
El Hassan Abdelwahed 
Ladjel Bellatreche · Mattéo Golfarelli 
Dominique Méry · Carlos Ordonez (Eds.)

 123

LN
CS

 1
11

63

8th International Conference, MEDI 2018 
Marrakesh, Morocco, October 24–26, 2018 
Proceedings

Model and  
Data Engineering



Lecture Notes in Computer Science 11163

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408


El Hassan Abdelwahed • Ladjel Bellatreche
Mattéo Golfarelli • Dominique Méry
Carlos Ordonez (Eds.)

Model and
Data Engineering
8th International Conference, MEDI 2018
Marrakesh, Morocco, October 24–26, 2018
Proceedings

123



Editors
El Hassan Abdelwahed
Cadi Ayyad University
Marrakesh, Morocco

Ladjel Bellatreche
LIAS/ISAE-ENSMA
Futuroscope Chasseneuil Cedex
France

Mattéo Golfarelli
University of Bologna
Cesena, Italy

Dominique Méry
University of Lorraine
Vandœuvre-lès-Nancy, France

Carlos Ordonez
University of Houston
Houston, TX, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-00855-0 ISBN 978-3-030-00856-7 (eBook)
https://doi.org/10.1007/978-3-030-00856-7

Library of Congress Control Number: 2018954770

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-9968-0066
http://orcid.org/0000-0002-0437-0725
http://orcid.org/0000-0001-5231-6611


Preface

The International Conference on Model and Data Engineering (MEDI) is an interna-
tional forum for the dissemination of research accomplishments on database modeling
and data management. Specifically, MEDI provides a stimulating environment for the
presentation of research on database models, database theory, data processing, database
systems technology, and advanced database-oriented applications. This international
scientific event, initiated by researchers from Euro-Mediterranean countries, also aims
to promote the creation of North-South scientific networks, projects, as well as
faculty/student exchanges. This year, 2018, marks the 8th edition of MEDI, making it a
well-established conference. Our 8th edition, was held on Marrakesh (Morocco),
followed the success of the Óbidos (Portugal, 2011), Poitiers (France, 2012),
Armantea (Italy, 2013), Larnaca (Cyprus 2014), Island of Rhodes (Greece 2015),
Almería (Spain, 2016), and Barcelona (Spain, 2017).

MEDI 2018 received 86 submissions from 36 countries around the world. The
selection process was rigorous, where each paper received at least 4 reviews. The
Program Committee, after careful discussions, decided to accept 23 full papers and 4
short papers, yielding an acceptance rate of 27% for full papers and 32% overall.
Accepted papers covered broad research areas on both theoretical systems and practical
aspects. Some trends found in accepted papers include requirement engineering,
reverse engineering, advanced modeling for Cloud Systems, IOT applications, query
processing in emerging hardware, parallel processing, Semantic Web, graph databases,
sentiment analysis, cyber physical systems, formal methods, and NoSQL databases.

We are honored to have two distinguished guests as keynote speakers: Georg
Gottlob, Professor of Informatics at Oxford University, UK, and a Fellow of St John’s
College, giving a talk entitled “Data Science with Vadalog: Bridging Machine
Learning and Reasoning,” and Mohamed Mosbah, Professor of Computer Science at
LABRI, University of Bordeaux, France, whose talk is entitled: “Modeling Distributed
Algorithms by Local Computations with Applications.”

The EasyChair conference management system was set up for MEDI 2018, sup-
porting submission, review, and volume edition processes. We acknowledge that it is
an outstanding tool for the academic community.

We would like to thank all the authors who submitted their work to MEDI 2018. We
are grateful to the Program Committee members and external reviewers for their
high-quality reviews and discussions. Finally, we wish to thank the Organizing
Committee members for their continuous support.

Finally, MEDI 2018 has received financial support of several sponsors, among
them: Cadi Ayyad University (UCA), Mohammed VI Polytechnic University (UM6P),
Faculty of Sciences Semlalia Marrakech (FSSM), and Laboratoire d’Ingénierie des
Systèmes Informatiques (LISI). Many thanks for their contribution.

