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Nonrespiratory Functions of the Lung

Amanda M. Kleiman and Keith E. Littlewood

�Introduction

For nearly two millennia of Western medicine, the lungs 
were thought to primarily protect the heart from overheating 
by exhaling warm air and from direct injury both by their 
position and cushioning structure. These views are ascribed 
to the teachings of Galen and, to some extent, Aristotle [1, 2]. 
Traditional Chinese medicine emphasized the interconnect-
edness of the organ groupings of the five phases, but within 
this construct, the lung was seen as a minister to the emperor 
heart and in partnership with the bowel to have the responsi-
bility of maintaining the boundary of the body and outside 
world. In the thirteenth century, Ibn-an-Nafis of Cairo 
described the purification of blood by mixing with air in the 
lungs in one of the earliest known descriptions of gas 
exchange [3].

Over the last sever‑al centuries, however, the biochemis-
try and physiology of respiration have become essentially 
synonymous with the lungs. From the work of pioneers such 
as Boyle, Lower, Priestly, Haldane, and others, most clini-
cians now think of the lung first and foremost as an organ of 
gas exchange. In more recent years, other important roles of 
the lung have emerged, roles that are largely in keeping with 
the concepts of our medical heritages.

In this sense, we now return to historic views of the lung 
as protector and modulator. Specifically, nonrespiratory 
functions of the lung including its metabolic processes, 
endocrine role, mechanical filtration of venous blood, warm-
ing of inspired gasses, and protection against inhaled patho-
gens and toxins are discussed. Focused aspects of organ 
structure and cellular function are reviewed as required by 
this discussion.

�Uptake and Metabolism Within the Lung

The lungs are particularly suited for critical metabolic 
activities. They continuously receive essentially the entire 
cardiac output, and their vascular area, depending upon the 
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Key Points
•	 Pulmonary endothelial cells metabolize endoge-

nous substances and xenobiotics via ectoenzymes 
on their luminal surface and caveolae as well as 
enzyme systems within their cytosol.

•	 Pulmonary metabolism results in the activation of 
several endogenous substances and medications of 
importance to the anesthesiologist.

•	 Pulmonary uptake is often not associated with 
metabolism, but still markedly affects pharmacoki-
netics by initially attenuating peak concentrations 
and then returning unchanged substance to the 
circulation.

•	 The lung’s ability to serve as a vascular reservoir is 
directly related to the capacitance of the pulmonary 
vessels.

•	 The lung serves as a physical filter, but this function 
may be compromised with high cardiac output and 
in several disease states.

•	 The respiratory epithelium’s functions include 
humidification and trapping of particles and 
pathogens.

•	 The airway surface film has antimicrobial capacity 
beyond its mechanical removal of debris from the 
airway.
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degree of recruitment, is an enormous 70–100 m2. Further, 
the lungs contain nearly half of the body’s endothelium [4] 
and have an extraordinarily high perfusion of 14 mL/min/g 
tissue (as opposed to the next-highest renal perfusion of 
4 mL/min/g tissue). Thus, there is ample blood–endothelial 
interface for surface enzyme activity as well as uptake and 
secretion. The largest population of cells involved in pul-
monary metabolism of blood-borne substances is, as might 
be expected, the pulmonary endothelium. Consistent with 
high metabolic activity, endothelial cells have both exten-
sive cytoplasmic vesicles and prominent caveolae. The 
caveolae are tiny membrane invaginations and near-mem-
brane vesicles similar to those found elsewhere in the body, 
measuring 50–100 nm, associated with caveolin proteins, 
and derived from lipid rafts within the membrane. The pre-
dominant activities of these caveolae, thought to include 
endocytosis [5] and signal transduction, have not been fully 
delineated and may be pleiotropic [6]. The endothelial cells 
structurally have large luminal projections and invagina-
tions, providing an even greater interface area at the micro-
scopic level.

Metabolism by the endothelial cell occurs either on the 
surface of the cell via enzymes associated with the mem-
brane (“ectoenzymes”) or by cytosolic processing after the 
substances are taken up by the cell. Some surface enzymes 
are distributed along the luminal membrane [7], while others 
are associated exclusively with the caveolae [8]. Figure 7.1 
schematically depicts these processes with example sub-
stances and pathways. Metabolism may be further divided 

into exogenous vs. endogenous substances as well as deacti-
vated vs. activated products. Regardless of these consider-
ations, it should be remembered that intensive investigation 
of pulmonary metabolism has developed only over the last 
several decades [9]. Much remains to be discovered, and 
conflicting data exist for drugs as central to clinical anesthe-
siology as propofol [10, 11].

The literature’s terminology of pulmonary metabolism 
can be confusing and sometimes inconsistent. The careful 
reader must sometimes deduce the actual processes described 
and investigated through context. In general, “pulmonary 
uptake” or “extraction” is simply used to describe transfer 
from blood to the lung and does not indicate whether the 
substance of interest is subsequently metabolized or returned 
back into the blood with or without alteration. “First-pass” 
uptake is used to describe the amount of substance removed 
from the blood on the first cycle through the lungs, although 
data from techniques such as tissue slices have been used to 
infer this behavior. “Extraction” is also sometimes used syn-
onymously with first-pass uptake. “Clearance” may be used 
to describe a substance undergoing actual elimination, either 
in terms similar to renal clearance as volume of blood from 
which the substance would be completely removed (mL/
min or mL/kg min) or as a comparison of pulmonary arterial 
concentration vs. systemic arterial concentration. Terms 
used for isolated lung studies include “accumulation,” the 
percentage of substance retained in the lungs after equilib-
rium, and “persistence,” percentage of substance retained 
after washout.
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Fig. 7.1  Schematic examples 
of pulmonary endothelial 
metabolism. Surface enzymes 
may be restricted to the 
caveolae (Ecto-ATPase in the 
inset above is an example) or 
present on both the luminal 
surface and caveola (e.g., 
angiotensin-converting 
enzyme [ACE]). Another 
characteristic of pulmonary 
endothelium is selective 
uptake, here exemplified by 
the ATP-dependent uptake of 
norepinehrine (NOREPI), 
while epinephrine (EPI) is not 
taken up. See text for details
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It is beyond the scope of this discussion to fully detail the 
experimental methods used in the investigation of pulmo-
nary metabolism, but the challenges of investigation and data 
interpretation merit at least mention. As implied above, lung 
metabolism has been investigated in  vitro and in  vivo. In 
vitro techniques include the use of cellular fractionates, tis-
sue homogenates, and tissue slices. Recent advances in uni-
form preparation and cryoprotection have made tissue slices 
an attractive, cost-efficient option [12] despite concerns 
regarding the impact of processing on enzyme behavior. 
Tissue slices have a particular advantage in lung research 
because they include all cell types. The isolated and perfused 
animal lung model represents the next level of fidelity. The 
lung can remain within the animal or be explanted, and the 
uses of various perfusion managements (e.g., nonpulsatile 
vs. pulsatile, blood vs. crystalloid, and one-pass vs. recircu-
lation) have been described with little standardization. 
Further, various investigators commonly subject the lung to 
no inflation, constant airway pressure, or positive pressure 
ventilation. The impact of these differences in ventilation on 
resultant data is unknown. In the next level of modeling, in 
intact animals and human subjects, the pulmonary uptake is 
assessed by measurements of the difference between pulmo-
nary arterial and pulmonary venous (animals) or systemic 
arterial (human) concentrations of the substance in question, 
typically after a controlled bolus and/or infusion when pos-
sible. These invasive requirements do not lend themselves to 
large volunteer studies. In fact, most human subjects are 
critically ill and/or undergoing complex procedures. This 
variation in disease and treatment may produce data that in 
turn has great variance [13]. Conversely, inclusion criteria 
rigorous enough to provide consistent results produce a 
patient population in which the results are of limited general 
applicability [14]. A variation of the method just described is 
the double-indicator dilution technique [15]. In this tech-
nique, the substance of interest and a substance with no (or 
no known) pulmonary uptake are injected, typically into the 
right atrium. Samples are then taken from a systemic artery, 
with the known substance serving as the control to which the 
investigated substance’s concentration curve is compared. 
This technique is more practical in terms of decreased fre-
quency of sampling and somewhat decreased invasiveness.

