
Ensuring the Functional Correctness
of IoT through Formal Modeling

and Verification

Samir Ouchani(B)

LINEACT, Laboratoire d’Innovation Numérique,
École d’Ingénieur en Informatique, CESI eXia, Aix-en-Provence, France

souchani@cesi.fr

Abstract. Recent research initiatives dedicated to formal modeling,
functional correctness and security analysis of IoT systems, are gener-
ally limited to, model abstract behavioral patterns and look forward
possible attacks beneath gauging and providing feasible attacks. This
research considers the complementary problem by looking for more accu-
rate attacks in IoT by capturing richer behaviors -technical, physi-
cal, and social- including their quantitative features. We propose IoT-
SEC framework that establishes an adequate semantics to the IoT’s
components and their interactions including social actors that behave
differently than automated processes. For security analysis, we develop a
general approach based on a library of attack trees from where we gener-
ate automatically the monitor, the security policies and requirements to
harden the IoT model and to check how well the model is secure. We use
PRISM model checker to analyze the functionality and to check security
of the IoT model. Precisely this contribution ensures the functionality of
IoT systems by analyzing their functional correctness.

Keywords: IoT · Security assessment · Attack tree
Security policies · Formal verification · Formal modeling
Model checking · Functional correctness

1 Introduction

Internet of Things (IoT) is the network of physical objects -devices, vehicles,
buildings and other items embedded with electronics, software, sensors, and net-
work connectivity- that enables to collect and exchange massively data. This
technology of intelligent device-to-device communication provides the much-
needed leverage to IoT which make it growing extensively. It promises immense
potential for improving the quality of life, health-care, manufacturing, trans-
portation, etc.From a technology perspective, the rise of IoT is not changing
widely while using the same technology, connectivity, and trimmed mobile appli-
cations. In this context, the challenging issue is checking and ensuring function-
ality, security and privacy of IoT from the existing and hidden vulnerabilities
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 401–417, 2018.
https://doi.org/10.1007/978-3-030-00856-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_27&domain=pdf

402 S. Ouchani

of the linked objects and the expanded inefficient cyber-security. Behinds, many
attack vectors are difficult to manage and to get protected from in IoT espe-
cially against computational, memory, and energy limitations due to the large
amount of data and messages; e.g. insecure web, cloud, mobile interfaces, net-
work services, and the lack of transport encryption, etc.

For example in IoT health-care system, objects are engaged to monitor
remotely patients and in case of a substantial change in the critical data, a
notification is sent to alert emergencies. Objects such as fit-bits and pacemakers
enclosing different sensors like EEG, BP, ECG, and EMG are deployed to control
blood pressure, hearing, etc.For communication, IoT uses a wide range of proto-
cols to transport real-time data which make it critical to ensure the integrity of
data and its inaccessibility for unauthorized users. Further, in crisis situations,
patients are generally weak which make them an easy target against social engi-
neering attacks [10]. At this level of complexity, security analysis of IoT is tricky
while the components of the game are of different nature: people, physical and
digital objects, software, cloud services, and infrastructures of multiple forms.
We strengthen our analysis methodology by relying to security protocols and
formal methods [12,13] to handle different type of IoT assets, and their com-
munications that may happen via conventional and non-conventional protocols
(e.g. visual, auditory, kinesthetic). Despite the raising interest in this subject, we
target to develop sound techniques that help to automate the security analysis
of IoT and to scrutinize whether, how, at what cost, and with which probability,
IoT is secure.

Contributions. This research, firstly, develops IoT-SEC framework that initi-
ates a modeling formalism by capturing the underlying semantics of IoT which
is flexible to be extended for more elaborated features. It is rich by covering
social behaviors, physical and digital objects, communication protocols, inter-
nal and external servers, and computation and storing cloud services. The for-
malism proposes assigning a cost e.g. time, to the execution of atomic actions,
and the IoT components may behave non-deterministically, probabilistically, or
deterministically where actions can be guarded by contextual conditions. The
formalism also models a library of intruders, as particular process proper to
each IoT components, able to act maliciously according to realistic abilities and
specific conditions.

Further, this research develops a security analysis methodology for IoT. It is
a statistical analysis and model-checking based approach built-up over PRISM
tool [9]. To automate their use, we define a mapping from IoT models, expressed
in the proposed formalism, to PRISM. Further, to overcome the downside of the
expressiveness of monitors and security properties used in PRISM, we propose
a library of pre-configured attack trees and we develop instantiation mechanism
that help to generate automatically relevant monitors and security properties.
Unfortunately due to the limited space, we focus only on the modeling mecha-
nism and the correctness validation approach.

Outline. In summary, we review the related work in Sect. 2 and we describe the
main components and goals of the global framework in Sect. 3. Then in Sect. 4, we

Ensuring the Functional Correctness of IoT 403

develop a theory to model for IoT and we detail our approach focusing mainly on
the functional correctness. In Sect. 5, we develop a tool that shows the obtained
experimental results. Finally, Sect. 6 concludes the paper and sketches the future
directions.

2 Related Work

To position our contribution in literature, we compare it within the works that
deal with modeling, functional analysis, and security specification, and protocols
in IoT. Since IoT research is young, the recent initiatives survey the IoT issues
and challenges.

