacher model evaluation w/ different perturbations

loss ← L(z, y) + w(t) 1
|B|

∑
i∈B C(zi, z̃i) � supervised and unsupervised loss components

update θ using, e.g., Adam � update student model parameters

t ← t + 1 � increment the global step counter

θ′
t ← αθ′

t−1 + (1 − α)θt � update teacher model parameters with using EMA

end for

end for

while still taking leverage of introducing a much stronger invariance to the aug-
mentation between student and teacher models. This is possible because we do
backpropagation of the gradients only for the student model parameters.

3 Experiments

3.1 MRI Spinal Cord Gray Matter Segmentation

In this work, in order to evaluate our technique on a realistic scenario, we use
the publicly available multi-center Magnetic Resonance Imaging (MRI) Spinal
Cord Gray Matter Segmentation dataset from [17].

Dataset. The dataset is comprised of 80 healthy subjects (20 subjects from each
center) and obtained using different scanning parameters and also multiple MRI
systems. The voxel resolution of the dataset ranges from 0.25 × 0.25 × 2.5 mm
up to 0.5 × 0.5 × 5.0 mm. A sample of one subject axial slice image can be seen
in Fig. 1. We split the dataset in a realistic small data regime: only 8 subjects
are used as training samples, resulting in 86 axial training slices. We used 8
subjects for validation, resulting in 90 axial slices. For the unlabeled set we
used 40 subjects, resulting in 613 axial slices and for the test set we used 12
subjects, resulting in 137 slices. All samples were resampled to a common space
of 0.25 × 0.25 mm.

Network Architecture. To evaluate our technique, we used a very simple
U-Net [18] architecture with 15 layers, Batch Normalization, Dropout and ReLU
activations. U-Nets are very common in medical imaging domain, hence the
architectural choice for the experiment. We also used a 2D slice-wise training
procedure with axial slices.
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Training Procedure. For the supervised-only baseline, we used Adam opti-
mizer with β1 = 0.9 and β2 = 0.999, mini-batch size of 8, dropout rate of 0.5,
Batch Normalization momentum of 0.9 and L2 penalty of λ = 0.0008. For the
data augmentation, we used rotation angle between −4.5 and 4.5 and pixel-
wise additive Gaussian noise sampled from N (0, 0.01). We used a learning rate
η = 0.0006 given the small mini-batch size, also subject to a initial ramp-up of
50 epochs and subject to a cosine annealing decay as used by [12]. We trained
the model for 1600 epochs.

For the semi-supervised experiment, we used the same parameters of the
aforementioned supervised-only baseline, except for the L2 penalty of λ = 0.0006.
We used an EMA α = 0.99 during the first 50 epochs, later we change it to
α = 0.999. We also employed a consistency weight factor of 2.9 subject to a
ramp-up in the first 100 epochs. We trained the model for 350 epochs.

Results. As we can see in Table 1, our technique not only improved the results
on 5/6 evaluated metrics but also reduced the variance, showing a better reg-
ularized model in terms of precision/recall balance. The model also showed a
very good improvement on overlapping metrics such as Dice and mean inter-
section over union (mIoU). Given that we exhausted the challenge dataset [17]
to obtain the unlabeled samples, a comparison with [16] was unfeasible given
different dataset splits. We leave this work for further explorations given that
incorporating extra external data would also mix domain adaptation issues into
the evaluation.

Table 1. Result comparison for the Spinal Cord Gray Matter segmentation challenge
using our semi-supervised method and a pure supervised baseline. Results are 10 runs
average with standard deviation in parenthesis where bold font represents the best
result. Dice is the Dice Similarity Coefficient and mIoU is the mean intersection over
union. Other metrics are self-explanatory.

Dice mIoU Accuracy Precision Recall Specificity

Supervised 67.915

(0.313)

53.679

(0.327)

99.745

(0.005)

57.948

(0.788)

92.495

(0.907)

99.775

(0.010)

Semi-supervised 70.209

(0.229)

55.509

(0.253)

99.792

(0.003)

64.732

(0.773)

86.112

(0.936)

99.846

(0.006)

4 Related Work

Only a few works were developed in the context of semi-supervised segmentation,
especially in the field of medical imaging. Only recently, a U-Net was used as
auxiliary embedding in [19], however, with focus on domain adaptation and using
a private dataset.

In [20], they use a Generative Adversarial Networks (GAN) for the semi-
supervised segmentation of natural images, however, they employ unrealistic
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dataset sizes when compared to the medical imaging domain datasets, along
with ImageNet pre-trained networks.

In [21] they propose a technique using adversarial training, but they focus on
the knowledge transfer between natural images with pixel-level annotation and
weakly-labeled images with image-level information.

5 Conclusion

In this work we extended the semi-supervised mean teacher approach for segmen-
tation tasks, showing that even on a realistic small data regime, this technique
can provide major improvements if unlabeled data is available. We also devised
a way to maintain the traditional data augmentation procedures while still tak-
ing advantage of the teacher/student regularization. The proposed technique
can be used with any other Deep Learning architecture since it decouples the
semi-supervised training procedure from the architectural choices.

It is evident from these results that future explorations of this technique
can improve the results even further, given that even with a small amount of
unlabeled samples, we showed that the technique was able to provide significant
improvements.
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Abstract. Annotation of medical images for semantic segmentation is
a very time consuming and difficult task. Moreover, clinical experts often
focus on specific anatomical structures and thus, produce partially anno-
tated images. In this paper, we introduce SMILE, a new deep convolu-
tional neural network which addresses the issue of learning with incom-
plete ground truth. SMILE aims to identify ambiguous labels in order to
ignore them during training, and don’t propagate incorrect or noisy infor-
mation. A second contribution is SMILEr which uses SMILE as initializa-
tion for automatically relabeling missing annotations, using a curriculum
strategy. Experiments on 3 organ classes (liver, stomach, pancreas) show
the relevance of the proposed approach for semantic segmentation: with
70% of missing annotations, SMILEr performs similarly as a baseline
trained with complete ground truth annotations.

Keywords: Medical images · Deep learning
Convolutional Neural Networks · Incomplete ground truth annotation
Noisy labels · Missing labels

1 Introduction

Fully automatic semantic segmentation of medical images is a major challenge.
Over the last few years, Deep Learning and Convolutional Neural Networks
(ConvNets) have reached outstanding performances on various visual recognition
tasks [9]. Regarding semantic segmentation on natural images, state-of-the-art
performances are currently obtained with Fully Convolutional Neural Networks
(FCNs) [1,3]. Consequently, several attempts have been made to apply those
methods on medical images [11,15,16]. In challenges like Liver Tumor Segmen-
tation Challenge (LiTS), leading methods are based on FCNs [5,10].
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However, training deep ConvNets requires large amount of data with clean
annotations. The annotation process is an extremely time consuming task for
semantic segmentation, which requires pixel-level labeling. This challenge is
amplified in the medical field, where highly qualified professionals are needed.
In this paper, we focus on abdomen 3D CT-scans from an internal dataset with
more than 1000 patients, each volume containing about a hundred of 512 × 512
images. The segmentation masks have been realized by clinical experts but they
have focused on specific organs or anatomical structures, e.g. liver pathologies.
As a consequence, the collected labels intrinsically contain missing annotations,
as illustrated in Fig. 1.

Fig. 1. Our 3D CT-scan dataset is labeled by clinical experts who focused on certain
organ pathologies, e.g. liver. The ground truth annotations are therefore incomplete.
We define ambiguity maps to train binary class predictors, which ignore incorrect
background labels.

Several learning methodologies can be used to address the aforementioned
missing annotations issue. Weakly Supervised Learning (WSL) can be used to
leverage coarse annotations, e.g. global image or volume labels. WSL is gen-
erally closely connected to Multiple Instance Learning [4], and has been used
for WSL segmentation of natural images [13,14] and medical data [7]. However,
performing pixel-wise prediction from global labels is known to be a challeng-
ing task, making WSL approaches generally substantially inferior to their fully
supervised counterparts. Since missing annotations are incorporated to back-
ground pixel classes, another option to address this problem is to design models
able to incorporate noisy labels, which have been recently applied for semantic
segmentation [8,12]. Although interesting, most of these methods rely on the
assumption that the ratio of noisy labels remains relatively low, whereas more
than 50% of the organs are commonly missing in our context.

In this paper, we introduce SMILE, a new method for Semantic segmenta-
tion with MIssing Labels and ConvNEts. Firstly, we design a learning scheme
which converts the segmentation of K organ classes into K binary problems,
and we define ambiguity maps which allow to train the model with 100% of
clean labels (see Fig. 1), while retaining a largely sufficient number of negative
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samples. The model trained at this first stage is then used for automatically pre-
dicting labels for missing organs, using a Curriculum strategy [2] (SMILEr). We
perform extensive experiments in an sub-set of our dataset for the segmentation
of three organ classes: liver, pancreas and stomach. We show that our approach
significantly outperform a strong FCN baseline based on Deeplab [3], especially
when the number of missing organs is large. The final model (SMILEr) trained
with only 30% of present organs performs similarly to a baseline trained with
complete ground truth annotations.

2 SMILE Model

The SMILE model is dedicated to semantic segmentation with missing labels
using ConvNets. The missing organ annotations are labeled as “background”, as
shown in Fig. 1.

SMILE is based on the strong DeepLab baseline [3], which shows impressive
results for natural and medical images [5]. The DeepLab backbone architecture
is a Fully Convolutional Networks (FCN), as shown in Fig. 2, e.g. Res-Net [6].
In DeepLab, 1× 1 convolutions and soft-max are applied to classify each pixel
into K (+1, i.e. background) classes.

2.1 Handling Missing Annotations

In our context, the main limitation of DeepLab is that background labels some-
times correspond to missing organs. Therefore, back-propagating these back-
ground labels may damage training performances by conflicting with pixels where
the organ is properly annotated.

SMILE Architecture. To address this problem, we choose to start from the
(K + 1) multi-class classification formulation, and to classify each organ inde-
pendently using K binary classifiers. The SMILE architecture is shown in Fig. 2.
We use 1 × 1 convolutions, as in DeepLab, but we apply a sigmoid activation
function to predict the presence/absence of an organ at each pixel.

SMILE Training. During training, the K binary models generate K losses at
each pixel by computing the binary cross entropy: Lk(ŷk, y∗

k) = −(y∗
k log(ŷk) +

(1−y∗
k) log(1−ŷk)). The final loss aggregates these K losses through summation:

L(ŷ, y∗) =
K∑

k=1

wk Lk(ŷk, y∗
k) (1)

where wk ∈ {0; 1} is a binary weight map which select or ignore pixels for class k.
The wk weights are the core of the SMILE model, which are used to ignore

ambiguous annotations during training. We illustrate the rationale of our app-
roach in Fig. 2. We consider a volume where only one organ is annotated. In the
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baseline DeepLab model, pixels for the other organs in each slice are incor-
rectly labeled as background, and back-propagated consequently. Contrarily,
with SMILE, we only back-propagate labels which are certain. In this exam-
ple, we can back-propagating positive/negative labels for the annotated organ
at every pixels p: we thus have wa = 1∀p. On the other hand, for unannotated
organs, we only use pixels which are certainly not belonging to the given class
for training the binary classifier: wu = 1 for all pixels of the annotated organs.
Other pixels are ignored during training, i.e. wu = 0.

Fig. 2. SMILE architecture and training. The presence of an organ at each pixel is
determined by using K independent binary classifiers. During training, a weight wk for
each class enables to ignore ambiguous pixels.

The idea behind SMILE is to only use true positive and true negative labels
during training. To formalize this, we consider a given organ class k with its
associated binary classification problem. We denote as βk the ratio of pixels for
the organ in all volumes of image slices, and α the ratio of missing labels for
this organ in the dataset. Table 1 shows the confusion matrix for the labels used
by SMILE and the DeepLab baseline. We can see that they both use the same
amount of true positives: TP = (1 − α) · βk. For negative examples, however,
the baseline uses FN = α · βk false negatives, i.e. the amount of unannotated
pixels belonging to the organ. The ratio TP

FN = 1−α
α gives a good indication on

the influence of the wrong information: with α > 0.5, TP
FN < 1, which means

that the model incorporates more wrong labels than correct ones, dramatically
deteriorating its performances.

On the other hand, the baseline learns with more true negatives (1−βk) than
SMILE (1 − α)(1 − βk) + ε, where ε =

∑
k′ �=k βk′ corresponds to the other organ

labels (see Fig. 2). However, we take advantage on the class unbalance: generally
β << 1, e.g. β = 0.05, since the organs represent a small proportion of the total
volume. As a consequence, even if we remove some background examples, we
still have largely enough information to learn it properly.
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Table 1. Training label analysis. GT: Ground Truth

2.2 Incremental Self-supervision and Relabeling

The number of true positives (TP) is linearly decreasing with respect to the
ratio of missing organ annotation α (Table 1). SMILE can thus be improved
by recovering TP in unannotated training images. We propose a self-supervised
approach to achieve this goal, called SMILEr (SMILE with relabeling). The idea
of SMILEr is to iteratively produce new positive target labels y∗

i,t = 1 in an image
with missing annotations xi for each class k1, using a curriculum strategy [2].

Basically, SMILEr is initialized with SMILE, which has been trained with
correct positive labels only (Table 1) that can be regarded as “easy positive
samples”. Let us denote as ŷi

+, the pixels predicted as positive by SMILE in a
given unannotated image xi. SMILEr then add new ⊕ labels y∗,+

i,t by selecting the
top scoring pixels among ŷi

+. The model is then retrained with the augmented
training set, and the process is iterated T times, by selecting an increasing ratio
γt = t

T γmax of top scoring pixels among positives.
The new ⊕ labels y∗

i,t incorporated at each curriculum iteration are ”harder
examples”, since they are incrementally determined by the model trained with
an increased set of auto-supervised positives.

3 Experiments and Results

We perform experiments on a subset of our dataset with complete ground truth
annotations for three organs: liver, pancreas and stomach, which gathers 72
3D volume CT-scans. We generate a partially annotated dataset by randomly
removing α% of organs in the volumes independently.

Quantitative Evaluations. We compare our approach to the DeepLab base-
line [3] with a varying ratio of missing annotations α. We randomly split training
(80%) and testing (20%) data K times, and report averages and standard devia-
tions of Dice scores over the K runs. For SMILEr, we fix T = 2 and γmax = 0.66.

Figure 3 shows the results for the baseline, SMILE and SMILEr, for each
organ and on average. As expected, the maximum scores are reached when 100%
of the annotations are kept, i.e. α = 0. When α increases, the performances of
the baseline dramatically drop, whereas our approach continues to perform well.
1 We drop the dependence of class in y∗

i,t for clarity.
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Fig. 3. Dice score versus the proportion of missing annotations α. The baseline is
represented in blue, SMILE in red and SMILEr in green. (Color figure online)

For example, SMILE performs similarly as the method trained with complete
annotations with α = 40%, whereas the baseline performance is decreased by
about 20 points. The gain is even more pronounced for SMILEr which results
are comparable to the fully annotated method for α = 70%, whereas the baseline
performs very poorly in this regime.

SMILEr Analysis. Figure 3 highlights the fact that the Dice score is better
when the organ is bigger. Regarding SMILEr, we can observe that its improve-
ment is especially pronounced for small organs, see for example the large per-
formance boost for pancreas and stomach.

Figure 4 shows how the training evolves during the T = 3 curriculum iter-
ations of SMILEr, and with γmax = 1. At t = 0, we show the segmentation of
SMILE, blue pixels indicating the new positive labels added for training for the
next step. We can see how the segmentation is refined and is nearly perfect at
γ2 = 0.66 (t = 2). It is also interesting to see how the model tends to over predict
some labels at γ3 = 1.0.
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Fig. 4. SMILEr behaviour with T = 3 iterations, γmax = 1.0 and α = 50%. SMILEr
prediction in red, selected ⊕ pixels for the next iteration in blue. (Color figure online)

Finally, we give in Fig. 5 the final segmentation for the three organ classes
in a test image, for SMILEr and the baseline, at α = 70%. We can notice the
incapacity of the baseline, whereas SMILEr successfully segments all organs.

Fig. 5. Segmentation results for the baseline and SMILEr, with α = 70%. The liver is
in blue, the pancreas in red and the stomach in green. (Colou figure online)

4 Conclusions

We introduce a new model, SMILE, dedicated to semantic segmentation with
incomplete ground truth. SMILE is based on the use of certain labels for train-
ing a first model, which is lately used to incrementally re-label positive pixels.
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Experiments show that SMILE can achieve comparable performances to a model
trained with complete annotations with only 30% of labels. Future works are the
application of SMILE to other organ classes, and the incorporation of uncertainty
for selecting the target pixels labels in our curriculum approach.
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Abstract. Accurate segmentation of left ventricle (LV) from echocar-
diograms is a key step toward diagnosis of cardiovascular diseases. Man-
ual segmentation of the LV done by sonographers or cardiologists can be
time-consuming, and its accuracy is subjective to the operator’s expe-
rience and skill level. Automation of LV segmentation is a challenging
task due to a number of factors such as the presence of speckle and a
high operator-dependent variability in acquiring echocardiography data.
In this paper, we present a method that integrates deep recurrent fully-
convolutional networks and optical flow estimation to accurately segment
the LV in the apical four-chamber (A4C) view. Our method analyzes the
temporal information in echocardiogram cines with the use of convolu-
tional bi-directional long short-term memory units. Furthermore, it uses
optical flow motion estimation between consecutive frames to improve
the segmentation accuracy. The proposed method is evaluated over an
echo cine dataset of 566 patients. Experiments show that the proposed
system can reach a noticeably high mean accuracy of 97.9%, and mean
Dice score of 92.7% for LV segmentation in A4C view.

Keywords: Fully convolutional network · Recurrent neural network
Convolutional bi-directional LSTM · Deep learning
Video segmentation · Left ventricle segmentation · Echocardiography

1 Introduction

Cardiovascular disease is the foremost cause of mortality worldwide, resulting in
an estimated 17.7 million deaths annually [1]. Assessment of left ventricle (LV)
function is considered as a key metric to determine the risk of heart disease.
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Echocardiography (echo) is an imaging technique that is often used to inspect
cardiovascular function. Segmentation of the LV in echo images is used to derive
clinically important measurements such as LV ejection fraction (EF) estimation
and wall motion abnormality detection [10]. In particular, the current clinical
practice of LV EF estimation requires an expert to manually trace the endocar-
dial border of LV on both end-diastole (ED) and end-systole (ES) frames of an
echo cine clip. However, manual LV segmentation is a laborious procedure and
its accuracy is often dependent on the operator’s experience, resulting in a low
test-retest reliability [3].

A number of research groups have attempted to automate the segmentation
of LV in echo and also other modalities [3,4,9,11,14,18]. Methods to-date can
be categorized into active contour models, deformable templates, level sets, and
supervised learning approaches [3,10]. Specifically, in recent years, deep learn-
ing [7] has been proposed for segmentation and quantification of LV in computed
tomography (CT) and cardiac magnetic resonance imaging (CMR) [9,17,18]. For
CT images, Zreik et al. [18] propose a two stage LV segmentation method, where
the first stage detects a bounding box containing LV by using Convolutional Neu-
ral Networks (CNN), and the second stage performs LV segmentation by using
voxel classification within the bounding box. An extensive literature review of
methods for LV segmentation in CMR is presented in [9,17]. Specifically, Ngo
et al. propose a level-set model, initialized by LV map obtained from a first
deep belief network (DBN), and constrained by the location of endocardial and
epicardial borders computed by a second DBN. Xue et al. [17] propose a deep
network model to quantify LV measurements in CMR as a multi-task relation-
ship learning. In [17], features extracted from cardiac cine using CNNs are fed
into two branches of recurrent neural networks, one combined with a Bayesian-
based multi-task relationship module for LV quantification, and another branch
is ended with a softmax layer to detect the cardiac phase. Most recently, several
works investigated deep learning for LV segmentation in echo [4,11,14]. In [11],
anatomical priors based on the heart structure are used to regularize training of
a deep network for segmentation of LV in 3D ultrasound. Also the works of [4,14]
propose to use U-Net and its variations [13] for per frame segmentation of LV in
echo cine.

Temporal information encoding is a key research problem in video analysis.
Various methods in computer vision have shown that by combining temporal
information with shape features, using tools such as recurrent neural networks
and optical flow maps, the accuracy of video classification [8], segmentation [16],
and interpretation [6] can be improved. Recently, in the area of medical imaging,
adaptation of recurrent fully convolutional neural networks have shown promis-
ing results for detection of measurement points in echo [15], segmentation of the
heart in CMR [12], and 3D biomedical image segmentation [5].

In this paper, we present a deep learning architecture for automatic segmen-
tation of the LV from an entire echo cine. The individual frames of a cardiac
echo cine are first processed by a U-Net encoder. The encoded temporal depen-
dency information of the past frames are maintained via stacked bidirectional
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convolutional LSTM. Furthermore, temporal displacement information of mov-
ing objects between the consecutive frames is provided to the network by exter-
nally computed optical flow motion vectors. During the training phase, our
method only requires LV annotation in ES and ED frames. Therefore, our archi-
tecture can be easily trained on most clinically obtained patient data with-
out providing annotation beyond those that are normally recorded as part of
standard-of-care in echo. In the test phase, our method can be used to infer
accurate LV segmentation for the entire cine loop. Our method is quantita-
tively evaluated on an echo cine dataset consisting of 648 A4C echo cines that
were gathered from 566 patients. We demonstrate that the proposed method
can achieve a noticeably high segmentation accuracy of 97.9% with standard
deviation of less than 1%.

2 Materials and Method

2.1 Dataset Information and Clinical Background

Our echo imaging data is collected from the Picture Archiving and Communica-
tion System at Vancouver General Hospital, with ethics approval of the Clinical
Medical Research Ethics Board, in consultation with the Information Privacy
Office. Our data consist of a collection of 648 A4C view echo studies from 566
patients, with about 34,000 total number of frames, captured by using Philips
iE33 and GE Vivid-i/-7 ultrasound machines. In clinical practice, A4C is one of
the primary standard views for LV EF estimation and other cardiac functions
analyses. Each study was performed by an expert sonographer, where the LV
boundary is traced in two frames (i.e., ED and ES phase frames). The ED phase
refers to the cardiac structure at the end of relaxing, i.e., the end of ventricle
loading, and the ES phase refers to the cardiac structure at the end of contrac-
tion, i.e., the beginning of ventricle filling, respectively. We consider existing
annotations at ED and ES phase as ground truth to train our model. In order to
evaluate the performance of the model on the entire cine, we sought assistance
from an experienced cardiologist, who helped us with annotation of a randomly
selected frame between ED and ES frame in our test set. The cardiologist also
validated our existing annotation of ED and ES frames by sonographers. An
example of sample frames in our dataset and the corresponding cardiologist’s
annotation of LV segmentation is shown in Fig. 1.

Fig. 1. Examples of sample frames and corresponding annotations.
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Fig. 2. Block diagram of the proposed architecture to integrate shape, temporal and
motion information for LV segmentation in echo cine.

2.2 Network Architecture

The proposed LV segmentation architecture is depicted in Fig. 2, where the indi-
vidual components of the pipeline are explained below.

Temporal Window: In the first stage, we define a collection of d consecutive
frames as a temporal window. This set is fed to the network and the final output
would be the segmentation mask of the last frame in the window. The last
frame in the temporal window is called the “cursor” frame. The segmentation
prediction of the entire cine can be obtained by sliding the model over the
temporal dimension, with stride = 1.

U-Net Encoder: In the next stage of the network, we use U-Net’s [13] encoder
schema to process the input echo frames. More specifically, each frame is passed
through a number of stacked convolutional layers and pooling layers. A dense
representation of the per-frame encoded features is obtained by the end of the
encoding stage.

Optical Flow Integration: A second U-Net encoder model is used to process
the optical flow motion vector maps between each pair of consecutive frames. We
use the optical flow algorithm to track the motion of walls of heart chambers,
providing the network with additional information for deriving segmentation. In
our method, optical flow is calculated between each two consecutive frames in a
temporal window with the use of Horn-Schunck algorithm [2]. Each optical flow
input to the network is a two-channel image, showing the direction and distance
of movement in both x and y axes. The processed optical flow information goes
though a separate U-Net encoder, which is then concatenated with the intensity
image encoded representation. Since the speckle motion of background tissue has
a much lower velocity than the heart muscle motion, the motion of background
tissue can be filtered out by convolutional layers in the U-Net encoder model.
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Convolutional LSTM: In the third stage, the concatenated features from
echo frames intensity information and optical flow maps are processed by a
stack of two convolutional bi-directional recurrent long short term memory (Bi-
directional LSTM) layers. Our intention of using convolutional Bi-directional
LSTM comes in two-fold: (1) Bi-directional LSTM does not only encode tem-
poral feature from the past context but also from the future context, which has
been observed to handle noisy data well in speech recognition, thus making it
a good candidate to handle noisy echo data; (2) the convolutional implementa-
tion of recurrent neural networks can capture spatio-temporal correlation better
than conventional fully-connected recurrent neural networks, which based on our
experiments, can be beneficial to localize the segmentation prediction.

U-Net Decoder: During the decoding stage, the representation generated from
the Bi-directional LSTM is fed through a pipeline of up-sampling layers in order
to obtain the final prediction of segmentation mask, where the architecture of
the up-sampling layers is in the reverse order of the U-Net encoder architecture.
The skip connections by-pass layers to connect an encoder feature map with
corresponding decoder feature map of the same size. In each slide of the temporal
window over echo clip, the output segmentation map corresponds to the LV
location in the last frame of the temporal window.

Fig. 3. Example LV segmentation results on six different subjects.

3 Experiments

The echo studies of the 566 patients are randomly assigned into training and test
sets, with a split ratio of 80% and 20% of total amount of patients, respectively.
This results in 453 patients (with 520 echo studies) in the training set and
remaining 113 patients (with 128 echo studies) in the test group. Also, 20% of
the training data is held as a validation set for cross-validation of the training
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hyper-parameters. The echo cine frames are resized to 128 × 128. The network is
implemented in Keras with the use of Tensorflow (Google Corp., Mountain View,
CA) backend. The network weights are initialized by using a normal distribution.
ReLU activation is used in all constitutional layers of the network, and the
activation in the prediction layer is a sigmoid function. Dice loss is used as the
network’s objective function. We use Adam optimizer with the learning rate of
1e−4, and batch size of 10. Finally, d in the temporal window is set to 4 frames.

Testing Criteria: Note that in the standard clinical procedure, the LV trac-
ing is routinely done in only the ED and ES frames of the A4C view, therefore
we report the Dice score and accuracy on the ED and ES frames. In order to
report segmentation accuracy for in-between frames, since developing per-frame
ground truth for all echo cine frames is very time consuming, we approximated
the full cine segmentation performance by evaluating the performance on a ran-
domly selected frame between the ED and ES frames against an expert manual
annotation. This frame is named RF (Random Frame) in Table 1.

Example visual results of the LV tracking by the proposed method compared
to the ground truth are shown in Fig. 3. As can be seen, the proposed model
accurately detects the LV wall and shape.

Table 1. Empirical evaluation of the proposed method. Best results are in bold.

Method Dice Score(%) Accuracy(%)

ED RF ES ED RF ES

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD

U-Net Per Frame 91.2 3.9 90.2 5.3 88.9 4.9 97.2 1.1 97.3 1.0 97.3 0.9

U-Net-conv-

BiLSTM

93.3 3.4 92.1 3.8 90.1 8.8 97.8 0.9 97.7 1.0 97.8 1.0

U-Net-conv-

BiLSTM-OptFlow

93.6 3.0 92.5 3.5 92.1 4.1 97.9 0.9 97.8 1.0 97.9 1.0

Model Comparison: We compare the performance of the proposed deep learn-
ing architecture (i.e., U-Net-conv-BiLSTM-OptFlow) with the off-the-shelf 2D
U-Net implementation [14] (i.e., U-Net (Per Frame) in Table 1) that was trained
with only the ED and ES frame segmentation ground truth, and also with
an architecture of combining 2D U-Net with convolution Bi-directional LSTM
(i.e., U-Net-conv-BiLSTM), in Table 1. It is clear that the proposed architecture
improves all segmentation metrics. In particular, the combination of U-Net and
convolutional Bi-directional LSTM architecture consistently increases the Dice
score on all ED, RF and ES frames. Furthermore, the integration of Bi-directional
LSTM and optical flow information shows further improvement of segmenta-
tion performance. Most importantly, using optical flow information increases
the robustness of LV tracking in echo data given the standard deviation of the
reported results. Paired t-tests indicate there is a statistically significant differ-
ence between every pairs of the compared network architectures for both Dice
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Score and Accuracy (p < 0.05). Also, in terms of area under the Receiver Oper-
ating Characteristic Curve (AUC), our analysis show U-Net per frame has sub-
stantially lower AUC (AUC = 0.94) than U-Net-conv-BiLSTM and U-Net-conv-
BiLSTM-OptFlow (AUC = 0.97 for both methods). In addition, it can be seen
in Fig. 3 that per frame U-Net can be misled by image artifacts and reduction
in image quality. Both U-Net-conv-BiLSTM and U-Net-conv-BiLSTM-OptFlow,
which utilize temporal information, show more consistent segmentation results.

Fig. 4. Sample failed case of our method. Left to right: input echo frame, ground truth
by cardiologist, and segmentation by the compared methods.

4 Conclusion and Discussion

Accurate LV segmentation in echocardiograms is an important component to
diagnose critical cardiovascular disease. In this work, we present a method based
on deep recurrent fully convolutional networks and optical flow for LV tracking
in A4C echo cine data. We use convolutional Bi-directional LSTM to encode
temporal information from a short number of frames. We also use optical flow
information as an additional input to improve the segmentation accuracy and
robustness. The proposed model is evaluated on an echo dataset consist of 648
echo studies from 566 patients, and shows advantageous over two compared
models. Sample visual comparison of our proposed method can be seen in Fig. 3.
The first row in Fig. 3 shows sample cases where all of the three compared
methods provide an acceptable tracking of LV. The second row of Fig. 3 shows
samples where U-Net per frame has been mislead by artifacts in echo data. Also,
poor quality of captured echo in the cursor frame has resulted in high errors
by per frame U-Net. This is while incorporating temporal and motion infor-
mation in U-Net-conv-BiLSTM-Optflow results in a more smooth and accurate
tracking of LV. The sample in the right column of the second row in Fig. 3
shows a case where adding information of optical flow has been advantageous
comparing the blue contour (U-Net-conv-BiLSTM) with the green segmentation
(U-Net-conv-BiLSTM-OptFlow). A sample failed case of our proposed method
(U-Net-BiLSTM-OptFlow) is shown in Fig. 4. Captured echo with a low qual-
ity throughout the whole cine could be more challenging in terms of accurate
segmentation of LV, as is the case with the shown sample. Low quality echo
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misses the location of the heart wall chambers and makes it hard to annotate
LV even for expert human. Future work will include using the proposed archi-
tecture to automatically estimate various cardiac measurements, including the
Left Ventricle Ejection Fraction.
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Abstract. Automated tissue classification is an essential step for quantitative
analysis and treatment of emphysema. Although many studies have been con-
ducted in this area, there still remain two major challenges. First, different
emphysematous tissue appears in different scales, which we call “inter-class
variations”. Second, the intensities of CT images acquired from different
patients, scanners or scanning protocols may vary, which we call “intra-class
variations”. In this paper, we present a novel multi-scale residual network with
two channels of raw CT image and its differential excitation component. We
incorporate multi-scale information into our networks to address the challenge
of inter-class variations. In addition to the conventional raw CT image, we use
its differential excitation component as a pair of inputs to handle intra-class
variations. Experimental results show that our approach has superior perfor-
mance over the state-of-the-art methods, achieving a classification accuracy of
93.74% on our original emphysema database.

Keywords: Emphysema classification � Multi-scale
Differential excitation component

1 Introduction

Emphysema is a major component of chronic obstructive pulmonary disease (COPD),
which is emerging as a worldwide health problem. Generally, as shown in Fig. 1,
emphysema can be classified into three subtypes: centrilobular emphysema (CLE) that
generally appears as scattered small low attenuation areas; paraseptal emphysema
(PSE)which is shown as low attenuation areas aligned in a row along a visceral pleura [1];
and panlobular emphysema (PLE) that usually manifests as a wide range low attenuation
region with fewer and smaller lung vessels [1]. They have different pathophysiological
significance [2]. Hence, classification and quantification of emphysema are important.
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Much research has been conducted to classify the lung tissue of different emphy-
sema subtypes. One common way is based on the local intensity distribution, such as
kernel density estimation (KDE) [3]. Another class of approaches describes the mor-
phology of emphysema using texture analysis techniques [1, 4–6]. In the last years,
some attempts have revealed the potential of deep learning techniques on lung disease
classification, but it has been applied in only two studies [7, 8] for emphysema clas-
sification. The networks in these two studies are very preliminary, using two or three
convolutional layers, so they are not able to capture the high-level features. Since the
classification of emphysema mainly depends on features of texture and intensity, there
still remain two major challenges. (1) “inter-class variations”: as can be seen in Fig. 1,
different emphysematous tissue appears in different scales. Since existing methods
ignore the scales of different emphysema which are useful clues for diagnosing
emphysema, it is highly desirable to develop new models that can take full advantage
of the information from multiple scales. (2) “intra-class variations”: in clinical practice,
the intensities of CT images acquired from different patients, scanners or scanning
protocols may vary [9]. The variation in CT images will affect the classification
accuracy of emphysema, so it is necessary to design models which are robust to such
variability. In addition, existing methods for emphysema classification are limited to
extracting low-level features or mid-level features, which have limited abilities to
distinguish different patterns.

In this paper, we focus on the supervised classification of emphysema. We propose
a novel deep learning method using the multi-scale residual network (MS-ResNet) [16]
with two channels of the raw CT image and its differential excitation component. In
contrast to previous works, our proposed method discovers high-level features that can
better characterize the emphysema lesions. We incorporate multi-scale information into
our networks to address the challenge of inter-class variations. Moreover, to handle
intra-class variations, we first transform the raw image data into the differential exci-
tation domain of human perception based on weber’s law, which is robust to intensity
variability. Then we use the raw CT images and the transformed images as different
channels of the inputs of networks. The experiments show that our method can achieve
higher classification accuracy than the state-of-the-art methods. Based on the classifi-
cation results, we calculate the area percentage of each class (CLE%, PLE%, PSE%,
respectively). Then, we show the relationship between the quantitative results (area
percentages) and the forced expiratory volume in one second dividing with a predicted
value (FEV1%), which is the primary indicator of pulmonary function tests (PFTs).

Fig. 1. (a) Normal tissue (NT). (b) CLE. (c) PSE. (d) PLE.
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2 Methods

In this section, we first describe how to transform the raw CT image into the differential
excitation domain. Subsequently, we present our multi-scale residual network with two
channels of the raw CT image and its differential excitation component. An overview
of the proposed method is shown in Fig. 2.

2.1 Differential Excitation Component

Ernst Heinrich Weber, an experimental psychologist in the 19th century, observed that
the ratio of the perceived change in stimulus to the initial stimulus is a constant [10],
which is well-known as Weber’s law and can be defined as DI/I = a, where DI denotes
the perceived change in stimulus, I denotes the initial stimulus, and a is referred to as
the Weber fraction for detecting changes in stimulus.

Inspired by Weber’s law, which shows that human perception of a pattern depends
not only on the absolute intensity of the stimulus but also on the relative variance of the
stimulus, we transform the raw image into the differential excitation domain of human
perception which is robust to intensity variability [10]. In order to do so, we first
compute the difference between a focused pixel and its neighbors, which can be
formulated as

DIc ¼
Xp�1

i¼0

ðDIicÞ ¼
Xp�1

i¼0

ðIic � IcÞ ð1Þ

Fig. 2. Overview of the proposed approach
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where Ic is the intensity at position xc, Iic i ¼ 0; 1; . . .; p� 1ð Þ is intensity of the ith
neighbor of c, and p is the number of neighbors. The differential excitation component
of the focused pixel c is defined as

Ec ¼ arctan½ DIc
Ic þ k

� ¼ arctan½
Xp�1

i¼0

ðIic � IcÞ
Ic þ k

� ð2Þ

where k is a constant which avoids the situation in which there is zero intensity. k is set
to one in our experiments.

2.2 MS-ResNet with Raw and Excitation Channels

MS-ResNet. Due to the inter-class variations of emphysema, one target category tends
to be identified on a certain scale and the most suitable scales for different target classes
may vary. That is, we cannot find the best scale for all cases. Thus, it is essential to
incorporate information from different scales into our deep neural networks [16].

For a baseline, we build a 20-layer ResNet [11], which has been shown to achieve
the excellent performance on image classification. For the sake of adapting it to our
problem (small inputs and only 4 classes), we remove the pooling layer and modify the
configuration for some layers. Figure 2 (bottom) presents the details of our ResNet. As
shown in Fig. 2 (top), for each annotated pixel, we can extract patches with different
scales from its neighborhood. The label assigned to each patch is the same as label of
the central pixel. Note that, in this paper, different scales mean various sizes of inputs.
Figure 2 (middle) presents two ways for fusing information from different scales:
multi-scale early fusion (MSEF) and multi-scale late fusion (MSLF). For the MSEF, we
employ the independent convolutional layers for each scale. The outputs of average
pooling layers are combined and fed into a 4-way shared fully connected layer with
softmax to compute a cross entropy classification loss. For the MSLF, we train three
separate networks, each focusing on a certain scale. During the fusion step, we first sum
up the values of probability vectors yielded by different networks, and then compute
the average of them.

Fused Representation of Raw Image and its Differential Excitation Component.
As mentioned in Introduction part, there exists the challenge of intra-class variations
for emphysema classification. As shown in Fig. 2 in order to reduce the impact of
intensity variability, we first transform the raw image data into the differential exci-
tation domain of human perception, which is robust to intensity variability. Then we
use the raw CT images and their differential excitation components as different
channels of the inputs of networks.
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3 Experimental Results

3.1 Materials

Our dataset contains 101 HRCT volumes. The first part of our dataset includes 91
HRCT volumes annotated manually by two experienced radiologists and checked by
one experienced chest radiologist. Four types of patterns were annotated: CLE, PLE,
PSE, and non-emphysema (NE) which corresponds to tissue without emphysema. This
part of dataset is used for evaluation of classification accuracy shown in Sect. 3.2.
Since the first part of dataset does not include complete pulmonary function evalua-
tions, we collected additional 10 HRCT volumes from patients who have a complete
pulmonary function evaluation for a quantitative analysis of emphysema shown in
Sect. 3.3. All data came from two hospitals and were acquired using seven types of CT
machines with a slice collimation of 1 mm–2 mm, a matrix of 512 � 512 pixels, and
an in-plane resolution of 0.62 mm–0.71 mm.

3.2 Evaluation of Classification Accuracy

Experimental Setup. Our classification experiments are conducted on 91 annotated
subjects (the first part of dataset): 59 subjects (about 720,000 patches) for training, 14
subjects (about 140,000 patches) for validation, and 18 subjects (about 160,000 pat-
ches) for testing. A 20-layer ResNet is chosen as the baseline in this work (we found 8-
layer, 32-layer, 44-layer, and 56-layer ResNet decrease the performance, compared to
20-layer ResNet, on our data). We have done extensive experiments for selecting patch
sizes and the experimental results show that the most suitable scales (patch sizes) for
different target categories are different: for non-emphysema tissue, the inputs of
27 � 27 generate the best result; for CLE, the best scale is 41 � 41; for PLE and PSE,
the highest classification accuracy is obtained with inputs of size 61 � 61. Therefore,
patches of sizes 27 � 27, 41 � 41, and 61 � 61 are selected as inputs of the multi-
scale neural networks.

Single Scale versus Multiple Scales. In this section, to investigate the effect of fusi-ng
multi-scale information on the classification accuracy, we use only raw images as
inputs of networks. As shown in Table 1, both MSEF model and MSLF model out-
perform the single-scale models (27 � 27, 41 � 41, and 61 � 61). To test the sta-
tistical significance of the classification accuracy differences between single-scale
models and multi-scale models, we calculated the classification accuracy of each
patient, and then employed t-test. The results of analysis confirmed the statistically
significant (p-value < 0.05) superior performance of the multi-scale models against all
single-scale models. Fusion of multi-scale information leads to higher accuracy, so we
can conclude that the multi-scale methods are beneficial compared to the single scale
setting.

Single Channel versus Multiple Channels. This part compares the classification ac-
curacy between the single-channel models (use only raw images as inputs) and the
multi-channel models (use raw CT images and their differential excitation components
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as different channels of inputs). As shown in Table 2, for both single-scale setting and
multi-scale setting, the multi-channel models offer superior performance to the single-
channel models (p-value < 0.05).

Comparison to the State-of-the-Art Methods. In this section, our approaches are
compared to other state-of-the-art methods. The comparison between our methods and
the machine learning (ML) methods for emphysema classification is provided in the
first five rows. The results prove the superior performance of our methods that sig-
nificantly outperform the rest by 14% to 20%. The rest of Table 3 shows a comparison
to other deep learning methods. Since existing deep learning methods for emphysema
classification [7, 8] are very primary using only two or three convolutional layers, we
also compare our approaches with other CNNs for interstitial lung disease (ILD) clas-
sification [12, 14]. The results show that our approaches have superior performance
over other deep learning methods.

3.3 Emphysema Quantification

In this section, based on the classification results, we quantify the whole lung area of 10
subjects (the second part of dataset with complete pulmonary function evaluations) by
calculating the area percentage of each class (CLE%, PLE%, PSE%, respectively), and
show the relationship between the quantitative results (area percentages) and the forced
expiratory volume in one second dividing with a predicted value (FEV1%), which is the
primary indicator of pulmonary function tests (PFTs). Some visual results of full lung
classification are shown in Fig. 3. It can be seen that, auto-annotations (or classification
results) of proposed method are similar to annotations of radiologists (manual anno-
tations). The relationship between the quantitative results (area percentages) and
FEV1% of 10 subjects are shown in Table 4. According to [15], FEV1% is an effective
indicator that indicates both functional and symptomatic impairment of COPD.
Symptoms arise in individuals in relation to a relative loss of FEV1. More specifically,

Table 1. The comparison between the single-scale models and the multi-scale models.

27 � 27 41 � 41 61 � 61 MSEF MSLF

NE 93.19% 91.77% 86.04% 94.05% 91.98%
CLE 86.85% 88.87% 86.50% 91.17% 89.02%
PLE 83.61% 92.18% 95.06% 89.48% 93.78%
PSE 87.35% 89.52% 95.52% 95.89% 92.36%
Avg. 87.77% 90.58% 90.81% 92.68% 91.80%

Table 2. The comparison between the single-channel models and the multi-channel models.

27 � 27 41 � 41 61 � 61 MSEF MSLF

Single-channel 87.77% 90.58% 90.81% 92.68% 91.80%
Multi-channel 89.39% 91.47% 91.84% 93.74% 92.90%
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FEV1% can reflect the severity of airflow obstruction in the lungs. The lower value of
FEV1% means the more severe the airflow obstruction in the lungs. Our results show
that a larger CLE% (or PLE%) corresponds to a lower FEV1% (the more severe the
airflow obstruction in the lungs). From our experiments, we found there is no rela-
tionship between PSE% and FEV1%. According to the literature [1], PSE is often not
associated with significant symptoms or physiological impairments, which is in close
agreement with our experimental results.

Table 3. The comparison of classification accuracy (Acc.) to the state-of-the-art approaches.

ML methods Acc.

LBPINT [1] 78.67%
Texton-based [4] 79.06%
KDE [3] 76.67%
Sparse representation [5] 72.96%
JWRIULTP [6] 79.31%
DL methods Acc.
Karabulut [7] 65.51%
Pei [8] 72.34%
AlexNet-TL [12] 81.79%
GoogLeNet-TL [12] 85.75%
Wang [13] 73.62%
Anthimopoulos [14] 85.00%
Proposed method 93.74%

Fig. 3. Examples of the classification results. Each row represents a subject. (a), (e) Classification
results in coronal view. (b), (f) Typical original HRCT slices from subjects of (a), (e), respectively.
(c), (g) Auto-annotated mask of our proposed method. (d), (h) Manual annotated mask of
radiologists. Green mask: CLE lesions. Blue mask: PLE lesions. Yellow mask: PSE lesions.
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4 Conclusions

In this paper, we proposed a novel deep learning approach for emphysema classifi-
cation, using the multi-scale ResNet with two channels of raw CT image and its
differential excitation component. Our proposed approach achieved a classification
accuracy of 93.74%, which is superior to the state-of-the-art methods.
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Abstract. Calculation of blood vessel or airway direction is important
for the task of tree tracking in 3D medical images. However, most exist-
ing works treat branch direction estimation as only a by-product of ves-
selness or tubularness computation. In this work, we propose a deep
learning framework for predicting tracking directions of anatomical tree
structures. We modify the deep V-Net architecture with extra layers and
leverage a novel multi-loss function that encodes direction as well as cross
sectional plane information. We evaluate our method on both 3D syn-
thetic and 3D clinical pulmonary CT datasets. On the synthetic dataset,
we outperform state of the art methods by at least 10% in direction
estimation accuracy. For the clinical dataset, we outperform competing
methods by 1–4% in mean direction accuracy and 4–10% in correspond-
ing standard deviation.

1 Introduction

Tree extraction is a crucial task in 3D medical image analysis, and accurately
extracted circulatory and respiratory trees can be further utilized in surgery
planning, registration and tree space analysis [1–3]. However, the automation
and accuracy of tree extraction still remains an open problem due to the natural
complexity and variability of the topologies of anatomical tree structures [4],
the various imaging reconstruction artifacts [5], varying image intensities along
branches, the similarity between tubular structure lumen and background tissue
lumen, and the changing geometry due to different pathologies [6–8].

One major category of tree extraction algorithms is based on iterative track-
ing, which usually starts from a given seed point near the root of the tree, predicts
the direction of the branch to track along it, detects bifurcations to spawn chil-
dren trackers, and progresses down the tree hierarchy to smaller branches until
some stopping criteria are met [9]. Although there have been several works that
tackle the important bifurcation detection step of the tracker [10,11], very few
are specifically designed to determine the direction of the branch at a given point.
Most works simply treat the problem of direction estimation as a by-product of
vesselness or tubularness calculation [12–14].

c© Springer Nature Switzerland AG 2018
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Most existing methods on vesselness (with explicit/implicit direction predic-
tion) rely on certain assumptions made on the geometry of tubular structures.
Most Hessian based vessel enhancement filters, e.g., Frangi et al. [15] and Jerman
et al. [13,14], assumed the vessels were elongated structures. Cetin et al. [10] mea-
sured intensity distribution within an oriented cylinder-sphere combined model
and constructed a corresponding tensor representation to optimize for vessel
directions, however, their success relied on a good match between the cylinder
and the actual vessel shape. Law et al. [12] used a gradient based tensor to model
oriented flux flow and the vessel direction was also approximated by the eigen-
vector – intrinsically their assumption of vessel shapes were still straight tubes.
However, in clinical datasets, especially those exhibiting various pathologies or
abnormalities such as narrowing (e.g., in COPD [6]), aneurysms [7], and high tor-
tuosity (which might indicate diseases like arterial hypertension and strokes [8]),
the aforementioned shape assumptions might no longer hold true, which results
in incorrect direction estimates.

In contrast to the above deterministic methods, stochastic and learning based
tracking methods provide more flexibility by adjusting the prediction retrospec-
tively during the tracking process, or by using prior information learnt from the
training data [16]. Lee et al. [17] proposed to use particle filtering to track vessel
contours slice by slice, with the per-slice contour obtained by the Chan-Vese
model. Lesage et al. [18] also proposed to use particle filtering method, but in
contrast, utilized geometric flow, image features, as well as radius and direction
prior distributions to perform Bayesian inference. In these tracking processes,
vessel directions were found implicitly by subtracting neighboring points along
the detected centerlines. On the other hand, a significant number of machine
learning based methods ignore directional information completely by focusing
on pixel-wise classification [9,19,20].

The fast development of deep learning methods provides vast opportunities
in exploring the structures in 3D images from coarse to fine scales [21], however,
limited work has been done on analyzing 3D vasculature images, and none of
them estimated tree branch directions. Mirikharaji et al. [22] proposed to use an
artificial neural network trained on 2D patches to learn the probability map of
airway bifurcation locations; instead of tracking new branches, they connected
the bifurcations by minimal paths to form the whole tree. Fu et al. [23] proposed
to combine a convolutional neural network architecture with a conditional ran-
dom field model to achieve a smooth binary segmentation for retinal vessels, but
their method was only performed on 2D retinal images and no vessel direction
was estimated. Chen et al. [24] proposed to use a convolutional autoencoder for
voxel-wise cerebral arteries segmentation while completely ignoring directional
information.

We claim the following contributions are made in this paper: (i) The proposed
method, which extends V-Net [21], is the first tree branch direction prediction
deep learning method; (ii) The proposed multi-loss function is novel and specially
designed for tracking 3D tubular structures; (iii) The proposed model is trained



TreeNet: Multi-loss Deep Learning Network to Predict Branch Direction 49

and tested in a branch-specific way, which takes advantage of the “anatomical
tree statistics” [16,25] and fully utilizes statistical and geometrical information.

2 Methodology

Architecture: Our proposed deep learning architecture is an improvement of
V-Net [21]. The choice of V-Net is two-fold: (i) its encoding-decoding process
propagates contextual information into higher resolution layers – in our case,
the context information is the tubularity of the neighboring points; and, (ii)
our multi-loss function (introduced below) relies on cross sectional plane infor-
mation, so the prediction process implicitly involves plane segmentation and
reconstruction. We rescale all input volumes to 64∗64∗64 voxels with histogram
equalization. We use batch normalization and add three extra fully connected
layers (FCs, with output channels 1024, 64 and 4) at the end of the V-Net and
output a 4-element vector <v , R> where v predicts the direction of the vessel
in the center of the input cube, and a radius R that serves as intermediate input
in training the loss layer. The overall methodology is illustrated in Fig. 1a.

At Testing Time: A region of interest (ROI, or 3D patch, which we use in
the context interchangeably) is generated and input into the network (as shown
in red dotted box in Fig. 1a), and the output is the predicted vector of the
corresponding branch (shown as −→vgt in Fig. 1b).

Fig. 1. (a): The proposed architecture and tracking process. (b): Illustration of Bgt,−→v gt and Igt in Eq. 1.

Loss Function: We define the following multi-loss function:

L(v i
dt, R

i
dt) = ω1Ldir + ω2Lmask + ω3Limage + ω4Lradius (1)

Ldir(v i
dt, R

i
dt) = −|v i

gt · v i
dt|2, Lmask(v i

dt, R
i
dt) = ||Bi

gt − Bi
dt||2L2

Limage(v i
dt, R

i
dt) = ||Iigt − Iidt||2L2

, Lradius(vi
dt, R

i
dt) = |Ri

gt − Ri
dt|2
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where i is the training index, gt refers to ground truth value, dt refers to model
prediction. Iigt and Iidt are corresponding gt and predicted cross sectional planes
(going through the center voxel). Bi

gt and Bi
dt are the ground truth and predicted

(using radius Ri
dt and circular expression) branch masks on the cross sectional

planes, Ri
gt and Ri

dt are the ground truth and predicted radii, as illustrated
in Fig. 1b. The four terms Ldir, Limage, Lmask, Lradius capture the errors in,
respectively, direction estimation, cross sectional image plane reconstruction,
branch internal area estimation and radius estimation. We normalize Limage and
Lmask by the patch cube size and set the weights empirically to ω1 = ω2 = ω3 =
ω4 = 1. The total loss is optimized over vi

dt and Ri
dt. Since accurate direction

prediction leads to accurate cross section plane prediction, using multiple loss
terms should theoretically increase the direction prediction accuracy.

Tree Tracking: We follow the tracking procedure in [9], which starts from a
given seed point in a branch and tracks along vessel/airway detected by the
proposed architecture. Additional tracking details are given in Sect. 3.

3 Evaluation

Synthetic Dataset: We use three different types of synthetic dataset to mimic
pathologies such as narrowing and aneurysms, and high tortuosity [6–8]: (i)
Occlusion, (ii) Torus and (iii) Leakage. Examples are shown in Fig. 2. We aug-
ment the data by rotating the volumes along each axis randomly between [0, 60◦],
using two radius values, translating along each dimension separately by three
values ([−1, 0, 1], so 9 cases in total) and adding Gaussian noise with standard
deviation from 0.005 to 0.1 (20 cases). This brings the total number of image
volumes per each category to 360. We then run a 3-fold cross validation ensuring
that augmentations of any volume are not split across the train and test sets.

Fig. 2. Synthetic examples (noise free).

Clinical Dataset: The clinical dataset is from the Extraction of Airways
from CT (EXACT) 2009 challenge1. Sixteen training volumes with binary seg-
mentations were provided by the organizers. We extracted two categories of
data: (1) ROIs, each is a cuboid containing one of the following 7 anatomical
structures: trachea, right main bronchi (RMB), left main bronchi (LMB), right
1 http://image.diku.dk/exact/index.php.

http://image.diku.dk/exact/index.php
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superior lobar bronchus (RSLB), right intermediate bronchus (RIB), left supe-
rior lobar bronchus (LSLB) and left inferior lobar bronchus (LILB); (2) patches,
each is a cube randomly sampled from the branch centerlines, with radii twice
the mean radii of the branch, intensities normalized to [0, 1], and augmented by
adding Gaussian noise with standard deviation [0.01, 0.04] with step size = 0.01.
We perform a 4-fold cross validation on the patients for training and testing.

Competing Methods: We compare with 4 state-of-the-art algorithms: (i)
OOF [12]; (ii) Tensor [10]; (iii) Jerman [13,14]; (iv) Particle filtering [17]. Since
particle filtering doesn’t directly predict the vessel direction, we use a primitive
tracking method to first trace the branch centerline, then estimate the direc-
tions. For multiscale methods, the scale ranges are set according to mean branch
scales learnt from the dataset, and all other parameters are set according to the
original paper (for airways, i.e., dark-on-bright, some parameters are inverted
accordingly). Note that although (i) and (ii) are not direction prediction meth-
ods per se, they leverage direction estimates to filter branches, which makes the
comparison fair.

Tracking Details: Both the proposed method and the competing ones use the
same initial seeds, which are selected from the ground truth branch centerlines.
By calculating the mean radii R̄ of the corresponding branch, the ROI radii are
set automatically as 2R̄.

Evaluation Metrics: Two metrics are used to evaluate the results. For the
tracking method, we use the asymmetric distance function proposed in [9] to
compare the ground truth centerline to the extracted centerline:

D(C1, C2) = { min
s2∈C2

dist(s1, s2)|∀s1 ∈ C1} (2)

where dist(s1, s2) is 3D Euclidean distance between voxels s1 and s2, C1 the
ground truth centerline and C2 the detected centerline (by either the proposed
method or particle filtering). D(C1, C2) returns a set of distance values for all the
points on C1, so a smaller mean value and standard deviation would indicate
a better result. For other competing methods, since they return a per-voxel
direction estimate, we use the following symmetric accuracy metric:

accu(v1, v2) = v1 · v2 (3)

where v1 and v2 are the branch direction vectors to be compared.

Experiments: The evaluation result on the synthetic dataset is shown in
Table 1. We can see a marked improvement in the proposed method over the
competing ones by at least 10% in mean direction accuracy. For the Occlu-
sion category, all competing methods performed poorly, since all these methods
assume that the foreground is always luminous. For the Torus category, we can
see the Tensor method [10] performing the worst, as it modeled the blood vessel
as cylindrical tubes, which were very different from the torus shapes in the given
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Table 1. Three fold cross validation result on synthetic dataset.

Year Occlusion Torus Leakage

OOF [12] 2008 0.11 (0.07) 0.69 (0.28) 0.21 (0.12)

Tensor [10] 2015 0.47 (0.1) 0.48 (0.037) 0.89 (0.03)

Jerman [13,14] 2016 0.44 (0.46) 0.62 (0.48) 0.45 (0.07)

Proposed with Ldir only 0.95 (0.06) 0.96 (0.09) 0.97 (0.04)

Proposed w/o Limage 0.90 (0.07) 0.95 (0.12) 0.94 (0.04)

Proposed w/o Lmask 0.93 (0.07) 0.93 (0.13) 0.97 (0.04)

Proposed w/o Lradius 0.94 (0.07) 0.93 (0.10) 0.97 (0.05)

Proposed 0.97 (0.02) 0.97 (0.06) 0.99 (0.04)

images. On the contrary, the Tensor method performed much better than other
competing methods on the Leakage category, as a long cylinder might overcome
the small leakage (but not good enough to overcome the occlusion) and found
the correct direction. It is worth noting that, although the Jerman filter could
achieve good enhancement results at tortuous and bulging branches [13,14], the
filter was not designed to deal with the direction estimation task.

We observe that by removing only one of the loss terms (other than Ldir)
actually performs worse than using only Ldir. This is not surprising when we
remember that the cross sectional plane and the direction together serve as the
Frenet frame, so removing one term would invalidate the frame representation.
Since Limage contains the most information on the cross sectional plane, remov-
ing it leads to the worst performance. The improvement in prediction accuracy
of the multi-loss function supports our hypothesis that all four terms contribute
to the result, given their complementary nature.

Figure 3a shows an example where an airway centerline tree is extracted
using our proposed method (red curves) and compared to the ground truth tree
centerlines (yellow curves). Figure 3b shows a qualitative comparison between
the tracking result, along branch LIB, between the particle filtering and the
proposed method. The mean and standard deviation of distance errors of each
branch are shown in Fig. 4. The proposed method achieves a lower error mean
and standard deviation on every anatomical branch.

The results in Table 2 are consistent with the synthetic data results. The
proposed method outperforms all the competing methods on all branches.

We run our experiments on a Nvidia GTX GeForce 12 GB TITAN GPU, and
the processing time per patch at testing stage is 0.04 s.
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Fig. 3. (a): Whole tree extracted. (b): Centerlines tracked by proposed algorithm and
competing particle filtering algorithm on LIB. (Color figure online)

Fig. 4. Distance error bar between GT centerlines and detected centerlines.

Table 2. Direction accuracy (mean and standard deviation) on airway branches of
different levels.

Level 1 Level 2 Level 3

Trachea LMB RMB LILB LSLB RSLB RIB

OOF [12] 0.19

(0.18)

0.24

(0.24)

0.29

(0.26)

0.30

(0.24)

0.42(0.31) 0.40

(0.31)

0.43

(0.28)

Tensor [10] 0.86

(0.15)

0.60

(0.20)

0.78

(0.15)

0.68

(0.22)

0.34

(0.29)

0.33

(0.26)

0.82

(0.13)

Jerman

[13,14]

0.91

(0.17)

0.93

(0.16)

0.90

(0.18)

0.87

(0.22)

0.87

(0.17)

0.86

(0.21)

0.88

(0.18)

Proposed 0.92

(0.11)

0.95

(0.07)

0.93

(0.08)

0.89

(0.15)

0.91

(0.08)

0.90

(0.11)

0.90

(0.10)
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4 Conclusion and Future Work

We proposed the first deep learning architecture for estimating anatomical tree
branch directions, which is a critical step for the common tracking-based tree
extraction methods. Our proposed loss function is unique in that it follows the
geometry of the target structure (i.e. the curvilinear tree branches) by using
branch direction agreement and cross sectional image information, based on a
Frenet frame of reference. In future work, we intend to apply our model on other
anatomical trees, such as cerebral vasculature and coronary vessels.
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Abstract. Recent advancements in medical image segmentation tech-
niques have achieved compelling results. However, most of the widely
used approaches do not take into account any prior knowledge about
the shape of the biomedical structures being segmented. More recently,
some works have presented approaches to incorporate shape information.
However, many of them are indeed introducing more parameters to the
segmentation network to learn the general features, which any segmen-
tation network is able learn, instead of specifically shape features. In this
paper, we present a novel approach that seamlessly integrates the shape
information into the segmentation network. Experiments on human brain
MRI segmentation demonstrate that our approach can achieve a lower
Hausdorff distance and higher Dice coefficient than the state-of-the-art
approaches.

1 Introduction

A variety of approaches have been adopted to address the challenging problem of
3D medical image segmentation, such as 3D U-Net [1] and V-Net [4], which have
been proven to be highly effective. These approaches, however, simply transplant
the 2D image semantic segmentation algorithms to a 3D medical image analy-
sis context. They have little awareness to the fact that 3D medical structures
of the same class, unlike objects in 2D natural images, in general have similar
shapes. For example, for a 2D natural image segmentation task on the class of
‘person’, different persons could be very different in shape since a person may
have different poses when being photographed, e.g., arms opened/closed, sit-
ting/standing, etc. For the segmentation on biomedical structures such as human
caudate nucleus, all caudate nuclei have very similar shape with little structural
variation. However, this information is rarely used in deep learning-based 3D
medical image segmentation. While some recent literature has introduced some
approaches to leverage shape information, many of them are merely introducing
more hyperparameters to the network to increase its capacity, while not actually
using exactly the shape information.

In this paper, we present a novel approach which incorporates the information
about the shape of the segmentation target into the loss function of a general
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3D segmentation network. This shape information is deep-learned from a fully
convolutional network, whose feature map of the final layer (defined as the shape
signature) captures the important global shape information. We first pre-train
this shape-learning network by ground truth label maps that have undergone
different affine transformations, and then have the weights of this network fixed.
This shape-learning network will then be able to capture the essential shape
information that is invariant to affine transformation. Afterwards, when training
the segmentation network, the prediction label map and ground truth label map
will both be fed into the pre-trained shape-learning network, and the Euclidean
distance between their shape signatures will quantify the dissimilarity in shape
between the segmentation prediction and ground truth. This shape loss is then
added to the loss function of the segmentation network to facilitate the training.

Our main contributions are summarized as follows:

1. Designed a novel shape-learning network that is able to capture the affine-
invariant global shape information in the final feature map;

2. Incorporated the shape dissimilarity information to the segmentation net-
work, making it shape-aware;

2 Related Work

We start by reviewing related prior works on general medical image segmenta-
tion, and the utilization of shape information.

2.1 Medical Image Segmentation

Deep learning-based image semantic segmentation became highly successful since
the emergence of Fully-convolutional Network (FCN) [3]. This approach has later
been adapted to a biomedical image segmentation setting with the novel design
of U-Net [7], which contains skip connections between the contracting path and
expanding path so that the intricate details in biomedical images can be kept.
Recently, U-Net has been modified to accommodate 3D volumes by replacing
all the 2D convolutions and convolution transposes by their 3D counterparts, as
described in 3D U-Net [1]. Apart from the change in network architecture, some
other adaptations have been made to make CNNs more compatible with medical
image segmentation. For instance, in V-Net [4], the loss function is derived from
Dice coefficient which is a common metric in medical image segmentation.

2.2 The Utilization of Shape Information in Segmentation

Some prior works claimed to have leveraged the shape information of biomedical
structures for segmentation purpose. [6] introduced an autoencoder known as
Shape Regularization Network (SRN) that regularizes the segmentation result
to make it conform to the shape it should have. Its functions include eliminating
any noisy part from the general shape, or filling up any holes in the prelimi-
nary segmentation result. A more recent work Anatomically Constrained Neural
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Networks (ACNN) [5] used an autoencoder to learn the shape by training that
autoencoder to reconstruct a label map itself, and used the Euclidean distance
between the bottleneck layers of the autoencoder to quantify the dissimilarity in
shape.

A commonality among these prior works is that they introduce another net-
work which is trained to capture the shape information, and this network is then
used to guide the segmentation network. However, the shape learner in SRN and
ACNN are both learning the general features of a 3D structure, including posi-
tion, volume, shape, etc., instead of specifically learning the shape. Inspired by
these issues, we propose an approach to learn the essential shape information
that is invariant to affine transformations.

3 Methodology

3.1 Overview

While the term shape may have many definitions in different settings, in the med-
ical image segmentation setting here, we define it to be the intrinsic properties of
the 3D biomedical structures that are invariant to spatial affine transformations,
including rotation, translation and scaling, etc. The network architecture used
in our approach is composed of two parts, where the first part is to capture the
shape information, and the second part to use it.

Concretely, the first part, defined as shape-learning network, is a 3D fully
convolutional neural network (ConvNet), with the input being the raw binary
3D label map of the biomedical structure being segmented, and the output being
a one-channel low-resolution feature map (hereafter referred to as shape sig-
nature). The second part, defined as shape-guided segmentation network,
is a segmentation network with the architecture modeled after the 3D U-Net
[1] and loss function being the sum of Dice loss and shape loss. The role of the
shape-learning network is to learn the shape signature of a 3D binary label
map, and this information would later become a part of the loss function of the
segmentation network. The architecture of the shape-learning network is shown
in Fig. 1, while the complete illustration showing the full network architecture is
attached at Fig. 2.

3.2 Shape-Learning Network

The first step is to train the shape-learning network. In every iteration of train-
ing, we feed the shape-learning network with two binary label maps which are
the same structure from the same subject that have gone through differ-
ent affine transformations. Since these two label maps come from the same
subject’s same structure under different affine transformations, we call them an
affine pair, and argue that they contain exactly the same shape information.
If the network was able to capture shape information well, the difference between
the shape signatures of these two label maps from the same affine pair should
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be small. We therefore compute the Euclidean distance between the shape sig-
natures of these two label maps, and use this difference in Euclidean distance
as loss and propagate the loss through the entire network and to update the
network weights.

Let the ground truth label map be M ∈ R
w×h×d and the shape signature be

M̂ ∈ R
w′×h′×d′

where w′, h′, d′ are much smaller than w, h, d respectively, the
shape-learning network is essentially a non-linear mapping from M to M̂ , namely
M̂ = gθ(M), where θ is the weights in the convolutional layers of this network.
Given this shape-learning network gθ, the shape loss between two binary label
maps M1,M2 ∈ R

w×h×d is therefore

Lshape(M1,M2) = ‖gθ(M1) − gθ(M2)‖2
Training this shape-learning network therefore essentially means finding the θ
that satisfies

θ = argmin
θ

Lshape(M1,M2)

where M1 and M2 are two instances of the same structure in the same subject,
that have gone through different random affine transformation. After the training
is finished, given a label map M , gθ(M) gives the shape signature of this label
map.

Fig. 1. Architecture of the shape-learning network.

3.3 Shape-Guided Segmentation Network

After the training of the shape-learning network is finished, we then train the
segmentation network which is responsible for generating the segmentation label
map. The segmentation network is a mapping f from the input (the raw voxels
of brain MR image) I to the segmentation result M̃ defined as M̃ = fW (I)
where W is the weights of the segmentation network. The difference between
the segmentation result M̃ and ground truth label map M is first measured by
the Dice loss defined as

Ldice(M,M̃) = 1 − 2
∑

i MiM̃i
∑

i Mi +
∑

i M̃i
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Fig. 2. Diagram of the full network architecture. The segmentation network, following
a 3D U-Net architecture, is shown on the left, and the pre-trained shape-learning
network that extracts the shape signature is shown on the right. Number of channels
is not reflected on this diagram for brevity.

And by the definition given in the previous section, the shape loss between M̃
and the ground truth M is defined as

Lshape(M,M̃) = ‖gθ(M) − gθ(M̃)‖2
After adding the shape loss term to the Dice loss, we obtain the total loss which
is

Ltotal(M,M̃) = Ldice(M,M̃) + αLshape(M,M̃)

where α is a hyperparameter that balances the weights of Dice loss and shape
loss. The weights W of the segmentation network is

W = argmin
W

Ltotal(M,M̃)

and the segmentation network can be trained by the Stochastic Gradient Descent
(SGD) with backpropagation since the entire pipeline is differentiable end-to-
end.

4 Experiments

4.1 Experimental Setup

Experiments have been implemented on the human left and right caudate
nucleus, as well as left and right hippocampus in the LONI Probabilistic Brain
Atlas (LPBA40) dataset [8], which is a publicly available series of maps of human
brain anatomic regions. The Magnetic Resonance (MR) images in the native



3D Deep Affine-Invariant Shape Learning for Brain MR Image Segmentation 61

space are used as raw input, while the label maps in the delineation space are
the ground truth labels.

All MRI inputs and their corresponding labels are preprocessed and cropped
to a region of 256 × 256 × 128 in size, which is identical for every subject. Raw
MRI inputs are preprocessed so that the original 12-bit image representation
is normalized to a mean of 0.0 and standard deviation of 1.0. The label maps
are further preprocessed for left and right caudate nuclei respectively, so that
the label maps of both structures are binary three-dimensional arrays. Data
augmentation operations on the training data include randomly rotating the
object in 3D space up to 8◦, randomly scaling the object from 0.85 times to
1.15 times, as well as randomly translating the object. Left and right caudate
nucleus and left and right hippocampus are all processed separately and are
ran in separate experiments. Note that these transformations are also used in
preparing an affine pair when training the shape-learning network, which requires
the same structure to go through two random affine transformations.

4.2 Training the Shape-Learning Network

We first train the shape-learning network, and demonstrate why it is able to
capture the essential shape information in the shape signature layer. The shape-
learning network was trained with affine pairs, where the binary label maps
have both gone through a random affine transformation that was employed in
the data augmentation step. On each structure, we train for 200 iterations with
batch size 1 and learning rate 1 × 10−4 on Adam Optimizer [2]. Experimental
results illustrated in Table 1 demonstrate that the average difference in shape
signature between affine pairs of the same subject’s same structure is much
lower than the average shape difference between pairs from different subjects.
Therefore, a well-trained shape-learning network is able to capture a structure’s
essential shape information that is invariant to affine transformations.

Table 1. Average shape loss of 50 random affine pairs of the four biomedical structures
tested, when the pairs are drawn from the same subject or a different subject.

Same subject Different subjects

Left Caudate 0.120 0.316

Right Caudate 0.083 0.210

Left Hippocampus 0.251 0.787

Right Hippocampus 0.088 0.277

4.3 Training the Segmentation Network

After finish training the shape-learning network, we freeze its weights and train
the segmentation network. The experiments were also run with a batch size
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of 1, with the optimizer being Adam Optimizer [2] and the learning rate being
1×10−4. The weight of shape loss α was chosen experimentally to be 0.1, and the
models of left and right caudate nucleus and left and right hippocampus are first
trained without shape loss for 800 iterations, and then trained with shape loss
for another 400 iterations. To prevent the shape loss term from being extremely
large, we experimentally set it to be capped at 1.0. As ablation experiments, we
also run experiments with the same set of hyperparameters and the same dataset
with a 3D U-Net model as a comparison. Note that the 3D U-Net here refers to
the U-shape network in [1] trained with only Dice loss. Experimental results of
Dice coefficient and Hausdorff distance on left and right caudate nucleus of 3D
U-Net and our method are listed in Table 2, while the visual results are shown
in Fig. 3.

Table 2. Performance of segmentation, evaluated on both Dice coefficient (Dice) and
Hausdorff distance (HD).

Structure Metric 3D U-Net Our method

Left Caudate Dice 0.831 0.835

HD 5.472 5.299

Right Caudate Dice 0.782 0.820

HD 6.369 5.004

Left Hippocampus Dice 0.771 0.793

HD 20.170 5.843

Right Hippocampus Dice 0.732 0.759

HD 54.553 29.878

The Dice coefficient and Hausdorff distance in the tables are both metrics to
evaluate the similarity between a segmentation result and its ground truth label
map. A higher Dice coefficient and a lower Hausdorff distance both means greater
similarity. It’s shown that our approach achieves better results than 3D U-Net
in terms of both Dice coefficient and Hausdorff distance. In the visual results,
it is shown that our approach, compared with 3D U-Net, captures the intricate
shape details better. In both examples in Fig. 3, 3D U-Net cannot segment the
sharp part in the lower part of a caudate nucleus while our method is able to.

Since all experiment settings except loss function are the same for 3D U-Net
and our method, the better performance of our method is due to the incorpo-
ration of shape information. Concretely, the shape loss measures the difference
in shape signature, while shape signature extracted by a network trained to
minimize the difference in shape signature between two affine pairs of the same
subject. Therefore, when the difference in shape signature is used as a part of
segmentation network’s loss function, it naturally guides the segmentation net-
work to produce segmentation results that comply with the shapes they should
have, thus having better results both quantitatively and visually.
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Fig. 3. Visual results of our approach compared with 3D U-Net.

5 Conclusion

We present a novel approach that incorporates shape information into the task
of 3D medical image segmentation, by training an shape-learning network that
learns the shape signature of the target to be segmented. We run experiments on
the public LPBA40 dataset on the brain structure of caudate nucleus and hip-
pocampus. Experimental results show that our approach leads to better results
than 3D U-Net in terms of both Dice coefficient and Hausdorff distance.
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Abstract. Heart disease is the global leading cause of death. A key pre-
dictor of heart failure and the most commonly measured cardiac param-
eter is left ventricular ejection fraction (LVEF). Despite available seg-
mentation technologies, experienced cardiologists often rely on visual
estimation of LVEF for a swift assessment. In this paper, we present
a direct dual-channel LVEF estimation approach that mimics cardiol-
ogists’ visual assessment for detecting patients with high risk of sys-
tolic heart failure. The proposed framework consists of various layers for
extracting spatial and temporal features from echocardiography (echo)
cines. A data set of 1,186 apical two-chamber (A2C) and four-chamber
(A4C) echo cines were used in this study. LVEF labels were assigned
based on risk of heart failure: high-risk for LVEF ≤ 40% and low-risk
for 40% < LVEF ≤ 75%. We validated the proposed framework on 237
clinical exams and achieved a success rate of 83.1% for risk-based LVEF
classification. Our experiments suggests the fusion of the two apical views
improves the performance, compared to single-view networks, especially
A2C. The proposed solution is promising for segmentation-free detection
of high-risk LVEF. Direct LVEF estimation eliminates ventricle segmen-
tation, and can hence be a useful tool for formal echo and point-of-care
cardiac ultrasound.

1 Introduction

Heart disease is the leading cause of death globally, claiming the lives of over 8.5
million people in year 2015 alone [17]. Left ventricular ejection fraction (LVEF)
is an important cardiac parameter and the key predictor for prognosis in most
cardiac conditions, including valve disease, coronary artery disease, and heart
failure [3]. Formally, LVEF is defined as the ratio between the amount of blood
pumped out of the left ventricle (LV) every systole and the maximum amount
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of blood in LV at the end of diastole. The most common imaging modality for
measuring LVEF is echocardiography (echo) [3]. Echo is non-ionizing, accessi-
ble, low-cost, real time, and therefore ideal for studying the cardiac anatomy and
function. In 2D echo, LVEF is conventionally quantified using the biplane method
of disks, a.k.a. Simpson’s rule [3]. This method calculates LVEF through LV vol-
ume estimation in end-systolic (ES) and end-diastolic (ED) frames, from apical
two-chamber (A2C) and apical four-chamber (A4C) views. This segmentation-
based routine is time-consuming and challenging with the presence of noise and
unclear endocardial boundaries. Furthermore, studies suggest manual measure-
ment of LVEF suffers from intra- and inter-user variability, especially among
novice cardiologists [2,5]. To assist with automation of LV segmentation, several
solutions have become commercially available [19]. A number of research groups
have also proposed semi-automatic and automatic LV segmentation techniques,
including recent machine learning and deep learning approaches [6,8,14,15,21].
Though promising for LV volume estimation in a given frame, these methods
can lack robustness for LVEF prediction. This is due to dependence of LVEF on
accurate LV tracing in ED and ES.

Clinically, LVEF is often measured through direct visual estimation [13].
Experienced cardiologists can eyeball LVEF from echo cine loops based on the
wall motion and atrio-ventricular plane displacements [13]. Studies suggest direct
visual estimation of LVEF is closely correlated to quantitative segmentation-
based techniques [10]. Though this is the preferred choice of experts for quick
LVEF assessment, visual estimation is a highly reader-dependent technique, lead-
ing inexperienced novice imagers to hesitate to use it [3,13]. Moreover, eyeballing
LVEF is not a reliable option for other clinicians with limited echo training.