It is important to reemphasize that the lung has a profound 
impact on the blood concentration of substances even when 
it does not ultimately metabolize or secrete them. This is 
because of the simple uptake and retention of substances, 
often followed by release back into the blood. This “capaci-
tor effect” [16] of the lungs in which any rapid rise or fall in 
concentration is attenuated will be revisited in the discussion 
below as it pertains to local anesthetic toxicity.

With these limitations in mind, we shall first review the 
current understanding of drug metabolism with focus on 
medications of particular interest to the anesthesiologist, and 

then look at metabolism of endogenous substances. Even 
though they are also administered therapeutically and dupli-
cated in the summary of medications, endogenously pro-
duced substances such as catecholamines will be included in 
the latter discussion (Table 7.1).

�Drugs

The cytochrome P-450 monooxygenase enzyme systems are 
the most studied metabolic pathways for medications. The 
lungs have substantial concentrations of P-450 isoenzymes, 
particularly within type II pneumocytes, Clara cells, and 
endothelial cells [17]. This implies that the lung has the 
capacity for drug metabolism via P-450 systems. While 
P-450 and other enzyme systems have long been known to 
exist in the human lung (Table  7.2), the actual activity of 
lung enzymes ranges from negligible to 33% of that of the 
liver [19]. The difference between organ enzyme activity of 
different species is large (lung to liver activity varying from 
a few percent to 111%) and mandates caution when inter-
preting animal data [20].

�Opioids

Fentanyl has been shown to have a markedly variable first-
pass uptake of up to 90% in humans [21]. The same investi-
gators found that significant amounts of fentanyl are returned 
from the lungs into the blood with a biphasic pattern, equili-
brating after about a minute in the fast phase and nearly 
25 min for the slow phase. The uptake of fentanyl is higher 
than expected even for this basic and lipophilic drug. In fact, 

Table 7.1  The lung and medications of interest to anesthesiologists

Drug class

Impact of passage through the pulmonary 
circulation

Minimal or none
First-pass uptake and/
or metabolism

Hypnotics Thiopental +
Ketamine ++
Propofol ++

Benzodiazepines Diazepam ++
Nondepolarizing 
muscle relaxants

Rocuronium
Vecuronium
Rapacuronium
d-tubocurarine

Opiates Morphine Fentanyl ++
Sufentanil +
Alfentanil ±

Catecholamines Dopamine Norepinephrine +
Epinephrine
Isoproterenol

Local anesthetics Bupivacaine +
Lidocaine ++

7  Nonrespiratory Functions of the Lung
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active uptake of fentanyl has been demonstrated in human 
lung endothelial cells [22].

The study of alfentanil has led to widely variant first-pass 
uptake data. Uptakes of 67% have been reported [21], 
although more commonly uptakes of approximately 10% are 
reported [23]. Of note, these studies included other medica-
tions (sufentanil and morphine in one study and fentanyl in 
the other) that were found to behave similarly to accepted 
data for those drugs. This makes the discrepancy for alfent-
anil behavior particularly hard to interpret.

Sufentanil demonstrates uptake that is a little more than 
half that of fentanyl. A study in which patients had received 
alfentanil for induction followed by a sufentanil infusion of 
50 μg/min for 10 min showed sufentanil first-pass uptake of 
about 50% with a 20-min retention of about 20% [24]. The 
investigators incidentally noted that smokers had a statisti-
cally higher retention of the infused dose.

Early work with morphine in the perfused rabbit lung 
model showed about 30% first-pass uptake [25]. Interestingly, 
subsequent work in intact animals and in humans has found 
much lower uptake of about 10% [23, 26], including postop-
erative bolus and infusion [27]. Metabolism has generally 
been found to be negligible.

�Muscle Relaxants

There is a paucity of data on pulmonary pharmacokinetics of 
muscle relaxants. This may be because the agents studied, 
including vecuronium, rocuronium, d-tubocurarine, rapa-
curonium, and Org 7617, demonstrated no first-pass uptake 
or metabolism in the intact porcine model [28]. This would 
appear to have generated little enthusiasm for further investi-
gation of this class of drugs.

�Local Anesthetics

Lidocaine has a long history of investigation in terms of pul-
monary uptake and metabolism. The general consistencies 
across species include a first-pass uptake of approximately 
50% with significant retention at 10 min [29–31]. The uptake 

of lidocaine has also been examined in a variety of physio-
logical circumstances. Under extremes of metabolic acidosis 
and alkalosis [30], lidocaine demonstrates increased uptake 
with higher blood pH. It is postulated that this finding is the 
consequence of increased drug lipophilicity, since, in a less 
acidic environment, more of the drug is in its nonionized 
form. Under extremes of FiO2 in in  vivo isolated lobes of 
dogs under nitrous oxide and halothane anesthesia, there 
were no differences demonstrated in lidocaine uptake [32]. 
Of interest, the prolonged retention in all groups was less 
than that commonly reported in other studies, raising the 
issue of the effects of this particular model on uptake.

Bupivacaine has been investigated less extensively than 
lidocaine with less consistent results. In most animal spe-
cies, peak extraction has been reported as high with variable 
first-pass retention between species and methodology [33–
35]. In humans, however, the effective first-pass extraction 
appears to be lower when studied by epidural dosing [36, 
37]. As in the case of lidocaine, the pulmonary pharmacoki-
netics of bupivacaine have also been investigated in acido-
sis. In a rabbit model, animals with a pH of 7.0–7.1 
demonstrated decreased maximum pulmonary extraction as 
a group [38] with resultant higher peak systemic concentra-
tions of drugs.

Two recent areas of interest in the practice of clinical 
anesthesia are intimately linked with the pulmonary uptake 
of local anesthetics. The first is the relative safety of levobu-
pivacaine and ropivacaine in comparison to bupivacaine. 
These drugs have, in fact, been the subject of several investi-
gations. Early animal studies suggested decreased toxicity of 
these newer preparations [39, 40]. The discussion continues, 
however, with more recent work regarding the pulmonary 
uptake of these drugs. In rabbits, for example, the uptake of 
levobupivacaine is higher than ropivacaine with resultant 
lower systemic blood concentrations of levobupivicaine 
[41]. The authors thus caution that the lower absolute toxic-
ity of ropivacaine may be tempered by the lung’s greater 
attenuation of peak levobupivacaine levels in inadvertent 
intravenous injections. A recent review of the pharmacody-
namics and pharmacokinetics of local anesthetics [42] 
focuses on the challenges of comparing toxicities in clinical 
practice [43–45]. Animal models, with the limitations 
already discussed among many more [46], must be utilized 
since clinical toxicity is an uncontrolled, rare, and dangerous 
event [47]. Other questions are raised by the relative central 
nervous system and cardiovascular toxicity between drugs 
and study variation in drug administration and measurement. 
The inconsistencies in the data of pulmonary uptake are thus 
one of many challenges in understanding the clinical toxici-
ties of local anesthetics.