A. Habtamu [1] discusses guidelines to how adapt security standards, prac-
tices, and technologies in IoT. Fink et al. [3] classify the vulnerabilities that
might arise high impact in IoT. In fact, they discuss a specific class of threats
without precising its applicability on which configurations. To trustworthy a
model they propose to exploit the physical randomness in IoT to generate
keys for authentication and access control that ensure anonymity, likability, and
observability. Xu et al. [17] survey design and security challenges in IoT. They
propose the digital physical un-clonable function as solution to enable the direct
use of hardware security primitives inside an arbitrary digital logic to create
secure information flow and public key protocols that require only one clock
cycle. Zhang et al. [18] highlight the ongoing challenges in IoT,especially iden-
tification, authentication and authorization, privacy, protocols, the related sys-
tems and software vulnerabilities. We believe that our framework contributes
very well to the discussed challenges and it is a strong starting point to develop
and extend easily the discussed research directions.

Hu et al. [5] proposed a face identification and resolution based technique for
fog computing to improve processing capacity and save the bandwidth in IoT. To
check security and preserve privacy, they propose an authentication and session
key agreement protocol using data encryption and integrity checking by express-
ing CIA attributes in BAN logic. Islam et al. [6] analyzes security requirements
in the presence of threat models for a health care scenario by minimizing security
risk. They rely on the existing e-health policies and regulations to determine how
much a requirement is violated. Ould-Yahia et al. [15] apply Ant colony opti-
mization to care-off between random and uncertain behavior of sensors deployed
during medical diagnosis towards e-health measures for IoT and intelligent social
insects. The differences between intensities of measures result on the affected or
safe path of the propagation of medical information show and quantify different
e-health security vulnerabilities. Mohsin et al. [11] proposed a security analysis
approach based on SMT for IoT entities mainly device configurations, network
topologies, user policies and their related attack surfaces. Entities are formulated
as a high-order logic formula, and the policies are a set of discrete constraints.
To check the existing vulnerabilities, SMT solver outputs the possible solutions
satisfying the constraints within an attack formula. Compared to our framework,

404 S. Ouchani

this one is applicable only to a well guided configuration and scenario. The pro-
posed approach is limited to a strict IoT schemes and the analysis method is not
automated.

F. Kammüller et al. [7,8] investigate how Isabelle might help to improve
detection of attack traces in IoT e-health by combining ethical requirement elic-
itation with automated reasoning. To provide trustworthy and secure IoT for
vulnerable users in health-care scenarios, they employ high level logical modeling
using dedicated Isabelle frameworks for: infrastructures, human actors, security
policies, attack tree analysis, and security protocol. Torjusen et al. [16] present
the high level instantiation of the run-time verification in color Petri net and its
validation. They integrate runtime verification enablers in the feedback adap-
tation loop to guarantee the achievement of self-adaptive security and privacy
properties for an e-health settings. At run-time, they enable the contextual state
model, the requirements specifications, and the dynamic context monitoring and
adaptation.

With respect to the commented work, IoT-SEC covers the probability and
costs of actions, formalizes IoT, analyzes the correctness and measures their
security level. Moreover, IoT-SEC is automatic by relying on the probabilistic
model checking and it takes advantage from the algorithms built within.

3 IoT-SEC Framework

Prior deeper details, we explore first the IoT architecture adopted in IoT-
SEC framework, then we overview the global analysis approach and the proposed
security model.

3.1 Architecture

We describe the IoT architecture by presenting its components and their inter-
actions. Figure 1 illustrates the proposed IoT architecture enclosing five main
components, object devices are physical objects embedded with sensors and soft-
ware, user devices are physical objects that communicate with servers and collect
data from objects, computing services provided by internal, external, and cloud
servers; social actors are human agents that can hold and manipulate devices,
the environment is the infrastructures and spaces that envelops the IoT entities.

These components interact through communication protocols of different
ranges (Human-machine, Bluetooth, ZigBee, WiFi, Cellular, SSH, IpSec, etc.).

3.2 Methodology

The IoT methodology depicted in Fig. 2 shows the main involved steps to eval-
uate and ensure the well functionality in IoT. It takes as input the IoT model
MIoT , the intruder model AIoT , and a library of attack-trees TIoT . First, an
instantiation of AIoT (̂AIoT) is generated by the function GA to contend MIoT

Ensuring the Functional Correctness of IoT 405

Fig. 1. IoT-SEC components architecture.

Fig. 2. IoT methodology.

in order to produce a composed model ˜MIoT . For security analysis the com-
posed model ˜MIoT is abstracted then mapped into a PRISM code (MP) by the
function TP [13].

The approach also demonstrates the use of TIoT which produces relevant
attack trees T̂IoT to the composed model. To benefit from, the function GM,P

instantiates from T̂IoT a temporal logic formula that expresses the security prop-
erty and a monitor that control the mal-behaves of the intruder. Finally, the tool
(|=) checks the satisfiability of the security properties in the considered model,
and produces the verification result in terms of probability and cost.

In the current work we focus only on ensuring the functional correctness
instead of analyzing security.

406 S. Ouchani

4 Functional Correctness

To ensure the functional correctness [14] of an IoT-based system, we rely on
IoT-SEC framework presented in Sect. 3 by extracting the approach depicted in
Fig. 3 that shows the main steps to be followed in order to answer safely if the
system under test functions properly or not, and/or with which probability/cost
it can fail. We describe the steps as follows.