Direct estimation of LV volume and LVEF in cardiac magnetic resonance
(MR) images has been explored by several groups [9,12,20,22]. Nevertheless,
to the best of our knowledge, direct LVEF assessment has not been previously
investigated in echo images. It is worth noting that LVEF estimation in echo is
inherently a much more difficult problem compared to MR for several reasons.
First, variability in acquiring standard echo imaging planes introduces greater
variance in the appearance of the LV anatomy in 2D echo images. Moreover, the

Fig. 1. Comparison of LV motion in ES and ED phases of SAX (a), A2C (b) and A4C
(c). Deformations, movements of chambers and valves are more complex in A2C and
A4C (used in echo) compared to SAX (used in MR), causing LVEF assessment to be
more difficult in echo.
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short-axis (SAX) view, used for LVEF estimation in MR (Fig. 1(a)), captures a
much simpler cardiac motion and field-of-view compared to the views used in
echo (Fig. 1(b) and (c)). Other challenges in echo include variable image quality
and image settings, which also add to the complexity of a machine learning-based
solution for direct LVEF assessment.

In this paper, we introduce a deep network that mimics the clinicians’ eye-
balling technique in echo to help classify exams as high-risk (LVEF ≤ 40%)
or low-risk (40% < LVEF ≤ 75%). The following contributions are made: (1)
Our approach directly estimates LVEF from echo cine loops, eliminating the
need for LV segmentation and detection of key cardiac frames. LV segmentation
can be challenging due to the high variability in echo image quality and image
settings, as well as variability in the operator’s experience in obtaining the correct
echo standard views; (2) We propose a dual-stream framework for A2C and
A4C views, consisted of view-specific spatial feature extraction blocks as well as
shared recurrent neural network (RNN) layers. (3) We report the performance of
several state-of-the-art networks and empirically show that for all the dual-view
framework perform equally or better than a single apical view in classification
of low-risk vs. high-risk LVEF.

2 Material

LVEF Labels: Our objective is to distinguish between the low-risk and high-
risk LVEF classes. Let YSimpson’s and YBinary denote the Simpson’s rule-based
gold standard LVEF measurement and derived risk-based binary labels, respec-
tively. We define YBinary such that YBinary = 1 for YSimpson’s ≤ 40%, and
YBinary = 0 for 40% < YSimpson’s ≤ 75%. Figure 2 visualizes the clinical labels in
the database (YSimpson’s and YEyeballed) and the derived risk-based binary labels
used in the present classification network (YBinary). Cases with YSimpson’s > 75%
are excluded from this study due to the very limited number of samples.

Database: Ethics approval was obtained from our local regulatory authority to
access a database of clinical echo exams and corresponding diagnostic reports at
a tertiary care center. We searched the report database for echo exams that
satisfied the following criteria: (1) The segmentation-based (YSimpson’s) and
segmentation-free (YEyeballed) LVEF labels are recorded in the report database,
and in agreement; (2) Correspondences can be found between the echo cines and
diagnostic report based on the study identification information; (3) A2C and
A4C views are both available. Also, in this paper, we focus the studies acquired

Fig. 2. LVEF labels used in the main database (YSimpson’s, YEyeballed) and for classi-
fication in this paper.
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Fig. 3. Examples of synchronized A2C and A4C echo cines. Cines are temporally
resampled between RAXC

1 to RAXC
2 , and effectively synchronized.

using the same family of ultrasound machines (Philips iE33). A total of 1,186
samples with the above criteria were gathered; 541 high-risk and 645 low-risk
cases. The dataset was divided in a 4 : 1 ratio for training and test.

Echo Data and Preparation: 2D frames of 800×600 pixels are cleaned using
a binary beam-shaped mask, cropped around the beam area, and downsized to
128 × 128 pixels. Temporally, frames are sampled from one full visible cycle in
each cine loop AXC, where AXC ∈ {A2C,A4C}. To extract one cycle from each
AXC cine, we find the of R peaks in its available electrocardiograms (ECG) and
trim the cine to frames RAXC

1 to RAXC
2 . An equal number of F = 25 frames are

uniformly sampled from each sequence (Fig. 3).

3 Methods

We propose the network in Fig. 4 for binary LVEF classification. This network is
consisted of spatial feature extraction (FE) blocks as well as RNN-based layers
for temporal learning.

Dual-view Spatial Feature Learning: We rely on CapsuleNet [18] and
DenseNets [11] for frame feature extraction (FE), as they have been recently

Fig. 4. Architecture of proposed multi-view classification network for LVEF estimation.
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proved successful in spatial feature learning. Initially, sampled synchronous A2C
and A4C frames are fed into FE blocks. The flattened output of an FE for a
frame t is a feature vector XAXC

m,t of length M × 1; m = 1 : M . In the dual-view
framework, XA2C

m,t and X4XC
m,t are then concatenated to form a dual-view feature

vector XA2C+A4C
m,t of length 2M ×1. For an exam with two streams and sequence

length of F frames, a feature matrix XA2C+A4C
m,t of size 2M × F is constructed,

where t = 1 : F . XA2C+A4C
m,t is a dense representation of the cardiac cycle based

on two views.

RNNs for Temporal Encoding: The other key components in the network
are the RNN blocks, which enable sequential and temporal learning. We inves-
tigated various RNNs, including cascades of uni- and bi-directional Long Short
Term Memory (LSTM) and Gated Recurrent Unit (GRU). The RNN blocks take
in XA2C+A4C

m,t at F separate time steps and output an array of the learned sequen-
tial features. This output is further pushed to a cascade of two fully connected
(FC) layers, with ReLU and Softmax activation functions, respectively.

Training: The proposed architecture is implemented in Python using Keras
with TensorFlow backend [4]. Dropout and batch normalization layers are used
after FE blocks to prevent overfitting. The start points of the sampled frames
are selected at random within the range RAXC

1 to RAXC
2 . Augmented data is

created on the fly via randomly generated transforms, including rotation, scaling,
cropping and gamma transformation on the intensities.

4 Results

Quantitative results obtained in this study are demonstrated in Fig. 5. The high-
est performance is achieved using the dual-view approach with DenseNets and
bidirectional GRUs. Figure 6 depicts this network’s performance on a few exam-
ples of A2C+A4C image pairs.

Fig. 5. LVEF classification accuracy using DenseNet (DNet) and CapsuleNet (CNet)
as the spatial FE, and various and RNN versions on A2C, A4C and A2C+A4C views.
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Fig. 6. Performance of DenseNets and bidirectional GRU on a few A2C+A4C pairs.
Cardiac echo quality and proper synchronization of views affect the model performance.

5 Discussion and Conclusion

In this paper, we introduced a new framework based on DenseNet, CapsuleNet
and RNN layers for estimating LVEF from echo cines in A2C and A4C stan-
dard echo views. Our results suggest that A2C alone is a less reliable view for
LVEF estimation, while A4C alone appears to be a much more robust option
with the current framework. However, the most accurate results is achieved by
combining both apical views. This observation is also aligned with anecdotal
clinical evidence, where A2C views are more difficult to obtain over A4C, and
are more likely to be foreshortened [16], hence LVEF estimation from A2C can
be less reliable. LSTM and GRU often performed equivalently, although the
highest accuracy was obtained using GRU blocks. The results also consistently
suggest that bidirectional recurrent layers are equivalent to or better than unidi-
rectional ones. The optimal deep model, consisted of DenseNet + bidirectional
GRU, achieved a success rate of 83.1% on the test set for detecting high-risk
LVEF. We observed that DenseNet achieved a higher accuracy, compared to
CapsuleNet. Given the performance of CapsuleNet on public data sets [18], this
was inconsistent with our initial expectations. However, we suspect that this is
due to the small size of our training set for learning such a complex, yet sub-
tle, problem. DenseNets have been proven effective for learning spatial features
in relatively small training sets [11]. It is worth mentioning that based on our
analysis of the main diagnostic report database, only an approximate 70.1% of
the (YSimpson’s) and (YEyeballed) labels agree. While these cases were excluded
from the presented study, we suspect that the accuracy of the clinical ground
truth labels may be similarly compromised to some extent.

A key pattern recognized from the results is the link between model perfor-
mance, the quality of apical images, and view synchronization (Fig. 6). Misclas-
sified images generally have unclear LV boundaries, which causes a great deal of
variance in the appearance of the heart and its motion. Also, despite the auto-
matic and manual view classification, confusion between the four apical views
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(A2C, three-chamber, A4C and five-chamber) appears to remain a challenge
and a potential source of error (e.g., Fig. 6(c)). Thus, a bottom-up approach for
improving LVEF accuracy can be through improving the quality of the input
data. Abdi et al. recently proposed a deep-learning solution for automatic esti-
mation of echo quality [1], which can be used to provide feedback to ultrasound
operators for improving the quality of data acquisition.

A resolvable limitation of the proposed solution is the dependence on ECG,
for phase detection and synchronization. ECG is not available in point-of-care.
Moreover, visual inspection of the results revealed correlation between misclassi-
fication and apparent improper synchronization (see e.g., Fig. 6(d), which shows
asynchronous A2C and A4C views based on the valve state). We believe improv-
ing the phase detection can contribute to achieving more accurate results. Alter-
natively, a cine-based cardiac phase detection can be implemented into the net-
work. A possible solution has been proposed by Dezaki et al. [7] for A4C images,
which can be similarly extended to A2C. This method is capable of automati-
cally identifying ES and ED, which could be used to achieve potentially richer
temporal sampling of systolic and diastolic phases.

One possible option to eliminate phase-dependence altogether is through hav-
ing two separate RNN streams; one per A2C and A4C views. This decouples the
two views from one another, enabling the use of potentially informative cines
in full. However, this architecture causes a large sudden increase in the network
size, and is still less successful for LVEF estimation based on our experiments
thus far. This is most likely because the inputs of the RNN blocks, i.e. the frame
feature vectors, are denser and richer when constructed from two complimentary
views, allowing for more effective temporal learning. This may change should we
increase our training set.

While a binary risk-based LVEF classification tool could assist with immediate
decision making in point-of-care, it suffers from a flaw: it imposes a sharp bound-
ary on the true regression labels (YSimpson’s). This can be amended by adding a
medium-risk class, or more classes of YEyeballed. We plan to include exams from
other ultrasound machines to obtain enough data for this multi-class classification.

Given that LV localization appears to be the key step in some LVEF estima-
tion approaches proposed for cardiac MR [12], another question worth exploring
is whether LV localization helps with LVEF accuracy in echo. While the motion
of the atria and right ventricle can contain subtle information about LVEF,
excluding them decreases variance from the neighbouring chambers. Existing
encoder-decoder segmentation networks can be modified and used to localize,
track and accordingly crop LV throughout the cine.
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Abstract. Lung cancer is the leading cause of cancer deaths worldwide.
Early diagnosis of lung nodules is of great importance for therapeutic
treatment and saving lives. Automated lung nodule analysis requires
both accurate lung nodule benign-malignant classification and attribute
score grading. However, this is quite challenging due to the considerable
difficulty of nodule heterogeneity modelling and limited discrimination
capability on ambiguous cases. To meet these challenges, we propose a
Multi-Task deep learning framework with a novel Margin Ranking loss
(referred as MTMR-Net) for automated lung nodule analysis. The relat-
edness between lung nodule classification and attribute score regression
is explicitly explored in our multi-task model, which can contribute to
the performance gains of both tasks. The results of different tasks can
be yielded simultaneously for assisting the radiologists in diagnosis inter-
pretation. Furthermore, a siamese network with a novel margin ranking
loss was elaborately designed to enhance the discrimination capability
on ambiguous nodule cases. We validated the efficacy of our MTMR-
Net on the public benchmark LIDC-IDRI dataset. Extensive experiments
demonstrated that our approach achieved competitive classification per-
formance and more accurate attribute scoring over the state-of-the-arts.

1 Introduction

Lung cancer has been the leading cause of cancer deaths worldwide. In the year
2018, the estimated death cases of lung cancer will account for approximately
26% of all cancer deaths in the United States [1]. Early diagnosis of lung cancer
is crucial in the future treatment of lung cancer patient, because its five-year
survival rate is lower than 20% when it promotes to a late stage. Lung can-
cer usually refers to small malignant lung nodules (with the diameter in the
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): DLMIA 2018/ML-CDS 2018, LNCS 11045, pp. 74–82, 2018.
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range of 3–30 mm), which can be detected on the chest computed tomography
(CT) scans. However, distinguishing the nodules between benign and malignant
is quite difficult even for experienced radiologists [2]. Because there are various
potential malignancy-related characteristics (e.g., spiculation), these character-
istics should be taken into consideration during the diagnosis process.

Computer-aided diagnosis techniques have been proven to be helpful for radi-
ologists in decision making and hold the potential to improve diagnostic accu-
racy in distinguishing small benign nodules from malignant ones [3]. With the
powerful representation capability, deep neural networks are capable of learning
more complicated diagnosis patterns from labeled data. Hence, it could assist the
automated lung nodule analysis. Recently, several deep learning based methods
have been proposed for computer-aided diagnosis of lung nodules. Xie et al. [6]
proposed a multi-model ensemble method that considered overall appearance,
nodule shape and voxel value of each nodule slice simultaneously to achieve
high classification accuracy. Chen et al. [5] introduced a multi-task regression
model to explore the internal relationship among the semantic features. Instead
of considering these two tasks independently, Hussein et al. [13] proposed a
3D CNN-based multi-task model to implicitly explore the relationship between
malignancy classification and attribute score regression tasks. Although achiev-
ing state-of-the-art performance, these previous methods either independently or
“jointly but implicitly” tackled the benign-malignant classification and attribute
score regression tasks, instead of jointly analyzing and explicitly exploring their
correlations for more convincing and interpretable diagnosis.

In this paper, we propose a novel Multi-Task deep learning framework with a
new Margin Ranking loss (called MTMR-Net) for automated lung nodule anal-
ysis. We build a bi-branch model which not only predicts nodule malignancy
but also outputs regressed scores of eight attribute characteristics. The relat-
edness between two highly-correlated tasks is explicitly learned in our model,
and both tasks can benefit from each other through the proposed architecture.
Furthermore, we propose a novel margin ranking loss based on siamese network
architecture to perform comparison while scoring nodules to model their hetero-
geneity. This enables the network to be more accurate on recognizing marginal
lung nodules by referring to lung nodules with different labels but close malig-
nancy scores. We validated our proposed framework on the public LIDC-IDRI
dataset and achieved competitive classification accuracy over the state-of-the-
arts. In addition, compared with previous approaches which can only output
a binary classification result, our proposed model can provide more cues and
evidence for radiologists by simultaneously yielding the scores of the attributes
when making diagnosis.

2 Method

Our proposed MTMR-Net consists of two components. First, we propose a multi-
task deep learning model for nodule analysis, which is composed of lung nodule
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classification task and attribute score regression task. Second, to further discrim-
inate the marginal nodules, we present a new margin ranking loss to train the
model in order to enhance the distinguishing capability among marginal cases.

Fig. 1. Multi-task learning framework. Residual blocks used are exactly the same as the
residual blocks in original 50-layer residual network [7]. Besides classification branch,
an additional regression branch is added to predict 8 attributes scores. The “CE Loss”
and “MSE Loss” denote cross entropy loss and mean square error loss, respectively.

2.1 Multi-task Learning for Lung Nodule Analysis

Benign-Malignant Classification. The multi-task model is fine-tuned from
a 50-layer residual network [7]. We keep the feature extraction module of the
original residual network. However, in the classification module, we concatenated
the extracted feature maps with an additional feature map (feature map from
regression module) before the last fully-connected layer, as shown in Fig. 1. We
formulate the task as a classification problem rather than a regression problem,
considering that a definite diagnosis can provide more intuitive information to
experts. Therefore, we use cross entropy loss (CE Loss) for backward propagation
in the classification module, which is defined as:

Lcls = − 1
N

∑

i

log pci (yc
i |xi;Wcls,Ws) , (1)

where xi and pci are the input image and output probability from the classifica-
tion module, while yc

i ∈ {0, 1} is the ground truth of lung nodule classification
label, Ws and Wcls are the weights of shared feature extraction path and nodule
classification task, respectively. N is the total number of training samples.

Nodule Attribute Score Regression. Motivated by the clinical observa-
tion that radiologists analyze the characteristics of attributes for malignancy
assessment, we hypothesize that exploring the correlation between malignancy
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classification and attributes scoring would help to further improve the discrim-
ination capability for lung nodule analysis. Therefore, besides the classification
task, we also add a regression module for attributes score prediction in the
network. Before the last fully-connected layer for final regression, we explic-
itly extract attributes features using another fully-connected layer following
the shared feature extraction module, as shown in Fig. 1. In addition, rather
than using these attributes features solely for regression task, we concatenate
the malignant feature in the classification module with the attributes features.
The concatenation between malignancy feature map and attributes feature map
enables more attributes information guidance in the nodule classification task.
For the attributes score regression task, we used mean square error loss (MSE
Loss) during the training process, which is defined as:

Lreg =
1
N

∑

i

||ŷr
i (xi;Ws,Wreg) − yr

i ||22, (2)

where yr
i ∈ R

1×n is the output of regression task of network, while ŷr
i ∈ R

1×n is
the ground truth of attribute scores. n = 8, for using eight semantic attributes.

Fig. 2. Siamese model based on two shared-weight proposed multi-task model. “MR
Loss” means margin ranking loss. All 3 modules (feature extraction, classification,
regression) are weight-shared in two branches of siamese network.

2.2 Margin Ranking Loss for Discriminating Marginal Nodules

Despite multiple correlated supervision information is employed in our deep
neural network, we still observe there exists misclassification on marginal lung
nodules. To tackle the similar misclassification problem, Kong et al. [8] used
siamese network to enhance model’s discrimination capability on ambiguous
cases. Inspired by Kong et al. [8], we perform the same architecture with a
novel margin ranking loss while scoring nodules to model nodules’ heterogene-
ity. Siamese network is well-known for using two shared-weight feature extraction
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branches in its network architecture. It enables the network to train in a pair-
wise mode, see Fig. 2, which can enhance classification accuracy by applying
comparison and referring. Besides, a novel margin ranking loss is designed for
capturing the ranking relationship between different training samples:

Lrank =
1

2N

∑

i,j

max
(
0, γ − δ

(
pci , p

c
j

) ∗ (
tci − tcj

))
, (3)

δ
(
pci , p

c
j

)
=

{
1, pc

i ≥ pc
j

−1, pc
i < pc

j
, (4)

where tci ∈ [0, 1], tcj ∈ [0, 1] denotes the ground truth malignancy score for the
ith, jth training sample, respectively. While pci ∈ [0, 1], pcj ∈ [0, 1] are the ith,
jth training sample’s predicted malignancy probability, respectively. δ

(
pci , p

c
j

)
is

the indicator function. γ is the margin parameter.
If the predicted scores’ ranking is the same as ground truth scores’ ranking

(e.g., tci ≥ tcj , p
c
i ≥ pcj), then the loss is 0. Otherwise, the loss is penalized dur-

ing the training process (e.g., tci ≥ tcj , p
c
i < pcj). Applying this mechanism into a

siamese network can easily explore and model the difference between marginal
lung nodules by adjusting the margin parameter γ.

2.3 Joint Training of MTMR-Net

In summary, there are three not independent but rather complementary losses
for our proposed MTMR-Net. Hence, the total minimization loss is defined as:

Ltotal = Lcls + λLreg + βLrank + η(||Ws||22 + ||Wcls||22 + ||Wreg||22), (5)

where λ, β, η are hyper-parameters balancing Lcls, Lreg and weight decay term.
In our experiments, Adam optimizer was used for training the entire net-

work. Learning rate was initially set to 3e−3 for the shared feature extraction
part and 3e−5 for both classification and regression module. Learning rate also
periodically annealed by 0.1. We trained our model for 150 epochs using the
pytorch. After using grid-search for finding hyper-parameters, we set 3 param-
eters for controlling the weights for λ, β, η as 1, 5e−1, 1e−3, respectively, and
the marginal parameter γ was chosen as 1e−1.

3 Experiments

3.1 Dataset and Preprocessing

We validated the proposed MTMR-Net on the LIDC-IDRI dataset, which con-
sisted of 1018 CT scans [9] and 1422 lung nodules (972 benign lung nodules and
450 malignant lung nodules). The nodules were rated from 1 to 5 by four expe-
rienced radiologists signifying the degree of malignancy in an increasing order.
For benign-malignant classification task, nodules with average score less than
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3 and greater than 3 were labeled as benign and malignant, respectively. Nod-
ules with average score of 3 were left out in our experiments as all other works
did [4–6]. Besides malignancy, eight semantic attributes (i.e., subtlety, calcifica-
tion, sphericity, margin, spiculation, texture, lobulation and internal structure)
were also scored in the LIDC-IDRI dataset. The higher the score is, the more
obvious the characteristic is. Most features were rated in the range of 1–5, while
the internal structure and calcification were given scores in the range of 1–4 and
1–6, respectively. We rescaled the average score labels from 1–5, 1–6, 1–4 to 0–1
for normalization before training.

We divided the dataset into training (90%) and testing (10%) sets following
the setting in [4], which is well calculated so the sampled training and testing
dataset has similar distribution. We cropped an adaptive patch region according
to the diameter and position of the nodule and resized the patch to 224× 224
using bilinear interpolation. In addition, we employed random cropping, hori-
zontal flipping, and vertical flipping as data augmentations. In [12], Dou et al.
employed 3D CNN to preserve more spatial information. Instead, we use 2D
CNN to explore each slice’s malignancy and semantic attribute score, and then
averaged the probability scores of slices enclosing nodule to get the final results
as mentioned in [6]. This method may lose some spatial information, but the
average operation can effectively prevent overfitting.

Fig. 3. Left part: classification outputs from previous work’s model [4,6]. Right part:
classification outputs with attribute score from MTMR-Net. Sub, Is, Cal, Sph, Mar,
Lob, Spi, Tex denotes subtlety, internal structure, calcification, sphericity, margin,
spiculation, lobulation and texture, respectively. Score for each attribute is rescaled
to the range of 0–1. The higher the score is, the more obvious the characteristic is.

3.2 Results and Evaluation Comparison

Benign-Malignant Classification. We compared the proposed model with
several state-of-the-art methods and performed an ablation analysis of the pro-
posed model. The results are reported in Table 1. We employed four commonly
used metrics for the comparison: accuracy, specificity, sensitivity and area under
curve (AUC); the definitions of these metrics can be found in [6]. As shown
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Table 1. Performance of lung nodule classification methods on LIDC-IDRI dataset

Methods Accuracy (%) Sensitivity (%) Specificity (%) AUC

Anand et al. 2015 [10] 86.3 89.6 86.7 –

Xie et al. 2016 [6] 93.4 91.4 94.1 0.978

Shen et al. 2017 [11] 87.1 77.0 93.0 0.930

Causey et al. 2017 [4] 93.2 87.9 98.5 0.971

50-layer Residual Net 90.1 83.1 97.0 0.950

MTMR-Net (w/o Lreg) 91.6 84.6 98.5 0.957

MTMR-Net (w/o Lrank) 92.3 86.2 97.0 0.946

MTMR-Net 93.9 89.2 98.5 0.957

in Table 1, our method achieved the best accuracy, sensitivity and comparable
specificity, AUC when compared with state-of-the-art methods, demonstrating
the effectiveness of exploiting the relatedness of classification task and attribute
prediction task as well as the margin ranking loss in improving the classification
accuracy. In order to carefully scrutinize the contributions of different compo-
nents of the proposed model, we further compared the proposed original the
50-layer Residual Net, the MTMR-Net without MSE Loss, and the MTMR-
Net without MR Loss. It is observed that both the MTMR-Net without MSE
Loss and the MTMR-Net without MR Loss achieve better performance than the
50-layer Residual Net while the proposed model not only further improved the
performance but also outperformed the 50-layer Residual Net by a great mar-
gin, further corroborating the effectiveness of the proposed multi-task learning
scheme as well as the margin ranking loss.

Nodule Attribute Score Regression. We further compared the results of
attribute score prediction of our model with two commonly used models, lasso
regression model and elastic network, as well as a state-of-the-art method,
MTR [5]. The results are shown in Table 2. We employed the metric of abso-
lute distance error to evaluate the prediction results and its definition can be
found in [5]. Compared with previous methods, our model achieved significantly
lower absolute distance error on most of the features, demonstrating in our multi-
task model trained based on the relatedness between these two tasks, while the
attribute prediction task can improve the performance of the classification task,
in turn, the classification task can also enhance the attribute prediction accuracy.

Figure 3 showed typical results of classification and the corresponding
attribute prediction results. Inspiringly, we found our results are quite consistent
with those of previous clinical studies. For example, the malignant cases usually
have higher calcification, higher lobulation and lower spiculation while internal
structure has no influence on malignancy diagnosis. The results also demon-
strate that we cannot classify the nodules based solely on one or two attributes.
However, we should comprehensively consider more attributes, which has also
been stated in many clinical studies. Compared with previous methods without
explicitly exploring the relatedness of two tasks, the proposed model can also
provide more cues and evidence for diagnosis by simultaneously outputting the
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Table 2. Performance of attribute scores prediction. MTR, LASSO, EN are multi-
task regression model [5], lasso regression model and elastic network, respectively. Sub,
Is, Cal, Sph, Mar, Lob, Spi, Tex shares the same definition as in Fig. 3. The score is
calculated on the original unscaled data.

Methods Features

Sub Is Cal Sph Mar Lob Spi Tex

MTR [5] 0.75 0.04 0.48 0.81 0.86 0.87 0.80 0.58

LASSO 1.25 0.02 2.18 1.25 1.13 0.95 0.89 1.04

EN 1.20 0.14 1.44 1.09 0.98 0.96 0.86 1.24

MTMR-Net 0.52 0.03 0.62 0.58 0.53 0.51 0.49 0.38

attribute scores, besides better classification accuracy. The proposed method not
only can be used in automated lung nodule diagnosis systems, but also it can
be employed as a tool for the investigations which aim at revealing the under-
lying yet complicated relationship between the malignancy of a nodule and its
attributes as shown in Fig. 3.

4 Conclusion

In this paper, we presented the MTMR-Net under a multi-task deep learn-
ing framework with margin ranking loss for automated lung nodule analysis.
The relatedness between lung nodule classification and attribute score regres-
sion was explicitly explored with multi-task deep learning, which contributed to
the performance gains of both tasks. Furthermore, a novel margin ranking loss
was explored to model nodule heterogeneity and encourage the discrimination
capability of ambiguous nodule cases. Extensive experiments on the benchmark
dataset verified the efficacy of our method and achieved competitive performance
over the state-of-the-arts.
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Abstract. Deep learning with convolutional neural networks (CNN)
has achieved unprecedented success in segmentation, however it requires
large training data, which is expensive to obtain. Active Learning (AL)
frameworks can facilitate major improvements in CNN performance with
intelligent selection of minimal data to be labeled. This paper proposes
a novel diversified AL based on Fisher information (FI) for the first time
for CNNs, where gradient computations from backpropagation are used
for efficient computation of FI on the large CNN parameter space. We
evaluated the proposed method in the context of newborn and adoles-
cent brain extraction problem under two scenarios: (1) semi-automatic
segmentation of a particular subject from a different age group or with
a pathology not available in the original training data, where starting
from an inaccurate pre-trained model, we iteratively label small number
of voxels queried by AL until the model generates accurate segmentation
for that subject, and (2) using AL to build a universal model gener-
alizable to all images in a given data set. In both scenarios, FI-based
AL improved performance after labeling a small percentage (less than
0.05%) of voxels. The results showed that FI-based AL significantly out-
performed random sampling, and achieved accuracy higher than entropy-
based querying in transfer learning, where the model learns to extract
brains of newborn subjects given an initial model trained on adolescents.

1 Introduction

Image segmentation plays an important role for extracting quantitative imaging
markers of disease for improved medical diagnosis and treatment. CNNs have
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been shown to be promising for medical image segmentation [1]. However, they
require large training sets to be able to generalize well. In medical applications,
labels are often only available for limited subjects who come from a healthy group
with a specific age range. Models trained on this population will not perform well
in subjects from a different age group (such as newborns or children), subjects
imaged on a different scanner or subjects with a specific disease. In order to
generalize models, annotating more images is crucial. Due to costly efforts needed
for medical annotation, active learning (AL) seems imperative enabling us to
build generalizable models with the smallest number of additional annotations.
Generally speaking, AL aims to select the most informative queries to be labeled
among a pool of unlabeled samples.

Among AL algorithms used for medical image segmentation, uncertainty
sampling has been one of the popular methods [2,3], which queries the most
uncertain samples to be labeled. It has recently been used with neural net-
works, where uncertainty was measured based on sample margins [4] or boot-
strapping [5]. For the same purpose, Wang et al. [6] used entropy function but
mixed it with weak labels. In addition, more sophisticated objectives such as
Fisher information (FI) has theoretically been shown to be beneficial for active
learning [7–9]. FI measures the amount of information carried by the observa-
tions about the underlying unknown parameter. An earlier work [10] successfully
applied FI in medical image segmentation using logistic regression. However, FI
based objective functions for AL have not previously been applied to CNN mod-
els mainly because of the significantly larger parameter space of deep learning
models which leads to intractable computations for evaluating FI.

In this paper, we propose a modified version of FI-based AL for image seg-
mentation with CNN. Modification of FI-based approach is towards making the
queries even more informative by making them as diverse as possible. We observe
that using the selected queries to fine-tune only the last few layers of a CNN can
effectively improve the initial model performance, and thus there is no need for
blending with weak labels. Furthermore, we leverage the very efficient backprop-
agation methods that exist for gradient computation in CNN models to make
evaluation of FI tractable. We formulate the proposed diversified FI-based AL for
the application of CNN based patch-wise brain extraction and compared it with
two baselines, random sampling and entropy-based querying (uncertainty sam-
pling), within two scenarios: semi-automatic segmentation and universal active
learning. Our results show that the proposed methods significantly outperform
random querying and can effectively improve the performance of a pre-trained
model by querying a very small percentage (less than 0.05%) of image voxels.
Finally, we show that the FI-based method outperforms entropy-based approach
when active querying is used for transfer learning.

2 Methods

We explain our AL method in the context of a single querying iteration, when
a parameter estimate θ̂ is already available from an initial labeled data set. We
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assume that the CNN model is capable of providing us with the class posterior
probability P(y|θ̂,x). In each iteration, selected queries will be labeled by the
expert and the model will be updated. This process repeats using the updated
model. Throughout this section, U = {x1, ...,xn} denotes the unlabeled pool of
samples and Q ⊆ U is the (candidate) query set. The goal in a querying iteration
is to generate (no more than) k > 0 most informative queries.

2.1 FI-Based AL

Fisher information (FI), defined as Ex,y

[∇θ logP(y|x,θ0)∇�
θ logP(y|x,θ0)

]
,

measures the amount of information that an observation carries about the true
model parameter θ0 ∈ R

τ . Trace of (inverse) FI serves as a useful active learn-
ing objective [8,9], where it is optimized with respect to a query distribution q
defined over the pool U (hence qi is the probability of querying xi ∈ U). Differ-
ent approximations can be introduced for tractability [7,10]. Here, we follow the
algorithm in [11] (originally used for logistic regression), which aims to solve

arg min
q∈[0,1]n

tr
[
Iq(θ0)−1

]
. (1)

This optimization has a non-linear objective, but it can be reformulated in the
form of a semi-definite programming (SDP) problem [12].

2.2 Diversified FI-Based AL

Although (1) takes into account the interaction between different samples, it is
not obvious how much diversity it includes within Q. In order to further encour-
age a well-spread probability mass function (PMF) and more diverse queries,
we included an additional covariance-dependent term −λtr

[
Covq[x]

]
into the

objective, where λ is a positive mixing coefficient. Unfortunately, adding this
term to the objective prevents us from forming a linear SDP. In order to keep
the tractability, we constrain ourselves to zero-mean PMFs, i.e., Eq[x] = 0. This
constraint makes the covariance term linear with respect to qi’s:

arg min
q∈[0,1]n

tr
[
Iq(θ0)−1

] − λ

n∑

i=1

qi x�
i xi s.t.

n∑

i=1

qi xi = 0. (2)

Following an approach similar to [11], we can get the following linear SDP:

arg min
q∈[0,1]n,t∈Rτ

t1 + ... + tτ − λ

n∑

i=1

qi x�
i xi

s.t.
∑

xi∈U
qi xi = 0 &

[∑
i qi Ai ej

e�
j tj

]
� 0, j = 1, ..., τ. (3)
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where t1, .., tτ are auxiliary variables, ej is the j-th canonical vector, and Ai ∈
R

τ×τ is the conditional FI of xi, defined as

Ai :=
c∑

y=1

P(y|xi,θ0)∇θ logP(y|xi,θ0)∇�
θ logP(y|xi,θ0) (4)

Since θ0 is not known, it is replaced by the available estimate θ̂. Finally, (2)
can be slow when n (pool size) and τ (parameter length) are very large, which
is usually the case for CNN-based image segmentation. In order to speed up, we
moderate both values by (a) downsampling U by only keeping β most uncertain
samples [11,13], and (b) shrinking the parameter space by representing each
CNN layer with the average of its parameters. When the querying PMF q is
obtained, k samples will be drawn from it and the distinct samples will be used
as the queries.

3 Experimental Results

We applied the proposed method and the baselines for CNN based patch-wise
brain extraction. We use tag random for random querying, entropy for entropy-
based querying, and Fisher for FI-based querying with λ = 0.25, β = 200. In
entropy, we used Shannon entropy as the uncertainty measure. Our data sets
contain T1-weighted MRI images of two groups of subjects: (a) 66 adolescents
from age 10 to 15, and (b) 25 newborns from the Developing Human Connectome
Project [14]. The CNN model used in our experiments is shown in Fig. 1. Inputs
are axial patches of size 25 × 25 × 1. The feature vectors xi in (3) are extracted
from the output of the second FC layer.
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Fig. 1. Architecture of the CNN model used for brain extraction

We first trained an initial model using randomly selected patches from three
adolescent subjects and used it to initialize AL experiments, where k is set to
50. Each querying iteration started with an empty labeled data set L0 and an
initial model M0. At iteration i, Mi−1 was used to score samples and select the
queries. Labels of the queries were added to Li−1 to form Li, which was used to
update Mi−1 by fine-tuning only the FC layers. Accordingly, when computing
conditional FI’s in (4), we only computed gradients for the FC layers. Next we
discuss two general scenarios in evaluating the performance of AL methods.
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Table 1. F1 scores of the models obtained from querying iterations of different AL
algorithms. The scores of intermediate querying iterations are based on grid samples,
whereas the initial and final scores are reported based on full segmentation.

Initial Adolescents Newborns

85.73 ± 3.91 79.93 ± 2.92

# Queries Fisher (%) entropy (%) random (%) Fisher (%) entropy (%) random (%)

100 87.11 ± 3.04 86.85 ± 3.29 82.61 ± 5.05 84.26 ± 2.86 83.33 ± 2.84 76.4 ± 6.22

500 90.9 ± 2.07 90.62 ± 2.16 85.28 ± 3.48 86.92 ± 2.37 86.47 ± 2.29 80.75 ± 2.96

1000 92.42 ± 1.76 92.57 ± 1.64 86.71 ± 2.88 88.11 ± 2.23 87.89 ± 2.12 82.12 ± 2.84

1500 93.57 ± 1.37 93.5 ± 1.39 87.78 ± 2.44 89.07 ± 2.02 88.82 ± 2 83.11 ± 2.85

Final 95.21 ± 0.94 95.15 ± 0.9 91 ± 1.48 90.24 ± 1.84 89.88 ± 1.72 86.92 ± 2.2

3.1 Active Semi-automatic Segmentation

Here, the goal is to refine the initial pre-trained model to segment a particular
subject’s brain by annotating the smallest number of additional voxels from the
same subject. For the sake of computational simplicity, we used grid-subsampling
of voxels with a fixed grid spacing of 5, resulting in pool of unlabeled samples
with size ∼200,000 for adolescent and ∼350,000 for newborn subjects. We eval-
uated the resultant segmentation accuracy for the specific subject after each AL
iteration over grid voxels. We also reported the initial/last segmentations over
full voxels after post-processing the segmentations with CRF (for newborns),
Gaussian smoothing (with standard deviation 2), morphological closing (with
radius 2) and 3D connected component analysis.

Table 1 shows mean and standard deviation of F1 scores in different query-
ing iterations from 25 newborns and 63 adolescents (after excluding three images
used in training M0). This table shows that Fisher and entropy raised the per-
formance significantly higher than random, and increased the initial F1 score by
labeling less than 0.05% of total voxels. Whereas, random decreased the average
score in the early iterations, which implies potential negative effect of bad query
selection. This table shows a slight difference between Fisher and entropy when
considering all the images collectively. However, we observed that Fisher actually
outperformed entropy in more than 60% of the newborn subjects (16 out of 25),
while performing almost equally on the others. Figure 2(a) shows box plots of
the difference between F1 scores of Fisher and entropy for these two groups of
subjects, where the white boxes are mostly in the positive side.

The improvements in F1 scores are shown for two selected subjects, one
from each group, in Figs. 2(b) and (c). Furthermore, in order to visualize how
differences in F1 scores may reflect in segmentations, we also showed in Fig. 3
segmentation of a slice of the subject associated with Fig. 2(b). Observe that
the pre-trained model from adolescent subjects falsely classified skull as brain,
since brains of adolescent and newborn subjects look very different in their T1-
weighted contrast. After AL querying, the methods could better distinguish these
regions but random and entropy have much more false negatives than Fisher.
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(a) F1 score difference between Fisher and entropy for two groups of newborns

(b) Example subject (Fisher>entropy) (c) Example subject (Fisher≈entropy)

Fig. 2. F1 scores reported separately for two groups of newborn subjects, when Fisher>
entropy and Fisher≈ entropy. The box-plots consider all subjects in each group, whereas
the F1 curves in (b) and (c) are for one sample subject from each group.

Fig. 3. Segmentation of a slice using M0 and models obtained in active semi-automatic
segmentation of the newborn for which F1 curves are shown in Fig. 2(b). Green bound-
aries show the ground-truth segmentation and red regions are the resulting brain extrac-
tion. (Color figure online)

3.2 Universal Active Learning

In this section, we used FI-based AL sequentially on a subset of new subjects to
further improve the initial CNN model in order to achieve a universal model that
can be used to segment all other subjects in the same data set. The goal was to
show that FI-based querying method is able to result a more generalizable model.
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We ran a sequence of FI-based AL over 11 subjects in each data set, such that the
initial model of querying iterations over one subject was the final model obtained
from the previous subject. The pre-trained model M0 described above was used
to initialize the AL algorithm for the first image. For each subject, we continued
running the querying iterations with k = 50 until 1,500 queries were labeled. The
resulting universal model was then tested on the remaining unused subjects in
the data set. Note that for the newborn dataset the problem is a transfer learning
scenario, where an initial pre-trained model from the adolescent data set was
updated using the proposed AL approach to achieve improved performance in
the newborn dataset. Results from test subjects reported in Fig. 4 show that the
initial model is significantly improved after labeling a very small portion (less
than 0.02%) of the voxels involved in the querying.
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Fig. 4. Statistics of F1 scores of universal models resulting from sequence of FI-based
querying over 11 images and the initial model M0 over the test images of adolescent and
newborn subjects. The box-plots and histograms show that except for a few adolescent
outliers, the F1 scores are significantly increased by our proposed FI-based AL.

4 Conclusion

In this paper, we presented active learning (AL) algorithms based on Fisher
information (FI) for patch-wise image segmentation using CNNs. In these new
algorithms a diversifying term was added to the querying objective based on the
FI criterion; where efficient FI evaluation was achieved using gradient computa-
tions from backpropagation on the CNN model. In the context of brain extrac-
tion, the proposed AL algorithm significantly outperformed random querying.
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We also observed that FI worked better than entropy in transfer learning, where
we actively fine-tuned a pre-trained model to adapt it to segment images from
a patient group with different characteristics (age, pathology, scanner) than the
source data set. FI-based querying was also successfully applied for creating uni-
versal CNN models for both source (adolescent) and target (newborn) data sets,
to label minimal new samples while achieving large improvement in performance.
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Abstract. Semantic segmentation for 3D medical images is an impor-
tant task for medical image analysis which would benefit from more effi-
cient approaches. We propose a 3D segmentation framework of cascaded
fully convolutional networks (FCNs) with contextual inputs and additive
outputs. Compared to previous contextual cascaded networks the addi-
tive output forces each subsequent model to refine the output of previous
models in the cascade. We use U-Nets of various complexity as elemen-
tary FCNs and demonstrate our method for cartilage segmentation on a
large set of 3D magnetic resonance images (MRI) of the knee. We show
that a cascade of simple U-Nets may for certain tasks be superior to a sin-
gle deep and complex U-Net with almost two orders of magnitude more
parameters. Our framework also allows greater flexibility in trading-off
performance and efficiency during testing and training.

1 Introduction

Recently, deep convolution neural networks (CNNs) have shown excellent per-
formance on various computer vision and medical image analysis tasks includ-
ing semantic segmentation [1]. Early CNN approaches use sliding windows and
approach segmentation as many independent classifications, which is inefficient.
Fully-convolutional networks (FCN) [2] instead directly operate on full images.
Consequentially, FCNs are more efficient and many FCN variants achieve state-
of-the-art segmentation performance [3,4]. When dealing with 3D image seg-
mentations, the simplest approach is to treat a 3D volume as a sequence of
2D slices [5] and to segment them independently with a 2D CNN. However,
this overlooks correlations across slices. To account for such correlations while
avoiding 3D CNNs, triplanar schemes [6] have been proposed which apply 2D
CNNs on image slices from three orthogonal planes of an image volume. Natu-
rally, applying a 3D CNN to an image volume can take advantage of the full 3D
information, but has high computational cost and memory requirements.

Most existing work on semantic segmentation focuses on improving perfor-
mance by designing deeper and more complex networks. This, generally results
in better performance, but comes at the cost of additional complexity, especially
for the segmentation of 3D images. Hence, it would be beneficial to design more
c© Springer Nature Switzerland AG 2018
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efficient network architectures for 3D segmentation while retaining segmenta-
tion performance. Inspired by work that applies an auto-context approach [7] to
CNN models [8] and additive learning schemes such as boosting [9], we propose
a cascaded 3D semantic segmentation framework composed of a sequence of 3D
FCNs with contextual inputs and additive outputs. As an alternative design
strategy to a monolithic complex deep FCN, we show that such a sequence of
simpler and shallower FCNs achieves performance on par with a more complex
network, but using two orders of magnitude less parameters. This approach also
allows to trade-off model accuracy with run-time and memory requirements.

Contributions: (1) We show that a cascaded model composed of several simple
FCNs can perform as well as a single complex FCN with almost two orders of
magnitude more parameters, resulting in better computational efficiency. (2) Our
additive model shows better performance than an auto-context approach using
contextual input (i.e., segmentations) only without the additive strategy. (3) We
provide an analysis to give insight into why the additive output helps refine the
segmentation model. (4) Lastly, we evaluate our model on a relatively large knee
MRI dataset from the Osteoarthritis Initiative for cartilage segmentation.

2 Methods

In this section we (1) introduce the two components of our cascaded framework:
contextual input and additive output; (2) provide an analysis illuminating the
effect of additive outputs; and (3) describe the FCNs used to construct the
cascaded models in our experiments. Figure 1 illustrates the proposed approach.

Fig. 1. Schematic diagram of proposed contextual additive model.

2.1 Contextual Additive Networks

Context information is useful for image segmentation [7,10]. Inspired by the
auto-context algorithm [7], cascaded models have been proposed that input the
concatenation of an image and a segmentation (either the resulting labeling
itself or the class label probabilities) to subsequent models. The segmentation is
generated by a previous model with the image as its only input. Furthermore,
residual skip connections [11] are widely used for CNNs. These help the training
of deep networks and boost performance. Our contextual additive network is
inspired by both approaches. However, instead of using the residual connections
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across layers inside a neural network, we use them to connect the output of each
sub-model to generate the class probability. We use a sequence of such models
each also having access to the original input image (see Fig. 1).

Formally, our cascaded model Φ is based on a sequence of FCNs
{φ0, φ1, ..., φM}, whose parameters are Θ = {θ0,θ1, ...,θM} respectively. The
first FCN, φ0, with parameters θ0 takes an image x as input and predicts the
probability map of all class labels, P 0, by applying softmax to the output of the
FCN: P 0(x;θ0) = σ(φ0(x;θ0)), where σ is the softmax function. For an output
z ∈ R

C of C classes, the probability of class j is

σ(z)j =
ezj

∑C−1
l=0 ezl

, c ∈ {0, · · · , C − 1}. (1)

Subsequent FCNs use the image and the probability map (i.e., the contextual
input) of the previous FCN as input. However, instead of directly predicting the
input to a softmax function to obtain label probabilities these subsequent FCNs
(unlike previous work [8]) predict a residual between the previous prediction,
added to the output of the previous stage (i.e., the additive output) before the
softmax. The output of the contextual additive model after the M -th FCN is

PM (x;Θ) = σ(φ0(x;θ0) +
M∑

m=1

φm(x, Pm−1;θm)). (2)

Such a cascaded model can be trained by training each additive FCN via:

θ̂m = arg min
θm

L(Y, Pm(X; {θ̂0, · · · , θ̂m−1,θm})), (3)

where Y denotes the set of label images, X the set of images in the training
dataset, and L is the chosen loss function. Alternatively it can be trained end-
to-end by minimizing the sum of the losses for all stages of the model:

Θ̂ = {θ̂0, θ̂1, ..., θ̂M} = arg min
Θ

M∑

m=0

L(Y, Pm(X; {θ0, ...,θm})). (4)

Both training strategies work well in our experiments. When applying the trained
model one obtains the class label by selecting the most probable label:

ŷ(x; Θ̂) = arg max
j

PM
j (x; Θ̂), (5)

where ŷ denotes the label output for input image x and model parameters Θ̂.

2.2 Why an Additive Network is Beneficial

To give insight into the effect of adding model outputs before the softmax in the
cascade we approximate the loss function to first order. We use the cross-entropy
loss for multi-class segmentation which for a single model output, φ0, is

L0
CE = −

C−1∑

j=0

yj ln(σ(φ0
j )), (6)
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where j is the class index and C is the total number of classes. Considering
a cascaded model of two FCNs, we assume we trained the first FCN φ0 by
optimizing L0

CE . With the additive output of the second model, the loss becomes

L1
CE = −

C−1∑

j=0

yj ln(σ(φ0 + φ1)j). (7)

We can think of φ1 as a perturbation to φ0. Approximating the loss function (7)
around φ0 via a Taylor series expansion results in

L1
CE ≈ −

C−1∑

j=0

yj ln(σ(φ0
j )) −

C−1∑

j=0

yj

C−1∑

l=0

∂ ln σ(φ0)j
∂φ0

l

φ1
l

= L0
CE +

C−1∑

j=0

yj

C−1∑

l=0

ΔL1
CEj(φ

1
l |φ0), (8)

where L0
CE only depends on φ0 and can therefore be ignored for sequential

training of φ1; ΔL1
CEj(φ

1
l |φ0) captures how the loss depends on the output of

the second model for class l, φ1
l , for voxels annotated as class j:

ΔL1
CEj(φ

1
l |φ0) =

{−(1 − σ(φ0
j ))φ

1
j = −(1 − P 0

j )φ1
j , l = j

σ(φ0
l )φ

1
l = P 0

l φ1
l , l �= j

. (9)

Intuitively, when the first model performs well P 0
j is high and P 0

l,l �=j is low;
increasing φ1

j and decreasing φ1
l,l �=j is of low benefit to reduce the loss. When

the first model performs badly P 0
j is low and P 0

l,l �=j is high; increasing φ1
j and

decreasing φ1
l,l �=j is of high benefit. I.e., improving the prediction where the first

model perform badly is more beneficial than improving already good predictions.
In effect, the loss of the additive model naturally weighs each voxel so that it
focuses on problematic regions.

2.3 3D Fully Convolution Networks

Many FCN variants exist [3,12]. The U-Net [13] and the 3D U-Net [14] have been
popular to segment medical images. U-Nets add skip connections between the
encoder/decoder paths to retain high resolution features. We use the 3D U-Net
as our elementary FCN because of its good performance. The original 3D U-Net
is a dense architecture with four resolution steps in the encoder/decoder paths,
and 512 feature channels at the bottleneck, resulting in a total of ∼19 million
parameters. We also build three simpler U-Nets with fewer feature channels and
fewer resolution levels (Fig. 2). The smallest one has only 45,808 parameters.

3 Experiments

For each U-Net, we train a cascaded model of length M , where M is larger for
smaller U-Nets as the performance of a model with more complex U-Nets satu-
rates with smaller M . We explore results for end-to-end and sequential training.
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Fig. 2. U-Nets of the cascaded models (# of parameters in parentheses): original U-Net
(∼19M), U-Net-1 (∼1.1M), U-Net-2 (∼287K), U-Net-3 (∼46K)

We also use only contextual input and only additive output for our cascaded U-
Net-3 × 6 model to investigate the impact of our two key techniques. We study
memory use and runtime to explore our model’s segmentation efficiency.

3.1 Dataset and Preprocessing

We use knee MRIs from the Osteoarthritis Initiative consisting of 176 MR images
from 88 patients (2 longitudinal scans per patient). We split the dataset into a
training set of 60 patients (120 images), a validation set of 8 patients (16 images)
and a test set of 20 patients (40 images). All images are of size 384 × 384 × 160
and resolution 0.36 × 0.36 × 0.7mm3 per voxel. We normalize the intensities of
each image such that the 0.1 percentile and the 99.9 percentile are mapped to
{0, 1} and clamp values that are smaller to 0 and larger to 1 to avoid outliers.
We did not apply bias-field correction, because our exploratory experiments
indicated that bias-field correction did not substantially impact segmentation
results. For each volume, femoral and tibial cartilage are annotated on sagittal
slices. We transform the corresponding 2D polygon annotations to 3D label maps.

Table 1. Models’ parameter size and memory consumption in sequential training

Model Original U-Net U-Net-1 × 2 U-Net-2 × 3 U-Net-3 × 6

params # 19,065,888 2,294,486 862,185 275,538

Memory Train 11116 5836 3190 2434

(MB) Test 10312 7614 4044 2820
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3.2 Implementation Details

Due to the high memory demands of 3D convolutions, the full image volume and
its network outputs may not fit on a single GPU. Hence, we use overlapping tiles
as in the U-Net [13]. We choose image patches of size 128 × 128 × 32 considering
the nonuniform voxel resolution and that annotations were drawn sagittally.

During training, we randomly crop 3D patch pairs from image-label pairs.
To avoid class imbalances due to the high proportion of background voxels we
use three types of patches: any possible patch, patches with more than r1% of
femoral cartilage voxels, and patches with more that r2% tibial cartilage voxels.
Patches are randomly sampled at a ratio of 1 : 1 : 2 (r1 = 1, r2 = 2). We use the
Adam [15] optimizer with first moment β1 = 0.9, second moment β2 = 0.999,
and ε = 1e−10. The learning rate is initialized as 5e−4 and decays at half of
the total epochs and at the beginning of the last 50 epochs by 0.2. We train
the original U-Net and each sub-network in the sequentially trained cascaded
models with 600 epochs. When training a cascaded model of M U-Nets end-to-
end, 100 ∗ (M − 1) extra epochs were applied to assure convergence. Regarding
training time, the cascaded models take less time than the original U-Net (13 h)
except U-Net-3 × 6 (17 h for end-to-end training and 20 h for sequential training).
During training, we recorded a model’s Dice score on the validation dataset and
evaluate the model with the best validation score on the separate testing dataset.

Table 2. Segmentation evaluation of contextual additive models using different U-Nets.
E.g. U-Net-1 × 2 is a cascaded model of two U-Net-1. Results are for sequential training
(end-to-end results in parentheses). Our models can achieve performance on par with
the original U-Net with much fewer parameters and lower memory requirements.

Model Stage DSC (%) mIOU (%)

Original U-Net - 89.08 ± 2.41 86.89 ± 2.56

U-Net-1× 2 0 88.88 ± 2.61 (88.78 ± 2.60) 86.69 ± 2.76 (86.58 ± 2.74)

1 89.17 ± 2.55 (89.31 ± 2.39) 87.00 ± 2.71 (87.15 ± 2.55)

UNet-2× 3 0 88.13 ± 2.55 (88.31 ± 2.60) 85.88 ± 2.67 (86.07 ± 2.72)

1 88.72 ± 2.47 (88.79 ± 2.34) 86.50 ± 2.61 (86.58 ± 2.47)

2 88.74 ± 2.51 (89.14 ± 2.30) 86.53 ± 2.66 (86.96 ± 2.45)

UNet-3× 6 0 85.00 ± 3.13 (83.44 ± 3.00) 82.64 ± 3.10 (81.08 ± 2.90)

1 87.68 ± 2.66 (86.83 ± 2.68) 85.40 ± 2.77 (84.51 ± 2.73)

2 88.23 ± 2.50 (88.08 ± 2.57) 85.98 ± 2.62 (85.83 ± 2.68)

3 88.57 ± 2.45 (88.70 ± 2.45) 86.34 ± 2.59 (86.48 ± 2.59)

4 88.63 ± 2.42 (89.01 ± 2.35) 86.40 ± 2.57 (86.81 ± 2.50)

5 88.67 ± 2.42 (89.10 ± 2.35) 86.45 ± 2.56 (86.92 ± 2.50)

UNet-3× 6

(contextual input only)

5 88.23 ± 2.59 85.98 ± 2.71

UNet-3× 6

(additive output only)

5 87.22 ± 2.78 84.92 ± 2.87
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4 Results and Discussion

We quantitatively evaluate the segmentation results of each model and the out-
put at intermediate stages. Table 2 shows average Dice scores (DSC) and the
mean Intersection of Union (mIOU) of femoral and tibial cartilage and their
standard deviations. We also report the performance of U-Net-3× 6 models using
contextual input or additive output only. The number of model parameters and
memory consumption in sequential training (batch size 4) and testing (batch size
8) are given in Table 1. Table 3 shows segmentation results at different stages of
the U-Net-3 × 6 cascade.

We observe that our contextual additive networks are more efficient as they
use significantly fewer parameters while achieving similar or better performance
than using a single more complex U-Net. The original U-Net has for example
almost two orders of magnitude more parameters than the U-Net-3× 6 while
resulting in very similar accuracy. We also observe that both the contextual
inputs and the additive output helps boost the performance in cascaded U-Nets.

Table 3. Segmentation results of end-to-end trained U-Net-3 × 6. Rows are Sagittal,
Axial, Coronal views and 3D rendering. Red and green labels represent femoral and
tibial cartilage respectively.

Experts
annotations

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

5 Conclusion

We developed a framework of cascaded FCNs with contextual inputs and additive
output to boost the performance of 3D semantic segmentation. Our theoretical
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analysis shows that the additive output focuses the additive model on regions
where previous output results were relatively poor. Experiments on a large 3D
MRI knee dataset demonstrated that our framework can refine the results of a
single U-Net. Importantly, we showed that a cascaded model of simple U-Nets
can match the performance of a complex U-Net, while providing better efficiency
in terms of using fewer parameters and requiring less memory. Our approach
may provide an alternative to improve FCNs for segmentation. Future work will
investigate different FCNs as elements of the cascade, e.g. networks with inputs
of multiple resolutions, and evaluate performance on different datasets.
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Abstract. We propose a deformable registration algorithm based on
unsupervised learning of a low-dimensional probabilistic parameteriza-
tion of deformations. We model registration in a probabilistic and gener-
ative fashion, by applying a conditional variational autoencoder (CVAE)
network. This model enables to also generate normal or pathological
deformations of any new image based on the probabilistic latent space.
Most recent learning-based registration algorithms use supervised labels
or deformation models, that miss important properties such as diffeo-
morphism and sufficiently regular deformation fields. In this work, we
constrain transformations to be diffeomorphic by using a differentiable
exponentiation layer with a symmetric loss function. We evaluated our
method on 330 cardiac MR sequences and demonstrate robust intra-
subject registration results comparable to two state-of-the-art methods
but with more regular deformation fields compared to a recent learning-
based algorithm. Our method reached a mean DICE score of 78.3% and
a mean Hausdorff distance of 7.9 mm. In two preliminary experiments,
we illustrate the model’s abilities to transport pathological deformations
to healthy subjects and to cluster five diseases in the unsupervised defor-
mation encoding space with a classification performance of 70%.

1 Introduction

Deformable registration is an essential task in medical image analysis. It
describes the process of finding voxel correspondences in a pair of images [9].
Traditional registration approaches aim to optimize a local similarity metric
between deformed and target image, while being regularized by various energies
[9]. In order to retrieve important properties such as invertible deformation fields,
diffeomorphic registration was introduced. Among other parametrizations, one
way to parametrize diffeomorphisms are stationary velocity fields (SVF) [1].

In recent years, major drawbacks of these approaches like high computational
costs and long execution times have led to an increasing popularity of learning-
based algorithms – notably deep learning (DL). One can classify these algorithms
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as supervised or unsupervised. Due to the difficulty of finding ground truth
voxel correspondences, supervised methods need to rely on predictions from
existing algorithms [11], simulations [8] or both [6]. These methods are either
limited by the performance of the used existing algorithms or the realism of
simulations. On the other hand, unsupervised approaches make use of spatial
transformer layers (STN [3]) to warp the moving image in a differentiable way
such that loss functions can operate on the warped image (similarity metric)
and on the transformation itself (regularization) [2,4,10]. While unsupervised
approaches perform well in minimizing a similarity metric, it remains unclear if
the retrieved deformation fields are sufficiently regular which is of high interest
for intra-subject registration. Furthermore, important properties like symmetry
or diffeormorphisms [9] are still missing in DL-based approaches.

In this paper, we suggest to learn a low-dimensional probabilistic parame-
terization of deformations which is restricted to follow a prescribed distribution.
This stochastic encoding is defined by a latent code vector of an encoder-decoder
neural network and it restricts the space of plausible deformations with respect
to the training data. By using a conditional variational autoencoder (CVAE [5]),
our generative network constrains encoder and decoder on the moving image.
After training, the probabilistic encoding can be potentially used for deformation
analysis tasks such as clustering of deformations or the generation of new defor-
mations for a given image – similar to the deformations seen during training.
Furthermore, we include a generic vector field exponentiation layer to gener-
ate diffeomorphic transformations. Our framework contains an STN and can
be trained with a choice of similarity metrics. To avoid asymmetry, we use a
symmetric local cross correlation criterion. The main contributions are:

• A probabilistic formulation of the registration problem through unsupervised
learning of an encoded deformation model.

• A differentiable exponentiation and an user-adjustable smoothness layer that
ensure the outputs of neural networks to be regular and diffeomorphic.

• As a proof of concept, first experiments on deformation transport and disease
clustering.

2 Methods

The goal of image registration is to find the spatial transformation Tz : R3 → R
3,

parametrized by a d-dimensional vector z ∈ R
d, which best warps the moving

image M to match the fixed image F. Both images are defined in the spatial
domain Ω ∈ R

3. Typically, this is done by minimizing an objective function of the
form: arg minz F(z,M,F) = D (F,M ◦ Tz) + R(Tz) with the image similarity
D of the fixed F and the warped moving image M ◦ Tz and a spatial regularizer
R. Recent unsupervised DL-based approaches (e.g. [2,4]) mimic the optimization
of such an objective function.
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Instead, we propose to model the registration probabilistically by parametriz-
ing the deformation as a vector z to follow a prior p(z). To learn this probabilis-
tic space, we define the latent vector of dimensionality d in an encoder-decoder
neural network as this z. Given the moving and the fixed image as input, a vari-
ational inference method (CVAE [5]) is used to reconstruct the fixed by warping
the moving image. An exponentiation layer interprets the network’s output as
velocities v (an SVF) and returns a diffeomorphism φ which is used by a dense
STN to retrieve the warped image M∗. To enforce an user-adjustable level of
deformation smoothness (comparable to [7]), a convolutional Gaussian layer is
added before the exponentiation with Gaussian weights according to the vari-
ance σ2

S . During training, the network parameters are updated through back-
propagation of the gradients. The network architecture can be seen in Fig. 1a.
Finally, registration is done in a single forward path. The trained probabilistic
framework can be also used for the sampling of deformations as shown in Fig. 1b.

Fig. 1. (a) CVAE registration network during training and registration including dif-
feomorphic layer (exponentiation). Deformations are encoded in z from which velocities
are decoded while being conditioned on the moving image. (b) Decoder network for
sampling and deformation transport: Apply z-code conditioned on any new image M.

Learning a Probabilistic Deformation Encoding. Learning a generative
model typically involves a latent variable model (as in VAE), where an encoder
maps an image to its z-code – a low-dimensional latent vector, from which
a decoder aims to reconstruct the original image. Typically, the encoder and
decoder are defined as distributions qω and pγ with trainable network parame-
ters ω and γ. The network is trained by maximizing a lower bound on the data
likelihood with respect to a prior distribution p(z). We define the prior as multi-
variate unit Gaussians p(z) = N (0, I) with the identity matrix I. In CVAE [5],
encoder qω and decoder pγ distributions are additionally conditioned on extra
information (e.g. classes). We propose to frame image registration as a recon-
struction problem in which the moving image M acts as the conditioning data
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and is warped to reconstruct or to match the fixed image F. Thus, the decoder
reconstructs F given z and M: pγ(F | z,M). To have z, the encoder serves as
an approximation of the intractable true posterior probability of z given F and
M and is denoted as qω(z | F,M). Since the prior p(z) is defined as multivari-
ate unit Gaussians, the encoder network predicts the mean μ ∈ R

d and diagonal
covariance σ ∈ R

d, from which z is drawn: qω(z | F,M) = N (μ(F,M), σ(F,M)).
Both distributions can be combined in a two-term loss function [5] where

the first term describes the reconstruction loss as the expected negative log-
likelihood of pγ(F | z,M). In other words, the reconstruction loss represents
a similarity metric between input F and output M∗. The second term acts as
a regularization term on the deformation latent space by forcing the encoded
distribution qω(z | F,M) to be close to the prior probability distribution p(z)
using a Kullback-Leibler (KL) divergence. The loss function results in:

l(ω, γ,F,M) = −Ez∼qω(·|F,M) [logpγ(F | z,M)]+KL [qω(z | F,M) ‖ p(z)] , (1)

where the KL-divergence can be computed in closed form [5]. Assuming a Gaus-
sian log-likelihood term of pγ is equivalent to minimizing a weighted SSD cri-
terion (cf. [5]). We propose instead to use a symmetric local cross-correlation
(LCC) criterion due to its favorable properties for registration [7] and assume
a LCC Boltzmann distribution pγ(F | z,M) ∼ exp(−λDLCC(F,M, v)) with the
LCC criterion DLCC and the weighting factor λ. Using the velocities v and a
small constant ε, which is added for numerical stability, we define:

DLCC(F,M, v) =
1
P

∑

x∈Ω

Fx ◦ exp
(
− vx

2

)
Mx ◦ exp

(
vx

2

)2

[
Fx ◦ exp

(
− vx

2

)]2 [
Mx ◦ exp

(
vx

2

)]2 + ε
, (2)

with a total number of P pixels x ∈ Ω and where ·̄ symbolizes the local mean
image derived by Gaussian smoothing with a strength of σG and kernel size k. To
help the reconstruction task, we introduce conditioning by involving M not only
as the image to be warped in the STN, but also in the first decoder layers by con-
catenating down-sampled versions of M with the filter maps on each scale. The
hypothesis is that in order to better optimize the reconstruction loss, the network
makes use of the provided extra information of M such that less anatomical but
more deformation information are conveyed by the low-dimensional latent layer,
which would make the encoding more geometry-invariant.

Exponentiation Layer: Generating Diffeomorphisms. In the SVF set-
ting, the transformation φ is defined as the Lie group exponential map with
respect to the velocities v: φ(x) = exp(v). For efficient computation, the scaling
and squaring algorithm is typically used [1]. In order to generate diffeomorphic
transformations φ in a neural network, we propose an exponentiation layer that
implements this algorithm in a fully differentiable way. To this end, the layer
expects a vector field as input (the velocities v) which is scaled with a factor
N which we precompute on a subset of the training data according to the for-
mulations in [1]. In the squaring step, the approximated φ0 ≈ id + v ∗ 2−N
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(with id as a regular grid) is recursively squared, N -times, from k = 1 to N :
φk = φk−1◦φk−1. The result is the diffeomorphism φN ≡ φ [1]. The squaring step
requires the composition of two vector fields on regular grids which we realized
by linear interpolation. All these computations consist of standard operations
that can be added to the computational graph and are auto-differentiable in
modern deep learning libraries. This differentiable layer can be added to any
neural network which predicts (stationary) velocity fields.

3 Experiments

We evaluate our framework on an intra-subject task of cardiac MRI cine regis-
tration where end-diastole frames are registered to end-systole frames (ED-ES)
– a very large deformation. Furthermore, we show preliminary experiments eval-
uating the learned deformation encoding: its potentials for transporting encoded
deformations from one subject to another and showing the clustering of diseases
in the encoding space. All experiments are in 3-D.

Fig. 2. Comparing registration performance: unregistered (Un), LCC-Demons (Dem),
VoxelMorph (VM) and our method in terms of RMSE and mean deformation magni-
tude and gradient, DICE and 95%-tile Hausdorff distances (HD).

We used 184 short-axis datasets acquired from different hospitals and 150
cases from the Automatic Cardiac Diagnosis Challenge (ACDC) at STACOM
20171, mixing congenital heart diseases with images from adults. We used 234
cases for training and for testing the remaining 100 cases from ACDC, that con-
tain segmentation and disease label information from five cardiac diseases. Both
information were only used for evaluation purposes. All images were sampled
with a spacing of 1.5 × 1.5 × 3.15 mm and cropped to a size of 128 × 128 × 32
voxels. These dimensions were chosen to save computation time and are not a
limitation of the framework (validated on different image sizes).

1 https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html.

https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html
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Implementation Details. The encoder of our neural network consisted of
four convolutional layers with strides (2, 2, 2, 1) (Fig. 1a). The bottleneck layers
(μ, σ, z) were fully-connected. The decoder had one fully-connected and three
deconvolutional layers, where the outputs at each layer were concatenated with
sub-sampled versions of M. Two convolutional layers and a convolutional Gaus-
sian layer with σS = 3 (kernel size 15) were placed in front of the exponentiation
and transformer layer. The latent code size d was set to 16 as a trade off between
registration quality and generalizability. This leads to a total of ∼267k trainable
parameters. L2 weight decay with a factor of 0.0001 was applied. The numbers
of iterations in the exponentiation layer was set to N = 4 in all experiments. In
training, the strength of the Gaussians for computing the LCC was set to σG = 2
with a kernel size k = 9. The loss balancing factor λ = 5000 was empirically cho-
sen such that encoded training samples roughly had zero means and variances
of 1 and the reconstruction loss was optimized. We used the Adam optimizer
with a learning rate of 0.0005 and a batch size of one. We performed online
data augmentation by randomly shifting, rotating, scaling and mirroring train-
ing images. The framework has been implemented using Keras with Tensorflow.
Training took 24 h on a NVIDIA GTX TITAN X GPU.

Fig. 3. Two random examples of end-diastole to end-systole registration: (Row 1) orig-
inal images. The LCC-demons (Dem, Row 2) and VoxelMorph (VM, Row 3) versus
our method (Row 4), showing the warped moving image, the deformation field and the
Jacobian determinants. All results are in 3-D, showing the central short-axis slices.



Unsupervised Probabilistic Deformation Modeling 107

Registration Results. We compare our registration algorithm with the LCC-
demons [7] with manually tuned parameters (on training images) and the non-
diffeomorphic DL-based method VoxelMorph-2 [2] (VM) with a regularization
weighting parameter of 1.5, as recommended. As a surrogate measure of reg-
istration performance, we used the intensity root mean square error (RMSE),
mean DICE score and 95%-tile Hausdorff distance (HD) in mm on the following
anatomical structures: myocardium and epicardium of the left ventricle (LV-
Epi, LV-Myo), left bloodpool (BP) and heart (Heart). The LCC-demons showed
better mean DICE scores (averaged over the five structures, in %) with 79.9
compared to our algorithm with 78.3 and VM with 77.5 (cf. Fig. 2). The Voxel-
Morph algorithm reached a very low RMSE of 0.025 compared to ours (0.031)
and the demons (0.034), but could not reach the other algorithms in terms of
HD with a mean score of 9.4 mm compared to ours with 7.9 mm and the demons
with 8.2 mm. Besides these metrics, VM produced very irregular and highly non-
diffeomorphic deformation fields since 2.2% of the displacements had a negative
Jacobian determinant (cf. in Fig. 3). In general, our approach led to deformation
fields with both smaller amplitudes and smaller gradients than the demons and
the VM algorithm. Furthermore, our results were more robust as variances were
lower for all metrics compared to the demons and lower or comparable to VM.
This is also visible in Fig. 3 and further shown by the fact that HD scores are the
smallest experienced in the experiments. Average execution time per test case
was 0.32 s using the mentioned GPU and an Intel Xeon CPU E5, compared to
108 s for the demons on CPU.

Fig. 4. Transport the z-code of pathological deformations (top row: cardiomyopathy
DCM and hypertrophy HCM) to two healthy subjects (bottom rows: Normal). The
simulated deformation fields are similar compared to the pathological deformations
but are adapted to the geometry of the healthy image (e.g. translated).
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Fig. 5. Distribution of cardiac
diseases after projecting 100 z-
codes of test images on 2 CCA
components.

Deformation Encoding. For evaluating the
learned deformation encoding, we show geometry-
invariance by transporting a deformation from
one subject to another. Therefore, we take a z-
code from a pathological subject and condition
the decoder on the ED image of healthy sub-
jects (Fig. 1b). More precisely, in Fig. 4 we trans-
ported a cardiomyopathy (DCM) and hypertro-
phy (HCM) deformation to two healthy cases
(Normal). One can see the disease-specific defor-
mation (DCM: reduced cardiac contraction)
which are different from the healthy transfor-
mations. The resulting deformation fields are
adapted to the anatomy of the conditioning image and they are translation-
invariant.

In a second experiment, we used the encoded z-codes and disease information
of our cardiac test set to visualize the structure of the learned space. There-
fore, we linearly projected the 16-D z-codes to a 2-D space by using the two
most discriminative CCA components (canonical correlation analysis). We used
the ACDC classes: dilated cardiomyopathy DCM, hypertrophic cardiomyopa-
thy HCM, myocardial infarction MNF, abnormal right ventricle RV and normal
NOR. In Fig. 5, one can see that the classes of the 100 test sets are clustered in
the projected space. The five class classification accuracy reaches 70% with 10-
fold cross-validation, by using the six most discriminative CCA components and
applying support vector machine (SVM) on-top. These results which are solely
based on unsupervised deformation z-codes suggest that similar deformations
are close to each other in the deformation encoding space.

4 Conclusion

We presented an unsupervised deformable registration approach that learns a
probabilistic deformation encoding. This encoding constrains the registration
and leads to robust and accurate registration results on a large dataset of car-
diac images. Furthermore, an exponentiation layer has been introduced that
creates diffeomorphic transformations. The performance of the proposed method
was comparable and partially superior to two state-of-the-art algorithms. Our
approach produced more regular deformation fields than a DL-based algorithm.
Furthermore, first results show, that the probabilistic encoding could potentially
be used for deformation transport and clustering tasks. In future work, we plan
to further explore the deformation encoding to evaluate these tasks more deeply.
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Abstract. Deep learning techniques for tissue segmentation require
large amounts of data for training, testing, and cross-validation.
Manually generating such segmentations, however, is extremely time-
consuming. This can lead to such techniques being limited to imaging
modalities and populations for which ground truths already exist, over-
fitting, or the use of data that is not expert-checked and so likely to
contain errors. A need exists for a means of accelerating expert tissue-
segmentation, such as automated techniques that require little correction
and have little reliance on existing atlases. Here, we describe a method
which can reliably perform registration-free tissue-segmentation using a
single atlas that is only partially complete. This Global Approximate
Block-matching method utilizes a self-organizing map, an unorthodox
artificial neural network. This network trains quickly only on the pro-
vided partial atlas and allows these labels to be propagated through-
out the target image via block-matching. Using this technique we seg-
mented brains of 22 subjects and compared its performance to expert
ground truths. When provided with an atlas for which only 2% of vox-
els were labelled, this achieved mean dice similarity coefficients of 0.88
(grey-matter) and 0.92 (white matter). Performance improved as higher
amounts of atlas were provided, up to a maximum of 0.93 (grey-matter)
and 0.96 (white matter) when a single whole-brain atlas was provided.
Although segmentations produced by this technique are sufficiently accu-
rate to be used directly for many purposes, its primary use case may lie in
accelerating the creation of expert atlases for deep-learning techniques.

Keywords: Block-matching · Self-organizing map · Segmentation
Ground-truth

1 Introduction

Deep learning techniques are gaining popularity for tissue segmentation but
require large amounts of data for training, testing, and cross-validation.
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Generating data ultimately requires manually delineated segmentations, but this
process can take several days to complete per volume if attention to detail is
desired. Although data augmentation can artificially boost the quantity of train-
ing data, this is unlikely to produce a satisfying dataset for cross-validation and
does not necessarily provide the true anatomical variance seen in the population.
As a result, segmentation techniques such as deep-learning are at risk of becom-
ing limited to certain magnetic resonance (MR) sequences and populations for
which ground truth data already exist. A need exists for a means of accelerating
expert tissue-segmentation. One option is to automatically generate segmenta-
tions with a method that has little-or-no requirement on existing atlases, and
to correct this segmentation as needed. A widely available tool to achieve this
is expectation-maximization (EM) segmentation, but its accuracy and ability to
self-improve when provided with human-corrected data can be limited.

Block-matching (BM) techniques are typically designed to remove image
noise but can also perform tissue segmentation [2]. Such methods typically match
similar cubes of voxels (patches) from an atlas to a target image, and compute
a ‘non-local mean’ of these patches. Alternatively, labels from these patches can
be averaged (rather than voxel intensities) to generate a probabilistic tissue seg-
mentation. Block matching leverages the small patterns that exist throughout
an image, such as the repeated sulcal folding of brain tissue. However, such
techniques are unable to take full advantage of this redundancy because exhaus-
tively comparing patches to one another is computationally expensive. To cir-
cumvent this, techniques such as volBrain [2] rely on atlas-to-target registration
and search only a local area for patches similar to a target. This requires at
least one whole-brain atlas with reasonable spatial correspondence to the target
image.

Dimensionality reduction is an alternative, or complementary, way to reduce
the computational cost of comparing patches exhaustively. The self-organizing
map (SOM) is a neural-network based non-linear dimensionality reduction tech-
nique [1]. Briefly, SOMs are implemented as a collection of nodes which each
have local connectivity, a fixed position in low dimensional space (e.g. forming a
2D grid), and a trainable position in the high-dimensional space. Through com-
petitive learning, rather than backpropagation, SOMs train quickly and provide
a smooth projection between high- and low-dimensional spaces. Intuitively, a
trained 1D SOM can be thought to optimally ‘snake’, much as principal compo-
nents analysis (PCA) draws a straight line, through high dimensional space.