A second, related, area of great contemporary interest is 
the treatment of local anesthetic toxicity with lipid emulsion 
[48, 49]. A recent case report, in particular, is germane to the 

Table 7.2  Enzyme systems of the lung [18]

Cytochrome P-450 oxygenase
Sulfotransferase
Nitroreductase
N-Methyltransferase
Glutathione-S-epoxide transferase
Glutathione-S-aryl transferase
Glucuronyl transferase
Epoxide hydrolase
Amine oxidase
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discussion of pulmonary uptake [50]. Briefly, a patient 
undergoing brachial plexus block with bupivacaine demon-
strated evidence of toxicity by progressive symptomatology, 
seizures, widening QRS tachycardia, and asystole. Successful 
emulsified lipid “rescue” was followed nearly an hour later 
by recurrence of episodic ventricular tachycardia. The 
authors believe that this represented the first reported recur-
rence of toxic bupivacaine levels after lipid treatment. 
Several possible causes were postulated for this phenome-
non, including postresuscitation hepatic dysfunction, rever-
sal of generalized peripheral ion trapping of bupivacaine, 
and, appropriately, release of bupivacaine from the pulmo-
nary vasculature. Thus, it seems that the issue of pulmonary 
uptake and release of local anesthetics must be considered in 
the treatment of suspected local anesthetic toxicity with 
emulsified lipid.

�Hypnotics

There are limited, and sometimes dated, data regarding the 
pulmonary metabolism of intravenous induction agents. 
Thiopental has been found to have nearly 15% first-pass 
uptake in humans [51] with little or no metabolism. Ketamine 
shows marked species variation in its metabolism. In rabbit 
homogenate, the eventual complete disappearance of ket-
amine with only half being metabolized to norketamine 
implies the production of other metabolite(s) [52]. Lung tis-
sue homogenate was more quickly saturated than liver tissue. 
As previously mentioned, the applicability of this homoge-
nate data to intact animals, and certainly to humans, is 
unknown. In dogs under halothane anesthesia, the pulmo-
nary uptake of ketamine was found to be slightly less than 
10% without subsequent metabolism [53]. Human data are 
lacking.

The clarification of propofol uptake and metabolism by 
the lungs has taken many turns. One of the earliest studies in 
sheep with propofol administered as the sole medication 
demonstrated an apparent steady-state pulmonary clearance 
of 1.21 L/min [54] with negligible drug accumulation in the 
lung tissue, while a later study in sheep demonstrated a simi-
lar 1.14 L/min pulmonary clearance [55]. Other early works 
found that propofol uptake in cats was nearly 60%, but this 
uptake was particularly decreased in the presence of halo-
thane or fentanyl [56]. Microsomal fractions from rat, rabbit, 
and human lung showed no glucuronidation of propofol 
[57]. Turning to data from human clinical studies, most 
recent work shows about 30% first-pass uptake and negligi-
ble metabolism of propofol by the lungs [11, 58]. It is inter-
esting that a recently developed model of propofol 
pharmacodynamics and pharmacokinetics [59] has produced 
a very good fit with data from human studies [60, 61]. In this 
work, the lung is modeled as three tanks in series with the 

full cardiac output sequentially flowing to each, a model pre-
viously proven effective [62] in simulating the behavior of 
markers indocyanine green and antipyrine as well as the nar-
cotic alfentanil.

�Inhaled Medications

A number of medications include inhaled formulations. The 
inhaled route offers multiple benefits for drug delivery 
including a large absorptive surface area, high epithelial per-
meability, increased vascularity, avoidance of first-pass 
metabolism, and fast onset [63]. The majority of inhaled 
medications are used to treat the lungs directly, offering 
localized, targeted delivery and avoidance of systemic 
absorption. However, several drugs to treat illnesses from 
migraine headaches to diabetes are currently under develop-
ment [63].

The handling of aerosolized drugs occurs via four pro-
cesses including deposition, dissolution, absorption, and 
clearance. The site of deposition in the respiratory tract 
determines the treatment of most inhaled medications and is 
determined by the size of the particle. Chronic lung diseases 
including asthma, chronic bronchitis, and emphysema affect 
the deposition of aerosolized particles by narrowing the 
smaller airways resulting in deposition in larger airways 
[64]. The epithelial lining fluid has direct contact with the 
aerosolized particles, and the thickness and composition of 
the layer vary according to the site of deposition. Dissolution 
of particles into the fluid layer is controlled by the hydrophi-
licity of the particle. Water-soluble particles (e.g., albuterol, 
insulin) dissolve into the fluid and are freely absorbed [65]. 
In poorly water-soluble drugs (e.g., budesonide, fluticasone), 
the dose exceeds the aqueous solubility and the absorption is 
determined by dissolution-controlled kinetics [65]. Once 
dissolved, the speed of absorption depends on the size of the 
particle with smaller drugs quickly absorbed within minutes. 
The absorption of larger proteins is more complex but typi-
cally slower with more variable bioavailability [66]. 
Absorption occurs via several mechanisms. Passive diffusion 
occurs primarily via intercellular junction pores for hydro-
philic compounds and transcellular diffusion for hydropho-
bic compounds. Drugs with low passive permeability utilize 
drug carrier transporters for uptake and transfer across cell 
membranes [67]. Like deposition, absorption may be 
impacted by chronic pulmonary disease due to deposition in 
the diseased upper airways, thickened mucous, and reduced 
surface area of diseased lungs. This may be beneficial in the 
treatment of chronic pulmonary diseases by preventing sys-
temic absorption and increasing local drug effects. 
Hydrophilic substances may have increased absorption in the 
presence of chronic inflammation due to decreased epithelial 
barrier function and tight junction dysregulation with 
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increased permeability [67]. Clearance of aerosolized drugs 
occurs via mucociliary clearance and macrophage uptake, 
both of which will be discussed later.

�Pulmonary Handling of Endogenous 
Substances

�Angiotensin-Converting Enzyme

This section will discuss the activity of angiotensin-
converting enzyme (ACE) and two important substrates, 
angiotensin I and bradykinin. The lung plays a critical 
role in the renin–angiotensin system because of the pul-
monary endothelium’s high concentration of ACE. When 

the kidney responds to changes in physiologic parameters 
including vascular volume, blood pressure, and adrener-
gic stimulation by the cleaving of prorenin, the resultant 
renin catalyzes the formation of angiotensin I from angio-
tensinogen. ACE then converts angiotensin I to the criti-
cally important vasoconstrictor, angiotensin II. Although 
ACE can be found on vascular endothelium throughout 
the body as well as in the plasma, the pulmonary endothe-
lium has an abundance of ACE as a surface or ectoenzyme 
on the vascular membrane [68, 69], including the caveo-
lae (Figs. 7.1 and 7.2). The newly formed angiotensin II is 
not, in health, taken up or further metabolized by the 
endothelial cell, but rather immediately returns to the 
blood. Clinically, ACE inhibitors have been useful drugs 
in the management of systemic hypertension. As will be 

Vasoconstriction
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Angiotensinogen

Renin

↑Na+ ↓K+

↑Blood
volume
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↓Renal
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A II
A III

ALDO

A II

Fig. 7.2  An example of the 
lung’s central role in the 
body’s endocrine processes, 
in this case the renin–
angiotensin–aldosterone axis. 
In response to sodium, 
potassium, and renal 
perfusion changes, renin is 
secreted by the kidneys. 
Renin cleaves 
angiotensinogen (renin 
substrate) from the liver to 
form angiotensin I (AI). The 
lung then converts AI to AII 
through the action 
predominately of 
endothelium-associated 
angiotensin-converting 
enzyme (ACE). AII causes 
vasoconstriction and is 
involved in stimulation of 
aldosterone (ALDO) secretion 
by the adrenal gland, resulting 
in retention of sodium and 
volume by the kidney
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discussed below, the effects of these drugs are not limited 
simply to decreased levels of angiotensin II.