For conference attendants, we hope they enjoyed the technical program, informal
meetings, and interaction with colleagues from all over the world; and of course, we are



confident they enjoyed the exciting city of Marrakesh, Morocco. For readers of these
proceedings, we hope these papers are interesting and they give you ideas for future
research.

July 2018 El Hassan Abdelwahed
Ladjel Bellatreche
Matteo Golfarelli
Dominique Méry
Carlos Ordonez

VI Preface



Organization

General Co-chairs

El-Hassan Abdelwahed Cadi Ayyad University, Morocco
Ladjel Bellatreche LIAS/ENSMA, France

Program Committee Co-chairs

Matteo Golfarelli University of Bologna, Italy
Dominique Méry LORIA - Université de Lorraine, France
Carlos Ordonez University of Houston, USA

Organizing Committee Members

My Ahmed El Kiram Cadi Ayyad University, Morocco
Souad Chraibi Cadi Ayyad University, Morocco
Essaid El Bachari Cadi Ayyad University, Morocco
Zahir Jihad Cadi Ayyad University, Morocco
Sana Nouzri Cadi Ayyad University, Morocco
Tarik Agouti Cadi Ayyad University, Morocco
Issam Qaffou Cadi Ayyad University, Morocco
My El Mehdi Bouhamidi Cadi Ayyad University, Morocco

Program Committee

El-Hassan Abdelwahed Cadi Ayyad University, Morocco
Alberto Abello Universitat Politècnica de Catalunya, Spain
Yamine Ait Ameur IRIT/INPT-ENSEEIHT, France
Idir Ait Sadoune LRI - CentraleSupélec, France
Sabeur Aridhi LORIA - Université de Lorraine, France
Kamel Barkaoui Cnam, France
Ladjel Bellatreche LIAS/ENSMA, France
Orlando Belo University of Minho, Portugal
Sidi Mohamed Benslimane University of Sidi Bel Abbes, Algeria
Jorge Bernardino ISEC - Polytechnic Institute of Coimbra, Portugal
Alexander Borusan TU Berlin/Fraunhofer FOKUS, Germany
Drazen Brdjanin University of Banja Luka, Bosnia and Herzegovina
Francesco Buccafurri UNIRC, Italy
Wellington Cabrera University of Houston, USA
Antonio Corral University of Almeria, Spain
Alain Crolotte Teradata Corporation, USA
Florian Daniel Politecnico di Milano, Italy



Alex Delis University of Athens, Greece
Georgios Evangelidis University of Macedonia, Greece
Ylies Falcone Université Grenoble Alpes, Inria, Laboratoire

d’Informatique de Grenoble, France
Alfio Ferrara University of Milan, Italy
Enrico Gallinucci University of Bologna, Italy
Javier García-García IPN/UNAM, Mexico
Matteo Golfarelli University of Bologna, Italy
Anastasios Gounaris Aristotle University of Thessaloniki, Greece
Emmanuel Grolleau LIAS, ISAE-ENSMA, France
Brahim Hamid IRIT - University of Toulouse, France
Slimane Hammoudi ESEO, France
Luis Iribarne University of Almería, Spain
Mirjana Ivanovic University of Novi Sad, Serbia
Petar Jovanovic Universitat Politècnica De Catalunya - Barcelona Tech,

Spain
Nadjet Kamel University of Science and Technology Houari

Boumedien, Algeria
Selma Khouri Ecole nationale Supérieure d’Informatique (ESI),

Algeria
Adamantios Koumpis University of Passau, Germany
Regine Laleau LACL - Paris Est Creteil University, France
Yves Ledru Laboratoire d’Informatique de Grenoble - Université

Grenoble Alpes, France
Carson Leung University of Manitoba, Canada
Zhiming Liu Southwest University, China
Ivan Luković University of Novi Sad, Serbia
Sofian Maabout LaBRI - University of Bordeaux, France
Yannis Manolopoulos Aristotle University of Thessaloniki, Greece
Patrick Marcel Université François Rabelais Tours, France
Dominique Méry LORIA - Université de Lorraine, France
Mohamed Mosbah LaBRI - University of Bordeaux, France
Chokri Mraidha CEA LIST, France
Vo Ngoc Phu Duy Tan University, Vietnam
Carlos Ordonez University of Houston, USA
Yassine Ouhammou LIAS/ENSMA, France
Jose Ignacio Panach