– IoT architecture defines the components composing an IoT-based system
including social and non-social actors, sensors, applications, web services,
physical infrastructures, etc.Further the way they communicate and interact.

– IoT model formalizes the architecture in a process algebra form by precizing
the atomic actions for each component and the composition operator between
each couple or group of components.

– IoT requirements express in PCTL formula different functional properties
that we need to ensure.

– PRISM code is the transformation of the IoT model into the PRISM input
language. This function should be an isomorphism i.e. each action defined in
the IoT model has only one comportment that differs from the others.

– PRISM checks how much a requirement is ensured on the IoT model.
– Results are the output of PRISM, and it can be qualitative (true or false), or

quantitative (a probability or a cost).

Following the above described steps we detail the modeling, the generation
of PRISM code, and the expression of the requirements.

Fig. 3. Functional correctness framework for of IoT.

Ensuring the Functional Correctness of IoT 407

4.1 IoT Formal Model

Here we develop a formal model by considering the IoT architecture previously
showed in Fig. 1 as a composition of interconnected physical objects (devices and
controllers, e.g. sensors and buildings), mobiles applications, cloud and comput-
ing online services, and people.

We describe an IoT system S by the tuple 〈Obj ,Srv ,Act ,Env ,Prot〉 that
defines formally the IoT entities: the connected objects (Obj), the environment
(Env), the client-server applications and services (Srv), the social actors (Act),
and the communication protocols (Prot) that ensure the interaction and the
communication between the different types of IoT entities.

Objects. An object can be either physical (e.g. sensor, USB key) or digital
(e.g. data, message, information) with different specificities and abilities. An
object can be a container, lockable (by digital or physical key), movable or/and
destroyable by a program, an intelligent or human being actor. Sensor objects
send data to the apps and receive it from the environment. An object Obj is a
tuple 〈O, attrO,ActuatorO, ΣO,BehO〉, where:

– O is a finite set of tags εo, o, o
′, oi, · · · ∈ O identifying the objects, and εo is

the empty object.
– attrO : O → 2T returns the attributes of an object, where T = {p, c,m, d, r},

p stands for physical, c for container, m for movable, d for destroyable, and r
for reproducible.

– ActuatorO : O → L×2O×O×B returns the tuple 〈locO, contO, keyO, lockedO〉
that specifies the status of an object o by specifying respectively its: location,
contained objects, key, and if it is locked or not.

– ΣO is a finite set of atomic actions that can be executed by an object, where:

ΣO = {StartO, TerminateO, SendO(o, o′), ReceiveO(o, o′), UpdateO(o, o′),
LockO(o, o′), UnlockO(o, o′), MoveO(l, l′) : o, o′ ∈ O and l, l′ ∈ L}

StartO and TerminateO starts and terminates the process of an
object, SendO(o, o′) and ReceiveO(o, o′) sends and receives o to/from o′,
UpdateO(o, o′) updates o by o′, LockO(o, o′) and UnlockO(o, o′) lock and
unlock o with o′, respectively.

– BehO : O → LO returns the expression written in the language LO that
describes the behaviour of an object. The syntax of LO is given by:
BO ::= StartO · BO · TerminateO | αO · B | αO +go

α′
O | αO, where

αO ∈ ΣO\{StartO, TerminateO} and “ ·” composes sequentially the actions,
and +go

is a guarded choice decision.

Services. Srv ensures a client-server architecture including client applica-
tions, computation servers and web services. Srv is presented by the tuple
〈V , OV , srvV , ΣV ,BehV 〉, where:

408 S. Ouchani

– V is a finite set of computing and storage services v, v′, etc.
– OV is a finite set of physical objects hosting services from V .
– srvV : OV → 2V assigns for a given object a set of services.
– ΣV is a finite set of actions supported by a service V , where:

ΣV = {StartV , TerminateV , SendV (o, o′), ReceiveV (o, o′), UpdateV (o, o′),
LockV (o, o′), UnlockV (o, o′) : o, o′ ∈ O}

StartO and TerminateO starts and terminates the process of an
object, SendO(o, o′) and ReceiveO(o, o′) sends and receives o to/from o′,
UpdateO(o, o′) updates o by o′, LockO(o, o′) and UnlockO(o, o′) lock and
unlock o with o′, respectively.

– BehV : OV → LV returns the behaviour of an object hosting a service. The
syntax of LV is expressed as follows: BV ::= StartV · BV | αV +gV

α′
V | αV ,

where αV ∈ ΣV \{StartV } and “ · ” composes sequentially the actions and
+gV

selects the left action if the guard gV is true otherwise, the right action
is selected.

Actors. Actors are of different categories, they can be, patients hosting sensors,
nurses, doctors, or any other types of agents. An actor interacts with others,
manipulates objects, and accessing to resources by executing actions depends
on his status and context. The execution is constrained by the environment, the
possessed objects, the actor’s intention and knowledge, and the access policies,
etc. Formally, Act is a tuple 〈A, categA, ΣA,BevA〉 where:

– A is a finite set of actors.
– categA : A → C returns the category of an actor.
– ActuatorA : A → L × 2O returns the location (locA ∈ L) and the possessed

objects (possA ⊆ 2O) by an actor.
– The finite set of the actors actions ΣA encloses all actions that can be executed

by an agent.