We have developed a ‘Global Approximate Block-Matching’ (GAB) denoising
and segmentation algorithm. GAB requires no spatial correspondence between
the atlas and target, nor for the atlas to be completely labelled. This allows a
partially segmented image to act as an atlas for another image, or to act as its
own atlas, propagating manually segmented labels to non-segmented regions. To
achieve this, GAB performs a whole-image search for atlas patches matching each
target. To reduce this operation’s computational burden, each patch is collapsed
into a singular value (SV) through a method such as the SOM. Here, we describe
GAB and demonstrate its tissue segmentation performance using incomplete
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atlases. The accuracy and speed afforded by this method may enable rapid atlas
building, in turn enabling deep learning methods to target diverse populations
and utilize MR sequences for which training data are not yet available.

Fig. 1. In Step 1 (top left), the atlas image was split into overlapping 5 × 5 × 5
voxel patches. For each patch, a singular value (SV) was calculated using one of four
methods. Patches and their corresponding labels (not shown) were then sorted by
these SVs. In Step 2 (right), for each target patch from a target image, an SV was
calculated. Using a binary search, 1024 atlas patches with similar SVs were selected as
a ‘shortlist’. The voxel-wise sum of square differences (SSDs) were calculated for these
patches versus the target, and the 30 patches with the most similar SSDs selected,
their labels contributing toward final image reconstruction. See the text for details on
final image reconstruction.

2 Methods

We tested the ability of GAB and EM to perform a series of three-tissue (corti-
cal grey-matter, cortical white-matter, cerebrospinal fluid) segmentations in MR
images. Our dataset consisted of N4 bias-corrected MPRAGE images (0.9 mm
isotropic) from 23 participants (28.8 ± 1.5y) acquired in a previous study [4,5].
MR acquisition was approved by the local ethics committee. Participants gave
written informed consent. We also utilized the expert (manually corrected) brain
masks and expert tissue segmentations for each image generated during this
study. GAB does not require that all areas of an atlas have accompanying labels;
its segmentation accuracy was tested when provided with an atlas in varying
degrees of completion (Fig. 3). Performance was judged by the quantitative sim-
ilarity between automatically generated and expert generated segmentations.
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2.1 The “Global Approximate Block Matching” Method

Images were processed in two steps: independently-applied denoising of both
target and atlas images, followed by segmentation of the target image. Both
steps used the GAB method. Below we detail how segmentation was performed,
followed by a brief explanation as to how this was modified to perform denoising.

The GAB method, summarized in Fig. 1, accepts five images: (1) a target
image, such as a T1; (2) a target mask; (3) an atlas image; (4) an atlas mask;
and (5) atlas labels. The masked target is linearly intensity scaled to match the
histogram of the masked atlas and both are stored as 8-bit unsigned integer
images. These images are split into overlapping 5 × 5 × 5 voxel patches within
their respective brain masks. For each patch, an SV is calculated from voxel
intensities. Atlas patches are then sorted by their SV. To find matching patches
to a target, GAB conducts a binary search for the most similar atlas patch,
based on target and atlas patch SVs. This approximate best-match, and those
patches between 512 positions before and 511 positions after it in the sorted
array, constitute a 1024-patch ‘shortlist’ of items likely to be similar to the target.
The voxelwise sum of square differences (SSD) was calculated between the target
patch and shortlist to identify the 30 most similar patches to the target. The
labels for these patches are multiplied by their patch’s weight (1/(SSD+10−6)),
filtered by a Gaussian of σ = 1 voxel, and added to the appropriate label’s ‘sum’
image. These weights are multiplied by this Gaussian and added to a ‘weights’
image. Upon completion of all block matching, each sum image is divided by the
weights image to generate a final tissue probability map. This ‘unweighting’ is
required as each sum image voxel is contributed to by up to 125 block-matching
operations, each operation in turn summing 30 weighted patches. A voxelwise
maximum likelihood approach converts the probabilistic tissue maps into a hard
segmentation.

2.2 Singular Value Calculation

Four GAB variants were tested, differing from one another by their SV calcula-
tion method: PCA (ε0), mean voxel intensity, random (SV randomly generated),
and SOM. Each SOM was arranged as 4096 nodes equally-spaced in 1D, and
trained on up to 107 randomly selected patches from the input image. SV calcu-
lation using the SOM was performed by locating a patch’s continuous position
in this array (i.e. between the best matched node and its most similar neighbor)
based on voxel-wise SSD. PCA transformations were calculated from the same
randomly selected patches. We also re-ran GAB-SOM with an artificially boosted
number of atlas patches, providing the algorithm with 48 unique augmentations
(all rotations, plus their mirror images) of each labelled atlas patch.

Denoising utilized GAB with two modifications to the method detailed above:
(1) patches were 3 × 3 × 3 in size; (2) the target, atlas, and label images were
the same, I.E. the method matched patches within the target image to others
within that same image. As such, it reconstructed a single low-noise version of
the input image, rather than several probabilistic tissue maps. Denoising was
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always performed with the SOM SV method, the performance of which was not
quantified, as it is beyond the intended scope of this paper.

2.3 Expectation Maximization

For a comparator method, we used an Expectation Maximization segmentation
algorithm with a modified Markov Random Field implementation. This method
was selected as it has previously been reported to perform robustly in the absence
of atlas based priors [3]. EM was executed with a single Gaussian per tissue
class, initialized with means of 0, 2, and 3 for cerebrospinal fluid (CSF), grey-
matter (GM), and white-matter (WM) respectively, each with σ = 1. These
values were selected after empirical testing demonstrated that they produced
reliable segmentation performance in a similar dataset acquired on the same
scanner. Moderate deviations from this initialization did not meaningfully alter
the performance of EM for the current dataset.

2.4 Atlas and Performance Metric

We use the term ‘atlas availability’ herein to refer to the fraction of an atlas’
labels which were made available to the segmentation algorithm. One randomly
selected image was assigned as an atlas; the remaining 22 images constituted
targets for segmentation. This atlas was converted into a series of ‘partially
complete’ atlases, which were then used by GAB to segment targets. This was
performed as follows: (1) 11 × 11 × 11 voxel masks were placed on the atlas in the
left temporal lobe, right temporal lobe, and frontal lobe, constituting the atlas
labels mask (Fig. 3); (2) for each target image, the whole brain was segmented
using only the atlas labels within this masked area and the result saved; (3)
the labels mask was dilated with 6 connectivity and cropped to the brain mask.
Steps 2 and 3 were repeated until the labels mask was identical to the brain
mask, providing segmentations for each image across a range (0.2%–100%) of
atlas availabilities. Dice similarity coefficients (DSC) for cortical GM and WM
were calculated, within the entire brain mask, for each target segmentation by
comparison to that target’s corresponding expert segmentation.

3 Results

Methods were implemented in .Net 4.0 and OpenCL 1.2 and ran on a Dual
Xeon 8-core E5-2650 node with 128 GB of RAM and 3 Kepler Tesla K20 GPUs.
Denoising + segmentation with GAB took 7–11.5 min in total, with processing
using more-complete atlases taking longer than with incomplete atlases. EM
segmentation ran in <1 min in each case. EM segmentation achieved DSCs
of 0.67 ± 0.21 (mean ± SD; GM) and 0.84 ± 0.19 (WM). All GAB meth-
ods except GAB-Random outperformed EM segmentation at atlas availability
≥0.8%. This accuracy increased markedly until 6% atlas availability, after which
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Fig. 2. Dice similarity coefficients for grey (left) and white (right) matter for segmen-
tations generated by GAB, when provided with differing proportions of atlas. GAB
methods are color-coded by their SV method as follows: Red, Random; Gold, PCA;
Blue, Mean; Green, SOM. All methods achieved a dice similarity coefficient of 0.51 for
white matter segmentation at an atlas availability of 0.24%, not shown here. (Color
figure online)

Table 1. Dice similarity coefficients for GAB-derived grey matter (GM) and white
matter (WM) segmentations at four different atlas availabilities. Each row indicates a
different singular-value (SV) calculation method. SOM-48 indicate SOM-based SV cal-
culation, with 48 patch augmentations (see text). All standard deviations were <0.02,
except GAB-Random which demonstrated SDs of 0.03 (GM) and 0.02 (WM) at 100%
atlas availability.

SV GM WM

0.9% 2% 6% 100% 0.9% 2% 6% 100%

SOM-48 0.88 0.90 N/A N/A 0.92 0.88 N/A N/A

SOM 0.84 0.89 0.91 0.93 0.91 0.85 0.95 0.96

Mean 0.86 0.88 0.90 0.90 0.89 0.86 0.94 0.94

PCA 0.84 0.87 0.87 0.89 0.90 0.85 0.94 0.95

Random 0.84 0.86 0.86 0.84 0.89 0.85 0.94 0.91

a gradual increase was seen (Fig. 2; Table 1). GAB-SOM provided superior seg-
mentation accuracy to other methods, particularly for GM labelling, with more
stable results than GAB-PCA or GAB-Random (Fig. 2). When the SOM-based
analyses were run with 48 augmentations of each atlas patch, the atlas avail-
ability required to achieve a DSC of 0.90 in both tissue classes fell from 3.1% to
1.7%. Such augmentation, however, was infeasible in the current implementation
above 3.5% atlas availability because of GPU memory constraints.
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Fig. 3. Top: The atlas cropped to the labels-mask at 0.2% (left) and 2% (right) avail-
ability. The third labelled region is not visible in this slice. Bottom: Segmentation
results for a representative dataset. The left segmentation was generated using GAB-
SOM with 48 augmentations at 2% atlas availability. The right segmentation was gen-
erated with GAB-SOM at 100% atlas availability.

4 Discussion

Artificial neural networks such as deep learning can require large amounts of
data for training, validation, and cross-validation in order to demonstrate task
proficiency. In the case of brain-tissue segmentation, this often means that a large
number of whole-brain tissue segmentations are required, but the time cost of
generating these accurately can be very high. Here, we have demonstrated a
Global Approximate Block-matching method which, unlike most methods, can
segment a full brain MR image with reasonable accuracy when provided with
an atlas that is predominantly incomplete. We found that this method reliably
outperformed EM, an alternative technique with similar advantages, when pro-
vided with an atlas for which ≥0.8% of voxels had been manually labelled. GAB
was most effective when using an SOM for SV calculation, achieving dice coef-
ficients of ≥0.9 for both cortical GM and cortical WM when provided with an
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atlas that was as low as 1.7% complete (Fig. 2). GAB-SOM also demonstrated
performance comparable with some deep learning networks when provided with
a whole brain atlas [6]. The relative performance of GAB-SOM is likely due to
the SOM’s highly non-linear nature enabling an effective whole-brain search for
similar patches to a target. This is indicated by the relatively poorer perfor-
mance of GAB when relying on PCA or mean voxel intensity for SV calculation,
particularly at moderate atlas availabilities.

One advantage of GAB, for generation of ‘ground truth’ segmentations, is
that it can be used in an iterative strategy in which an image is automatically
segmented, then partially manually corrected, in a repeated manner. In such a
strategy, a target image would act as its own atlas, and the GAB-based segmen-
tation can be expected to improve with each iteration. This has the potential to
drastically lower the time-cost of generating the first ‘ground truth’ segmentation
of a series. For segmentations of subsequent images, GAB is likely to perform a
high-quality segmentation, as this first image can be provided as an atlas.

A block-matching segmentation algorithm, volBrain, has previously been
described [2]. Presently, volBrain and GAB have different strengths. Whilst vol-
Brain relies on multiple whole-brain atlases in order to perform multi-atlas label
fusion, GAB requires only a fraction of an atlas to be provided. This makes GAB
a stronger candidate for creating expert segmentations for new populations and
imaging modalities. GAB also does not limit patch searches to a local area. This
means it is not reliant on image registration, and may perform sensibly when
target and atlas anatomy differ meaningfully, such as with pathology. However,
unlike volBrain, modifications are likely to be needed for accurate delineation of
localized tissues such as the deep grey matter. Potential modifications exist, such
as including a patch’s location as parameters in the SV calculation, or splitting
volumes into regions which are segmented using different partial atlases, but
these modifications are yet untested.

In conclusion, we proposed a Global Approximate Block-matching method
that relies on the SOM as a powerful dimensionality reduction technique. When
provided with minimal training data, this method generates accurate brain tissue
segmentations that have little need for manual correction. This technique may
prove a useful tool for quickly generating training data sets for deep learning
methods targeting imaging modalities and populations for which ground truth
data are not widely available.
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Abstract. For accurate tumor segmentation in brain magnetic res-
onance (MR) images, the extreme class imbalance not only exists
between the foreground and background, but among different sub-regions
of tumor. Inspired by the focal loss [3] that down-weights the well-
segmented classes, our proposed Focal Dice Loss (FDL) considers the
imbalance among structures of interest instead of the entire image includ-
ing background. Image dilation is applied to the training samples, which
enlarges the tiny sub-regions, bridges the disconnected pieces of tumor
structures and promotes understanding on overall tumor rather than
complex details. The structuring element for dilation is gradually down-
sized, resulting in a coarse-to-fine and incremental learning process with
the structure of network unchanged. Our experiments on the BRATS2015
dataset achieves the state-of-the-art in Dice Coefficient on average with
relatively low computational cost.

1 Introduction

Gliomas are the most frequent primary brain tumors in adults [5], and the accu-
rate segmentation of glioma and its sub-regions is crucial in clinical diagnosis,
treatment planning, and post-operation evaluation. However, as shown in Fig. 1,
the multiclass segmentation of multimodal brain MR images is very challenging.
The major obstacle includes the great variance in terms of tumor size, shape,
and location, also the extreme class imbalance.

Recently, deep convolutional neural networks (CNNs) have achieved remark-
able performance in automatic brain tumor segmentation. Specifically, Pereira
et al. [6] trained a 2D CNN on patches with data augmentation. A 3D CNN with
multi-scale and multi-stream architecture is performed on patches extracted by
nonuniform sampling [1], and followed by a fully connected conditional random
field (CRF) to refine segmentation output [2]. Based on the fully convolutional
network (FCN) [4], Shen et al. [7] introduced a boundary-aware network to
achieve multi-task learning on 2D image slices. Zhao et al. [12] integrated FNNs
and CRFs, and trained on both patches and slices in multiple stages. Addi-
tionally, three modes are trained on images of axial, coronal and sagittal views
respectively, and combined by voting-based fusion strategy.

c© Springer Nature Switzerland AG 2018
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Fig. 1. Different modalities and the ground truth of an HG Tumor. Left to right: Flair,
T1, T1c, T2, and expert manually segmented labels: necrosis (red), edema (yellow),
non-enhancing tumor (blue), and enhancing tumor (green). (Color figure online)

To sum up, all these methods except [7] operate at the patch level, and bal-
ance the data by controlling the sampling rate [1,2,6,12]. Without prior knowl-
edge, it is hard to extract test patches by the same sampling ratio. Moreover, the
end-to-end (image to segmentation map) FCN frameworks like [7] are more com-
putationally efficient comparing to the patch-based methods, but fail to handle
the imbalance by nonuniform sampling or data augmentation.

To address the challenges above, we propose the Focal Dice Loss inspired by
[3] and apply image dilation. To tackle the extreme class imbalance on image
slices, our FDL down-weights the well-segmented classes during training. Instead
of taking all classes into consideration like focal loss [3], the FDL emphasizes
the imbalance among foreground classes. Meanwhile, dilation is applied to the
ground truth of training samples that allows the network to learn the complex
details of tumor structure in a coarse-to-fine approach. This differs from dilated
convolution [11] that enlarges the receptive fields for convolutional kernels.

Our major contributions are as follows: (1) we propose Focal Dice Loss to
address the class imbalance for multimodal brain tumor segmentation, and vali-
dated on publicly available dataset; (2) to the best of our knowledge, we are the
first to apply image dilation to ground truth labels during training with gradually
downsized structuring element, which obtains better high-level understanding;
(3) we show that the proposed method achieves the state-of-the-art performance
in Dice Coefficient on average, and with high computational efficiency.

2 Methodology

We employ the elegant U-Net that takes the full image context into account.
As shown in Fig. 2, each block includes 3 convolutional layers of size 3 × 3, and
each layer followed by ReLU activation and batch normalization. Max-pooling
and up-sampling of size 2 × 2 are adopted in the two paths. Feature maps from
the contracting path are concatenated to the ones in the expanding path.
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2.1 Focal Dice Loss for Highly Unbalanced Data

Focal loss [3] based on standard cross entropy, is introduced to address the data
imbalance of dense object detection. It is worth noticing that for the brain tumor,
the class imbalance exists not only between tumor and background, but among
different sub-regions of the tumor (e.g., necrosis and edema in Fig. 1 and Table 1).
It is stated by Sudre et al. [10] that with the increasing level of data imbalance,
loss functions based on overlap measurements are more robust than weighted
cross entropy. Our experiments in the next session also support this argument.
Therefore, Dice Coefficient is adopted to focus on the tumor sub-regions.

Fig. 2. Network Architecture: U-Net.

Balanced Dice Loss. The Dice Coefficient (DICE), also called the overlap
index, is a commonly used metric in validating medical image segmentation. For
the binary ground truth images of each class, DICE can be written as:

DICEt =
2
∑N

i=1 pitgit + ε
∑N

i=1 pit +
∑N

i=1 git + ε
. (1)

In the above, git ∈ {0, 1} specifies the ground truth label of class t and pixel i,
where N indicates the total number of pixels of the image. Similarly, pit ∈ [0, 1]
denotes the output probability. In practice, the ε term is adopted to guarantee
the loss function stability by avoiding the numerical issue of dividing by 0.

A common method for class imbalance is introducing a weight wt � 0 for
each class t. Therefore, we write the Dice Loss (DL) as:

DL =
∑

t

wt ( 1 − DICEt ). (2)

Focal Dice Loss. As mentioned by [3], the extreme class imbalance overwhelms
the cross entropy loss during training. We propose to assign lower weights to the
well-segmented classes, and focus on the hard classes with lower DICE.

Formally, a factor 1/β is applied as the power of DICEt for each class, where
the exponent parameter β � 1. We define the Focal Dice Loss (FDL) as:

FDL =
∑

t

wt ( 1 − DICE
1/β
t ). (3)
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Table 1. Average Class Frequencies. Average frequencies taken over the training set of
HG images, approximate values. Classes are: background (0) necrosis (1), edema (2),
non-enhancing tumor (3), and enhancing tumor (4).

Class 0 1 2 3 4

Frequency 0.9858 0.0006 0.0092 0.0015 0.0028

Fig. 3. Visualization of Focal Dice Loss. A factor 1/β is applied as the power of DICEt,
with the increase in β, the well-segmented classes are down-weighted.

The following are three properties of the FDL. (1) If a pixel is misclassified
to class t with a large DICEt (i.e., the class is well segmented), then FDL is
basically unaffected. On the contrary, if DICEt is small (i.e., the class is poorly
segmented) and a pixel is misclassified, then the FDL will decrease significantly.
(2) The exponent parameter β smoothly adjusts the rate where better-segmented
classes are lower weighted. FDL is equal to DL when β = 1. With the increase
in exponent factor β, the network focuses more on the poorly segmented classes
than the others. (3) Different from focal loss [3], the overlap measurement FDL
focus on the object of interest instead of the entire image, which meets the
demand of brain tumor segmentation.

The FDL is visualized for several values of β ∈ [1, 4] in Fig. 3. (we found
β = 2 to work best in our experiments). We have validated the FDL in the
BRATS2015 dataset, which shows an obvious improvement, especially for the
small classes.

2.2 Dilation for Coarse-to-Fine Learning

Dilation. Dilation is one of the operators in the area of mathematical morphol-
ogy. The effect of this operator on binary or grayscale images is enlarging the
boundaries of foreground pixels using a structuring element. Mathematically, the
dilation of A by B, denoted A ⊕ B, is defined in terms of set operation:

A ⊕ B = { z | (B̂)z ∩ A �= ∅}. (4)
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where ∅ is the empty set and B is the structuring element, B̂ is the reflection
of set B and (B)z is the translation of B by point z = (z1, z2).

In image processing, one application of dilation is bridging the gaps of dis-
connected but close components, like broken characters. Similarly, we apply dila-
tion to the ground truth to expanding the objects, and linking the disconnected
parts. We aim at higher level feature extraction and therefore compromise on
some low-level details in the early training stage.

Dilation on the Ground Truth. In our proposed method, dilation is applied
to the binary ground truth images of each foreground class in the training set
with a probability ratio α. Figure 4(f) to (j) show that the structuring element
for dilation shrinks in size gradually during training, resulting in a coarse-to-fine
learning process. Noted that eventually there is no dilation applied (dilation by
structuring element in Fig. 4(j) remains no change to images). No dilation is
applied to validation or test images in any of the experiments.

After dilation, it is possible that the dilated ground truth overlaps, and pixels
(in the overlapping region) classified to all the intersected classes will result in
a decrement of the loss function. Under this circumstance, the FDL is able to
focus on the classes with lower DICE.

Fig. 4. Dilation on tumor sub-regions. (a) to (e): the dilated necrosis and non-
enhancing tumor by structuring elements (f) to (j). The region in blue is the ground
truth, and the region in yellow and blue is the dilated ground truth. (Color figure
online)
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In practice, the dilation has the following properties. (1) It expands the tiny
regions and connects the close but separated pieces (Fig. 4(a) to (e)). There-
fore, the ground truth of each foreground class shrinks from the dilated coarse
features to the original fine labels. It also helps the network to focus on the
higher level features. (2) Similar to Dropout that randomly discards units with
its connections [9], the stochastic dilation on training labels prevents overfitting
because of the dynamic changes during training. (3) The coarse-to-fine interface
also boosts the learning speed as well as the training efficiency.

3 Evaluation

Our method has been evaluated on the BRATS2015 dataset. We use HG training
set that contains MR images from 220 patients, and for each patient, there are
4 modalities (T1, T1-contrast (T1c), T2, and FLAIR) together with the ground
truth. The label contains 5 classes: background, necrosis, edema, non-enhancing
and enhancing tumor. The evaluation is performed on three different tumor sub-
compartments: (1) the complete tumor (it contains all four tumor sub-regions);
(2) the tumor core (it contains all tumor sub-regions except edema); (3) the
enhancing tumor structure (it contains only the enhancing tumor sub-region).

Table 2. Performance on the BRATS 2015 44 test images.

Method Dice Sensitivity Positive predictive value

Avg. Comp. Core Enhan. Comp. Core Enhan. Comp. Core Enhan.

U-Net 77.38 86.15 72.77 73.23 85.62 70.00 73.76 89.03 81.21 79.18

U-Net+FDL 78.23 86.32 73.71 74.68 84.82 71.17 75.32 89.95 82.41 79.72

U-Net+Dilation 78.15 86.15 73.47 74.85 83.88 70.27 75.01 90.61 83.75 80.27

Proposed method 78.38 86.77 73.67 74.70 85.92 74.98 79.88 89.39 79.14 75.04

U-Net+Focal Loss 77.83 86.84 72.87 73.82 86.21 69.44 73.51 89.45 84.21 81.13

U-Net+CRF 77.04 86.55 70.97 73.60 87.78 71.17 75.32 89.94 82.41 79.72

Boundary-aware [7] 77.92 87.31 72.48 73.99 85.97 68.66 72.63 90.22 84.71 81.20

In our experiments, the 220 HG images are randomly split into three sets
with a ratio of 6:2:2, therefore we have 132 training, 44 validation and 44 testing
images. For all MR images, voxel intensities are normalized based on the mean
and variance of the training set. We use 2D axial slices from MR volumes as
input, and each slice is cropped into 192× 200. Besides, the symmetric intensity
difference map [8] of each slice is also fed into the network, resulting in 8 input
channels. In our experiments, we use exponent factor β = 2 and dilation ration
α = 0.6. The duration of applying each structuring element in Fig. 4(g) to (j)
for dilation is 15 epochs, the matrix in Fig. 4(f) is not used in our experiments.
The model is implemented with Keras and Tensorflow backend, and trained for
60 epochs using Adam optimizer, with learning rate 8 × 10−5.
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Fig. 5. Example results. Left to right: (a) Flair, (b) Flair with ground truth, (c)
results of our method, (d) U-Net results, (e) Boundary-aware [7] results. Best viewed
in color: necrosis (red), edema (yellow), non-enhancing tumor (blue), and enhancing
tumor (green). (Color figure online)

The evaluation results of the 44 test images are shown in Table 2 on three
tumor sub-regions. The hyper-parameters of mentioned models in Table 2 are
identical to the proposed ones. Based on U-Net, the FDL and image dila-
tion shows improvement especially on rather small regions like tumor core and
enhancing tumor. It shows the capability of the FDL in improving the accuracy
of classes with lower Dice. Our proposed method that combines the FDL and
dilation outperforms the other methods in average Dice of three tumor regions.
The example results are annotated in Fig. 5. Our method achieves better high-
level understanding instead of misled by complex details. [7] generates smooth
boundary of entire tumor but not for each tumor sug-regions, and our method
also outperforms it on some disconnected components.

Besides the improvement in accuracy, one more advantage of our method
is the low computational cost for new test images. Recent methods reported
8 min [6], 2 to 4 min [1], and 2 min [12] respectively for the prediction of each 3D
volumes on the modern GPU. Our method just takes around 3 s on the NVIDIA
Titan X Pascal, and including image normalization and computing symmetric
difference maps.
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3.1 Results on the Focal Dice Loss

We have tested the performance of the proposed method with different values
of β in the FDL, as shown in Table 3. We plot the dice curves of 44 validation
images during training. Noted that the Dice in Figs. 6 and 7 is the average DICE
of 4 foreground classes, which differs from our evaluation matrix of 3 regions.

Table 3. Results on different val-
ues of exponent factor.

Exponent

factor

Dice

Complete Core Enhancing

β = 1 86.15 73.47 74.85

β = 1.5 86.58 71.04 74.00

β = 2 86.77 73.67 74.70

β = 3 86.58 71.03 7.95
Fig. 6. Dice curves of different values of exponent
factor.

3.2 Results on Dilation

We also conducted experiments to explore the properties of dilation on the
ground truth. Table 4 shows that our model works best when α = 0.6. It is worth
noticing that the stability of the network is degraded when the dilation rate is
0.45 and 1 in Fig. 7. If the ground truth is dilated by a small ratio (α = 0.45), the
corresponding input images may be considered as noise during training as the
occurrence of dilated images is limited. For large dilation rate, like α = 1, it is
likely that the network experiences great changes when the structuring element
is switched to a smaller one and results in the oscillation of Dice curves.

Table 4. Results on different dila-
tion ratios.

Dilation

ratio

Dice

Complete Core Enhancing

α = 0.45 86.49 72.93 74.41

α = 0.6 86.77 73.67 74.70

α = 0.75 86.40 73.09 75.10

α = 1 86.32 73.71 74.68 Fig. 7. Dice curves of different dilation ratios.

4 Conclusion

We introduced a FDL to address the data imbalance for multimodal brain tumor
segmentation, which focuses on different objects of interest instead of the entire
image (like focal loss). The experiments shows the capability of FDL in improving
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the class with lower accuracy. Dilation is also applied to training samples by a
gradually downsized structuring elements to enlarge and connect the tiny regions
for better high level feature extraction, which is a coarse-to-fine and incremental
training approach with the structure of network unaffected. The performance
of our method has been tested on the BRATS2015 dataset and achieves the
state-of-the-art in Dice Coefficient with relatively low computational cost.
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Abstract. Tracking of particles in fluorescence microscopy image
sequences is essential for studying the dynamics of subcellular structures
and virus structures. We introduce a novel particle tracking approach
using an LSTM-based neural network. Our approach determines assign-
ment probabilities jointly across multiple detections by exploiting both
short and long-term temporal dependencies of individual object dynam-
ics. Manually labeled data is not required. We evaluated the performance
of our approach using image data of the ISBI Particle Tracking Challenge
as well as real fluorescence microscopy image sequences of virus struc-
tures. It turned out that the proposed approach outperforms previous
methods.

1 Introduction

Tracking of multiple particles in time-lapse fluorescence microscopy image
sequences is an important task to quantify the dynamic behavior of subcel-
lular and virus structures. Since a large number of particles needs to be tracked
to draw statistically sound conclusions, accurate and robust automatic tracking
approaches are indispensable.

Previous work on tracking biological particles can be subdivided into
deterministic and probabilistic methods. Deterministic approaches follow a
two step-paradigm comprising particle localization and motion correspondence
(e.g., [13,14]). Probabilistic approaches are formulated within a Bayesian frame-
work and take into account uncertainties to improve the robustness. The solution
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is determined using Kalman filters or particle filters (e.g., [1,2,4,9,11]). A disad-
vantage of traditional tracking methods is that a handcrafted similarity measure
is used to determine the degree of correspondence between detections in suc-
cessive images. In addition, a suitable dynamic model needs to be selected, and
often tedious manual tuning of (numerous) parameters is required. Often, these
approaches have difficulties in cluttered environments with clustering objects.
Deep learning methods have the potential to improve the performance. This has
been demonstrated for different tasks such as segmentation and classification
in the fields of computer vision and medical image analysis (e.g., [5]), however,
much less work exists on tracking.

In the field of computer vision, Milan et al. [10] proposed a recurrent neu-
ral network (RNN) for tracking pedestrians in video images of natural scenes.
However, tracking pedestrians is quite different from tracking biological particles
since the motion and shape are very different, and appearance is not a reliable
cue. Also, in [10] a handcrafted similarity measure is used for correspondence
finding. In addition, two separate networks need to be trained for state predic-
tion and data association. Sadeghian et al. [12] introduced an appearance-based
RNN for tracking pedestrians in video images. However, there the similarity mea-
sure for correspondence finding is determined independently for each detection,
and information on missing detections is not provided by the network. Also, a
fixed input sequence length is used (last 6 time points). For training, manually
labeled data was used. Yao et al. [17] used a similar approach as in [12] to track
microtubules in synthetic data. However, the similarity measure for correspon-
dence finding is not jointly computed across multiple detections, and a fixed
input sequence length is used (as in [12]). In addition, objects are not automat-
ically detected but ground truth positions are used, and real microscopy data
was not considered. He et al. [6] introduced an approach based on convolutional
neural networks (CNNs) for tracking of cells. However, this approach does not
use an RNN, and tracking of particles was not considered.

In this contribution, we introduce a new approach for particle tracking in
time-lapse fluorescence microscopy images based on an RNN. Both short- and
long-term temporal dependencies of individual object dynamics are exploited
for state prediction and correspondence finding using a long short-term memory
(LSTM) [7]. The network automatically learns to determine assignment prob-
abilities for correspondence finding, without requiring a handcrafted similarity
measure. In contrast to [12,17], our network computes assignment probabilities
jointly across multiple detections, and also determines the probabilities of miss-
ing detections. In addition, the input sequence length is not limited but can be
arbitrary long. Thus, we exploit more information and intrinsically cope with
missing detections. Moreover our approach does not require manually labeled
data (in contrast to [10,12,17]). Both state prediction and data association are
trained within one network. Compared to traditional tracking methods, the
dynamic model is automatically selected, and tuning of tracking parameters
is not required. We performed a quantitative evaluation using data from the
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ISBI Particle Tracking Challenge as well as using real live cell microscopy data
of human immunodeficiency virus type 1 (HIV-1) particles and hepatitis C virus
(HCV) proteins. It turned out that our approach yields better tracking results
than previous methods.

2 Methods

Our approach, denoted as deep particle tracker (DPT), relies on a tracking-
by-detection paradigm. For spot detection, we use the spot-enhancing filter
(SEF) [13] yielding a set of detections. For correspondence finding, we introduce
an LSTM-based recurrent neural network that determines assignment probabil-
ities between tracked objects and particle detections. To establish one-to-one
correspondences using the computed assignment probabilities of all objects and
the probabilities of missing detections, the Hungarian algorithm is employed.

2.1 Network Architecture

In our DPT approach, for each object we use one neural network with the same
network architecture. We employ both LSTM and fully-connected (FC) layers
each consisting of K units (we used K = 250). We apply Gaussian dropout after
each layer. Below, we describe the network architecture in more detail.

Let the vector xi
t ∈ IRD denote the state of an object i at time point t. In

our work, we used xi
t = (xi

t, y
i
t, s

i
t, α

i
t), i.e. D = 4. (xi

t, y
i
t) is the object position.

The speed and direction of the object motion is denoted by si
t and αi

t (computed
using the positions at two successive time points). The detections (positions as
well as speed and direction for an assignment to object i) are represented by the
vector yi

t ∈ IRM·D, where M is the overall number of detections. Note that M is
often very high (in cluttered environments) and varies strongly between different
images of a sequence. On the other hand, the neural network requires a fixed
input vector size. To address this, in our approach we exploit the M -nearest
detections (we used M = 5). For each time point t − 1, the network computes
two output vectors for the next time point t: x̂i

t ∈ IRD is the predicted object
state, and ai

t ∈ [0, 1]M+1 represents the assignment probabilities between object
i and the M -nearest detections as well as probabilities for missing detections.

We use an LSTM to predict the state of an object i for the next time point t.
The LSTM is composed of layers interacting which each other to determine the
new hidden state hi

t ∈ IRK of dimension K which also represents the output.
The main component of an LSTM is the cell state ci

t ∈ IRK which serves as
long-term memory [7]. At each time point t, different types of gates determine
which information is added to or removed from the previous cell state ci

t−1. Note
that all gates compute their output based on the previous hidden state hi

t−1 and
the current input. In our case, the input is the object state xi

t−1 mapped to the
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vector zi
t ∈ IRK by using a fully-connected (FC) layer and a hyperbolic tangent

activation function. At time point t, the LSTM for an object i is updated as
follows:

iit = σ(Wzizi
t + Whihi

t−1 + bi) (1)

fit = σ(Wzfzi
t + Whfhi

t−1 + bf ) (2)

oi
t = σ(Wzozi

t + Whohi
t−1 + bo) (3)

gi
t = tanh(Wzgzi

t + Whghi
t−1 + bg) (4)

ci
t = fit ⊗ ci

t−1 + iit ⊗ gi
t (5)

hi
t = oi

t ⊗ tanh(ci
t) (6)

where iit is the input gate, fit is the forget gate, oi
t is the output gate, and gi

t is the
input modulation gate. Weight matrices W ∈ IRK×K and bias vectors b ∈ IRK

represent the parameters of a gate. σ is the logistic sigmoid activation function,
and ⊗ denotes element-wise multiplication. We use the new hidden state hi

t of
the LSTM to compute the predicted object state x̂i

t by employing a FC layer
and a hyperbolic tangent activation function. Since hi

t is a function of all object
states xi

1:t−1 from time point 1 to time point t−1, the network can exploit both
short and long-term temporal dependencies for state prediction.

The vector yi
t of the detections is passed to a FC layer with a hyperbolic

tangent activation function for mapping it to a K-dimensional vector, which is
then concatenated with the hidden state hi

t of the LSTM. The resulting vector of
dimension 2K is passed to another FC layer which maps it to a vector of dimen-
sion K. This vector is fed into a fully connected linear output layer with softmax
normalization so that the final network output vector ai

t can be interpreted as
M + 1 assignment probabilities, i.e. ∀i :

∑M+1
j=1 aij

t = 1, where aij
t denote the

assignment probabilities between object i and detection j (j = 1, ...,M), and
a

i(M+1)
t are the probabilities of missing detections. The computed assignment

probabilities and the probabilities for missing detections (dummy detections in
the probability matrix) are used as input for the Hungarian algorithm. Note that
a handcrafted similarity measure for the predicted state and the detections (e.g.,
Euclidean distance) is not required to compute the assignment probabilities.

The LSTM-based neural network is trained by minimizing the loss L over all
trajectories defined by:

L =
N∑

i=1

Li, Li =
T i
∑

t=1

(
1
D

‖x̂i
t − x̃i

t‖2 −
M+1∑

j=1

ãij
t log(aij

t )
)

(7)

where N is the overall number of trajectories, Li denotes the loss for the tra-
jectory of object i, x̂i

t is the predicted state and x̃i
t the true state at time point

t. The deviation between the states is quantified by the mean squared error
(MSE). The cross-entropy is used to measure the deviation between the com-
puted assignment probabilities aij

t and the ground truth ãij
t . T i defines the total

number of time points for a trajectory.
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2.2 Training

Since deep learning architectures involve a large number of parameters, vast
amounts of training data are generally required. However, ground truth for
microscopy image sequences of biological particles is hardly available and manual
annotation is very tedious. Therefore, in our approach we do not use manually
labeled data but rely on synthetic data for training. We generated a large num-
ber of simulated trajectories of particles, which perform Brownian motion or
directed motion. The diffusion coefficients and velocities of individual particles
were sampled from a uniform distribution and the initial positions were chosen
randomly. In addition, we randomly removed particle positions which enables
the network to learn coping with missing detections.

For training our network, we used the RMSprop optimizer [15] with an initial
learning rate of 3 × 10−5, which was decreased by 5% when the validation loss
stopped improving. To avoid overfitting, we employed early stopping and set the
Gaussian dropout rate to p = 0.2. We used a dataset with 85,000 synthetically
generated trajectories with variable track length. The dataset was split into 82%
for training and 18% for validation. We used a mini-batch size of 10 trajectories.

3 Experimental Results

3.1 Particle Tracking Challenge Data

We evaluated our DPT approach based on data of the ISBI Particle Track-
ing Challenge [2] and compared the performance with the overall top-three
approaches (Methods 5, 1, and 2). Method 5 uses the spot-enhancing fil-
ter (SEF) [13] for particle localization and probabilistic data association [4].
Method 1 employs intensity-weighted centroids for particle localization and
combinatorial optimization [14]. Method 2 localizes particles by local maxima
selection and performs linking by multiple hypothesis tracking [3]. In addition,
we compared the performance of DPT with a recent approach employing a
piecewise-stationary motion model smoother (PMMS) [11]. This approach uses
SEF for particle localization and linear programming for linking (extension of
u-track [8]).

To study the performance in cluttered environments, we used data of the vesi-
cle scenario for signal-to-noise ratios of SNR = 4 and SNR = 7 as well as medium
and high particle densities (medium: 500 particles/frame, high: 1000 parti-
cles/frame). The data is challenging due to conflicting correspondences (in total
15,682 trajectories). The image sequences consist of 100 images (512 × 512 pix-
els) with random appearance and disappearance of particles. To quantitatively
assess the performance of the tracking methods, we computed the metrics α,
β, JSC, JSCθ, and RMSE as described in [2]. α ∈ [ 0, 1] indicates the over-
all degree of matching of ground truth and estimated tracks excluding spurious
tracks. β ∈ [ 0, α] includes an additional penalization for spurious tracks com-
pared to α. The Jaccard similarity coefficient JSC ∈ [ 0, 1] represents the overall
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particle detection performance, and JSCθ ∈ [ 0, 1] is the rate of correctly esti-
mated tracks. The overall localization accuracy is indicated by the root mean
square error (RMSE ).

The quantitative results are presented in Table 1 (bold values indicate the
best performance). It can be seen that DPT performs best for all metrics and
cases. Note that for PMMS the results in [11] are given only up to two decimal
places and RMSE is not provided. Note that for our DPT approach, we did
not use the Particle Tracking Challenge data for training, but used our own
generated synthetic data as described in Sect. 2.2 above.

Table 1. Tracking performance of different approaches for data of the vesicle scenario
from the Particle Tracking Challenge. Bold indicates best performance.

Density Meth SNR = 4 SNR = 7

α β JSC JSCθ RMSE α β JSC JSCθ RMSE

Med Meth 5 0.658 0.588 0.641 0.776 0.754 0.677 0.605 0.646 0.783 0.667

Meth 1 0.687 0.609 0.652 0.767 0.607 0.700 0.619 0.650 0.758 0.544

Meth 2 0.582 0.514 0.590 0.757 0.970 0.611 0.547 0.606 0.775 0.828

PMMS 0.67 0.60 0.64 0.77 - 0.68 0.61 0.64 0.78 -

DPT 0.695 0.624 0.658 0.790 0.545 0.711 0.631 0.651 0.790 0.525

High Meth 5 0.488 0.408 0.466 0.671 1.004 0.533 0.453 0.503 0.698 0.931

Meth 1 0.531 0.442 0.487 0.641 0.801 0.582 0.494 0.526 0.683 0.683

Meth 2 0.430 0.356 0.429 0.649 1.208 0.466 0.395 0.458 0.665 1.027

PMMS 0.51 0.44 0.48 0.67 - 0.55 0.48 0.51 0.69 -

DPT 0.547 0.462 0.505 0.680 0.746 0.590 0.507 0.535 0.702 0.677

3.2 Real Fluorescence Microscopy Images of Virus Structures

We also evaluated the performance of the DPT approach using real fluorescence
microscopy image sequences displaying human immunodeficiency virus type 1
(HIV-1) particles and hepatitis C virus (HCV) proteins. The fluorescence labeled
HIV-1 particles were imaged by a confocal spinning disk microscope and an EM-
CCD camera. For our evaluation we used two image sequences (each 50 time
points, 1000 × 1000 pixels, 16-bit) denoted by Seq. A and Seq. B. We also used
one image sequence showing the HCV nonstructural protein 5A (30 time points,
1000 × 1000 pixels, 16-bit) denoted by Seq. C (an example section with 115× 115
pixels is shown in Fig. 1). The images were acquired by a confocal spinning disk
microscope and a CMOS camera. This dataset is challenging due to relatively low
SNRs and clutter (high particle density, often crossing of trajectories). Ground
truth trajectories for regions with clutter and large motion were determined by
manual annotation. Seq. A, Seq. B, and Seq. C comprise 117, 125, and 55 ground
truth trajectories, respectively (with up to 30 time points).
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Fig. 1. Section of image sequence
Seq. C (HCV). The image contrast
was enhanced.

Table 2. Tracking performance of different
approaches for real fluorescence microscopy
images. Bold indicates best performance.

Sequence Meth α β JSC JSCθ RMSE

Seq.A (HIV-1) PT 0.312 0.255 0.348 0.442 2.701

KF 0.388 0.317 0.421 0.456 2.775

MHT 0.367 0.304 0.454 0.440 3.393

DPT 0.413 0.360 0.462 0.497 2.673

Seq. B (HIV-1) PT 0.328 0.261 0.338 0.399 2.559

KF 0.352 0.312 0.396 0.373 2.121

MHT 0.366 0.303 0.429 0.416 2.991

DPT 0.435 0.331 0.444 0.527 2.717

Seq. C (HCV) PT 0.590 0.496 0.629 0.557 1.064

KF 0.559 0.481 0.564 0.550 1.088

MHT 0.540 0.480 0.588 0.611 1.237

DPT 0.647 0.571 0.669 0.625 1.024

We compared the performance of DPT with the ParticleTracker (PT) [14],
a Kalman filter based approach (KF) [16], and multiple-hypothesis tracking
(MHT) using multiple motion models [1]. PT uses intensity-weighted centroids
for particle localization and combinatorial optimization [14]. KF uses SEF for
particle localization and particle linking is based on a linear assignment method
used in u-track [8]. MHT employs a wavelet-based detection scheme for particle
localization. For PT, KF, and MHT we performed a grid search to determine
optimal parameter settings. Note that for DPT, adaption of tracking parame-
ters was not necessary (except the two detection parameters for SEF), i.e. we
directly applied our tracking approach to the real data while training was per-
formed only on synthetic data (see Sect. 2.2 above). Table 2 shows the tracking
performance for all three image sequences. It turns out that DPT outperforms
the other methods for all metrics and sequences (except RMSE for Seq. B).
Sample results for Seq. C are shown in Fig. 2. It can be seen that DPT yields the
best result and maintains the correct identity for all three particles. KF causes
an identity switch (between the blue and green trajectory). MHT yields a broken
trajectory (yellow).

Fig. 2. Ground truth and results of different tracking approaches for image sequence
Seq. C (HCV). The image contrast was enhanced for better visualization. (Color figure
online)
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4 Conclusion

We presented a novel approach for tracking particles in time-lapse microscopy
images using an LSTM-based recurrent neural network which computes assign-
ment probabilities jointly across multiple detections and also determines proba-
bilities for missing detections. Manually labeled data is not required. In addition,
a handcrafted similarity measure is not needed. We evaluated our approach based
on synthetic and real image sequences. It turned out that our approach yields
better results than previous methods.

Acknowledgment. Support of the DFG (German Research Foundation) within the
SFB 1129 is gratefully acknowledged.
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Abstract. Resting-state functional MRI (rs-fMRI) scans hold the
potential to serve as a diagnostic or prognostic tool for a wide variety
of conditions, such as autism, Alzheimer’s disease, and stroke. While a
growing number of studies have demonstrated the promise of machine
learning algorithms for rs-fMRI based clinical or behavioral prediction,
most prior models have been limited in their capacity to exploit the
richness of the data. For example, classification techniques applied to rs-
fMRI often rely on region-based summary statistics and/or linear models.
In this work, we propose a novel volumetric Convolutional Neural Net-
work (CNN) framework that takes advantage of the full-resolution 3D
spatial structure of rs-fMRI data and fits non-linear predictive models.
We showcase our approach on a challenging large-scale dataset (ABIDE,
with N > 2, 000) and report state-of-the-art accuracy results on rs-fMRI-
based discrimination of autism patients and healthy controls.

Keywords: Functional connectivity · fMRI
Convolutional neural networks · Autism · ABIDE

1 Introduction

The connectome, which can be captured via neuroimaging techniques such as dif-
fusion and resting-state functional MRI, is a research area of intense focus, as it
has delivered and continues to promise novel neuroscientific insights and clinical
tools. In recent years, machine learning algorithms have been increasingly applied
to connectome data [14,18,22]. These models often employ hand-engineered fea-
tures such as pairwise correlations between regions of interest (ROIs) and net-
work topological measures of clustering, small-worldness, integration, or segre-
gation [2,10]. Furthermore, a vast majority of these models collapse the data
into a feature vector for use in standard classification algorithms. Vectorization,
however, discards the spatial structure of the connectome, which is an important
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): DLMIA 2018/ML-CDS 2018, LNCS 11045, pp. 137–145, 2018.
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source of predictive information [12]. Finally, many machine learning techniques
used with connectome data rely on linear or “shallow” models, which are lim-
ited in their capacity to capture relationships between connectomic features and
clinical/behavioral variables.

In related work, deep neural networks exploiting the topological properties
of brain networks have been recently explored. For example, the BrainNetCNN
architecture of [11] extends convolutional neural networks (CNNs) to handle
graph-structured data. While CNNs are motivated via the translation-invariance
property of image-based classification problems and thus have achieved tremen-
dous success, the neuroscientific basis of the invariance property exploited by
BrainNetCNN remains elusive. Furthermore, this approach works directly with
an adjacency matrix derived from the connectome data, while disregarding spa-
tial information. Graph convolution networks [16], while increasingly popular,
also seem sub-optimal to use with connectome data, since they rely on a common
graph and the variation of interest is in the node properties. In the connectome,
however, the main variation is the adjacency matrix, i.e., edge properties.

Our core contribution is an easy-to-implement 3D CNN framework for
connectome-based classification. Our key insight is to use the connectivity “fin-
gerprint”, or functional coupling of each voxel to distinct target ROIs, as input
features for a traditional volumetric CNN, represented as a multi-channel image
volume. This allows us to characterize connectivity at a much finer scale than
previously used with machine learning techniques, and without losing the spa-
tial relationship between voxels. We are agnostic to the exact definition of target
ROIs, yet as we demonstrate empirically this choice can impact final accuracy. In
our experiments, we present an ensemble learning strategy that averages models
obtained with different ROI definitions (called “atlases”), which yields robust
and accurate results.

The proposed approach establishes a new benchmark model for autism clas-
sification on ABIDE, which is a particularly difficult dataset because of its het-
erogeneity, comprising subjects across a wide age range (5–64 years), and from
sites that used different imaging protocols. Previous studies have reported cross-
validated classification accuracies up to 67% on ABIDE-I, the first phase of the
ABIDE study [1]. The proposed CNN approach improves this accuracy to above
73%. We also report, for the first time, independent test performance for bench-
mark and proposed models on the recently released second phase of ABIDE.

2 Materials and Methods

2.1 Proposed 3D CNN Approach

Here, we present our strategy to adopt a CNN architecture for use with con-
nectomic data. The input to the CNN is formed by concatenating voxel-level
maps of “connectivity fingerprints”, which are represented as a multi-channel
3D volume. Each channel is a connectivity feature, such as the (Pearson) cor-
relation between each voxel’s time series and the average signal within a target
ROI. In our implementation, we use atlas-based brain parcellation schemes to
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Fig. 1. Implemented CNN architecture. Number of channels denoted above.

define the target ROIs. The total number of input channels thus represents the
number of ROIs used for creating voxel-level fingerprints. We used a variety of
so-called atlases, which define a specific parcellation of the brain into ROIs (see
below for details). Each atlas consisted of between 110 and 400 ROIs, where
a larger number of regions corresponded to a finer scale parcellation. For each
atlas, we trained a separate model, which we report performance values for. We
also implemented an ensemble learning strategy, where the prediction was com-
puted by taking a majority vote of the models corresponding to the different
atlases.

In our experiments, we employed a simple CNN architecture, illustrated in
Fig. 1. Our architecture has several convolutional layers, interspersed with max-
pooling based down-sampling layers, followed by a couple of densely connected
layers. The models were trained for 50 epochs with a batch size of 64. The
learning rate and momentum for Stochastic Gradient Descent (SGD) were set
to 0.001 and 0.9 respectively. The same architecture and settings were used for
all atlases. We note that each atlas is defined on a unique grey matter mask.
To ensure that all classifiers (baseline and proposed) use information from the
same voxels while computing mean ROI signals or connectivity patterns, respec-
tive gray matter masks of these atlas were used for masking the input image of
connectivity fingerprints before feeding into the proposed convolutional archi-
tecture.

2.2 Baseline Methods

Proposed CNN was compared against following baselines.

Ridge Classifier: A linear regression model was trained with a loss function
equal to the sum of squared differences between prediction and ground truth
values and α times the squared norm of the weight vector. The ground truth
labels were encoded as ±1 for the two output categories. We test 10 linearly
spaced values for the hyper-parameter α in the range [0.1, 10] and report the
highest cross-validation accuracy. Thus this baseline result reflects an optimistic
estimate of performance.
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Support Vector Machine: A linear SVM was trained to minimize β times
the squared hinge loss function plus the squared norm of the weight vector.
The hyper-parameter β was tuned by maximizing cross-validation accuracy by
searching over two orders of magnitude ([0.5, 50]). As with the ridge classifier,
this should be considered as an upper bound on generalization performance.

Fully Connected Architecture: The fully-connected neural network (FCN)
architecture takes as input functional connectivity estimates between pairs of
ROIs, which is vectorized and processed by a feed-forward network. We imple-
mented following architecture: 4 fully connected hidden layers, with 800, 500,
100 and 20 numbers of features and each linear layer followed by an elementwise
Exponential Linear Unit (ELU) activation. The output node was a sigmoid and
computes disease probability, which is subsequently used for classification. The
models were trained for 30 epochs with a batch size of 64. We monitored training
curves to ensure that all trained models had converged before terminating the
optimization. Stochastic Gradient Descent was used as the optimizer with learn-
ing rate and momentum set to 0.01 and 0.9 respectively. Dropout regularization
parameter was set to 0.2 and applied to each layer during training.

2.3 Experiments

Data: Autism Brain Imaging Data Exchange (ABIDE) is a multi-site open-
access MRI study [6]. The first phase of ABIDE (ABIDE-I) compiled data
from 1112 individuals, comprising 539 individuals diagnosed with Autism Spec-
trum Disorder (ASD) and 573 typical controls, from 17 sites. The second phase
(ABIDE-II) was recently released, and consists of an additional 521 individuals
with ASD and 593 healthy controls, from 19 sites.

In our experiments, we used ABIDE-I subject data that passed manual qual-
ity assessments (QA) by all the functional raters. This yielded a final sample size
of 774 ABIDE-I subjects, comprising 379 subjects with ASD and 395 typical con-
trols. As an independent test dataset, we employed ABIDE-II subjects from sites
that participated in ABIDE-I and used the same MRI sequence parameters for
data collection. Since manual QA was not yet available for ABIDE-II, we per-
formed an automatic quality control by selecting those subjects that retained
at least 100 frames or 4 min of fMRI scans after motion scrubbing [19]. Motion
scrubbing was performed based on Framewise Displacement (FD), discarding one
volume before and two volumes after the frame with FD exceeding 0.5 mm [15].
This step yielded a final ABIDE-II sample size of 163 individuals with ASD and
230 healthy controls.

Data Preprocessing: ABIDE-I: The Preprocessed Connectomes Project
(PCP) released preprocessed versions of ABIDE using several pipelines [4]. We
used the data processed through Configurable Pipeline for Analysis of Connec-
tomes (CPAC). This pipeline includes slice timing correction, motion correction,
global mean intensity normalization and standardization of functional data to
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MNI space (3 × 3 × 3 mm resolution) before the extraction of ROI time series.
Among the different versions of the release, data extracted with global signal
regression and band-pass filtering (0.01–10 Hz) was used in our analysis.

ABIDE-II: We preprocessed the ABIDE-II dataset following the same
sequence of steps listed for ABIDE-I in CPAC (v1.0.2a). Connectivity between
distinct brain regions was estimated using Pearson’s correlation coefficient.

Table 1. 10-fold cross-validation on ABIDE-I/independent test on ABIDE-II accuracy
of baseline models and proposed CNN approach. Best results are bolded.

Parcellation Ridge classifier SVC (l2 penalty) SVC (l1 penalty) Deep network 3D-CNN

HO 66.7/63.3 66.7/63.1 67.9/62.8 69.4/67.7 70.5/67.7

CC200 69.7/67.4 69.5/68.7 68.8/66.4 70.5/71.5 71.2/72.8

EZ 66.4/63.3 66.9/63.3 65.9/61.0 68.6/63.8 69.3/66.4

TT 64.4/66.1 65.3/66.7 64.3/61.3 67.1/65.9 69.4/70.0

CC400 70.2/69.4 70.5/69.7 67.5/68.1 71.0/69.9 71.7/70.5

AAL 65.4/63.3 65.7/62.3 68.1/62.6 66.7/65.4 71.4/69.5

DOS160 66.2/66.7 66.7/66.1 65.3/61.6 67.2/66.1 68.6/67.0

Ensemble 69.8/66.7 69.6/67.1 70.1/64.2 71.5/69.9 73.3/71.7

Atlases: In our experiments, we considered all atlases that were used for
ROI time series extraction in PCP. These include the following seven atlases:
Harvard-Oxford (HO), Craddock 200 (CC200), Eickhoff-Zilles (EZ), Talaraich
and Tournox (TT), Dosenbach 160 (DOS160), Automated Anatomical Labelling
(AAL) and Craddock 400 (CC400) [3,5,7,8,13,21].

For the baseline methods, each atlas was used to define a corresponding con-
nectivity matrix which was fed as input to each model. For the proposed model,
the atlas ROIs were used as target ROIs to derive the input connectivity fea-
tures at the voxel-level. We also report results for an ensemble learning strategy,
where we combined the predictions of models corresponding to individual atlases
through majority voting to obtain improved and robust predictions.

Evaluation: We evaluated our model on the challenging task of autism classi-
fication using the two schemes. First, we implemented a 10-fold cross-validation
scheme for ABIDE-I to be consistent with previously reported classification
results [1,18]. Second, we trained each model on all of ABIDE-I and computed
test performance on an independent held-out set from ABIDE-II. This is used for
assessing the generalization behavior of different classifiers. We report accuracy
and the receiver operating curves (ROC), along with corresponding area under
the curves (AUC) for each of these scenarios.
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3 Results

Table 1 shows cross-validation and independent test accuracy values for differ-
ent models. Proposed 3D CNN model consistently outperforms baselines. The
ensemble CNN approach yields a classification accuracy of 73.3 % on ABIDE-
I, significantly exceeding the state of the art [9]. Further, with an accuracy of
71.7 % on independent test data, the model also achieves good generalization.
Figure 2 shows ROC curve obtained of individual atlases and their ensemble on
ABIDE-II. The ensemble achieves an AUC of 75.8%.

Fig. 2. ROC on independent ABIDE-II

3.1 Visualization of CNN Model

Visualization techniques for CNNs can help reveal salient features used by the
model for discriminating between output classes. We employed the saliency map
of [20], which is a gradient-based technique. Essentially, this visualization app-
roach computes the gradient of the output score with respect to the input image,
i.e., the 3D volume, using a single backward pass through the trained neural
network. We then computed voxel-level saliency as the maximum absolute gra-
dient value across all input channels corresponding to different target ROIs.
Figure 3 shows these saliency maps averaged across all ABIDE-II cases for dif-
ferent atlases.
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Fig. 3. CNN saliency maps averaged over ABIDE-II cases for different atlases.

4 Discussion

In this paper, we presented a novel strategy to use 3D-CNN architectures for
connectome classification. We conducted detailed empirical evaluations of the
proposed model on a large dataset, which yielded significant improvements over
state-of-the-art accuracy. In almost all cases, the performance of the proposed
approach exceeded that of the baseline models, although the differences were
modest for higher resolution parcellations.

Another contribution of our paper is to highlight the advantage of ensemble
learning, for example by majority voting over models corresponding to different
atlases. Atlases, or more generally ROIs, are often selected arbitrarily in the rs-
fMRI community and our experiments demonstrate that averaging across these
decisions can yield more robust and accurate predictions.

The interpretation of classification models is invaluable for biomedical appli-
cations, for example by offering biological insights or understanding the infor-
mation that was used to make the prediction. Several previous studies have
attempted to visualize abnormal connectivity patterns in disease. In this work,
we present a strategy that allows us to interrogate the trained CNN models. Our
approach allows for visualizing the saliency map for a given individual, yet we
leave the analysis of this for future work. Instead we presented group-averaged
maps for the different atlases. As shown in Fig. 3, the saliency maps for the
different atlases are rather consistent and highlight the so-called default mode
network, which has been implicated in autism in prior studies [17]. We also note
some differences between the atlas saliency maps, which suggests that the dif-
ferent models are utilizing slightly different information content and thus can be
complementary, explaining why model averaging can improve accuracy.
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While the proposed CNN approach achieves promising accuracy on autism
detection, there is room for further improvement. We have not yet conducted
a comprehensive optimization of the convolutional architecture. Furthermore,
there is likely more optimal choices than atlas-based target ROI correlations that
are used as input to the model. We envision an end-to-end learning strategy that
can enable the optimization of these connectomic features.

5 Conclusion

Our experiments highlight the potential of deep neural network algorithms in
the classification of functional connectomes and in expanding our understanding
of brain disorders. When tailored for connectomes, modern DNN architectures
like Convolutional Neural Networks offer an unparalleled opportunity to probe
brain networks in disease.
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Abstract. Automated segmentation of organs-at-risk (OAR) in follow-
up images of the patient acquired during the course of treatment could
greatly facilitate adaptive treatment planning in radiotherapy. Instead of
segmenting each image separately, the segmentation could be improved
by making use of the additional information provided by longitudinal
data of previously segmented images of the same patient. We propose
a tool for automated segmentation of longitudinal data that combines
deformable image registration (DIR) and convolutional neural networks
(CNN). The segmentation propagated by DIR from a previous image
onto the current image and the segmentation obtained by a separately
trained cross-sectional CNN applied to the current image, are given as
input to a longitudinal CNN, together with the images itself, that is
trained to optimally predict the manual ground truth segmentation using
all available information. Despite the fairly limited amount of training
data available in this study, a significant improvement of the segmen-
tations of four different OAR in head and neck CT scans was found
compared to both the results of DIR and the cross-sectional CNN sepa-
rately.

1 Introduction

Delineation of Organs-At-Risk (OAR) in a pre-treatment CT scan of the patient
is an essential step in radiotherapy (RT) planning to be able to deliver the
required dose to the target volume while at the same time minimizing the dose
to the surrounding normal tissues in order to reduce the risk of complications.
However, since the treatment is fractionated over multiple RT sessions during
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the course of several weeks, anatomical changes may occur that invalidate the
initial treatment plan. Hence, it can be useful to acquire a new CT scan during
the course of treatment and adapt the treatment to the new anatomy if needed,
which requires delineation of each of these longitudinal CT scans [1]. Manual
segmentation by a clinical expert of OAR in the head and neck (H&N) region is
time consuming and takes about 45 min up to two hours in clinical practice, since
there are on average 13 3D structures to be delineated. Moreover, the manual
delineations are prone to intra- and interobserver variations.

Automatic segmentation of OAR in longitudinal CT scans in the context of
RT planning is usually solved by using deformable image registration (DIR) [2].
An already segmented image (a so called atlas) is deformed to fit the new image
to be segmented and the delineations in the atlas are deformed in the same way to
yield a segmentation of the new image. Several choices for the atlas can be made,
but the best results are obtained with a previous CT scan from the same patient,
as the similarity between the atlas and the new CT image to be segmented is
then likely very high [2]. This strategy was applied by Zhang et al. [3], Veiga
et al. [4] and Castadot et al. [5]. Unfortunately, manual adaptation may still
be necessary, but the time needed for the adaptation is usually small compared
to manual segmentation [6]. The purpose of this work is to replace this manual
correction by a neural network that can do the needed corrections.

Convolutional neural networks (CNN) are currently the state-of-the-art neu-
ral network architectures for medical image segmentation. The segmentation is
formulated as a voxel-wise classification problem, whereby each voxel is indi-
vidually classified as belonging to a particular organ of interest based on the
intensity values within a certain neighborhood (the receptive field). A CNN for
segmentation of OAR in the H&N-region is proposed by Ibragimov et al. [7]. The
network gives state-of-the-art results for organs with recognizable boundaries in
CT-images. However, organs without recognizable boundaries are more difficult
to segment, which suggests that additional information is required.

Longitudinal data are not frequently used yet in CNN based segmentation,
although such data could provide relevant additional information. Examples of
neural networks that incorporate longitudinal data are Birenbaum et al. [8],
who used a CNN on longitudinal data for MS lesion segmentation, and Vivanti
et al. [9], who proposed an algorithm for liver tumor segmentation in follow-up
CT scans. Vivanti et al. [9] did not train their network on longitudinal data,
but only used the previous scans to define a region of interest (ROI) to give as
input to the neural network for segmenting the tumor. The benefit of defining a
ROI is that the amount of false positives will be reduced. In contrast to Vivanti
et al. [9], we propose to include the previous segmentations registered to the new
CT scan as additional features for CNN-based classification.
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2 Methods

2.1 Available Data and Preprocessing

The dataset consists of 17 sets of longitudinal H&N data. Each such set consists
of five types of images:

Fig. 1. The proposed CNN architecture for segmentation using longitudinal data. The
size of each layer is given by # feature maps × 3D segment size.

– I0: a previous CT scan acquired before or in week two of the RT treatment;
– I1: the current CT scan acquired in week two or four of the RT treatment;
– S0,m: the clinically approved binary segmentation maps of OAR in I0;
– S1,m: the clinically approved binary segmentation maps of OAR in I1;
– S1,c: the automatically generated binary segmentation maps of OAR in I1

using the state-of-the-art cross-sectional CNN defined in [10], trained on a
separate non-longitudinal dataset (acquired on the same scanner and delin-
eated by the same observer as the longitudinal dataset).

The 17 sets of longitudinal data originate from 9 different patients. All CT
scans were acquired in our institute on the same Siemens Sensation Open CT
scanner using the same clinical protocol at 120kV. Clinically approved OAR
segmentations are available for 13 H&N structures: the brainstem, the cochlea
(left and right), the upper esophagus, the glottic area, the mandible, the extended
oral cavity, the parotid glands (left and right), the pharyngeal constrictor muscles
(PCM inferior, medial and superior), the spinal cord, the submandibular glands
(left and right) and the supraglottic larynx. All images are preprocessed to have
the same voxel size of 1 × 1 × 3 mm3 and the intensities of the CT scans are
normalized to have zero mean and unit variance over all CT scans together.

2.2 Deformable Image Registration

The first step is to align the previous image I0 and its segmentation S0,m onto the
current image I1 using DIR, yielding the deformed image I0,r and a DIR-based
segmentation S0,r of the OAR in I1. The registration process consists of two
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steps: first rigid and then non-rigid B-spline registration. The hyperparameters
for each step are optimized in terms of a volume-weighted average of the Dice
similarity coefficients (DSC) of S0,r compared to S1,m over all OAR. The most
important DIR hyperparameters are the similarity metric used, the number of
histogram bins in case mutual information is used, and the final spacing of the
B-spline control point grid. Optimal performance was obtained with mutual
information as similarity metric, with 64 bins for rigid and 32 bins for non-rigid
registration, and a final B-spline grid spacing of 16 mm. All registrations were
performed using Elastix [11].

2.3 Neural Network Architecture

The registered longitudinal images I0,r and I1 and both segmentations S0,r and
S1,c are given as input to the neural network, which generates the segmentation
S1,l as a prediction of the true segmentation S1,m for image I1. The longitudi-
nal neural network is built by taking into account two different considerations.
Firstly, a certain size of the receptive field is required. Secondly, the amount
of parameters must be kept as low as possible to reduce overfitting since the
amount of training data is small. The network has four convolutional layers.
The first two layers are the feature extraction part with a kernel size of (3, 3, 1)
and a stride of 1 and the last two layers are fully connected layers implemented
as convolutional layers with a kernel size of (1, 1, 1) to make the network fully
convolutional. A scheme of the architecture can be found in Fig. 1. An average
pooling layer is inserted since this increases the receptive field without increasing
the amount of parameters. It has a pooling size of (3, 3, 3) with a stride of 1.
The amount of feature maps cannot be made too low since we expect a lot of
interactions between the inputs (and OAR) and the amount of redundant infor-
mation is not high. The amount of feature maps is set to 60 in the first layer,
90 in the subsequent layers and 14 in the output layer, one for each class (13
OAR and background). The size of the receptive field thus becomes 7 × 7 × 3
voxels or 7 × 7 × 9 mm3, which is small, implying that the neural network has
not much contextual information to base its predictions on. It only makes uses
of the intensities of both images and the available segmentations within a small
neighborhood around each voxel.

2.4 Neural Network Training

The neural network is trained in a supervised way using the training scheme from
Kamnitsas et al. [12], which was implemented by [13]. The training scheme does
fully-convolutional predictions on image segments, since the memory require-
ments for full 3D images and 3D networks are high. In this way, several consec-
utive segments must be given as input to the network to obtain a segmentation
of the complete image. The used evaluation metric is categorical cross-entropy.
To prevent class imbalance, the image segments are sampled from the training
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images with an equal probability to be centered at a voxel of any of the differ-
ent classes. The Adam optimizer is used with the originally proposed parame-
ters [14]. The initial learning rate is set to 0.008 and is divided by four when a
convergence plateau of the cost function is reached. This is done two times. The
weights are initialized using He’s initialization and PReLU activation functions
are used in the hidden layers. Furthermore, batch normalization is applied to all
hidden layers. A softmax function is used at the output layer. As the amount
of data available to train the network was low, regularization is quite important
in this work. Dropout is used in the last layers of the network with a dropout
probability of 0.5. The weight against L2-regularization is equal to 0.001. Data
augmentation is done on the samples by flipping them around the sagittal plane.

2.5 Postprocessing

Postprocessing is a standard approach in literature to improve the resulting seg-
mentations of the neural network. Voxels are classified individually to belong
to the object of interest or not, without explicitly considering connectivity con-
straints. Postprocessing can be used to impose such constraints, which causes
single pixels or holes to be removed [7,8,12,15]. However, in this work, no post-
processing is used in order to be able to evaluate the intrinsic segmentation
performance of the network itself.

3 Results and Discussion

DIR took on average 15 min per dataset on an Intel Xeon E5645. After regis-
tration, the segmentation of the OAR by the longitudinal CNN took on average
2–3 min on a Nvidia GTX 1080 Ti.

A 6-fold cross-validation is performed on the longitudinal dataset to obtain
segmentations for all patients with the longitudinal CNN. The results of the three
segmentation approaches S0,r (DIR), S1,c (cross-sectional CNN), and S1,l (the
proposed longitudinal CNN) are summarized in Table 1 by their average DSC
compared to the manual ground truth segmentation S1,m. Statistical significance
between different approaches based on differences in DSC is assessed with a one-
sided, paired Wilcoxon signed-rank test with a significance level of 0.05.

DIR (S0,r) performs better than the cross-sectional CNN of [10] (S1,c) in
terms of DSC for five different organs (brainstem, upper esophagus, oral cavity,
parotid glands and spinal cord), while the opposite is true for the mandible,
which is a bony structure that is clearly defined on a CT scan.

The longitudinal CNN (S1,l) performs at least as good as its both input
segmentations (except for the spinal cord). It performs better than the cross-
sectional CNN for 7 structures and better than DIR for 5 structures, includ-
ing also the mandible. Moreover, the longitudinal CNN improves the results of
both input segmentations for 4 structures: the oral cavity, the parotid glands,
the submandibular glands and the supraglottic larynx. Hence, the longitudinal
CNN not just selects the best of both segmentations, but succeeds at improving
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segmentation quality by combining the results of both inputs. An exception is
the segmentation of the spinal cord. This can be explained by an inconsistency
in the lower border of the spinal cord in the training data for the cross-sectional
CNN of [10] and for the longitudinal CNN, which makes it impossible for the
longitudinal CNN to learn a consensus.

Table 1. DSC (mean ± SD) for OAR segmentation in image I1 based on DIR of the
previous image I0 onto the current image I1 (S0,r), the cross-sectional CNN of [10]
applied to I1 (S1,c) and the proposed longitudinal CNN (S1,l) w.r.t. the manual expert
segmentation of I1 (S1,m), averaged over all performed predictions on N datasets.
Statistical significant results are indicated by (> r, c, l) if the result is better than S0,r,
S1,c or S1,l respectively. Significance was assessed using a one-sided, paired Wilcoxon
signed-rank test (α = 0.05).

OAR N S0,r S1,c S1,l

Brainstem 17 0.88 ± 0.01 (> c) 0.84 ± 0.03 0.88 ± 0.02 (> c)

Cochlea 5 0.60 ± 0.11 0.55 ± 0.12 0.67 ± 0.09

Upper Esophagus 16 0.64 ± 0.13 (> c) 0.58 ± 0.12 0.62 ± 0.12 (> c)

Glottic Area 15 0.57 ± 0.18 0.58 ± 0.22 0.56 ± 0.23

Mandible 17 0.87 ± 0.02 0.91 ± 0.02 (> r) 0.91 ± 0.02 (> r)

Oral Cavity 15 0.88 ± 0.02 (> c) 0.87 ± 0.04 0.89 ± 0.02 (> r, c)

Parotid Glands 17 0.82 ± 0.03 (> c) 0.79 ± 0.06 0.84 ± 0.04 (> r, c)

PCM inferior 13 0.59 ± 0.10 0.53 ± 0.18 0.51 ± 0.24

PCM medial 15 0.48 ± 0.16 0.52 ± 0.17 0.50 ± 0.12

PCM superior 10 0.42 ± 0.12 0.38 ± 0.08 0.45 ± 0.11

Spinal Cord 17 0.75 ± 0.10 (> c, l) 0.73 ± 0.10 0.73 ± 0.09 (> c)

Submandibular Glands 17 0.75 ± 0.05 0.71 ± 0.11 0.78 ± 0.09 (> r, c)

Supraglottic Larynx 13 0.71 ± 0.08 0.64 ± 0.13 0.76 ± 0.07 (> r, c)

Some example delineations are shown in Fig. 2. We observed that the delin-
eations obtained with the longitudinal CNN mostly lie between the delineations
obtained with DIR and the cross-sectional CNN, unless a clear boundary can be
perceived in the CT scan. The longitudinal CNN can thus improve the input seg-
mentations if one systematically constitutes an oversegmentation and the other
an undersegmentation. This appears to be the case for the parotid glands seg-
mentations. Another possibility is that inaccuracies in both input segmentations
occur at different positions in the object. An example are the submandibu-
lar glands, for which the cross-sectional CNN performs well for segmenting the
upper part, while DIR performs well for the lower part. At the moment, little
can be concluded about the other organs, for which segmentation performance
is not significantly improved by the longitudinal CNN. Since the receptive field
of the proposed longitudinal CNN is limited, it has only limited ability to dif-
ferentiate between different positions in the structures to be segmented, and
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therefore has only limited ability to adapt its prediction depending on the posi-
tion. Improvements can occur if the longitudinal CNN would be able to recognize
typical errors of both types of input segmentations at different positions in the
organ. Therefore, extra hidden layers or additional pathways should be added to
the network. Since this increases the amount of parameters, extra training data
would be required.

Fig. 2. Examples of OAR segmentations obtained with DIR (S0,r, orange), the cross-
sectional CNN (S1,c, purple), and the longitudinal CNN (S1,l, blue), compared to the
manual ground truth segmentations (S1,m, green), for: (a) cochlea; (b) submandibular
glands; (c) right parotid gland; (d) oral cavity. (Color figure online)
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4 Conclusion

We propose a manner to combine two different segmentation methods for OAR
in H&N CT scans: longitudinal DIR and a CNN trained on cross-sectional data.
Both techniques base their predictions on a different type of information: lon-
gitudinal data similarity for DIR versus learned intensity features for CNN.
Combining both methods using the proposed longitudinal CCN effectively com-
bines both sources of information. This hybrid approach was shown not only
to be able to choose the best segmentation obtained with both methods, but
also to improve the segmentation performance as achieved with either method
separately.
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Abstract. Cross-modality synthesis can convert the input image of one
modality to the output of another modality. It is thus very valuable for both
scientific research and clinical applications. Most existing cross-modality syn-
thesis methods require large dataset of paired data for training, while it is often
non-trivial to acquire perfectly aligned images of different modalities for the
same subject. Even tiny misalignment (i.e., due patient/organ motion) between
the cross-modality paired images may place adverse impact to training and
corrupt the synthesized images. In this paper, we present a novel method for
cross-modality image synthesis by training with the unpaired data. Specifically,
we adopt the generative adversarial networks and conduct the fast training in
cyclic way. A new structural dissimilarity loss, which captures the detailed
anatomies, is introduced to enhance the quality of the synthesized images. We
validate our proposed algorithm on three popular image synthesis tasks,
including brain MR-to-CT, prostate MR-to-CT, and brain 3T-to-7T. The
experimental results demonstrate that our proposed method can achieve good
synthesis performance by using the unpaired data only.

1 Introduction

Due to the complementary information contained in different imaging modalities (e.g.,
CT images, T1- and T2-weighted MR images), multi-modal images are usually cap-
tured and fused for disease diagnosis, treatment planning, etc. However, acquisition of
multimodal images can be time-consuming and costly. Furthermore, the fusion often
requires accurate cross-modality registration and can be degraded by the deformation of
the organs.
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Cross-modality synthesis is thus valuable for both scientific research and clinical
application. Although each modality presents different characteristic of the underlying
anatomy, individual modalities are highly correlated when scanning the same
anatomical structure and revealing the tissue appearance from different perspectives.
Thus, synthesizing images of one modality based on the images of another modality is
theoretically possible. However, the mapping between the two different modalities are
highly nonlinear, which makes the synthesis task difficult to accomplish.

Over the past few years, various methods have been proposed for cross-modality
medical image synthesis. Typical works include coupled sparse representation [1] and
deep convolutional neural networks [2–4]. These methods usually require paired data
for training, i.e., well-aligned source and target modalities from the same subject.
However, it is not always easy to get the perfectly paired data, which thus strongly
limits the application of cross-modality synthesis. Moreover, misalignment within the
paired source/target data is sometimes inevitable (though tiny), and it could cause
ambiguity or even devastate current synthesis methods.

Unsupervised synthesis has already been explored in [5], which only requires
unpaired data for training. They used cross-modality nearest neighbor search to pro-
duce the candidate for each target voxel, then simultaneously maximized the global
mutual information between candidate and source images. Local spatial consistency
was enforced to generate the final target image. The performance of the method is
highly dependent on the accuracy of the nearest neighbor searching.