Navarrete
University of Valencia, Spain

Oscar Pastor Lopez Universitat Politècnica de València, Spain
Jaroslav Pokorný Charles University in Prague, Czech Republic
Giuseppe Polese University of Salerno, Italy
Elvinia Riccobene University of Milan, Italy
Oscar Romero Universitat Politècnica de Catalunya, Spain
Dimitris Sacharidis Vienna University of Technology, Austria
Milos Savic University of Novi Sad, Serbia
Klaus-Dieter Schewe Software Competence Center Hagenberg, Austria

VIII Organization



Timos Sellis Swinburne University of Technology, Australia
Giovanni Simonini Università di Modena e Reggio Emilia, Italy
Neeraj Singh INPT-ENSEEIHT/IRIT, University of Toulouse,

France
Riccardo Torlone Roma Tre University, Italy
Ismail Toroslu Middle East Technical University, Turkey
Predrag Tosic University of Idaho, USA
Goce Trajcevski Northwestern University, USA
Javier Tuya University of Oviedo, Spain
Theodoros Tzouramanis University of the Aegean, Greece
Michael Vassilakopoulos University of Thessaly, Greece
Panos Vassiliadis University of Ioannina, Greece
Robert Wrembel Poznan University of Technology, Poland
Yiqun Zhang University of Houston, USA

Additional Reviewers

Berkani, Nabila
Boden, Christoph
Bonfanti, Silvia
Bouchez-Tichadou,

Florent
El-Hokayem, Antoine
Galicia Auyon, Jorge
Gounaris, Anastasios
Haq, Anam

Hewasinghage, Moditha
Ivančević, Vladimir
Jaber, Mohamad
Jovanovic, Petar
Kiefer, Martin
Kunft, Andreas
Liao, Kewen
Mammar, Amel
Meiners, Jens

Morshed, Ahsan
Pekergin, Nihal
Rafailidis, Dimitrios
Ristic, Sonja
Sarker, Bishnu
Sellami, Akrem
Varga, Jovan
Velentzas, Chronis
Yavari, Ali

Organization IX



Invited Papers



Data Science with Vadalog: Bridging Machine
Learning and Reasoning

Luigi Bellomarini1,2, Ruslan R. Fayzrakhmanov1, Georg Gottlob1,3,
Andrey Kravchenko1, Eleonora Laurenza2, Yavor Nenov1,

Stéphane Reissfelder1, Emanuel Sallinger1, Evgeny Sherkhonov1,
and Lianlong Wu1

1 University of Oxford, Oxford, UK
ggottlob@gmail.com

2 Banca d’Italia, Rome, Italy
3 TU Wien, Vienna, Austria

Abstract. Following the recent successful examples of large technology com-
panies, many modern enterprises seek to build knowledge graphs to provide a
unified view of corporate knowledge and to draw deep insights using machine
learning and logical reasoning. There is currently a perceived disconnect
between the traditional approaches for data science, typically based on machine
learning and statistical modelling, and systems for reasoning with domain
knowledge. In this paper we present a state-of-the-art Knowledge Graph Man-
agement System, Vadalog, which delivers highly expressive and efficient logical
reasoning and provides seamless integration with modern data science toolkits,
such as the Jupyter platform. We demonstrate how to use Vadalog to perform
traditional data wrangling tasks, as well as complex logical and probabilistic
reasoning. We argue that this is a significant step forward towards combining
machine learning and reasoning in data science.



Modeling Distributed Algorithms by Local
Computations with Applications

Mohamed Mosbah

LaBRI, Bordeaux INP, Univ. Bordeaux,
CNRS, F33405 Talence, France
mosbah@u-bordeaux.fr

Abstract. We present a model based on local interactions for modeling, proving
and implementing distributed algorithms. Many examples of distributed algo-
rithms illustrate this approach, together with an integrated software environment.

Keywords: Local computations � Distributed algorithms � Formal proofs

Problems related to distributed systems are a major concern of research in computer
science. We can particularly mention the design and the development of distributed
architectures or distributed programming environments, the specification and the ver-
ification of distributed algorithms, as well as the study of (wired or wireless) com-
munication networks. All these paradigms are essential for the safety and the security
of distributed systems. However, the development of distributed systems is yet not well
understood. In particular, distributed algorithms are difficult to design and to study, and
even to represent, mainly when nodes communicating only with their neighbours must
participate to achieve a global goal.