Bradykinin is a nine-amino-acid peptide produced in 
multiple sites throughout the body from kininogen through 
the action of plasma kallikrein. It is in turn metabolized by 
several peptidases. Pertinent to this discussion, bradykinin is 
degraded by ACE, and, in fact, more than 90% of bradykinin 
is eliminated on first-pass through the lungs [70]. Bradykinin’s 
effects are wide-ranging, including antithrombotic and profi-
brinolytic activity in the coagulation system, as well as mod-
ulation of nitric oxide and prostacyclin release. Specific to 
the lung, bradykinin was shown some time ago to have vaso-
dilating effects on normal pulmonary vessels but to be vaso-
constrictive when the pulmonary endothelium was destroyed 
in animal models [71, 72]. Bradykinin has also been long 
described as a bronchoconstrictor [73, 74] and is still consid-
ered a prototypical bronchoconstricting substance [75]. The 
complexities of the kallikrein–kinin system’s effect on endo-
thelial cells, the myocardium, and vascular smooth muscle 
and its role in phenomena of cardiovascular injury are 
beyond the scope of this discussion, and the interested reader 
is referred to extensive reviews elsewhere [66, 76].

ACE is probably best known to clinicians through the 
drugs that block its activity, and, in fact, ACE inhibitors 
remain one of the most commonly prescribed group of drugs 
in the United States [77]. They are effective antihypertensive 
medications and have been shown to decrease the incidence 
of congestive heart failure after myocardial infarction [76]. It 
is now believed that some side effects of ACE inhibitors, 
such as angioedema and cough, and some of the beneficial 
impact, such as decreased myocardial infarctions and 
improved renal function, involve modification of bradykinin 
metabolism [66].

�Biogenic Amines

Histamine, serotonin (5-hydroxytryptamine or 5-HT), and 
the three naturally occurring catecholamines (dopamine, 
norepinephrine, and epinephrine) comprise the group com-
monly termed biogenic amines. Studies looking into the 
uptake and metabolism of serotonin by the pulmonary circu-
lation were among the earliest investigations of pulmonary 
pharmacokinetics [9, 78]. Subsequent work has made the 
behavior of this compound among the best understood in 
terms of pulmonary uptake and metabolism.

5-HT is produced predominately by the gastrointestinal 
tract’s chromaffin cells. Ingested tryptophan undergoes a 
two-step conversion first by tryptophan-5-hydroxylase and 
then by l-amino acid decarboxylase to serotonin. Mast cells 
and neuroendocrine cells in the lung are also capable of pro-
ducing serotonin by uptake of tryptophan along the same 
enzymatic pathway. However, the lung normally contributes 

minimally to systemic 5-HT production because of lesser 
tryptophan availability and much slower reaction rates [79]. 
Once released from the gastrointestinal tract, there is avid 
uptake of 5-HT, particularly by nerve endings and platelets. 
These cells do not metabolize 5-HT to any great extent. The 
remainder of 5-HT is extracted by the lung and, to a lesser 
degree, the liver. In the case of these organs, the 5-HT is 
metabolized to 5-hydroxyindoleacetic acid (5-HIAA) by 
cytosolic monoamine oxidase and aldehyde dehydrogenase. 
5-HIAA is, of course, a clinically useful marker of carcinoid 
syndromes associated with increased histamine turnover. It 
has been found that monoamine oxidase inhibitors block the 
cytosolic metabolism of 5-HT but not its uptake, while sev-
eral drugs, including volatile anesthetic agents, block uptake 
but not intracellular metabolism [80].

Because it is not lipophilic, the pulmonary uptake of 5-HT 
is an active process, predominately via endothelial cells, 
with some variability between species. Several details of this 
uptake have been delineated as an ATPase-dependent active 
carrier process [81]. The pulmonary uptake of 5-HT by the 
lung is typically reported to be 90% or greater with little 
5-HT reaching the systemic vasculature under normal cir-
cumstances. This model of production and uptake of 5-HT 
plays a pivotal role in several pathological processes relevant 
to clinical anesthesiology. In carcinoid syndrome, for exam-
ple, the right heart receives a high concentration of 5-HT 
(and other substances) before being extracted and metabo-
lized by the pulmonary circulation. This is thought to be the 
reason that the right heart shows the greatest myocardial and 
valvular injury in this syndrome [82–84]. This model is sup-
ported by other clinical observations. The valvular injury of 
substances related to 5-HT such as methysergide and ergota-
mine, those that increase 5-HT such as the infamous fenflu-
ramine, and more recently the recreational drug “ecstasy” 
(3,4-methylenedioxymethamphetamine), known to activate 
5-HT receptors, are all similar to carcinoid cardiac disease 
[85, 86]. Moreover, when an intracardiac right-to-left shunt 
is present in the carcinoid patient with bypass of the pulmo-
nary circulation, the left heart demonstrates valvular injury 
similar to that of the right heart [18].

Pulmonary embolism presents another clinical situation 
pertinent to 5-HT activity. It has long been appreciated that 
the mass effect of embolism does not, in itself, account for 
the typical cardiopulmonary consequences including pulmo-
nary hypertension. The platelet aggregation and activation 
associated with acute pulmonary embolism results in degran-
ulation with the release of 5-HT, well known to be a potent 
vasoconstrictor and to increase bronchial smooth muscle 
tone. This release of 5-HT and, perhaps, decreased local 
uptake of 5-HT are postulated to cause local and regional 
vascular changes [87]. Other actions of elevated 5-HT, such 
as promotion of further platelet aggregation and inhibition of 
the vasodilating prostacyclin, likely also play a role in the 
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full response to pulmonary embolism [88]. The infusion of a 
serotonin antagonist in animals was found to attenuate the 
increase in pulmonary pressures associated with pulmonary 
embolism [89], supporting the role of 5-HT in this response.

Histamine, in contrast to 5-HT, has almost no uptake in 
the pulmonary circulation. Lung homogenates are capable of 
histamine metabolism [90], but the intact lung appears to 
lack an uptake mechanism for histamine.

Just as the lung has the enzymes to metabolize both hista-
mine and serotonin but the ability to take up only serotonin, 
its uptake of catecholamines also demonstrates marked 
selectivity. Norepinephrine demonstrates a 35–50% first-
pass uptake with subsequent metabolism by catechol-O-
methyltransferase (COMT), MAO, aldehyde reductase, and 
aldehyde dehydrogenase [91]. Dopamine and epinephrine, 
however, have essentially no uptake although they would be 
susceptible to the cytosolic enzymes, as again proven by cell 
homogenates. The synthetic catecholamine isoproterenol 
also has no appreciable uptake by the lung.