Recently, unsupervised deep learning models have been applied for image syn-
thesis. Cycle-GAN [6], for example, has been used to synthesize CT from MR [7].
However, it is insufficient to simply borrow the Cycle-GAN model while many
properties of the medical images are ignored. We argue that the synthesis of medical
images is quite different from natural images due to the 3D nature of many medical
image modalities. Thus, in this work, we train the deep network in a quasi-3D way and
design a 3D structural dissimilarity loss for several popular medical tasks. Particularly,
inspired by the structural similarity metric (SSIM), we introduce a new structural
dissimilarity loss to improve the boundary contrast of the synthesized image.

We also simplify the generator in GAN to decrease the number of the parameters,
which leads to faster training yet better synthesis quality. Our generator combines the
advantages of Unet [8] and deep residual net [9], and is termed as Res-Unet. Our
simplified model can then be well trained within 3 h. We conduct abundant experi-
ments to verify the promising performances of our method. Specifically, we perform
brain MR-to-CT synthesis, prostate MR-to-CT synthesis and brain 3T-to-7T MR
synthesis, respectively. Several examples of our datasets are shown in Fig. 1, where the
differences between the paired and the unpaired data are clear. Note that in this paper
we use the unpaired data only for all the experiments.
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2 Method

2.1 Loss Design

We aim to accomplish the cross-modality synthesis by the Cycle-Consistent Adver-
sarial Networks. Suppose we have two modality images X and Y . Then, the goal of our
method is to learn the mapping function between these two modalities. We define the

training samples as xif gNi¼12 X and yj
� �M

j¼12 Y . As illustrated in Fig. 2(a), there are

two mapping functions, i.e., G : X ! Y and F : Y ! X in this cross-modality synthesis
task. The two mapping functions can be modeled by deep neural networks. Besides,
two adversarial discriminators DX and DY are trained, such that DX tries to distinguish
real images xif g and the synthesized images F yj

� �� �
. Similarly, DY tries to distinguish

yj
� �

and G xið Þf g. In order to quantify the variation of the anatomical structures
between the real images and the synthesized images, we also introduce the new
structural dissimilarity loss. Therefore, the objective of the network as shown in Fig. 2
(a) mainly contains three terms: the adversarial loss (LGAN), the cycle consistency loss
(LCYC) and the structural dissimilarity loss (LDSSIM):

L G;F;DX ;DYð Þ ¼ LGAN G;DY ;X; Yð ÞþLGAN F;DX ; Y ;Xð Þ
þ kLCYC G;Fð Þþ bLDSSIM G;Fð Þ; ð1Þ

where k and b control the relative importance of individual loss terms. We set k ¼ 10
and set b ¼ 1 in this work.

Adversarial Loss. Adversarial loss is applied to both mapping functions G and F. For
the mapping function G : X ! Y and its corresponding discriminator DY , the objective
function is expressed as:

Fig. 1. Examples of the paired (top) and unpaired training data (bottom) for threes tasks: brain
MR-to-CT, prostate MR-to-CT, and brain 3T-to-7T MR. In the paired data, the input images
(X and Y) belong to the same subject and registered. In the unpaired data, the inputs images are
clearly misaligned.
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LGAN G;DY ;X; Yð Þ ¼ Ey�Pdata yð Þ logDY yð Þ½ � þEx�Pdata xð Þ logð1� DY xð ÞÞ½ � ð2Þ

G intends to generate the target modality image G xð Þ that appears to be similar to real
target image (Y), while DY aims to distinguish whether the input to the discriminator is
the synthesized image G xð Þ or a real image y 2 Y . Therefore, G tries to minimize this
objective function while the adversarial D tries to maximize it, i.e.
G� ¼ argminGmaxDYLGAN G;DY ;X; Yð Þ. Similar adversarial loss is also applied for the
mapping function F : Y ! X: i.e. F� ¼ argminFmaxDXLGAN F;DX ; Y ;Xð Þ:
Cycle Consistency Loss. To further reduce the ambiguity in solving the mapping
functions, we enforce the cycle-consistency constraint, which means the difference
between the input modality image and the cyclically synthesized image should be
minimized. The illustration for the cycle consistency loss is shown in Fig. 2(b) and
(c) for both synthesis direction, i.e., x ! G xð Þ ! F G xð Þð Þ should be similar with x and
y ! G yð Þ ! F G yð Þð Þ should be similar with y. This cycle-consistency loss can thus be
defined as:

Lcyc G;Fð Þ ¼ Ex�Pdata xð Þ F G xð Þð Þ � xk k1
� �þEy�Pdata yð Þ F G yð Þð Þ � yk k1

� �
: ð3Þ

Structural Dissimilarity Loss. As the global L1 loss focuses on the entire image
space, it ignores many local structural details. Structural information is usually critical
in medical images as they are closely related to delineating the boundaries of tissues
and organs. In order to further improve the quality of the synthesized images regarding
anatomical details, we propose to take advantage of SSIM to restore the local structures
in the synthesized image. This leads to the new structural dissimilarity loss (DSSIM),
which is a distance metric extended from SSIM:

Fig. 2. The Cycle-Consistent Adversarial Networks (a) used for cross-modality synthesis are
illustrated in (a). There are two cycle mappings as in (b) and (c).
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LDSSIM G;Fð Þ ¼ Ex�Pdata xð Þ
1� SSIM x;F G xð Þð Þð Þ

2

� 	

þEy�Pdata yð Þ
1� SSIM y;F G yð Þð Þð Þ

2

� 	
:

ð4Þ

2.2 Architecture of the Generator/Discriminator

There are two networks in the Cycle-Consistent Adversarial Networks, i.e., the gen-
erator and the discriminator. The generator, which is critical to the quality of the
generated images, has many layers with abundant parameters, making the training
process very slow. In order to design a more efficient network, we intend to take
advantages from two popular architectures, i.e., Unet [8] and deep residual network [9].

Unet is widely used in many medical image analysis researches, as it has shown
promising results on various tasks, including image segmentation and image synthesis.
Unet consists of an encoding path and a decoding path, with skip connection in each
corresponding level. This design ensures the network to have a large receptive field to
capture both local and global image appearances. Salient high-level features can thus be
extracted, which is essential to the cross-modality mapping trained with unpaired
samples. Deep residual network, is also adopted in many research tasks, such as image
classification and image super-resolution. The most important component of deep
residual network is the residual block, which consists of two convolutional layers with
an identity mapping, as shown in Fig. 3. The residual block is designed to alleviate the
gradient vanishing issue; in the meantime, it can also boost information exchange
across different layers. Inspired by the two networks, we design a deep network called
Res-Unet in this work. Our network fuses advantages of Unet and the residual block, as
its architecture is illustrated in Fig. 3. There are 2 pooling stages, 2 deconvolution
stages and 5 residual blocks in our generator.

Fig. 3. Illustration of the proposed Res-Unet architecture as the generator.
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3 Experimental Results

3.1 Datasets and Tasks

We utilize three real datasets to evaluate our cross-modality synthesis method. The
datasets and the relative synthesis tasks are introduced below.

(1) Brain MR-to-CT dataset. This dataset consists of 16 subjects, each of whom
comes with an MR and a CT scan. The voxel sizes of the CT and MR images are
0:59� 0:59� 0:59 mm3 and 1:2� 1:2� 1 mm3, respectively. We separate the 16
subjects into a training set containing 10 subjects and a testing set containing 6
subjects.

(2) Prostate MR-to-CT dataset. The prostate dataset consists of 22 subjects. The
voxel sizes of the CT and MR images are 1:17� 1:17� 1 mm3 and
1� 1� 1 mm3, respectively. We also separate the 22 subjects into two parts: a
training set containing 14 subjects and a testing set containing 8 subjects.

(3) Brain 3T-to-7T dataset. This dataset consists of 15 subjects. The voxel sizes of
the 3T MR and 7T MR are 1� 1� 1 mm3 and 0:65� 0:65� 0:65 mm3,
respectively. These 15 subjects are separated into a training set containing 10
subjects and a testing set containing 5 subjects.

For both brain and prostate MR-to-CT tasks, the CT images are linearly aligned (by
FLIRT in FSL) to the corresponding MR images and resampled to the same size of the
MR images. For brain 3T-to-7T dataset, corresponding 3T and 7T images are also
linearly aligned. The nonlinear deformations between images in the same subject are
left there. The intensities are normalized to 0; 1½ � in each image.

3.2 Implementation Details

In this paper, PyTorch implementation for the basic Cycle-GAN [6] is used in all the
experiments1. The generator is replaced by the proposed Res-Unet in our method. In
the training phase, we extract consecutive 2D axial slices from the 3D image as the
training samples. The training samples from two different input modalities are drawn
separately, such that the samples in each pair are totally independent. The sampling
process results in the unpaired training dataset, which allows no alignment of the
training images in practical usage. Horizontal flipping is used to augment the training
datasets. We apply Adam optimization with momentum of 0.9 and perform 100 epochs
in the training stage. The batch size is set to 1 and the initial learning rate is set to
0.0002. To quantitatively evaluate the results, we use the commonly accepted metrics
of peak signal-noise ratio (PSNR), normalized mean squared error (NMSE) and
structural similarity (SSIM). In general, higher PSNR, lower NMSE and high SSIM
indicate better perceptive quality of the synthesis result.

1 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.
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3.3 Quantitative and Visual Comparisons

In this section, we compare the cross-modality synthesis results by our proposed
method and the previously reported Cycle-GAN model. Comparisons are conducted on
all three tasks: brain MR-to-CT, prostate MR-to-CT, and brain 3T-to-7T. First, we
show the effectiveness of the proposed new generator Res-Unet. Comparisons between
‘Basic Cycle-GAN’ and ‘Res-Unet’ have been summarized in Table 1. We can see that
with the new generator the synthesis results are improved on all three datasets, which
demonstrates the superiority of the proposed generator. Moreover, with the new
DSSIM loss added, the synthesis performance is further improved. In general, the
quantitative results in Table 1 show that our proposed method (‘Res-Unet + DSSIM’)
achieves best results on all three tasks, in terms of all evaluation metrics of PSNR,
NMSE and SSIM.

To give an intuitive view, visualization of the synthesized results using ‘Basic
Cycle-GAN’ and the proposed ‘Res-Unet + DSSIM’ are presented in Figs. 4, 5 and 6
for prostate MR-to-CT, brain MR-to-CT, and brain 3T-to-7T, respectively. Compared
to ‘Basic Cycle-GAN’, ‘Res-Unet + DSSIM’ can obtain better synthesis results with
clearer tissue/organ boundaries. For example, in the coronal view of the prostate MR-
to-CT task in Fig. 4, the two bones in the hip joint are successfully separated and
synthesized by ‘Res-Unet + DSSIM’, while the boundaries of the bones appear blur in
the synthesized result by ‘Basic Cycle-GAN’ (orange box in the figure). Also we could
observe that the anatomical details pointed by the red and green boxes are clearer in
‘Res-Unet + DSSIM’. Similar observations can be found on brain MR-to-CT and brain
3T-to-7T dataset in Figs. 5 and 6.

Table 1. Comparisons of the synthesis results by different methods.

Brain MR-to-CT Prostate MR-to-CT Brain 3T-to-7T
PSNR NMSE SSIM PSNR NMSE SSIM PSNR NMSE SSIM

Basic cycle-GAN 24.89 0.0569 0.896 30.27 0.0306 0.931 26.71 0.0461 0.918
Res-Unet 25.41 0.0532 0.904 30.58 0.0303 0.929 27.21 0.0436 0.922
Res-Unet + DSSIM
(Proposed method)

25.62 0.0525 0.909 31.23 0.0277 0.937 27.52 0.0421 0.926

Fig. 4. Visual comparison for the prostate MR-to-CT synthesis task. (Color figure online)
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Meanwhile, note that our training is based on 3 consecutive axial slices, while the
synthesized results are consistent on all three views. That is, our method can well handle
the synthesis task of 3D medical images, even though only 3 consecutive slices are used
in training. In the testing stage, we process every 3 axial slices each time, while the final
output of the 3D volume can be obtained by averaging all synthesis results.

We conduct another experiment on brain MR-to-CT dataset to show the fast
convergence of our ‘Res-Unet + DSSIM’ compared to ‘Basic Cycle-GAN’. We show
the synthesis result by training with same epoch. The results are shown in Fig. 7. We
can see that with same training epoch, our proposed model gets better result. It takes
3 h to train our model, while Basic Cycle-GAN takes 17 h. And our model contains
13.3 M parameters, which is 1/4 of ‘Basic Cycle-GAN’. That means our proposed
model could train fast with less parameters, but achieve best synthesis result. The
testing time is 6 s for a 3D image of size 181� 234� 149.

Fig. 5. Visual comparison for the brain MR-to-CT synthesis task. (Color figure online)

Fig. 6. Visual comparison for the brain 3T-to-7T synthesis task. (Color figure online)
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4 Conclusion

We proposed a novel Res-Unet architecture as the generator and solve cross-modality
image synthesis by GAN. In particular, we accomplish the synthesis tasks on three
different scenarios by training with the unpaired data, which indicates that our method
has great potentials to many real clinical applications. This Res-Unet generator, which
benefits from the novel loss design, has shown its superior performances by mapping
between different images modalities with large appearance variation. In our future
work, we will conduct large-scale evaluation in clinical applications, and demonstrate
that the proposed image synthesis technique can be used as a new tool to reshape multi-
modal image fusion and subsequent analysis.

Acknowledgement. This work was supported in part by NIH grant EB006733.

References

1. Cao, T., Zach, C., Modla, S., Powell, D., Czymmek, K., Niethammer, M.: Multi-modal
registration for correlative microscopy using image analogies. Med. Image Anal. 18, 914–926
(2014)

2. Xiang, L., et al.: Deep embedding convolutional neural network for synthesizing CT image
from T1-Weighted MR image. Med. Image Anal. 47, 31–44 (2018)

3. Nie, D., et al.: Medical image synthesis with context-aware generative adversarial networks.
In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.)
MICCAI 2017. LNCS, vol. 10435, pp. 417–425. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66179-7_48

4. Xiang, L., et al.: Deep auto-context convolutional neural networks for standard-dose PET
image estimation from low-dose PET/MRI. Neurocomputing 267, 406–416 (2017)

5. Vemulapalli, R., Van Nguyen, H., Kevin Zhou, S.: Unsupervised cross-modal synthesis of
subject-specific scans. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 630–638 (2015)

6. Zhu, J.-Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-
consistent adversarial networks. arXiv preprint arXiv:1703.10593 (2017)

Fig. 7. Visual comparison for Basic Cycle-GAN and proposed method during training.

Unpaired Deep Cross-Modality Synthesis 163

http://doi.org/10.1007/978-3-319-66179-7_48
http://doi.org/10.1007/978-3-319-66179-7_48
http://arxiv.org/abs/1703.10593


7. Wolterink, J.M., Dinkla, A.M., Savenije, M.H.F., Seevinck, P.R., van den Berg, C.A.T.,
Išgum, I.: Deep MR to CT synthesis using unpaired data. In: Tsaftaris, S.A., Gooya, A.,
Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2017. LNCS, vol. 10557, pp. 14–23. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68127-6_2

8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image
segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015.
LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24574-4_28

9. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. arXiv
preprint arXiv:1512.03385 (2015)

164 L. Xiang et al.

http://doi.org/10.1007/978-3-319-68127-6_2
http://doi.org/10.1007/978-3-319-24574-4_28
http://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1512.03385


UOLO - Automatic Object Detection
and Segmentation in Biomedical Images
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Abstract. We propose UOLO, a novel framework for the simultaneous
detection and segmentation of structures of interest in medical images.
UOLO consists of an object segmentation module which intermediate
abstract representations are processed and used as input for object detec-
tion. The resulting system is optimized simultaneously for detecting a
class of objects and segmenting an optionally different class of struc-
tures. UOLO is trained on a set of bounding boxes enclosing the objects
to detect, as well as pixel-wise segmentation information, when available.
A new loss function is devised, taking into account whether a reference
segmentation is accessible for each training image, in order to suitably
backpropagate the error. We validate UOLO on the task of simultaneous
optic disc (OD) detection, fovea detection, and OD segmentation from
retinal images, achieving state-of-the-art performance on public datasets.

Keywords: Detection · Segmentation · Biomedical images
Eye fundus images · Convolutional neural networks

1 Introduction

Detection and segmentation of anatomical structures are central medical image
analysis tasks since they allow to delimit Regions-Of-Interest (ROI), create land-
marks and improve feature collection. In terms of segmentation, Deep Fully-
Convolutional (FC) Neural Networks (NNs) achieve the highest performance on
a variety of images and problems. Namely, U-Net [1] has become a reference
model – its autoencoder structure with skip connections enables the propaga-
tion from the encoding to the decoding part of the network, allowing a more
robust multi-scale analysis while reducing the need for training data.

Similarly, Deep Neural Networks (DNNs) have become the technique of choice
in many medical imaging detection problems. The standard approach is to use
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networks pre-trained on large datasets of natural images as feature extractors of
a detection module. For instance, Faster-R CNN [2] uses these features to identify
ROIs via a specialized layer. ROIs are then pooled, rescaled and supplied to a
pair of Fully-Connected NNs responsible for adjusting the size and label the
bounding boxes. Alternatively, YOLOv2 [3] avoids the use of an auxiliary ROI
proposal model by directly using region-wise activations from pre-trained weights
to predict coordinates and labels of ROIs.

When a ROI has been identified, the segmentation of an object contained on
it becomes much easier. For this reason, the combination of detection and seg-
mentation models into a single method is being explored. For instance, Mask-R
CNN [4] extends Faster-R CNN with the addition of FC layers after its final pool-
ing, enabling a fine segmentation without a significant computational overhead.
In this architecture, the segmentation and detection modules are decoupled, i.e.
the segmentation part is only responsible for predicting a mask, which is then
labeled class-wise by the detection module. However, despite the high perfor-
mance achieved by Mask-R CNN in computer vision, its application to medical
image analysis problems remains limited. This is due to the large requirement
of data annotated at a pixel level, which is usually not available in medical
applications.

In this paper we propose UOLO (Fig. 1), a novel architecture that performs
simultaneous detection and segmentation of structures of interest in biomedical
images. UOLO harvests the best of its individual detection and segmentation
modules to allow robust and efficient predictions even when few training data
is available. Moreover, training UOLO is simple since the entire network can
be updated during back-propagation. We experimentally validate UOLO on eye
fundus images for the joint task of fovea (FV) detection, optic disc (OD) detec-
tion, and OD segmentation, where we achieve state-of-the-art performance.

Fig. 1. Using UOLO for fovea detection and optic disc detection and segmentation.

2 UOLO Framework

2.1 Object Segmentation Module

For object segmentation we consider an adapted version of the U-Net network
presented in [1]. U-Net is composed of FC layers organized on an auto-encoder
scheme, which allows to obtain an output of the same size of the input, thus
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enabling pixel-wise predictions. Skip connections between the encoding and
decoding parts are used for avoiding the information loss inherent to encod-
ing. The model’s upsampling path includes a large number of feature channels
with the aim of propagating the multi-scale context information to higher reso-
lution layers. Ultimately, the segmentation prediction results from the analysis
of abstract representations of the images from multiple scales, with the majority
of the relevant classification information being available on the decoder portion
of the network due to the skip connections. We modify the network by adding
batch normalization after each convolutional layer, and replacing the pooling
layers by convolutions with stride. The soft intersection over union (IoU) is used
as loss:

LU-Net = 1 − IoU = 1 −
∑

It ◦ Ip∑
(It + Ip) − ∑

It ◦ Ip
, (1)

where It and Ip are the ground truth mask and the soft prediction mask, respec-
tively, and ◦ is the Hadamard product.

2.2 Object Detection Module

For object detection we take inspiration from YOLOv2 [3], a network composed
of: (1) a DNN that extracts features from an image (FYOLO); (2) a feature
interpretation block that predicts both labels and bounding boxes for the objects
of interest (DYOLO). YOLOv2 assumes that every image’s patch can contain an
object of size similar to one of various template bounding boxes (or anchors)
computed a priori from the objects’ shape distribution in the training data.

Let the output of FYOLO be a tensor F of shape S × S × N , where S is the
dimension of the spatial grid and N is the number of maps. FYOLO convolves
and reshapes F into Y , a tensor of shape S × S × A × (C + 5), where A is the
number of anchors, C is the number of object classes, and 5 is the number of
variables to be optimized: center coordinates x and y, width w, height h, and the
confidence c (how likely is the bounding box to be an object) of the bounding
boxes. For each anchor Ak in Y , the value of each feature map element mi,j is
responsible for adjusting a property of the predicted bounding box b̂,

(b̂x, b̂y) = (σ(x̂) + xi,j,k, σ(ŷ) + yi,j,k)

(b̂w, b̂h) = (wi,j,ke
ŵ, hi,j,ke

ĥ) (2)
confidence = σ(ĉ)

where σ is a sigmoid function. YOLOv2 is trained by optimizing the loss function:

LYOLO = λ1Lcenters + λ2Ldimensions + λ3Lconfidence + λ4Lclasses (3)

where λi are predefined weighting factors, Lcenters, Ldimensions and Lconfidence

are mean squared errors, and Lclasses is the cross-entropy loss. Each loss term
penalizes a different error: (1) Lcenters penalizes the error in the center position
of the cells; (2) Ldimensions penalizes the incorrect size, i.e. height and width,
of the bounding box; (3) Lconfidence penalizes the incorrect prediction of a box
presence; (4) Lclasses penalizes the misclassification of the objects.
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2.3 UOLO for Joint Object Detection and Segmentation

UOLO framework for object detection and segmentation is depicted in Fig. 2,
where the segmentation module itself is used as a feature extraction module,
adopting the role of FYOLO, and serving as input for the localization module
DYOLO. The intuition behind this design is that the abstract representation
learned by the decoding part of U-Net contains multi-scale information that can
be useful not only to segment objects, but also to detect them. In addition, the
class of objects that UOLO can detect is not limited to those for which segmen-
tation ground-truth is available.

Fig. 2. UOLO framework, nesting an U-Net responsible for segmentation and feature
extraction for an YOLOv2-based detector. MU-Net: U-net part; MUOLO: full UOLO.

Let MU-Net be an U-Net-like network that, given pairs of images and binary
masks, can be trained for performing segmentation by minimizing LU-Net (Eq. 1).
MU-Net has a second output corresponding to the concatenation of the down-
sampled decoding maps with its bottle neck (last encoder layer). The resulting
tensor corresponds to a set of multi-scale representations of the original image
that are supplied to the object detection block DYOLO, which, by its turn, can be
optimized via LYOLO, defined in Eq. 3. DYOLO and MU-Net are then merged by
concatenation into MUOLO, a single model that can be optimized by minimizing
the addition of the corresponding loss functions:

LUOLO = LYOLO + LU-Net (4)

Thanks to the straightforward definition of the loss function in Eq. (4),
MUOLO can be trained with a simple iterative scheme detailed in Algorithm1.
In essence, LU-Net is updated only when segmentation information is available.
However, a global weight update is performed at every step based on the pre-
diction error backpropagation. Furthermore, the outlined training scheme allows
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Algorithm 1. Loss computation scheme of UOLO. MU-Net: U-net part from the
UOLO model; MUOLO: full UOLO model; bdet: batches of images with objects’ bound-
ing boxes ground truth; bseg: batches of images with segmentation ground truth.

LU-Net ← 1
for each training step do

MUOLO ← train(MUOLO, bdet,LUOLO) {train on ndet batches from bdet, back-
propagating LUOLO};
update(LYOLO)

MU-Net ← train(MU-Net, bseg,LU-Net) {train on nseg batches from bseg, backprop-
agating LU-Net}
update(LU-Net)
LUOLO ← LYOLO + LU-Net

for a different number of strong (pixel-wise) and weak (bounding boxes) anno-
tations, easing its application to medical images.

3 Experiments and Results

3.1 Datasets and Experimental Details

We test UOLO on 3 public eye fundus datasets with healthy and pathological
images: (1) Messidor [5] has 1200 images (1440 × 960, 2240 × 1488 and 2304 ×
1536 pixels, 45◦ field-of-view (FOV)), 1136 having ground truth (GT) for OD
segmentation and FV centers1; (2) IDRID2 training set has 413 images (4288
× 2848 pixels, 50◦ FOV) with OD and FV centers and 54 with OD segmen-
tation; (3) DRIVE [6] has 40 images (768 × 584 pixels, 45◦ FOV) with OD
segmentation3.

All images are cropped around the FOV (determined via Otsu’s thresholding)
and resized to 256 × 256 pixels. The side of the square GT bounding boxes is set
to 32 and 64 for the FV and OD following their relative size in the image. For
training, ndet and nseg (Algorithm 1) are set to 256 and 32, respectively. Online
data augmentation, a mini-batch size of 8, and the Adam optimizer (learning rate
of 1e–4) were used for training, while 25% of the data was kept for validation.
The bounding box with highest confidence for each class is kept. The predicted
soft segmentations are binarized using a threshold of 0.5.

The OD segmentation is evaluated with IoU and Sorensen-Dice coefficient
overlap metrics. The detection is evaluated in terms of mean euclidean distance
(ED) between the prediction and the GT. We also evaluate ED relatively to
the OD radius, D̄ [7,8]. Finally, detection success, S1R, is assessed using the
maximum distance criteria of 1 OD radius.

1 http://www.uhu.es/retinopathy.
2 https://idrid.grand-challenge.org/, available since January 20, 2018.
3 https://sites.google.com/a/uw.edu/src/useful-links.

http://www.uhu.es/retinopathy
https://idrid.grand-challenge.org/
https://sites.google.com/a/uw.edu/src/useful-links
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3.2 Results and Discussion

We evaluate UOLO both inter and intra-dataset-wise. For inter-dataset experi-
ments, UOLO was trained on Messidor and tested in the other datasets whereas
for intra-dataset studies stratified 5-fold cross-validation was used. We do not
extensively optimize the training parameters to verify how robust UOLO is
when dealing with segmentation and detection simultaneously. Table 1 shows
the results of UOLO for the OD detection and segmentation and FV detec-
tion tasks, Table 2 compares our performance with state-of-the-art methods and
Fig. 3 shows two prediction examples in complex detection and segmentation
cases.

UOLO achieves equal or better performance in comparison to the state-of-
the-art on both detection and segmentation tasks (IoU 0.88 ± 0.09 on Messidor)
in a single step prediction. Furthermore, the proposed network is robust even
in inter-dataset scenarios, maintaining both segmentation and detection perfor-
mances. This indicates that the abstract representations learned by UOLO are

Table 1. UOLO performance on optic disc (OD) detection and segmentation and fovea
(FV) detection. n: number of training images for detection and segmentation.

Datasets n OD seg. OD det. FV det.

Train Test seg. det. IoU Dice D̄ S1R D̄ S1R

Messidor 680 680 0.88 0.93 0.111 99.74 0.121 99.38

Messidor 100 680 0.87 0.93 0.114 99.74 0.114 97.89

IDRID 30 280 0.88 0.93 0.095 99.79 0.288 93.78

Messidor IDRID 852 852 0.84 0.91 0.138 99.78 0.403 89.06

Messidor DRIVE 852 852 0.82 0.89 0.171 97.50 - -

Fig. 3. Examples of results of UOLO on Messidor images. Green curve: segmented
optic disc (OD), green and blue boxes: predicted OD and FV locations, respectively;
black curve: ground truth OD segmentation; black and blue dots: ground truth OD
and FV locations, respectively. The object detection confidence is shown next to each
box. IoU (intersection over union) and normalized distance (D̄) values are also shown.
(Color figure online)
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highly effective for solving the task at hands. It is worth noting that our segmen-
tation and detection performances do not alter significantly even when UOLO
is trained with only 15% of the pixel-wise annotated images. This means that
UOLO does not require a significant amount of pixel-wise annotations, easing
its application on the medical field, where these are expensive to obtain.

Our results also suggest that UOLO is capable of using multi-scale informa-
tion (eg. relative position to the OD or vessel tree) to perform predictions. For
instance, Fig. 3 shows UOLO’s output for two Messidor images, illustrating that
the network is capable of detecting the FV in a low contrast scenario. On the
other hand, the segmentation and detection processes are not completely inter-
dependent, as expected from the proposed training scheme, since the network
segments OD confounders outside the detected OD region. Another advantage
of UOLO is that these segmentation errors are easily correctable by limiting
the pixel-wise predictions to the found OD region. Unlike hand-crafted feature-
based methods, UOLO does not require an extensive parameter tunning and it
is simple to extend to different applications.

We also evaluate U-Net (MU-Net, Fig. 2) for OD segmentation and YOLOv2
(with a pretrained Inceptionv3 as feature extractor) for OD and FV detec-
tion (Table 2). The training conditions were set as in UOLO. UOLO segmenta-
tion performance is practically the same as U-Net, whereas the detection drops
slightly when comparing with YOLOv2, mainly for OD detection. However, one
has to consider the trade-off between computational burden and performance,
since UOLO network has 23 347 063 parameters, whereas U-Net has 15 063 985
and YOLOv2 has 21 831 470, being that for training U-Net and YOLO a total
of 36 895 455 parameters have to be optimized (60% increase).

Table 2. State-of-the-art for OD detection and segmentation and FV detection.



172 T. Araújo et al.

4 Conclusions

We presented UOLO, a novel network that performs joint detection and segmen-
tation of objects of interest in medical images by using the abstract representa-
tions learned by U-Net. Furthermore, UOLO can detect objects from a different
class for which segmentation ground-truth is available.

We tested UOLO for simultaneous fovea detection and optic disk detection
and segmentation, achieving state-of-the-art results. This network can be trained
with relatively few images with segmentation ground-truth and still maintain a
high performance. UOLO is also robust to inter-dataset settings, thus showing
great potential for applications in the medical image analysis field.
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Abstract. The cycleGAN is becoming an influential method in medical
image synthesis. However, due to a lack of direct constraints between
input and synthetic images, the cycleGAN cannot guarantee struc-
tural consistency between these two images, and such consistency is of
extreme importance in medical imaging. To overcome this, we propose
a structure-constrained cycleGAN for brain MR-to-CT synthesis using
unpaired data that defines an extra structure-consistency loss based on
the modality independent neighborhood descriptor to constrain struc-
tural consistency. Additionally, we use a position-based selection strat-
egy for selecting training images instead of a completely random selection
scheme. Experimental results on synthesizing CT images from brain MR
images demonstrate that our method is better than the conventional
cycleGAN and approximates the cycleGAN trained with paired data.

Keywords: MR-to-CT synthesis · CycleGAN · Deep learning · MIND

1 Introduction

Magnetic resonance (MR) imaging has been widely utilized to diagnose patients,
as it is non-ionizing, non-invasive, and has a range of contrast mechanisms. How-
ever, MR images do not directly provide electron density information, which is
essential for some applications such as MR-based radiotherapy treatment plan-
ning or attenuation correction in hybrid PET/MR scanners. A straightforward
solution is to separately scan a computed tomography (CT) image, but this is
time-consuming, costly, potentially harmful to patients, and requires accurate
MR/CT registrations. Therefore, to avoid the CT scan, a variety of approaches
have been proposed to synthesize CT images from available MR images [1,4–7].
For example, by using paired MR and CT atlases, atlas-based methods [4] first
register multiple atlas MR images to a subject MR image, and then the warped

c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): DLMIA 2018/ML-CDS 2018, LNCS 11045, pp. 174–182, 2018.
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atlas CT images are combined to synthesize a subject CT image. Deep learning-
based methods [5] have designed different convolutional neural network (CNN)
structures to directly learn the MR-to-CT mapping.

Although these methods can produce good synthetic images, they rely on a
large number of paired CT and MR images, which are hard to obtain in practice,
especially for specific MR tissue contrasts. To relax the requirement of paired
data, Wolterink et al. [6] and Chartsias et al. [1] used a cycleGAN [8] for MR-
to-CT synthesis on unpaired data with promising results. They used a CNN to
learn the MR-to-CT mapping with the help of an adversarial loss, which forces
synthetic CT images to be indistinguishable from real CT images. To ensure the
synthetic CT image correctly corresponds to an input MR image, another CNN
is utilized to map synthetic CT back to the MR domain and the reconstructed
image should be identical to the input MR image (i.e., cycle-consistency loss).

Fig. 1. Visual example of a cycleGAN result. We show (a) ground-truth CT image
and input MR image, (b) synthetic CT image and reconstructed MR image, and (c)
the relative errors between the ground-truth/synthetic CT images (upper) and the
input/reconstructed MR images (lower).

However, due to a lack of direct constraints between the synthetic and input
images, the cycleGAN cannot guarantee structural consistency between these
two images. As shown in Fig. 1, the reconstructed MR image is almost identical
to the input MR image, indicating the cycle consistency is well kept, but the
synthetic CT image is quite different from the ground-truth, especially for the
skull region, which illustrates that the structure of the synthetic CT image is not
consistent with that of the input MR image. To overcome this, Zhang et al. [7]
trained two auxiliary CNNs respectively for segmenting MR and CT images
and also defined a loss to force the segmentation of the synthetic image to be
the same as the ground-truth segmentation of the input image. This requires a
training dataset with ground-truth segmentations of MR and CT images, which
further complicates the training data requirements.
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Fig. 2. Illustration of our proposed structure-constrained cycleGAN. Two generators
(i.e., GCT and GMR) learn cross-domain mappings between CT and MR domains.
The training of these mappings is supervised by adversarial, cycle-consistency, and
structure-consistency losses.

In this work, we propose a structure-constrained cycleGAN to constrain
structural consistency without requiring ground-truth segmentations. By using
the modality independent neighborhood descriptor [3], we define a structure-
consistency loss enforcing the extracted features in the synthetic image to be
voxel-wise close to the ones extracted in the input image. Additionally, we use
a position-based selection strategy for selecting training images instead of a
completely random selection scheme. Experimental results on synthesizing CT
images from brain MR images show that our method achieves significantly better
results compared to a conventional cycleGAN with various metrics, and approx-
imates the cycleGAN trained with paired data.

2 Method

In this section, we introduce our proposed structure-constrained cycleGAN. As
shown in Fig. 2, our method contains two generators GCT and GMR, which pro-
vide the MR-to-CT and CT-to-MR mappings, respectively. In addition, discrim-
inator DCT is used to distinguish between real and synthetic CT images, and
discriminator DMR is for MR images. Our training loss includes three types of
terms: an adversarial loss [2] for matching the distribution of synthetic images to
target CT or MR domain; a cycle-consistency loss [8] to prevent generators from
producing synthetic images that are irrelevant to the inputs; and a structure-
consistency loss to constrain structural consistency between input and synthetic
images.

2.1 Adversarial Loss

The adversarial loss [2] is applied to both generators. For the generator GCT and
its discriminator DCT, the adversarial loss is defined as

LGAN(GCT,DCT) = DCT(GCT(IMR))2 + (1 − DCT(ICT))2 , (1)
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where ICT and IMR denote the unpaired input CT and MR images. During
the training phase, GCT tries to generate a synthetic CT image GCT(IMR)
close to a real CT image, i.e., maxGCT LGAN(GCT,DCT), while DCT is to dis-
tinguish between a synthetic CT image GCT(IMR) and a real image ICT, i.e.,
minDCT LGAN(GCT,DCT). Similarly, the adversarial loss for GMR and DMR is
defined as

LGAN(GMR,DMR) = DMR(GMR(ICT))2 + (1 − DMR(IMR))2 . (2)

Fig. 3. Illustration of the MIND feature. (a) To extract the MIND feature at x, a patch
around x + α is compared with a patch around x for each x + α ∈ Rnl; (b) comparison
between x and x + α of I in (a) equals a comparison of I and I ′(α) at x; (c) the CT
image paired with MR image in (a); (d) visual examples of MIND features extracted
at voxels A, B, C within paired MR and CT images in (a) and (c).

2.2 Cycle-Consistency Loss

To prevent the generators from producing synthetic images that are irrelevant to
the inputs, a cycle-consistency loss [8] is utilized for GCT and GMR forcing the
reconstructed images GCT (GMR(ICT)) and GMR (GCT(IMR)) to be identical to
their inputs ICT and IMR. This loss is written as

Lcycle(GCT, GMR) = ‖GCT (GMR(ICT)) − ICT‖1
+ ‖GMR (GCT(IMR)) − IMR‖1 .

(3)

2.3 Structure-Consistency Loss

Since the cycle-consistency loss does not necessarily ensure structural consis-
tency (as discussed in Sect. 1), our method uses an extra structure-consistency
loss between the synthetic and input images. However, as these two images are
respectively in MR and CT domains, we first map these images into a common
feature domain by using a modal-independent structural feature, and then the
structural consistency between the synthetic and input images is measured in
this feature domain. In this work, we use the modality independent neighborhood
descriptor (MIND) [3] as the structural feature. MIND is defined using a non-
local patch-based self-similarity and depends on image local structure instead
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of intensity values. It has been previously applied to MR/CT image registra-
tion as a similarity metric. Figure 3(d) shows visual examples of MIND features
extracted at different voxels in MR and CT images. In the following paragraphs,
we introduce the MIND feature and our structure-consistency loss in detail.

The MIND feature extracts distinctive image structure by comparing each
patch with all its neighbors in a non-local region. As shown in Fig. 3(a), for
voxel x in image I, the MIND feature Fx is an |Rnl|-length vector, where Rnl

denotes a non-local region around voxel x, and each component F
(α)
x for a voxel

x + α ∈ Rnl is defined as

F (α)
x (I) =

1
Z

exp
(

−DP(I, x, x + α)
V (I, x)

)
, (4)

where Z is a normalization constant so that the maximal component of Fx is 1.
DP(I, x, x+α) denotes the L2 distance between two image patches P respectively
centered at voxel x and voxel x + α in image I, and V (I, x) is an estimation of
local variance at voxel x, which can be written as

DP(I, x, x + α) =
∑
p∈P

(I(x + p) − I(x + α + p))2 , (5)

V (I, x) =
1
4

∑
n∈N

DP(I, x, x + n) , (6)

where N is the 4-neighborhood of voxel x.
It is difficult to directly compute the operation DP and its gradient using

Eq. 5 in a deep network. Instead, as shown in Fig. 3(b), DP can be equivalently
computed by using a convolutional operation as

DP(I, x, x + α) = C ∗ (I − I ′(α))2 , (7)

where C is an all-one kernel of the same size as patch P, and I ′(α) denotes I
translated by α. By doing this, the structural feature can be extracted via several
simple operations and the gradients of these operations can be easily computed.

Based on the MIND feature introduced above, the structure-consistency loss
in our method is defined to enforce the extracted MIND features in the synthetic
images GCT(IMR) or GMR(ICT) to be voxel-wise close to the ones extracted in
their inputs IMR or ICT, which can be written as

Lstructure(GCT, GMR) =
1

NMR|Rnl|
∑

x

‖Fx(GCT(IMR)) − Fx(IMR)‖1

+
1

NCT|Rnl|
∑

x

‖Fx(GMR(ICT)) − Fx(ICT)‖1 , (8)

where NMR and NCT respectively denote the number of voxels in input images
IMR and ICT, and ‖ · ‖1 is the L1 norm. In this work, we use a 9 × 9 non-local
region and a 7 × 7 patch for computing structure-consistency loss. Furthermore,
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instead of an all-one kernel C, we utilize a Gaussian kernel Cσ with standard
deviation σ = 2 to reweight the importance of voxels within patch P in Eq. 7. In
preliminary experiments, we tried different non-local regions, patch sizes, and σ
values, but did not observe improved performance.

2.4 Training Loss

Given the definitions of adversarial, cycle-consistency, and structure-consistency
losses above, the training loss of our proposed method is defined as:

L(GCT, GMR,DCT,DMR) = LGAN(GCT,DCT) + LGAN(GMR,DMR)
+λ1Lcycle(GCT, GMR) + λ2Lstructure(GCT, GMR) , (9)

where λ1 and λ2 control the relative importance of the loss terms. During train-
ing, λ1 is set to 10 as per [6,8] and λ2 is set to 5. To optimize L, we alternatively
update DMR/CT (with GMR/CT fixed) and GMR/CT (with DMR/CT fixed).

2.5 Network Structure

Our method is composed of four trainable neural networks, i.e., two generators,
GCT and GMR, and two discriminators, DCT and DMR, and we use the same
network structures as [6,8] in this work. That is, two generators, GCT and GMR,
are 2D fully convolutional networks (FCNs) with two stride-2 convolutional lay-
ers, nine residual blocks, and two fractionally-strided convolutional layers with
stride 1

2 . The two discriminators, DCT and DMR, are 2D FCNs consisting of five
convolutional layers to classify whether 70 × 70 overlapping image patches are
real or synthetic. For further details, please refer to [8].

2.6 Position-Based Selection Strategy

Although our input MR and CT slices are unpaired, we can get the positions
of their slices within the volumes. Slices in the middle of the volume necessarily
have more brain tissue than peripheral slices. Thus, instead of feeding in slices
at extremely different positions of the brain, e.g., a peripheral CT slice and a
medial MR slice, we input training slices at similar positions; this is referred to
as a position-based selection (PBS) strategy. That is, the MR and CT slices are
linearly aligned considering their respective numbers of slices within the volumes,
and given the i-th MR slice in its volume, the index T (i) of corresponding CT
slice selected by our method is determined by

T (i) =

⎧⎨
⎩

[
i · KCT−1

KMR−1

]
+ m , if 5 ≤

[
i · KCT−1

KMR−1

]
< KCT − 5,[

i · KCT−1
KMR−1

]
, otherwise,

(10)

where KMR and KCT respectively denote the number of slices in unpaired MR
and CT volumes. [·] denotes the rounding function, and m is a random inte-
ger within the range of [−5, 5]. This strategy forces the discriminators to be
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stronger at distinguishing synthetic images from real ones, thus avoiding mode
collapse. This in turn forces our generators to be better in order to trick our
discriminators. We evaluate this position-based selection strategy in Sect. 3.

3 Experiments

3.1 Data Set

The MR and CT volumes are respectively obtained using a Siemens Magnetom
Espree 1.5T scanner (Siemens Medical Solutions, Malvern, PA) and a Philips
Brilliance Big Bore scanner (Philips Medical Systems, Netherlands) under a
routine clinical protocol for brain cancer patients. Geometric distortions in MR
volumes are corrected using a 3D correction algorithm in the Siemens Syngo con-
sole workstation. All MR volumes are N4 corrected and normalized by aligning
the white matter peak identified by fuzzy C-means.

The data set contains the brain MR and CT volumes of 45 patients, which
were divided into a training set containing MR and CT volumes of 27 patients,
a validation set of 3 patients for model and epoch selection, and a test set of 15
patients for performance evaluation. As in [6], the experiments were performed
on 2D sagittal image slices. Each MR or CT volume contains about 270 sagittal
images, which are resized and padded to 384× 256 while maintaining the aspect
ratio, and the intensity ranges are respectively [−1000, 3500] HU for CT and
[0, 3500] for MR. To augment the training set, each image is padded to 400×284
and then randomly cropped to 384 × 256 as training samples.

3.2 Experimental Results

We compare the proposed method to the conventional cycleGAN [6,8] (denoted
as “cycleGAN”) and a cycleGAN trained with paired data (denoted as “cycle-
GAN (paired)”), which represents the best that a cycleGAN can achieve.
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Fig. 4. Comparison of different methods on synthesizing CT images in boxplots, where
the diamond and number in blue denote the respective mean and ∗ denotes p < 0.001
compared to the conventional cycleGAN using a paired sample t-test.
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To evaluate the position-based selection strategy in Sect. 2.6, a cycleGAN using
this strategy during training, denoted as “cycleGAN (PBS)”, is also included in
comparison. As in [6,8], the learning rate is set to 0.0002 for all compared methods.

Fig. 5. Visual comparison of synthetic CT images using different methods. For one test
subject, we show (a) the ground-truth CT image and input MR image; the synthetic
CT image and its difference image (compared to ground-truth CT image) generated by
(b) cycleGAN, (c) cycleGAN (PBS), (d) cycleGAN (paired), and (e) proposed method.
The small text in each sub-image is the corresponding accuracy on this test subject.

To quantitatively compare these methods, we use mean absolute
error (MAE), peak signal-to-noise ratio (PSNR), and structural similar-
ity (SSIM) between the ground-truth CT volume and the synthetic one, which
are computed within the head region mask and averaged over 15 test subjects.
Furthermore, SSIM over regions with high gradient magnitudes (denoted as
“SSIM(HG)”) is also computed to measure the quality of bone regions in syn-
thetic images. The maximum value in PSNR and the dynamic range in SSIM
are set to 4500, as the range of our CT data is [−1000, 3500] HU.

As shown in Fig. 4, our proposed method achieves significantly better perfor-
mance than conventional cycleGAN in all the metrics (p < 0.001) and produces
similar results compared to the cycleGAN trained with paired data. Compared
to randomly selecting training slices at any position, our proposed position-based
selection strategy produces significantly higher SSIM(HG) score (p < 0.001) with
marginal improvement in the other three metrics. Figure 5 shows visual examples
of synthetic CT images by different methods from a test subject.

4 Conclusion

We propose a structure-constrained cycleGAN for brain MR-to-CT synthesis
using unpaired data. Compared to the conventional cycleGAN [6,8], we define
an extra structure-consistency loss based on the modality independent neighbor-
hood descriptor to constrain structural consistency and also introduce a position-
based selection strategy for selecting training images. The experiments show that
our method generates better synthetic CT images than the conventional cycle-
GAN and produces results similar to a cycleGAN trained with paired data.
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Abstract. Segmentation is essential formedical image analysis tasks such
as interventionplanning, therapy guidance, diagnosis, treatment decisions.
Deep learning is becoming increasingly prominent for segmentation, where
the lack of annotations, however, often becomes the main limitation. Due
to privacy concerns and ethical considerations, most medical datasets are
created, curated, and allow access only locally. Furthermore, current deep
learning methods are often suboptimal in translating anatomical knowl-
edge between different medical imaging modalities. Active learning can be
used to select an informed set of image samples to request for manual anno-
tation, in order to best utilize the limited annotation time of clinical experts
for optimal outcomes, which we focus on in this work. Our contributions
herein are two fold: (1) we enforce domain-representativeness of selected
samples using a proposed penalization scheme to maximize information
at the network abstraction layer, and (2) we propose a Borda-count based
sample querying scheme for selecting samples for segmentation. Compar-
ative experiments with baseline approaches show that the samples queried
with our proposed method, where both above contributions are combined,
result in significantly improved segmentation performance for this active
learning task.

1 Introduction

Segmentation has several medical applications, such as patient-specific surgical
planning. Due to limited resources of expert physicians, detailed manual anno-
tations are often not possible, even when desired anatomy may be visible with
sufficient contrast using non-invasive imaging modalities such as MRI and ultra-
sound. Deep learning has shown encouraging performance for segmentation [1,2],
but often only when sufficient amount of labeled data for a target anatomy is
available. Medical image data across different medical centers is often not uni-
form, for instance with respect to machine manufacturer, imaging settings, and
cohort demographics. Thus, studies and corresponding annotations are only car-
ried out in isolated datasets, with difficulties in merging information with data
c© Springer Nature Switzerland AG 2018
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sharing, patient rights, and confidentiality concerns. Hence, a sufficiently large
dataset for a given task needs to be labeled. Active learning aims at maximiz-
ing the prediction performance through an intelligent sample querying system
so that the limited expert annotation resources can be properly managed as
opposed to training on a randomly selected next batch of samples which would
contain a lot of redundancy. In a clinical environment, one can imagine that
expert(s) will allocate a fixed amount of annotation time per time interval (i.e.,
week), hence the correct use of this time (i.e., on most valuable samples) is
essential. Therefore, the segmentation framework would be initially provided a
very limited labeled dataset, which will be extended with a certain batch size of
samples intelligently selected at each iteration of the active learning.

Intuitively, the prediction confidence of a learned model can be used as a
surrogate metric for its potential accuracy, in order to propose the most uncer-
tain predictions for future manual annotation. In [3], MC dropout is proposed
to sample from the approximate trained model posterior, which can be used to
quantify an uncertainty metric through variations in the model predictions for
a given input. Based on this, several approaches of querying the next batch of
data are studied and compared with uniform random sampling in [4]. Unfor-
tunately, it is intractable to assess conditional uncertainty of multiple samples;
e.g. would ith sample be still as uncertain as before once jth sample is queried
and trained for. Thus, it is intuitive to select a representative subset of these
uncertain samples to reduce redundancy. Using a simplified version of DCAN [2]
architecture (which has won the first place in the 2015 MICCAI Gland Seg-
mentation Challenge [5]) for the purpose of faster training, a state-of-the-art
method was proposed in [6] to select optimal sample images to annotate. First,
a batch of uncertain samples is chosen based on the mean variance of multiple
network predictions, followed by picking a subset of these using maximum set
coverage [7] over the image descriptors of these samples. Recently in [8], a con-
tent distance [9] concept was proposed to quantify the similarity between two
images, for selecting representative samples in class-incremental learning.

Herein we propose two main novelties for querying samples at an active
learning step: (1) we add an additional constraint on the abstraction layer [8]
activations during training to maximize information content at this level. We
show that this additional constraint improves sample suitability that boosts seg-
mentation performance from active learning. (2) Instead of the two step sample
querying procedure (i.e., first select based on uncertainty, then cull using rep-
resentativeness), we propose a Borda-count based method. This alone provides
improvement over the state-of-the-art [6]; and when used in conjunction with
our novel constraint above, it yields even further segmentation improvement.

2 Estimating Surrogate Metrics for Representativeness

Background. In [6], multiple FCNs were trained to estimate uncertainty for a
given image through variation in their inferences. To make the FCN predictions
diverse, the annotated dataset was also bootstrapped when training each model.
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However, training several models is a costly operation and with larger number of
models, one should bootstrap a smaller portion of the already-minimal dataset
available in the early stages of typical active learning scenarios.

In our work, as a baseline, we implemented an improved version of the Sugges-
tive Annotation framework [6]. We added dropout layers (c.f. Fig. 1) to allow for
MC dropout [3], through which one can compute the voxel-wise variance across
ni inferences, and average it over all input voxels. The first step in querying
samples is to pick the most uncertain nunc samples Sunc from the set of non-
annotated data Dpool. For representativeness, “image descriptor” Ici of every
image Ii ∈ Dpool is computed as described in [6] at the abstraction layer, labst
(c.f. Fig. 1). Using cosine similarity dsim(Ii, Ij) = cos(Ici , I

c
j ) between the descrip-

tors of images Ii and Ij , the maximum set-cover [7] over Dpool is computed using
descriptors from Sunc for the top nrep images. We call this method of using uncer-
tainty and the above image descriptor (ID) as UNC-ID hereafter.

Fig. 1. DCAN network for SuggestiveAnnotation with additional spatial dropout lay-
ers. nch is the number of filters in respective block, BN is batch normalization, and ncl

is the number of classes. In consecutive bottlenecks, the first uses convolution filter in
shortcuts to match tensor size while the second does not.

Content Distance. The image descriptor Ici averages the spatial information
at the corresponding layer activations. While this allows for a spatially invariant
means of representing a given image at a very abstract level, higher order features
extracted at this stage would be blurred by this process. Alternatively, layer
activation responses Rl(Ii) of a pretrained classification network at a layer l can
be used to describe the content of an image Ii [9]. Then, content distance (dcont)
between images Ii and Ij is defined as the mean squared error between their
responses at layer l:

dcont(Ii, Ij) =
1
N

N∑
(Rl(Ii) − Rl(Ij))2 (1)

A similar notion can be applied to active learning problems, where input images
are described by the activation response at the labst of the currently trained
network (c.f. Fig. 1).



186 F. Ozdemir et al.

Encoding Representativeness by Maximizing Entropy. Content distance
defined in Eq. (1) allows for finer content discrimination than image descrip-
tors [6]. However, it has been suggested that activations at a single layer may
not be sufficient for accurate content description [8]. This is likely to particu-
larly apply to segmentation networks, since network weights until labst are not
optimized to describe the input image. Therefore, it has been proposed to stack
activations from multiple layers. For a typical segmentation network, storing all
layer activations of Dpool can quickly diverge to an unfeasible size. Alternatively,
one can try to increase information content at the labst through maximizing its
activation entropy [10] along the feature channels. Entropy loss can then be
defined as:

Lent = −
∑

x

H(R(labst,x)) (2)

where R(labst,x) are the input activations of all channels for spatial location x, and
x iterates over the width and height of the layer labst. Hence, total loss for the
trained network becomes Ltotal = Lseg + λLent, where Lseg is the segmentation
loss, and λ is used to scale the entropy loss Lent.

Optimization of the network weights through entropy maximization is a novel
regularization. Lent alone would have a tendency to alter network weights to only
increase information, which may also encourage randomness. With an appropri-
ate λ, the network is forced to optimize parameters for the segmentation task
while also increasing “useful” information content at the abstraction layer; as
opposed to producing just noise at labst. Hence, additional content description
for a given image can be retrieved from a single layer activation, making it a
feasible alternative. We refer to this method, where an entropy-based content
distance (ECD) is used, as UNC-ECD.

3 Sample Selection Strategy

For active learning, one should emphasize that the initial data size can be very
small. Until the model parameters are optimized for a sufficient coverage of
the data distribution, the defined “uncertainty” metric might be misleading.
As a result, one can explore different ways to combine multiple metrics when
querying samples instead of the conventional 2-step process. An intuitive way to
combine two metrics mk and ml would be to use wkmk +wlml, where wk, wl are
weights. However, uncertainty and representativeness metrics defined in Sect. 2
are not linearly combinable, even if normalized, due to non-linear unit incre-
ments. Therefore, we propose to use Borda count, where samples are ranked for
each metric, and the next query sample Ii∗ is picked based on the best combined
rank:

i∗ = arg min
i

(
∑

mk∈Sm

frank(mk(Ii))) (3)

where Sm is the set of metrics mk to combine, and the frank function sorts the
images based on the metric mk. When we use the ranking in Eq. (3) for samples
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selection, we denote this in our results with “+”, e.g. content distance with
uncertainty is named UNC+ECD. In an active learning framework, the methods
mentioned until now can be denoted as UNC+ID, UNC+ECD for ranking based
sample selection and UNC-ID, UNC-ECD for uncertainty selection followed by
representativeness selection.

Table 1. Dataset configuration

Config #volumes Left/Right vox res. [mm] image size [px] TR [s] TE [s] FA [◦]

1 20 9/11 0.91 × 0.91 × 3.0 192 × 192 × 64 20 1.70 10

2 16 8/8 0.83 × 0.83 × 3.0 144 × 144 × 56 20 2.39 10

Fig. 2. Comparison between our implementation of the baseline method (UNC-ID)
with random sampling (RAND) and only uncertainty-based (UNC) active learning
methods. Training on 100% of the data (Dpool) is shown as upperbound. (a) Mean
Dice score and (b) mean surface distance (MSD) with error bars covering the standard
deviation of 5 hold-out experiments at every evaluation point.

4 Experiments and Results

We have conducted experiments on an MR dataset of 36 patients diagnosed
with rotator cuff tear (shoulders) according to specifications shown on Table 1.
In an effort to regularize the dataset, Config2 images have been resized to match
the voxel resolution of Config1, and then zero padded to match the in-plane
image size of Config1. The data has expert annotations of two bones (humerus
& scapula) and two muscle groups (supraspinatus & infraspinatus + teres minor).
Experiments have been conducted using NVIDIA Titan X GPU and Tensorflow
library [11].
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Fig. 3. Comparison of the baseline method (UNC-ID) with ranking based sample selec-
tion (UNC+ID) and the combination of our proposed extensions (UNC+ECD). Train-
ing on 100% of the data (Dpool) is shown as upperbound. (a) Mean Dice score and
(b) mean surface distance (MSD) with error bars covering the standard deviation of 5
hold-out experiments at every evaluation point. The mean Dice score of UNC+ECD
was statistically significantly higher than the baseline in 4 of 5 experiments (one-sided
paired t-test at the 0.05 level).

For all compared methods, we have used the modified DCAN architecture
shown in Fig. 1, training it on 2D in-plane slices with the parameters nch = 32
and Adam optimizer. When training the networks, learning rate of 5 × 10−4,
dropout rate of 0.5, ni=17, and minibatch size of 8 images were applied. At
each active learning stage, including the initial training, models were trained for
8000 steps, which took about 48 mins. Uncertainty metric is aggregated over the
foreground classes to represent their mean uncertainty. We used cross-entropy
loss at the softmax layer (c.f. Fig. 1) for the Lseg. Weight λ for scaling Lent in
methods UNC-ECD and UNC+ECD is empirically set to λ = 1/(360×|Rlabst |).

To provide quantitative results, we have evaluated Dice score coefficient and
mean surface distance (MSD). In an effort to efficiently utilize the available
dataset, we have generated 5 hold-out experiments where the initial training set
Dan, the non-annotated set Dpool, the validation set (all slices from 2 patients)
and the test set (all slices from 9 patients) are randomly picked. All experiments
are initially trained on 64 slices. For every active learning step, nrep = 32 and
nunc = 64 is used. In Figs. 2 and 3, we show the Dice score and MSD of different
methods evaluated for the test set at 11 stages of active learning ranging from
4% up to 27% of the Dpool. Conducted experiments are shown in two groups to
increase clarity: (1) Comparison of our implementation of the baseline (UNC-
ID) to uniform random sample querying (RAND) and sample querying based
only on uncertainty (UNC) as seen in Fig. 2; (2) Building on top of (1), improve-
ments of ranking (UNC+ID) and the gain from Lent during training and repre-
sentativeness capabilities of dcont for sample querying, UNC+ECD (c.f. Fig. 3).
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Fig. 4. Segmentation of a test volume comparing baseline (UNC-ID) with proposed
method (UNC+ECD) after the first active learning step. Segmentation of two muscles
overlaid on GS annotation (red) for (b) baseline and (c) proposed method. (d) Some
of the substantial differences are pointed out by red arrows. (Color figure online)

In Fig. 4, we show an example cross-section from a test volume, where seg-
mentation superiority of our proposed method (UNC+ECD) when compared to
baseline is already visible after a single active learning step.

We conducted one-sided paired-sample t-tests at the 5% significance level on
the mean Dice scores over all active learning steps for each hold-out experiment
for UNC+ECD being superior to UNC-ID. Performance of UNC+ECD was
statistically significantly better in 4 of 5 experiments.

5 Discussions and Conclusions

At early steps of active learning, one can see that the only uncertainty-based
query sampling method (UNC) performs similar to random sample querying
(RAND), with UNC only improving soon after ≈12% of Dpool is used in train-
ing (c.f. Fig. 2). While UNC-ID already yields better segmentation performance
than just uncertainty-based sampling, by simply using ranking, one can see that
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the baseline method achieves a more substantial boost at early stages of active
learning (see UNC+ID in Fig. 3). This behavior suggests that the surrogate
uncertainty metric can give a bad approximation when the trained data size
is fairly low; i.e., initial step(s). However, the suboptimal segmentation per-
formance gain can be compensated with representativeness, and even further
improved when given a higher priority; i.e., ranking instead of 2-step sample
querying.

Upon combination of the proposed additional information maximization con-
straint during training and ranking combined with content distance at sample
querying (UNC+ECD), we have observed the best Dice score on average at all
active learning steps among the compared baseline and ranking extensions of
the baseline methods. Other possible combinations of our proposed extensions
(UNC-CD, UNC+CD, UNC-ECD) yielded inferior performance to UNC+ECD,
and hence are not included in the quantitative comparisons to reduce clutter.

In this paper, we have comparatively studied the impact of different sample
selection methods in active learning for segmentation. We have proposed 2 novel
ways to query samples for active learning, which also can be combined to further
boost performance during active learning steps. Compared to a state-of-the-art
method, we have shown our proposed method to yield statistically significant
improvement of segmentation Dice scores.
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Abstract. This paper addresses the task of detecting and localising
fetal anatomical regions in 2D ultrasound images, where only image-level
labels are present at training, i.e. without any localisation or segmenta-
tion information. We examine the use of convolutional neural network
architectures coupled with soft proposal layers. The resulting network
simultaneously performs anatomical region detection (classification) and
localisation tasks. We generate a proposal map describing the attention
of the network for a particular class. The network is trained on 85,500
2D fetal Ultrasound images and their associated labels. Labels corre-
spond to six anatomical regions: head, spine, thorax, abdomen, limbs,
and placenta. Detection achieves an average accuracy of 90% on individ-
ual regions, and show that the proposal maps correlate well with rele-
vant anatomical structures. This work presents itself as a powerful and
essential step towards subsequent tasks such as fetal position and pose
estimation, organ-specific segmentation, or image-guided navigation.

Keywords: Deep learning · Weakly supervised learning · Object
localisation · Ultrasound · Fetal imaging · Image-guided navigation

1 Introduction

Ultrasound (US) is the most popular obstetric imaging modality for antenatal
detection of fetal abnormalities. A routine US screening examination consists
of manually scanning the fetal anatomy, mainly using 2D imaging, selecting a
series of standard planes, and measuring biometric data to assess fetal normality.
The plane selection process depends on the local/departmental protocol (e.g.
FASP [2] in the UK). Steering the US transducer to obtain these anatomical
planes of interest is a challenging task due to the large variability in image
orientation and appearance, within an anatomical region as well as within a
standard plane [7]. Recent years have seen significant efforts to detect such planes
in US video sequences [1,9]. While these methods are extremely valuable, they
disregard more than 95% of the examination images that do not fall into a
c© Springer Nature Switzerland AG 2018
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standard plane category. The remaining images do however contain valuable
information about the global fetal anatomy. With that in mind, categorisation
of any generic fetal US image in global anatomical regions is of great clinical
interest. Such categorisation could for instance provide anatomical context to a
subsequent organ specific task. Furthermore, localising general fetal structures
could play an important role in the development of navigation systems, and could
also be used to better understand and learn the patterns of steering towards
specific planes of interests.
Related Work: Weakly supervised object localisation is a relatively active field
of research in Neural Network literature [5]. Recently, Zhu et al. proposed a
their Soft Proposal Networks (SPN) [11], consisting of a dedicated extra layer
attached to any CNN architecture, specifically designed for this task. It was
initially inspired by the class activation map (CAM) approach in [10]. One of
the main advantages of SPNs over conventional Region Proposal Networks [6]
for instance is that the proposal itself is an objectness confidence, and does not
necessitate back propagation at inference time to retrieve saliency. As a conse-
quence, it can be used directly in an end-to-end learning manner: the proposal
couples with convolutional activation and evolves with the deep feature learning.

In the context of US images and fetal screening in particular, recent papers
focused on classification or detection [1] of standard planes in US video sequences.
In [1], the authors detected a standard plane within a real screening session video.
They used saliency maps to infer the regions of interest attached to the detected
standard plane using back propagation. They however discard the vast major-
ity of acquired images (∼95%) as background. In contrast, our work provides
semantic level of labels for any arbitrary image. Thus, during scanning, the pro-
posed method provides useful information and context from all images captured
in a fetal US examination.
Contribution: We propose a method to detect and localise fetal anatomical
regions applicable to any arbitrary 2D US fetal image within 22–32 week gesta-
tional age. The system is based on Convolutional Neural Networks (CNNs) and
soft proposal layers [11] for weakly supervised localisation. It is to our knowledge
the first attempt to transfer this technology to free hand 2D US fetal anatom-
ical region localisation. The network is able to detect six separate anatomical
regions of the fetal body with high accuracy (∼90%), and localise key anatomical
structures within an image in real time (∼20Hz).

2 Data

Image Data: The image data used in this work consists of a set of 20 free-hand
fetal US examinations from patients, with gestational age of 27±5 weeks from
free-hand ultrasound. The system used was a Philips EPIQ 7G machine. Each
examination generated a stream of approximately 40,000 frames. Example of
images are shown in Fig. 2(left). Each frame was stored on disk at acquisition
time at full resolution and full frame rate. Acquisition parameters were provided
from the manufacturer in real time.
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Fig. 1. Overview of our framework: A fetal ultrasound image is processed in real-time
via a Convolutional Neural Network coupled with a Soft Proposal layer. The anatomical
region is detected and localised using weakly supervised learning.

Image Labels: Each examination dataset was uploaded into a custom-made
browser, which enabled the entire batch to be split into six different categories
(+ background), or labels, forming an anatomical parcellation of the gestational
sac. Regions are shown in Fig. 2(right), and defined as follows (number of labelled
frames in brackets):

– Head: [25,249 fr.] Should contain the skull, full or in part.
– Thorax: [32,254 fr.] Should contain the cardiac chambers, full or in part.
– Abdomen: [16,220 fr.] Should contain the abdomen (diaphragm to pelvis).
– Spine: [5,980 fr.] Should contain part of the spine.
– Limbs: [11,617 fr.] Should contain one or more extremity(ies).
– Placenta: [6,081 fr.] Should contain part of the placenta.
– Background: [12,687 fr.] No distinguishable structure in image.

Categories were chosen such that they cover the entirety of the fetal body, ensur-
ing that any image containing fetal tissue will fall into one of them. The following
heuristics were followed for categorisation:

– An image is categorised as label X if X is the only category visible.
– If more than one category is visible, an image can be categorised as label X

if X occupies the majority of the image.
– Images disagreeing with those rules (indistinguishable objects(s), no promi-

nent category, strong blur, etc) are discarded.

Labelling of the 20 datasets was performed by 3 clinical experts. The total time
spent per dataset was approximately 1.5h. The labelled data was then split
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between training and test sets using an 80% − 20% ratio, resulting in 85,500
images for training and 24,500 for testing. The split was performed at the subject
level to ensure that we were testing the generality of the network.

Fig. 2. Left: Selection of images from a fetal US examination, each column corresponds
to an anatomical region. Right: Description of the anatomical regions detected and
localised by our network.

3 Methods

Preprocessing

1. Polar projection: Unlike most other imaging modalities, fetal ultrasound
images are sampled in polar cordinates, yielding the characteristic frustum-
shaped images. The geometric properties of the frustum vary drastically at acqui-
sition time, depending on the organ of interest, the fetal lie or the gestational
age. To prevent our network from inadvertently learning the shape of the frus-
tum as a feature associated with a specific class (i.e. to be invariant to sector
width and depth), we transformed each image into its associated polar coordi-
nate representation. We used acquisition parameters from the frame’s header
in order to retrieve the intrinsic polar coordinate system (Depth of Scan, Voxel
Size, Sector Width, Zoom Level).
2. Crop and resize: In order to prevent our algorithm from focusing on acoustic
reverberations artefacts, we cut 10% off the polar projected image on either side
in the depth direction. The resulting image was resized to a standard 224 × 224
pixel size.

Network

We examined different architectures for the base feature extraction layers:
VGG [8] and ResNets [3]. We used batch normalisation to accelerate conver-
gence [4]. We adapted the tail of the networks to incorporate the Soft Proposal
block. As suggested in [11], the soft proposal layer (SP) is inserted after the lat-
est convolutional layer of the network. It is followed by a spatial pooling layer,
and a fully connected linear classifier.
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At training, our images were associated with a unique label corresponding to
the prominent anatomical region present in the image. However, it is often the
case in practice that multiple anatomical regions are visible in a single image. It
is therefore important to consider that in the loss function used for our optimi-
sation. We used a multi-label one vs. all soft margin loss based on max-entropy:

L(x, y) = −
∑

i

yi log
1

1 + exp(−xi)
+ (1 − yi) log

exp(−xi)
1 + exp(−xi)

(1)

with x and y the predicted and target class score vectors respectively, and i
the class index.

Region Localisation
The objectness proposal maps from the SP-layer highlight regions of the

image that were informative to the loss result L(x, y), and can be used for local-
isation purposes. To quantify localisation accuracy, we computed a bounding
box on the soft proposal map corresponding to the highest score. First the map
is thresholded to 30% above the median pixel value, and the enclosing bound-
ing box is extracted. We compared the predicted bounding box against the one
annotated by a clinical expert, using the intersection over union (IoU) metric.

Implementation: The labelling tool was built using C++ and Qt software.
Preprocessing was performed using the Insight ToolKit. We used pyTorch for
the implementation of the network architecture. We trained our networks using
CUDA 8.0 on an Nvidia GeForce GTX 960M GPU.

4 Experiments and Results

Training: We trained four different feature extraction networks with batch nor-
malisation coupled with a soft proposal layer: VGG13-SP, VGG16-SP, ResNet18-
SP, and ResNet34-SP, in an end-to-end manner. We used K = 512 feature chan-
nels in the SP layer (see [11]). Mini-batch Nesterov gradient descent was chosen
with a momentum of 0.8. L2 regularisation was used with a weight decay of
5×10−4. The initial learning rate was 0.05 and was divided by a factor 10 every
5 epochs until convergence. Since the training data contained large variability
in size and orientation, the only data augmentation used was random horizon-
tal flip. Class imbalance was addressed by weighting the probability to draw a
sample by its relative class occurrence in the training set. Convergence typically
occurred within ten hours.
Region Detection: After training, we evaluated the generalisation of our net-
works on a test set consisting of three previously unseen subjects’ examinations,
with a total number of 24,500 frames. The detailed classification scores of each
network on the test set are summarised in Table 1. The best performing network
was ResNet18-SP. To further illustrate the results of this network, we show pre-
cision/recall curves for each anatomical region and the region confusion matrix
in Fig. 3. The confusion matrix is a valuable indication on how the network is
behaving in a real case scenario.
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Region Localisation: We evaluated the correctness of the localisation task. We
computed the IoU metric between predicted and ground truth bounding boxes
on a randomised sub-selection of the test set, totalling 4,300 frames. The average
IoU between all classes for the four architectures is reported in the last column
of Table 1. Detection and localisation results using ResNet18-SP and VGG13-SP
for each class are shown in Fig. 4. Additionally, we illustrate in the last column
some examples of mis-classifications of the networks.

Table 1. Detailed detection scores (Accuracy) for the four SP- modified architectures
on the test set for each class and their average. The last column shows the localisation
scores (Intersection over Union), averaged over all classes.

Arch Abdo Head Limbs Plac Spine Thorax Avg. IoU

resnet18-sp 0.941 0.922 0.852 0.968 0.840 0.947 0.912 0.393

resnet34-sp 0.945 0.933 0.686 0.966 0.871 0.946 0.891 0.378

vgg13-sp 0.930 0.921 0.767 0.978 0.833 0.899 0.891 0.424

vgg16-sp 0.948 0.908 0.785 0.996 0.839 0.899 0.896 0.415

Fig. 3. Classification results for the ResNet18-SP network. Left: Precision/recall curves
for each class. Right: Normalised confusion matrix. Figure best viewed in colour.

5 Discussions

Detection: Table 1 shows relatively high detection accuracy over the different
regions considered. ResNet18-SP demonstrates marginally higher performance.
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Fig. 4. Localisation results of VGG13-SP (top) and ResNet18-SP (bottom) for different
anatomical regions. The far right column shows mis-classified examples. Images are
superimposed by the soft proposal map corresponding to the predicted label. Expert
bounding box is shown in white, and predicted in color. Figure best viewed in colour.

Interestingly, deeper networks do not seem to increase performance, and can
even demonstrate overfitting in the ResNet case. The limbs and spinal regions
appear to be less trivial to categorise. This is partly explained by the fact that
they often appear in conjunction with other regions in the field of view. The
confusion matrix in Fig. 3 illustrates further this difficulty. The network can be
confused between spine and abdomen, which are often seen together. A similar
pattern happens between the limbs and the placenta.
Localisation: The last column of Table 1 reports the IoU between expert and
predicted bounding boxes. While these score can appear relatively low, it is
important to note that the soft proposal maps highlight regions that were dis-
criminant for the classification task, and IoU of these order of magnitude were
expected. Interestingly, the VGG backbones networks perform marginally better
at agreeing with expert localisation than the ResNet ones. Figure 4 shows exam-
ple of localisation results from VGG13-SP (top) and ResNet18-SP (bottom)
for the different fetal regions. Both network are able to attach to anatomically
relevant parts of the image. Discrepancies between soft proposal from the two
networks demonstrate that, at similar classification performances, the network’s
attention is dependent from the internal feature extraction layer.
Mis-classifications: The far right column in Fig. 4 shows images where the
network disagreed with ground truth. They are for most cases due to the presence
of multiple regions within the field of view. Those behaviours were expected. As
a bi-product, these images further demonstrate that the network’s attention is
focusing on relevant anatomical regions.
Known Limitations: Our work does not yet account for images with multiple
anatomical regions at training. This situation does however occur frequently.
This limitation is partly addressed in our choice of loss function but may be
misleading the network in difficult cases. To fully address this issue, we will
investigate the introduction of multi-labelled images at training. Another limi-
tation of this work is the relatively small number of subjects used for training.
This was however balanced by the large variability of appearances per class even
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within a subject, as we allow categorisation of an anatomical region from any
possible angle, resulting in 9,000 images per class per subject on average.

6 Conclusion

In this paper, we augmented classification network architectures with soft pro-
posal layers, and adapted them for the specific task of fetal region detection
and localisation in real-time 2D ultrasound imaging. We showed that the pro-
posed network achieves high accuracy for automatic annotation of arbitrary 2D
fetal ultrasound images. Furthermore, the network is capable of localising rele-
vant anatomical structures characteristic of each anatomical region, while there
was no localisation provided at training. The ability to semantically categorise
arbitrary US images could play a key role to developing navigation systems, or
guide non-expert sonography scanning. Furthermore, this work could aid sub-
sequent tasks such as scan plane detection, semantic segmentation or biometry
estimation in a multi-task framework.
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Abstract. In a research context, image acquisition will often involve a
pre-defined static protocol and the data will be of high quality. If we are
to build applications that work in hospitals without significant opera-
tional changes in care delivery, algorithms should be designed to cope
with the available data in the best possible way. In a clinical environ-
ment, imaging protocols are highly flexible, with MRI sequences com-
monly missing appropriate sequence labeling (e.g. T1, T2, FLAIR). To
this end we introduce PIMMS, a Permutation Invariant Multi-Modal
Segmentation technique that is able to perform inference over sets of
MRI scans without using modality labels. We present results which show
that our convolutional neural network can, in some settings, outperform
a baseline model which utilizes modality labels, and achieve comparable
performance otherwise.

1 Introduction

Over the years, public medical imaging datasets have emerged which enable
researchers to benchmark the performance of their algorithms [1]. Data is mostly
acquired from patients who have volunteered to be part of a clinical research
study and are subject to a strict study protocol. If the study involves the acqui-
sition of Magnetic Resonance Imaging (MRI) scans, the study protocol might dic-
tate the scanner choice as well as the acquisition parameters to be used [4]. In the
real unconstrained clinical setting however, MRIs are more likely to be acquired
from different machines under different acquisition protocols and parameters.
There is no guarantee that a particular sequence will be available, no guaran-
tee on the number of available modalities, no guarantee that modalities will be
unique (e.g. same sequence acquired with different orientations and contrasts),
and no guarantee that any of the modalities will be labeled appropriately for
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algorithmic use. If hospitals are to benefit from advances in neuroimaging, algo-
rithms that can cope with this lack of available modalities are necessary. We
argue that an algorithm which is to be deployed in this setting should have
two key properties: (1) permutation invariance, i.e permuting the order of the
input images should not affect the output and (2) robustness to missing modal-
ities. To this end we propose a segmentation model, with neural networks as
building blocks, which can learn with limited data and segment scans without
MR modality labels. In this work we focus on the task of segmenting white
matter hyperintensities (WMH). In studies involving WMH segmentation the
most common modalities are T1, T2 and T2-FLAIR which provide complemen-
tary information about the imaged tissue. Although T1 and T2 modalities are
created from different underlying physical signals (longitudinal and transverse
relaxation time respectively) the scans produced will almost always be a combi-
nation of both (hence the name attribute - weighted). By varying the acquisition
parameters, such as the echo and relaxation times, these underlying physical
signals are observed in different proportions [3]. Modality labels are a discrete
approximation of a continuous acquisition parameter landscape and we use this
as inspiration for the model we present.