The design, validation, verification and debugging remain a hard task for most
programmers and computer scientists. This is due to the intrinsic complexity of dis-
tributed algorithms and programs compared to serial ones. Programmers must coor-
dinate and synchronize communication between processes. This problem becomes
crucial for critical environments for which safety and security must be guaranteed. For
the success of all those undertakings it is crucial to master the mechanisms and local
phenomena at the foundations of such systems. This requires the investigation into
different models of distributed computation, the fundamental understanding of local
interactions and the ability to solve global problems only by local actions. This talk will
focus on different models that are used to represent these systems.

We detail local computations model that allows a high level encoding of distributed
algorithms by graph relabeling systems making it easy the integration of mathematical
proofs into distributed computations. In this formalism, a distributed system is repre-
sented by a labeled graph; the nodes represent the processors and the edges represent
the links between them. The labels are used to encode the internal states of processors
and/or channels. A rule in such a calculus is defined by a small context graph (used as
an ‘anchor’ for application in the host graph) together with two labeling configurations
to this context, one to describe the local state before rule application, and the other to



specify the local state after rule application. The transformation is strictly local; there
are no long-distance side-effects.

A general proof schema for proving distributed computation, together with a uni-
fied framework ranging from the early design until the implementation, will be pre-
sented. In fact, he high level encoding of distributed algorithms by graph relabeling
systems makes it easy the integration of mathematical proofs into distributed algo-
rithms. On the other hand, it is possible to formalize the semantics of local compu-
tations with proof assistants, such as Event-B or Coq. Many examples will be
discussed, such as leader election, spanning tree computation, coloring. An integrated
software environment, including the design, the proof and the visualization of dis-
tributed algorithms will be presented.

References

1. Abdou, W., Abdallah, N., Mosbah, M.: Visidia: a java framework for designing, simulating,
and visualizing distributed algorithms. In: Proceedings - IEEE International Symposium on
Distributed Simulation and Real-Time Applications, DS-RT, pp. 43–46 (2014)

2. Boussabbeh, M., Tounsi, M., Kacem, A.H., Mosbah, M.: Towards a general framework for
ensuring and reusing proofs of termination detection in distributed computing. In: Proceedings
- 24th Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, PDP 2016, pp. 504–511 (2016)

3. Boussabbeh, M., Tounsi, M., Mosbah, M., Kacem, A.H.: Formal proofs of termination
detection for local computations by refinement-based compositions. In: Butler, M., Schewe,
K.D., Mashkoor, A., Biro, M. (eds.) ABZ 2016, vol. 9675, pp. 198–212. Springer, Cham
(2016)

4. DAMPAS Homepage. http://visidia.labri.fr/
5. Ktari, M., Haddar, M., Mosbah, M., Kacem, A.H.: Maintenance of a spanning tree for

dynamic graphs by mobile agents and local computations. RAIRO Theor. Inf. Appl. 51(2),
51–70 (2017)

6. Méry, D., Mosbah, M., Tounsi, M.: Refinement-based verification of local synchronization
algorithms. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 338–352.
Springer, Heidelberg (2011)

Modeling Distributed Algorithms by Local Computations with Applications XV

http://visidia.labri.fr/


Contents

Invited Paper

Data Science with Vadalog: Bridging Machine Learning and Reasoning . . . . 3
Luigi Bellomarini, Ruslan R. Fayzrakhmanov, Georg Gottlob,
Andrey Kravchenko, Eleonora Laurenza, Yavor Nenov,
Stéphane Reissfelder, Emanuel Sallinger, Evgeny Sherkhonov,
and Lianlong Wu

Databases

NoSQL Databases – Seek for a Design Methodology . . . . . . . . . . . . . . . . . 25
Chaimae Asaad and Karim Baïna

Mortadelo: A Model-Driven Framework for NoSQL Database Design . . . . . . 41
Alfonso de la Vega, Diego García-Saiz, Carlos Blanco,
Marta Zorrilla, and Pablo Sánchez