�Arachidonic Acid Metabolites

Extensive production and metabolism of arachidonic acid 
derivatives occur in the lung. The term eicosanoids refers to 
the 20-carbon carboxylic acids derived from the metabo-
lism of the lipid membrane component icosatetraenoic 
acid, more commonly known as arachidonic acid. The 
action of phospholipase A2 converts the esterified form, as 
found in the membrane, and releases arachidonic acid from 
structural glycerol. Once free, arachidonic acid may follow 
three main metabolic pathways in the lung. The lipoxygen-
ase pathway produces leukotrienes, lipoxins, and some of 
the hydroxyeicosatetraenoic acids (HETEs). The cyclooxy-
genase (COX) pathway produces prostaglandins, throm-
boxane, and prostacyclin. The cytochrome P-450 
monooxygenase system produces cis-epoxyeicosatrienoic 
acids and HETEs that are different than the products of the 
lipoxygenase pathway.

The lipoxygenase pathways produce leukotrienes and 
lipoxins. The formation of all leukotrienes starts from a com-
mon precursor. 5-Lipoxygenase, located in the perinuclear 
cytosol, responds to increased calcium in concert with its 
activating protein to generate 5-hydroperoxyeicosatetraenoic 
acids (5-HPETE) from arachidonic acid. A dehydrase then 
yields the relatively unstable leukotriene A4 (LTA4), which 
may undergo transformation by epoxide hydrolase (LTA4 
hydrolase) to LTB4 which leaves the cell via a transport pro-
tein. The alternative pathway for LTA4 is via LTC4 synthase 
to form LTC4, which is converted by nonspecific interstitial 
peptidases to the leukotrienes LTD4 and LTE4 (commonly 
referred to as slow-reacting substance of anaphylaxis). 
Whereas closely related prostanoids (see below) demon-
strate opposing biological actions, the leukotrienes uniformly 

promote inflammatory responses in the lung. They are 
responsible for bronchoconstriction and increased pulmo-
nary vascular permeability, are chemotactic and chemoki-
netic for neutrophils, and facilitate eosinophil degranulation 
[92–94]. They are produced by activated inflammatory cells 
within the lung as well as those arriving in response to 
inflammation. It should be no surprise that leukotrienes have 
been the subject of investigation in processes ranging from 
hypoxic pulmonary vasoconstriction in normal as well as 
damaged lungs [95, 96] to the pathogenesis of adult respira-
tory distress syndrome (ARDS) [97–99] and asthma [100]. 
This work has been especially fruitful in the case of asthma, 
for which leukotriene modifiers are a mainstay of treatment 
[101–103].

There appears to be little specialized pulmonary uptake or 
metabolism of the leukotrienes beyond the inactivation of 
LTB4 and LTC4 by neutrophils in the lung. Nonspecific 
hydroxylation and carboxylation of leukotrienes also occur 
in the interstitium, similar to that of other tissues [104].

The lipoxins have been identified as critical factors in the 
resolution of inflammation throughout the body, now seen 
more as an active process than the simple “burnout” of pro-
inflammatory processes [105, 106]. There are three main 
synthetic routes of lipoxin formation, involving interactions 
of products from 5-lipoxygenase, 15-lipoxygenase, and/or 
12-lipoxygenase, with the eventual formation of the two 
lipoxins, the positional isomers lipoxin A4 (LxA4) and B4 
(LxB4). The lipoxins have a variety of antiinflammatory 
effects. They inhibit eosinophil and neutrophil chemotaxis 
and adhesion, as well as natural killer cell activation [107–
110]. They are endothelium-dependent vasodilators of both 
pulmonary and systemic vasculature [111]. The lipoxins 
have been investigated extensively for their role in lung 
physiology and disease. Asthma, in particular, has received a 
great deal of attention [112]. Work thus far indicates that 
lipoxins are decreased in the sputum [113] and blood [114] 
of patients with severe asthma. The balance between leukot-
riene and lipoxin activity, in particular, has been found 
related to disease severity [115], raising the possibility of 
inducing lipoxin activity [116] as an adjunct to leukotriene 
modifiers. The role of lipoxins has also been considered in 
the active resolution of acute lung injury [117].

The lipoxins are predominately taken up by circulating 
monocytes with subsequent dehydrogenation [118]. No spe-
cific pulmonary uptake or metabolism of lipoxins has been 
described.

As implied by its name, COX catalyzes the cyclization and 
oxygenation of arachidonic acid, producing prostaglandin 
PGG2, which is converted by nonspecific peroxidase(s) to the 
unstable precursor PGH2. There are subtypes of COX, most 
notably COX-1 and COX-2. There has been great interest in 
COX-2 since its discovery in the 1990s because its inhibition 
was hoped to be more specific in controlling pain and inflam-
mation without injury to the gastroduodenal mucosa [119, 
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120]. Although effective, the emergence of a small but real 
increase in cardiovascular risk of COX-2 inhibitors [121] has 
tempered their use. Complicating this issue further is that 
many of the “traditional” COX inhibitors such as acetamino-
phen, salicylates, and the nonsteroidal antiinflammatory 
agents ibuprofen and naproxen show only slightly less COX-2 
avidity than some of the newer COX-2 inhibitors.

Following the production of PGH2, the metabolic path-
way divides into branches producing the various bioactive 
prostanoids; the enzymes of particular interest here are PGD 
synthase, PGE synthase, prostacyclin synthase, and throm-
boxane synthase. The final products of these pathways typi-
cally have oppositional or balancing effects locally and 
regionally. Prostaglandin E2 (PGE2) and PGI2 are bronchodi-
lators, for example, while PGF2α, PGD2, and thromboxane A2 
(TXA2) cause bronchoconstriction. Similarly, PGD2, PGE2, 
PGF2α, and TXA2 are potent vasoconstrictors, while PGE1 
and PGF2 are vasodilators.

Pulmonary endothelial cell cultures demonstrate virtually 
all COX pathway products to some extent, but the level of 
in vivo production is less clear. PGI2 appears to be continu-
ously produced, with modulation by vascular flow [122]. 
PGD2, PGE1, PGE2, PGI2, PGF2α, and TXB2 have all been 
found to be produced by human lungs, although under vary-
ing circumstances [123, 124].

The discussion of the pulmonary metabolism of COX 
products includes the now familiar theme of a broad range of 
intracellular enzymes (by cell culture and cellular homogenate 
investigation) but selective uptake. In this way, at least 80–90% 
of PGD1, PGE2, and PGF2α are taken up and metabolized in a 
first-pass through intact pulmonary circulation; but PGA1, 
PGA2, and PGI2 demonstrate essentially no uptake [24, 125, 
126]. TXA2, a relatively unstable compound, presents a spe-
cial case in the discussion of pulmonary uptake. TXA2 under-
goes hydrolysis in the blood, forming TXB2. It is TXB2 that is 
taken up by a carrier for cytosolic metabolism and is often 
utilized as an investigative marker of TXA2 activity [127].

The P-450 monooxygenase system provides three path-
ways of arachidonic acid metabolism which results in 
epoxyeicosatetraenoic acids (EETs), HETEs, or di-
hydroxyeicosatetraenoic acids (dHETEs). These pathways 
are not unique to the endothelium, epithelium, and smooth 
muscle of the lung, being found in several other organs 
including the gastrointestinal tract, liver, and kidney [128]. 
Subfamilies of cytochrome P-450 systems have been identi-
fied within the lung. The CYPA4 family produces 20-HETE, 
while the CYP2J family is found in epithelial, bronchial, and 
vascular smooth muscle cells, as well as endothelial and 
alveolar macrophages [129].

The HETEs and EETs have been shown experimentally to 
affect pulmonary vascular and bronchomotor tone. 20 HETE 
and 5, 6, 11, and 12-EETs all have relaxing effects on both 
the lung vasculature and airways [130, 131]. They are further 
known to have general antiinflammatory effects, to modulate 

reperfusion injury, and to inhibit platelet aggregation. Within 
the lung, 15-HETE and 20-HETE may both modify hypoxic 
vasoconstriction [132].