ΣA ={StartA, MovingA(l, l′), LockA(o, o′), UnlockA(o, o′), SendA(o, x),
ReceiveA(o, x), UpdateA(o, o′), TerminateA :
l, l′ ∈ L and o, o′ ∈ O and a ∈ A and x ∈ L ∪ O ∪ A}

As the actions’ names mean, they express respectively the moving between
locations, locking/unlocking objects, sending/receiving objects from a loca-
tion, an object, an actor; cloning or updating the content of an object
(destroying and cloning objects are a special case of the update).

– BevA : A → LA returns the expression that describes the behaviour of an
actor. It expresses the probabilistic decision and the cost (as time) of an
execution. The syntax of LA is generated by B ::= Stop | αA.B | B+B | B+
gB | B+pB, where α is an atomic action in ΣA, +p is a probabilistic decision,
and +g is a deterministic choice.

Ensuring the Functional Correctness of IoT 409

Environment. Env can be any human body or other natural species, or even
a physical space that hosts objects to measure the needed metrics in order to be
exploited/analyzed by the IoT system. In this model, we consider human body
as an actor and the environment as a physical entity hosting all IoT entities.
From this perspective we can model the environment as a connected container
objects. Formally, Env is a tuple 〈E,L,OE ,ActuatorE〉, where:

– E is a finite set of environments denoted by e, e′, etc..
– L is a finite set of locations (l, l′, etc.).
– OE is a finite set of physical objects of type container.
– ActuatorE : OE × OE → 2O returns the set of objects linking containers by

physical objects (e.g. doors connecting two rooms).

Interaction Protocol. Prot orchestrates and symphonies the communication
and the interaction between the IoT entities. Since these entities differ in their
nature, we define different communication protocols. Formally, Prot is a tuple
〈Proth,o,Proto,o,Proto,s〉 where Proth,o ensures the communications between
social actors and the objects, Proto,o between objects, Proto,s between objects
and services on servers.

Considering an initial configuration of an IoT that defines the evaluation of
objects, actors, and services attributes; Prot defines the changes of the attributes
of each IoT entity regarding the executed actions. The IoT configuration is
the association of all states of IoT entities and the changes of a configura-
tion is ruled by transitions. An IoT’s state S = 〈SO, SV , SA, SE〉 is composed
from states of objects, services, actors, and the environment as an instance of
〈Obj ,Srv ,Act ,Env〉. The transitions between states are labeled and denoted by

S
�,c,p
↪→ S′, l names the action to be executed, c returns its cost and p is its

probability value to be run. Due to the space limitation, we selected the fol-
lowing operational rules that synthesize transitions when two physical objects o
and o′ exchange a digital object o′′ (SYN-O-O), an actor a takes an object o′

from an object o (REC-A-O), and encrypt an object o′ by an object o using o′′

(LOC-O-O).

BehO(o) = SendO(o′, [[o′′]]).Beh ′
O(o) ∧ o′′ ∈ contO(o) ∧ [[o′′]] �= εo

BehO(o′) = ReceiveO(o′′′, [[o′′]]).Beh ′
O(o′) ∧ o′′′ ∈ contO(o) ∧ p �∈ attrO(o′′)

SYN-O-O

〈〈o, −, < −, {o′′, [[o′′]]} >, −〉, 〈o′, −, < −, {o′′′, [[o′′′]]} >, −〉〉 SendO(o,o′,[[o′′]]),c,p
↪→

〈〈o,Beh′
O(o), < −, {o′′, [[o′′]]} >, −〉, 〈o′,Beh′

O(o′), < −, {o′′′, [[o′′]]} >, −〉〉

BevA(a) = ReceiveA(o, o′).Bev ′
A(a) ∧ locA(a) = locO(o)

¬lockedO(o) ∧ o′ ∈ contO(o) ∧ p ∈ attrO(o′)
REC-A-O

〈〈a,−, < −,− >,−〉, 〈o,−, < −, {o′} >,−〉〉 ReceiveA(a,o,o′),c,p
↪→

〈〈a,Bev ′
A(a), < −, {o′} >,−〉, 〈o,Beh ′

O(o), < −,− >,−〉〉

410 S. Ouchani

BehO(o) = LockO(o′, o′′).Beh ′
O(o) ∧ {o′, o′′} ⊂ contO(o) ∧ [[o′, o′′]] �= εo

LOC-O-O

〈〈o, −, < −, {o′, o′′} >, −〉, 〈o′, −, < −, − >, ¬lockedO(o′)〉〉 lockO(o,o′,o′′),c,p
↪→

〈〈o,Beh′
O(o), < −, {o′, o′′} >, −〉, 〈o′, −, < −, − >, lockedO(o′)〉〉

We define an IoT’s state and how this changes by the effect of actions as a
labelled state transition system 〈S, S0,→〉 where, S is the set of the IoT states,
S0 ∈ S is the initial state, and → ⊆ (S × L × S) the transition relation

between states labeled by L. A transition ↪→∈→ denoted by S
�,c,p
↪→ S′ defines

how IoT states change when the IoT entities behave. For example,

4.2 PRISM

PRISM is a probabilistic symbolic model checker that checks probabilistic spec-
ifications over probabilistic models. A specification can be expressed either in
the probabilistic computation tree logic (PCTL) [2] or in a continuous stochastic
logic. A model can be described using PRISM language. A PRISM program is a
set of modules, each having a countable set of boolean or integer, local, variables.
A module’s state is fully defined by the evaluation of its local variables, while
the program’s state is defined by the evaluation of all variables, local and global.