Towards OntoUML for Software Engineering: Experimental Evaluation
of Exclusivity Constraints in Relational Databases. . . . . . . . . . . . . . . . . . . . 58

Zdeněk Rybola and Michal Valenta

Ontology and Model Driven Engineering

Scrum and V Lifecycle Combined with Model-Based Testing and Model
Driven Architecture to Deal with Evolutionary System Issues . . . . . . . . . . . . 77

Imane Essebaa and Salima Chantit

Adaptive Algorithms for Computing Ontologies Metrics Through
Processing of RDF Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Jean Vincent Fonou-Dombeu and Yannick Kazela Kazadi

CRank: A Novel Framework for Ranking Semantic Web Ontologies . . . . . . . 107
Jean Vincent Fonou-Dombeu and Serestina Viriri

Data Fusion, Classification and Learning

A New Way of Handling Missing Data in Multi-source Classification
Based on Adaptive Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Ikram Abdelkhalek, Afef Ben Brahim, and Nadia Essousi



Feedback-Oriented Assessor Model: Application: Allocation
of Submissions in Online Peer Assessment. . . . . . . . . . . . . . . . . . . . . . . . . 137

Mohamed-Amine Abrache, Khalid Megder, and Chihab Cherkaoui

Communication and Information Technologies

A Gamification and Objectivity Based Approach to Improve
Users Motivation in Mobile Crowd Sensing . . . . . . . . . . . . . . . . . . . . . . . . 153

Hasna El Alaoui El Abdallaoui, Abdelaziz El Fazziki,
Fatima Zohra Ennaji, and Mohamed Sadgal

Modeling and Evaluating Cross-layer Elasticity Strategies
in Cloud Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Khaled Khebbeb, Nabil Hameurlain, and Faiza Belala

Thing Federation as a Service: Foundations and Demonstration . . . . . . . . . . 184
Zakaria Maamar, Khouloud Boukadi, Emir Ugljanin, Thar Baker,
Muhammad Asim, Mohammed Al-Khafajiy, Djamal Benslimane,
and Hasna El Alaoui El Abdallaoui

Formalizing Reusable Communication Models for Distributed
Systems Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

Quentin Rouland, Brahim Hamid, and Jason Jaskolka

Safety and Security

A Valid BPMN Extension for Supporting Security Requirements Based
on Cyber Security Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Mohamed El Amine Chergui and Sidi Mohamed Benslimane

A Correct-by-Construction Model for Attribute-Based Access Control . . . . . . 233
Hania Gadouche, Zoubeyr Farah, and Abdelkamel Tari

Algorithmics and Text Processing

Voronoi-Diagram Based Partitioning for Distance Join Query Processing
in SpatialHadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Francisco García-García, Antonio Corral, Luis Iribarne,
and Michael Vassilakopoulos

Graph Pattern Matching Preserving Label-Repetition Constraints. . . . . . . . . . 268
Houari Mahfoud

Standard and Dialectal Arabic Text Classification for Sentiment Analysis . . . 282
Mohcine Maghfour and Abdeljalil Elouardighi

XVIII Contents



A Graph-Based Model for Tag Recommendations in Clinical
Decision Support System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Sara Qassimi, El Hassan Abdelwahed, Meriem Hafidi,
and Rachid Lamrani

Spatial Batch-Queries Processing Using xBRþ -trees in Solid-State Drives . . . 301
George Roumelis, Michael Vassilakopoulos, Antonio Corral,
Athanasios Fevgas, and Yannis Manolopoulos

Specification, Verification and Validation

Formalizing Railway Signaling System ERTMS/ETCS
Using UML/Event-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Abderrahim Ait Wakrime, Rahma Ben Ayed, Simon Collart-Dutilleul,
Yves Ledru, and Akram Idani

A Dynamic Analysis for Reverse Engineering of Sequence Diagram
Using CPN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Chafik Baidada, El Mahi Bouziane, and Abdeslam Jakimi

A Formalized Procedure for Database Horizontal Fragmentation
in Isabelle/HOL Proof Assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Cheikh Salmi, Mohamed Chaabani, and Mohamed Mezghiche