�Natriuretic Peptides

The natriuretic peptides currently consist of, in order of their 
discovery during the 1980s, atrial natriuretic peptide (ANP), 
brain natriuretic peptide, and C-type natriuretic peptide. ANP 
has received the most attention in terms of pulmonary pharma-
cokinetics. It is a pulmonary artery (and to a lesser extent, 
venous) vasodilator whose action is independent of endothelial 
function. ANP is known to interact with the renin–angiotensin–
aldosterone system at several points. Best described are sup-
pression of renin release, decrease in angiotensin-converting 
enzyme activity, and blocking of aldosterone release. These 
actions promote natriuresis and diuresis. ANP is mainly pro-
duced in the cardiac atria, but both ANP and its prohormone 
have been found in the human fetal lung [133] and adult pul-
monary veins [134]. Lung production is suppressed by hypovo-
lemia and increased with hypoxemia, hypervolemia, and in the 
presence of glucocorticoids. In terms of elimination, the rabbit 
lung demonstrates a 25% first-pass uptake of ANP [135].

�Other Endogenous Substances

The number of substances handled by the lung and the intri-
cacies of their metabolism precludes full discussion here. For 
the interested reader, several historically and/or clinically 
important substances are listed in Table 7.3, and references 

Table 7.3  Lung effects on endogenous substances relevant to the 
anesthesiologist

Group

Impact of passage through the pulmonary 
circulation

Activated
Minimal or 
none

First-pass uptake 
and/or metabolism

Peptides Angiotensin 
I

Angiotensin II Endothelins
Vasopressin Bradykinin
Oxytocin
Atrial 
natriuretic 
peptide

Steroids Cortisone Beclomethasone
Progesterone

Purine family Adenosine 
phosphates (AMP, 
ADP, ATP)

Arachidonic 
acid family

PGA2 PGD2

Prostacyclin 
(PGI2)

PGE2

PGF2

Leukotrienes
Biogenic 
amines

Dopamine 5-HT
Epinephrine Norepinephrine
Histamine
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are provided for the activation of cortisone to cortisol in 
health [136, 137] and disease [138], the behavior of endothe-
lin in several clinical circumstances [76, 139, 140], and new 
perspectives on purine metabolism by endothelial ectoen-
zymes [138].

�The Lung as Vascular Reservoir and Filter

The volume of blood within the lungs under various condi-
tions has been a subject of investigation for over 80 years 
[141]. What is known is that the pulmonary vasculature in 
health has remarkable capacitance, allowing it to accept 
wide ranges of right ventricular output with minimal change 
in pressure. This ability to load and offload volume allows 
the lungs to serve as a vascular reservoir to meet the preload 
needs of the left heart as they change due to factors such as 
posture, exercise, changes in intrathoracic pressure (e.g., 
Valsalva maneuver), and daily volume shifts [142]. The role 
of pulmonary vascular capacitance is also emerging in our 
understanding of disease processes relevant to clinical anes-
thesiology. Models of heart failure, for example, now incor-
porate the role of vascular compliance in general and the 
pulmonary vasculature capacitance and permeability spe-
cifically [143]. Also of interest to anesthesiologists, 
researchers have found that following the release of the 
tourniquet in total knee arthroplasty, there is an actual 
decrease in pulmonary vascular resistance. A clue to the 
mechanism of this finding was metabolic evidence of 
increased endothelial recruitment with this obligatory 
microembolism [144].

The unique anatomical position of the lungs as they 
receive the entire right heart output allows them to serve as 
physical filters, in much the same way that they metaboli-
cally play a pivotal role in the uptake of endogenous sub-
stances and xenobiotics. Particles normally filtered by the 
lung before reaching the systemic circulation include small 
blood clots, fat droplets, agglutinated white blood cells, 
and amniotic fluid in the case of pregnancy. The literature 
commonly alludes to the ability of 350 and even 500 μm 
glass beads to pass through the pulmonary vasculature in 
animal models. Given that normal pulmonary capillaries 
have a diameter of 7–10 μm, this implies other arteriove-
nous communications under normal conditions. Recent 
work in isolated, but normally ventilated, animal and 
human lungs and, especially, exercised human subjects 
implies a more complicated picture. It now appears that, 
indeed, arteriovenous passage of particles larger than 
50 μm occurs in isolated lungs, although more than 99% of 
such glass microspheres are trapped by the lungs [145]. In 
human volunteers, aggregated albumin tagged with techne-
tium-99 and with diameters of 7–25 μm was found to have 
about 0.7% transpulmonary passage at rest. This rose to 3% 

passage with exercise, as demonstrated by aggregate trap-
ping in systemic capillaries. This implies the recruitment of 
intrapulmonary arteriovenous pathways with exercise 
which presumably allow decreased resistance to flow but 
also compromise the lung’s competence as a mechanical 
filter [146]. The lung’s protection of systemic circulation 
from embolus can also, of course, be completely subverted 
by anatomic variants and pathological states. The latter is 
exemplified by the hepatopulmonary syndrome’s intrapul-
monary vascular dilatations, which have been associated 
with patient injury from embolism [147]. The patent fora-
men ovale and its potential for catastrophic embolic phe-
nomena in the perioperative period [18, 146, 148] have 
long been appreciated and feared by anesthesiologists as 
the classic anatomic variant which bypasses the protective 
filtration of the pulmonary vasculature.

�The Respiratory Epithelium

The lung defends the body not only by mechanical filtration 
and metabolism of substances from the blood but also from 
airborne agents. In this way, the constantly renewing airway 
epithelium is responsible for helping to maintain normal gas 
exchange from the trachea to the terminal alveoli. The respi-
ratory epithelium represents a huge surface area that is a 
gateway from the outside world to the exquisitely delicate 
alveoli, a path taken by both life-sustaining oxygen and 
potentially damaging particles and gasses. This defensive 
challenge is especially impressive when considering both the 
wide range of conditions to which the modern human is 
exposed and the simple fact that even a somewhat sedentary 
adult can be expected to inhale well over 10,000 L of gas 
from his/her environment in a day. The discussion below will 
briefly review the structure and function of this system and 
then the way in which it provides protection through the 
mucociliary apparatus, trapping of particles, and response to 
particles and pathogens.

�The Cells of the Respiratory Epithelium

While some 50 distinct cell types have been identified in the 
human airway [149], our discussion will focus on those most 
important to the lung’s nonrespiratory functions.

�Ciliated Columnar Cells

These cells are the most common of the respiratory epithe-
lium. Their most obvious defining feature is several hun-
dred cilia moving at a rate of about 12 cycles per second, 
always toward the trachea. As might be expected, this 
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process requires large energy expenditures, and, in fact, 
the cells have extensive populations of mitochondria for 
energy production. The cellular architecture and shape 
change according to position in the respiratory tract. In the 
nose, pharynx, and large airways, the columnar cells are 
pseudostratified, layered over the basal cells which are 
thought to be the stem cells for both ciliated and goblet 
cells. Moving down the bronchi, they gradually thin to a 
single layer. Further still, in the bronchioles, the columnar 
cells transition to a layer of cuboidal cells and then, 
approaching the terminal airways, they mix with type I 
alveolar cells.