In PRISM, the behavior of a module is defined by a set of probabilistic
and/or Dirac commands that specifies textually the effect of an action in a
probabilistic transition system. A probabilistic command is expressed by [α] g →
p1 : u1+...+pm : um, where pi are probabilities (pi ∈]0, 1[and

m
∑

i=0

pi = 1), α is

a label describing the name of an action, g is a propositional logic formula over
local and global variables (i.e. a guard), and ui are updates for variables. An
update, written as (v′

j = valj)& · · · &(v′
k = valk), assigns only values vali to

local variables vi. It means that for a given action α, if the guard g is true, an
update ui is enabled with a probability pi. The guard is an expression consisting
of the evaluation of both local and global variables, and the propositional logic
operators. The Dirac case where p = 1 is a command written simply by [a] g → u.

Syntactically, a module named M is delimited by two keywords: the module
head “module M”, and the module termination “endmodule”. Further, we can
model costs with reward module R delimited by keywords “rewards R” and
“endrewards”. It is composed from a state reward or a transition reward. A
state reward associates a cost (reward) of value r to any state satisfying g that
is expressed by g : r. A transition reward has the form [a] g : r expresses that
the transitions labeled a, from states satisfying g, are acquiring the reward of
value r.

PRISM supports also composition where modules communicate à la CSP
process algebra (e.g. see [4]). For two modules M1 and M2, the following com-
position operators are supported.

– Synchronization: the full synchronization on all shared action is written as
M1||M2,

Ensuring the Functional Correctness of IoT 411

– Interfacing: the parallel interface synchronization limited to the set of shared
actions {a, b, · · · } is given by M1|[a, b, · · ·]|M2,

– Interleaving: the interleaving is expressed by M1|||M2,
– Hiding: M/{a, b, · · · } expresses hiding the actions a, b, · · · in the module M .
– Renaming: M{a ← b, c ← d, . . .} is to rename actions a by b, c by d,

4.3 Transformation of IoT to PRISM

To generate a PRISM program P proper to the provided IoT formalism, we
define the function TP that assigns for each IoT entity behavior its proper
PRISM code fragment that is bounded by ‘module IoT entity name’ and
‘endmodule’ and the semantic rules of each action is expressed by a PRISM
command.

Due to the space limitation, we present the PRISM commands of actions
that their semantics rules are already defined in Sect. 4.1. The left side specifies
the premises of a rule whereas the right side describes the results of the rules.
For example, oo2 is an atomic proposition showing the the object o possess o2,
la and lo present the locations, and po3 precises the physicality attribute of o3.
Variables and propositions are evaluated first to describe the initial state of the
IoT entities by relying on the tuple obtained by the Actuator proper to each
entity.

TP (α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Syno2]oo2 ∧ o1o3 ∧ ¬po2 ∧ ¬po3 → (o′
2 = o2); iff:

[Syno2]oo2 ∧ o1o3 ∧ ¬po2 ∧ ¬po3 → (o′
3 = o2); SendO(o1, o2) ∈ Σo1

O ,

ReceiveO(o3, o2) ∈ Σo2
O .

[Tako1]la = lo ∧ oo2 ∧ ¬locko ∧ po2 → (a′
o2

=);

[Tako1]la = lo ∧ oo2 ∧ ¬locko ∧ po2 → (o′
o2

= ⊥); ReceiveA(o, o2) ∈ Σa
A.

[loco1]oo1 ∧ oo2 ∧ ¬ko1 ∧ po1 = po2 → (k′
o1

=); LockO(o1, o2) ∈ Σo
O.

[loco1]oo1 ∧ oo2 ∧ ¬ko1 ∧ po1 = po2 → (o′
o1

=);

4.4 Functional Requirements

We comment here what properties can be of relevance and how to express them in
such a way that they can be checked by running PRISM. A formalism that is able
to express all the factors that diagrams describe, paths of actions, propositions
on state variables, probabilities of occurrence of one or a sequence of actions.

PCTL formulas φ in such a logic are generated by the following BNF
grammar:

φ ::=
 | ap | φ ∧ φ | ¬φ | P�� p[ψ] | R�� r[Fφ]
ψ ::= Xφ | φUφ | φU≤ kφ

412 S. Ouchani

Here, k ∈ N, r ∈ R+, p ∈ [0, 1], and �	∈ {<,≤, >,≥}. A state formula can be
“ap”, an atomic proposition, or any propositional expression built from “ap”.
P�� p[ψ], called probabilistic path predicate, returns true if the probability to sat-
isfy the path formula ψ is �	 p. The cost predicate R��r[φ] returns true if the cost
to satisfy φ is �	 r. Here, F is the temporal logic operator eventually. A path
formula is built from the typical temporal operators next (X), until (U), and
bounded until (U≤ k).