Domain-Oriented Verification Management . . . . . . . . . . . . . . . . . . . . . . . . 354
Vincent Leildé, Vincent Ribaud, Ciprian Teodorov,
and Philippe Dhaussy

A Formal Model for Interaction Specification and Analysis
in IoT Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Souad Marir, Faiza Belala, and Nabil Hameurlain

Mechanizing the Denotational Semantics of the Clock Constraint
Specification Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Mathieu Montin and Marc Pantel

Ensuring the Functional Correctness of IoT through Formal Modeling
and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Samir Ouchani

Extensions to Hybrid Event-B to Support Concurrency
in Cyber-Physical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418

Klaus-Dieter Schewe

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Contents XIX



Invited Paper



Data Science with Vadalog: Bridging
Machine Learning and Reasoning

Luigi Bellomarini1,2, Ruslan R. Fayzrakhmanov1, Georg Gottlob1,3(B),
Andrey Kravchenko1, Eleonora Laurenza2, Yavor Nenov1,

Stéphane Reissfelder1, Emanuel Sallinger1, Evgeny Sherkhonov1,
and Lianlong Wu1

1 University of Oxford, Oxford, UK
ggottlob@gmail.com

2 Banca d’Italia, Rome, Italy
3 TU Wien, Vienna, Austria

Abstract. Following the recent successful examples of large technology
companies, many modern enterprises seek to build knowledge graphs to
provide a unified view of corporate knowledge and to draw deep insights
using machine learning and logical reasoning. There is currently a per-
ceived disconnect between the traditional approaches for data science,
typically based on machine learning and statistical modelling, and sys-
tems for reasoning with domain knowledge. In this paper we present a
state-of-the-art Knowledge Graph Management System, Vadalog, which
delivers highly expressive and efficient logical reasoning and provides
seamless integration with modern data science toolkits, such as the
Jupyter platform. We demonstrate how to use Vadalog to perform tradi-
tional data wrangling tasks, as well as complex logical and probabilistic
reasoning. We argue that this is a significant step forward towards com-
bining machine learning and reasoning in data science.

Keywords: Knowledge graphs · Data science · Machine learning
Reasoning · Probabilistic reasoning

1 Introduction

Enterprises increasingly depend on intelligent information systems that oper-
ationalise corporate knowledge as a unified source across system boundaries.
Such systems crucially rely on insights produced by data scientists, who use
advanced data and graph analytics together with machine learning and statisti-
cal models to create predictive actionable knowledge from suitably preprocessed
corporate data by means of data wrangling. To maintain their competitive edge,
companies need to incorporate multiple heterogeneous sources of information,
including streams of structured or unstructured data from internal systems (e.g.,
Enterprise Resource Planning, Workflow Management, and Supply Chain Man-
agement), external streams of unstructured data (e.g., news and social media
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 3–21, 2018.
https://doi.org/10.1007/978-3-030-00856-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_1&domain=pdf


4 L. Bellomarini et al.

feeds, and Common Crawl1), publicly available and proprietary sources of semi-
structured data (e.g., DBpedia [11], Wikidata [46], UniProt [19], data.gov.uk),
structured data extracted from web pages using web data extraction techniques
[24], as well as internal and external knowledge bases/ontologies (e.g., Research-
Cyc2, DBpedia [11], Wikidata [46], FIBO3). The integration of such diverse
information is a non-trivial task that presents data scientists with a number of
challenges including: the extraction and handling of big data with frequently
changing content and structure; dealing with uncertainty of the extracted data;
and finding ways of unifying the information from different sources.

Following the trend of large technological companies such as Google, Ama-
zon, Facebook, and, LinkedIn, it is becoming common for enterprises to inte-
grate their internal and external sources of information into a unified knowledge
graph. A knowledge graph typically consists of graph-structured data to allow
for smooth accommodation of changes in the structure of the data, and knowl-
edge layers, which encode business logic used for the validation and enrichment
of data and the uncovering of critical insights from it. Graph-structured data
may stem from data directly exposed as graphs (e.g., RDF4 used by triple stores
such as GraphDB5, Property Graphs used by graph databases like neo4j6, and
JanusGraph7) or relational or semi-structured data that exhibits graph struc-
ture. The consolidated and enriched knowledge graph is then processed using the
standard data science toolkit for graph analytics (including languages such as
Cypher8, SPARQL9, and Gremlin10), statistical analysis (using the R statistical
framework), and machine learning (using toolkits such as Weka11, scikit-learn12,
and TensorFlow13).