�Goblet Cells

These specialized columnar epithelial cells can rapidly 
secrete mucins (high molecular weight mucous glycopro-
teins) which provide a protective layer over the epithe-
lium when it combines with other lipid, glycoconjugate, 
and protein components [150]. Mucin is released by exo-
cytosis in response to a variety of stimuli such as dust, 
microorganisms, fumes, and debris within the airway. 
Hyperplasia in response to chronic stimulation is a 

hallmark of the goblet cell population (Fig. 7.3) and typi-
cal of disease processes such as asthma, bronchitis, and 
cystic fibrosis [151].

�Submucosal Secretory Cells

There are actually two types of submucosal secretory cells. 
Both are associated with the submucosal glands of the tra-
chea and large bronchi. These glands are innervated by 
cholinergic fibers from the vagus [152] and are located in 
the submucosa between the smooth muscle and cartilage 
plate. The serous-type cells account for more than half of 
the submucosal gland in health and contain multiple secre-
tory granules. Proteoglycans, lysozyme, lactoferrin, IgA 
receptor complex, peroxidase, and antiproteases are among 
the contents of these granules. The mucous-type cells are 
columnar cells with a high density of cell granules contain-
ing mucin. It is thought that serous cells transdifferentiate 
to mucous cells in response to injury from inhaled agents 
and the resulting predominance of mucous cells plays a role 
in the change of the character of mucus in response to 
injury. While it is accepted that both the submucosal secre-
tory cells and goblet cells contribute to airway mucus, there 

Allergen

Th2 cell

Cytokines Proteinases Oxidants

Hyperplasia

Ciliated
cells

Goblet
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Bacterial
products
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Bcl-2

Fig. 7.3  Airway goblet cell hyperplasia. Simplified schematic outlin-
ing selected pathways generating increased epithelial mucin produc-
tion. Cytokines (e.g., interleukin-4, interleukin-9 and interleukin-13), 
bacterial products (e.g., lipopolysaccharide and lipoteichoic acid), pro-
teinases (e.g., elastase and cathepsin G), and oxidants from T helper-2 
(Th2) lymphocytes, bacteria, neutrophils, and cigarette smoke upregu-
late mucin production and/or induce goblet cell hyperplasia with asso-

ciated increases in expression of epidermal growth factor receptors 
(EGFR), calcium-activated chloride channels (CLCA), and the anti-
apoptotic factor Bcl-2. Note: not all stimuli have yet been shown to 
induce expression of each of EGFR, CLCA, and Bcl-2. In addition, 
production of new goblet cells appears to involve differentiation of non-
granulated epithelial cells rather than goblet cell division. (Reproduced 
with permission. Rogers [150]. Copyright Elsevier)
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is apparent variability in the relative contribution of these 
cells on the basis of airway level, experimental model, and 
species [153–156].

�Clara Cells

Clara cells (nonciliated bronchial secretory cells) are nor-
mally found predominately in the terminal bronchioles 
(Fig. 7.4). Their granules secrete Clara cell secretory protein 
(CCSP), the function of which is poorly defined. In an ani-
mal model, antigenic challenge results in proliferation of tra-
cheobronchial Clara cells that secret not only CCSP but also 
demonstrate secretion of mucin [156]. Conversely, in normal 
humans, bronchiolar goblet cells have been found to secrete 
CCSP, leading to speculation that Clara cells may be goblet 
cell precursors [158], as well as progenitors of the epithe-
lium [157].

�Mast Cells

Mast cells are located throughout the lung, from typical 
locations under the airway epithelium and in the alveolar 
septum to those freely positioned in the airway. They have 
traditionally been associated with acquired immunity, but 

recent evidence indicates that mast cells also have important 
roles in innate immunity and inflammatory regulation [159]. 
Specifically, their role as sentinel for innate immunity seems 
to bridge the classic with the more recently appreciated 
roles [160].

�Macrophages and Monocytes

Macrophages and monocytes can be categorized as (1) air-
way and alveolar macrophages, (2) interstitial macrophages, 
and (3) pulmonary vascular monocytes. This scheme does 
not include the monocyte derivative dendritic cells. There are 
limited data regarding the sparse interstitial macrophage 
population, mostly from animal preparations. There is no 
evidence that the intravascular monocytes of the lung are 
particularly different from monocytes throughout the body’s 
vascular system, transforming into macrophages within the 
tissue to which they migrate.

The alveolar macrophages must routinely phagocytize a 
dizzying array of invaders of the airspace. These include dust 
and particulates as well as bacteria, yeasts, and other organic 
and inorganic debris. Phagosomes initially envelope the 
ingested target and then are merged with lysosomes. The latter 
contain hydrolytic enzymes, which efficiently destroy the 
majority of bacteria, yeasts, and debris encountered. For some 

a b

Fig. 7.4  (a) Scanning electron micrograph of the lining of the proxi-
mal bronchiole of a rat showing Clara cells, some of which are undergo-
ing apocrine secretion (arrows), surrounded by ciliated cells 
(bar = 10 μm). (b) Transmission electron micrograph of a terminal bron-

chiolar Clara cell. Numerous mitochondria (M), secretory granules (S), 
rough endoplasmic reticulum (RER), and the basal nucleus (N) are 
indicated. (Reproduced with permission. Reynolds and Malkinson 
[157]. Copyright Elsevier)
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microorganisms (e.g., mycobacteria and many gram-negative 
bacteria) and materials, the lysosomal system is not effective. 
In this case, secondary lysosomes are now used essentially as 
storage areas, where the material is isolated for the life of the 
macrophage. The fate of these laden cells is not uniform. It 
appears that some are swept away by the mucociliary appara-
tus for mechanical elimination and others remain in the lung 
for as long as months before dying and releasing their seques-
tered contents for uptake by successor macrophages. There 
has been recent attention to the translocation of particles from 
the lung to lymph nodes and other organs [161, 162], presum-
ably in conjunction with alveolar macrophage activity.

�Alveolar Epithelial Cells

Alveolar epithelial type I and type II cells (also referred to as 
type I and II pneumocytes) line the terminal alveoli. Type I 
cells are thin sheets lining the alveoli with each covering sev-
eral capillaries. Type I cells cover approximately 90% of lung 
surface area and are responsible for maintaining lung fluid 
homeostasis. The tight junctions between cells are well 
described and thought to provide only a 1-μm gap under nor-
mal circumstances. Historically thought to serve as a barrier 
to the movement of solutes and water into the alveoli, more 
recent work with sodium and chloride transporters has found 
evidence of active epithelial mechanisms for fluid transport in 
both health and diseased states [163, 164]. Additionally, the 
presence of caveolae and intracellular vacuoles suggests that 
type I cells may also have endocytic function and participate 
in metabolic activities [165]. Type II alveolar epithelial cells 
tend to be clustered at alveolar junction points. They are 
cuboidal cells with lamellar bodies in the cytoplasm and 
numerous mitochondria. The lamellar bodies are inclusions 
of variable size and composed of stacked layers of membrane-
like material. It is this material which is processed and 
released as surfactant by the type II cell [166]. Four types of 
surfactant proteins A, B, C, and D (SP-A through SP-D) have 
been identified. SP-A and SP-D modulate surfactant release, 
while SP-B and SP-C stabilize the surfactant monolayer dis-
cussed below [167]. SP-B is the protein absolutely required 
for survival, but important contributions have been discov-
ered for the other SP proteins. SP-A and SP-D, for example, 
play immune roles by direct antimicrobial activity and 
enhancement of macrophage recognition of microorganisms.

�Functions of the Respiratory Epithelium

The functions of the respiratory epithelium that will be 
reviewed here include maintenance of the complex liquid 
film of the airway, humidification, removal of inhaled mate-
rials, and response to inhaled pathogens.