As usual, other logic operators can be derived from the basic operators, such
as G refers to Generally. The semantics of these operators are given as follows.

– ⊥ ≡ ¬
, φ ∨ φ′ ≡ ¬(¬φ ∧ ¬φ′), φ → φ′ ≡ ¬φ ∨ φ′, and
– φ ↔ φ′ ≡ φ → φ′ ∧ φ′ → φ.
– Fφ ≡
 U φ, F≤ kφ ≡
 U≤ k φ, Gφ ≡ ¬(F¬φ), and
– G≤ kφ ≡ ¬(F≤ k¬φ) where k ∈ N.
– P≥p[Gφ] ≡ P≤1−p[F¬φ].

Besides, Pmin, Pmax, Rmin, and Rmax are operators that can be used within
path or state formulas to specify the minimum (resp. maximum) probability or
cost.

5 Experiments Results

Here we apply the approach presented in Sect. 4, by following the discussed steps
above, on a use case presenting a smart health care emergency room.

The IoT Architecture. Figure 4 depicts the main components of a smart
emergency composed of: one patient, two rooms, set of sensors, local server, and
a station. The goal is to ensure a collection of defined functional requirements.

The IoT Model. In the smart emergency presented in Fig. 4, two rooms l1
and l2 are accessible through the object o1 (unique door) that is initially locked
with the physical key ok

1 . The patient a1 is in l1 without possessing ok
1 but

he has the sensor object os
1 to measure his vital parameters and communicate

it to the local server via the station od
1 situated in l2 at the end of medical

services: monitoring, analysis, and cloud storage. Herein, we describe briefly the
behaviours of the patient a1, the sensor object os

1, the door o1, the physical key
ok
1 , and the station od

1, respectively.

– With a probability value of 0.3, a1 can unlock o1 before moving to l2.
BevA(a1) =StartA.(UnlockA(o1, ok

1) +0.3 MovingA(l1, l1)).MovingA(l1, l2).
TerminateA s.t. ActuatorA(a1) = 〈l1, {os

1}〉.
– ok

1 moves within its possessor, this possession is described with the guard gk
1 .

BehO(ok
1) =StartO.(MoveO(l1, l2) +gk

1
MoveO(l1, l1)).TerminateO

s.t. ActuatorO(ok
1) = 〈l1, εo, εo,⊥〉.

Ensuring the Functional Correctness of IoT 413

– os
1 moves within a1, and sends the value [[om

1]] received from a1 to the station
od
1.
BehO(os1) =StartO.((ReceiveO(a1, [[o

m
1]]).UpdateO(om1 , [[om1]]).SendO(od1, [[o

m
1]]))

+ (ReceiveO(od1, [[o
m
2]]).UpdateO(om2 , [[om2]])) + (MoveO(l1, l2)

+gs1
MoveO(l1, l1))).TerminateO s.t. ActuatorO(os1) = 〈l1, εo, εo, ⊥〉.

– od
1 synchronizes with os

1 to send [[om
2]]) and to receive [[om

2]]).
BehO(od1) =StartO.((ReceiveO(os1, [[o

m
1]]).UpdateO(om2 , [[om1]])))

+ (SendO(os1, [[o
m
2]]))).TerminateO s.t. ActuatorO(od1) = 〈l2, εo, εo, ⊥〉.

Fig. 4. Smart emergency room

The PRISM Model. For the performance assessment of the smart emergency,
its IoT model is encoded into PRISM presented in Listing 1.1. It shows the code
fragments of a1, os

1, ok
1 , and od

1. Here we sketch a selected commands for each
entity. The module a1 describes the behavior of a1, its location la1 is initialized to
the first room and its action MovingA(l1, l1) is expressed by the command M11.
The action Ra1(om

1) evaluates the body measure om
1 . The status of o1 is defined

nondeterministically with actions Uo1 and Lo1 to evaluate equally the predicate
locko1 . Actions in the module ok

1 assigns the locations of a1 when it is possessed
by him otherwise its location does not change. Further, os

1 synchronizes with
a1 in Ra1(om

1) and with od
1 in Sos

1 to receive aok
1

sent by a1. The module ‘cost’
assigns a cost of value 2 to the actions Ra1(om

1) and Sos
1. Furthermore, to add

more entities, a user should just instantiates the proper module by renaming
only its local variables.

414 S. Ouchani

mdp

module a1

la1 : [1..2] init 1;

aos1
: bool init true;

a1(om1): [1..5] init 1;

aok1
: bool init true;

aUok1
: bool init false;

[Uo1] (la1 =1)&(locko1)⇒
0.3: (a′

Uok1
=true)+0.7 :(l′a1

=1);

[M11](la1 =1)&(locko1)⇒(l′a1
=1);

[M12](la1 =1)&(¬locko1)⇒(l′a1
=2);

[M21](la1 =2)&(¬locko1)⇒(l′a1
=1);

[M22](la1 =2)⇒(l′a1
=2);

[Uo1](locko1)&(aok1
)⇒(l′a=la);

[Lo1](¬(locko1))&(aok1
)⇒(l′a=la);

[Ra1(om1)](a1(om1) < 5)⇒
(a1(om1)′ = a1(om1) + 1);