The creation of a coherent knowledge graph from multiple sources of unstruc-
tured, semi-structured, and structured data is a challenging task that requires
techniques from multiple disciplines. Entity resolution [18] is used to combine
multiple sources of (semi-)structured data that do not share common identifiers.
The goal is to identify pairs of entities that refer to the same real-world object
and merge them into a single entity. The matching is performed using noisy, semi-
identifying information (e.g., names, addresses) and relationships, and employs
specialised similarity functions for strings, numbers, and dates, to determine the

1 http://commoncrawl.org/.
2 http://www.cyc.com/researchcyc/.
3 https://spec.edmcouncil.org/static/ontology/.
4 https://www.w3.org/RDF/.
5 http://graphdb.ontotext.com/.
6 https://neo4j.com/.
7 http://janusgraph.org/.
8 https://neo4j.com/developer/cypher-query-language/.
9 https://www.w3.org/TR/rdf-sparql-query/.

10 https://tinkerpop.apache.org/gremlin.html.
11 https://www.cs.waikato.ac.nz/ml/weka/.
12 http://scikit-learn.org/.
13 https://www.tensorflow.org/.

http://www.data.gov.uk
http://commoncrawl.org/
http://www.cyc.com/researchcyc/
https://spec.edmcouncil.org/static/ontology/
https://www.w3.org/RDF/
http://graphdb.ontotext.com/
https://neo4j.com/
http://janusgraph.org/
https://neo4j.com/developer/cypher-query-language/
https://www.w3.org/TR/rdf-sparql-query/
https://tinkerpop.apache.org/gremlin.html
https://www.cs.waikato.ac.nz/ml/weka/
http://scikit-learn.org/
https://www.tensorflow.org/


Data Science with Vadalog 5

overall similarity of two entities. Information extraction [43] is used for auto-
matically extracting structured data from unstructured sources (i.e., news and
social media feeds). Thus, for example, the news feed “PayPal buys Hyperwallet
for $400M” could result into the structured statement “acquire(PayPal, Hyper-
wallet)”. Information extraction is typically combined with entity resolution to
correctly incorporate the extracted information within an existing knowledge
graph.

Publicly available datasets are often equipped with ontologies which describe
relationships between entities. In such cases ontological reasoning needs to be
applied to validate whether the results of entity resolution and information
extraction violate any of the constraints imposed by the ontology as well as
to enrich the data with new information stemming from the newly produced
facts. Further note that, unsurprisingly, the use of machine learning is pervasive
throughout the stages of the data scientist’s workflow: from semantically anno-
tating web page elements during web data extraction, through deciding whether
entities should be matched during entity resolution, to predicting numerical
trends during data analytics over the knowledge graph. Finally, observe that
although uncertainty is intrinsic to many of the tasks in the data scientist’s
workflow, it is typically resolved by the means of a threshold. For example, dur-
ing entity resolution, the similarity of the attributes of two entities is typically
converted to a probability for the two entities to be the same, and they are
matched if the probability exceeds a certain threshold. Similarly, the informa-
tion extraction stage typically associates output facts with level of uncertainty
stemming from the extraction process, but likewise to the case of entity reso-
lution, the uncertainty is converted into a probability for a fact to hold, and a
hard decision is made on whether it should be included or not. Interestingly, one
can do better than that. One may want to impose levels of uncertainty using
business rules to better inform the decision of whether and how the knowledge
graph should be updated. One such rule, for example, could be that public com-
panies are much more likely to acquire private companies than vice-versa (the
so called reverse takeover). Such rules can be produced by a domain expert or
learned from the data using rule learning [7]. Furthermore, instead of ignoring
the uncertainty, after it is being used to determine whether to accept a fact or a
match, for example, one could alternatively incorporate this uncertainty into the
knowledge graph and propagate them into the further stages of data wrangling
and data analytics workflow.