In order to address missing modalities, research has focused mostly on gen-
erative models where missing MRI scans are synthesized or imputed [2,8]. In
the work of [6] the authors handle missing modalities without using generative
models of MR modalities. Instead of synthesizing the missing modalities, their
model, Hetero-modal Image Segmentation (HeMIS), is trained to handle missing
input modalities. More details about HeMIS can be found in Sect. 2. Although
HeMIS is successful at dealing with missing modalities, it assumes that the MR
modalities in a test case will be labeled. The authors of [10] tackle the issue of
generalizing to unseen protocols and scanners. In order to be robust to different
scanners and protocols, they propose a tuning of the batch normalization param-
eters of a CNN. However, their method still requires approximately four scans
with their associated segmentations from the unseen protocol to perform well.

We introduce a model that learns to build intermediate representations of the
images as a linear combination of the available inputs which are more continuous
than their original labels. The proposed model does not assume the modality is
known and has the ability to generalize to unseen scanners/protocols, taking
in N unordered input scans with no modality labels to produce accurate seg-
mentation masks. We provide results on a variety of datasets featuring WMH
with large variability in scanner type and acquisition parameters and show that
our model is both permutation invariant and robust to missing modalities. We
demonstrate that it can perform comparatively well with an algorithm which
utilizes the modality labels having never seen an image from that particular
protocol. Furthermore, our model can outperform the baseline method (HeMIS)
in the case where it has seen MR modality labels of the same protocol it is being
tested on.
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2 Methods

HeMIS. In HeMIS each available modality, x1, . . . , xM , is embedded with a
modality specific function φm(xm) ∈ R

D×K denoted the “back-end” to produce
embeddings. An“abstraction” layer then operates on these embeddings by com-
puting the mean and variance across their K dimensions and concatenating the
two resulting vectors φα = [Ê(φ(x)), V̂ar(φ(x))], where x ∈ R

D×M M is the
number of modalities and D is the spatial dimensions of the input. Let φα be a
fixed dimensional tensor which represents an input of variable size. This forms
the input to the final portion of the network referred to as the “frontend” which
will output a semantic segmentation map. The network is trained using a Dice
loss, first proposed in [11] as a loss function for training neural networks.

During training, random modalities are set to zero, encouraging robustness
to missing modalities. HeMIS, shown in Fig. 1, forms part of our architecture.

Our Approach. We propose a method which at test time takes in an arbitrary
number of N scans (denoted X) which do not have corresponding MR modality
labels and produces a permutation invariant representation that is also robust
to missing modalities. In theory this common representation could be applied
to a variety of tasks. In this paper we focus on white matter hyperintensity
segmentation.

The inputs are fed into an MR modality classifier fmod which outputs a
distribution over modalities for a given scan as its prediction. These modality
scores S ∈ R

M×N are combined with the inputs, X, to produce modified inputs
denoted as X̂ ∈ R

D×M . In the attention literature a distinction is drawn between
“soft” and“hard” attention [14]. Soft attention generally involves a probabilistic
weighted sum whilst a hard attention is a categorical argmax over the inputs.
With this in mind, we explore two methods for performing X → X̂: fsoft and
fhard. The function fsoft is defined as,

fsoft(X,S) =
N∑

n=1

Smnxn = x̂m (1)

Each component x̂m of the modified input X̂ is formed by taking a weighted sum
of each input xn according to the probabilities provided by S. fhard is defined as,

fhard(X,S) =
N∑

n=1

1(arg max
m∗

Sm∗n = m)xn = x̂m (2)

The modified input X̂ now consists of a finite number of modalities. The
mapping f : X → X̂ is illustrated in the blue block in Fig. 1.

Each MR modality is designed to capture fundamentally different physical
properties which justifies having individual feature extractors, φm, for each x̂m
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modality representation. The output of these modality-specific feature extractors
is collected into one tensor by taking the mean and the variance across modalities
and concatenating the result to give φα ∈ R

D×K where K is given by the choice
of filter depth in φm. This feeds into a final network, φseg which produces a
segmentation prediction. This use of modality specific models, pooling and a
separate segmentation network is the same as HeMIS and is illustrated in the
grey block in Fig. 1.

Fig. 1. Diagram showing the network architecture. During training the inputs are
X ∈ R

D×N and the corresponding ground truth binary segmentation y ∈ R
D×2. A

function fmod takes each scan as input and outputs a modality score S which produces
the representation X̂ ∈ R

D×M . The weights of φT1 , φT2 , φF and φseg are learned by
differentiating with respect to Lseg and the weights of f are learned by differentiating
with respect to Lclass. ym is a one-hot encoded modality label.

A convolutional neural network was used for fmod. A network with 36 layers
using skip connections and ReLU non-linearities inspired by the residual network
(ResNet) proposed in [7] is used. The network was trained with the categorical
cross-entropy loss which we refer to as Lclass. where ymi is a one-hot encoded
modality label and Smi is the modality score. Each of the branches φm as well
as φseg were two convolutional layers with ReLU non-linearities (more details in
Sect. 2). The parameters of φm and φseg were found by minimizing Lseg which
is the binary Dice Loss.

For two of our variants these losses were trained separately (or “offline”).
However, we also trained an“online” variant where the parameters of the modal-
ity classifier are learned using a multi-objective loss function. This loss is defined
as, Ltot = Lseg + λLclass, where λ is some choice of weighting or parametrized
weighting function. Although the loss consists of multiple objectives this should
not be considered “multi-task learning”. There is no conditional independence
between the tasks and no representation sharing — instead this can be seen as
a differentiable attention mechanism. The four variants trained are summarized
below,
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HeMIS - X→X̂ using labels, fmod trained separately from φseg, φT1 , φT2 & φF

Soft - fsoft used to create X̂, fmod trained separately from φseg, φT1 , φT2 & φF ,
Hard - fhard used to create X̂, fmod trained separately from φseg, φT1 , φT2 & φF ,
Online - fsoft used to create X̂, fmod trained jointly with φseg, φT1 , φT2 & φF .,

Implementation Details. It is important to note that the network architecture
takes in 2D patches from the image as was done in [6]. Specifically we take
patches of size 100 × 100 from 3D scans which have all been resampled to
1mm × 1mm × 1mm. This theoretical framework permits any spatial dimension
D and future work will train and run inference in full 3D.

All results were obtained using the NiftyNet framework [5], which is a wrap-
per around TensorFlow designed for medical imaging. fmod uses a standard
ResNet design with nine blocks per resolution, each with three convolutions
and ReLU activations. The network is trained using the Adam optimizer with
a learning rate of 3 × 10−4. A batch size of 64 was used on this network and
weight decay regularization of 1 × 10−4.

For each φm and φseg the implementation details from [6] were recreated.
Two convolutional layers with 48 filters, 5 × 5 kernel sizes, zero-padding and
ReLU activation were used followed by a max pooling layer with kernel size (2,
2) and a stride of 1 this preserves the spatial resolution of the image. For φseg

two convolutional layers were used, one with 16 filters, 5 × 5 kernel sizes, zero
padding and ReLU activation the last convolutional layer had 2 filters, a kernel
size of 21 × 21, zero padding and a softmax activation which provided the per
class predictions. We also utilized the pseudo-curriculum learning approach from
HeMIS. Random modalities are set to zero but the chance of setting only one or
no modalities to zero is higher. The online model was harder to train than the
offline ones. The joint training lead to odd dynamics between the classification
loss and the segmentation loss. To help stabilize the training an exponential
decay weighting was used on the classification loss in order to encourage training
it towards the start and remove its importance later on so that the model could
experiment with representations which do not match the provided labels and
not be punished by Lclass. Our best performing “online” model used λ(i) = e−γi

where i is the current iteration and γ is a decay constant hyperparameter set to
1 × 10−4.

This same ResNet architecture was used as fmod in the online case in order
to make a fair comparison in terms of number of parameters. However, in the
online setting, the batch size had to be reduced as a practical consideration as
the combination of both modality and backend models proved too large to fit in
GPU memory. All experiments were run on a single NVIDIA Titan Xp.

3 Experiments and Results

Data used in this work comes from a variety of sources, chosen to try and capture
the acquisition variability observed in a practical setting due to multiple MRI
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scanners/protocols. A subset of 973 subjects each with T1 and FLAIR scans
were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database [9]. The data in this study was collected from multiple scanners, but
used the same protocol for setting the acquisition parameters. We therefore deem
this dataset one of relatively low variance between subjects. We also utilise data
collected from the longitudinal SABRE study [13]. The data contains one cohort
of 586 subjects with T1, T2 and FLAIR obtained using the same scanner (low
variance) and another of 1263 with T1, T2 and FLAIR obtained from multiple
scanners with multiple settings (high variance). Additionally we use a dataset of
626 patients with T1 and FLAIR obtained from multiple scanners using multiple
field strengths. As no manual annotations were available for this large collection
of MRI scans, the outputs of BaMoS [12], a fully unsupervised WM lesion seg-
mentation algorithm, were quality controlled by an experienced human rater and
subsequently used as silver-standard training labels. Additionally, we evaluate
our trained models on a manually annotated dataset from the MICCAI 2017
White Matter Hyperintensity Challenge [1].

The split between training, validation and test sets was chosen in order to
measure the ability of our method at generalizing to unseen scanners and pro-
tocols. Three separate holdouts were created, defined as follows,

Silver Protocol Holdout - ADNI: 973 subjects with silver standard labels.
Gold Protocol Holdout - MICCAI2017: 60 subjects with human rater labels.
Mixed Holdout - Random 10% subset of the full data minus Silver/Gold.

Overall there was a 80/10/10 split between training, validation and test using
the 2474 subjects that are not in the gold or silver protocol holdouts. All four
models described in Sect. 2 were trained with this subset.

Table 1. Dice scores of the different models on different combinations of available
modalities. Modalities present are denoted by • and those that are missing are denoted
by ◦. Bold numbers are results which outperform the baseline model, HeMIS, with
statistical significance p < 0.01 as provided by a Wilcoxon test. Presentation of table
inspired by the one in [6]
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For the mixed holdout it was found that the classification accuracy was 99%
between all three modalities. For unseen protocols the accuracy was lower, 88%
for ADNI and 87% for MICCAI17 which showed that the inter-scanner variance
was harder to model than the inter-subject variance. For each of the holdout
sets, results are presented on all possible subsets of the available modalities. The
quantitative and qualitative results are shown in Table 1 and Fig. 2, respectively.
The brains shown are selected from the 95%, 50% and 20% percentile of Dice
score on the dataset holdout for a model shown all available modalities. We note
that the samples of very high Dice score are often the ones with large lesions
which the algorithm has managed to capture well and there is poor performance
when the contrast settings are significantly different.

We utilise the Wilcoxon signed-rank test to test whether the Dice scores from
each of our models outperforms the baseline (HeMIS). Bold values in Tables 1
denotes that the model is better than HeMIS with a statistical significance of
p < 0.01. We compare ground truths and predictions using the Dice score as well
as the average symmetric distance in order to provide a geometric evaluation.

Fig. 2. Qualitative results showing white matter lesion segmentations on the mixed
holdout set. Images show the ground truth on the left and the network predictions on
the right. Red shows the predicted segmentation. The results were chosen to highlight
the 95th, 50th, and 20th percentile in terms of Dice score for a model which is trained
on all available scans but does not use modality labels.

4 Discussion

The “hard” setting converges to HeMIS as the accuracy of the modality classifier
tends to 1. This is observed in practice. Note that the results of HeMIS are similar
to“hard” in the mixed holdout set where the modality classifier has had access
to the test set distribution and consistently worse in the Silver Protocol holdout.
It does comparatively better on the Gold Protocol as the modality classifier has
better performance on these scans than on Silver. The “soft” version matches
or improves on the performance of HeMIS and“hard” on the mixed holdout,
but does not outperform HeMIS on other holdouts. The fact that “soft” out-
perfoms“hard” is evidence towards our hypothesis that mixing the input images
can lead to better representations which improve performance on a visual task.



208 T. Varsavsky et al.

This can be interpreted as a coarse attention mechanism as the transformation
from X to X̂ is linear with few degrees of freedom.

The “online” model outperforms the baseline in the mixed holdout set with
statistical significance in 6/7 cases when using the Dice score. Although the
median average symmetric distance (ASD) is higher, the average is lower in 4/7
cases with a much lower 95 percentile. There is some improvement over the
baseline model even in the protocol holdout but the gains seen in Dice score are
not reflected in the ASD. Qualitatively this is explained by the“online” method
overpredicting the positive class leading to a higher Dice score and yet missing
lesions altogether leading to a larger ASD. This gives us insights as to how we
can improve the model.

Future work will extend the “online” model to an unsupervised setting in
terms of scan labels. This is appealing not only due to the lack of modality labels
currently available in certain hospital databases but also in order to go beyond
the information contained in the modality label and towards a representation
which is more true to the underlying physical structure.

5 Conclusion

We have presented PIMMS, a segmentation algorithm for MRI scans which
simultaneously addresses the problem of missing modalities and missing modal-
ity labels in a clinical setting. We present three variants which all include a
convolutional neural network and are trained to perform modality classification
in a supervised setting. We argue that by mixing the input modalities in ratios
other than those provided by the labels we can achieve better performance. This
could be due to more accurately capturing the underlying distribution of physical
quantities, but future work is needed to make this claim. Evidence is presented
with statistical significance which suggests that a model which mixes inputs can
perform better than one which does not with all other factors kept identical.

The results show that the modality classifier almost replicates modality labels
when trained and tested on the same protocol while the categorical accuracy
reaches 88% when protocols differ at training and testing times. Our model serves
as a proof of concept for a system that could utilize all the MR scans associated
with a patient in a hospital and provide accurate segmentation predictions.
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Abstract. In this study we tackle the problem of detecting subtle
epilepsy lesions in multiparametric (T1w, FLAIR) MR images consid-
ered as normal during a visual examination by a neurologist (MRI neg-
ative). We cast this problem as an outlier detection problem and adapt
the framework proposed in [1]. It consists in learning a oc-SVM model for
each voxel in the brain volume. We generalize this approach by propos-
ing unsupervised deep architectures as feature extracting mechanisms
in order to learn representations characterizing healthy subjects. We
hypothesize that such architectures may capture features that allow to
distinguish pathological voxels from the normal cases used in the train-
ing. As such, we exploit and compare three architectures, a novel con-
figuration of siamese networks, stacked convolutional autoencoders and
Wasserstein autoencoders. The models are trained on 75 healthy subjects
and validated on 21 patients (with 18 MRI negatives) with confirmed
epilepsy lesions achieving the best sensitivity of 62%.

Keywords: Wasserstein autoencoders · Siamese networks ·
Unsupervised learning · Epilepsy detection · Anomaly detection

1 Introduction

Computer aided diagnosis (CAD) systems assist clinicians in various tasks such
as organ or lesion segmentation, detection of abnormal regions in a medical
image, etc. The vast majority of the existing CAD systems are built upon meth-
ods developed in supervised settings, using either manually designed features
or currently ubiquitous deep learning architectures. However, when the number
of labeled pathological cases in the training set is not sufficient to account for
the complexity of the task, supervised learning becomes infeasible. To bypass
the problem of insufficient labeled data, some authors formulate lesion detection
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tasks in semi-supervised settings, by accounting for both labeled and unlabeled
data in a deep architecture for MS lesion segmentation [2] or by exploiting weak
labels (the number of lesions in a scan) to detect enlarged perivascular spaces in
the basal ganglia [3].
Another recent tendency goes even further and casts lesion detection problem
as an anomaly detection task. Anomaly detection, also referred to as outlier
detection, consists in learning the boundary of the normal class in order to
later identify the observations that lay outside of it. Over the recent years the
challenging topic of outlier detection has been studied extensively and many
algorithms have been proposed for outlier detection depending on the nature
of the data and the type of anomalies [4]. In computer vision, recent works
investigated approaches based on deep architectures such as autoencoders or
Generative Adverserial Networks (GANs) coupled with various outlier detection
algorithms [5]. In the medical imaging domain, [6,7] proposed a model defin-
ing a score function that measures how anomalous a given sample is based on
the reconstruction and discrimination losses estimated by a GAN architecture
trained on normal samples only. In [8,9], a latent representation of normal sam-
ples is first learned with deep unsupervised networks and then fed to a one-class
support vector machine (oc-SVM) model to estimate the boundaries of the nor-
mal examples.
In this work we build on the framework proposed in [9] for the challenging appli-
cation of epilepsy lesion detection in patients with MRI negative exams, meaning
that the lesions were not visually identified by clinicians on the MR scans [10].
We propose to exploit three unsupervised deep learning architectures as feature
extracting mechanisms in the outlier detection context. We consider stacked
convolutional autoencoders, a novel configuration of siamese networks [9] and
Wasserstein autoencoders [11] that have been shown to combine the advantages
of both standard generative adversarial networks (GAN) and variational autoen-
coders (VAE) in generating synthetic natural images without compromising the
stability of the training. We couple these architectures with voxel-level oc-SVM
models and compare their performances on the epilepsy lesion detection task.

2 Method

2.1 Unsupervised Feature Extraction with Autoencoders

The first step of the proposed system is to learn patch-level representations of
healthy subjects by exploiting the three types of architectures below.

Stacked Convolutional Autoencoders (sCAE) are a variation of autoen-
coders that first map the input x ∈ X to a latent representation space Z
through a series of convolutional and max-pooling operations (encoder E) and
later map it back to the original input space with a series of de-convolutions
and up-poolings by producing a reconstruction x̃ of the input (decoder G). The
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Fig. 1. Left: Siamese neural network composed of stacked convolutional autoencoders
as sub-networks (sCAE). The input consists of a pair of patches (x1, x2) of 2 different
subjects centered at the same voxel in the brain. The encoder E maps x to the latent
representation z while the decoder G maps it back to the input space producing a
reconstruction x̃. Right: Wasserstein autoencoder (WAE) composed of an encoder E,
a decoder G and an adversary discriminator D.

parameters are iteratively updated to minimize the deviation between the out-
put x̃ and the input x. A sCAE is illustrated on Fig. 1 as the top sub-network
of the architecture on the left.

Regularized Siamese Autoencoders (rSN), as proposed in [9], consist of two
identical (same architecture, shared parameters) stacked convolutional autoen-
coders with K hidden layers and a cost module (shown on Fig. 1). The siamese
network receives a pair of patches (x1,x2) at input, then each patch is prop-
agated through the corresponding subnetwork yielding representations (z1, z2)
respectively in the middle layer which are then passed to the loss function 1
below. The network is trained to maximize the cosine similarity of the represen-
tations of patches centered at the same voxel and belonging to different healthy
subjects, at the same time imposing the subnetworks to produce reconstructions
close to the original input. The loss function for a single pair hence is:

LrSN (x1,x2;ΘrSN ) =
2∑

t=1

||xt − x̃t||22 − α · cos(z1, z2) (1)

where x̃t is the reconstructed output of the patch xt produced by sub-network t
while zt is its (vectorized) representation in the middle layer and α is a coefficient
that controls the tradeoff between the two terms. ΘrSN denotes the parameter
set.

Wasserstein Autoencoders (WAE) have been recently introduced as genera-
tive models combining the best properties of Wasserstein GANs and Variational
Autoencoders [12]. As shown on Fig. 1, a Wasserstein auto-encoder consists of
three components: an encoder E mapping an input patch from the data space
X to the latent space Z, a decoder G mapping a latent code from the latent
space Z to the data space X , and an adversary network D that tries to distin-
guish the prior distribution of the latent code PZ from the latent distribution
QZ produced by the encoder. The resulting loss function can be expressed as
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LWAE(X;ΘWAE) =
1
N

N∑

i=1

c(xi, x̃i) + λ · DZ(Pz, Qz) (2)

where DZ measures the discrepancy between a given distribution Pz and Qz

for the dataset X = {xi}1,..,N and c measures the reconstruction error. λ is a
coefficient that controls the tradeoff between the two terms and ΘWAE denotes
the parameter set. The generic form of the WAE loss allows different reconstruc-
tion error functions and regularizers. We used the standard reconstruction error
c(xi, x̃i) = ||x − x̃i||22 and the Jenssen-Shanon divergence as DZ .

2.2 Voxel-Level Outlier Detection with Oc-SVM Classifiers

A oc-SVM classifier [13] is an outlier detection method that seeks to find
the optimal hyperplane that separates the given points from the origin in a dot
product space defined by some kernel function φ. The latent representations
z learnt by each of the networks proposed above was used to train oc-SVM
classifiers at voxel level. For a given voxel vi, the associated oc-SVM model
Ci is trained on the matrix Mi = [zi1, ..., zin] where zij is the feature vector
corresponding to the patch centered at vi of subject j and n is the number of
subjects. For a new patient, each voxel vi is matched against the corresponding
model Ci and is assigned the signed score output by Ci. This yields a distance
map Dp for the given patient. This map is later normalized by the estimated
voxel-level standard deviation (computed on the healthy subjects with 1-fold
evaluation). We keep the most negative scores up to the score corresponding to
a pre-chosen p-value in the patient’s distance score distribution and apply a 26-
connectivity rule to identify connected components which we refer to as clusters
(and the map - cluster map). The clusters are what we refer to as detections by
the proposed method. The clusters are then ranked according to the size and the
average score of their voxels. Such ranking favors large clusters with the most
negative average score. Finally, we keep the top n detections and discard the
rest. When a cluster overlaps significantly with the ground truth of a patient we
consider it a true positive and false positive otherwise.

3 Experiments and Results

3.1 Dataset Description and Pre-processing

The study was approved by our institutional review board with approval num-
bers 2012-A00516-37 and 2014-019 B and a written consent was obtained for all
participants.
Our database consists MR images (T1-weighted and FLAIR) of 75 healthy sub-
jects and 21 patients acquired on a 1.5T Sonata scanner (Siemens Healthcare,
Erlangen, Germany). All the volumes were normalized to the standard brain
template of the Montreal Neurological Institute (MNI) [14] using a voxel size
of 1× 1 × 1 mm with the unified segmentation algorithm [15] implemented in
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SPM12 also correcting for magnetic field inhomogeneities. This spatial normal-
ization assures a voxel-level correspondence between the subjects. We removed
top 1% intensities and scaled the images between 0 and 1 at image level before
feeding the patches to the networks.
The method has been validated on 21 patients admitted to our clinical center
with confirmed medically intractable epileptogenic lesions: 2 of them were visu-
ally detected on the FLAIR images and only 1 lesion was identified on both
T1w and FLAIR scans. The remaining 18 patients are confirmed MRI negative
patients. The MRI negative patients had surgeries and have been seizure-free
since. The ground truth annotations used in the performance evaluation were
obtained by outlining the visible zones of the MRI positive patients and by com-
bining the information of post-surgical MR images and the resected zones for
MRI negative patients.

3.2 Feature Extraction with sCAE, rSN and WAE

As shown on Fig. 1, the three architectures consist of the same encoder E and
decoder G (the stacked convolutional autoencoder is identical to the upper sub-
network of the siamese network). The architecture details are shown on Fig. 2a.
The encoder E takes as input an 18× 18 × 2 patch (the third dimension corre-
sponds to the two modalities-T1 and FLAIR) and outputs a latent representation
z of dimension 64. LeakyReLU was used as activation in the WAE discriminator
with scale 0.02 for negative input values. ReLU was used in the generator and
the encoder (except for the last layer of G where sigmoid is applied). We varied
the λ parameter values in loss 2 among 1, 5, 10, 20 and 100.
All the three networks were trained on the same data set of patches extracted
from healthy subjects’ images with a stride 8. In the case of the siamese network,
each patch of a subject was randomly matched with a ‘similar pair’ among the
remaining subjects. The α parameter in the loss 1 is set to 0 during the first 10
epochs, then grows linearly for 15 epochs until it reaches 0.5 and then plateaus
for 5 more epochs. The Adam optimizer was used with the learning rate set to
0.001 with a training batch size of 128.

3.3 oc-SVM Classifier Design

We used oc-SVM classifiers with RBF kernel by setting the kernel width γ for
each voxel vi individually to the estimated median of the standardized euclidean
pairwise distances of the corresponding matrix Mi (see Sect. 2.2) as in [16]. The
allowed fraction of outliers for all models was set to 0.03 (this parameter does
not impact the results).

3.4 Results and Discussion

Below we evaluate the performance of the system on 21 patients with confirmed
epilepsy lesions. Figure 2b shows the performance obtained with each of the
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architectures: the y-axis shows the detection rate among the top n clusters,
ranked according to their average score and size. The rSN features seem to out-
perform the features learnt with WAE and sCAE, WAE performing better than
sCAE for certain values of λ (λ = 1 and λ = 100 did not yield a good perfor-
mance). The latter confirms our hypothesis that the reconstruction error, when
enhanced with a regularization, fits better to the anomaly detection context.
The WAE performance is still inferior to that of rSN which might be due to a
limitation of the model itself or the experimental choice of the hyper-parameters
(we can see how the performance is affected by the choice of λ; the value 20 is
less successful, probably since it prioritizes too much the adversarial term; the
value 100 entirely degraded the results and, hence, is not shown). Figure 3 shows
the output of the system with the considered architectures. The patient has a
visible lesion outlined in green. The detection quality varies, especially WAE
with λ = 20 almost misses the lesion.

Fig. 2. (a) The encoder, decoder and discriminator architectures respectively.
Red/green/violet boxes denote convolutional/deconvolutional/fully connected layers
respectively. Orange/yellow boxes stand for maxpooling/uppooling. (b) The perfor-
mance of the CAD system with sCAE, WAE and rSN features. x-axis: Top n clusters,
y-axis: Detection rate among the top n clusters. Ranking based on average score and
size. (Color figure online)

Unlike most recent studies that focus on a single epilepsy type (FCD) and use
handcrafted features characterizing it [1,17–20], our method seeks to find more
complex features in an unsupervised manner in order to identify lesions with
rather unknown signatures. Naturally, such an approach, when applied to a
specific pathology, is likely to produce more false positive detections. Although
a fair comparison with the published results is difficult because of the differences
in the patient groups, the obtained results (62% sensitivity for 9 false positives
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Fig. 3. CAD output for a MRI positive patient with sCAE, WAE λ = 5, WAE λ = 10,
WAE λ = 20 and rSN features respectively. The images show the maximum intensity
projections of the cluster maps onto an MRI transverse slice (ground truth is outlined
in green circles). The maps show the top 6, 2, 2, 6 and 3 clusters, respectively. (Color
figure online)

per scan for rSN features and between 52–58% for WAE and sCAE) are of the
same order as those reported in recent studies for the difficult task of automated
epilepsy detection in MRI negative patients ([17] reports a detection rate of
70% when individual SBM-based features are used; the results vary between 60
and 70% when considering combinations of some of these SBM features). MRI
positive lesions are detected quite soon (usually among top 2–4 clusters) which
is due to the fact that such lesions have visible markers that allow to distinguish
them easily unlike the MRI negative patients whose lesions may be detected
along with other outliers of similar ‘suspiciousness’. Finally, the method with all
the networks is quite straightforward to implement and to apply in daily practice
as the output of the system can be obtained under a couple of minutes.
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Abstract. We propose a 3D residual convolutional neural network
(CNN) algorithm with an integrated distance prior for segmenting the
small bowel lumen and wall to enable extraction of pediatric Crohns dis-
ease (pCD) imaging markers from T1-weighted contrast-enhanced MR
images. Our proposed segmentation framework enables, for the first time,
to quantitatively assess luminal narrowing and dilation in CD aimed at
optimizing surgical decisions as well as analyzing bowel wall thickness
and tissue enhancement for assessment of response to therapy. Given
seed points along the bowel lumen, the proposed algorithm automatically
extracts 3D image patches centered on these points and a distance map
from the interpolated centerline. These 3D patches and corresponding
distance map are jointly used by the proposed residual CNN architec-
ture to segment the lumen and the wall, and to extract imaging markers.
Due to lack of available training data, we also propose a novel and effi-
cient semi-automated segmentation algorithm based on graph-cuts tech-
nique as well as a software tool for quickly editing labeled data that was
used to train our proposed CNN model. The method which is based on
curved planar reformation of the small bowel is also useful for visualizing,
manually refining, and measuring pCD imaging markers. In preliminary
experiments, our CNN network obtained Dice coefficients of 75 ± 18%,
81 ± 8% and 97 ± 2% for the lumen, wall and background, respectively.

1 Introduction

Magnetic resonance enterography (MRE) has emerged as a most effective method
for imaging the small bowel in patients with Crohns disease (CD) [1]. Extracting
CD biomarkers is essential for staging disease, selecting treatment, and assessing
therapeutic response. Moreover, our ability to segment diseased bowel will facil-
itate automated computation of quantitative imaging markers such as length of
involvement, wall thickness, lumen narrowing, stricture length, upstream dila-
tion and tissue contrast enhancement. Several methods [2–5] have been proposed
for segmenting the small bowel wall. However, all these methods segment the
wall and lumen together from their background instead of each compartment
alone. In addition, they do not provide the small bowel’s tube structure that is
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necessary for computing disease markers such as wall thickness or lumen nar-
rowing. Instead they mark disjoint tissue segments with Crohns disease. Deep
learning algorithms, in particular, convolutional neural networks, have rapidly
become a methodology of choice for analyzing medical images [6]. Thanks to
its unique capability of learning hierarchical feature representations solely from
data, deep learning has achieved record-breaking performance in a variety of arti-
ficial intelligence applications and grand challenges [7]. Such networks generally
have large number of parameters and training them requires a correspondingly
large dataset. However, there is not enough publicly available datasets and it
is labor intensive to manually label images for segmentation. Moreover, in our
problem specifically, there is no training data available at all.
Our first contribution in this work is the development of an efficient software
platform for semi-automated segmentation and labeling of pCD accomplished
with curved planar reformation (CPR) of small bowel segments. Our proposed
software platform generates segmentation of the bowel wall and lumen using a
graph-cuts algorithm given a series of seed points located on the lumens center-
line. The tool also allows for efficient and quick manual editing of the segmenta-
tion results on straightened CPR views as well as visualizing the entire diseased
bowel region in a stretched CPR view. We used this semi-automated tool to
generate training data for our proposed segmentation algorithm. Our second
contribution is a 3D residual CNN network with a distance prior for improved
segmentation of the bowel lumen and wall, and extraction of quantitative imag-
ing markers.

2 Method

2.1 Efficient Semi-automated Software for Generating Labeled
Training Data for Pediatric Crohn’s Disease

To generate a labeled dataset efficiently, we perform the following steps shown in
Fig. 1: First, we generate a CPR platform that flattens the small bowel segment.
Next, we use a graph cut segmentation [8,9] to obtain an initial segmentation of
the bowel wall boundaries. We then manually refine the segmentation contours
on straightened CPR images using the proposed tool. Last, we generate a tetra-
hedral mesh to transfer the segmentations represented by the contours in the
straightened CPR views into a volumetric representation. The sections below
describe each of these steps.

Generation of CPR Views for the Small Bowel. The first step entails
placing seed points along the lumens centerline. We developed a practical and
robust platform to perform this task such that seeds can be placed in coro-
nal, sagittal and axial views that are automatically synchronized to the users
cursor location. This enables the operator to select seed points in the most vis-
ible cross-section along the curved lumen. In the event the lumen is completely
obstructed, we select seed points in the middle of the obstruction. We then inter-
polate between the seed points to obtain a curve r(t) = [x(t), y(t), z(t)]. Next,
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we perform arclength parameterization [10] to obtain an equally sampled curve.
For generating a stretched CPR view, we perform the following steps: (1) select
a plane that transverses through the two extreme points of the centerline as well
as an additional, interactively selected point; (2) project the curve onto that
plane; (3) perform arclength parameterization [10] of the projected curve; and
(4) interpolate the stretched CPR image by traversing along the projected curve
at equal speed where each step is a ray perpendicular to the projected curve.
For straightened CPR view, we set the Frenet-Serret frame [11] along the curve
and interpolate images on the curves normal planes. Before calculating the
Frenet-Serret frame vectors, we applied Savitzky-Golay filtering [12] to smooth
the centerline curve as well as the orthogonal vectors along it.

Graph Cut Segmentation. A graph cut algorithm is used to segment the
bowel lumen and wall in the CPR volume. Due to the axis-symmetric represen-
tation of the bowel in the reconstructed straightened CPR volume, we define the
connectivity of the graph to be between pixels represented in cylindrical coordi-
nates [r, z, θ]. We therefore sample straightened CPR images every 5 degrees to
generate a volume where each image represents a slice that passes through the
center at a specific angle θ. Using this representation, we segment the volume
into five classes: upper background, upper wall, lumen, lower wall, and lower
background. After obtaining the segmentation results, we extract the contours
of the wall and the lumen and then manually refine the results using the visual
interface. The editing is performed on six discrete angles and with interpolation
in between.

Projection of the Labeling onto Coronal Images. We use a method similar
to [13]. Given the segmentation boundaries in the CPR view, we construct a
tetrahedral mesh. We then assign the voxels of each tetrahedron in the mesh
with either lumen or wall label. To do so, we perform the following: Given a
tetrahedron T , any point p ∈ T divides it into four sub tetrahedrons such that
the vector e of the point p with respect to vertex v can be expressed by e =
αei + βej + γek, where the barycentric coordinates (α, β, γ) ∈ (0, 1) are the
volume ratios between each sub-tetrahedron and tetrahedron T .

α =
det(e, ej , ek)
det(ei, ej , ek)

;β =
det(ei, e, ek)
det(ei, ej , ek)

; γ =
det(ei, ej , e)
det(ei, ej , ek)

(1)

ei, ej , ek are the tetrahedron edge vectors with respect to vertex v.
To find the inner voxels surrounded by each tetrahedron, we take the grid pixels
of the minimal box that bounds the tetrahedron and looked up the pixels whose
barycentric coordinates apply: α, β, γ ≥ 0 and α + β + γ ≤ 1.

2.2 Segmentation of the Bowel Lumen and Wall Using a 3D
Residual CNN with Distance Prior

Our motivation for using a 3D CNN segmentation algorithm is based on the
observation that the highly variable bowel appearance and shape requires a
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Fig. 1. Generation of labeled dataset of Crohns disease segments.

supervised algorithm that can learn feature representations and a classifier from
a large set of augmented training patches for solving this difficult problem. We
perform the segmentation in the original coronal image volumes instead of using
CPR views to eliminate the dependency of the performance on the initial cen-
terline delineation. The segmentation of the small bowel is challenging because
one diseased section of the wall can be adjacent to either part of the same dis-
eased segment, or part of a distal healthy segment. In addition, the lumen and
the mesentery might have similar intensities such that from a patch perspective,
it may be unclear whether a region is inside the lumen or between two walls.
To overcome this ambiguity, we added a distance map prior to the input data.
Accordingly, the distance prior is computed as the shortest distance of each voxel
from the interpolated centerline seed points-positioned in the lumen.
Our CNN network, shown in Fig. 2, has a 3D fully connected U-Net architec-
ture [14] with residual units [15]. The network has three contracting layers;
three expanding layers; and a final convolution layer (with kernel size one) fol-
lowed by softmax. Each residual layer has two sets of batch normalization (BN),
leaky ReLU activation, and convolution as suggested by [15]. Down-sampling
and up-sampling of features is done using strided convolutions and transpose
convolutions, respectively. The input to the network consists of two channel
patches 64 × 64 × 32 in size. The first channel patches were taken from the
contrast-enhanced T1-weighted MR images after resampling to isotropic resolu-
tion. Before cropping the patches, the images are normalized to have zero mean
and a standard deviation equal to 1. In the training, the patches were centered
on randomly selected lumen or wall pixels. We scale the distances to the range
of [−1, 1] after truncating the max value to 32. We trained the network with a
stochastic gradient descent with momentum of 0.9 and L2 regularization with
λ = 10−3. To augment the training data, we added Gaussian noise, random
rotations over the x-axis, random scaling of ±10%, and random flips in each of
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the three dimensions. The augmentation generated >2 million patches - each
contains a short tube segment of the small bowel in an arbitrary shape and
orientation.

3 Experiments and Results

We used contrast-enhanced T1-weighted MR images of 23 pediatric patients
with Crohns disease. The images were scanned in coronal planes with voxel size
of about 0.75 × 0.75 × 2 mm. We interpolated the image to isotropic sampling
of 0.75 m before the analysis. We generated a labeled dataset of the small bowel
lumen and wall as described above. We divided the dataset into a training set
of 15 patients and a test set of 8 patients from which we extract 3D patches
for training and testing the proposed segmentation network, respectively. To
evaluate the accuracy of the segmentation, we computed the Dice Similarity
Coefficient (DSC) of the lumen wall and background classes. In addition, we
computed the distances between the CNN boundary contours and the label
boundary contours.

Figure 3 demonstrates the results of the proposed lumen and wall segmenta-
tion algorithm on 4 patients compared to the ground truth labels in the original
coronal plane and after reformation of the segmentation results into the straight-
ened CPR views. Table 1 summarizes the performance of our model in segment-
ing the small bowel lumen and wall. When integrating the proposed distance
prior into the proposed 3D Residual U-Nets architecture, the Dice coefficients
increased from 55% to 75% for the lumen and from 60% to 81% for the wall
segment. The median distance between the automated and manually labeled
contours reduced from 1.70 mm to 0.85 mm and from 1.6 mm to 1.0 mm for the
lumen-wall and wall-background boundaries, respectively.

Figure 4 shows surface rendering of diseased bowel loops and their corre-
sponding imaging markers from 4 patients. The upper row shows the lumen
radius and the lower row shows the thickness of the bowel wall. Figure 4 cases
(a) and (d) shows diseased areas with strictures that have a very narrow lumen

Fig. 2. The networks input patches and its architecture. (To better demonstrate, the
two input channels are depicted one above the other, and the residual U-Nets concate-
nating channels are depicted alongside one another.)
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and thickened bowel wall. These markers are useful for surgical planning (a, d)
and for quantitatively evaluating disease severity (b, c).

Fig. 3. The results of the proposed segmentation algorithm of the lumen and wall of
4 patients compared to the labels in coronal planes (left) and in straightened CPR
views (Right). Color coding: lumen-wall contours CNN (yellow) vs. label (red). Wall-
background contours CNN (blue) vs. label (green). (Color figure online)

Table 1. Performance of the network in segmenting the small bowel lumen and wall.
DSC-Dice Similarity Coefficient, BD- Boundaries Distance (between the CNN result
and the label).

DSC

[%]

lumen

DSC

[%]

wall

DSC

[%]

back-

ground

Cross

entropy

Median

BD [mm]

lumen

Median

BD [mm]

wall

Average

BD

[mm]

lumen

Average

BD [mm]

wall

Single input

channel

55± 25 60± 17 93± 4 0.33 0.83± 2.8 1.7± 4.0 1.6± 2.8 3.4± 4.0

Distance prior

concatenated at

the final layer

70± 19 75± 10 95± 4 0.22 0.83± 1.8 1.8± 3.1 1.2± 1.8 3.1± 3.1

Distance channel

prior (proposed)

75± 18 81± 8 97± 2 0.13 0.83± 1.5 0.85± 2.3 1.0± 1.5 1.8± 2.3

Table 2. Comparison to Crohns disease small bowel segmentation prior work.

Method Provide the
entire disease
segment?

Provide
disease
mark-
ers?

DSC [%]
lumen

DSC
[%]
wall

DSC [%]
back-
ground

DSC [%]
lumen+wall
vs.
background

SL [2] No No N/A N/A N/A 86.5 ± 2.3

SS-AL [4] No No N/A N/A N/A 92.1

AS [3] No No N/A N/A N/A 90 ± 4

AL [5] No No N/A N/A N/A 92.7

CNN (ours) Yes Yes 75 ± 18 81± 8 97 ± 2 N/A
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Fig. 4. Surface rendering of the lumen boundary with colormaps indicating lumen
radius [mm] (upper row) and wall thickness [mm] (lower row) obtained using the pro-
posed method. Cases (a) and (d) has diseased areas with strictures that have a very
narrow lumen and a very thickened bowel wall that may indicate surgical therapy.

4 Discussion and Conclusions

We propose a novel algorithm for segmenting both the bowel lumen and wall in
T1-weighted, contrast-enhanced MR images and extracting imaging markers of
pediatric Crohns disease including bowel wall thickness and lumen radius. Our
algorithm is based on a 3D residual CNN with a distance prior that improved the
performance compared to a 3D residual CNN without the distance prior. The
performance when adding the distance map as an additional channel was superior
to that seen when integrating the distance prior at the final layer -an observa-
tion that implies that integrating spatial information to the learned filters will
improve overall performance. Such spatial informative channels may improve the
performance in other image segmentation applications as well. We observed that,
there were several locations where the algorithm delineated the boundaries more
accurately than the labeled data. For cases that require manual refinement, our
proposed editing software enables efficient and quick manual editing of the seg-
mentations on CPR views before computing the disease markers. All prior works
with reported segmentation performance segment the wall and lumen together
from their background instead of each compartment alone. These works provide
small tissue segments with Crohns disease instead of tube structure and therefore
cannot extract the wall thickness or lumen narrowing (Table 2). The limitation
of our method, however, is the difficulty in placement of seed points along the
centerline in images with high motion artifacts, insufficient bowel preparation or
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severe disease condition where the lumen path is barely visible. We anticipate
the proposed method and the automatically extracted imaging markers will facil-
itate comprehensive assessment of diseased bowel lumen and wall in pediatric
Crohns disease.1
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Abstract. Several diseases of parkinsonian syndromes present similar
symptoms at early stage and no objective widely used diagnostic meth-
ods have been approved until now. Positron emission tomography (PET)
with 18F-FDG was shown to be able to assess early neuronal dysfunction
of synucleinopathies and tauopathies. Tensor factorization (TF) based
approaches have been applied to identify characteristic metabolic pat-
terns for differential diagnosis. However, these conventional dimension-
reduction strategies assume linear or multi-linear relationships inside
data, and are therefore insufficient to distinguish nonlinear metabolic
differences between various parkinsonian syndromes. In this paper, we
propose a Deep Projection Neural Network (DPNN) to identify charac-
teristic metabolic pattern for early differential diagnosis of parkinsonian
syndromes. We draw our inspiration from the existing TF methods. The
network consists of a (i) compression part: which uses a deep network to
learn optimal 2D projections of 3D scans, and a (ii) classification part:
which maps the 2D projections to labels. The compression part can be
pre-trained using surplus unlabelled datasets. Also, as the classification
part operates on these 2D projections, it can be trained end-to-end effec-
tively with limited labelled data, in contrast to 3D approaches. We show
that DPNN is more effective in comparison to existing state-of-the-art
and plausible baselines.
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1 Introduction

Approximately 7 to 10 million people worldwide are suffering from Parkin-
son’s disease (PD). On the other hand, very similar clinical signs can appear in
patients with atypical parkinsonian syndromes, such as multiple system atrophy
(MSA) and progressive supranuclear palsy (PSP) and these conditions account
for approximately 25–30% of all cases of parkinsonian syndromes [1]. Diagno-
sis of parkinsonian patients based on longitudinal clinical follow up remains
problematic with a large number of misdiagnoses in early stage [2]. Thus, early
differential diagnosis is essential for determining adequate treatment strategies
and for achieving the best possible outcome for these patients [3].

Positron emission tomography (PET) captures neuronal dysfunction of PD
using specific in-vivo biomarkers [4–8] and has been shown to be more advan-
tageous in early diagnosis, far before structural damages to the brain tissue
occurs [7,9–11]. Automated approaches such as Principal component analysis
(PCA) has been successfully applied on 18F-FDG PET to extract PD-related
pattern (PDRP), MSA-related pattern (MSARP), and PSP-related pattern
(PSPRP) [12,13]. These patterns have been found as effective surrogates to dis-
criminate between classical PD, atypical parkinsonian syndromes and healthy
control subjects [13]. To account for heterogeneous physiology and enable indi-
vidual pattern visualization, a tensor-factorization based method was developed
by projecting the 3D data into 2D planes containing the discriminative informa-
tion [3]. However, these conventional dimension-reduction based methods assume
linear or multi-linear relationship inside data. In contrast, different subtypes of
parkinsonian syndromes, caused by different protein aggregation (α-synuclein
or Tau), show a non-linear relationship to the anatomical changes. Thus differ-
ence of metabolic patterns between PD, MSA and PSP can be nonlinear due to
these diverse pathological manifestations and heterogeneous propagation among
complex brain connectomes. Therefore, either PCA or tensor factorization is
insufficient to identify nonlinear metabolic differences of various parkinsonian
syndromes, and is susceptible to providing sub-optimal solutions.

Deep learning based approaches have recently been shown to be very effective
in discovering non-linear characteristic patterns within data in an end-to-end
fashion [14,15]. It has been shown to surpass human performance in different
complicated tasks, like image classification. It has also gained a lot of popularity
in the bio-medical community [16] for computerized diagnosis on medical imag-
ing, such as differential diagnosis [15,17,18]. Inspired by these recent successes,
we use a deep learning based architecture for early diagnosis of parkinsonism.

One of the major challenge associated with this task is that our input data is 3D
in nature, with limited amount of labelled training samples. Standard approaches
of going for 3D based CNN models (very high number of learnable parameters) are
prone to overfitting when trained on limited samples. To circumvent this issue,
we draw inspiration from the existing approaches which uses Tensor Factoriza-
tion (TF) to project the 3D scans to 2D, and use them for diagnosis. Towards
this end, we propose a deep projection neural network (DPNN), which has two
parts, (i) Compression Part and (ii) Classification Part. The Compression Part
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basically mimics TF projection from 3D to 2D. This part can be pre-trained on
a large amount of unlabelled dataset, which is easily available. This pre-trained
model is added to the 2D-CNN based Classification part (lower model complex-
ity), which is trained end-to-end with limited annotated data. Although in this
paper, we present its application for PET scans, the concept is fairly generic and
can be easily extended to any 3D data.

2 Materials and Methods

2.1 Data Preparation and Preprocessing

A cohort of 257 patients (Dataset-1) with clinically suspected parkinsonian fea-
tures were included in this study. The patients were referred for 18F-FDG PET
imaging and then assessed by blinded movement disorders specialists for more
than 2 years. Finally 136 of them were diagnosed with PD, 91 with MSA and 30
with PSP. All the 3D PET volumes were preprocessed using intensity-normalized
by global mean and spatially normalized to Montreal Neurological Institute
(MNI) space using SPM81 according to a standard PET processing procedure [3].
For optimizing deep networks, the limited availability of PET images of patients
at early stage of parkinsonism could be a bottleneck. Therefore, a database of
1077 subjects (Dataset-2) with 41 various non-parkinsonian neurological diseases
with brain FDG PET images is further included to enhance the data pool.

2.2 DPNN Architecture

We draw our inspiration from prior work which estimated tensor factorized pro-
jection of 3D PET scans and processed them for classification task. In this regard,
we formulated to solve the problem in two parts: (i) Learn a separate network to
mimic the tensor factorization from 3D data, i.e. learning to compress the data
(Compression Part), and (ii) Learn a 2D CNN model to map the compressed
input to one of the classes (Classification Part). A detailed description of both
the parts are provided below with the architectural design in Fig. 1.

Compression Part: Given a 3D PET scan IP ∈ R
H×W×D, here we estimate

a function fp(·) which compresses the data to a 2D projection map Pt, so that
fp : IP → Pt, where Pt ∈ R

H×W . This non-linear function fp(·) is approximated
by a series of blocks consisting of a 3×3 convolutional layer, batch normalization
and a ReLU activation function. A set of 5 such blocks are stacked together,
which compresses IP sequentially to Pt. The final block uses a sigmoidal non-
linearity instead of ReLU to rescale the activations between [0, 1].

Classification Part: This part takes Pt, the compressed projection map as
input. It learns a mapping fc(·), which maps Pt to the one of the class labels
y. The first 5 blocks consist of a 3 × 3 convolutional layer, batch norm, ReLU
1 Statistical Parametric Mapping, http://www.fil.ion.ucl.ac.uk/spm/software/spm8/,

2009.

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
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Fig. 1. Illustration of the overall model architecture of deep projection neural network
(DPNN). All the architectural details regarding the network are shown here.

activation and a max pooling layer, reducing the spatial dimensions by a factor of
2 at every step. The final block consists of a global average pooling instead of max
pooling, squeezing the feature map along spatial dimensions. This is followed by
a 1 × 1 convolutional layer, softmax layer to project the learnt features to the
label probalility space R

3, from where y is estimated as the class with highest
probability. More details regarding the size of intermediate feature maps and
stride are indicated in Fig. 1.

2.3 Training Procedure

To tackle the issue of learning such a highly complex model with limited training
data, we propose to address the training procedure in two stages: (i) We lever-
age unlabelled PET data corpus to pre-train the Compression Part, (ii) limited
labelled data is used to learn the weights of the Classification Part, with the
Compression Part initialized to the pre-trained weights.

Pretraining: In this part, we use the unlabelled Dataset-2 {Ii} for pre-training.
We compute the tensor factorized 2D maps of all the volumes as {Gi}. In this stage,
we train the compression part fp(·), using this dataset, with the goal of mimick-
ing {Gi} as the output of the network. We hypothesize that this provides a strong
initialization to the network for the classification stage. The network is learnt by
jointly optimizing a combination of Mean Square Error (MSE) and Structural
Similarity Index (SSIM) between the target and prediction, defined as,
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L =
1

2Np

∑

r

(P(r) − G(r))2

︸ ︷︷ ︸
MSE

− 1
Nw

∑

w

SSIM(wp,wg),

︸ ︷︷ ︸
SSIM Index

(1)

SSIM(wp,wg) =
(2μpμg + C1)(2σpg + C2)

(μ2
p + μ2

g + C1)(σ2
p + σ2

g + C2)
, (2)

where, P, G, r and Nr are the predicted map, target projection map, pixel-
position, and the total number of pixels respectively. wp and wg represent a
local 6 × 6 window in P and G, and Nw is the total number of such windows.
SSIM is calculated on all the Nw windows and their average value is used in
the cost function. μp, σ2

p, and σpg are the mean of wp, the variance of wp,
and the covariance of wp and wg, respectively. C1 and C2 are set to ∼ 10−4 and
∼ 9×10−4, respectively. We use SSIM based loss function to preserve the quality
of the predicted map similar to actual Tensor Factorized map. The weights of
the convolutional kernels are initialized using Xavier initialization and Adam
optimizer with a learning rate of 10−4 is used for the weight updates. The β1, β2

and ε parameters of the optimizer are set to 0.9, 0.999, and 10−8, respectively.
The training is continued until the validation-cost saturates.

Fine-Tuning: In this stage, the pre-trained compression network is combined
with the classification part, and the weights of the classification part are initial-
ized using Xavier initialization. The whole network is trained in an end-to-end
fashion, minimizing 3-class Cross-Entropy loss function using Adam optimizer
with β1, β2 and ε set to 0.9, 0.999, and 10−8, respectively. The learning rate used
for the classification part is 10−4, while for the compression part it is kept 10−5.
The learning rate of the compression part is kept one order low to prevent high
perturbation in those layer. The weights are regularized with a decay constant
of 10−5, preventing over-fitting. A mini-batch of 10 PET scans are used. The
training is continued until the convergence of the validation loss.

3 Experiments and Results

Experiments: We evaluate our proposed DPNN model by a 5-fold cross-
validation experiment on Dataset-1. An equal distribution of each of samples
from the three classes were ensured in each of the folds. For evaluation, we
used the standard metrics, (i) True Positive Rate (TPR), (ii) True Negative
Rate (TNR), (iii) Positive Predictive Value (PPV), and (iv) Negative Predictive
Value (NPV), consistent with [3].

Baselines: We compare our proposed method against state-of-the-art method
which uses Tensor Factorization (TF), followed by SVM for classification [3].
Apart from this, we define two other baselines to substantiate our claims:

1. BL-1: DPNN, with pre-training using only MSE, to observe the effect of
including SSIM in the cost function.
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2. BL-2: DPNN, without pre-training, trained end-to-end, to observe the effect
of pre-training.

For all the experiments we used five-folded cross-validation for evaluation. All
the networks were trained on NVIDIA Titan-Xp GPU with 12 GB RAM.

Fig. 2. Projection of 3D PET Volumes generated by the Compression Part of the fine-
tuned DPNN. We can visually observe the distinct patterns exhibited by the three
sub-types MSA, PSP and PD, which not only aids clinicians for inference, but also
aids the Classification part in automated decision making.

Results: Table 1 reports the results of our proposed model (DPNN), with
defined baselines and state-of-the-art method, in terms of the mentioned eval-
uation metrics. Comparing with state-of-the-art [3], DPNN outperforms it in
most of the evaluation scores (8 out of 12). Comparing with BL-1, DPNN out-
performs it. This substantiates our previous hypothesis that MSE+SSIM based
pre-training is more effective in providing stronger initialization than MSE alone,
which fails to capture the quality based features in the compression stage. It can
be attributed to the fact that SSIM applies stricter constraint on similarity which
forces the network to learn better representations. Also, comparing to BL-2, we
prove our previous claim that pre-training is necessary when training such a com-
plicated model with limited annotated data. It has improved the specificities of
MSA by 0.79%, PSP by 17.97% and PD by 14.37%, which can play a critical role
for differential diagnosis. It is worth noting that DPNN shows consistent good
performance across all the metrics for the PD class which has the highest num-
ber of samples (viz. 136). While all the models show greatest inconsistency in
the scores for PSP class, which has just 30 representative samples in the dataset.
This is indicative of the fact that given enough data the performance of DPNN
can be increased to an ideal level.
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Next, we take a closer look at the learnt Projection Maps in Fig. 2, which
shows example pattern images of MSA, PSP and PD. Patterns similar to tensor-
factorization have been observed in the DPNN Projection results, for example,
visible cerebellum and striatum activities in PD, vanishing cerebellum and stria-
tum activities in MSA and decreasing striatum activity and visible cerebellum
activity in PSP [3]. This confirms that DPNN is capable of extracting physio-
logically meaningful patterns, and use it for final decision making.

Table 1. Classification results of our proposed DPNN, in comparison to comparative
methods and Baselines.

Model Metrics

MSA PSP PD

TPR TNR PPV NPV TPR TNR PPV NPV TPR TNR PPV NPV

DPNN 84.56 94.58 89.63 91.83 90.00 96.93 79.29 98.67 94.87 93.33 94.28 94.24

BL-1 76.78 93.98 89.83 88.52 86.67 96.04 76.9 98.24 92.65 86.67 89.44 91.57

BL-2 75.67 93.40 87.90 87.97 80.00 96.48 79.25 97.40 91.96 83.33 86.87 90.46

TF+SVM [3] 86.35 93.79 92.85 88.86 97.87 78.96 97.30 85.07 92.44 78.96 89.14 85.73

4 Conclusion

We developed a deep learning method to extract characteristic metabolic pat-
tern for differential diagnosis of parkinsonian syndrome. In contrast to linear or
multi-linear data-reduction methods of the state-of-the-art, the proposed DPNN,
processes 3D-data using 2D-convolutions, can explore the non-linear metabolic
differences between the subtypes. Furthermore, we introduced a training proce-
dure based on the optimization of SSIM along with MSE which leverages tensor-
factorized maps of inputs, from a domain similar to the task-input domain,
to overcome the difficulties posed by a small dataset. With limited amount of
data, the novel method has already achieved superior accuracy compared to the
state-of-the-art. The advanced pre-training strategies play a critical role in the
success of this novel method, which prevent the abort of cutting-edge devel-
opments before approaching to a large data-bank. The positive performance of
deep learning in this study encourages a multi-center study, which is actively
in preparation. Although the DPNN patterns extracted in this proof-of-concept
study look similar to the previous tensor factorization, an extensive inspection by
clinicians may discover the characteristic difference matching to improve accu-
racy. With the increase of data access, the ability of the deep learning methods
to discover new discriminative features will be enhanced, which may provide the
potential for a diagnosis at even earlier stage before motor impairment appears,
i.e. at prodromal parkinsonian stage such as rapid eye movement (REM) sleep
behavior disorder (RBD).
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Abstract. Semantic segmentation of medical images is a crucial step for
the quantification of healthy anatomy and diseases alike. The majority of
the current state-of-the-art segmentation algorithms are based on deep
neural networks and rely on large datasets with full pixel-wise annota-
tions. Producing such annotations can often only be done by medical
professionals and requires large amounts of valuable time. Training a
medical image segmentation network with weak annotations remains a
relatively unexplored topic. In this work we investigate training strate-
gies to learn the parameters of a pixel-wise segmentation network from
scribble annotations alone. We evaluate the techniques on public cardiac
(ACDC) and prostate (NCI-ISBI) segmentation datasets. We find that
the networks trained on scribbles suffer from a remarkably small degra-
dation in Dice of only 2.9% (cardiac) and 4.5% (prostate) with respect
to a network trained on full annotations.

1 Introduction

Convolutional neural networks (CNN) have been used for semantic segmentation
on medical images with great success [2]. For the most part, these methods rely
on fully annotated images to train the network. Although CNN-based segmen-
tation algorithms keep evolving and improving, the amount of available training
data still has a substantial effect on the performance [9]. However, it is difficult
to obtain large scale fully annotated data for medical images since it requires an
expert to spend considerable time and effort.

To address this limitation, a number of works have proposed interactive image
segmentation methods relying on weak annotations such as bounding boxes [12],
or scribbles [4,6]. However, in these works, the annotations need to be provided
for each new test image. Recently, a number of works have demonstrated that it
is feasible to train fully-automatic, learning-based algorithms using exclusively
weak labels [5,9–11]. Despite being trained on weak labels, these methods can
produce full segmentation masks on test images. Of the above works only [11] was
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demonstrated on medical images. The authors proposed to train a segmentation
network for fetal structures from bounding box annotations only.

In this paper we present a scribble-based weakly-supervised learning frame-
work for medical images. Scribbles have been recognized as particularly user-
friendly form of supervision [9] and may be better suited for nested structures,
when compared to bounding boxes. Furthermore, they require only a fraction of
the annotation time compared to full pixel-wise annotations. Following previous
works, the proposed framework is an iterative two-step procedure in which a
segmentation network is trained on the scribble annotations, then this network
is used in conjunction with a conditional random field (CRF) to relabel the
training set. This in turn is used for an additional training recursion1. We show
that this procedure, under some assumptions, can be interpreted as expectation
maximization (EM). We investigate multiple strategies for relabeling the train-
ing dataset, estimating the CRF parameters, and quantifying uncertainty in the
relabeling step. An overview of the method is shown in Fig. 1.

We evaluate the framework and its individual components on the public car-
diac ACDC dataset [2] and the NCI-ISBI 2013 prostate segmentation challenge
data [3]. We show that despite the inherently very sparse nature of the anno-
tations the proposed methods achieve a segmentation accuracy within 95% of
a baseline network trained with full supervision. To our knowledge, this is the
first demonstration of training a pixel-wise segmentation network with scribble
supervision on medical image data.

Fig. 1. Overview of the proposed training framework.

2 Methods

The aim of our proposed method is to learn the parameters θ of a CNN-based
segmentation network y = f(x; θ) such that it predicts a generally unknown
segmentation mask y ∈ {0, . . . , L}N for an input image x ∈ R

N , where N is
the number of pixels. During training, rather than full pixel-wise annotations,
we are only provided with a ground truth annotation ξ for a small number of
pixels (i.e. the scribbles). Note that this also includes a background scribble
1 We refer to this as recursion rather than iteration to avoid confusion with single

mini-batch gradient descent steps, which are also often referred to as iteration.
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(see examples in Fig. 2). The proposed framework consists of a repeated estima-
tion of the network parameters and subsequent relabeling of the training dataset
by combining the network prediction with a CRF. We investigate two different
CRF inference strategies: the dense CRF approach proposed in [8], and a recent
extension thereof in which the CRF is formulated as a recurrent neural network
(RNN) and the CRF parameters can be learned end-to-end [13]. Moreover, we
investigate a novel strategy for incorporating prediction uncertainty in the rela-
beling step based on [7]. For all investigated strategies we perform an initial
region growing step described in the following.

Fig. 2. Example images and scribbles on the left and ground truth segmentations on
the right for the (a) prostate and (b) cardiac datasets, respectively.

2.1 Generation of Seed Areas by Region Growing

For this step we use the random walk-based segmentation method proposed by
[6], which (similar to neural networks) produces a pixel-wise probability map for
each label. We assign each pixel its predicted value only if the probability exceeds
a threshold τ . Otherwise the pixel-label is treated as unknown. An example of
this step can be seen in Fig. 1. Note that the threshold is intentionally chosen
very high such as to underestimate the true extent of the structures and only
include pixels which have a very high probability of being correctly estimated.
Those assignments will serve as new “ground truth” labels ẑ for the remainder
of the steps and will be referred to as seed areas. The uncertain pixels z are
treated as unlabeled, i.e. they are the latent variables of our model.

2.2 Separate CRF and Network Training

We propose a hard expectation maximization (EM) approximation to learn the
network parameters θ in an iterative fashion. The algorithm consists of alter-
natingly estimating the best parameters of the neural network given a labeling
obtained using the current parameters θold (M step), and estimating the opti-
mal labeling of the latent variables given an updated θ (E step). We assume the
following graphical model

p(z, ẑ|x, θ) = p(z|x, θ)p(ẑ|z,x), (1)
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where p(z|x, θ) is modeled using a neural network f(x; θ). Following the standard
EM approach, we write the expectation of the complete-data log likelihood as

Q(θ, θold) =
∑

z

p(z|ẑ,x, θold) ln p(z, ẑ|x, θ). (2)

In the E step of the algorithm we estimate the mode of p(z|ẑ,x, θold) as

z∗ = arg max
z

p(z|ẑ,x, θold) = arg max
z

p(z, ẑ|x, θold)
p(ẑ|x)

= arg max
z

p(z, ẑ|x, θold),

(3)
using the fact that p(ẑ|x) does not depend on z.

By assuming a complete dependency graph between all z, ẑ, the conditional
joint distribution can be factorized and the E step can be written as the following
CRF optimization problem:

z∗ = arg min
z

∑

i∈Cu(z)

ψu(zi|x, θold) +
∑

i∈Cu(ẑ)

ψ̂u(ẑi)

+
∑

i,j∈Cp(z)

ψp(zi, zj |xi, xj) +
∑

i,j∈Cp(ẑ)

ψp(ẑi, ẑj |xi, xj) +
∑

i,j∈Cp(z,ẑ)

ψp(zi, ẑj |xi, xj),

(4)

where Cu(·) denotes the set of all unary cliques of a set of variables and Cp(·)
denotes the set of all pairwise cliques. The unary potential function ψu acting
on the latent variables is defined using the current network output as

ψu(z|x, θold) = − ln p(zi|x, θold) = − ln f(x; θold). (5)

The unary potential function ψ̂u acting on the seed regions ẑ is defined as 0 for
labellings matching the ground truth and infinity otherwise, effectively prevent-
ing the initially grown regions from changing. Furthermore, we use the pairwise
potential function ψp proposed in [8]:

ψp(zi, zj |xi, xj) = μ(zi, zj)

(
w1 exp

(
−dist(xi, xj)2

2σ2
α

− |xi − xj |2
2σ2

β

)

+ w2 exp
(

−dist(xi, xj)2

2σ2
γ

))
,

(6)

where the label compatibility function is given by the Potts model μ(zi, zj) =
[zi �= zj ], and dist(·, ·) denotes the Euclidean distance between the pixel loca-
tions. We estimate the hyperparameters w1, w2, σα, σβ , σγ in a grid search on
the validation set. In order to optimize Eq. 4 we use the approach in [8]. We also
consider a simple modification of this procedure as a baseline in which we set
the pairwise terms to zero and only use the unary terms ψu, ψ̂u.

In the M step, after we have found the optimal labeling of the latent variables
z∗ using the network parameters θold we can rewrite Eq. 2 as

Q(θ, θold) ≈
∑

z

δ(z = z∗|ẑ,x, θold) ln p(z, ẑ|x, θ)

= ln p(z∗|x, θ) + ln p(ẑ|z∗,x),
(7)
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where δ is the Dirac delta function, the approximate equality is due to the
hard EM approximation and we substituted Eq. 1 to obtain the equality. Since
ln p(ẑ|z,x) does not depend on θ the optimization can be written as

θ∗ = arg max
θ

ln p(z∗|x, θ). (8)

We find the parameters θ that maximize the likelihood of predicting the labels
z∗ by minimizing the pixel-wise cross entropy function between the labels z∗ and
the network output using the ADAM optimizer with an initial learning rate of
0.001 which is multiplied by 0.9 every 3000 iterations. We use the modified U-Net
segmentation network used in [1] in all experiments. The network parameters θ
for each recursion are initialized with θold. The E and the M steps get repeated
until convergence, which typically occurs within 3 recursions or less.

In the first recursion, we set the cross-entropy loss to zero in all locations
where the random walk is “uncertain” (probabilities below τ), allowing the net-
work to predict any label in those regions. We also explore a strategy to identify
uncertain regions in subsequent iterations, which will be discussed in Sect. 2.4

2.3 Integrated Network Training and (CRF-RNN)

Here, we investigate estimation of the CRF parameters as part of the network
training. To that end we use the CRF-RNN layer proposed in [13] which learns
individual kernel weights for each class and a more flexible compatibility matrix.

To obtain a new labeling z∗ we simply run a forward pass through the net-
work. Next, in order to prevent the original seed regions ẑ from changing, we
simply reset those values to their original label. In future work, we aim to include
this constraint directly into the CRF-RNN formulation.

In the subsequent network optimization step, we directly learn to predict
those z∗. Here we use the following training scheme: the network parameters are
trained as above for 10 mini-batch iterations while keeping the RNN parameters
constant. Every 10 iterations, the RNN parameters are updated with a learning
rate of 10−7, while freezing the remainder of the network parameters. As before,
the label estimation and training steps are repeated until convergence.

2.4 Quantifying Segmentation Uncertainty

In order to prevent segmentation errors from early recursions from propagating
we investigate the following strategy to reset labels predicted with insufficient
certainty after each E step. We add dropout with probability 0.5 to the 5 inner-
most blocks of our U-Net architecture during training. In order to estimate the
new optimal labeling z∗ we perform 50 forward passes with dropout similar to
[7]. Rather than a single output this yields a distribution of logits and softmax
outputs for each pixel and label. We then compare the logits distributions of the
label with the highest and second highest softmax mean for each pixel using a
Welch’s t-test. If the logits come from a distribution with the same mean with
p ≥ 0.05 we conclude that the label was not predicted with sufficient certainty
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and reset its labeling to “uncertain”. Thus, in the subsequent M-step the net-
work will be free to predict any label in that location. Otherwise, we set the
pixel to the label with the highest probability.

3 Experiments and Results

We trained and evaluated the methods on two publicly available datasets: the
ACDC cardiac segmentation challenge data [2] for which the Myocardium (Myo),
the left and right ventricles (LV and RV) have been annotated, and the NCI-ISBI
2013 prostate segmentation challenge data [3] for which reference annotations
of the central gland (CG) and the peripheral zone (PZ) were available. For
the cardiac data we split the data into 160 training volumes and 40 validation
volumes, and evaluated the algorithms on 100 images using the challenge server.
For the prostate data we split 29 available training volumes into 12 training, 7
validation and 10 testing volumes. Training was performed on 2D slices.

We used τ = 0.99 for the cardiac and τ = 0.90 for the prostate experiments.
For the separate CRF we used w1 = 5, w2 = 10, σα = 2, σβ = 0.1, σγ = 5 for
the cardiac experiments and w1 = 6, w2 = 10, σα = 3, σβ = 0.01, σγ = 2, τ = 0.9
for the prostate, and for the CRF-RNN we used σα = 160, for the cardiac data,
σα = 250 for the prostate, and σβ = 3, σγ = 10 for both datasets.

In the following experiments, the simple recursive training strategy which
does not make use of pairwise terms in Eq. 4, nor uncertainty estimation, is called
base. We evaluated the performance with and without the components discussed
above. Additionally, we also investigated the same segmentation architecture
on the fully labeled data to obtain an upper bound on the performance, and a
version of base in which we did not perform any recursions, but used the network
parameters learned directly on the seed regions ẑ.

The Dice scores with respect to the reference annotations for all the examined
methods and structures are shown in Table 1. Note that ACDC challenge server
did not allow for higher precision Dice reporting in the post-challenge phase.
Example segmentations for the two best performing methods are shown in Fig. 3
for the cardiac and prostate data, respectively.

We observe that (a) the recursive training regime led to substantial improve-
ments over non-recursive training, (b) the dropout based uncertainty was respon-
sible for the largest improvements, (c) additional CRF led to further, albeit
smaller improvements, (d) using CRF-RNN without uncertainty led to similar
results as the separate CRF with uncertainty, (e) applying dropout uncertainty
in conjunction with the CRF-RNN did not lead to additional improvements and
performed slightly worse on the prostate. We believe this is due to the CRF-
RNN module leading to unusual logit distributions at its input. On average, the
training frameworks with (1) CRF-RNN, and with (2) separate CRF and uncer-
tainty performed the best and similar to each other. Future work on integrating
uncertainty with the CRF-RNN may lead to further improvements.
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Table 1. Dice scores on Cardiac and Prostate datasets.

Cardiac dataset Prostate dataset

LV RV Myo Avg PZ CG Avg

Base (no recursion) 0.895 0.875 0.825 0.865 0.631 0.827 0.729

Base 0.905 0.880 0.835 0.873 0.670 0.829 0.750

Base + separate CRF 0.890 0.880 0.840 0.870 0.698 0.837 0.767

Base + CRF-RNN 0.915 0.885 0.840 0.880 0.698 0.863 0.781

Base + uncertainty 0.910 0.890 0.840 0.880 0.720 0.837 0.778

Base + sep. CRF & unc. 0.910 0.890 0.840 0.880 0.722 0.839 0.780

Base + CRF-RNN & unc. 0.915 0.885 0.840 0.880 0.710 0.834 0.772

Fully supervised 0.935 0.905 0.895 0.912 0.746 0.889 0.818

Fig. 3. Randomly sampled example segmentations for the two best performing training
strategies for the (a) cardiac and (b) prostate data.
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Most importantly, the results show that our proposed training strategy allows
to learn a pixel-level segmentation network using scribble supervision alone with
a remarkably small degradation compared to the fully supervised upper bound.
For instance, the performance of the CRF-RNN method is only 4.5% worse on
the prostate, and 2.9% worse on the cardiac data compared to fully supervised
training. These results are also confirmed by the qualitative analysis. We believe
this is likely an acceptable error margin for certain quantification studies where
precise border delineation is of secondary importance such as automatic estima-
tion cardiac ejection fractions [2].

4 Conclusion

In this paper, we investigated training strategies to train a fully automatic seg-
mentation network with scribble supervision alone. We demonstrated the fea-
sibility of the techniques on two publicly available medical image datasets and
showed that only a remarkably small performance degradation is incurred with
respect to fully supervised upper bound networks.
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Abstract. Increasing demand for high field magnetic resonance (MR)
scanner indicates the need for high-quality MR images for accurate
medical diagnosis. However, cost constraints, instead, motivate a need
for algorithms to enhance images from low field scanners. We propose
an approach to process the given low field (3T) MR image slices to
reconstruct the corresponding high field (7T-like) slices. Our framework
involves a novel architecture of a merged convolutional autoencoder with
a single encoder and multiple decoders. Specifically, we employ three
decoders with random initializations, and the proposed training approach
involves selection of a particular decoder in each weight-update iteration
for back propagation. We demonstrate that the proposed algorithm out-
performs some related contemporary methods in terms of performance
and reconstruction time.

Keywords: Autoencoder · Multiple decoders · Low-field MRI
Reconstruction · High-field MRI

1 Introduction

Improvement of trade-off between spatial resolution and signal to noise ratio
(SNR) in MR imaging motivates the research from the perspective of both hard-
ware and signal processing. As SNR increases monotonically with the strength of
magnetic field, high-field MR scanners (7T, 11.5T) have been designed and are
successful in providing higher SNR for the same resolution of images. However,
the cost increases exponentially with the magnetic field strength. This leads to
the lesser availability of high-field MR scanners across different hospitals and
clinical labs and thus doesn’t solve the problem in practice. The number of clin-
ical 7T scanners in the world are just ∼40, as compared to ∼20000 3T scanners
[5]. Thus, developing algorithms to enhance images from low-field (and low-cost)
MR scanners, serve as an important alternative. Indeed, it has been shown that
the signal processing techniques can improve the spatial resolution along with
significant increment in the SNR [1].
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The problem to reconstruct the high-field like images from the low-field
images is manifold and consists many sub-problems which include (i) increase in
resolution leading to enhancement of image details, (ii) contrast improvement,
and (iii) increase in signal to noise ratio. Also, those approaches to address such
problems are more feasible in clinical practices, which take less time.

One can address the above concerns by learning a highly non-linear mapping
from the low field to high field MR images using exemplar low-field (LF) and
high-field (HF) MR images. Considering this, Khosro et al. in [2] attempted to
construct 7T like MR images from 3T MR images using dictionaries defined in
same space, which is estimated by hierarchical application of canonical correla-
tion analysis (CCA), and 7T MR images are reconstructed using the dictionary
defined for 7T MR images and the coefficient vector computed by representation
of 3T MR images using dictionary of corresponding exemplary 3T MR images.
As it tries to capture the non-linearity of the transformation, it performs better
than the approaches which solely increase the resolution with SNR [3,4]. How-
ever, the non-linearity of transformation is still approximated by linear opera-
tions and may have significant fitting errors by degree of the non-linearity.

This is further addressed by the approaches defined in the popular frame-
work of a neural network which can well approximate even the non-linear trans-
formations [5,6]. In [5] the reconstruction of 7T MR images is explored using
convolutional neural network (CNN) network with a requirement of anatomical
features. Reconstruction, as well as segmentation of the high-field MR images,
is performed using a cascaded CNN given the 3T MR images and correspond-
ing segmentation images at the input. Both these approaches divide the image
volumes into 3D cubes and execute the algorithm with 3D CNN. Processing
3D cubes can help in reconstruction of local details and consistency in x, y,
and z directions, but at the same time it may introduce block artifacts, and
importantly, increases the time for reconstruct the test MR volumes.

Considering the ill-posed nature of the problem, and a possibility of multi-
ple good solutions, we propose a merged convolutional autoencoder with three
decoders, along with a strategy to update the weights adaptively based on the
performance of each decoder at every iteration. The final estimate of the HF
image is obtained by averaging the reconstructed images from the three decoders.
To make the algorithm better usable in clinical practices, we reduce the recon-
struction time of test MR volumes, while achieving better reconstruction and
segmentation of the high-field MR images, by processing 2D images, and remov-
ing the requirement of any anatomical/segmentation based features.

Thus, our contributions can be summarized as: (a) architecture of convolu-
tional autoencoder with multiple decoders. (b) update criteria for the encoder
weights on the basis of decoder performance. (c) merge connections to enhance
the reconstruction ability. (d) demonstrating reconstruction and segmentation
improvements along with significant reduction in reconstruction time as com-
pared to the state-of-the-art approaches. (e) we demonstrate superior perfor-
mance across a variety of quantitative metrics such as PSNR, SSIM, sharpness
and edge width unlike [5,6].
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2 Proposed Approach

In this work, we employ the convolutional autoencoder which tries to learn com-
pact representative features of the image data. The problem to construct HF-like
MR images from LF MR images involves the non-linear transformation, which
the convolutional autoencoder learns at in latent space at multiple scales of the
image obtained by upsampling and downsampling layers. The salient aspects of
the proposed approach are detailed below:

2.1 One Encoder with Multiple Decoders

For the image reconstruction task, being an ill-posed problem, many solutions
(HF images) may exist for the transformation of LF image to the HF image
estimate. The transformation in our case depends on the filter weights which
ideally should be representative enough to construct image details of complex
structures, and discriminative enough to be able to learn the differences between
details of HF and LF image. While, such a transformation can be learnt with
a simple convolutional autoencoder (single encoder and decoder), considering
that the transformation can be highly non-linear, there could be different weight
combinations that can provide good estimates of such a transformation. The pro-
posed multi-decoder model is thoughtfully designed with a notion that decoders
initialized randomly, and updated using individual distinct costs, are likely to
learn different weights via the different optimization paths. The random initial-
izations can yield diverse solutions that can easily be collated for better PSNR.
The distinctness between the learnt weights can be observed in Fig. 2 via acti-
vation maps at same layers of different decoders.