[Ra1(om1)](a1(om1) = 5)⇒(a1(om1)′ = 1);
endmodule

module o1
locko1 :bool init true;

[Uo1](locko1) ⇒ (lock′
o1

= false);

[Lo1](¬(locko1)) ⇒ lock′
o1

= true);

endmodule

module ok1
lok1

: [1..2] init 1;

[M11](aok1
)⇒ (l′

ok1
= la1);

[M12](aok1
)⇒ (l′

ok1
= la1);

[M21](aok1
)⇒ (l′

ok1
= la1);

[M22](aok1
)⇒ (l′

ok1
= la1);

[M22](aok1
)⇒ (l′

ok1
= la1);

[](¬(aok1
))⇒(l′

ok1
= lok1

);

endmodule

module os1
los1 :[1..2] init 1;

os1(o
m
1):[0..5] init 0;

[M11](aos1
)⇒(l′os1 = la1);

[M12](aos1
)⇒(l′os1 = la1);

[M21](aos1
)⇒(l′os1 = la1);

[M22](aos1
)⇒(l′os1 = la1);

[M22](aos1
)⇒(l′os1 = la1);

[Ra1(om1)](aos1
)⇒(os1(o

m
1)′ = a1(om1));

[Sos1](o
m
1)! = 0 ⇒ (os1(o

m
1)′ = a1(om1));

endmodule

module od1
los1 :[1..2] init 1;

od1(o
m
1):[0..5] init 0;

[M11](aos1
)⇒(l′os1 = la1);

[M12](aos1
)⇒(l′os1 = la1);

[M21](aos1
)⇒(l′os1 = la1);

[M22](aos1
)⇒(l′os1 = la1);

[M22](aos1
)⇒(l′os1 = la1);

[Sos1](o
m
1 ! = 0) ⇒(od1(o

m
1)′ = os1(o

m
1));

endmodule

rewards cost

true :1;

[Ra1(om1)] (la = 2) : 2;

[Sos1] (la = 2) : 2;

[](a1(om1) > 3): 3;

[](a1(om1) < 4): 2;

endrewards

Listing 1.1. The PRISM Fragment Code
of the Smart Emergency.

The Functional Requirements. To ensure the functionality of the smart
emergency system, we specify the following functional requirements.

1. Property 1. “What is the maximum probability for the patient a1 to move
from l1 to l2 when the measure of a1(om

1) is greater then 2?”. The PCTL
expression of this property is: Pmax =?[(lo1 = l1) ∧ (a1(om

1) < 4) U ≤
step (lo1 = l2) ∧ (a1(om

1) > 3)].
The variable step is the number of steps (transitions) to reach the state that
satisfies: (lo1 = l2) ∧ (a1(om

1) > 3).

Ensuring the Functional Correctness of IoT 415

2. Property 2. “What is the maximum probability to keep both the sensor object
os
1 and the station object od

1 functioning together?”. Its PCTL expression is:
Pmax =?[G(os

1(o
m
1) > 0 ∧ od

1(o
m
1) > 0)].

3. Property 3. it looks to measure the minimum cost to read a1(om
1) and commu-

nicate it between os
1 and od

1. It is expressed in PCTL by Rmin =?[F (a1(om
1) >

0)].
4. Property 4. It measures the maximum cost for a1 to move safely and keep-

ing os
1 functioning. Its PCTL expression is: Rmax =?[F (os

1(o
m
1) > 0){la1 =

l1, la1 = l2}].

The Correctness Checking. The verification results of the above properties
are depicted in Fig. 5. The results of Property 1 in Fig. 5(a) show the convergence
of the probability evaluation from 0 to 0.001 after 3 steps, then it increases up to
0.00125 after 9 steps. This result shows that the risk is low for a patient to move.
Figure 5(b) shows that the probability obtained from the satisfiability of Property
2 is 1 after step 6 and it converges to 0.9 after 4 steps. It means that the smart
emergency model reliable at the most time.

The verification results depicted in Fig. 6(a) show that the minimum reward
value obtained from the satisfiability of Property 3 is 121.59 and Fig. 6(b)
presents that the cost to satisfy Property 4 is at least 14.13. It means that
the cost to keep the system always reliable is relatively high for communication
and relatively low for the reliability of the smart emergency.

Fig. 5. The correctness checking results of Property 1 and Property 2.

Fig. 6. The correctness checking results of Property 3 and Property 4.

416 S. Ouchani

6 Conclusion

This paper sets the fundamentals of a fully automatic framework for modeling
and analysis of IoT. Principally, we detail a part of it by presenting a formalism
that captures the main structure and comportment of IoT entities covering phys-
ical and information infrastructures, services, assets, social actors, and also their
activities and interactions. The execution of an action has a cost and guided by
probabilities and/or contextual conditions. Further, the formalism has a rich and
flexible semantics, which we use it to capture the IoT functional requirements
expressing the possibility, the likelihood, and the cost of actions. Further, it is
developed to be easy for other extensions and refinements. To carry our func-
tional correctness analysis automatically, we devised an algorithm that maps an
IoT model into the input language of PRISM in order to be checked against
the requirements expressed in PCTL. Finally, the effectiveness of the proposed
framework is validated on a case study.