�Airway Surface Film

The surface liquid of the airway, in health, is about 10 μm 
thick. It consists of two layers, namely, the periciliary sol 
underneath a second layer of mucus gel. The sol is a low-
viscosity watery liquid that surrounds the cilia. The 
mucus, as discussed previously, is produced by the sub-
mucosal glands and goblet cells in response to a variety of 
irritants. The complex gel-aqueous becomes progressively 
thinner from the trachea (100 μm) to the bronchi (8 μm) 
and then to terminal bronchioles (3 μm) [168]. The cilia 
are too tightly arranged for the mucus gel to find its way 
between cilia, thus the gel layer contacts only the ciliary 
tips along its bottom edge. The cilia, then, are free to 
move in their well-characterized rhythmic pattern with 
relatively less resistance from the minimally viscous sol. 
In this manner, the cilia propel the mucous layer toward 
the trachea at a rate of 3–4 mm/min [169]. The thickness 
of the layers of this system, especially the sol, must be 
maintained within very narrow tolerances for mechanical 
efficiency. This is achieved in large extent by simple 
osmotic gradient and probably accounts for much of the 
adjustment that occurs as larger amounts of mucus con-
verge in the larger airways. Adjustments of sol osmolarity 
to effect this mechanism occur through the activity of the 
amiloride-sensitive chloride channel, more commonly 
referred to as the cystic fibrosis transmembrane conduc-
tance regulator (CFTR) protein. Indeed, the ravages of 
cystic fibrosis are now thought to start at least in part 
because of the relative depletion of the sol, emphasizing 
the delicate nature of the system just described [170]. The 
antimicrobial capabilities of the mucociliary apparatus 
will be discussed below.

�Humidification

The respiratory system has enormous capacity to humid-
ify inspired gas. At rest, air is completely saturated with 
water vapor as it passes through the nose and upper air-
way, before it reaches the trachea. As minute ventilation 
(MV) increases, smaller and smaller airways are required 
to contribute to humidification, such that at a MV of 
50 L min−1, airways of only a few millimeters in diameter 
receive incompletely humidified gas [171]. The airways 
do reclaim some of the heat and moisture imparted on the 
inhaled gas during its exhalation. Thus, bypassing of the 
nasopharyngeal passages and upper trachea by devices 
such as endotracheal tubes not only decreases humidifica-
tion of the gasses delivered to the distal airways but also 
cheats the opportunity to recoup heat and moisture on 
exhalation.
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�Removal of Inhaled Particles

The regions of the respiratory tract in which particles are 
deposited depend upon respiratory pattern, environmental 
conditions, and the nature of the particles themselves. 
Accepting these variations, it is possible to generalize particle 
behavior under normal circumstances. Particles larger than 
10 μm (e.g., dust and particulates from low-grade petroleum 
combustion) are often trapped at the level of the nose or phar-
ynx. Those that enter the airway of the lung, and particles of 
3–10 μm, are caught on the liquid film layer and transported 
out of the lung for swallowing or expectoration as previously 
described. They tend to be deposited in higher concentration 
in areas of high turbulence such as airway bifurcations. 
Particles smaller than 3 μm may reach the alveoli. They will 
either be subsequently exhaled or settle in the alveolus, where 
they will be subject to the activity of macrophages as discussed 
in a previous section. There are, of course, particular sub-
stances that instigate a detrimental response from the body, for 
example, asbestos with resultant pulmonary fibrosis.

�Response to Inhaled Organisms

There are several mechanisms with which the airway defends 
the body against inhaled microorganisms. The first is simple 
impact and capture by the nasal and pharyngeal mucosa with 
subsequent swallowing and destruction in the hostile gastro-
intestinal tract or expectoration. Those organisms that enter 
the lung may be similarly trapped on the surface film and 
moved out of the lung by ciliary action. The surface film is 
more than a simple transport mechanism, having a variety of 
antimicrobial mechanisms. These capabilities make teleo-
logical sense, because the potentially damaging agents are 
not immediately removed.

Surfactants, consisting of 80% phospholipids, 5–10% 
proteins, and 5–10% other lipids, are best known for their 
ability to reduce surface tension and thus equalize pressures 
within airspaces of differing sizes [168]. Less appreciated is 
the fact that SP-A and SP-D (following terminology intro-
duced in the discussion of type II alveolar cells) are members 
of the collectin protein family. Collectins have an N-terminal 
collagen-type region and a C-terminal lectin region that bind 
carbohydrates. The C-terminal’s preferential binding site is 
nonhost oligosaccharides, giving them the ability to opso-
nize bacterial and viral pathogens and to facilitate macro-
phage phagocytosis [172]. SP-A and SP-D are also known to 
be directly antimicrobial, without immune cells, against a 
variety of pathogens [173, 174].

The surface films of the large bronchi (and the mucosa of 
the nasopharynx) have generous amounts of IgA, which acts 
as an opsonin and has a role in complement induction. In 

smaller airways and alveoli, IgG becomes the predominant 
surface antibody in normal circumstances.

The airway epithelium also acts as an immune barrier via 
interactions between Fas receptors (CD95/Apo-1) and Fas 
ligand (FasL, CD95L, CD178), found on airway epithelium, 
in response to immune reactions and infection [175, 176]. 
The interaction between Fas and FasL activates intracellular 
caspases leading to apoptosis of infiltrating immune cells, 
protecting against tissue injury [177, 178]. FasL appears to 
be cleaved and made inactive in asthma, contributing to the 
chronic inflammation and damage to the epithelium seen in 
chronic lung diseases [179]. Toll-like receptors are also 
found in airway epithelial cells, upregulating the production 
of cytokines, chemokines, and other antimicrobial peptides 
in response to bacteria and viruses [180, 181]. Epithelial 
cells also secrete antimicrobial peptides including ß-defensins 
and LL-37, preventing the growth of inhaled microorgan-
isms prior to clearance or phagocytosis [181].

Lung epithelial cells can release soluble factors including 
IL-1ß and IL-8, while alveolar macrophages release TNF-α 
and IL-6 resulting in the release of neutrophils from bone 
marrow as well as neutrophil chemotaxis in response to pol-
lutants, including cigarette smoke, and pathogens [182, 183]. 
Once present at the source of infection, neutrophils secrete 
granules containing lactoferrin, lysozymes, defensins, and 
other proteolytic enzymes as well as generate oxygen free 
radicals to destroy pathogens [184]. Stimulated bronchial 
epithelial cells can also secrete and/or facilitate adhesion 
molecules, growth factors, and collagen. Epithelial cells pro-
duce high levels of nitric oxide (NO), and production is 
increased in the presence of respiratory viruses acting to 
inhibit viral replication [185]. The absence of upregulation 
of nitric oxide synthase-2 in cystic fibrosis is implicated in 
increased viral susceptibility in these patients [186].

�Summary

Historically, practitioners of the medical arts from around the 
globe viewed the lung as a defender of the body from a hostile 
outside world and as a trusted modulator of its internal pro-
cesses. More recently, respiratory function became the focus 
of attention with advances that have been central to the devel-
opment of anesthesiology and upon which modern clinicians 
base much of our practice in cardiopulmonary medicine. The 
purpose of this discussion, which returns to the concepts of 
lung as protector and minister, has been to highlight impor-
tant nonrespiratory lung functions in terms of both current 
areas of discovery and clinical implications. It is hoped that 
the reader will agree that familiarity with these aspects of pul-
monary function is pivotal to a complete understanding of the 
lung and to the advancement of clinical practice.

A. M. Kleiman and K. E. Littlewood
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