Fig. 1. Selective auto-encoder backpropagation

While there can be different configurations of multiple decoders, as an exam-
ple, in this work we consider three decoders, integrated with a single encoder
in the proposed architecture (Fig. 2). In this architecture, a selective backprop-
agation approach (as elaborated next) (Fig. 1) is proposed to enable the weight
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updates across the three paths, by selecting one decoder out of the three based
on their losses, in each weight-update iteration (i.e. for each batch, with multiple
batches considered within an epoch).

2.2 Updating the Weights

As indicated above, the weights of the architecture are updated in a three-
fold manner which involves the selection of one of the three decoders, in each
iteration. The selection is based on the minimum loss. Suppose Ei represents
the error of the network at the ith decoder, such that Ei = g(WE ,WDi

),
with encoder weights WE and decoder weights WDi

, (i = 1, 2, 3.). The weight
update of the encoder is represented as ΔWE ∝ mini(Ei). In this way, in every
iteration the encoder weights have three open but guided paths to move on, and
the optimal one (with minimum loss) is chosen.

While the encoder weights are updated with the minimum decoder loss, for
updating the decoder weights, we update all the decoders using their respective
losses, i.e. ΔWDi

∝ Ei. We observe that simultaneously updating the decoders
helps in minimizing the training loss faster, even as compared to a single encoder
and decoder model, and also yields an improved performance.

2.3 Merge Connections

We define the proposed architecture with blocks of subsequent filter layers fol-
lowed by a max pooling layer in the encoder section as shown in Fig. 2. To recon-
struct the original size of image at output, an upsampling layer is introduced
in each block of the decoders. While upsampling, there may be some artifacts
introduced due to missing details in downsampled input of decoder. Hence, we
concatenate the input of decoder with its upscaled version from the encoder in
order to provide the nature of upscaled details for better reconstruction while
upsampling in decoder. Indeed, we observe that adding the merge connections
yield a significant PSNR improvement (of the order of 5db). This setting of our
architecture is inspired from [7].

2.4 Proposed Architecture

The proposed approach employs a single encoder and multiple decoder archi-
tecture with a single channel input as described in Fig. 2. Three convolutional
layers are used in each block of an encoder and all the three decoders, followed
by a batch normalization layer to maintain the numerical stability.

The first convolutional block in the encoder has 32 filters and the number
of filters doubles after each convolutional block. In all the decoders the first
convolutional block has 256 filters and the number of filters are halved after
each block. We use a filter size of 3-by-3 in all convolutional blocks.

We use Rectified Linear Unit (ReLU) as an activation function in all the
layers except the final layer. Since our data is normalized between 0 and 1, a
Sigmoid activation function is used at the final layer.
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Fig. 2. Proposed Architecture (Better viewed in color)

The pixel values greater than zero (brain area) are passed to the next layer
and rest of the pixels (outer part of the brain) are squashed to zero. This phe-
nomenon is clearly visible in the initial layers of the encoder and the last layers
of all the three decoders, through the activation maps in Fig. 2.

It is well known that local image details at various scales play a significant role
in image reconstruction. The proposed architecture considers images at different
scales using hierarchical layers for downsampling (maxpooling) and upsampling
(each for a factor of 2) in encoder and decoders, respectively. The encoded rep-
resentation obtained after three downsampling operations brings the data from
a high dimension input to a latent space representation.

As the training proceeds, after every epoch the model is validated on 20%
of the unseen validation data. The auto-encoder with minimum mean square
error in training data, predicts on the validation data, and using the predicted
output we calculate PSNR on the validation data and save the best weights
corresponding to the maximum PSNR across epochs. The test reconstructions
are then computed on these weights. Further, we have observed experimentally
that the minimum strategy for backpropagation gives better results as compared
to maximum strategy.

To aid a faster convergence we reduce the learning rate by 10% of its value
after every 20 epochs. We also observe that using learning rate decay, the loss
value converges to a smaller value than the case without using learning rate
decay. The initial value for learning rate is set to be 1e-3. The model is trained for
500 epochs, which is observed to be more than sufficient to ensure convergence.

Finally, in the testing phase, the three reconstruction estimates on the test
data are obtained at the three decoder outputs, and we take an average of all
the three predictions which improves the results quantitatively. We observe that
averaging the predicted outputs also helps in reducing the noise-like effects,
with preservation of local features in the reconstructed images, and hence the



250 A. Sharma et al.

improvement in PSNR over the individual decoder outputs as well as AE trained
with single decoder is observed.

3 Experimental Results

3.1 Experimental Setup

To evaluate the performance of the proposed algorithm, real MR images scanned
by 3 T and 7T MR scanner are selected from the dataset available online [8].
From a pool of volumes 39 MR image volumes are randomly selected and 3T
MR images are registered with 7T MR image volumes using FLIRT software in
FSL [9], in order to have pixel to pixel correspondence. Further, each of the MR
volume is scaled to 0 to 1 range for numerical stability. The proposed architecture
is trained on MR image volumes from 22 subjects, while volumes of 6 subjects
are used for validation and 11 are used for testing. We cross validate across 3
trails involving random sets of training, validation and test data.

For comparison with existing approaches, we re-implement the 3D CNN app-
roach defined in [5]. As some of the parameters are not mentioned in their work,
we have used the same parameters as used in proposed work for e.g. learning rate,
learning rate decay strategy, optimizer, batch size. To consider a complementary
framework, the sparse-representation approach is also used for comparison [4].
For training all approaches we use 207 images from each subject volume. How-
ever, due to insignificant information in first and last 20 slices, we select central
167 slices per volume for reconstruction. All implementations are on a system
with Nvidia 1080 Ti GPU Xeon e5 GeForce processor with 32 GB RAM.

3.2 Reconstruction Results

The test 7T MR image volumes are constructed using proposed approach and
other existing works and two images are randomly selected to illustrate the
quality comparison between different approaches. It can be observed from Figs. 3
and 4, that sparse based approach [4] is able to construct the details but with
diffused tissue boundary. 3DCNN performs well in terms of tissue boundary but
is unable to restore smaller differences in voxel values. Both these aspects are
improved upon by the proposed approach.

The improvement is reflected in the quantitative results in Table 1 with higher
PSNR and SSIM values. To compute the performance in terms of blurriness of
the edges, two parameters i.e. sharpness and edge width are computed as defined
in [10]. We observe that the algorithm may change the dynamic range of the
data. Thus to be consistent for comparing quality of images reconstructed, we
first match the histogram (HM) of reconstructed image with the corresponding
3T image. However, we also show the results for the proposed method without
HM. The values for parameters are computed over non-background pixels of
reconstructed images scaled to their original range.
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Fig. 3. Example reconstructions and comparison visualized at a finer scale.

Fig. 4. Example reconstructions and comparison visualized at a finer scale.

3.3 Segmentation Results

High quality images helps in improving segmentation of the tissues required for
medical analysis. Thus, we compare segmentation labels for images reconstructed
by different algorithms, with FAST software of FSL for gray matter(GM), white
matter(WM) and CSF. The dice-ratio improvements in segmentation with recon-
struction using the proposed approach is clear from Table 2. The work in [5] has
outperformed the sparse based reconstruction, thus we do not provide segmen-
tation results for the latter.

Table 1. Quantitative comparison of proposed approach

Approaches ScSR
with
HM [4]

3D-CNN
with HM
[5]

Single decoder
with HM

Proposed
approach
with HM

Proposed
approach
w/o HM

PSNR (dB) 35.96
(±0.93)

34.20
(±0.81)

36.96 (±0.92) 37.45
(±1.00)

39.25
(±1.46)

Average SSIM 0.7092 0.7094 0.7371 0.7432 0.8253
Sharpness [10] 0.3967 0.4043 0.4092 0.4179 0.4001
Edge width [10] 0.0989 0.0945 0.0947 0.0919 0.0959

3.4 Computational Complexity

Here, we stress the computational advantage of the proposed approach in terms
of run-time for reconstruction, as compared to the approach of [5]. The 3D CNN
approach [5] takes 137 min to construct 11 subject image volume. The proposed
algorithm contrarily is computationally simple and takes less than 2 min to do
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Table 2. Dice ratio for segmentation of images reconstructed by different algorithms

Approaches 3T MR images 3D-CNN with HM [5] Proposed approach

CSF 0.8836 (±0.0081) 0.8766 (±0.0053) 0.9149 (±0.0042)
White matter 0.9372 (±0.0086) 0.9279 (±0.0100) 0.9528 (±0.0068)
Gray matter 0.9503 (±0.0083) 0.9216 (±0.0157) 0.9602 (±0.0087)

the same task. To justify, we note that the amount of multiplications in the
architecture of [5] is 2145 times than that in the proposed one. This is largely
due to unpadded 3D convolution in [5].

4 Conclusion

We reported a novel convolutional single encoder with three decoder framework
for reconstructing 7T-like MR images from 3T MR image as inputs. The pro-
posed approach employs single-channel input (i.e. does not require anatomical
and segmentation features as an input), and yet achieves a superior reconstruc-
tion quality over some contemporary methods. It also has a significant computa-
tional advantage. We also show that the reconstructed 7T-like MR images when
segmented have better dice ratio compared to the comparative approaches.
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Abstract. Precise localization of anatomical structures in 3D medical
images can support several tasks such as image registration, organ seg-
mentation, lesion quantification and abnormality detection. This work
proposes a novel method, based on deep reinforcement learning, to
actively learn to localize an object in the volumetric scene. Given the
parameterization of the sought object, an intelligent agent learns to opti-
mize the parameters by performing a sequence of simple control actions.
We show the applicability of our method by localizing boxes (9 degrees of
freedom) on a set of acquired MRI scans of the brain region. We achieve
high speed and high accuracy detection results, with robustness to chal-
lenging cases. This method can be applied to a broad range of problems
and easily generalized to other type of imaging modalities.

Keywords: Deep reinforcement learning
Nonlinear parameter optimization · 3D medical images
Object localization

1 Introduction

Localization of anatomical structures in medical imaging is an important prereq-
uisite for subsequent tasks such as volumetric organ segmentation, lesion quan-
tification and abnormality detection. Ensuring consistency in the local context
is one of the key problems faced when training the aforementioned tasks.

In this paper, we investigate a new approach, to simplify upstream localiza-
tion of the region of interest. In particular, a deep reinforcement-learning agent
is trained to learn the search strategy that maximizes a reward for accurately
localizing the sought anatomy. The benefit of the proposed method is that it
eliminates exhaustive search or the use of generic nonlinear optimization tech-
niques by learning optimal convergence path. The method is demonstrated for
localizing a specific box around the brain in head MRI, achieving performances
in the range of the inter-observer variability with an average processing time of
0.6 s per image.
c© Springer Nature Switzerland AG 2018
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2 Related Work

2.1 Object Localization in 3D Medical Imaging

Several methods have been proposed for automatic localization of anatomical
structures in the context of 3D data.

Atlas-based registration methods [1] solve the object localization task by
registering input data to a set of images present in an atlas database. By trans-
forming these images to a common standard space the known shapes of the atlas
can be aligned to match the input unseen data. These methods require complex
non-rigid registration and are hardly scalable to large 3D-volumes.

Regression-based methods [2,3] directly learn the non-linear mapping from
voxels to parameters by formulating the localization as a multivariate regression
problem. These methods are difficult to train, especially in problems where the
dataset has a large variation in the field of view, limiting the applicability in 3D
medical imaging.

Classification-based methods are usually done in two steps: discretization of
the parametric space in a large set of hypotheses and exhaustive testing through
a trained classifier. The hypothesis with the maximum confidence score is kept
as detection result. Marginal Space Learning (MSL) [4,5], widely used approach,
reduces the search by decoupling the task in three consecutive stages: location,
orientation and size. This method manually imposes dependencies in the para-
metric search space. It can lead to suboptimal solutions and is hard to generalize.

Recent work [10] proposes to apply faster R-CNN [9] techniques to medical
imaging analysis. Faster R-CNN jointly performs object classification and object
localization in a single forward pass, significantly decreasing the processing time.
However, this architecture requires very large annotated datasets to train and
can be hardly generalizable to the variety of input clinical cases.

2.2 Deep Reinforcement Learning as a Search Strategy

In contrast to traditional approaches, Ghesu et al. [6] use reinforcement learning
to identify the location of an anatomical landmark in a set of image data. They
reformulate the detection problem as a sequential decision task, where a goal-
directed intelligent agent can navigate inside the 3D volume through simple
linear translation actions. However the framework is limited to finding a set
of coordinates (x, y, z). We build upon their work and propose to extend the
method to a wider range of image analysis applications by expanding the search
space to an nonlinear multi-dimensional parametric space.

In this paper, we develop a deep reinforcement learning-based method to
automatically estimate the 9 parameters (position, orientation and scale) of an
anatomical bounding box.
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3 Method

The sought object is modeled with a set of D independent parameters {xi}Di=1.
Reachable parameter values form a D-dimensional space where an instance is
uniquely represented as a point of coordinates (x1, . . . , xD). The goal is to locate
an object in an input 3D scan, or equivalently to find an optimal parameter vector
x∗ = (x∗

1, . . . , x
∗
D) in the parameter space.

This work deploys an artificial intelligent agent that can navigate into the
D-dimensional parametric space with the goal of reaching the targeted posi-
tion x∗. Based on its own experience, the autonomous agent actively learns to
cope with the uncertain environment (volumetric image signal) by performing a
sequence of simple control actions. To optimize the control strategy of the agent
inside this D-dimensional space, an adaptive sequential search across different
scale representations of the environment is proposed. As in [6], our work follows
the concepts of deep reinforcement learning and multi-scale image analysis but
extended for a search in high-dimensional nonlinear parametric spaces. Figure 1
gives an overview of the proposed method.
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Fig. 1. Schematic illustration of the proposed control strategy. Measurement from the
image (input state) drive the output of the deep-Q-network which itself drive the agent
decisions. In the proposed MDP, the agent follows a multi-scale progressive control
strategy and has D = 9 degrees of freedom to transform the box (3 for position, 3 for
orientation and 3 for scale).

3.1 Object Localization as a Markov Decision Process

The D-dimensional parametric space is discretized into regular intervals in every
dimension, giving the set of reachable positions by the agent.

We model the problem as a Markov Decision Process (MDP), defined by
a tuple of objects (S,A, p,R, γ) where S is the set of possible states, p is the
transition probability distribution, A is the set of possible actions, R is a scalar
reward function, and γ is the discount factor. The states, actions and reward of
the proposed MDP are described below.
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State representation s: At each time step t, the 3D-volume environment returns
the observed state of the world st as the current visible region by the agent.
The current parameters xt define a certain region in the physical space. We set
the visibility of the agent to be the content of this region plus a fixed margin of
voxels to provide additional context. We resample it to match a fixed-size grid
of voxels that we use as input state st of the network. This operation involves
rotation and scaling of the 3D volume, and is performed at each agent step.

Control actions a: At each time step, the agent can choose between 2D move
actions to modify the current object geometry xt or to terminate the search with
the stop action. The agent movements in the parametric space are represented as
unit-length steps along one of the of the basis vectors (−e1,+e1, . . . ,−eD,+eD),
where ed denotes the vector with a 1 in the dth coordinate and 0’s elsewhere.

Reward function r: The agent learns a strategy policy with the goal of maximizing
thecumulative future rewardoveroneepisodeR =

∑T
t=0 γtrt.Wedefineadistance-

based reward: rt =

⎧
⎪⎪⎨

⎪⎪⎩

dist(xt, x
∗) − dist(xt+1, x

∗) if at ∈ {1, . . . , 2D}(
dist(xt,x

∗)−dmin

dmax−dmin
− 0.5

)
∗ 6 if at = 2D + 1

−1 if st+1 not legal state

where

dist(x, x′) defines a metric distance between two objects x and x′ in the parametric
space. The reward gives the agent an evaluative feedback each time it chooses an
actionat from the current state st. Intuitively, the reward is positivewhen the agent
gets closer to the ground truth target and negative otherwise. If one move action
leads toanon-legal statest+1, theagent receivesanegative reward−1.Astate isnon
legal if one of the parameters is outside of a predefinedallowed search range.Finally,
if the agent decides to stop, the closer it is from the target the greater reward it gets
andreversely.Thereward isboundedbetween [−1; 1] forchoosingamove actionand
between [−3; 3] for the stop action. Possible metric distances include the �p-norm
family, the intersection over union and the average corner-to-corner distance.

Deep Reinforcement Learning to Find the Optimal control Strat-
egy: We use Q-learning combined with a neural network function approximator
due to the lack of prior knowledge about the state-transition and the reward
probability distributions (model-free setting) and to the high-dimensionality of
the input data (continuous volumetric images). This approach, introduced by
Mnih et al. [7], estimates the optimal action-value function using a deep Q-
network (DQN): Q∗(s, a) ≈ Q(s, a, θ). The training uses Q-learning to update
the network by minimizing a sequence of loss functions Li(θi) expressing how
far Q(s, a; θi) is from its target yi: Li(θi) = Es,a,r,s′ (yi − Q(s, a; θi))

2. For effec-
tive training of the DQN, the proposed concepts of experience replay, ε-greedy
exploration and loss clipping are incorporated. At the difference of traditional
random exploration, we constrain it to positive directions (actions leading to
positive reward) to accelerate the agent’s discovery of positive reward trajec-
tory. We also use double Q-learning [8] with a “frozen” version of the online
network as target network Qtarget = Q(θi′), i′ < i.
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3.2 Multi-scale Progressive Control Strategy

Ghesu et al. [6] propose a multi-scale sampling of the global image context for
an efficient voxel-wise navigation within the three-dimensional image space. In
this work, we take a step further by proposing a progressive spanning-scheme of
the nonlinear D-dimensional search space. The goal is for the agent to develop
an optimal control strategy with incremental precision across scales.

Discretization of the continuous volumetric image: The “context” in which
evolves the agent (continuous 3D volumetric image) is downsampled into a multi-
scale image pyramid with increasing image resolution L1, L2, . . . , LN .

Discretization of the parametric search space: At each scale level Li of the image
pyramid, the D-dimensional parametric space is discretized into a regular grid of
constant scale cells Δ(i) = (Δx

(i)
1 , . . . ,Δx

(i)
D ) where Δ(i) determines the precision

of the agent control over the parameters. The agent starts the search with both
coarse field-of-view and coarse control. Following the sampling scheme of the
global image context, the agent gains finer control over the parameter each time
it transitions to a finer scale level Li+1. This scheme goes on until the finest scale
level, where the final agent position is taken as estimated localization result.

The transition between subsequent scale levels is proposed as an additional
control action (stop action), which also acts as a stopping criterion at the finest
scale level LN . Autonomously learned by the intelligent agent, a timely and
robust stopping criterion is ensured. At inference, if the maximum number of
steps is exceeded or if two complementaries actions are taken consecutively (plac-
ing the agent in an infinite loop), the stop action is forcefully triggered.

4 Experiment and Results

MRI scans of the head region can be acquired along some specific brain anatom-
ical regions to standardize orientations of acquisitions, facilitate reading and
assessment of clinical follow-up studies. We therefore propose to localize a stan-
dard box from Scout/Localizer images that covers the brain, and aligned along
specific orientations. This is a challenging task requiring robustness against vari-
ations in the localizer scan orientation, the view of the object and the brain
anatomy. In some cases, some of the brain or bone structures may be missing
or displaced either by natural developmental variant or by pathology. We refor-
mulate the task as a nonlinear parameter optimization problem and show the
applicability of the proposed method.

4.1 Dataset

The dataset consists of 530 annotated MRI scans of the head region. 500 were
used for training and 30 for testing. The 30 test cases were annotated twice by
different experts to compute the inter-rater variability. 15 additional challenging
test cases with pathologies (tumors or fluid swelling in brain tissue), in plane
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rotation of the head, thick cushion of the head rest, or cropped top of the skull
were selected to evaluate the robustness of the method.

The scale space is discretized into 4 levels: 16 mm (L1), 8 mm (L2), 4 mm
(L3) and 2 mm (L4). The images, of input resolution (1.6 × 1.5625 × 1.5625),
were isotropically down-sampled to 16, 8, 4 and 2 mm. The voxels intensities
were clipped between the 3rd and 97th percentile and normalized to the [0; 1]
range.

Ground-truth boxes have been annotated based on anatomical structures
present in the brain region. The orientation of the box is determined by posi-
tioning the brain midsagittal plane (MSP), separating the two brain hemispheres
and going through the Crista Galli, Sylvian Aqueduct and Medulla Oblongata.
The rotational alignment within the MSP is based on two anatomical points: the
inflection distinguishing the Corpus Callosum (CC) Genu from the CC Rostrum
and the most inferior point on the CC Splenium. Given this orientation, the
lower margin of the box is defined to intersect the center of C1-vertebrae arches
points. The other box extremities define an enclosing bounding box of the brain.

Following the annotation protocol, we define an orthonormal basis (i, j,k)
where i is the normal of the MSP and j defines the rotation within the MSP.
The orientation of the box is controlled by three angles: α1 and α2 which control
respectively the yaw and pitch of the MSP, and β1 which controls the inplane
roll around i. The center position is parameterized by its cartesian coordinates
C = (Cx, Cy, Cz). The scale is parametrized by the width w, depth d and height
h of the box. Control of the box parameters is shown in Fig. 1.

4.2 Results

In our experiments, the very first box is set to cover the whole image at the
coarsest scale and is sequentially refined following the agent’s decisions. The
network architecture and hyper-parameters can be found in appendix. Table 1
shows comparison between the proposed method, human performances (inter-
rater variability) and a previous landmark-based method.

The landmark-based method uses the proposed algorithm of [6] to detect
14 landmarks carefully chosen after the box definition. The midsagital plane
is consequently initialized with RANSAC robust fitting. Finally a box is fitted
with a gradient descent algorithm to minimize angular and positional errors with
respect to the detected landmarks. 8 out of the 14 landmarks are associated with
the angles α1 and α2, therefore achieving good results for these measures. On
the other hand, due to the fewer landmarks associated to β1 (2), this angle is
not robust to outliers.

The proposed method however, achieves performances in the range of the
inter-observer variability for every measure. Performing a direct optimization on
the box parameters, this work does not rely on the previous detection of specific
points. For recall the finer scale level is set to 2 mm, meaning that our method
achieves an average accuracy of 1–2 voxels precision.
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Table 1. Absolute mean and maximal errors of the 30 test cases with respect to ground
truth boxes. α1 and α2 are the angles between the i vectors projected into the XZ and
XY plane. β1 is the angle between the j vectors projected into the ground truth MSP.
δR (right), δL (left), δA (anterior), δP (posterior), δI (inferior) and δS (superior) are
the orthogonal distances from the center of the detected face to the ground truth face.
The best obtained results are shown in bold.

We did not observe any major failure over the 15 “difficult” test cases, show-
ing robustness of the method to diverse image acquisitions, patient orientations,
brain anatomy and extreme clinical cases (see Fig. 2).

(a) Case with rotation in the localizer scan orientation and tilted patient head.

(b) Extreme clinical case with tumor.

Fig. 2. Four samples of the box evolution during inference on challenging cases. The
current agent box is depicted in blue and the ground truth reference in green. (Color
figure online)
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At inference, our algorithm runs in 0.6 s on average on GPU (GEFORCE GT
X). We would like to stress that this processing time includes the 4 scale levels
navigation. If near real-time performance is desired, the search can be stopped
at 4 mm resolution with a minor loss in accuracy, reducing the average runtime
to less than 0.15 s.

5 Conclusion

This paper proposes a novel approach, based on deep reinforcement learning, to
sequentially search for a target object inside 3D medical images. The method
can robustly localize the target object and achieves high speed and high accu-
racy results. The methodology can learn optimization strategies eliminating the
need for exhaustive search or for complex generic nonlinear optimization tech-
niques. The proposed object localization method can be applied to any given
parametrization and imaging modality type.

Disclaimer: This feature is based on research, and is not commercially available.
Due to regulatory reasons, its future availability cannot be guaranteed.
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Abstract. Chest X-ray (CXR) is one of the most commonly prescribed
medical imaging procedures, often with over 2–10x more scans than other
imaging modalities. These voluminous CXR scans place significant work-
loads on radiologists and medical practitioners. Organ segmentation is
a key step towards effective computer-aided detection on CXR. In this
work, we propose Structure Correcting Adversarial Network (SCAN) to
segment lung fields and the heart in CXR images. SCAN incorporates
a critic network to impose on the convolutional segmentation network
the structural regularities inherent in human physiology. Specifically, the
critic network learns the higher order structures in the masks in order
to discriminate between the ground truth organ annotations from the
masks synthesized by the segmentation network. Through an adversarial
process, the critic network guides the segmentation network to achieve
more realistic segmentation that mimics the ground truth. Extensive
evaluation shows that our method produces highly accurate and realis-
tic segmentation. Using only very limited training data available, our
model reaches human-level performance without relying on any pre-
trained model. Our method surpasses the current state-of-the-art and
generalizes well to CXR images from different patient populations and
disease profiles.

Keywords: Chest X-ray · Medical image segmentation
Adversarial learning · Deep neural networks

1 Introduction

Chest X-ray (CXR) is one of the most common medical imaging procedures.
Due to CXR’s low cost and low dose of radiation, hundreds to thousands of

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-00889-5 30) contains supplementary material, which is
available to authorized users.
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CXRs are generated in a typical hospital daily, which create significant diagnos-
tic workloads. In 2015/16 year over 22.5 million X-ray images were requested in
UK’s public medical sector, constituting over 55% of the total number of medical
images and dominating all other imaging modalities such as computed tomogra-
phy (CT) scan (4.5M) and MRI (3.1M) [4]. Among X-ray images, 8 million are
Chest X-rays, which translate to thousands of CXR readings per radiologist per
year. The shortage of radiologists is well documented across the world [11,14].
It is therefore of paramount importance to develop computer-aided detection
methods for CXRs to support clinical practitioners.

Fig. 1. Two example chest X-ray (CXR) images from two dataset: JSRT (top) and
Montgomery (bottom). The left and right columns show the original CXR images and
the lung field annotations by radiologists. JSRT (top) additionally has the heart anno-
tation. Note that contrast can vary significantly between the dataset, and pathological
lung profiles such as the bottom patient pose a significant challenge to the segmentation
problem.

Fig. 2. Important contour landmarks around lung fields: aortic arch (1) is excluded
from lung fields; costophrenic angles (3) and cardiodiaphragmatic angles (2) should be
visible in healthy patients. Hila and other vascular structures (4) are part of the lung
fields. The rib cage contour (5) should be clear in healthy lungs.

An important step in computer-aided detection on CXR images is organ seg-
mentation. The segmentation of the lung fields and the heart provides rich struc-
tural information about shape irregularities and size measurements [3] that can



SCAN: Structure Correcting Adversarial Network 265

be used to directly assess certain serious clinical conditions, such as cardiomegaly
(enlargement of the heart), pneumothorax (lung collapse), pleural effusion, and
emphysema. Furthermore, explicit lung region masks can also mask out non-lung
regions to minimize the effect of imaging artifacts in computer-aided detection,
which is important for the clinical use [13].

One major challenge in CXR segmentation is to incorporate the implicit
medical knowledge involved in contour determination. For example, the heart
and the lung contours should always be adjacent to each other due to definition
of the lung boundaries (Sect. 2). Moreover, when medical experts annotate the
lung fields, they look for certain consistent structures surrounding the lung fields
(Fig. 2). Such prior knowledge helps resolve ambiguous boundaries caused by
pathological conditions or poor imaging quality, as can be seen in Fig. 1. There-
fore, a successful segmentation model must effectively leverage global structural
information to resolve the local details.

Unfortunately, unlike natural images, there are very limited CXR data
because of sensitive privacy issues. Even fewer training data have pixel-level
annotations, due to the expensive label acquisition involving medical profession-
als. Furthermore, CXRs exhibit substantial variations across different patient
populations, pathological conditions, as well as imaging technology and opera-
tion. Finally, CXR images are gray-scale and are drastically different from nat-
ural images, which may limit the transferability of existing models. Existing
approaches to CXR organ segmentation generally rely on hand-crafted features
that can be brittle when applied to different patient populations, disease pro-
files, or image quality. Furthermore, these methods do not explicitly balance
local information with global structure in a principled way, which is critical to
achieving realistic segmentation outcomes suitable for diagnostic tasks.

In this work, we propose to use the Structure Correcting Adversarial Network
(SCAN) framework that incorporates a critic network to guide the convolutional
segmentation network to achieve accurate and realistic organ segmentation in
chest X-rays. By employing a convolutional network approach to organ segmen-
tation, we side-step the problems faced by existing approaches based on ad hoc
feature extraction. Our convolutional segmentation model alone can achieve per-
formance competitive with existing methods. However, the segmentation model
alone cannot capture sufficient global structures to produce natural contours due
to the limited training data. To impose regularization based on the physiological
structures, we introduce a critic network which learns the higher order structures
in the masks in order to discriminate between the ground truth organ annotations
from the masks synthesized by the segmentation network. Through an adversar-
ial training process, the critic network effectively transfers this learned global
information back to the segmentation network to achieve realistic segmentation
outcomes that mimic the ground truth.

Without using any pre-trained models, SCAN produces highly realistic and
accurate segmentation even when trained on a very small dataset. With the global
structural information, our segmentation model is able to resolve difficult bound-
aries that require a strong prior knowledge. SCAN improves the state-of-the-art
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lung segmentation methods [1,12,15] and outperforms strong baselines includ-
ing U-net [9] and DeepLabV2 [2], achieving performance competitive with human
experts. Furthermore, SCAN is more robust than existing methods when applied
to different patient populations. To our knowledge, this is the first successful appli-
cation of convolutional neural networks (CNN) to CXR image segmentation, and
our CNN-based method can be readily integrated for clinical tasks such as auto-
mated cardiothoracic ratio computation [3]. We note that SCAN is similar to [8] in
applying adversarial methods to segmentation. Further related work may be found
in supplemental materials.

2 Structure Correcting Adversarial Network

We propose to use adversarial training for segmenting CXR images. Figure 3
shows the overall SCAN framework in incorporating the adversarial process into
the semantic segmentation. The framework consists of a segmentation network
and a critic network that are jointly trained. The segmentation network makes
pixel-level predictions of the target classes, playing the role of the generator in
Generative Adversarial Network (GAN) [5] but conditioned on an input image.
On the other hand, the critic network takes the segmentation masks as input
and outputs the probability that the input mask is the ground truth annotation
instead of the prediction by the segmentation network.

Fig. 3. Overview of the proposed SCAN framework that jointly trains a segmentation
network and a critic network through an adversarial process. The segmentation network
produces a mask prediction. The critic takes either the ground truth mask or the
predicted mask and outputs the probability estimate of whether the input is the ground
truth (with training target 1) or predicted mask (with training target 0).

The higher order consistency enforced by the critic is particularly desirable
for CXR segmentation. Human anatomy, though exhibiting substantial variations
across individuals, generally maintains a stable relationship between physiologi-
cal structures (Fig. 2). CXRs also pose consistent views of these structures thanks
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to the standardized imaging procedures. We can, therefore, expect the critic to
learn these higher order structures and guide the segmentation network to gener-
ate masks more consistent with the learned global structures.

Training Objectives. The networks can be trained jointly through a minimax
scheme that alternates between optimizing the segmentation network and the
critic network. Let S, D be the segmentation network and the critic network,
respectively. The data consist of the input images xi and the associated mask
labels yi, where xi is of shape [H,W, 1] for a single-channel gray-scale image
with height H and width W , and yi is of shape [H,W,C] where C is the number
of classes including the background. Note that for each pixel location (j, k),
yjkc
i = 1 for the labeled class channel c while the rest of the channels are zero

(yjkc′
i = 0 for c′ �= c). We use S(x) ∈ [0, 1][H,W,C] to denote the class probabilities

predicted by S at each pixel location such that the class probabilities sum to 1
at each pixel. Let D(xi,y) be the scalar probability estimate of y coming from
the training data (ground truth) yi instead of the predicted mask S(xi). We
define the optimization problem as

min
S

max
D

{
J(S, D) :=

N∑

i=1

Js(S(xi),yi) − λ
[
Jd(D(xi,yi), 1) + Jd(D(xi, S(xi)), 0)

]}
,

(1)
where Js(ŷ,y) := 1

HW

∑
j,k

∑C
c=1 −yjkc ln ŷjkc is the multi-class cross-entropy

loss for predicted mask ŷ averaged over all pixels. Jd(t̂, t) := −{t ln t̂ + (1 −
t) ln(1 − t̂)} is the binary logistic loss for the critic’s prediction. λ is a tuning
parameter balancing pixel-wise loss and the adversarial loss. We can solve Eq. (1)
by alternating between optimizing S and optimizing D with corresponding loss
function. See supplemental materials for details.

Fig. 4. The segmentation network architecture. (a) Fully convolutional network for
dense prediction. (b) The residual block architecture is based on [6]. Further details
are in supplementary materials.

Network Architectures. The segmentation network is a fully convolutional
network (FCN) [2,7]. Figure 4 details our FCN architecture. The segmentation
network contains 271k parameters, 500x smaller than VGG-based FCN [7]. Our
FCN is highly parsimonious to adpat to the stringent dataset size of the medical
domain: our training dataset of 247 CXR images is orders of magnitude smaller
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than the dataset in the natural image domains. Furthermore, CXR is gray-scale
with consistent viewpoint, which can be captured by fewer feature maps and thus
fewer parameters. The parsimonious network construction allows us to optimize
it efficiently without relying on any existing trained model, which is not readily
available for the medical domain. Figure 5 shows the critic architecture, which
has 258k parameters.

Fig. 5. The critic network architecture. Our critic FCN mirrors the segmentation net-
work (Fig. 4). The training target is 0 for synthetic masks; 1 otherwise. Further details
are in supplementary materials.

3 Experiments

We perform extensive evaluation of the proposed SCAN framework and demon-
strate that our approach produces highly accurate and realistic segmentation of
CXR images.

Dataset and Protocols. We use the following two publicly available datasets to
evaluate our proposed SCAN framework. The datasets come from two different
countries with different lung diseases, representing diverse CXR samples. JSRT.
The dataset contains 247 CXRs, among which 154 have lung nodules and 93 have
no lung nodule [10,12] (Fig. 1). Montgomery. The Montgomery dataset, col-
lected in Montgomery County, Maryland, USA, consists of 138 CXRs, including
80 normal patients and 58 patients with manifested tuberculosis (TB) [1]. The
CXR images are 12-bit gray-scale images of dimension 4020×4892 or 4892×4020.
Only the lung masks annotations are available (Fig. 1). We scale all images to
400 × 400 pixels, which retains visual details for vascular structures in the lung
fields and the boundaries. The evaluation metrics are Intersection-over-Union
(IoU) and Dice Coefficient. We present the details of data processing and eval-
uation metrics in Supplementary Materials.

Quantitative Comparisons. We randomly split the JSRT dataset into the
development set (209 images) and the evaluation set (38 images). We tune our
architecture and hyperparameter λ (Eq. (1)) using a validation set within the
development set and fix λ = 0.01. We use FCN to denote the segmentation
network only architecture, and SCAN to denote the full framework with the
critic.

We investigate how SCAN improves upon FCN. Table 1 shows the IoU and
Dice scores using JSRT dataset. We observe that the adversarial training signif-
icantly improves the performance. In particular, IoU for the two lungs improves
from 92.9% to 94.7%.
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Table 1. IoU and Dice scores on JSRT evaluation set for left lung (on the right side
of the PA view CXR), right lung (on the left side of the image), both lungs, and the
heart. The model is trained on the JSRT development set. ± represents one standard
deviation estimated from bootstrap.

FCN SCAN

IoU Left Lung 91.3% ± 0.9% 93.8% ± 0.8%

Right Lung 94.2% ± 0.2% 95.5% ± 0.2%

Both Lungs 92.9% ± 0.5% 94.7% ± 0.4%

Heart 86.5% ± 0.9% 86.6% ± 1.2%

Dice Left Lung 95.4% ± 0.5% 96.8% ± 0.5%

Right Lungs 97.0% ± 0.1% 97.7% ± 0.1%

Both Lungs 96.3% ± 0.3% 97.3% ± 0.2%

Heart 92.7% ± 0.6% 92.7% ± 0.2%

Fig. 6. Visualization of segmentation results on 4 patients, one per column. The left
two columns are patients from the JSRT evaluation set with models trained on JSRT
development set. The right two columns are from the Montgomery dataset using a
model trained on the full JSRT dataset but not Montgomery, which is a much more
challenging scenario. Note that only the two patients from JSRT dataset (left two
columns) have heart annotations for evaluation of heart area IoU. The contours of the
predicted masks are added for visual clarity.
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Fig. 7. Comparison with the current state-of-the-art [1]. SCAN produces sharp con-
tours at the costophrenic angles for the left two columns (from the JSRT evaluation
set). Furthermore, our model generalizes well to different patient populations and imag-
ing setup, as shown in the Montgomery CXR in the right two columns. [1] struggles
on Montgomery data due to the mismatch between train and test patient lung profiles
(JSRT and Montgomery dataset, respective).

Table 2 compares our approach to several existing methods on the JSRT
dataset, as well as human performance. Our model surpasses the current state-
of-the-art method based on registration-based model [1] by a significant margin.
Additionally, we compare with other standard CNN approaches for semantic
segmentation: DeepLabV2 with ResNet101 [2] and U-Net [9] and demonstrate
the advantage of our parsimonious architecture and adversarial training. Impor-
tantly, our method is competitive with the human performance for both lung
fields and the heart.

For clinical deployment, it is important for the segmentation model to gen-
eralize to a different population with different patient population and image
qualities, such as when deployed in another country or a specialty hospital with
very different disease distributions. We therefore train our model on the full
JSRT dataset, which is collected in Japan from a population with lung nodules,
and test the trained model on the full Montgomery dataset, which is collected
in the U.S. from patients potentially with TB. The two datasets present very
different contrast and diseases (Fig. 1). Table 3 shows that FCN alone does not
generalize well to a new dataset, but SCAN substantially improves the perfor-
mance, surpassing [1].

We further investigate the scenario when training on the two development
sets from JSRT and Montgomery combined to increase variation in the training
data. Without any further hyperparameter tuning, SCAN improves the IoU on
two lungs to 95.1% ± 0.43% on the JSRT evaluation set, and 93.0% ± 1.4% on
the Montgomery evaluation set, a significant improvement compared with when
training on JSRT development set alone.
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Table 2. Comparison with existing single-model approaches to lung field segmentation
on JSRT dataset. Note that [12,15] use different data splits than our evaluation.

IoU (Lungs) IoU (Heart)

Human Observer [12] 94.6% ± 1.8% 87.8% ± 5.4%

Ours (SCAN) 94.7% ± 0.4% 86.6% ± 1.2%

Registration-based [1] 92.5% ± 0.4% –

DeepLabV2 101 [2] 85.7% ± 0.9% –

U-net [9] 84.4% ± 1.3% –

ShRAC [15] 90.7% ± 3.3% –

ASM [12] 90.3% ± 5.7% 79.3% ± 11.9%

AAM [12] 84.7% ± 9.5% 77.5% ± 13.5%

Mean Shape [12] 71.3% ± 7.5% 64.3% ± 14.7%

Qualitative Comparison. Figure 6 shows the qualitative results from these
two experiments. The failure cases in the middle row by our FCN reveal the dif-
ficulties arising from CXR images’ varying contrast across samples. For example,
the apex of the ribcage of the rightmost patient’s is mistaken as an internal rib
bone, resulting in the mask “bleeding out” to the black background, which has
a similar intensity as the lung field. Vascular structures near mediastinum and
anterior rib bones (which appears very faintly in the PA view CXR) within the
lung field can also have similar intensity and texture as the exterior boundary,
causing prediction errors in the middle two columns for FCN. SCAN significantly
improves all of the failure cases and produces much more realistic outlines of the
organs. SCAN also sharpens the segmentation of costophrenic angle (the sharp
angle at the junction of ribcage and diaphragm), which are important in diag-
nosing pleural effusion and lung hyperexpansion, among others.

Figure 7 compares SCAN with the current state-of-the-art [1] qualitatively.
We restrict the comparison to lung fields, as [1] only supports lung field segmenta-
tion. SCAN generates more accurate lung masks especially around costophrenic
angles when tested on the same patient population (left two columns of Fig. 7).
SCAN also generalizes better to a different population in the Montgomery
dataset (right two columns of Fig. 7) whereas [1] struggles with domain shift.

Our SCAN framework is efficient at test time, as it only needs to perform
a forward pass through the segmentation network but not the critic network.
Table 4 shows the run time of our method compared with [1] on a laptop with
Intel Core i5. [1] takes much longer due to the need to search through lung
models in the training data to find similar profiles, incurring linear cost in the
size of training data. In clinical setting such as TB screening [14] a fast test time
result is highly desirable.



272 W. Dai et al.

Table 3. Performance on the full Montgomery dataset using models trained on the
full JSRT dataset. Compared with the JSRT dataset, the Montgomery dataset exhibits
a much higher degree of lung abnormalities and varying imaging quality, testing the
transferrability of the models.

IoU (Both Lungs)

Ours (SCAN) 91.4% ± 0.6%

Ours (FCN) 87.1% ± 0.8%

Registration [1] 90.3% ± 0.5%

Table 4. Prediction time for each CXR image (resolution 400 × 400) from the Mont-
gomery dataset on a laptop with Intel Core i5, along with the estimated human time.

Test time

Ours (SCAN) 0.84 s

Registration [1] 26 s

Human ∼2 min
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Abstract. We propose a patch sampling strategy based on a sequen-
tial Monte-Carlo method for high resolution image classification in the
context of Multiple Instance Learning. When compared with grid sam-
pling and uniform sampling techniques, it achieves higher generalization
performance. We validate the strategy on two artificial datasets and two
histological datasets for breast cancer and sun exposure classification.

Keywords: Histological image classification · Deep learning
Multiple instance learning · Patch sampling · Monte-Carlo methods

1 Introduction

Deep learning is widely used for image classification with great success [4,9].
However, neural networks can not be directly applied to very high resolution
images, such as Whole Slide Tissue images, due to the high computational cost
involved. A common solution consists in dividing the image into patches and
using patch-level annotations to train a supervised classifier. However, patch-
level annotations are not usually available, especially when working with medical
datasets. On the contrary, image-level annotations are much easier to obtain so
practitioners have used Multiple Instance Learning (MIL) to train patch-level
classifiers in a weakly supervised manner, aggregating patch-level predictions
into image-level scores [5–7,10].

When the input images are small enough, the MIL formulation can be imple-
mented using a global Max Pooling layer at the output of a Fully Convolutional
Network [8]. However, in the case of high resolution images, this implementa-
tion is not possible due to memory constraints. This is why patches are usually
sampled using a regular grid (with or without overlap) [2,5] before being fed
to the neural network. Grid sampling may skip some zones in the image which
might be relevant for classification, and concentrate too much effort in zones
which are not. In this work we propose a novel patch sampling strategy which
extracts knowledge from the network to focus attention on the most discrimina-
tive regions in an image for a given instant in the training process, permitting
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better convergence and higher generalization performance. We compare this app-
roach to uniform sampling and conventional grid sampling on two artificial and
two histological datasets.

2 Materials and Methods

2.1 Multiple Instance Learning

The Multiple Instance Learning formulation permits training a patch-based clas-
sifier with only image-level annotations, aggregating patch level predictions into
image-level scores.

Multiple Instance Learning is a type of weakly supervised learning algo-
rithm where training data is arranged in bags, where each bag contains a set of
instances X = {x1, x2, ..., xM}, and there is one single label Y per bag, Y ∈ {0, 1}
in the case of a binary classification problem. It is assumed that individual labels
y1, y2, ..., yM exist for the instances within a bag, but they are unknown during
training. In the standard Multiple Instance assumption (SMI), a bag is con-
sidered negative if all its instances are negative. On the other hand, a bag is
positive, if at least one instance in the bag is positive [11].

The MIL formulation has been often used to solve the problem of high resolu-
tion image classification. An image (bag) is divided into M patches (instances),
and the patches pertaining to the same image are treated jointly in the classifier.
If an image is positive (Y = 1), it will contain at least one positive patch (ym = 1
at least for one m). On the contrary, if the image is negative (Y = 0), all its
patches will be negative (ym = 0 for all m). Then, the max operator can be used
to aggregate patch predictions to obtain an image-wise score: Ŷ = maxm(ŷm),
where ŷm is the prediction for patch m. When using this aggregating function,
the weights of the network will be updated with the information of only one
patch per image. Other less strict aggregating functions have been proposed in
the literature [6,10,11], which use not only the highest scoring patch but an
aggregation of more than one patch prediction per image.

2.2 Patch Sampling

Since the neural network will use a small subset of patches to update its weights
at every iteration, it is important to select an adequate sampling strategy. The
traditional grid-sampling strategy, a sampling strategy based on a uniform ran-
dom variable, and a novel sampling strategy based on sequential Monte Carlo
methods are reviewed in this section.

Grid Sampling: The extraction of patches is performed in a grid-like manner;
the image is divided into a regular grid of patches, with or without overlap.
Given that the sampling is performed only once in the whole training process,
grid sampling is the fastest sampling strategy. However, the subset of patches
to train will be the same throughout the epochs. Also, this strategy will sample
patches from not discriminative regions in the image even after the network has
learned that they are not relevant for classification.
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Uniform Sampling: A uniform distribution is applied to select the patches
used to train the neural network at every epoch. This means that the neural
network will see a different subset of patches every time the image goes through
the training loop. As the number of training epochs increases, the network will
tend to see all possible patches from every image. Nevertheless, this approach
will sample patches from irrelevant regions in the image even after they have
been learned to be non-discriminative.

Monte-Carlo Sampling: The objective of this sampling strategy is to concen-
trate the effort on the most relevant regions of a high resolution image. When a
new image is fed into the network, its output probability map is estimated using
a variation of a sequential Monte-Carlo method. New patches are obtained from
regions around high activations in the output probability map.

1. Initialization: n image points are sampled following a uniform distribution.
2. Evaluation: a patch centered on each point is sampled and forwarded through

the network. The output produced by the patch is used to represent the point.
3. Normalization: the point scores are re-scaled between 0 to 1. The points

whose value is closer to 1 will be the ones corresponding to patches which
have obtained the highest output from the neural network.

4. Re-sampling: the lowest scoring points are removed, and (the same number
of) new points are re-sampled on top of the ones which have a higher score.
This re-sampling step can be done deterministically (re-sampling the l lowest
scoring points) or stochastically (using a random uniform distribution).

5. Displacement: the new points are slightly displaced according to a random
2D Gaussian distribution.

6. Go to step 2 for k iterations.

The proposed method relocates patches which have not been relevant for
classification into more discriminative regions in the image, that is, around the
patches with higher activations. This process is performed at every batch, since
the discriminative regions in the image will vary as the network learns during
the training process.

3 Experiments

3.1 Datasets

Artificial Datasets: Two binary artificial datasets named MNIST-Sparse and
MNIST-Clustered have been created to test the performance of the various sam-
pling algorithms. Each image of 1024× 1024 pixels consists of an aggregation of
28× 28 images from the MNIST dataset. A positive image contains at least one
MNIST digit corresponding to the class ‘9’, while a negative image contains only
digits corresponding to the other classes (‘0’ to ‘8’). Digit ‘9’ has been chosen
because it can be mistaken for ‘4’ or ‘5’ [6].
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The purpose of these datasets is to imitate two different distributions found in
histological images. The MNIST-Sparse dataset has the relevant regions (where
the target number is localized) spread through the image. On the contrary, the
MNIST-Clustered dataset has the target patches concentrated in space. The
training and test subsets contain 1000 and 400 images, respectively. Figure 2
shows examples extracted from the two datasets, where the target digits ‘9’
have been highlighted using red squares.

Fig. 1. Images extracted from MNIST-Sparse dataset (a) and MNIST-Clustered
dataset (b). Target numbers (9) are marked with red squares in both images (Color
figure online)

Histological Datasets: The sampling strategies are also evaluated on two
histological datasets: the ICIAR Grand Challenge 2018 dataset Part A [1], and
the Skin subset of the GTEx dataset [3].

The ICIAR dataset is formed by 400 breast microscopy tissue images divided
in 4 different classes: normal, benign, invasive and in-situ carcinoma. For each
class, there are 100 different Hematoxylin & Eosin stained images with a dimen-
sion of 2048× 1536 pixels. The images are in RGB color space. We use benign
and invasive classes to create a binary problem on which to test the algorithms,
which results in 160 images for training and 40 for test. The images have already
been pre-cropped from labeled Whole Slide Tissue images, and hence, from a
MIL perspective, a large number of patches (instances) that we extract from an
image (a bag) are expected to be consistent with the image label.

The Skin subset of the GTEx dataset is composed of approximately 10000
pieces of skin, which correspond to sun-exposed and not sun-exposed tissues. The
smallest slide available (8 microns per pixel) is used to train the neural networks.
The training and test splits contain 8000 and 2000 images, respectively.



278 M. Combalia and V. Vilaplana

Fig. 2. Images extracted from the ICIAR Part A Dataset for benign (a) and invasive
(b) classes; and the GTEx Skin dataset for the sun-exposed (c) and not-sun-exposed
(d) classes.

3.2 Results

A VGG-like architecture [9] with a receptive field of 40× 40 pixels is trained
to evaluate the performance of the sampling algorithms on the MNIST-Sparse
and MNIST-Clustered datasets. A higher capacity neural network based on the
ResNet [4] architecture is used in the ICIAR Part A and GTEx Skin datasets
with a receptive field of 224× 224, since these datasets are more challenging than
the MNIST toy example.

Patches are extracted without overlap for the grid sampling strategy, and the
same number of patches/points is used for the uniform and Monte-Carlo training
strategies. This results in a total of 625 patches per image for the MNIST dataset
and 54 patches per image for the ICIAR dataset. The number of patches in
the case of the GTEx dataset is variable since images have different sizes. One
iteration is used on the Monte-Carlo algorithm every time the images go through
the training loop, as it was found to be enough to perform a correct estimation
of the output probability map of an image.

Patch scores are aggregated using the max operator into an image-level
score for the MNIST and the GTEx Skin datasets, since relevant information
is expected to be very localized in space. On the other hand, the Top-K (with
K = 10) aggregating function is used in the ICIAR Part A dataset, since patches
are expected to be consistent with the label of the image. The Top-K function
will use the top K scoring instances in a bag to obtain the bag-level prediction.

The neural networks are trained with Adam optimization. Grid sampling
with 50% overlap is used to sample patches from the images at test time, and
the max function is used to aggregate patch scores into image-wise predictions.
The accuracy results on the test set for each sampling strategy are shown in
Table 1 and the train and validation accuracy curves for the MNIST-Sparse and
MNIST-Clustered datasets are presented in Figs. 3 and 4, respectively.

4 Discussion

Figures 3 and 4 illustrate how the sampling strategy used for training can have
a very large impact on the final performance of the neural network. This is espe-
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Table 1. Test accuracies for the various sampling strategies on the MNIST-Sparse,
MNIST-Clustered, ICIAR Part A and GTEx Skin datasets

Test accuracy MNIST Sparse MNIST Clust ICIAR PartA GTEx Skin

Grid sampling 0.520± 0.01 0.523± 0.01 0.776 0.826

Uniform sampling 0.759± 0.03 0.83± 0.01 0.790 0.920

Monte-Carlo sampling 0.825± 0.02 0.852± 0.03 0.847 0.942

Fig. 3. Train and validation accuracy on the MNIST-Sparse dataset for the proposed
sampling strategies: grid (left), uniform (center), Monte-Carlo (right).

cially true in cases where the receptive field of the network is small compared to
the spatial extension of the discriminative features, as it is on the MNIST-Sparse
and MNIST-Clustered datasets, where target digits are patches of 28× 28 pix-
els and clusters of 40× 40 pixels, respectively. In these cases, the grid sampling
technique would need a very large overlap between patches to provide a good
subset of patches to the network, which would result in a substantial increase in
training time. While the neural network trained with the grid sampling strategy
is unable to learn the true distribution of the data, the stochastic nature of the
uniform and Monte-Carlo sampling strategies permits seeing a different subset
of patches at every epoch. This allows the network to correctly find the discrim-
inative regions on the image. In addition, once the network has learned which
regions in the image are the relevant ones, the Monte-Carlo strategy samples
only from these regions. This results in a higher validation accuracy, especially
in the MNIST-Clustered dataset.

Fig. 4. Train and validation accuracy on the MNIST-Clustered dataset for the proposed
sampling strategies: grid (left), uniform (center), Monte-Carlo (right).
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Fig. 5. Input image (a), output probability map for grid sampling (b), uniform sam-
pling (c) and Monte-Carlo sampling (d). Figures (e), (f) and (g) show the maximally
activated patch for grid, uniform and Monte-Carlo sampling, respectively.

Figure 5 shows the output probability maps of one positive image from the
MNIST-Clustered database for each sampling strategy. The neural network
trained with the grid sampling strategy fails to localize the target digit; the
patch with the maximum score contains a ‘4’. On the other hand, the neural
networks trained with the stochastic sampling strategies succeed activating on
the regions containing the target digit ‘9’. The Monte-Carlo sampling strategy
produces a more accurate map.

The stochastic sampling approaches outperform the grid sampling also on the
histological datasets. This time, however, the neural networks trained with the
grid sampling strategy perform correctly. In this case the neural networks have
a larger receptive field, and the discriminative image regions are smaller com-
pared to the receptive field. However, the neural networks still benefit from the
Monte-Carlo training strategy, which focuses on the relevant regions, improving
accuracy. Figure 6 shows how the distribution of samples in the Monte-Carlo

Fig. 6. Black points correspond to points sampled with Monte-Carlo at epochs 2,
6, 8 and 37 during the training process of the neural network for the sun-exposure
classification problem.
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approach changes as the neural network learns. In the first epochs, the Monte-
Carlo strategy behaves very similarly to the uniform sampling strategy. However,
as the network keeps learning, the Monte-Carlo sampling strategy further con-
centrates its effort on the discriminative regions.

5 Conclusions

In this paper we have shown that a simple grid sampling technique can compro-
mise the performance of a network, especially when its receptive field is small
compared to the size of the relevant features in the image. We have proposed a
sampling strategy based on a sequential Monte-Carlo method for high resolution
images which samples from the most relevant regions during the training process,
overcoming the problems of grid sampling. We have illustrated its capabilities
on two artificial and two histological datasets for breast cancer and sun exposure
classification.
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Abstract. Reliable and automatic segmentation of lung lobes is impor-
tant for diagnosis, assessment, and quantification of pulmonary diseases.
The existing techniques are prohibitively slow, undesirably rely on prior
(airway/vessel) segmentation, and/or require user interactions for opti-
mal results. This work presents a reliable, fast, and fully automated lung
lobe segmentation based on a progressive dense V-network (PDV-Net).
The proposed method can segment lung lobes in one forward pass of the
network, with an average runtime of 2 s using 1 Nvidia Titan XP GPU,
eliminating the need for any prior atlases, lung segmentation or any sub-
sequent user intervention. We evaluated our model using 84 chest CT
scans from the LIDC and 154 pathological cases from the LTRC datasets.
Our model achieved a Dice score of 0.939 ± 0.02 for the LIDC test set
and 0.950 ± 0.01 for the LTRC test set, significantly outperforming a
2D U-net model and a 3D dense V-net. We further evaluated our model
against 55 cases from the LOLA11 challenge, obtaining an average Dice
score of 0.935—a performance level competitive to the best performing
team with an average score of 0.938. Our extensive robustness analyses
also demonstrate that our model can reliably segment both healthy and
pathological lung lobes in CT scans from different vendors, and that our
model is robust against configurations of CT scan reconstruction.

Keywords: Lung lobe segmentation · CT · Progressive dense V-Net
Fissure · 3D CNN

1 Introduction

Human lungs are divided into five lobes. The right lung has three lobes, namely,
right upper lobe (RUL), right middle lobe (RML), and right lower lobe (RLL),
which are separated by a minor and a major fissure, whereas the left lung has
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two lobes, namely, left upper lobe (LUL) and left lower lobe (LLL), separated
by a major fissure. Figure 1 shows the five lobes separated by major and minor
fissures in a coronal CT slice. Each of the five lobes is functionally independent
as they have separate bronchial and vascular systems.

Fig. 1. A coronal lung CT slice with visible fissures. Major fissures are denoted by red
arrows and yellow arrows denote the minor fissure.

Automatic lobe segmentation is important for both clinical and technical
purposes. In clinical practice, doctors very often base their assessment of a dis-
ease severity and the corresponding treatment plan on the affected lung lobe. As
such, upon encountering a disease or lesion in the lung, radiologists may navigate
through the nearby slices to identify the affected lobe, especially when the fissure
lines are not clearly visible in the target slice. An automatic lobe segmentation
model can therefore shorten the CT reading session by continually informing
the radiologists about their location in the lung anatomy. From the technical
perspective, accurate lung lobe segmentation can improve several subsequent
clinical tasks, including nodule malignancy prediction (cancers mostly occur in
the left or right upper lobes), automatic lobe-aware report generation for each
nodule, and assessment and quantification of pulmonary diseases, by narrowing
down the search space to the lung lobes most-likely to be affected. However,
identifying fissures poses a challenge for both human and machine perception.
First, fissures are most often incomplete, not extending to the lobar boundaries.
Several studies in the literature have confirmed the incompleteness of fissures
as a very common phenomenon [1]. Second, the visual characteristics of lobar
boundaries can change in presence of pathologies. Such morphological changes
could also be related to the varying thicknesses, locations, and shapes of the
fissures. Third, there also exist other fissures in the lungs that can be misinter-
preted as the major or minor fissures that separate the lobes (e.g., accessory
fissures and azygos fissures).

To address the need for accurate and robust lobe segmentation, we have pro-
posed a fully automatic and reliable deep learning solution via progressive dense
V-net (PDV-net). The PDV-net model takes entire CT volume and through
three dense feature blocks, generates the segmentation progressively improving
at each pathway. Our model generates accurate segmentation of the lung lobes
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in about 2 s in only a single forward pass of the network, eliminating the need
for any user interactions or any prior segmentation of lungs, vessels, or airways,
which are common assumptions in the design of existing models.

2 Related Work

Various automatic and semi-automatic approaches have been proposed for
lung lobe segmentation. Despite the methodological differences, the existing
approaches are similar in that they require either prior segmentation of air-
ways and vessels (e.g., Bragman et al. [2]) or demand previously defined atlases
(e.g., van Rikxoort et al. [11] and Ross et al. [13]). Therefore, they suffer from
slow execution time, cumbersome process of generating the atlas, and relatively
lower performance for pathological cases. A significant shift from this common
trend is the work of George et al. [4] wherein a 2D fully convolutional neural
network followed by a 3D random walker algorithm is used to segment lobes.
However, their method still relied on the random walker algorithm whose opti-
mal parameters could change from one dataset to another. It is most desirable
to have an end-to-end solution that does not rely on any subsequent heuristic
method.

In the presented work, we mitigate the aforementioned limitations, namely
reliance on prior masks, slow runtime, and lack of robustness by an end-to-
end, single-pass, deep-learning-based framework that does not rely on any prior
airway/vessel segmentation, anatomical knowledge, or atlases.

3 Method

We combine the ideas from dense V-network [5] and progressive holistically
nested networks [7] to obtain a new architecture: progressive dense V-network
(PDV-net), an end-to-end solution for organ segmentation in 3D volumetric data.
Our proposed architecture is illustrated in Fig. 2. As seen, the input to the net-
work is first down-sampled and concatenated with a strided 5×5×5 convolution
of the input with 24 kernels. The concatenation result is then passed to 3 dense
feature blocks, each consisting of 5, 10, and 10 densely-wired convolution layers
respectively. The growth rates of dense blocks are set to 4, 8, and 16 respectively.
All the convolutional layers in a dense block have a kernel size of 3×3×3 and are
followed by batch normalization and parametric rectified linear units (PReLU).

Consecutively, the outputs of the dense feature blocks are utilized in low and
high resolution passes via convolutional down-sampling and skip connections.
This enables the generation of feature maps at three different resolutions. The
outputs of the skip connections of the second and third dense feature blocks are
further up-sampled in order to be consistent with the size of the output in the
first skip connection. The feature maps from skip1 are passed to a convolutional
layer followed by a softmax, which outputs the probability maps. In the second
pathway, the feature maps from skip1 and skip2 are merged and the output
probability maps are produced by a convolutional layer followed by softmax.
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Similarly, we get the final segmentation result from the merged feature maps
resulted from the skip2 and skip3 connections. Unlike dense V-net, PDV-net
generates the final output by progressively improving the outputs at previous
pathways. To train the suggested architecture, we choose to use a dice-based loss
function [10] at each stage of the progressive architecture.

Fig. 2. PDV-net model for the segmentation of lung lobes. Segmentation outputs at
different pathways are progressively improved for the final result.

4 Experiments

Datasets: We used 3 public datasets to evaluate our models. First, we selected
a subset of chest CTs (354 cases) from the publicly available LIDC dataset for
annotation. To ensure variability in the data, CT scans were selected such that
both challenging and visible fissures are well-represented in the dataset. The
ground truth masks were generated in a semi-automatic fashion by multiple
observers using 3D Slicer. To mitigate bias in the ground truth, the generated
masks were later refined and validated by an expert radiologist. The dataset was
split into 270 training and 84 test cases. 10% of the training set was utilized
as the validation set. Second, we selected 154 CTs from LTRC database. The
LTRC dataset includes lobe masks for pathological cases that have clear evidence
of COPD or ILD diseases, including emphysema and fibrosis. The LTRC cases
allow us to measure the robustness of our model against pathologies in the lungs.
Third, we used 55 cases of the Lobe and Lung Analysis (LOLA11) challenge [9]
and submitted the results to the challenge organizers for evaluation.
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Baselines for Comparison: We used a U-Net architecture [12] and a dense
V-Net for comparison. The former is used in the most recent published article
[4] for lung lobe segmentation and the latter is a strong baseline for comparison,
which we use for the first time for lung lobe segmentation.

Implementation Details: For the proposed model and dense V-Net, the train-
ing volumes were first normalized, followed by rescaling to 512 × 512 × 64,
using 1 NVIDIA Titan XP GPU. Due to the large memory footprint of the
model, the gradient check-pointing method [3] was used for memory-efficient
back-propagation. In addition, batch-wise spatial dropout [5] is incorporated for
regularization purposes. The training was performed on a Intel(R) Xeon(R) CPU
E5-2697 v4@2.30 GHz machine. We used the Adam optimizer [8] with a learning
rate of 0.01 and a weight decay of 10−7.

For the 2D U-net implementation, we trained the network with axial slices
from all the training volumes, each sized 512×512 and normalized to have values
between 0 and 1. To avoid over-fitting to the background class, we used only the
axial slices, wherein at least one lung lobe is present. We further used the Adam
optimizer with a learning rate of 5 × 10−5 and batches of 10 images.

Table 1. Performance comparison of the proposed 3D progressive dense V-net with
the 2D U-net and 3D dense V-net models in segmenting 84 LIDC and 154 LTRC cases.
Mean Dice score and standard deviation for each lobe have been reported.

LIDC Results: Table 1 shows the calculated overall and lobe-wise Dice scores
for each of the models. The proposed progressive dense V-net model, with an
overall score of 0.939 ± 0.020, significantly outperformed the 2D model, with
an overall score of 0.9201 ± 0.0431. As is evident in Table 1, the 3D progressive
dense V-net yields consistently larger Dice score for each of the lung lobes against
both dense V-net and U-net. Moreover, the lower standard deviation for each
lobe indicates that the progressive model is more robust. We have also shown
a qualitative comparison between the 3 models in Fig. 3 where the lung fissures
are better captured by our progressive dense V-net model than by 2D U-net and
dense V-net.

We further used Bland-Altman plots to measure the agreement between our
progressive dense V-net and ground truth segmentations of the 84 LIDC cases
(Fig. 4). A good agreement was observed between our segmentation model and
ground truth in every plot (Lung and LLL being the two best agreements).
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Fig. 3. Qualitative comparison between the proposed 3D progressive dense V-Net
(PDV-Net), dense V-Net (DV-Net), and U-net. Note how noisy patches are removed
from the final segmentation generated by PDV-Net. Color coding: almond: LUL,
blue: LLL, yellow: RUL, cyan: RML, pink: RLL. (Color figure online)

Fig. 4. Bland-Altman plots show the agreement between 3D progressive dense V-net
and ground truth.

Pearson correlation showed that all six volume sets in ground truth are strongly
correlated with the corresponding six volume sets in the PDV-net segmentation,
with p < 0.001.

LTRC Results: Table 1 shows that the 3D progressive dense V-net achieves
an average Dice score of 0.950 ± 0.007, significantly improving the dense V-net
(0.946±0.008). Once again, the progressive dense V-net model outperformed the
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2D U-net model with an average Dice score of 0.929 ± 0.025. Individual lobes
were segmented better in the proposed 3D progressive dense V-net model than
in the 3D dense V-net and the 2D U-net models (Table 1). Note that the LTRC
dataset includes many pathological cases where the fissure lines are either invis-
ible, distorted, or absent in presence of pathologies such as emphysema, fibrosis,
etc. As a result, lobe segmentation becomes more challenging. Nevertheless, our
model performed well in segmenting lobes in pathological cases from the LTRC
dataset. Moreover, our model outperformed the model of George et al. [4] in seg-
menting the LTRC cases both in Dice score (0.941 ± 0.255) and inference speed
(4–8 minutes per case).

LOLA11 Results: The segmentation results on the LOLA11 cases submitted
online were evaluated as overlap (Jaccard) scores. To be consistent with our
previous analyses, we converted the Jaccard scores to Dice scores. The results
are shown in Table 2. Our method achieved an overall Dice score of 0.934, which
is very competitive with the state-of-the-art [2] with a Dice score of 0.938, while
outperforming the methods of Giuliani et al. [6] and van Rikxoort et al. [11].

Table 2. Performance evaluation of 3D PDV-Net models on 55 LOLA cases: showing
lobe-wise mean Dice scores, standard deviations, median scores, first quartiles, and
third quartiles

Lobe Mean ± SD Q1 Median Q3

RUL 0.9518 ± 0.1750 0.9371 0.9688 0.9881

RML 0.8621 ± 0.4149 0.8107 0.9284 0.9663

RLL 0.9581 ± 0.1993 0.9621 0.9829 0.9881

LUL 0.9551 ± 0.2160 0.9644 0.9834 0.9924

LLL 0.9342 ± 0.3733 0.9546 0.9805 0.9902

Overall 0.9345

[6] 0.9282

[2] 0.9384

[11] 0.9195
∗Jaccard score to Dice score conversion:
Dice = 2 × Jaccard/(1 + Jaccard)

Robustness Analysis: We further investigated the robustness of our model by
grouping the 84 LIDC cases in three ways. For the first grouping, the Dice scores
were put in three different Z-spacing buckets: Z-spacing ≤ 1, 1 < Z-spacing < 2,
and Z-spacing ≥ 2. In the second grouping, the Dice scores were put in four man-
ufacturer buckets: GE, Philips, Siemens, and Toshiba. In the third grouping, the
Dice scores were grouped according to the reconstruction kernel into 3 buckets:
soft, lung, and bone. The one-way ANOVA analysis confirmed that there were no
significant differences between the average Dice scores of the buckets within each
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grouping, suggesting that our model is robust against the choice of reconstruction
kernel, size of reconstruction interval, and different CT scan vendors. Moreover,
nodule volume in each of the 84 cases does not affect the lobe segmentation per-
formance. There is no correlation between nodule volume and lobe segmentation
accuracy, found from Pearson correlation.

We also studied how the segmentation correlation is affected by lung patholo-
gies. For this purpose, we analyzed the correlation between Dice scores and
emphysema index (proportion of the lung affected by emphysema) in LTRC
cases. According to the Pearson correlation, it was found that lobe segmenta-
tion accuracy is not correlated with emphysema index, indicating the robustness
of our proposed model in segmenting lobes from pathological cases.

Speed Analysis: The proposed 3D progressive dense V-net model takes approx-
imately 2 s to segment lung lobes from one CT scan using 1 Nvidia Titan XP
GPU, which is six times faster than the 2D U-net model. As per our knowledge
from the lung lobe segmentation models available in literature, this is by far the
fastest model. Note that no prior published research has yet considered a 3D
convolutional model for lung lobe segmentation.

5 Conclusions

Automatic and reliable lung lobe segmentation is a challenging task in the pres-
ence of chest pathologies and in the absence of visible, complete fissures. In
this paper, we introduced a new 3D segmentation approach, namely, progressive
dense V-networks for the automatic, fast, and reliable segmentation of lung lobes
from chest CT scans, without any prior segmentation. We evaluated our method
using 3 test datasets: 84 cases from LIDC, 154 cases from LTRC, and 55 cases
from LOLA11. Our results demonstrated that the suggested model outperforms,
or at worst performs comparably to, the state-of-the-art while running at an
average speed of 2 s per case. Our analyses further demonstrated the robustness
of the suggested method against varying configurations of CT reconstruction,
choice of CT vendor, and presence of lung pathologies.
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Abstract. Computed tomography (CT) is increasingly being used for
cancer screening, such as early detection of lung cancer. However, CT
studies have varying pixel spacing due to differences in acquisition param-
eters. Thick slice CTs have lower resolution, hindering tasks such as
nodule characterization during computer-aided detection due to partial
volume effect. In this study, we propose a novel 3D enhancement con-
volutional neural network (3DECNN) to improve the spatial resolution
of CT studies that were acquired using lower resolution/slice thicknesses
to higher resolutions. Using a subset of the LIDC dataset consisting of
20,672 CT slices from 100 scans, we simulated lower resolution/thick
section scans then attempted to reconstruct the original images using
our 3DECNN network. A significant improvement in PSNR (29.3087dB
vs. 28.8769dB, p-value < 2.2e − 16) and SSIM (0.8529dB vs. 0.8449dB,
p-value < 2.2e− 16) compared to other state-of-art deep learning meth-
ods is observed.

Keywords: Super resolution · Computed tomography
Medical imaging · Convolutional neural network
Image enhancement · Deep learning

1 Introduction

Computed tomography (CT) is a widely used screening and diagnostic tool that
provides detailed anatomical information on patients. Its ability to resolve small
objects, such as nodules that are 1–30 mm in size, makes the modality indis-
pensable in performing tasks such as lung cancer screening and colonography.
However, the variation in image resolution of CT screening due to differences
in radiation dose and slice thickness hinders the radiologist’s ability to discern
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subtle suspicious findings. Thus, it is highly desirable to develop an approach
that enhances lower resolution CT scans by increasing the detail and sharpness
of borders to mimic higher resolution acquisitions [1].

Super-resolution (SR) is a class of techniques that increase the resolution
of an imaging system [2] and has been widely applied on natural images and
is increasingly being explored in medical imaging. Traditional SR methods use
linear or non-linear functions (e.g., bilinear/bicubic interpolation and example-
based methods [3,4]) to estimate and simulate image distributions. These meth-
ods, however, produce blurring and jagged edges in images, which introduce
artifacts and may negatively impact the ability of computer-aided detection
(CAD) systems to detect subtle nodules. Recently, deep learning, especially con-
volutional neural networks (CNN), has been shown to extract high-dimensional
and non-linear information from images that results in a much improved super-
resolution output. One example is the super-resolution convolutional neural
network (SRCNN) [5]. SRCNN learns an end-to-end mapping from low- to
high-resolution images. In [6,7], the authors applied and evaluated the SRCNN
method to improve the image quality of magnified images in chest radiographs
and CT images. Moreover, [9] introduced an efficient sub-pixel convolution net-
work (ESPCN), which was shown to be more computationally efficient than
SRCNN. In [10], the authors proposed a SR method that utilizes a generative
adversarial network (GAN), resulting in images have better perceptual qual-
ity compared to SRCNN. All these methods were evaluated using 2D images.
However, for medical imaging modalities that are volumetric, such as CT, a
2D convolution ignores the correlation between slices. We propose a 3DECNN
architecture, which executes a series of 3D convolutions on the volumetric data.
We measure performance using two image quality metrics: peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM). Our approach achieves signifi-
cant improvement compared with improved SRCNN approach (FSRCNN) [8,9]
on both metrics.

2 Method

2.1 Overview

For each slice in the CT volume, our task is to generate a high-resolution image
IHR from a low-resolution image ILR. Our approach can be divided into two
phases: model training and inference. In the model training phase, we first down-
sample a given image I to obtain the low-resolution image ILR. We then use the
original data as the high-resolution images IHR to train our proposed 3DECNN
network. In the model inference phase, we use a previously unseen low-resolution
CT volume as input to the trained 3DECNN model and generate a super reso-
lution image ISR.
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Fig. 1. Proposed 3DECNN architecture

2.2 Formulation

For CT images, spatial correlations exist across three dimensions. As such, the
key to generating high-quality SR images is to make full use of available infor-
mation along all dimensions. Thus, we apply cube-shaped filters on the input
CT slices and slides these filters through all three dimensions of the input. Our
model architecture is illustrated in Fig. 1. This filtering procedure is repeated
in 3 stacked layers. After the 3D filtering process, a 3D deconvolution is used
to reconstruct images and up-sample them to larger ones. The output of this
3D deconvolution is a reconstructed SR 3D volume. However, to compare with
other SR methods such as SRCNN and ESPCN, which produces 2D outputs, we
transform our 3D volume into a 2D output. As such, we add a final convolution
layer to smooth pixels into a 2D slice, which is then compared to the outputs
of the other methods. In the following paragraphs, we describe mathematical
details of our 3DECNN architecture.

3D Convolutional Layers. In this work, we incorporate the feature extrac-
tion optimizations into the training/learning procedure of convolution kernels.
The original CT images are normalized to values between [0,1]. The first CNN
layer takes a normalized CT image (represented as a 3-D tensor) as input
and generates multiple 3-D tensors (feature maps) as output by sliding the
cube-shaped filters (convolution kernels), which are sized of ‘k1 × k2 × k3’,
across inputs. We define convolution input tensor notations as 〈N,Cin,H,W 〉
and output 〈N,Cout,H,W 〉, in which Ci stands for the number of 3-D ten-
sors and 〈N,H,W 〉 stands for the feature map block’s thickness, height, and
width, respectively. Subsequent convolution layers take the previous layer’s out-
put feature maps as input, which are in a 4-D tensor. Convolution kernels
are in a dimension of 〈Cin, Cout, k1, k2, k3〉. The sliding stride parameter 〈s〉
defines how many pixels to skip between each adjacent convolution on input fea-
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ture maps. Its mathematical expression is written as follows: out[co][n][h][w] =
∑Ci

n=0

∑k1
i=0

∑k2
j=0

∑k3
k=0 W [co][ci][i][j][k] ∗ In[ci][s ∗ n + i][s ∗ h + j][s ∗ w + k].

Deconvolution Layer. In traditional image processing, a reverse feature
extraction procedure is typically used to reconstruct images. Specifically, design
functions such as linear interpolation, are used to up-scale images and also aver-
age overlapped output patches to generate the final SR image. In this work,
we utilize deconvolution to achieve image up-sampling and reconstruct fea-
ture information from previous layers’ outputs at the same time. Deconvolu-
tion can be thought of as a transposed convolution. Deconvolution operations
up-sample input feature maps by multiplying each pixel with cubic filters and
summing up overlap outputs of adjacent filters’ output [11]. Following the above
convolution’s mathematic notations, deconvolution is written as the following:
out[co][n][h[w] =

∑Ci

n=0

∑k1
i=0

∑k2
j=0

∑k3
k=0 W [co][ci][i][j][k]∗In[ci][ns +k1− i][hs +

k2 − j][ws + k3 − k]. Activation functions are used to apply an element-wise non-
linear transformation on the convolution or deconvolution output tensors. In this
work, we use ReLU as the activation function.