This work sets the stage for further development. In the extended version
of this work, we provide the complete set of rules, a detailed transformation
function, and more experiments. Further, we intend to enrich our model with
more assets: refine the contextual conditions, provide the security aspect of the
IoT model, complete the other parts of the framework. Also from a solid theo-
retical point of view, we have to prove the correctness and the soundness of each
developed step in a proof assistant (e.g. Coq). Furthermore, we implement the
framework as a full standing tool and validated it on different case studies and
real systems.

References

1. Abie, H.: Adaptive Security for the Internet of Things: Research, Standards, and
Practices. 1st edn. Syngress Publishing (2017)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, New York
(2008)

3. Fink, G.A., Zarzhitsky, D.V., Carroll, T.E., Farquhar, E.D.: Security and privacy
grand challenges for the Internet of Things. In: 2015 International Conference on
Collaboration Technologies and Systems (CTS), pp. 27–34, June 2015

4. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International
Incorporated, Upper Saddle River (1985)

5. Hu, P., Ning, H., Qiu, T., Song, H., Wang, Y., Yao, X.: Security and privacy preser-
vation scheme of face identification and resolution framework using fog computing
in Internet of Things. IEEE Int. Things J. 4(5), 1143–1155 (2017)

6. Islam, S.M.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.S.: The internet of
things for health care: a comprehensive survey. IEEE Access 3, 678–708 (2015)

7. Kammüller, F., Augusto, J.C., Jones, S.: Security and privacy requirements engi-
neering for human centric IoT systems using eFRIEND and isabelle. In: 2017 IEEE
15th International Conference on Software Engineering Research, Management and
Applications (SERA), pp. 401–406, June 2017

8. Kammüller, F.: Formal modeling and analysis with humans in infrastructures for
IoT health care systems. In: Tryfonas, T. (ed.) HAS 2017. LNCS, vol. 10292, pp.
339–352. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58460-7 24

https://doi.org/10.1007/978-3-319-58460-7_24

Ensuring the Functional Correctness of IoT 417

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

10. Lenzini, G., Mauw, S., Ouchani, S.: Security analysis of socio-technical physical
systems. Comput. Electr. Eng. 47, 258–274 (2015)

11. Mohsin, M., Anwar, Z., Husari, G., Al-Shaer, E., Rahman, M.A.: IoTSAT: a formal
framework for security analysis of the Internet of Things (IoT). In: 2016 IEEE Con-
ference on Communications and Network Security (CNS), pp. 180–188, October
2016

12. Ouchani, S., Mohamed, O.A., Debbabi, M.: A security risk assessment framework
for SysML activity diagrams. In: 2013 IEEE 7th International Conference on Soft-
ware Security and Reliability (2013)

13. Ouchani, S., Ait Mohamed, O., Debbabi, M.: Efficient probabilistic abstraction for
SysML activity diagrams. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.)
SEFM 2012. LNCS, vol. 7504, pp. 263–277. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33826-7 18

14. Ouchani, S., Mohamed, O.A., Debbabi, M., Pourzandi, M.: Verification of the
correctness in composed UML behavioural diagrams. In: Lee, R., Ormandjieva, O.,
Abran, A., Constantinides, C. (eds.) Software Engineering Research, Management
and Applications 2010. Studies in Computational Intelligence, vol. 296, pp. 163–
177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13273-5 11

15. Ould-Yahia, Y., Banerjee, S., Bouzefrane, S., Boucheneb, H.: Exploring formal
strategy framework for the security in IoT towards e-health context using compu-
tational intelligence. In: Bhatt, C., Dey, N., Ashour, A.S. (eds.) Internet of Things
and Big Data Technologies for Next Generation Healthcare. SBD, vol. 23, pp.
63–90. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49736-5 4

16. Torjusen, A.B., Abie, H., Paintsil, E., Trcek, D., Skomedal, Å.: Towards run-time
verification of adaptive security for IoT in ehealth. In: Proceedings of the 2014
European Conference on Software Architecture Workshops, ECSAW 2014, pp. 4:1–
4:8. ACM (2014)

17. Xu, T., Wendt, J.B., Potkonjak, M.: Security of IoT systems: design challenges and
opportunities. In: Proceedings of the 2014 IEEE/ACM International Conference
on Computer-Aided Design, ICCAD 2014, pp. 417–423. IEEE Press (2014)

18. Zhang, Z.K., Cho, M.C.Y., Wang, C.W., Hsu, C.W., Chen, C.K., Shieh, S.: IoT
security: ongoing challenges and research opportunities. In: 2014 IEEE 7th Interna-
tional Conference on Service-Oriented Computing and Applications, pp. 230–234,
November 2014

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-33826-7_18
https://doi.org/10.1007/978-3-642-33826-7_18
https://doi.org/10.1007/978-3-642-13273-5_11
https://doi.org/10.1007/978-3-319-49736-5_4

	Ensuring the Functional Correctness of IoT through Formal Modeling and Verification
	1 Introduction
	2 Related Work
	3 IoT-SEC Framework
	3.1 Architecture
	3.2 Methodology

	4 Functional Correctness
	4.1 IoT Formal Model
	4.2 PRISM
	4.3 Transformation of IoT to PRISM
	4.4 Functional Requirements

	5 Experiments Results
	6 Conclusion
	References