Hyperparameters. There are four hyperparameters that have an influence
on model performance: number of feature layers, feature map depth, number of
convolution kernels, and size of kernels. The number of feature extraction layers
〈l〉 determines the upper-bound complexity in features that the CNN can learn
from images. The feature map depth 〈n〉 is the number of CT slices that are
taken in together to generate one SR image. The number of convolution kernels
〈f〉 decides the number of total feature maps in a layer and thus decides the
maximum information that can be represented in the output of this layer. The
size of convolution and deconvolution kernels 〈k〉 decides the visible scope that
the filter can see in the input CT image or feature maps. Given the impact of
each hyperparameter, we performed a grid search of the hyperparameter space
to find the best combination of 〈n, l, f, k〉 for our 3DECNN model.

Loss Function. Peak signal-to-noise ratio (PSNR) is the most commonly used
metric to measure the quality of reconstructed lossy images in all kinds of imag-
ing systems. A higher PSNR generally indicates a higher quality of the recon-
struction image. PSNR is defined as the log on the division of the max pixel value
over mean squared root. Therefore, we directly use the squared mean error func-
tion as our loss function: J(w, b) = 1

m

∑m
i=1 L(ŷ(i), y(i)) = 1

m

∑m
i=1 ||ŷ(i) −y(i)||2,

where w and b represent weight parameters and bias parameters. m is the num-
ber of training samples. ŷ and y refer to the output of the neural network and
the target, respectively. In addition, the target loss function is minimized using
stochastic gradient descent with the back-propagation algorithm [13].
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3 Experiments and Results

In this section, we first introduce the experiment setup, including dataset and
data preparation. Then we show the design space of the hyper-parameters, at
which time we show how to explore different CNN architectures and find the best
model. Subsequently, we compare our method with recent state-of-the-art work
and demonstrate the performance improvement. Lastly, we present examples of
the generated SR CT images using our proposed method and previous state-of-
the-art results.

Fig. 2. Design space of hyper-parameters

3.1 Experiment Setup

Dataset. We use the public available Lung Image Database Consortium
image collection (LIDC) dataset for this study [12], which consists of low- and
diagnostic-dose thoracic CT scans. These scans have a wide range of slice thick-
ness ranging from 0.6 to 5 mm. And the pixel spacing in axial view (x-y direction)
ranges from 0.4609 to 0.9766 mm. We randomly select 100 scans out of a total
of 1018 cases from the LIDC dataset, result in a total consisting of 20672 slices.
The selected CT scans are then randomized into four folds with similar size. Two
folds are used for training, and the remaining two folds are used for validation
and test, respectively.
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Data Preprocessing. For each CT scan, we first downsample it on axial view
by the desired scaling factor (set 3 in our experiment) to form the LR images.
Then the corresponding HR images are ground truth images.

Hyperparameter Tuning 〈n, l, f , k〉. We choose the four most influential
parameters to explore in our experiment and discuss, which is feature depth (n),
number of layers (l), number of filters (f) and filter kernel size (k).

The effect of the feature depth 〈n〉 is shown in Fig. 2(a). It presents the
training curves of three different 3DECNN architectures, in which their 〈l, f, s〉
are the same and 〈n〉 varies in [3, 5, 9]. Among the three configurations, n = 3
has a better average PSNR than the others. The effect of the number of layers
〈l〉 is shown Fig. 2(b), which demonstrates that a deeper CNN may not always
be better. With fixed 〈n, f, s〉 and varying l ∈ [1, 3, 5, 8], here l indicate the
number of convolutional layers before the deconvolution process. We can observe
apparent different performance on the training curves. We determine that l = 3
achieves higher average PSNR. The effect of the number of filters 〈f〉 is shown
in Fig. 2(c), in which we fix 〈n, l, k〉 and choose 〈f〉 in four collections. An
apparent drop in PSNR is seen when 〈f〉 chooses the too small configuration
〈16, 16, 16, 32, 1〉. 〈64, 64, 64, 32, 1〉 and 〈64, 64, 32, 32, 1〉 has approximately
the same PSNR (28.66 vs. 28.67) so we choose latter one to save training time.
The effect of the filter kernel size 〈k〉 is shown in Fig. 2(d), in which we fix
〈n, l, f〉 and vary k in the collection of [3, 5, 9]. Experiment result proves that k =
3 achieves the best PSNR. The PSNR decrease with filter kernel size demonstrate
that relatively remote pixels contribute less to feature extraction and bring much
signal noise to the final result.

Final Model. For the final design, we set 〈 n, l, (f1, k1), (f2, k2), (f3, k3),
(fdeconv

4 , kdeconv
4 ), (f5, k5) 〉 = 〈5, 3, (64, 3), (64, 3), (32, 3), (32, 3), (1, 3)〉. We set

the learning rate α as 10−3 for this design and achieve a good convergence.
We implemented our 3DECNN model using Pytorch and trained/validated our
model on a workstation with a NVIDIA Tesla K40 GPU. The training process
took roughly 10 h.

Table 1. PSNR and SSIM results comparison.

BICUBIC FSRCNN-s [8] FSRCNN [8] ESPCN [9] proposed

PSNR (bB) Mean 27.2903 28.4731 28.7681 28.8769 29.3087

Standard

deviation (SD)

2.7754 2.8659 2.9197 2.9405 3.0253

SSIM Mean 0.8190 0.8393 0.8431 0.8449 0.8529

Standard

deviation (SD)

0.1135 0.1061 0.1080 0.1071 0.1050



3DECNN Computed Tomography Image Enhancement 297

3.2 Results Comparison with T-Test Validation

We compare the proposed model to bicubic interpolation and two existing the-
state-of-the-art deep learning methods for super resolution image enhancement:
(1) FSRCNN [8] and (2) ESPCN [9]. We reimplemented both methods, retraining
and testing them in the manner as our proposed method. Both the FSRCNN-s
and the FSRCNN architectures used in [8] are compared here. A paired t-test
is adopted to determine whether a statistically significant difference exists in
mean measurements of PSNR and SSIM when comparing 3DECNN to bicubic,
FSRCNN, and ESPCN. Table 1 shows the mean and standard deviation for
the four methods in PSNR and SSIM using 5,168 test slices. The paired t-test
results show that the proposed method has significantly higher mean PSNR,
and mean differences are 2.0183 dB (p-value < 2.2e − 16), 0.8357 dB (p-value
< 2.2e−16), 0.5406 dB (p-value < 2.2e−16), and 0.4318 dB (p-value < 2.2e−16)
for bicubic, FSRCNN-s, FSRCNN and ESPCN, respectively. It also shows that
out model has significantly higher SSIM, and the mean differences are 0.0389
(p-value < 2.2e−16), 0.0136 (p-value < 2.2e−16), 0.0098 (p-value < 2.2e−16),
and 0.0080 (p-value < 2.2e − 16). To subjectively measure the image perceived
quality, we also visualize and compare the enhanced images in Fig. 3. The zoomed
areas in the figure are lung nodules. As the figures shown, our approach achieved
better perceived quality compared to other methods.

Fig. 3. Comparison with the-state-of-the-art works
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4 Discussion and Future Work

We present the results of our proposed 3DECNN approach to improve the image
quality of CT studies that are acquired at varying, lower resolutions. Our method
achieves a significant improvement compared to existing state-of-art deep learn-
ing methods in PSNR (mean improvement of 0.43dB and p-value < 2.2e − 16)
and SSIM (mean improvement of 0.008 and p-value < 2.2e − 16). We demon-
strate our proposed work by enhancing large slice thickness scans, which can be
potentially applied to clinical auxiliary diagnosis of lung cancer. As future work,
we explore how our approach can be extended to perform image normalization
and enhancement of ultra low-dose CT images (studies that are acquired at 25%
or 50% dose compared to current low-dose images) with the goal of producing
comparable image quality while reducing radiation exposure to patients.
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Abstract. Skeletal bone age assessment is a common clinical practice
to diagnose endocrine and metabolic disorders in child development. In
this paper, we describe a deep learning approach to the problem of bone
age assessment using data from the 2017 Pediatric Bone Age Challenge
organized by the Radiological Society of North America. This dataset
consists of 12,600 radiological images. Each radiograph in the dataset
is an image of a left hand labeled with bone age and sex of a patient.
Our approach introduces a comprehensive preprocessing protocol based
on the positive mining technique. We use images of whole hands as well
as specific hand parts for both training and prediction. This allows us to
measure the importance of specific hand bones for automated bone age
analysis. We further evaluate the performance of the suggested methods
in the context of skeletal development stages. Our approach outperforms
other common methods for bone age assessment.

Keywords: Medical imaging · Computer-aided diagnosis (CAD)
Computer vision · Image recognition · Deep learning

1 Introduction

Clinicians use bone age assessment (BAA) in order to estimate maturity of a
child’s skeletal system since the difference between assigned bone and chronolog-
ical ages may indicate a growth problem. BAA methods usually include taking
a single X-ray image of the left hand from the wrist to fingertips and comparing
it with a standardized reference. Over the past decades, BAA has been per-
formed manually by either comparing the patient’s radiograph with an atlas of

c© Springer Nature Switzerland AG 2018
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representative ages [4] or using a scoring system that examines specific bones
[16]. Only recently software solutions, such as BoneXpert [17], have been devel-
oped and approved for the clinical use in Europe. BoneXpert uses a computer
vision algorithm to reconstruct the contours of 13 bones of a hand. However, it
is sensitive to the image quality and does not utilize carpal bones, despite their
suggested importance for BAA in infants and toddlers [3]. Methods based on
classical computer vision reduce time needed for evaluating a single radiograph,
but they still require substantial feature engineering, doctoral supervision and
expertise.

Recently, deep learning-based approaches demonstrated performance
improvements over conventional machine learning methods for many tasks in
biomedicine [1,6]. In medical image analysis, convolutional neural networks
(CNN) have been successfully used, for example, for diabetic retinopathy screen-
ing [9], breast cancer detection [10], and other problems [1]. Deep neural network
based solutions for BAA were suggested before [7,8,14]. However, most of these
studies did not evaluate model performance using different hand bones or dif-
ferent skeletal development stages. Moreover, the performance of deep learning
models depends on the quality of training data. Radiographs are obtained from
various medical centers, different hardware, and under variable conditions. They
also vary in scale, orientation, exposure, and often feature specific markings
(Fig. 4).

In this study, we present a deep learning-based method for BAA. One of the
key contributions of this work is rigorous preprocessing pipeline. To prevent the
model from learning false associations from artifacts in the image, we first remove
background by segmenting the hand. Then, we normalize contrast and detect
key points. Then, we apply affine transforms to register segmented images in a
common coordinate space. Besides improving the quality of data, this step allows
us to accurately identify different regions of the hand. We train several deep
networks using different parts of hand images to assess how different hand bones
contribute to the models’ performance across four major skeletal development
stages. Finally, we compare regression and classification, sex-specific and sex-
agnostic models, and evaluate overall performance of our approach. We validate
our method using data from the 2017 Pediatric Bone Age Challenge organized by
the Radiological Society of North America (RSNA) [12]. The suggested method
is robust and shows superior performance compared to other proposed solutions.

2 Methods

2.1 Preprocessing

First, we extract a hand mask from every image to remove all extraneous objects.
Simple background removal methods did not produce satisfactory results, while
machine learning-based segmentation typically requires large manually labeled
training set. To alleviate labeling costs, we use positive mining, an iterative pro-
cedure that combines manual labeling with automatic processing, see Fig. 1. It
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allows us to quickly obtain accurate masks for the whole training set. For seg-
mentation, we employ slightly modified version of the original U-Net architecture
[11] that previously proved itself useful for segmentation problems with limited
amounts of data [5], making it a good choice for positive mining.

Fig. 1. Iterative procedure of positive mining utilizing U-Net architecture for image
segmentation: (A) raw input data; (B) mask manually labeled with the online anno-
tation tool Supervisely [15]; (C) new data; (D) raw prediction; (E) post processed
prediction; (F) raw image with mask plotted together for visual inspection.

We train U-Net using a generalized segmentation loss function:

L = H − log J , (1)

where H is a binary cross entropy that defined as

H = − 1
n

n∑

i=1

(yi log ŷi + (1 − yi) log(1 − ŷi)) , (2)

where yi and ŷi are a binary value (label) and a predicted probability for the
pixel i, correspondingly. In the second term of Eq. (1), J is a differentiable
generalization of the Jaccard Index

J =
1
n

n∑

i=1

(
yiŷi

yi + ŷi − yiŷi

)
. (3)

By minimizing this loss function, we simultaneously maximize probabilities for
correct pixels to be predicted and maximize the intersection between masks and
corresponding predictions, which improves overall segmentation performance [5].

First, we manually label 100 hand masks using Supervisely [15]. Then, we
train the U-Net model and use it to segment the rest of the training set. For each
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prediction we only keep the largest connected component. We manually curate all
segmented masks to discard those of poor quality and train the model using the
expanded training set with good quality masks. We repeat this procedure 6 times
to achieve acceptable quality on the whole training set, see Fig. 1. Finally, we
manually label approximately 100 images that U-Net fails to segment correctly.

2.2 Key Point Detection Model

Since original atlas-based methods evaluate specific hand bones, we use sev-
eral hand regions to assess their importance. In order to correctly locate these
regions, radiographs need to be registered in a common coordinate space. For reg-
istration, we detect coordinates of several key points of a hand and use them to
calculate affine transformation parameters (zoom, rotation, translation, and mir-
ror) (Fig. 2). Three specific points on the image are chosen: the tip of the distal
phalanx of the third finger, tip of the distal phalanx of the thumb, and the cen-
ter of the capitate. All images are re-scaled to the same resolution: 2080 × 1600
and padded with zeros, when necessary. To create training set for key points
model, we manually label 800 radiographs. Pixel coordinates of key points serve
as training targets for our regression model. Key point detection model is based
on a VGG-like architecture [13] with 3 VGG blocks and 3 fully connected layers
with dropout Fig. 3. The VGG module consists of 2 convolutional layers with
the Exponential Linear Unit (ELU) activation function [2] and max-pooling. The
model is trained with Mean Squared Error loss function (MSE). We downscale
input images to 130 × 100 pixels and apply rotation, translation and zoom as
augmentations. The model outputs 6 coordinates (2 for every key point) that
are used to calculate affine transformations for all radiographs. We register them
such that: (1) the tip of the middle finger is aligned horizontally and positioned
approximately 100 pixels below the top edge of the image; (2) the capitate is
aligned horizontally and positioned approximately 480 pixels above the bottom
edge of the image. The key point for the thumb is used to detect mirrored images
and adjust them. The results of the segmentation, normalization, and registra-
tion are shown in Fig. 4.

2.3 Bone Age Assessment Models

We compare bone age regression and classification using two VGG-style CNNs
[13] with 6 convolutional blocks followed by 2 fully connected layers (see Fig. 3).
The input size varies depending on the considered region of an image, Fig. 2.
Both networks are trained by minimizing Mean Absolute Error (MAE) with
augmentations (zoom, rotation shift). The regression network has a single out-
put predicting bone age in month, which is scaled in the range [−1, 1]. The
classification model (Fig. 3) is similar to the regression one, except for two final
layers. First, we assign each bone age a class. As bone ages expressed in months,
we assume 240 classes total. The second to the last layer is a softmax layer that
outputs vector of probabilities for 240 classes. In the final layer, probabilities
are multiplied by a vector of bone ages uniformly distributed over integer values
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Fig. 2. Image registration. (Left) Key points: the tip of the middle finger (the yellow
dot), the center of the capitate (the red dot), the tip of the thumb (the blue dot).
Registration positions: for the tip of the middle finger and for the center of the capitate
(white dots). (Right) A registered radiograph with three specific regions: (A) a whole
hand; (B) carpal bones; (C) metacarpals and proximal phalanges.

Fig. 3. VGG-style neural network architectures for regression (top) and classification
(bottom) tasks.
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Fig. 4. Preprocessing pipeline: (first row) original images; (second row) binary hand
masks that are applied to the original images to remove background; (third row) masked
and normalized images; (bottom row) registered images.

[0..239]. The model outputs single value that corresponds to the expectation of
the bone age. Training protocol is the same as for the regression model.

According to the features of skeletal development stages described in [3,4,16],
we crop three specific regions from registered radiographs, as shown in Fig. 2:
(1) whole hand; (2) carpal bones; and (3) metacarpals and proximal phalanges.
We split labeled radiographs into training (11,600 images) and validation (1,000
images) sets, preserving sex ratio. We create several models with a breakdown
by: (1) prediction type; (2) sex (males, females, both); and (3) a region (A, B, C).
Given these conditions, we produce 18 basic models (2 × 3 × 3). Furthermore,
we construct several meta-models by averaging different regional models.

3 Results

As shown in Fig. 4, original images varied in quality and often had artifacts. In
order to assess the effect of preprocessing on prediction performance, we evaluate
the regression network on original images, segmented and normalized images, and
segmented, normalized and registered images. Corresponding MAEs of 31.56,
8.76, and 8.08 months accordingly demonstrate performance improvement due
to the preprocessing. All further results were obtained on the preprocessed data.

The performance of all models evaluated on validation data set is shown in
Fig. 5. The region of metacarpals and proximal phalanges (region C in Fig. 2)
shows higher accuracy using both regression and classification models. Clas-
sification performs better than regression, while the linear ensemble of three
regional models outperforms each separate model. The regional pattern MAE(B)
> MAE(C) > MAE(A) > MAE (ensemble) is observed for different model types
and patient sexes with few exceptions.
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Fig. 5. Mean absolute errors on the validation data set for regression and classification
models for different bones and sexes. Colors correspond to different regions. Table:
regions are shown in rows, models in columns. There is a total of 15 individual models
and 9 ensembles.

Fig. 6. Mean absolute error in months as a function of skeletal development stages
for different sexes. Different colors on the plot correspond to different regions of a
radiograph. For males and females the development stages are labelled at the bottom
of each plot.
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Following [3,8], we also consider four major skeletal development stages: pre-
puberty, early-and-mid puberty, late puberty, and post-puberty, see Fig. 6. Infant
and toddler categories were excluded due to scarcity of data. Unlike Lee et al.
[8], we do not observe better results when training on carpal bones compared
to other areas. With two exceptions (pre-puberty for males and post-puberty
for females), metacarpals and proximal phalanges provide better accuracy than
carpals do. Gilsanz and Ratib [3] suggest carpal bones as the best predictor of
skeletal maturity only in infants and toddlers. Thus, we find no sound evidence
to support the suggestion that carpal bones can be considered the best predictor
in pre-puberty. For both sexes the accuracy peaks at late-puberty, the most
frequent age in the dataset, showing the influence of the dataset size on the
performance.

In the RSNA2017 Pediatric Bone Age Assessement challenge, our solution
has been evaluated using the test set consisting of 200 radiographs. Based on
organizers’ report our method achieves MAE of 4.97 months, higher than local
validation, possibly due to the better image or label quality in the test set.

4 Conclusion

In this study, we suggest a deep learning-based approach to the problem of
the automatic BAA. Despite the challenging quality of the radiographs, our
approach demonstrates robust results and surpasses existing automated models
in performance. By using different hand zones, we find that BAA can be done just
for carpal bones or for metacarpals and proximal phalanges with around 10–15%
increase in error compared to the whole hand. Our approach can be improved
by either using more powerful deep networks or increasing the training set size.
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Abstract. Recent studies in the field of deep learning suggest that
motion estimation can be treated as a learnable problem. In this paper we
propose a pipeline for functional imaging in echocardiography consisting
of four central components, (i) classification of cardiac view, (ii) semantic
partitioning of the left ventricle (LV) myocardium, (iii) regional motion
estimates and (iv) fusion of measurements. A U-Net type of convolutional
neural network (CNN) was developed to classify muscle tissue, and par-
titioned into a semantic measurement kernel based on LV length and
ventricular orientation. Dense tissue motion was predicted using stacked
U-Net architectures with image warping of intermediate flow, designed
to tackle variable displacements. Training was performed on a mixture
of real and synthetic data. The resulting segmentation and motion esti-
mates was fused in a Kalman filter and used as basis for measuring global
longitudinal strain. For reference, 2D ultrasound images from 21 subjects
were acquired using a GE Vivid system. Data was analyzed by two spe-
cialists using a semi-automatic tool for longitudinal function estimates
in a commercial system, and further compared to output of the proposed
method. Qualitative assessment showed comparable deformation trends
as the clinical analysis software. The average deviation for the global
longitudinal strain was (−0.6± 1.6)% for apical four-chamber view. The
system was implemented with Tensorflow, and working in an end-to-end
fashion without any ad-hoc tuning. Using a modern graphics processing
unit, the average inference time is estimated to (115 ± 3) ms per frame.

Keywords: Deep learning · Echocardiography · Functional imaging

1 Introduction

Recent years have shown that quantitative assessment of cardiac function has
become indispensable in echocardiography. Evaluation of the hearts contractile
apparatus has traditionally been limited to geometric measures such as ejection
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fraction (EF) and visual estimation (eyeballing) of myocardial morphophysiol-
ogy [3]. Despite being a central part of standard protocol examinations at the
outpatient clinic, the methods tend to have poor inter- and intravariability. With
tissue doppler imaging (TDI) and speckle tracking(ST), the quantification tools
have moved beyond these measures, and enabled new methods for assessing
the myocardial deformation pattern [12]. Myocardial deformation imaging, e.g.
strain and strain rate, derived from TDI and ST, have high sensitivity, and can
allow an earlier detection of cardiac dysfunction. However, these methods also
have several limitations. For instance, TDI is dependent on insonation angle, i.e.
measurements are along the ultrasound beam. A poor parallel alignment with
the myocardium can thus influence the results. Speckle tracking is less angle
dependant (typically dependant on the lateral resolution), but has suffered from
poor temporal resolution and ad-hoc setups. Recent work in the field of deep
learning (DL) suggest that motion estimation can be treated as a learnable prob-
lem [7]. Herein, we investigate this approach in combination with cardiac view
classification and segmentation to achieve fully automatic functional imaging.

1.1 Relevant Work and Perspective

Automatic view classification and segmentation of relevant cardiac structures
in echocardiography has been a topic of great interest and research [2,9]. For
segmentation, work has mainly been conducted on 3D echocardiography, but
2D approaches are also proposed [13]. To the authors’ knowledge, no published
study have utilized motion estimation from deep learning in echocardiography.
These methods claim to be more robust in terms of noise and small displace-
ments [7] than traditional optical flow methods, thus appealing for ultrasound
and myocardial motion estimation. Combining the components could potentially
allow fast and fully automated pipelines for calculating clinically relevant param-
eters, with feasibility of on-site analysis. In this study, the goal is to address this,
and measure the global longitudinal strain (GLS) from the four-chamber view
in an end-to-end fashion.

Variability of global longitudinal strain has been discussed in several papers.
Recently, a head-to-head comparison between speckle tracking based GLS mea-
surements of nine commercial vendors [5] was conducted. Results show that the
reproducibility compared to other clinical measurements such as EF is good, but
the intervendor variation is significant. The same expert obtaining GLS in the
apical four-chamber view of 63 patients on nine different systems, gave average
results in the range of −17.9% to −21.4%. The commercial system used as ref-
erence in this study had an offset of −1.7%, i.e. overestimating, from the mean
measurement. The inter- and intraobserver relative mean error was 7.8% and
8.3% respectively.

2 Method

Our proposed pipeline is comprised of four steps, (i) classification of cardiac view,
(ii) segmentation of the left ventricle (LV) myocardium, (iii) regional motion esti-
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mates and (iv) fusion of measurements. An illustration of the system after view
classification is illustrated in Fig. 1. Step (i)–(iii) utilizes convolutional neural
networks (CNNs), while the last step uses a traditional Kalman filter method.

Fig. 1. Visualization of the measurement pipeline. US images are forwarded through
a segmentation network, and the resulting masks are used to extract the centerline
and relevant parts of the image. The masked US data is further processed through the
motion estimation network yielding a map of velocities. The centerline position and
velocities of the myocard are used in the measurement update step of a Kalman filter.
The updated results are used as a basis for strain measurements.

2.1 Cardiac View Classification

The view classification is the first essential step in the automatic pipeline, and is
used to quality assure and sort incoming data. We employ a feed-forward CNN
composed of inception blocks and a dense connectivity pattern [6,14]. Initially,
input is propagated through two component blocks with (3 × 3) convolution
kernels followed by max pooling. The first and second convolution layer has
16 and 32 filters respectively. We use pooling with size (2 × 2) and equal
strides. After the second pooling layer, data is processed through an inception
module with three parallel routes. Each route consist of a bottleneck, two of
which were followed by blocks with larger convolution kernels, i.e. (3 × 3) and
(5 × 5) respectively. The input of the inception module is concatenated with the
output and processed into a transition module with bottleneck and max pooling.
This step is repeated three times, and we double the amount of filters before
every new pooling layer. The dense connectivity pattern alleviates the vanishing
gradient problem, and can enhance feature propagation and reusability. After
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the third transition, the data is processed through two inception blocks with
constant amount of filters and no pooling. The route with (5 × 5) convolution
kernels is omitted in these modules, and dropout regularization was used between
them. The final classification block consists of a compressing convolution layer
with (1 × 1) kernels and number of filters equal to the class count. This is
activated with another PReLU, before features are spatially averaged and fed
into a softmax activation.

Training is performed from scratch with Adam optimizer and categorical
cross entropy loss, with input size of (128×128) greyscale. A total of eight classes
were used for training, the apical four chamber, two chamber and long-axis, the
parasternal long- and short-axis, subcostal four-chamber and vena cava inferior,
as well as a class for unknown data. The final network classifies the different
cardiac views, and if applicable, i.e. high confidence of apical four-chamber, the
image is processed into the remaining processing chain.

2.2 Semantic Partitioning of the Myocardium

The second step is segmentation of the left ventricle myocardium. A standard
U-Net type of CNN [11] is utilized. The architecture consist of a downsampling,
and an upsampling part of five levels with concatenating cross-over connection
between equally sized feature maps. Each level has two convolution layers with
the same amount of filters ranging from 32 to 128 from top to bottom respec-
tively. All filters have a size of (3 × 3). Max pooling with size (2 × 2) and equal
strides was used for downsampling and nearest neighbour for upsampling. Train-
ing was performed with Adam optimizer and Dice loss, and the size of the input
image was set to (256 × 256) greyscale. The output of the network is a segmen-
tation mask Ω.

The segmentation is used a basis for two different tasks, masking the input
of the motion estimation network Im and centerline extraction. We mask the US
image I to remove redundant input signal. The contour of the segmentation Ω
was used to define the endo- and epicardial borders, and further the centerline
C = {(x, y)1, ..., (x, y)N} was sampled between with N = 120 equally spaced
points along the myocard. The latter is passed to the Kalman filter.

2.3 Motion Estimation Using Deep Learning

The motion estimation is based on the work done by Ilg et al. [7], and the net-
works referred to as FlowNets. The design involves stacking of multiple U-Net
architectures with image warping of intermediate flow and propagation of bright-
ness error. Two parallel routes are created to tackle large and small displacements
separately. The prior is solved by stacking three U-Net architectures, the first
which includes explicit correlation of feature maps, while the two succeeding are
standard U-Net architectures without custom layers. For small displacement,
only one U-Net is used, but compared to the networks for large displacements,
the kernel size and stride of the first layer is reduced. At the end, the two routes
are fused together with a simple CNN. The networks are trained separately, in
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a schedule consisting of different synthetic datasets with a wide range of motion
vector representations. The small displacement network is fine-tuned on a dataset
modified for subpixel motion. Adam optimizer and endpoint error loss is used
while training for all the networks. The input size of the network was kept the
same as the original implementation, i.e. (512 × 384).

The output prediction of the network is dense tissue motion vectors in the
masked US area. The centerline C of the current segmentation is used to extract
the corresponding set of motion vectors M = {(vx, vy)1, ..., (vx, vy)N}.

2.4 Fusion of Measurements

Fusion of measurements was performed employing an ordinary Kalman fil-
ter with a constant acceleration model [8] with measurement input zk =
[x, y, vx, vy]Tk for every point-velocity component k ∈ {C,M}. Essentially, this
serves as a simple method for incorporating the temporal domain, which is nat-
ural in the context of echocardiography. It adds temporal smoothing, reducing
potential pierce noise detectable in image-to-image measurements. The updated
centerline C′ ⊆ Ω is used to calculate the longitudinal ventricular length ι, i.e.
the arc length, for each timestep t. Further, this is used to estimate the global
longitudinal strain ε(t) = (ι(t) − ι0)/ι0 along the center of the myocard.

3 Datasets for Training and Validation

Anonymous echocardiography data for training the view classification and seg-
mentation models was acquired from various patient studies with Research
Ethics Board (REB) approval. The echocardiography data used are obtained
at various outpatient clinics with a GE Vivid E9/95 ultrasound system (GE
Vingmed Ultrasound, Horten, Norway), and consist of data from over 250
patients. The health status of subjects is unknown, but representative for a
standard outpatient clinic. The data includes manual expert annotation of views,
and the epi- and endocard borders of the left ventricle. The view classification
and segmentation networks are trained separately on this data, with a signif-
icant fraction left out for testing. The motion estimation network was trained
on three synthetic datasets, namely FlyingChairs [4], FlyingThings3D [10] and
ChairsSDHom [7]. Disregarding the fundamentals of motion, the datasets have
no resemblance to echocardiography. However, they can be modified to have
representations covering both sub- and superpixel motion, which is necessary to
reproduce motion from the whole cardiac cycle.

For validation of GLS, 21 subjects called for evaluation of cardiac disease in
two clinical studies were included. Both are REB approved, and informed consent
was given. Two specialists in cardiology performed standard strain measurements
using a semi-automatic method implemented in GE EchoPAC1. The method
uses speckle tracking to estimate myocardial deformation, but the methodology
is unknown. The results were used as a reference for evaluating the implemented
pipeline.
1

http://www3.gehealthcare.com/en/products/categories/ultrasound/vivid/echopac.

http://www3.gehealthcare.com/en/products/categories/ultrasound/vivid/echopac
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4 Results

GLS was obtained successfully in all patients. The results for apical four-chamber
views are displayed in Fig. 2, together with the GLS curves of the average and
worst case subjects. The average deviation of the systolic GLS between the two
methods was (−0.6±1.6)%. The average strain on all subjects was (−17.9±2.3)%
and (−17.3 ± 2.5)%, for the reference and proposed method respectively.

Fig. 2. Bland-Altman plot of global longitudinal strain from all subjects. The estimated
GLS traces of the average and worst case, together with the corresponding reference,
are displayed to the right.

The view classification achieved an image-wise F1 score of 97.9% on four-chamber
data of 260 patients, and the segmentation a dice score of (0.87 ± 0.03) on 50
patients, all unknown and independent from the training set. The system was
implemented as a Tensorflow dataflow graph [1], enabling easy deployment and
optimized inference. Using a modern laptop with a Nvidia GTX 1070 GPU, the
average inference time was estimated to (115 ± 1) ms per frame, where flow
prediction accounts for approximately 70% of the runtime.

5 Discussion

Compared to reference, the measurements from the proposed pipeline were
slightly underestimated. The reference method is not a gold standard for GLS
and might not necessarily yield correct results for all cases. Speckle tracking can
fail where noise hampers the echogenicity. We could identify poor tracking in the
apical area due to noise for some subjects, and this would in turn result in larger
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strain. Further, the vendor comparison study [5] shows that the commercial sys-
tem used in this study on average overestimates the mean of all vendors by 1.7%.
This in mind, we note that the results from the current implementations are in
the expected range. For individual cases, the deformation have overlapping and
synchronized trends, as is prevalent from Fig. 2.

The proposed pipeline involves several sources of error, especially the segmen-
tation and motion networks being the fundamental building blocks of the mea-
surements. Using the segmentation mask to remove redundant signal in the US
image seems feasible and useful for removing some noise in the motion network.
However, it is not essential when measuring the components of the centerline,
as they are far from the borders of the myocard, where the effect is noticable.

Future work will include the addition of multiple views, e.g. apical two- and
long-axis, allowing average GLS. This is considered a more robust metric, less
prone to regional noise. Also, fusion of models are currently naive, and we expect
results to improve inducing models with more relevance to cardiac motion. The
same holds for the motion estimation, i.e. the network could benefit from train-
ing on more relevant data. Further, we wish to do this for regional strain mea-
surements. For clinical validation, we need to systematically include the subject
condition and a larger test material.

6 Conclusion

In this paper we present a novel pipeline for functional assessment of cardiac
function using deep learning. We show that motion estimation with convolutional
neural networks is generic, and applicable in echocardiography, despite training
on synthetic data. Together with cardiac view classification and myocard seg-
mentation, this is incorporated in an automatic pipeline for calculating global
longitudinal strain. Results coincide well with relevant work. The methods and
validation are still at a preliminary stage in terms of clinical use, and some
limitations and future work are briefly mentioned.
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5. Farsalinos, K.E., Daraban, A.M., Ünlü, S., Thomas, J.D., Badano, L.P., Voigt,
J.U.: Head-to-head comparison of global longitudinal strain measurements among
nine different vendors: the EACVI/ASE inter-vendor comparison study. J. Am.
Soc. Echocardiogr. 28(10), 1171–1181 (2015)

6. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2017)

7. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet
2.0: evolution of optical flow estimation with deep networks. In: IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017. http://lmb.
informatik.uni-freiburg.de//Publications/2017/IMKDB17

8. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic
Eng. 82(1), 35–45 (1960)

9. Madani, A., Arnaout, R., Mofrad, M., Arnaout, R.: Fast and accurate view classi-
fication of echocardiograms using deep learning. npj Digit. Med. 1(1), 6 (2018)

10. Mayer, N., et al.: A large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4040–4048 (2016)

11. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

12. Smiseth, O.A., Torp, H., Opdahl, A., Haugaa, K.H., Urheim, S.: Myocardial strain
imaging: how useful is it in clinical decision making? Eur. Heart J. 37(15), 1196–
1207 (2016). https://doi.org/10.1093/eurheartj/ehv529

13. Smistad, E., Østvik, A., Haugen, B.O., Lovstakken, L.: 2D left ventricle segmen-
tation using deep learning. In: 2017 IEEE International Ultrasonics Symposium
(IUS), pp. 1–4. IEEE (2017)

14. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

http://lmb.informatik.uni-freiburg.de//Publications/2017/IMKDB17
http://lmb.informatik.uni-freiburg.de//Publications/2017/IMKDB17
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1093/eurheartj/ehv529


Reinforced Auto-Zoom Net: Towards
Accurate and Fast Breast Cancer

Segmentation in Whole-Slide Images

Nanqing Dong1,2(B), Michael Kampffmeyer3, Xiaodan Liang4, Zeya Wang1,
Wei Dai1, and Eric Xing1

1 Petuum, Inc., Pittsburgh, USA
nd367@cornell.edu

2 Cornell University, Ithaca, USA
3 UiT The Arctic University of Norway, Tromsø, Norway

4 Carnegie Mellon University, Pittsburgh, USA

Abstract. Convolutional neural networks have led to significant break-
throughs in the domain of medical image analysis. However, the task of
breast cancer segmentation in whole-slide images (WSIs) is still under-
explored. WSIs are large histopathological images with extremely high
resolution. Constrained by the hardware and field of view, using high-
magnification patches can slow down the inference process and using
low-magnification patches can cause the loss of information. In this
paper, we aim to achieve two seemingly conflicting goals for breast can-
cer segmentation: accurate and fast prediction. We propose a simple yet
efficient framework Reinforced Auto-Zoom Net (RAZN) to tackle this
task. Motivated by the zoom-in operation of a pathologist using a digital
microscope, RAZN learns a policy network to decide whether zooming is
required in a given region of interest. Because the zoom-in action is selec-
tive, RAZN is robust to unbalanced and noisy ground truth labels and
can efficiently reduce overfitting. We evaluate our method on a public
breast cancer dataset. RAZN outperforms both single-scale and multi-
scale baseline approaches, achieving better accuracy at low inference cost.

Keywords: Breast cancer · Deep reinforcement learning
Medical image segmentation · Whole-slide images

1 Introduction

Breast cancer is one of the most common causes of mortality in the female popu-
lation in the world [2]. It accounts for around 25% of all the cancers diagnosed in
women [3]. For traditional diagnostic tools like mammography, even experienced
radiologists can miss 10 − 30% of breast cancers during routine screenings [7].
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With the advent of digital imaging, whole-slide imaging has gained attention
from the clinicians and pathologists because of its reliability. Whole-slide images
(WSIs) have been permitted for diagnostic use in the USA [1]. They are the high-
resolution scans of conventional glass slides with Hematoxylin and Eosin (H&E)
stained tissue. There are four types of tissue in breast biopsy: normal, benign,
in situ carcinoma, and invasive carcinoma. Figure 1 shows examples of the four
types of breast tissue. In clinical testing, the pathologists diagnose breast can-
cer based on (1) the percentage of tubule formation, (2) the degree of nuclear
pleomorphism, and (3) the mitotic cell count [8].

Fig. 1. Examples of different types of tissue. The microscopy images (patches of WSIs
at 200× magnification) are labeled according to the predominant tissue type in each
image.

Convolutional Neural Networks (CNNs) can be trained in an end-to-end man-
ner to distinguish the different types of cancer, by extracting high-level informa-
tion from images through stacking convolutional layers. Breast cancer classifica-
tion has been fundamentally improved by the development of CNN models [16].
However, breast cancer segmentation in WSIs is still underexplored. WSIs are
RGB images with high resolution (e.g. 80000×60000). Constrained by the mem-
ory, WSIs cannot be directly fed into the network. One solution is to crop the
WSIs to small patches for patch-wise training [4]. Given a fixed input size, how-
ever, there is a trade-off between accuracy and the inference speed. One can
efficiently reduce the inference cost by cropping the WSIs to larger patches and
rescaling the patches to a smaller input size, but this results in a loss of detail and
sacrifices accuracy. In WSIs, the suspicious cancer areas our regions of interest
(ROIs), are sparse, since most regions are normal tissue or the glass slide. The
four classes are therefore highly imbalanced. Further, the pixel-wise annotation
of breast cancer segmentation requires domain knowledge and extensive human
labor and the ground truth labels are often noisy at the pixel-level. Training on
patches with a small field of view can therefore easily lead to overfitting.

In this paper, we propose a semantic segmentation framework, Reinforced
Auto-Zoom Net (RAZN). When a pathologist examines the WSIs with a digital
microscope, the suspicious areas are zoomed in for details and the non-suspicious
areas are browsed quickly (See Fig. 2 for an intuition.). RAZN is motivated
by this attentive zoom-in mechanism. We learn a policy network to decide the
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zoom-in action through the policy gradient method [14]. By skipping the non-
suspicious areas (normal tissue), noisy information (glass background) can be
ignored and the WSIs can be processed more quickly. By zooming in the sus-
picious areas (abnormal tissue), the data imbalance is alleviated locally (in the
zoomed-in regions) and more local information is considered. Combining these
two can efficiently reduce overfitting for the normal tissue, which is caused by
the imbalanced data, and lead to improved accuracy. However, since the zoom-in
action is selective, the inference can at the same time be fast.

The previous studies on zoom-in mechanism focus on utilizing multi-scale
training to improve prediction performance. The Hierarchical Auto-Zoom Net
HAZN [19] uses sub-networks to detect human and object parts at different scales
hierarchically and merges the prediction at different scales, which can be consid-
ered as a kind of ensemble learning. Zoom-in-Net [17] zooms in suspicious areas
generated by attention maps to classify diabetic retinopathy. In both HAZN and
Zoom-in-Net, the zoom-in actions are deterministic. So in the training phase, the
patches will be upsampled and trained even if it may not decrease the loss. In
RAZN, the zoom-in actions are stochastic, and a policy is learned to decide if
the zoom-in action can improve the performance.

Fig. 2. Zoom-in process. The regions bounded by the red boxes are zoomed in sequen-
tially with zoom-in rate 2. All zoomed-in regions are resized to the same resolution for
visualization. The white regions in (a), (b) and (c) are the background glass slide.

This paper makes the following contributions: (1) we propose an innovative
framework for semantic segmentation for images with high resolution by leverag-
ing both accuracy and speed; (2) we are the first to apply reinforcement learning
to breast cancer segmentation; (3) we compare our framework empirically with
multi-scale techniques used in the domain of computer vision and discuss the
influence of multi-scale models for breast cancer segmentation.

2 Reinforced Auto-Zoom Net

In clinical practice, it is impossible for a clinician to go through each region
of a WSI at the original resolution, due to the huge image size. The clinician
views regions with simple patterns or high confidence quickly at coarse resolution
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and zooms in for the suspicious or uncertain regions to study the cells at high
resolution. The proposed RANZ simulates the examining process of a clinician
diagnosing breast cancer on a WSI. Another motivation of RAZN is that the
characteristics of the cancer cells have different representations at different field
of view. For semantic segmentation tasks on common objects, the objects in
the same category share discriminative features and attributes. For example,
we can differentiate a cat from a dog based on the head, without viewing the
whole body. However, in cancer segmentation, the basic unit is the cell, which
consists of nucleus and cytoplasm. The difference between the cells is not obvious.
Instead of checking only a single cell, the diagnosis is based on the features of
a group of cells, such as the density, the clustering and the interaction with the
environment. RANZ is designed to learn this high-level information.

RAZN consists of two types of sub-networks, policy networks {fθ} and seg-
mentation networks {gφ}. Assume the zoom-in actions can be performed at most
m times and the zoom-in rate is r. There is one base segmentation network fθ0

at the coarsest resolution. At the ith zoom-in level, there is one policy network
gφi

and one segmentation network, fθi
. In the inference time, with fixed field of

view and magnification level, we have a cropped patch x0 with shape [H,W, 3],
like Fig. 2 (a). Then gφ1 will take x0 as an input and predict the action, zoom-in
or break. If the predicted action is break, fθ0(x0) will output the segmentation
results and the diagnosis for x0 is finished. If the predicted action is zoom-in, a
high-magnification patch x̄0 with corresponding zoom-in rate will be retrieved
from the original image. x̄0, with shape [rH, rW, 3], will be cropped into x1,
which is r2 patches of shape [H,W, 3]. Then each patch of x1 will be treated as
x0 for the next level of zoom-in action. Figure 2 (b) is a central crop of x1. The
process is repeated recursively until a pre-defined maximum magnification level
is reached. In this work, we propose this novel idea and focus on the situation of
m = 1. m > 1 will be discussed in future work. An overview of the architecture
is illustrated in Fig. 3.

The segmentation networks are Fully Convolutional Networks (FCNs) [12]
and share the same architecture. However, unlike parameter sharing in the com-
mon multi-scale training in semantic segmentation [5], each network is parame-
terized by independent fθ, where fθi

: RH×W×3 → R
H×W×C and C is the num-

ber of classes. The reason for choosing independent networks for each zoom-in
level is that CNNs are not scale-invariant [9]. Each FCN can thus learn high-level
information at a specific magnification level. Given input image x and segmen-
tation annotation y, the training objective for each FCN is to minimize

Jθi
(x, y) = − 1

HW

∑

j

∑

c

yj,c log fθi
(x)j,c, (1)

where j ranges over all the H × W spatial positions and c ∈ {0, ..., 3} represents
the semantic classes (cancer type).

At m = 1, the framework is a single-step Markov Decision Process (MDP)
and the problem can be formulated by the REINFORCE rule [18]. The policy
network projects an image to a single scalar, gφ1 : RH×W×3 → R. Given the
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Fig. 3. Illustration of the proposed framework when m = 1 and r = 2. In the infer-
ence phase, given a cropped image x0, the policy network outputs the action, zoom-in
(red arrows) or break (blue arrows). In the training phase, the policy network will
be optimized to maximize the reward (purple arrows), which is determined by the
segmentation prediction.

state x0, the policy network defines a policy πφ1(x0). The policy samples an
action a ∈ {0, 1}, which represents break and zoom-in, respectively. We have

p = σ(gφ1(x0)), (2)

πφ1(x0) = pa(1 − p)1−a, (3)

where σ(·) is the sigmoid function and πφ1(x0) is essentially a Bernoulli distri-
bution. The motivation of RAZN is to improve the segmentation performance
and it is therefore natural to define the reward such that it minimizes the seg-
mentation loss. Based on Eq. 1, we have Jθ0(x0, y0), Jθ1(x1, y1), where x1 is the
transformed x0 after zoom-in and cropping operations. It is practical in rein-
forcement learning training to utilize the advantage function to reduce variance
[13] and we therefore define the reward as

R(a) = a
Jθ1(x1, y1) − Jθ0(x0, y0)

Jθ0(x0, y0)
. (4)

So when a = 1, the reward is positive if Jθ1(x1, y1) > Jθ0(x0, y0), and the
reward is negative if Jθ1(x1, y1) < Jθ0(x0, y0). The denominator in Eq. 4 func-
tions as a normalizer to prevent reward explosion. To prevent p from saturating
at the beginning, we adopt the bounded Bernoulli distribution

p̃ = αp + (1 − α)(1 − p). (5)

We have p̃ ∈ [1 − α, α]. The training objective is to maximize the expected
reward or to minimize the negative expected reward

Jφ1(x0) = −Ea∼πφ1 (x0)[R(a)]. (6)
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Algorithm 1 Training of RAZN when m = 1
Input: x0

1: Get Jθ0(x0, y0) and Jθ1(x1, y1)
2: Sample action a through πφ1(x0)
3: Get R(a)(x0)
4: Update φ1 by minimizing Jφ1(x0)
5: if a = 1 then
6: Update θ1 by minimizing Jθ1(x1, y1)
7: else
8: Update θ0 by minimizing Jθ0(x0, y0)
9: end if

The optimization of the policy network is implemented through policy gra-
dient methods [14,15,18], where the expected gradients are

∂

∂φ1
Jφ1(x0) = −Ea∼πφ1 (x0)[R(a)

∂

∂φ1
log(ap̃ + (1 − a)(1 − p̃))] (7)

We adopt an alternating training strategy to update both networks. The training
procedure of RAZN is illustrated in Algorithm 1.

3 Experiments

Dataset. The dataset used in this study is provided by Grand Challenge on
Breast Cancer Histology Images 1. The dataset contains 10 high-resolution WSIs
with various image size. WSIs are scanned with Leica SCN400 at ×40 magnifi-
cation. The annotation was performed by two medical experts. As annotation of
WSIs requires a large amount of human labor and medical domain knowledge,
only sparse region-level labels are provided and annotations contain pixel-level
errors. In this dataset, the white background (glass slide) is labeled as normal
by the annotators. The dataset is unbalanced for the four cancer types.

Implementation. Experiments are conducted on a single NVIDIA GTX Titan
X GPU. In this study, m = 1, r = 2 and α = 0.8. The backbone of fθi

is
ResNet18 [10], with no downsampling performed in conv3 1 and conv4 1. gφ1

is also based on the ResNet18 architecture. However, each block (consisting of
2 residual blocks [10]) is replaced by a 3 × 3 convolution followed by batch
normalization and ReLU non-linearity. The computational cost for the policy
network is 7.1% of the segmentation networks. The input size to the segmentation
networks and the policy network is fixed to 256×256. We use the Adam optimizer
[11] for both the policy network and segmentation networks and use a step-
wise learning rate policy with decay rate 0.1 every 50000 iterations. The initial
learning rate is 0.01.

Multi-scale. Given a 256 × 256 patch, we consider two resolutions in order to
simulate the zoom-in process. A coarse resolution (Scale 1), where the patch is
1 https://iciar2018-challenge.grand-challenge.org/dataset.

https://iciar2018-challenge.grand-challenge.org/dataset
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downsampled to 64×64 and a fine resolution patch (Scale 2), where the patch is
downsampled to 128×128. The patches are then resized back to 256×256 using
bilinear interpolation. To evaluate the efficiency of the proposed framework, we
compare our model with two multi-scale models. The first multi-scale model
is the segmentation network fθ with multi-scale training [5], denoted as MS.
We only consider two scales in this experiment (Scale 1 and Scale 2). Similarly,
another multi-scale model is the multi-scale fusion with attention [6], which is
denoted as Attention. The training details of all models are the same. All models
are trained with 200000 batches.

Table 1. Comparison of the performance. Non-carcinoma includes normal and beign.
Carcinoma includes in situ carcinoma and invasive carcinoma.

Non-carcinoma Carcinoma mIOU Weighted IOU Relative
inference time

Scale 1 0.45 0.32 0.38 0.07 1.00

Scale 2 0.46 0.31 0.39 0.07 4.01

MS [5] 0.32 0.04 0.18 0.01 5.06

Attention [6] 0.43 0.29 0.36 0.06 5.16

RAZN 0.49 0.49 0.49 0.11 2.71 ± 0.57

Performance. We compare two key indicators of the performance, which are
the segmentation performance and the inference speed. We use intersection over
union (IOU) as the metric for segmentation performance. We report mean IOU,
which is just the average IOU among four classes. Due to the imbalanced data,
we also report weighted IOU, where the weight is proportional to the inverse
of the frequency of the labels of each class. Further, we report relative infer-
ence time for the proposed RAZN and the baseline methods compared to the
inference time for the model that only considers Scale 1. We report the average
relative inference time over 100 patches. Lower values of relative inference time
represent faster inference speed. The results are presented in Table 1. Note, we
report the mean and the standard deviation for RAZN, as the inference time
will vary depending on whether zooming is required for a given patch or not.
It can be shown that RAZN actually performs better than the single scale and
the multi-scale baselines. MS’s performance is the worst of our benchmarks. MS
exaggerates the imbalance problem by augmenting the data, which can confuse
the network. We also hypothesize that the cell size is not the critical factor that
influences the segmentation of cancer and that MS, therefore, aims to model
unnecessary information on this task. Similarly, attention models memorize the
scale of the object by fusing the results from different scales. However, when the
object is not well-defined at certain scales, like in our task the cancer (group of
dense cells), the network may learn to fit noise. Our results illustrate that RAZN
instead is more robust when data is noisy and imbalanced, providing an overall
accuracy improvement at low inference time.
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4 Discussion and Conclusions

We proposed RAZN, a novel deep learning framework for breast cancer segmen-
tation in WSI, that uses reinforcement learning to selectively zoom in on regions
of interest. The results show that the proposed model can achieve improved
performance, while at the same time reduce inference speed compared to pre-
vious multi-scale approaches. We also discuss the use of multi-scale approaches
for breast cancer segmentation. We conclude that cancer cells are different from
general objects due to their relative small and fixed size. Multi-scale approaches
may not work for a noisy and imbalanced data. In future work, we aim to extend
the model to study the multiple zoom-in actions situation (m > 1) and will inves-
tigate the potential of more complex segmentation backbone models to improve
overall performance.
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Abstract. Convolutional neural networks (CNNs) have been success-
fully employed in recent years for the detection of radiological abnor-
malities in medical images such as plain x-rays. To date, most studies
use CNNs on individual examinations in isolation and discard previ-
ously available clinical information. In this study we set out to explore
whether Long-Short-Term-Memory networks (LSTMs) can be used to
improve classification performance when modelling the entire sequence
of radiographs that may be available for a given patient, including their
reports. A limitation of traditional LSTMs, though, is that they implic-
itly assume equally-spaced observations, whereas the radiological exams
are event-based, and therefore irregularly sampled. Using both a simu-
lated dataset and a large-scale chest x-ray dataset, we demonstrate that
a simple modification of the LSTM architecture, which explicitly takes
into account the time lag between consecutive observations, can boost
classification performance. Our empirical results demonstrate improved
detection of commonly reported abnormalities on chest x-rays such as
cardiomegaly, consolidation, pleural effusion and hiatus hernia.

Keywords: Deep learning · CNN · LSTM · Time-modulated LSTM
Medical imaging · X-rays

1 Introduction

Deep learning approaches have exhibited impressive performance in medical
imaging applications in recent years [2,7,19]. For instance, convolutional neural
networks (CNNs) have had some success in detecting and classifying radiologi-
cal abnormalities on chest x-rays, a particularly complex task [2,12,15,21]. The
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majority of these studies have been designed for cross-sectional analyses, viewing
a single image in isolation, and discard the fact that a patient may have had
previous medical imaging examinations for which the radiological reports are
also available. It is standard practice for radiologists to take clinical history into
account to add context to their report by using comparison to previous imag-
ing. Some abnormalities will be long-standing, but others may change over time,
with varying clinical relevance. Often in elderly patients or those with a history
of smoking, the baseline x-ray appearances, i.e. when that patient is “well”, can
still be abnormal. If individual films are viewed in isolation, it can be challenging
to tell with certainty if there are acute findings. If previous imaging is available,
it is possible to determine if there has been interval change, for example, acute
consolidation (indicating infection). As with humans, it is expected that a neu-
ral network can learn from previous patient-specific information, in this case all
prior chest radiographs for that patient and their corresponding reports.

The motivation for this work is to assess the potential of recurrent neural
networks (RNNs) for the real-time detection of radiological abnormalities when
modelling the entire series of past exams that are available for any given patient.
In particular, we set out to explore the performance of Long Short-Term Mem-
ory (LSTM) networks [8,10], which have lately become the method of choice in
sequential modelling, especially when used in combination with CNNs for visual
feature extraction [6,20]. The technical challenge faced in our context is that
sequential medical exams are event-based observations. As such, they are col-
lected at times of clinical need, i.e. they are not equally spaced, and the number
of historical exams available for each patient can vary greatly. Figure 1 shows
four longitudinal chest x-rays acquired on the same patient over a certain period
of time. This figure also illustrates other challenges faced when modelling this
type of longitudinal data: the images may be aquired using different x-ray devices
(resulting in different image quality, i.e. resolution, brightness, etc.), there may
be differences in patient positioning (i.e. supine, erect, rotated, degree of inspira-
tion), differences in projection (postero-anterior and antero-posterior), and not
all images are equally centred (i.e. there can be rotations, translations, etc.).

As LSTMs are typically applied on regularly-sampled data [9,16,17], they
are ill-suited to work with irregular time gaps between consecutive observations,
as previously noted [3,13]. This is a particularly important limitation in our
context as certain radiological abnormalities tend to be observed for longer peri-
ods of time whereas others are short-lived. In this article we demonstrate that
an architecture combining a CNN with a simple modification of the standard
LSTM is able to handle irregularly-sampled data and learn the temporal dynam-
ics of certain visual features resulting in improved pattern detection. Using both
simulated and real x-ray datasets, we demonstrate that this capability yields
improved image classification performance over an LSTM baseline.

2 Motivating Dataset and Problem Formulation

The dataset used in this study was collected from the historical archives of
the PACS (Picture Archiving and Communication System) at Guy’s and St.
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Fig. 1. Example of longitudinal x-rays for a given patient.

Thomas’ NHS Foundation Trust, in London, during the period from January
2005 to March 2016. The dataset has been previously used for the detection of
lung nodules [14] and for multi-label metric learning [1]. It consists of 745 480
chest radiographs representative of an adult population and acquired using 40
different x-ray systems. Each associated radiological report was parsed using a
natural language processing system for the automated extraction of radiological
labels [5,14]. For this study, we extracted a subset of 80 737 patients having a
history of at least two exams, which resulted in 337 575 images (with 232 610 used
for training and 104 965 for testing). Each image was scaled to a standard format
of 299×299 pixels. The resulting dataset has an average of 4.18 examinations per
patient with an average of 180.29 days between consecutive exams per patient.

In what follows, each individual sequence of longitudinal chest x-rays along
with its associated vector of radiological labels is denoted as {Xt

i , l
t
i}, where

i = 1, . . . , N is the patient index and t = 1, . . . , Ti is the time index. Typical
chest x-ray datasets are characterised by relatively few examinations per patient
(e.g. Ti is around 4–5) and highly-irregular sampling rates. Our task is to predict
the vector of image labels lTi

i given the entire history of exams up to time Ti − 1
plus the current image, i.e. XTi

i .

3 Time-Modulated LSTM

LSTMs are a particular type of RNNs able to classify, process and predict time
series [8,10]. The internal state of an LSTM (a.k.a. the cell state or memory) gives
the architecture its ability to ’remember’. A standard LSTM contains memory
blocks, and blocks contain memory cells. A typical memory block is made of three
main components: an input gate controlling the flow of input activations into the
memory cell, an output gate controlling the output flow of cell activations, and
a forget gate for scaling the internal state of the cell. The forget gate modulates
how much information is used from the internal state of the previous time-step.
However, standard LSTMs are ill-suited for our task where the time between
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consecutive exams is variable, because they have no mechanism for explicitly
modelling the arrival time of each observation. In fact, it has been shown that
LSTMs, and more generally RNNs, underperform with irregularly sampled data
or time series with missing values [4,13]. Previous attempts to adapt LSTMs for
use with irregularly sampled datapoints have mostly focused on speeding up the
converge of the algorithm in settings with high-resolution sampled data [13] or
to discount short-term memory [3].

To address these issues, we introduce two simple modifications of the stan-
dard LSTM architecture, called time-modulated LSTM (tLSTM), both making
explicit use of the time indexes associated to the inputs. In the proposed archi-
tecture, all the images for a given patient are initially processed by a CNN
architecture, which extracts a set of imaging features, denoted by ̂Xt

i , at each
time step. The LSTM takes as inputs lt−1

i , i.e. the radiological labels describing
the images acquired at the previous time-step, the current image features, ̂Xt

i ,
and the time lapse between Xt−1

i and Xt
i , which we denote as δti . For the last

image in the sequence, the LSTM predicts the image labels, lti , called yt
i . Figure 2

provides a high-level overview of this model and the equations below define the
tLSTM unit:

ft = σ(Wfl ∗ lt−1 + Wfx ∗ ̂Xt + Wfj ∗ δt + bf ),

it = σ(Wil ∗ lt−1 + Wix ∗ ̂Xt + Wij ∗ δt + bi),

ot = σ(Wol ∗ lt−1 + Wox ∗ ̂Xt + Woj ∗ δt + bo),

ct = tanh(Wcl ∗ lt−1 + Wcx ∗ ̂Xt + Wcj ∗ δt + bc),
ht = ft ∗ ht−1 + it ∗ ct,

yt = ot ∗ tanh(ht)

(1)

Here, ht defines the internal state at time-step t, while ft, it and ot refer to the
forget, input and output gates at time-step t, respectively. These are all com-
puted as linear combinations of the vectors lt−1, ̂Xt and the scalar δt, and then
transformed by a sigmoid function, σ(·). The matrices denoted by W contain
learnable weights indexed by two letters (e.g. Wfl contains the weights of the
forget gate f for labels l, and so on). At time t = 1, we initialise lt−1

i =< 0 . . . 0 >
(an array of zeros) and δti = 0. The time lapses, δti , linearly modulate the infor-
mation inside the internal cell state as well as the output, forget and input gates.

A different variation of the previous model (tLSTMv2) uses the time lapse
only to modulate the internal state, ht. In this case, each δti actively contributes
to updating ht directly and, implicitly, to estimating the label vector yt, i.e.

ht = ft ∗ ht−1 + it ∗ ct + Wtj ∗ δt

yt = ot ∗ tanh(ht).
(2)

The form of the other updating equations, i.e. fg, it, ot and ct, is similar to those
in Eq. (1), without the Ws × δt elements.
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Fig. 2. An overview of the proposed architecture for image label prediction leveraging
all historical exams.

4 Simulated Data

In order to better assess the potential advantages introduced by the time-
modulated LSTM in settings where observations are event-driven and the under-
lying patterns to be detected are time-varying, we generated simulated data as
an alternative to the real chest x-ray dataset of Sect. 2. Simulating images enables
us to precisely control the sampling frequency at which the relevant visual pat-
terns appear and disappear over time as well as the signal to noise ratio. For this
study, we simulated a population of image sequences of varying lengths. Within
a sequence, each image consisted of a noisy background image containing one
or more randomly placed digits drawn from the set {0, 3, 6, 8, 9}. We simulated
three kinds of patterns inspired by the radiological patterns seen in real medi-
cal images: (i) rare patterns consisting of digits appearing with low probability;
(ii) common patterns consisting of rapidly appearing and resolving digits; (iii)
persistent labels, consisting of digits observed for extended periods of time. In
analogy to medical images, each digit in our simulation represents a radiological
abnormality to be detected, hence multiple (and possibly overlapping) digits are
allowed to coexist within an image. The time lapse δt was modelled as a uniform
random variable taking value in the interval [1, 10]. An example of simulated
images can be found in the Supplementary Material.

5 Experimental Results

In our experiments with the real x-ray dataset, the CNN component in our archi-
tecture conists of a pre-trained Inception v3 [18] without the classification layer.
The imaging features X̂t

i (an array 2048 elements) from the CNN are as used
as inputs for the LSTM component along with the image labels. We considered
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Table 1. Results on real data∗

Labels

cardio. consol. pleu. eff. hernia avg.

Inception v3

PPV 0.5477 0.4111 0.6149 0.5204 0.5235

NPV 0.9565 0.9002 0.9106 0.9958 0.9407

F-measure 0.6143 0.5151 0.6575 0.5193 0.5765

LSTM

PPV 0.6914 0.5841 0.7105 0.5369 0.6307

NPV 0.9406 0.8440 0.8895 0.9969 0.9177

F-measure 0.6199 0.4337 0.6531 0.5755 0.5705

tLSTMv1

PPV 0.5929 0.4831 0.6358 0,5821 0.5734

NPV 0.9565 0.9000 0.9251 0.9968 0.9445

F-measure 0.6399 0.5552 0.6891 0.5932 0.6193

tLSTMv2

PPV 0.5980 0.4876 0.6350 0.5461 0.5667

NPV 0.9572 0.8931 0.9120 0.9968 0.9397

F-measure 0.6447 0.5479 0.6696 0.5704 0.6081
∗Classification performance (PPV, NPP and F-measure)
of a baseline classifier (Inception v3) using only a single
image as input and three LSTM architectures using the
full sequence of longitudinal observations. tLSTMv1 and
tLSTMv2 are the proposed time-modulated LSTM archi-
tectures that explitely model time lapses.

four possible radiological labels: cardiomegaly, consolidation, pleural effusion and
hiatus hernia. The performance of the time-modulated LSTM models is assessed
by the PPV (Positive Predictive Value) and NPV (Negative Predictive Value)
along with F-score, i.e the harmonic mean of precision and recall.

We compared the performance of four models: the baseline CNN classifier
(Inceptionv3) that only uses each current image to predict the labels, but does
not exploit the historical exams for a given patient, and three variations of the
architecture illustrated in Fig. 2: one using the standard LSTM and the two
versions of time-modulated LSTM model introduced in Sect. 3. Both tLSTM
versions introduced noticeable performance improvements; see Table 1. In par-
ticular, tLSTMv1 yields an increase of ∼7% in F-measure over the baseline and
∼8% over a standard LSTM. Moreover, tLSTMv1 achieves a ∼9% improvement
in PPV over the baseline. Overall, tLSTM achieves improved performance over
the standard LSTM due to its ability to handle irregularly sampled data.

For the simulated dataset, we used a pre-trained AlexNet [11] as fea-
ture extractor in combination with three versions of the LSTM for modelling
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sequences of images. A full table with results can be found in the Supplementary
Material. We purposely introduced a sufficiently high level of noise in the visual
patterns so as to make the classification problem with individual images partic-
ularly difficult; accordingly, the single-image classifier did not achieve acceptable
classification results. Likewise, the architecture using a standard LSTM did not
introduce significant improvements due to the irregularly sampled observations.
On the other hand, larger classification improvements were achieved using the
time-modulated LSTM units as those were able to decode the sequential patterns
by explicitly taking into account the time gaps between consecutive observations.

6 Conclusions

Our experimental results suggest that the modified LSTM architectures, com-
bined with CNNs, are suitable for modelling sequences of event-based imaging
observations. By explicitly modelling the individual time lapses between con-
secutive events, these architectures are able to better capture the evolution of
visual patterns over time, which has a boosting effect on the classification perfor-
mance. The full potential of these models is best demonstrated using simulated
datasets whereby we have control over the exact nature of the temporal patterns
and the image labels are perfectly known. In real radiological datasets, there are
often errors in some of the image labels due to typographical errors, interpretive
errors, ambiguous language and, in some cases, long-standing findings not being
mentioned. This can cause problems both in CNN training and testing. Despite
these challenges, we have demonstrated that improved classification results can
also be achieved by the time-modulated LSTM components on a large chest
x-ray dataset. Thus we empirically proved that a patient’s imaging history can
be used to improve automated radiological reporting. In future work, we plan
more extensive testing of a system trained end-to-end on a much larger number
of radiological classes. The code with the networks used for our experiment can
be found online: https://github.com/WMGDataScience/tLSTM.
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Abstract. We propose a new iterative segmentation model which can
be accurately learned from a small dataset. A common approach is to
train a model to directly segment an image, requiring a large collection
of manually annotated images to capture the anatomical variability in
a cohort. In contrast, we develop a segmentation model that recursively
evolves a segmentation in several steps, and implement it as a recurrent
neural network. We learn model parameters by optimizing the interme-
diate steps of the evolution in addition to the final segmentation. To this
end, we train our segmentation propagation model by presenting incom-
plete and/or inaccurate input segmentations paired with a recommended
next step. Our work aims to alleviate challenges in segmenting heart
structures from cardiac MRI for patients with congenital heart disease
(CHD), which encompasses a range of morphological deformations and
topological changes. We demonstrate the advantages of this approach
on a dataset of 20 images from CHD patients, learning a model that
accurately segments individual heart chambers and great vessels. Com-
pared to direct segmentation, the iterative method yields more accurate
segmentation for patients with the most severe CHD malformations.

1 Introduction

We aim to provide whole heart segmentation in cardiac MRI for patients with
congenital heart disease (CHD). This involves delineating the heart chambers
and great vessels [1], and promises to enable patient-specific heart models for
surgical planning in CHD [2]. CHD encompasses a vast range of cardiac mal-
formations and topological changes. Defects can include holes in the heart walls
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(septal defects), great vessels connected to the wrong chamber (e.g., double out-
let right ventricle; DORV), dextrocardia (left-right flip), duplication of a great
vessel, a single ventricle, and/or prior surgeries creating additional atypical con-
nections. In MRI, different chambers and great vessels locally appear very similar
to each other, and there is little or no contrast at the valves and thin walls sep-
arating neighboring structures. Finally, labeled training data is very limited.
This precludes modeling each CHD subtype separately in an attempt to reduce
variability. Moreover, patients with unique combinations of defects and prior
surgeries defy categorization. Beyond our application, limited training data is
to be expected for new applications of medical imaging not yet in widespread
clinical practice. This necessitates development of methods that generalize well
from small, imbalanced datasets, possibly also incorporating user interaction.

State-of-the-art methods use a convolutional neural network (CNN) to
directly outline all chambers and vessels in one step [3,4]. However, CNNs for
CHD have largely been limited to segmenting the blood pool and myocardium
[5,6]. Direct co-segmentation of all major cardiac structures works well when
applied to adult-onset heart disease, which induces much less severe shape
changes compared to CHD. However, it fails completely on held-out subjects
with severe CHD malformations after training with our small dataset of CHD
patients.

We develop an iterative segmentation approach that evolves a segmentation
over several steps in a prescribed way and automatically estimates when to stop,
beginning from a single seed for each structure placed by the user. An iterative
method can operate more locally, better maintain each structure’s connectivity,
and propagate information from distant landmarks, similar to traditional snakes,
level sets and particle filters [7]. We employ a recurrent neural network (RNN) [8],
which uses context to grow the segmentation appropriately even in areas of low
contrast. Deep learning research has indeed focused on segmenting a single image
iteratively. Examples include recursive refinement of the entire segmentation
map [9,10], sequential completion of different instances, regions or fields of view
[11–13], slice-by-slice analysis [14] and networks modeling level set evolution [15].
These methods condition on a previous partial solution to make progress towards
the final output. This simplified task may enable training from smaller datasets.

We train the model by minimizing a loss over a training dataset of example
segmentation trajectories. Maximizing the likelihood of observed sequences is
known as teacher forcing [8,16]. For example, we may require vessel segmentation
to proceed at a constant rate along the vessel centerline, or a heart chamber
segmentation to dilate outwards. Even if the stopping prediction is incorrect,
since the segmentation evolution follows a prescribed pattern it is likely that
one of the intermediate segmentations will be accurate. In contrast, using the
final segmentation alone could lead to unpredictable growth patterns. Teacher
forcing also leads to a simplified optimization over decoupled time steps, avoiding
back-propagation through time.

We focus on segmenting the aorta (a representative great vessel) and the left
ventricle (a representative cardiac chamber). We validate our iterative segmen-



336 D. F. Pace et al.

tation approach using a dataset of 20 CHD patients, and compare it to direct
segmentation methods which we have developed for this problem.

2 Iterative Segmentation Model

Given an input image x defined on the domain Ω, we seek a segmentation label
map y that assigns one of L anatomical labels to each voxel in x.

Generative Model: We model the segmentation y as the endpoint of a
sequence of segmentations y0, . . . ,yT , where yt : Ω → {1, . . . , L} for time steps
t = 0, . . . , T . The intermediate segmentations yt capture a growing part of the
anatomy of interest. In practice, the initial segmentation map y0 is created by
centering a small sphere around an initial seed point placed by the user.

The number of iterations required to achieve an accurate segmentation
depends on the shape and size of the object being segmented. To capture this,
we introduce a sequence of indicator variables s0, . . . , sT , where st ∈ {0, 1} spec-
ifies whether the segmentation is completed at time step t. If st = 1, then yt is
deemed the final segmentation and we set yi = yi−1 and si = 1 for all i > t.

Given an image and an initial segmentation, the inference task is to compute
p(yT , sT |x,y0, s0 = 0). We assume that the segmentations {yt} and stopping
indicators {st} follow a first order Markov chain given the input image:

p(yt, st|x,y0, . . . ,yt−1, s0, . . . , st−1) = p(yt, st|x,yt−1, st−1), (1)

p(yt, st|x,y0, s0) =
∑

yt−1

∑

st−1

p(yt, st|x,yt−1, st−1) · p(yt−1, st−1|x,y0, s0). (2)

Transition Probability Model: We must define the transition probability
p(yt, st|x,yt−1, st−1) to complete the recursion in Eq. (2). There are two possible
cases: st−1 = 1 and st−1 = 0. Based on the definition of st−1, we obtain

p(yt, st|x,yt−1, st−1 = 1) = 1(yt = yt−1) · 1(st = 1), (3)

where 1(·) denotes the indicator function. To compute p(yt, st|x,yt−1, st−1 = 0),
we introduce a latent representation ht = h(x,yt−1) that jointly captures all
of the necessary information from image x and previous segmentation yt−1.
Intuitively, predicting whether the segmentation yt is complete given x can be
performed by examining whether yt−1 is “almost” complete. Therefore, the seg-
mentation yt and stopping indicator st are conditionally independent given ht:

p(yt, st|x,yt−1, st−1 = 0) = p(yt, st|ht) = p(yt|ht) · p(st|ht). (4)

We model the function h(x,yt−1) and distributions p(yt|ht) and p(st|ht) as
stationary; they do not depend on the time step t.

Learning: We learn a representation of p(yt, st|x,yt−1, st−1 = 0) given a train-
ing dataset of example desired trajectories of segmentations. Specifically, we
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consider a training dataset D of N images {xi}Ni=1, each of which has a cor-
responding sequence of segmentations yi

0, . . . ,y
i
Ti

and of stopping indicators
si0, . . . , s

i
Ti

, where si0 = . . . = siTi−1
= 0 and siTi

= 1. The parameter values to
be determined are θ = {θh,θy,θs} corresponding to h(x,yt−1;θh), p(yt|ht;θy),
and p(st|ht;θs), respectively. We seek the parameter values that minimize the
expected negative log-likelihood of the output segmentation and stopping indi-
cator sequences given the image and initial conditions, i.e., θ∗ = argminθL(θ),

L(θ) = Ex,y0,...,yT ,s0,...,sT ∼D
[

− log p(y1, . . . ,yT , s1, . . . , sT |x,y0, s0;θ)
]

= −E
[ T∑

t=1

log p(yt|h(x,yt−1;θh);θy) + log p(st|h(x,yt−1;θh);θs)
]
. (5)

Fig. 1. Iterative segmentation as an RNN. (a) Generative model. (b) The RNN uses
the same augmented U-net at each step to predict the next segmentation and stopping
indicator. (c) Architecture details (conditioning dropped for clarity).

Note that teacher forcing has lead to decoupled time steps. The first and second
terms in the likelihood above penalize differences for the segmentations and the
stopping indicators, respectively, between the predicted probabilities and the
ground truth. In practice, we perform class rebalancing for both terms, and
further supplement the segmentation loss by more strongly weighting pixels on
the boundaries of the ground truth segmentation.
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Inference: Computing p(yT , sT |x,y0, s0 = 0) via the recursion in Eq. (2) is
intractable due to the summation over all possible segmentations yt−1. To
approximate, we follow a widely accepted practice of using the most likely seg-
mentation y∗

t−1 and stopping indicator s∗
t−1 as input to the subsequent compu-

tation:

p(yt, st|x,y0, s0 = 0;θ) ≈ p(yt, st|x,y∗
t−1, s

∗
t−1;θ),

where y∗
t−1, s

∗
t−1 = argmax

yt−1, st−1

p(yt−1, st−1|x,y0, s0 = 0;θ). (6)

The segmentation is fully automatic given the initial seed. If the stopping indi-
cator is predicted incorrectly, a user can manually override it by asking for more
iterations or by choosing a segmentation from a previous step.

RNN: We implement our iterative segmentation model as an RNN (Fig. 1),
which is formed by connecting identical copies of an augmented 3D U-net [17]
trained to estimate p(yt, st|x,yt−1, st−1 = 0). Thus, parameters are shared both
spatially and temporally. At each step, the U-net inputs the image and the most
likely segmentation from the previous step. This respects the Markov property
in Eq. (1), unlike if any hidden layers were connected between successive steps.
If the stopping indicator s∗

t = 1, the segmentation propagation halts.
Our augmented U-net modeling p(yt, st|x,yt−1, st−1 = 0) has L + 1 input

channels, containing the input image and a binary map for each of the L labels in
the segmentation yt−1 (including the background). There are two outputs: the
probability map for the segmentation yt (at each voxel, representing the param-
eters of the categorical distribution over L labels), and the Bernoulli stopping
parameter p(st = 1|x,yt−1, st−1 = 0). Jointly predicting the segmentation and
stopping indicator enables a smaller model compared to two separate networks.

The original U-net for image segmentation produces a final set of C learned
feature maps, which undergo C ·L 1×1×1 convolutions and a softmax activation
to give the output segmentation probabilities. We use these C learned feature
maps as the latent joint representation ht = h(x,yt−1;θh). The U-net parame-
ters can therefore be split into two sets. The parameters for the final 1 × 1 × 1
convolutions are θy of p(yt|ht;θy), and the remainder are θh of h(x,yt−1;θh).
The probability p(st = 1|ht;θs) is computed by applying C additional 3 × 3 × 3
convolutions with parameters θs to the feature maps in ht, followed by a global
average and sigmoid activation to yield a scalar in {0, 1}.

Generating Segmentation Trajectories: Our training dataset of images and
segmentation trajectories is derived from a collection of paired images and com-
plete segmentations. Several acceptable trajectories exist for each pair, e.g., start-
ing from different initial seeds. To this end, at the beginning of each epoch a
random tuple (yt−1,yt, st) is generated for each image. These tuples all follow
the same principle that we want the network to learn.

As a concrete example, the trajectories used in our experiments are as follows.
For the aorta, the segmentation grows from the seed along the vessel centerline,
by a random distance to form yt−1 and an additional 10 pixels for yt. The seed is
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placed in the descending aorta, and the endpoint is at the valve where the aorta
connects to a left or right ventricle. This seed could be automatically detected in
the future, and the lack of contrast at the valve provides a challenging test case
for our automatic stopping. For the left ventricle, we randomly place the seed in
the center region of the chamber, and perform a random number of dilations to
form yt−1, and 3 more dilations to form yt.

Data Augmentation: Data augmentation is essential to prevent overfitting on
a small training dataset. We mimic the diversity of heart shapes and sizes, global
intensity changes caused by inhomogeneity artifacts, and noise induced by elevated
heart rates or arrhythmias. We apply random rigid and nonrigid transformations,
random constant intensity shifts, and random additive Gaussian noise. We also
investigate including random left-right (L-R) and anterior-posterior (A-P) flips,
to better handle dextrocardia or other cardiac malpositions, since in these cases
the left ventricle may lie on the right side of the body.

If the augmented U-net for p(yt, st|x,yt−1, st−1 = 0) is trained solely using
error-free segmentations yt−1, then it may not operate well on its own imperfect
intermediate results at test time. We increase robustness by performing addi-
tional data augmentation on the input segmentations yt−1. We corrupt these
segmentations by applying random nonrigid deformations, and by inserting ran-
dom blob-like structures that vary in number, location and size and are attached
to the segmentation foreground or free-floating. Since the target segmentation
yt remains unchanged, the model learns to correct mistakes in its input.

3 Experimental Validation

We evaluate our iterative segmentation and tailored direct segmentation meth-
ods, focusing on segmenting the aorta and left ventricle (LV) of CHD patients.

Data: We use the HVSMR dataset of 20 MRI scans from patients with a variety
of congenital heart defects [18]. Each high-resolution (≈0.9 mm3) 3D image was
acquired on a 1.5 T scanner (Philips Achieva), without contrast agent and using
a free-breathing SSFP sequence with ECG and respiratory navigator gating.
The HVSMR dataset includes blood pool and myocardium segmentations only.
A trained rater manually separated all of the heart chambers and great vessels.
The 20 images were categorized after visually assessing any gross morphological
malformations: 4/20 severe (prior major reconstructive surgery, single ventricle,
dextrocardia), 5/20 moderate (DORV, VSD, abnormal chamber shapes), and
11/20 mild (ASD, stenosis, etc.). The dataset was randomly split into 4 folds for
cross-validation (15 training, 5 testing), with an equal number of mild, moderate
and severe cases in each. Input images were resized to ≈128 × 180 × 144.

Experiments: In our tests, binary segmentation of each structure outperformed
co-segmenting all of the heart chambers and vessels. We trained several mod-
els aimed at segmenting the aorta and left ventricle of CHD patients. DIR uses
a single U-net to perform direct binary segmentation. DIR-DIST includes the
Euclidean distance to the initial seed as an additional input channel. ITER(stop)
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is iterative segmentation using our RNN with automatic stopping, and ITER
(max) simulates a user by choosing the segmentation with the best Dice coefficient
after 30 iterations of our RNN. Finally, ITER-SEG-ABL is an ablation study
with no data augmentation on the input segmentations. We tuned the architec-
tural parameters for each experiment separately, nevertheless resulting in similar
networks. All U-nets had 3 levels, 24 feature maps at the first level, and ≈870,000
parameters. The best network for direct segmentation of the aorta used 2 × 2 × 2
max pooling (receptive field = 403), while all others used 3 × 3 × 3 max pool-
ing (receptive field = 683). For training, optimization using adadelta ran for 2000
epochs with a batch size of 1. For iterative segmentation, the argmax in Eq. (6) is
computed per voxel, by assuming that the segmentation of each voxel is condition-
ally independent of all other voxels givenht. Segmentations were post-processed to
keep only the largest island or the island containing the initial seed, for experiments
in which this improves overall accuracy. Aorta segmentations were not penalized
for descending aortas longer than in the gold-standard.

Results: Figures 2 and 3 report the results. There was no notable difference in
accuracy between the mild and moderate groups. DIR-DIST was the best direct
segmentation method, demonstrating the advantage of leveraging user interac-
tion. For all methods, incorporating L-R and A-P flips in the data augmentation
improved performance for severe subjects. Iterative segmentation stopped auto-
matically after 18 ± 3 steps for both the aorta and the LV, requiring ≈15 s. The
potential benefits of our iterative segmentation approach are demonstrated by
the performance of ITER (max), which shows improvement for all of the severe
cases while maintaining accuracy for the others. The stopping prediction is not

Fig. 2. Aorta (AO) and LV segmentation validation. DIR-DIST is the best direct seg-
mentation method, but iterative segmentation generalizes better to severe subjects.
Top: Dice coefficients for all methods. Bottom: Results for all 20 subjects, sorted by
DIR-DIST score and with severe subjects highlighted in green. (Color figure online)
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perfect at test time: the number of iterations separating the automatic stopping
point from the best segmentation in a sequence was 0.8 ± 1.0 iterations for the
aorta and 3.0 ± 2.5 iterations for the LV. The sole aorta containing a stent was
poorly segmented by all methods (Fig. 3e). The stent caused a strong inhomo-
geneity artifact that the iterative segmentation could not grow past, and the
stopping criterion was never triggered.

Fig. 3. Representative aorta and LV segmentations in held-out subjects with severe
CHD. Arrows illustrate both the benefits and failure cases of iterative segmentation
with automatic stopping, where it (a) successfully segments a difficult case, (b) stops
too late, (c) correctly stops near a valve, (d) avoids growing through a septal defect,
(e) cannot grow through a dark region caused by a stent.

4 Conclusions

We presented an iterative segmentation model and its RNN implementation.
We showed that for whole heart segmentation, the iterative approach was more
robust to the cardiac malformations of severe CHD. Future work will investi-
gate the potential general applicability of iterative segmentation when one is
restricted to a small training dataset despite wide anatomical variability.
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Abstract. We consider the problem of segmenting the left ventricular
(LV) myocardium on late gadolinium enhancement (LGE) cardiovascular
magnetic resonance (CMR) scans of which only some of the scans have
scar tissue. We propose ScarGAN to simulate scar tissue on healthy
myocardium using chained generative adversarial networks (GAN). Our
novel approach factorizes the simulation process into 3 steps: (1) a mask
generator to simulate the shape of the scar tissue; (2) a domain-specific
heuristic to produce the initial simulated scar tissue from the mask; (3)
a refining generator to add details to the simulated scar tissue. Unlike
other approaches that generate samples from scratch, we simulate scar
tissue on normal scans resulting in highly realistic samples. We show
that experienced radiologists are unable to distinguish between real and
simulated scar tissue. Training a U-Net with additional scans with scar
tissue simulated by ScarGAN increases the percentage of scar pixels in
LV myocardium prediction from 75.9% to 80.5%.

1 Introduction

Recently, deep learning has shown promising results to automate many tasks in
radiology such as skin lesion classification [2]. The performance of these deep
convolutional neural networks (DCNNs) is sometimes on par with clinicians but
usually requires a large amount of training images and labels. Training a DCNN
that performs equally well across different patients is challenging because some
pathologies are rare.

Automated Myocardium Segmentation of LGE Scans. LGE imaging is
an established method to detect myocardial scarring and measure the infarct
size using a gadolinium-based contrast but not all LGE scans have visible scar
tissue [11]. Contrast accumulates in regions of the myocardium that contain a
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Fig. 1. Samples of real and simulated scar tissue on LGE scans categorized by enhance-
ment patterns. Red arrows indicate the location of real or simulated scar tissue. (Color
figure online)

high proportion of fibrosis (scar tissue) which results in a hyperenhancement on
the acquired images.

We apply a U-Net segmentation network [9] to segment the LV myocardium
but it does not perform well on patients with scar tissue. The subtle differences
between scar tissue and blood pool are extremely challenging for DCNNs and
even physicians to delineate.

ScarGAN. We propose ScarGAN, an approach utilizing chained generative
adversarial networks (GANs) to simulate scar tissue in the LV myocardium on
LGE scans of healthy patients as data augmentation. Figure 1 shows examples
of simulated scar tissue grouped by their enhancement patterns. Overview of the
ScarGAN architecture can be seen in Fig. 2.

The main contributions of this work are:

– We present ScarGAN to simulate scar tissue in healthy myocardium on LGE
CMR scans;

– We factorize the simulation process into multiple steps and allow domain-
specific heuristics to be added to reduce the difficulty of training GANs;

– We present qualitative and quantitative results to demonstrate that scar tis-
sue simulated by ScarGAN is highly realistic and cannot be distinguished
from real scar tissue by radiologists;

– We demonstrate that simulated scar tissue can improve myocardium segmen-
tation network without collecting more scans and annotations of a specific
pathology.
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Fig. 2. Overview of ScarGAN. A mask generator simulates the shape of scar tissue
segmentation mask (LV endo is light blue; LV myo is green; LV endo is orange; scar
tissue is red); a heuristic-based method provides an initial simulated scar tissue using
the simulated shape; a refining generator add details of scar tissue to the image. (Color
figure online)

2 Related Work

The GAN framework was first proposed by Goodfellow et al. [4] and consists of
2 networks: a generative network G(z) that transforms a noise vector z into real-
istic samples, and a discriminator network D(x) that classifies samples as real or
fake. In pix2pix [5], a fully convolutional U-Net in the generator performs image
translation; the generative network receives an image in one domain and outputs
the corresponding image of another domain. Both of the GANs in ScarGAN are
based on pix2pix.

Previous works [12,13] have used GANs to refine the results of a simulator
and are structurally similar to our method. However, the “simulator” in Scar-
GAN is also a GAN and no manual modeling of scar tissue is required.

GANs have been also used in medical imaging for data augmentation. Syn-
thetic training samples (such as skin lesions [1] and liver lesions [3]) are generated
by GANs to increase dataset size. Salehinejad et al. [10] use DCGAN to syn-
thesize X-ray chest scans with under-represented diseases and to classify lung
diseases. The motivation of the work from Salehinejad et al. is most similar to
ours but instead of generating images from scratch, ScarGAN simulates diseases
on scans of healthy patients.

3 ScarGAN

Mask Generator. In the first stage, ScarGAN uses a mask generator to sim-
ulate the shape of the scar tissue in the myocardium on an LGE SAX image.
The input of the mask generator is a segmentation mask which includes right
ventricular endocardium blood pool (RV endo), LV myocardium (LV myo) and
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LV endocardium blood pool (LV endo). The output of the mask generator is also
a segmentation mask which includes simulated scar tissue, RV endo, LV myo and
LV endo. Both the input and output include RV endo, LV myo and LV endo to
encourage the generator to learn anatomical structures before the discriminator
gets too strong which destabilizes training.

The mask generator is a fully convolutional U-Net with 64 initial convolu-
tional filters and it downsamples with strided convolutions. We add noise to the
generator by using dropout layers (p = 0.25) after each nonlinearity layer.

The input of the mask discriminator is a segmentation mask of RV endo, LV
myo and LV endo with real scar tissue or a mask with simulated scar tissue.
The discriminator is a relatively shallow network consisting of 4 layer blocks,
each contains a convolutional layer, a batch normalization layer, and a leaky
ReLU nonlinearity layer (α = 0.2). Unlike pix2pix, we do not follow PatchGAN
in which the discriminator classifies patches of the images, and instead classify
the whole image as real or simulated.

Following LSGAN [7], we use squared error as the main loss function and add
multi-class cross-entropy between the input and output segmentation masks for
regularization. We train the mask discriminator for 2 gradient steps for every
gradient step performed on the mask generator.

To prevent mode collapse, half of the simulated masks are stored in a buffer
for “experience replay” [8] and half of the training batches are randomly drawn
from this buffer. The previously simulated samples stabilize training for both the
discriminator and generator and prevent the generator from exploiting the dis-
criminator by generating scar tissue of one specific shape which the discriminator
has“forgotten.”

Heuristic-based Simulation. In the second stage, we apply the shape of the
simulated scar tissue from the mask to the image using a heuristic-based method,
leveraging the domain-specific knowledge that scar tissue is hyperintense and has
a similar signal intensity to the LV blood pool. We replace the corresponding
pixels within generated scar tissue with the 10th percentile intensity of the LV
endo pixels. However this causes the intensities within the scar tissue to become
uniform, which is not characteristic of real scar tissue.

Although this approach does not produce photorealistic simulation of the scar
tissue, it provides a good starting point for another GAN to refine the initial
simulation.

Refining Generator. In the final stage, ScarGAN uses a refining network to
add details to the initial simulation from the heuristic-based method above. This
stage is inspired by SimGAN [12] but the refining generator in ScarGAN refines
results from another GAN instead of a simulator. The input to the refining
generator is an image with heuristic-based simulated scars and its output is
a refined image with simulated scars. The network architectures of the refining
generator and refining discriminator are the same as those described in the mask
generator section. We do not need to increase the capacity of the generator given
that the initial simulation provides a good starting point.
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Similar to the mask generator, we follow LSGAN [7] and use squared error
as the main loss function. We add absolute error between the input and the
refined image for regularization so that the generator is encouraged to modify
small regions of the image. We train the discriminator for 3 gradient steps for
every 1 gradient weight update to the refining generator.

4 Results and Evaluation

Dataset. Our dataset consists of 159 LGE CMR SAX scans of which only 33.6%
of the SAX images have some visible scar tissue. The LGE scans are acquired
by multiple types of scanners across multiple regions and countries.

Ground truth RV endo, LV myo, and LV endo segmentation masks are col-
lected from 3 physicians with extensive experience analyzing CMR scans. Ground
truth scar tissue masks are collected using the Full-Width-at-Half-Maximum
(FWHM) method in accordance to the Society of Cardiovascular Magnetic Res-
onance imaging (SCMR) guidelines [11].

Fig. 3. ScarGAN simulation pipeline. From left to right: original image with no scar
tissue; mask with RV endo (light blue), LV myo (green), and LV endo (orange) and
simulated scar tissue (red); heuristic-based simulation; output from refining network;
blending mask; final image with simulated scar tissue (Color figure online)

Generating Diverse Simulated Scar Tissue. We augment the LGE dataset
by simulating scar tissue on healthy myocardium to train a segmentation network
to segment RV endo, LV myo and LV endo. The full augmentation pipeline is
visualized in Fig. 3. Although it is possible to train a network to directly segment
scar tissue, analyzing LGE scans using scar tissue segmentation is not part of
the guideline recommendations [11].

Despite using an experience replay buffer, we still sometimes observe mode
collapse in the mask generator. To obtain diverse scar tissue, we try to condition
the input by a noise vector or inject noise using dropout at inference time.
However neither of these methods yield significantly different shapes. We note
that this phenomenon is consistent with the findings in pix2pix [5].

Instead, we snapshot the weights of mask generator for every 10,000 training
steps. We pick 5 of these snapshots by visually inspecting the shape of some
of the simulated scar tissue. These weight snapshots are selected if simulated
scar tissue is of relatively diverse shapes within the training set and across the
snapshots.
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As a final post-processing step, we create a blending mask to combine
the refined image and the original image to remove any artifacts outside the
myocardium. We initialize the blending mask as the myocardium mask and then
apply Gaussian blur with a kernel size of 5px because the boundary between
LV blood pool and LV myocardium is not clear-cut. The final image is created
by computing a per-pixel weighted average between the refined image and the
original image.

Quantitative Evaluation of Simulated Scar Tissue. We ask 3 physicians,
including 2 radiologists with more than 10 years of experience, to classify whether
the scar tissue on 30 LGE SAX images is simulated or not. 50% have real scar
tissue and 50% of the images have scar tissue simulated by ScarGAN. These
images are shown in random order and are randomly drawn from a hold-out
set. We do not impose any time limit for the annotator to classify the images.
The classification accuracy of the physicians is 60%, 47% and 50%. The results
demonstrate that experienced physicians are unable to identify simulated scar
tissue better than chance and that scar tissue simulated by ScarGAN is highly
realistic (Fig. 1).

Fig. 4. Comparison of predicted and ground truth contours on the LGE SAX images
from 2 unique patients. Light red mask is scar tissue correctly included in myocardium;
dark red mask is scar tissue erroneously included in blood pool (also indicated by black
arrows). The green and blue lines show the predicted LV epi and LV endo contours,
respectively. (Color figure online)

Segmenting LGE Scans. We evaluate the effectiveness of ScarGAN as a data
augmentation technique by training a segmentation network that predicts LV
endo and LV myo masks on LGE scans. The segmentation network is U-Net-
based DeepVentricle [6] and is fine-tuned on the 159 LGE CMR scans dataset
described above. We apply traditional data augmentation to all models such as
translation, scale, rotation and elastic deformation.
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We note that scar tissue is not visible in standard SSFP scans as no contrast
agents have been administered, so the network must learn all knowledge about
scar tissue from the LGE dataset. We find that the fine-tuned U-Net is unable to
discriminate between blood pool and scar tissue, which have similar intensities.
To address this failure mode, we modify the loss function to put stronger empha-
sis on scar tissue such that a higher weighting is assigned to the corresponding
pixels within scar tissue. We note that this weighting is an important hyperpa-
rameter – if it is too high, the network will overestimate the percentage of scar
tissue pixels by erroneously including blood pool as part of the myocardium;
if it is too low, the percentage of scar tissue pixels will be underestimated by
erroneously excluding scar tissue from the myocardium.

We evaluate the model on the percentage of scar tissue pixels erroneously
included in LV endo and the percentage of scar tissue pixels correctly included
in LV myo in each scan. We perform 4-fold cross-validation on the segmentation
network and ScarGAN networks. The dataset is split using anonymized patient
IDs such that all scans of one patient are assigned to a single fold. We keep the
validation set intact and no scans with simulated scar tissue are added to the
validation set.

Table 1. Evaluation metrics of model trained on LGE scans with and without simu-
lated scars

Dataset subset Training data (number of scans
with real scars / no scars /
simulated scars)

% of scar in
LV myo

% of scar in
LV endo

ScarGAN 0x 69 / 0 / 0 75.9 10.7

ScarGAN 0x+ 69 / 90/ 0 71.8 14.1

ScarGAN 1x 69 / 0 / 90 79.7 7.6

ScarGAN 3x 69 / 0 / 270 79.2 8.4

ScarGAN 5x 69 / 0 / 450 80.5 7.5

As shown in Table 1, we train the segmentation models on different subsets
of the dataset: (1) ScarGAN 0x: only scans with scar tissue, (2) ScarGAN 0x+:
all scans with and without scar tissue, (3) ScarGAN kx: scans with real and
simulated scar tissue where k is the number of mask generator weight snapshots
we used to simulate scar tissue. We notice that adding scans without scar tissue
is detrimental to the network’s ability to distinguish scar tissue. In contrast,
adding simulated scar tissue reduces the average percentage of scar tissue pixels
erroneously included in LV endo from 10.66% to 7.55%, and increases the average
percentage of scar tissue pixels correctly included in LV myo from 75.9% to
80.5%. The mean LV endo and LV epi contour dice coefficients are 0.869 and
0.906. Figure 4 shows predicted and ground truth LV endo and LV epi contours
in the test set. This indicates that it is possible to improve model performance
on patients with pathologies by collecting scans without any pathologies and use
ScarGAN to simulated those pathologies.
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5 Conclusion and Future Work

We propose ScarGAN, an approach using chained GANs to simulate scar tissue
on healthy myocardium and to reduce the need to collect scans from patients with
diseases. The use of chained GANs reduces training difficulty and allows domain-
specific knowledge to be applied. We find that simulated scar tissues cannot be
distinguished by physicians and can improve segmentation performance.

In the future, we can evaluate ScarGAN with other pathologies and on classi-
fication tasks. We can also train both the mask generator and refining generator
end-to-end.
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Abstract. Multiple sclerosis (MS) is a disease characterized by demyeli-
nating lesions in the brain and spinal cord. Quantification of the amount
of change in MS lesions in magnetic resonance imaging (MRI) over time
is important for evaluation of drug effectiveness in clinical trials. Man-
ual analysis of such longitudinal datasets is time- and cost prohibitive,
and also prone to intra- and inter-rater variability. Accurate automated
change detection methods would be highly desirable. We propose a
new MS lesion change detection method that integrates a voxel’s multi-
sequence MR intensity with its immediate neighborhood context and the
texture of the extended neighborhood in a machine learning framework.
On our dataset of 15 patients, the proposed method had higher per-
formance (median AUC-ROC= 0.97, AUC-PR= 0.43, Wilcoxon’s signed
rank test, p< 0.001) than implemented baseline methods. As such, the
proposed method has potential clinical applications as an efficient, low-
cost algorithm to capture and quantify local lesion change and growth.

Keywords: Multiple sclerosis · Change detection
Multi-scale image descriptors

1 Introduction

Multiple sclerosis (MS) is a disease of the central nervous system (CNS) that
affects over 400,000 people in the U.S. and 2.5 million people worldwide. It is
one of the leading causes of non-traumatic disability among young and middle-
aged adults [1]. Currently, MS has no cure, although there is an ongoing research
in search for improved treatment and management of the disease. The success
of such research depends on clinical trials, in which the response to treatment
and change in disease status must be quantified in an accurate and consistent
manner.

Multi-sequence magnetic resonance imaging (MRI) is the standard imaging
exam performed to analyze the white-matter lesions for diagnosis and follow-
up evaluation of MS. Quantitative evaluation of the changes in the MS lesions
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): DLMIA 2018/ML-CDS 2018, LNCS 11045, pp. 353–360, 2018.
https://doi.org/10.1007/978-3-030-00889-5_40
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appearance requires annotation of the corresponding areas in the brain, which
when done manually is time-consuming and subjective. To address these chal-
lenges, reliable automated methods are needed.

The strategies for automated change detection can be categorized as lon-
gitudinal volumetric analysis, deformable image registration, and longitudinal
analysis of MR intensity [5]. Longitudinal volumetric analysis relies on segmen-
tation of MS lesions at each imaging timepoint independently and can only
provide global measures of the lesion change, such as the count of new lesions
and the total lesion volume difference. Deformable image registration relies on
deformation fields obtained during non-rigid alignment of the MR images at
two timepoints and can quantify local changes through analysis of enlarging
and shrinking lesions, while detection of new or disappearing lesions is limited.
The longitudinal analysis can address the issues of the previous two strategies
through rigid of affine registration being followed by intensity analysis at match-
ing anatomical sites, thus allowing for local quantification of all types of lesion
change [4]. The computational core of such analysis is detection of lesion change
for each voxel of the brain MR image set from two imaging timepoints. Although
single-timepoint MS lesion segmentation approaches have incorporated multiple
scales of spatial information for context [6], longitudinal MS lesion analysis has
been limited to change detection using voxel intensities independently [4]. Tex-
ture descriptors specifically can aid in a compact representation of a local context
of the multi-sequence MR images and, moreover, have been successfully applied
to MS lesion segmentation [11].

In this work, we propose a change detection method that incorporates the
local context of the multi-sequence MR images at three scales. The multi-scale
descriptors are extracted from the intensity information of the voxels immediate
neighborhood, and the intensity and texture information of a larger surrounding
image patch. Our experiments demonstrated that incorporating the contextual
information to change detection improved the performance at each scale and the
proposed method statistically significantly outperformed the baseline state-of-
the-art approach [8].

2 Materials and Methods

2.1 Dataset

We used anonymized imaging data from 15 MS patients with two imaging exams,
each with three MRI sequences: T1-weighted (T1), T2-weighted (T2), and
fluid-attenuated inversion recovery (FLAIR), acquired at 1.5T. Pre-processing
included resampling to the common spatial resolution of 1×1×3 mm3, inhomo-
geneity correction on all sequences using N4 bias correction [10], registration of
all sequences at both timepoints to a common space [2], and intracranial volume
extraction from the T1 sequences using BET 2 [7]. The reference lesion change
labels were acquired as a consensus segmentation of the corresponding regions
by two neuroradiologists.
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2.2 MS Lesion Change Detection

For each patient, we consider six three-dimensional volumes: T1, T2, and FLAIR
at two time points. We denote intensity of a voxel v from the intracranial volume
mask for patient i, from the imaging study conducted at time tj (j = 1, 2) by
M

tj
iv , where M ∈ {T1, T2, FLAIR}. For common interpretations of voxel inten-

sities, each volume was normalized by computing the z-scores of the intracranial
volume intensities:

˜M
tj
iv =

M
tj
iv − μ

tj
i,M

σ
tj
i,M

where the mean μ
tj
i,M and standard deviation σ

tj
i,M are computed as sample

statistics across the voxels in the intracranial volume mask for patient i at time
tj . For each patient, dissimilarity maps were extracted by voxel-wise subtraction
of the normalized image between two time points for each imaging sequence M
as ΔMiv = ˜M t2

iv − ˜M t1
iv .

Lesion Change Model and Voxel-Level Descriptors. We model the pres-
ence of change in a set of preregistered multi-sequence MR images as a function
of descriptors extracted from ˜M t1

iv and ΔMiv for each imaging sequence M . With
the voxel-level lesion change represented by a random variable R, the probabil-
ities for each test patient i at voxel v are modeled as a logistic regression:

logit[P{Riv = 1}] = α0 + Σ6
x=1αxIx

iv (1)

where Ix ∈ { ˜FLAIR
t1

,ΔFLAIR, ˜T1
t1

,ΔT1, ˜T2
t1

,ΔT2} constitute the six
input image volumes for patient i.

Incorporating Neighborhood Information. The first scale of the context
we incorporate into the model in Eq. (1) is the immediate neighborhood of a voxel
in the form of ΔFLAIR values over a K × K neighborhood of each considered
voxel. With x representing the indices of the neighborhood voxels, and these
values were used as additional descriptors to learn additional coefficients β:

logit[P{Riv = 1}] = α0 + Σ6
x=1αxIx

iv + Σ8
x=1βxΔFLAIRx

iv (2)

Incorporating Local Texture Descriptors. To incorporate a wider context,
we extracted texture descriptors from a larger L×L neighborhood of a voxel on
a ΔFLAIR sequence. From voxel intensities within the brain mask, descriptors
representing intensity statistics, such as mean, standard deviation, and kurtosis,
were generated. Texture-based descriptors were extracted from the gray-level
co-occurrence matrix (GLCM) of each patch using Haralick descriptors [3] and
the gray-length run-length matrix (GLRLM) descriptors [9]. This resulted in
31-dimensional vectors, which were normalized to their z-scores to obtain T x

iv,
x = 1, . . . , 31 for each selected voxel v. The logit model using these 31 descriptors
is denoted as:

logit[P{Riv = 1}] = γ0 + Σ31
x=1γxT x

iv (3)
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Table 1. Median ± median absolute deviation values for patient-level AUC-ROC and
AUC-PR generated across 45 independent three-fold cross-validated trials.

Metric Baseline 1 Baseline 2 Baseline 3 Proposed

AUC-ROC 0.94 ± 0.04 0.94 ± 0.04 0.93 ± 0.04 0.97 ± 0.01

AUC-PR 0.14 ± 0.19 0.17 ± 0.18 0.29 ± 0.13 0.43 ± 0.16

Multi-scale Method. The joint multi-scale model combines the multi-sequence
voxel intensities with the immediate neighborhood and the local texture descrip-
tors. This descriptor was used as input to fit the logistic regression function:

logit[P{Riv = 1}] = α0 + Σ6
x=1αxIx

iv + Σ8
x=1βxΔFLAIRx

iv + Σ31
x=1γxT x

iv (4)

The logistic regression model was first learned using the balanced dataset
over a selection mask, computed at voxel v for patient i as:

Siv =

{

1 ΔFLAIRiv > σΔFLAIRi

0 otherwise
.

In testing, the learned set of coefficients α0, . . . α6, β1, . . . β8, γ1, . . . γ31 was
applied to infer the lesion change probability maps for the whole intracranial
volume of a test subject.

3 Experiments and Results

The proposed method (Eq. (4)) was compared to an implementation of the exist-
ing state-of-the-art method [8] that considers only the multi-sequence voxel
intensities (Eq. (1), referred here as Baseline 1); a method using the intensities
as well as the immediate neighborhood context information from a 3 × 3 neigh-
borhood (Eq. (2), referred to as Baseline 2); and a method using texture-based
descriptors (Eq. (3), referred to as Baseline 3).

A three-fold cross-validation scheme was used. To minimize the effect of ran-
dom variation on training and testing subsets within folds, each three-fold exper-
iment was run three times, resulting in 45 patient-level ROC and PR curves for
each method. Table 1 and Fig. 2 depict comparisons of AUC-ROC and AUC-PR
for the four methods. The higher performance of the Multi-Scale Method com-
pared to other methods was statistically significant (p < 0.001) both in terms of
AUC-ROC and AUC-PR.

3.1 Importance of Texture-Based Descriptors

Comparing Baseline 2 and the Multi-Scale Method, texture-based radiomic fea-
tures clearly contribute to the latters higher performance. Here we investigate
the discriminative power of the set of texture descriptors. Figure 3 shows the dif-
ferences in descriptor values between voxels with lesion change and voxels with



A Multi-scale MS Lesion Change Detection 357
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Fig. 1. A sample of the input images, manually annotated reference labels for lesion
change, and the lesion change probability map generated by the proposed method.
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Fig. 2. Distributions of patient-level AUC-ROC (left) and AUC-PR (right) values gen-
erated across 45 3-fold cross-validated trials on test patients.

no change. Since the descriptors were normalized for each patients data, the
learned coefficients γx as in Eq. (4) indicate the significance of the corresponding
descriptors in differentiating lesion change detection. Coefficients in Eq. (4) that
are consistently large in magnitude suggest that they are especially important
to generating the output lesion change probability map.

To study the importance of specific texture-based descriptors, a large set
of coefficients were generated using a Monte-Carlo simulation. With repeated
random sampling of image data from ten patients, 32 sets of coefficients were
generated. A one-sample Wilcoxon signed-rank test was used to evaluate which
coefficients consistently differ most from zero (null hypothesis that the median
value is zero). The top ten descriptors (p < 0.01) were found to be homogeneity,
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sum average, sum variance, standard deviation, contrast, dissimilarity, difference
variance, difference entropy, short run-length emphasis (RE), and long run high
gray-level emphasis (GE).

Lesion Change

Sample Voxel0 200

Mean
Standard Deviation

Skewness
Kurtosis

Autocorrelation
Contrast

Correlation
Cluster Prominence

Cluster Shade
Dissimilarity

Energy
Entropy

Homogeneity
Variance

Sum Average
Maximum Probability

SumVariance
SumEntropy

Difference Variance
Difference Entropy

Short RE
Long RE

Gray Level Non−Uniformity
Run Length Non−Uniformity

Run Percentage
Low Gray Level RE
High Gray Level RE
Short Run Low GE
Short Run High GE
Long Run Low GE
Long Run High GE

No Change

Sample Voxel0 200
0 1

Fig. 3. Normalized descriptor values for sample voxels with lesion change (left) and
with no change (right). The voxels were randomly selected from a sample patient,
and all voxels are within the intracranial volume mask and voxel selection mask. Note
the differences in descriptor values between the two classes, which are indicative of
discriminative potential of these radiomic descriptors. In the descriptor index, GE
stands for gray-level emphasis and RE stands for run-length emphasis.

4 Discussion

We proposed a multi-scale MS lesion change detection method, which had the
highest performance when compared to three baseline methods that employed
the multi-sequence MR images at fewer scales. The proposed method differs from
others by extracting descriptors from not only the voxel itself, as in Ref. [8],
which corresponded to Baseline 1, but also at two additional spatial scales, i.e.
at immediate and extended neighborhoods. Since a radiologist annotates image
voxels not in isolation but in the context of its surrounding voxels, it is intuitive
that multi-scale context information improves lesion change detection.

Comparing Baseline 2 and the Multi-Scale Method, texture descriptors
clearly contribute to the latter’s higher performance. The Multi-Scale Method
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and Base-line 3 had higher AUC-PR than Baseline 1 and 2, suggesting that
texture-based descriptors improve the algorithms performance in the task of
differentiating lesion change areas from non-lesion change areas. The top ten
descriptors reported in the Results section (e.g. homogeneity, sum average) were
especially critical in distinguishing between areas with and without lesion change,
since their learned weights differ most from a median value of zero across multi-
ple experiments. Extracting only these descriptors resulted in comparable per-
formance (median AUC-ROC = 0.97, AUC-PR = 0.40) to using all 31 texture-
based descriptors (median AUC-ROC = 0.97, AUC-PR = 0.43), which suggests
that they may be sufficient for less computationally expensive use in a clinical
setting.

While radiomic descriptors have made progress in tumor detection and seg-
mentation for other diseases, this work is one of the first to use these descrip-
tors in MS lesion change detection and highlights the importance of specific
descriptors for this purpose. As expected, despite the significant contributions
of texture descriptors, the intensities of the central voxel and its immediate
neighborhood nonetheless contributed significantly to the performance. As per
our experiments, the proposed Multi-Scale Method outperformed Baseline 3 due
to these additional descriptors. This once again emphasizes the importance of
a multi-scale approach. As a reference point, we also evaluated the coefficients
directly provided by Ref. [8]. It resulted in a median AUC-ROC of 0.82, which
was significantly lower than the results from training on our dataset as presented
in Table 1, but the result is high enough to confirm the generalizability of such an
approach, which can be attributed to the standard image preprocessing routines
applied in both studies.

Quantitative longitudinal MS lesion analysis could provide insight into dis-
ease progression that occurs subtler and earlier than clinical markers like dete-
rioration of physical movement. In the current clinical practice, lesion analysis
is limited to recording lesion count and location. Manual annotation of the MS
lesion change is challenging due to the number of sequences (T1, T2 and FLAIR
in our study) that need to be taken into account when performing the labeling
of each potential new lesion area. Moreover, the task becomes even more time
and cost expensive in a setting of a large-scale clinical trials, where, due to the
larger number of imaging timepoints of interests, it is crucial to have a consistent
annotation in order to reliably evaluate the effectiveness of the tested treatment.
Reliable automated methods such as our approach can be used to expedite and
assist the radiologists daunting task of labeling lesion change for many patients
and provide objective evaluations in a consistent and efficient manner.

To conclude, we proposed a multi-scale MS lesion change detection method,
which incorporates not only information at voxel level, but also information from
neighborhood and texture-based descriptors from the larger patch surrounding
each voxel. The method statistically significantly improved over the state-of-
the-art method. We also showed the importance of texture-based descriptors to
effective lesion change detection, which to the best of our knowledge has not
been explored in previous works.
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5. Lladó, X., et al.: Automated detection of multiple sclerosis lesions in serial brain
MRI. Neuroradiology 54(8), 787–807 (2012). https://doi.org/10.1007/s00234-011-
0992-6

6. Mechrez, R., Goldberger, J., Greenspan, H.: Patch-based segmentation with spatial
consistency: Application to MS lesions in brain MRI. https://doi.org/10.1155/
2016/7952541

7. Smith, S.M.: Fast robust automated brain extraction. Hum. Brain Mapp. 17(3),
143–155 (2002). https://doi.org/10.1002/hbm.10062

8. Sweeney, E.M., Shinohara, R.T., Shea, C.D., Reich, D.S., Crainiceanu, C.M.: Auto-
matic lesion incidence estimation and detection in multiple sclerosis using multi-
sequence longitudinal MRI. Am. J. Neuroradiol. 34(1), 68–73 (2012). https://doi.
org/10.3174/ajnr.A3172

9. Tang, X.: Texture information in run-length matrices. IEEE Trans. Image Process.
7(11), 1602–1609 (1998). https://doi.org/10.1109/83.725367

10. Tustison, N.J., et al.: N4itk: improved n3 bias correction. IEEE Trans. Med. Imag-
ing 29(6), 1310–1320 (2010). https://doi.org/10.1109/TMI.2010.2046908

11. Zhang, Y.: MRI texture analysis in multiple sclerosis. https://doi.org/10.1155/
2012/762804

https://report.nih.gov/nihfactsheets/ViewFactSheet.aspx?csid=103
https://report.nih.gov/nihfactsheets/ViewFactSheet.aspx?csid=103
https://doi.org/10.3389/fninf.2014.00044
https://doi.org/10.1109/PROC.1979.11328
https://doi.org/10.1007/s12021-016-9301-1
https://doi.org/10.1007/s00234-011-0992-6
https://doi.org/10.1007/s00234-011-0992-6
https://doi.org/10.1155/2016/7952541
https://doi.org/10.1155/2016/7952541
https://doi.org/10.1002/hbm.10062
https://doi.org/10.3174/ajnr.A3172
https://doi.org/10.3174/ajnr.A3172
https://doi.org/10.1109/83.725367
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1155/2012/762804
https://doi.org/10.1155/2012/762804


Multi-task Sparse Low-Rank Learning
for Multi-classification of Parkinson’s Disease

Haijun Lei1(&), Yujia Zhao1, and Baiying Lei2

1 College of Computer Science and Software Engineering,
Guangdong Province Key Laboratory of Popular High-Performance Computers,

Shenzhen University, Shenzhen, China
leiby@szu.edu.cn

2 National-Regional Key Technology Engineering Laboratory for Medical
Ultrasound, Guangdong Key Laboratory for Biomedical Measurements

and Ultrasound Imaging, School of Biomedical Engineering,
Health Science Center, Shenzhen University, Shenzhen, China

Abstract. Identifying prodromal stages of Parkinson’s disease (PD) draws
increasing recognition as non-motor symptoms may appear before classical
clinical diagnosis based on motor signs. To effectively develop a computer-
aided diagnosis for multiple disease progression stages, neuroimaging has been
widely applied for its convenience of revealing the intricate brain structure.
However, the high dimensional neuroimaging features and limited sample size
bring the main challenges for the diagnosis task. To handle it, a multi-task sparse
low-rank learning framework is proposed to unveil the underlying relationships
between input data and output targets by building a matrix-regularized feature
network. Inductions of multiple tasks are simultaneously performed to capture
intrinsic feature relatedness with multi-task learning. By discarding the irrele-
vant features and preserving the discriminative structured features, our proposed
method can select the most relevant features and identify different stages of PD
with different multi-classification models. Extensive experimental results on the
Parkinson’s progression markers initiative (PPMI) dataset demonstrate that the
proposed method achieves promising classification performance and outper-
forms the conventional algorithms.

Keywords: Multi-task learning � Low-rank � Sparse learning
Parkinson’s disease

1 Introduction

PD has gained increasing attention as the growing aging problem of the population.
The chronic progression nature and imperceptible neuro-diminishment of PD make the
treatment comparatively difficult [1]. There is suggestive evidence that olfaction
changes, sleep behavior disorder, subtle cognitive changes and depression can be
present at early PD stages, suggesting high potential of having PD [2]. Before the
occurrence of motor symptoms permits the clinical diagnosis of PD, about or above
50% of the dopaminergic neurons of the substantia nigra have degenerated. The time
span between the onset of neurodegeneration and manifestation of the typical motor
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symptoms is referred as prodromal phase of PD (PROD) [3]. The term SWEDD (scans
without evidence for dopaminergic deficit) refers to the absence of an imaging
abnormality in patients clinically presumed to have PD [4]. PROD and SWEDD are
different disorders of PD, whose patients require targeted treatment. Therefore, early
PD diagnosis offers timely prevention treatment of the patients.

Using the rich information of neuroimaging techniques, we can monitor the minor
neuro changes, which are not easy to perceive in normal clinical symptom-based
diagnosis. Common neuroimaging techniques include magnetic resonance imaging
(MRI), diffusion-weighted tensor imaging (DTI). Recently, many machine learning
methods have been applied to utilize the neuroimages in the computer-aided diagnosis
of neurodegenerative disease. A robust feature-sample selection scheme was developed
for PD diagnosis [5]. Due to the challenges of high dimensionality and limited sample
size, the overfitting problem could be occurred in the data analysis. Recent studies have
demonstrated that feature selection is capable of overcoming this issue. A l1-regularizer
(i.e., a sparse term) is introduced in the estimation model for feature selection when the
sample size is significantly smaller than the feature dimension [6]. However, sparsity
regularization is insufficient in multi-classification application since there are four
progressive classification targets: normal control (NC), SWEDD, PROD and PD.

In fact, the relationship between input data (i.e., MRI images) and output targets
(i.e., prediction results) have more to explore. Inspired by the fact that the brain is
organized with modular structures, we intend to find the most representative features to
train our multi-class classifiers by extracting the low-rank structure of the matrix-
regularized feature network as well as its sparseness.

On the other hand, gray matter (GM), white matter (WM), and cerebrospinal fluid
(CSF) are the most significant biomarkers in the brain which are later used as features.
The conventional feature extraction methods apply a simple linear combination to use
the three matters without considering their own contributing factor. We model this
problem as a multi-task learning framework by proposing a model that efficiently
leverages the multi-modal data [7]. Our model considers the multi-classification of
disease stages using each modal as one task. We assume that these tasks are related and
can benefit each other for the classification purpose. Then we perform the three tasks
simultaneously to capture their intrinsic relatedness to achieve better classification
performance.

Moreover, clinical symptoms have been considered as a vital indicator of PD
diagnosis. The judgement results of clinicians are reflected on the clinical assessment
scores for each potential PD patient. The combination of constructive information with
the neuroimaging information provides sufficient information for computer-aided
analytical diagnosis. For this reason, we propose a multi-task sparse low-rank learning
(MSLRL) framework for multi-classification of PD. The proposed MSLRL framework
combines the sparsity and low-rank constraints together for each task to select the most
PD related features. To the best of our knowledge, this is the first work to introduce
multi-task sparse low-rank learning to PD diagnosis using neuroimages. Experimental
results demonstrate the prominent performance of our proposed method on the PPMI
dataset.
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2 Method

The proposed method intends to find a subset of features that are most related to PD.
The multi-task sparse low-rank learning framework is shown in Fig. 1. We extract our
feature input data from MRI images. In order to predict the accurate labels, we add a
low-rank and sparse constraint to the matrix-regularized feature network and extract the
respective weighted significance by clustering for each task. Each task applies the same
feature selection method in a jointly multi-task framework. The shared weight matrix
leads to the selected features with reduced dimensions to train a support vector machine
(SVM) based classifiers.

Supposing that we have m subjects and each has n features belong to k tasks. In the
linear regression model Y ið Þ ¼ X ið ÞW ið Þ, Y ið Þ 2 R

m�1 is the ground truth label vector of
i-th task, X ið Þ 2 R

m�n is the input data matrix of i-th task, and W ið Þ 2 R
n�1 is the

weight coefficient matrix for each feature of i-th task. We can get W ið Þ by solving the
following objective function:

minW ið Þ Y ið Þ � X ið ÞW ið Þ�� ��2
F ; ð1Þ

where Ak kF is the Frobenius norm (F-norm) of A which is defined as

Ak kF¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i Aik k22
q

, where Ai is the row vector. F-norm also known as the l2-norm or

the l2-regularizer. Equation (1) is a simple and straightforward linear regression model
without constraint on any variable. However, it does not consider the properties of
weight matrix, which result in inferior performance. In most machine learning appli-
cations, over-fitting is a common problem when the data matrix is unbalanced. Espe-
cially in the field of neuroimaging-aided diagnosis, the brain images are rare, and yet

Fig. 1. Flowchart of our proposed MSLRL method. The shared model is learned from the multi-
task learning by considering each tissue modal as task.
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they provide extensive information, leading to high dimensionality. A sparse term like
l1-regularizer is generally adopted to regulate the weight matrix by setting certain
entries to zero for sparseness. Let Ak k1 be the l1-norm of A and is defined as Ak k1¼PN

i¼1 Aij j; we can formulate the objective function using sparse representation as:

minW ið Þ Y ið Þ � X ið ÞWðiÞ�� ��2
F þ k W ið Þ�� ��

1; ð2Þ

Equation (2) selects the most representative features under the assumption of
sparsity ofW ið Þ and constraint of the first data-fitting term. In the model, we aim to find
a weight matrix that represents the feature significance. We further explore the low-
rank structure between features. It is well-known that, the brain is divided into different
parts known as regions of interest (ROIs), we extract different features from these
regions. Since PD is one category of neurodegenerative disease, it is influenced by a
block of brain regions that are responsible for certain human actions or emotions. For
this reason, we assume that a group of features are dependent on each other, leading to
a low-rank structure of the coefficient weight matrix because certain rows are depen-
dent. The sparse low-rank learning framework for each task is built on the assumption
that, features are closely related with group of features while the relevance between
these groups may be sparse. Multiple tasks share the same low-rank and sparse weight
coefficients. Thus, the objective function for each task is reformulated as:

minW ið Þ Y ið Þ � X ið ÞW ið Þ�� ��2
F þ k1 W ið Þ�� ��

1 þ k2rank W ið Þ
� �

; ð3Þ

where rank W ið Þ� �
is the rank function of W ið Þ. Low-rank learning has been utilized in

matrix recovery and network modeling. The weight matrix W ið Þ in Eq. (3) has
dimension of n rows representing the respective feature significance. The rank mini-
mization of W ið Þ explores the low-rank structure among features to obtain the intrinsic
relationship. However, it is difficult to solve W ið Þ since the rank function is non-convex
and the rank minimization is a NP-hard problem. Recently, researchers have proved
that trace norm function is the convex envelop of the rank function over the domain
W ið Þ�� ��

2 � 1, which provides the lowest bounds of the rank function rank [11]. The
trace norm Wk k� is defined as:

Wk k�¼
Xmin n;kf g

i¼1
ri ¼ Tr WTW

� �1
2

� �
; ð4Þ

where ri is the i-th singular value of W and can be obtained by singular value
decomposition (SVD). Thus, we can establish the final objective function with a l1-
norm Wk k1 and a trace norm Wk k� as:

minW
Xk

i¼1
Y ið Þ �W ið ÞX ið Þ�� ��2

F þ a Wk k1 þ b Wk k�; ð5Þ
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where a and b are the parameters controlling the sparse degree and the low-rank
degree, respectively. When a ¼ 0, Eq. (5) has only the low-rank constraint. When we
add a l2-norm Wk k2 to Eq. (2), we can get the standard elastic net formulation.
Moreover, if we change the l1-norm Wk k1 in Eq. (2) to l2;1-norm Wk k2;1, we can get
the classic least absolute shrinkage and selection (LASSO).

For optimization for Eq. (5), we notice that, the l1-norm and trace norm are non-
differentiable. Thus, we solve W using the proximal gradient descent method due to its
effectiveness in solving l1-norm involved equations. Since we have three terms in
Eq. (5), we update W by the value of each term. First, we find the proximal operator of
a Wk k1 according to:

proxa �k k1 Wð Þ ¼ sign wij
� � �max wij

�� ��� a; 0
	 
� �

n�k; ð6Þ

where proxðÞ denotes the proximal operator and signðÞ is the sign function. Similarly,
we can obtain the proximal operator of b Wk k� using:

proxb �k k� Wð Þ ¼ Udiag max br1; 0f g; � � � ;max brl; 0f gð ÞVT; ð7Þ

where U is the unitary matrix in the SVD of W so that W ¼ Udiag r1; � � � ; rlð ÞVT withbri ¼ ri � b and l ¼ min n; kf g. Then, we consider the first data-fitting term

Y ið Þ �W ið ÞX ið Þ�� ��2
F . Given f1 W ið Þ� � ¼ Y ið Þ �W ið ÞX ið Þ�� ��2

F , we can get the derivative of

W ið Þ as rf W ið Þ� � ¼ X ið ÞTX ið ÞW ið Þ � X ið ÞTY ið Þ. Consequently, we can solve W by
iteratively updating the values until convergence.

3 Experiments

3.1 Experimental Settings

We validate our method by classifying different stages of PD subjects. We choose
SVM classifiers to construct a multi-class classification model for its efficiency in
separating different class samples with the maximum margin [8]. Another classifier we
apply is the capped lp-norm SVM [9]. This upgraded classifier can deal with both light
and heavy outliers, boosting classification performance. The main parameters used are
a and b in Eq. (5), where a controls the sparse term Wk k1 and b controls the low-rank
term Wk k�, respectively. The initial values are set as a 2 2�5; . . .; 25

	 

,

b 2 2�5; . . .; 25
	 


. The fine-tuned parameter values are specified by a 5-fold cross-
validation strategy. The results are evaluated using: accuracy (ACC), sensitivity (SEN),
specificity (SPEC), and area under the receiver operating characteristic curve (AUC).
For fair evaluation, the classification performance of the proposed method is evaluated
via a 10-fold cross-validation strategy.
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3.2 Data Preprocessing

The data used in this experiment are MRI images from the PPMI dataset. All the
original images are preprocessed by the anterior commissure-posterior commissure
correction and skull-stripping for later operation. Then we segment the images into
GM, WM, and CSF using Statistical Parametric Mapping (SPM) [10]. Following the
automated anatomical labeling atlas which parcel brain into 116 regions, we compute
the mean tissue density value of each region as features. In this work, we collect 643
subjects (127 NC, 380 PD, 56 SWEDD and 34 PROD). For each subject, the feature
dimension is 116 for each tissue modal (116 GM, 116 WM, 116 CSF). Apart from
these features, we also collect four clinical scores, namely, sleep scores, olfaction
scores, depression scores, and Montreal cognitive assessment scores as features. Theses
clinical scores are the clinical assessment results from the clinicians’ experience and
diagnosis. With the guidance of these clinical scores as features, we can build a more
reliable classification model.

3.3 Classification Performance

To further validate the effectiveness of our MSLRL method, we compare the method
with other similar methods. Apart from the elastic net and LASSO methods, we further
compare MSLRL with another two sparsity-based methods. One is multi-modal multi-
task (M3T) [11] and the other is joint sparse learning [12]. Furthermore, we addi-
tionally compare MSLRL with low-rank learning and sparse learning and sparse low-
rank learning (SLRL). The classification performance results are summarized in
Table 1. It is clear that, the MSLRL method achieves higher accuracy than classical

Table 1. Classification performance of all competing methods with different classifiers.

Method Classifier ACC SEN SPEC AUC

Elastic net SVM 67.84 73.17 84.11 86.23
Capped SVM 68.66 74.31 84.66 86.93

LASSO SVM 65.27 73.45 85.23 84.65
Capped SVM 65.68 74.92 86.30 85.17

M3T SVM 74.55 80.05 94.05 88.23
Capped SVM 75.81 81.55 97.45 89.45

Joint sparse learning SVM 72.10 75.24 85.38 87.54
Capped SVM 73.46 78.20 87.79 89.07

Low-rank learning SVM 72.32 73.01 88.68 88.78
Capped SVM 73.06 78.52 90.03 89.92

Sparse learning SVM 70.63 77.19 87.07 87.45
Capped SVM 71.88 77.85 87.93 88.97

SLRL SVM 75.23 84.21 93.86 90.24
Capped SVM 77.87 85.98 95.47 92.77

MSLRL SVM 78.76 84.62 98.32 92.21
Capped SVM 79.49 87.24 99.21 94.31
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Elastic net and LASSO as well as sparse-based M3T and joint sparse learning using
both SVM classifiers. SLRL turns out to be more effective than low-rank learning and
sparse learning, which validates the strategy of combining l1-norm Wk k1 and trace
norm Wk k� using sparsity and low-rank structure. MSLRL outperforming SLRL in
both classifiers, which proves that multi-task learning successfully explores the
intrinsic relation within multi-modal features. Receiver operating characteristic curves
(ROC) for algorithm comparison are shown in Fig. 2. MSLRL obtains the best per-
formance in all competing methods in each classifier, which shows the advantage and
potential for early PD diagnosis.

3.4 Most Distinctive Brain Regions

The identification of PD-related features and the monitoring of progression are of great
significance in early diagnosis. We utilize the weight coefficient matrix generated in
feature selection to study the discriminative brain regions most related to PD. The
regions most related with PD are visualized in Fig. 3. The selected brain regions are
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Fig. 2. ROC plots of the competing methods using two classifiers (SVM and Capped SVM).

Fig. 3. Top 10 discriminative brain regions obtained from SLRL and MSLRL. Brain regions are
color-coded. High means high relevance with PD. Low means relatively low relevance with PD.
(Color figure online)
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slightly different in two methods. The higher relevance of MSLRL than SLRL reveals
that MSLRL is more effective than SLRI for PD diagnosis. These distinctive brain
regions can be further investigated for clinical practice.

4 Conclusion

In this paper, we introduce a multi-task sparse low-rank learning framework for early
PD diagnosis between four progression stages. Specifically, for each task we add the
sparsity and low-rank regularization to the weight coefficients with a l1-norm and a
trace norm to unveil the underlying relationships within data. By exploring the intrinsic
relationships between multiple tasks, this framework can select the most representative
features by jointly considering the dimension reduction of neuroimaging feature vec-
tors and the relevant dependency properties of PD-related brain region features. Using
multi-modal data from PPMI neuroimaging dataset, experiments demonstrate that our
method has the best multi-class classification results among all the traditional methods.
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Abstract. In today’s world blindness is a major concern in working
population and diseases like glaucoma, diabetic retinopathy are main
causes for this. Early and fast detection using automated software system
can be a great help in this area. For that one major step is to detect
and segment the optic disc (OD) in retinal fundus image. In this paper
we have used U-Net based fully convolutional network to segment OD.
U-Net is a very efficient architecture in image segmentation particularly
in the area where availability of input images are very less. We have
first trained U-Net from scratch on the extended Messidor dataset. It is
then evaluated using three-fold cross validation on MESSIDOR image
dataset. During the process we have removed false positives based on
morphological operation and shape features. We have seen this method
has outperformed existing techniques in OD segmentation on the images
affected by diabetic retinopathy.

Keywords: Retinal fundus image
Optic disc detection and segmentation · Fully convolutional network

1 Introduction

Throughout the world around 314 million people are suffering from Diabetic
retinopathy, hypertensive retinopathy, glaucoma. These diseases gradually leads
to vision loss of the patient which is a major area of concern in the developing
counties [3]. Early identification and treatment can cure more than 85% visual
impairments cases. In this field computer aided diagnosis system can make the
process faster and assist ophthalmologists to cater more patients in less time.
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There are different approaches followed in identification and segmentation
of Optic Disc (OD). Welfer et al. [21] identified the OD boundary using mor-
phological operations and watershed transformation technique. Aquino et al. [2]
segmented the OD using morphological operations, edge detection method and
circular Hough transformation technique. Morales et al. [17] applied inpainting
as preprocessing for removing blood vessels and stochastic watershed transfor-
mation for determining the OD boundary. Xu et al. [22] applied active con-
tour model (ACM) and proved better segmentation. Lowell et al. [13] applied
a direction sensitive gradient-based technique to remove the vessel obstructions
and deformable ACM for finding the OD boundary in low resulotion images.
Chrastek et al. [6] applied distance map algorithm to remove the blood vessels
and then segmented the OD by using sequence of methods like morphological
operation, Hough transformation and ACM. The method presented by Joshi
et al. [11] improved the robustness of ACM proposed by Chan and Vese [4] by
taking care of the variations in the OD region. Morales et al. [17] detected the
boundary of optic disc by the principal component analysis.

To overcome all these types of shortcomings deep learning based algorithms
are playing an important role because of its ability to learn features during
training time. The success of convolutional neural network in object segmenta-
tion [5,7,18] has motivated us to investigate the performance of fully convolutioal
network for optic disc detection and segmentation. The major contributions of
the present work are (i) initial segmentation of optic disc using U-Net based fully
convolutional network and (ii) removal of false-positives based on anatomy-aware
features.

In this paper, Sect. 1 has covered the existing works in this area. Then we have
described the proposed segmentation framework in Sect. 2. Experimental results
and comparison of the proposed method with the state-of-the-art techniques is
provided in Sect. 3. Conclusion and future scope of work is stated in Sect. 4.

2 Segmentation Framework

In our proposed method (Fig. 1) U-net [19] based fully convolutional network
has been used for initial segmentation after preprocessing of the input images.
Then false positives have been reduced using anatomy-aware features. The U-Net
architecture is used for initial segmentation as it provides better segmentation
using few number of training images.

Fig. 1. Block diagram of the proposed segmentation framework
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2.1 Preprocessing

First all the images are resized to 512 × 512 pixels. Then red channel image is
threshold. Morphological opening, closing and erosion operations [8] with square
structuring element are used to create a mask of circular retinal fundus region-
of-interest, which allows focusing only on the foreground of retinal images.

2.2 Segmentation Using U-Net

Architecture of U-Net. The U-net [19] is a fully convolutional network which
consists of convolution operation for down-sampling, max pooling, ReLU oper-
ation, concatenation and de-Convolution operation for up-sampling. The down-
sampling path has 5 convolutional blocks and each block has two convolutional
layers with a filter size of 3 × 3 and stride of 1. Max pooling with stride 2 is
applied to the end of every blocks except the last block. The data is propagated
through the network along all possible paths and generates the segmentation
map at the end of the network. At the end input images of 512 × 512 size
reduces to 32 × 32. The second part of the U-Net is the expansion layer which
basically create the high resolution segmentation map. This part consists of
a sequence of up-convolutions and concatenation with high-resolution features
from contraction path. Therefore, the size of feature maps increases from 32×32
to 512 × 512. High-level information is represented at up-sampling blocks, and
low-level features are transferred through skip connection.

Training of U-Net. First data augmentation techniques have been applied on
the images of extended MESSIDOR database (MESSIDOR-II) [16] which is then
used for training of U-Net from scratch. A stochastic gradient-based optimiza-
tion [12] (ADAM ) is applied to minimize the cross-entropy based cost function.
The learning rate for the ADAM optimizer is set to 0.0001 and over-fitting is
reduced by using dropout [10]. The weights of background and foreground are
maintained as 1:10 and training were performed upto 60, 000 iterations.

False Positive Removal. Morphological opening is applied to separate false
positives from Optic disc. E.g., for Fig. 2(a), after initial segmentation Fig. 2(b)
is showing some false positives caused by exudates. Compactness feature is used
to eliminate false positive candidates from initial segmentation results which
will create two objects. The object having bigger size is considered as optic disc
Fig. 2(c).

3 Experimental Results and Discussions

3.1 Database Used for Evaluation of Segmentation Result

MESSIDOR. MESSIDOR [15] database contains 1200 colour retinal images,
acquired using non-mydriatic camera, Topcon TRC NW6 with field-of-view set
to 45◦. Binary mask of the optic disc of MESSIDOR dataset was provided by
the experts of the University of Huelva [1].
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Fig. 2. (a) Original image (b) false positives caused by exudates (c) optic disc candidate.

3.2 Evaluation

The performance of optic disc detection is evaluated using Success Rate (SR)
which represents the percentage of retinal images in a dataset where the centroid
of optic disc is successfully localized within the boundary of the ground truth
mask of optic disc. The performance of optic disc segmentation is evaluated in
terms of Overlap Measure (OM) and Mean Absolute Distance (MAD) [20]. The
OM represents the ratio of the intersecting area between the actual optic disc
and segmented optic disc. MAD represents the mean of the shortest distances
from the boundary of the actual optic disc to the boundary of the segmented
optic disc.

3.3 Experimental Results

Quantitative Analysis. The evaluation of the proposed segmentation algo-
rithm is performed on MESSIDOR datasets. During testing, we divided the
images into three subsets. Out of three subsets, two are used for fine tuning of
pre-trained network and remaining set is used for testing. Thus U-Net learns
database specific features through transfer learning. The average value of SR,
OM and MAD of the proposed framework and competing techniques are pro-
vided in Table 1. The OM of the proposed method is larger as compared to the
competing techniques. Such improvement of OM is due to the application of
fully convolutional network in initial segmentation.

There is only one failure case for optic disc detection for the MESSIDOR
dataset. The MAD value of the proposed method is slightly better or comparable
with the competing techniques. The high value of OM depict that the segmented
mask of optic disc matches accurately with the ground truth mask. A compari-
son of segmentation performance in terms of percentage of test images included
in various OM distributions, is provided in Table 2. The proposed method out-
performs the competing techniques at all the four different OM levels such as ≥
0.7, 0.75, 0.85 and 0.9.
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Table 1. Comparative result of optic disc segmentation

Method Author OM MAD SR

MESSIDOR Roychowdhury et al. [20] 0.84 3.9 100

Marin et al. [14] 0.87 6.17 99.75

Giachetti et al. [9] 0.88 - 99.83

Aquino et al. [2] 0.86 - 98.83

Yu et al. [23] 0.83 7.7 99.08

Proposed 0.91 1.97 99.92

Table 2. Percentage of images in various OM levels

Method Author OM ≥ 0.7 OM ≥ 0.75 OM ≥ 0.85 OM ≥ 0.9

MESSIDOR Roychowdhury et al. [20] 96.72 82.85 47.56 20

Marin et al. [14] 95 - 83.75 48.92

Giachetti et al. [9] 92–94 89–92 78–82 59–62

Yu et al. [23] 77 77 45 25

Aquino et al. [2] 93 90 73 46

Proposed 98.00 97.08 90.91 76.98

Qualitative Results. We have analysed the proposed framework for images
of healthy subjects [Fig. 3(a)–(c)], the images with the presence of pathologies
[Fig. 4(a)–(c)], and low contrast [Fig. 4(b)]. These qualitative results reveal that
the proposed algorithm is capable of identifying and segmenting the optic disc
in bad quality retinal images. Few images with poor segmentation results is
shown in Fig. 5(a)–(c). The poor segmentation is due to non-uniform illumination
during image acquisition.

Fig. 3. Segmentation evaluation examples for normal fundus images. The contour of
ground truth and segmented optic disc is shown in blue and green color respectively.
(Color figure online)
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Fig. 4. Segmentation evaluation examples for images having pathologies,haemorrhage
and low contrast. The contour of ground truth and segmented optic disc is shown in
blue and green color respectively. (Color figure online)

3.4 Implementation

The U-Net architecture is implemented in Python using the PyTorch library in
Linux environment using a 8 GB GPU (NVIDIA GeForce GTX 1070 with 8GB
GDDR5 memory) on a system with Core-i7 processor and 32 GB RAM.

Fig. 5. Segmentation evaluation examples for some typical cases. The contour of ground
truth and segmented optic disc is shown in blue and green color respectively. (Color
figure online)

4 Conclusion

In the proposed method, fully convolutional network is trained by feeding thou-
sands of varying grades of fundus images, where it is learns the best features
on its own. Therefore, the proposed method outperforms the other competing
techniques in most of the metrics measurements. The method is also successful
in optic disc localization and segmentation, when tested on both dilated and
non-dilated types of fundus images. The performance of this algorithm does not
degrade while handling images containing strong distractors like yellowish exu-
dates which prove the effectiveness and robustness of the proposed process. In
future more research needs to be accomplished by testing on other independent
datasets.
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Abstract. Convolutional neural networks have advanced the state of
the art in medical image segmentation. However, there are two chal-
lenges in 3D deep learning segmentation networks. First, the segmen-
tation masks from deep learning networks lack shape constraints, often
resulting in the need for post-processing. Second, the training and deploy-
ment of 3D networks require substantial memory resources. The memory
requirement becomes an issue especially when the target organs cover a
large footprint. Commonly down-sampling and up-sampling operations
are needed before and after the network. To address the post-processing
requirement, we present a new loss function that incorporates the level
set based smoothing loss together with multi Dice loss to avoid an addi-
tional post processing step. The formulation is general and can accom-
modate other deformable shape models. Further, we propose a way to
integrate the down- and up-sampling in the network such that the input
of the deep learning network can work directly on the original image
without a significant increase in the memory usage. The 3D segmentation
network with the proposed loss and sampling approach shows promising
results on a dataset of 48 chest CT angiography images with 16 target
anatomies. We obtained average Dice of 79.5% in 4 fold cross validation.

1 Introduction

Advances in deep learning segmentation methods have enabled faster 2D and
3D segmentation [1–3]. In these networks, compared to traditional methods,
high-level deeply learned features from a receptive field are used. Compared to
stacked 2D slice segmentation, 3D segmentation has a better chance of produc-
ing consistent and continuous object shapes. However, learning a 3D volume
neural network segmentation faces two challenges. First, each voxel is classified
using content from a receptive field with certain size but the overall shape of
the object is not taken into account. Therefore, a post processing step to further
refine the segmentation is usually needed. To address this problem, Kamnitasas
et al. [3] used fully connected conditional random fields (CRF) to refine brain
lesion segmentation in a post processing step. Lu et al. [4] used graph cut in the
post processing. Level set is also often used as a post processing step to refine
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): DLMIA 2018/ML-CDS 2018, LNCS 11045, pp. 377–384, 2018.
https://doi.org/10.1007/978-3-030-00889-5_43
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the segmentation output from deep learning networks [2,5,6]. In the deployment
stage, the deep learning step takes milliseconds while the post processing step
usually takes longer. Thus integrating the post processing step in the learning
of the deep learning weights can further speed up and simplify the segmen-
tation process in the deployment stage. Tang et al. [7] proposed a deep level
set method for liver CT and left ventricle MRI segmentation. They use level
set to refine an initial segmentation from a network trained with limited data,
and then backpropagate the loss between the refined segmentation and the deep
learning output. However, their method does not have an explicit mathematical
formulation of the integration. Hu et al. [8] proposed a framework to let the net-
work learn a levelset function for objects instead of a probability map. However,
their levelset function is obtained by directly substracting 0.5 from the probabil-
ity map, which is different from the commonly used signed distance transform
method.

Second, 3D volume segmentation requires significant memory becuase of the
huge number of weights learned. Constrained by the memory limit, usually small
volumes, either from downsampling of the original image or smaller cropped
regions are fed into a deep learning network. Milletari et al. [1] and Çiçek, et al. [9]
downsampled the original image before feeding into the network and upsampled
it back. However, this downsampling method results in lost information. Besides
downsampling, Gibson et al. [2] also used batch-wise spatial dropout and Monte
Carlo inference to reduce memory costs without affecting performance. Memory
usage can also be reduced if fewer kernels in each layer or fewer layers are used
in the network. However, reducing the number of kernels will reduce the number
of learned latent features and increase the risk of getting a biased network.
Reducing the number of layers will shorten the network depth and thus result
in a smaller receptive field and lose part of the neighborhood information.

In this paper, our contribution focuses on addressing these two challenges.
For the first challenge, we propose a novel way to integrate a level set energy
function into Dice based loss. We show that the new proposed loss can drive
the learning of the network weights such that the segmentation output of the
network has the smooth property defined by a level set energy function. This
smoothing energy is propagated back into the network to train a set of weights
that can output a smoother segmentation. For the second challenge, our strategy
of processing large volumes is integrating downsampling and upsampling into the
network to process a larger volume. We evaluate the proposed method in 48 chest
CTA datasets where 16 anatomies are manually segmented. We demonstrate
the efficiency of integrating post processing into deep learning network while
reducing the processing time for a volume to millisecond.

2 Method

We first propose the framework of integrating the surface smoothing into deep
learning training, followed by a modified segmentation network that handles
large volumes by adding very few parameters to the network.
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2.1 Integrating Level Set Energy into Network Loss Function

The softmax output of a segmentation network is bounded between 0 and 1.
As such, the nth output can be treated as a Heaviside function Hn(x) of a
latent surface S and its corresponding level set embedding function φn(x) can be
obtained using signed distance transform. From a given φn(x), the corresponding
Heaviside function is approximated as Hn(x) = 1

2 (1 + 2
π arctan(φn(x)

ε )).
In level set representation, smoothing a surface is equal to evolving its cor-

responding embedding function. Thus the level set loss used for smoothing a
surface is defined as:

E(φn(x)) =
∫

Ω

δ(φn(x)) × |�φn(x)|dx (1)

where Ω is the volume inside the surface S. x is the voxel index. δn(x) is the
gradient of Hn(x) with regard to x, and is equal to ε

π(ε2+φn(x)2) .
Different types of loss, such as cross entropy loss, Dice based loss for binary

segmentation [1], or probabilistic Dice scores [2] were proposed to train a seg-
mentation network. We took multi Dice, which is the sum of Dice for different
organs as an example in this paper to integrate with level set based surface
energy.

Using H(x) to denote the group of Hn(x) for all anatomies, the overall loss
to minimize can be written as:

E(H(x)) = E1(H(x)) + E2(H(x)) (2)

= −
N∑

n=0

Dice(Hn(x), gn(x)) +
N∑

n=0

wn ×
∫

Ω

δ(φn(x)) × |�φn(x)|dx

where E1 is the multi Dice based loss and E2 is the level set based loss. The
level set based loss is defined to be the overall area of the segmentation surface
for the nth anatomy. gn(x) is the ground truth binary mask of the nth anatomy,
wn is the weight used for different anatomies. N is the number of anatomies.

For back propagation, we need to compute the gradient of the loss with
respect to the network prediction Hn(x):

∂E(H(x))
∂Hn(x)

=
∂E1(H(x))

∂Hn(x)
+ wn × ∂E2(H(x))

∂Hn(x)
(3)

in which the first part can be calculated as:

∂E1(H(x))

∂Hn(x)
= 2

(
gn
j (x)(
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i Hn

i (x)
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+
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i gn
i (x)

2
) − 2Hn

j (x)
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i (x)gn

i (x)

(
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i Hn
i (x)

2
+
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i gn

i (x)
2
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(4)

where i and j are voxel indices. The second term can be calculated as:

∂E2(H(x))
∂Hn(x)

=
∂E2(H(x))

∂φn(x)
× ∂φn(x)

∂Hn(x)
(5)
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where ∂φn(x)
∂Hn(x) is difficult to be solved analytically, so we approximate it as

�φn(x)
Hn(φn(x)+�φn(x))−Hn(φn(x)) . The gradient of E2(H(x)) with respect to φn(x)
is given as [10]:

∂E2(H(x))
∂φn(x)

= δ(φn(x) × div(
�φn(x)
|�φn(x)| ) (6)

div( �φn(x)
|�φn(x)| ) is the mean curvature of a surface. Equation 6 evolves φn(x) by

the surface curvature in the direction of the surface norm, which will result in a
smoother surface. The sign of the curvature determines whether a point on the
surface should move inward or forward in the direction of surface normal.

2.2 Segmentation Network Architecture

Inspired by image guided filtering [11], which uses an additional image to guide
the filtering of a target image, we propose the architecture in Fig. 1 to use the
raw image to guide the upsampling of the low resolution segmentation maps.

Fig. 1. The network architecture modifies VNet to integrate downsampling and upsam-
pling procedures with additional layers with few parameters.

The raw image is first downsampled with ONE kernal downsampling con-
volution (this can be replaced by average pooling), and the downsampled
image is fed to VNet [1]. We replace the last softmax layer in standard
VNet with PRelu layer. The raw image is then upsampled by a deconvolu-
tion layer with the number of channels preserved, which is equivalent to the
number of anatomies + background. The deconvolution layer can be replaced
by a bilinear resampling layer and a convolution layer. The deconvolution out-
put is then concatenated with the raw image in the channel dimension, fol-
lowed by two convolution and activation layers. The downsampling and upsam-
pling added only 31698 weights when the number of anatomies n equals 16
(3× 3× 3 for the downsampling convolution layer, (n+1)× 3 × 3× 3× 2× (n+1)
for the deconvolution layer and the followed convolution layer, as well as
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(n+2)× 3× 3× 3× (n+1) + (n+1)× 3× 3× 3× (n+1) for the last two convolu-
tion layers), this number can be reduced to 513 for a binary segmentation. Thus,
most of the computation stays inside the VNet architecture whose input size is
half the original input size in each dimension. This allows the processing of a
large image without adding much to memory cost.

2.3 Implementation Details

This method is implemented in Caffe and runs on one TITAN X GPU with 12
GB of memory. The proposed architecture is first trained using multi Dice loss for
300 epochs until it converges. And then we continue training using the proposed
loss which integrates the level set smoothing energy for 15 epochs. Since we
have anatomies with naturally different surface curvature, we also set different
smoothing weights for different anatomies. For the vertebrae, the myocardium
and the left ventricle, we set the weights to be 1e–5, while for others we use
weight of 1e–4.

3 Experiments and Results

3.1 Data

We collect 48 cardiac CTA images annotated for 16 anatomical structures by one
annotator. The 16 anatomies are: sternum, ascending aorta, descending aorta,
aortic arch, aortic root, left pulmonary artery, right pulmonary artery, trunk
pulmonary artery, vertebrae, left atrium, right atrium, left ventricle, right ven-
tricle, left ventricular myocardium, superior vena cava, and inferior vena cava
similar to [12]. The cardiac CT studies used here were acquired by a Siemens
CT scanner. All images have voxel size of 1.5 mm in all directions.

3.2 Results

For the first stage of training which does not have the level set integrated loss,
we obtain average Dice of 79.3% for 4-fold cross validation. After continued
training with level set based smoothing energy, we obtain Dice of 79.5%. We must
specify that the sole expert that provided the ground truth segmentation was not
asked to target smoothness, thus adding the smoothing term does not necessarily
improve Dice coefficient. But we can visually observe a smoother segmentation.
Figure 2 shows two superior vena cava segmentation outputs generated from two
trained models with and without level set smoothing energy. We see that some
false positives due to image noise and lack of shape information are removed
because of their high curvature property.

As a qualitative way of understating the effects of the new loss function
on smoothing the structures, consider the case of spine as illustrated in Fig. 3.
The progressively smooth volume after epochs 8 and 15 are visible. To better
visualize the smoothing effect, we use a large weight (1e–4) in this example only
for demonstration. When applying this method to other applications, the number
of training epochs and the weight wn should be tuned as hyper parameters.
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Fig. 2. Effect of adding a level set smoothing term in the loss for smoothing surfaces:
(a) trained with multi Dice loss, (b) trained with the proposed loss which integrates
level set smoothing energy, (c) ground truth segmentation

Fig. 3. Effect of adding a level set smoothing term in the loss for smoothing surfaces,
(a) without smoothing, (b) smoothing effect after 8 epochs, (c) smoothing effect after
15 epochs.

3.3 Performance Comparison

We compared our results with the state of the art multi atlas based segmen-
tation method followed by corrective learning as post processing [12]. Figure 4
shows the bar plot comparing Dice per anatomy for five different methods: the
multi atlas based method, the standard VNet which takes resampled volumes,
the standard VNet followed by a level set smoothing step as post processing, the
proposed modified VNet architecture trained by multi Dice loss, and the pro-
posed modified VNet architecture trained by our proposed loss. For the standard
VNet, due to the memory limit, the input was downsample with voxel size of
2 mm × 2 mm× 3.5 mm and volume size of 128× 192× 64.

From Fig. 4, we can see that the deep learning method is comparable to the
state of the art multi atlas based segmentation. The proposed modified VNet
architecture trained with the proposed loss performs the best among the deep
learning methods. For small anatomies such as aortic root, left pulmonary artery
and superior vena cava, we get a larger boost in the performance than large
anatomies. We show the summary of the comparisons in Table 1. An example of
the segmented volume compared to the ground truth is shown in Fig. 5.
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Fig. 4. Results compared to using original VNet and state of the art multi atlas based
segmentation from [12]

Fig. 5. Example of segmented anatomies (a) results from weights trained with 10
epochs using the proposed loss, (b) ground truth.

Table 1. Summary of performance of different methods. Method 1: multi atlas method
followed by corrective learning. Method 2: standard VNet. Method 3: standard VNet
+ post processing. Method 4: modified VNet trained with multi dice loss. Method 5:
modified VNet trained with proposed loss which integrates the level set smoothing
energy.

Method 1 Method 2 Method 3 Method 4 Method 5

Mean 0.816 0.744 0.766 0.793 0.795

Std 0.076 0.088 0.090 0.081 0.073

4 Conclusion

In this paper, we propose a new loss function to integrate the level set smoothing
energy into multi Dice loss to eliminate an additional post processing step. We
also propose a new strategy for designing segmentation architectures that can
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process large volumes by adding very few parameters. This method produces
accurate and fast anatomic segmentation in CTA images. The new network
boosts the dice from 0.766 to 0.795. The proposed framework for integrating
level set with network training is general and can be extended to other types of
level set energy functions.
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