To carry out the different stages of the described workflow data scientists need
to use and coordinate a number of tools, languages, and technologies: for data
access they require tools for web data extraction, various data-base management
systems, triple stores and graph databases; during knowledge graph construction
they require tools for entity resolution, information extraction, ontological rea-
soning, and uncertainty management; and during the analysis stage they require
tools for graph analytic, machine learning and statistical modelling. The coor-
dination of all these tools can be very challenging.



6 L. Bellomarini et al.

In this paper we present the Vadalog engine: a state-of-the-art Knowledge
Graph Management System (KGMS) that provides a unified framework for inte-
grating the various tools and technologies used by data scientists. Its language
Vadalog is an extension of the rule-based language Datalog [1], and can naturally
capture SQL (through support for the SQL operators), ontological reasoning
in OWL 2 QL14 and SPARQL (through the use of existential quantifiers), and
graph analytics (through non-trivial support for recursion and aggregation). The
declarative nature of the language makes the code concise, manageable, and self-
explanatory. The engine is fully extensible through its bindings to different data
sources and libraries. Data extensions provide access to relational data stored
in Postgres or MySQL, for example, or to graph data stored in neo4j or Janus,
or to web data using OXPath [24]. Library extensions allow the integration of
state-of-the-art machine learning tools such as Weka, scikit-learn, or Tensor-
Flow. Additional integration with libraries for string similarities and regular
expressions allows for defining complex entity resolution workflows. The engine
also supports reasoning with probabilistic data and probabilistic rules, which
makes it ideal for handling uncertainty stemming from the different stages of
the data scientist’s workflow. Finally, the Vadalog engine seamlessly integrates
with Jupyter: a well-known platform for data analysts and scientists with a con-
venient interface for data processing and visualisation.

The paper is organised as follows. Section 2 provides an overview of the core
language. Section 3 provides a system overview of the Vadalog engine. Section 4
describes the various features of the system within a typical data scientist’s work-
flow in Jupyter. Section 5 demonstrates the engine’s integration with machine
learning on typical use cases. Finally, Sect. 6 describes in more detail the sup-
port of the system for probabilistic reasoning.

This paper includes, in abbreviated form, material from a number of pre-
vious papers on the topic [7–10]. The Vadalog system is Oxford’s contribution
to VADA [34], a joint project of the universities of Edinburgh, Manchester, and
Oxford. We reported first work on the overall VADA approach to data wrangling
in [25]. In this paper, we focus on the Vadalog system at its core. Currently, our
system fully implements the core language and is already in use for a number of
industrial applications.

2 Core Language

Vadalog is a Datalog-based language. It belongs to the Datalog± family of lan-
guages that extends Datalog by existential quantifiers in rule heads, as well as by
other features, and at the same time restricts its syntax in order to achieve decid-
ability and data tractability; see, e.g., [14–17]. The logical core of the Vadalog
language corresponds to Warded Datalog± [4,29], which captures plain Datalog
as well as SPARQL queries under the entailment regime for OWL 2 QL [28]
and is able to perform ontological reasoning tasks. Reasoning with the logical
core of Vadalog is computationally efficient. Vadalog is obtained by extending
14 https://www.w3.org/TR/owl2-profiles/.

https://www.w3.org/TR/owl2-profiles/


Data Science with Vadalog 7

Warded Datalog± with additional features of practical utility. We now illustrate
the logical core of Vadalog, more details about extensions can be found in [7].

The logical core of Vadalog relies on the notion of wardedness, which applies
a restriction on how the “dangerous” variables of a set of existential rules are
used. Note that existential rules are also known as tuple-generating dependencies
(tgds), i.e., Datalog rules where existential quantification is allowed in the head.
Intuitively, a “dangerous” variable is a body-variable that can be unified with a
labelled null value when the chase algorithm is applied, and it is also propagated
to the head of the rule. For example, given the set Σ consisting of the rules

P (x) → ∃z R(x, z) and R(x, y) → P (y),

the variable y in the body of the second rule is “dangerous” (w.r.t. Σ) since
starting, e.g., from the database D = {P (a)}, the chase will apply the first rule
and generate R(a, ν), where ν is a null that acts as a witness for the existentially
quantified variable z, and then the second rule will be applied with the variable
y being unified with ν that is propagated to the obtained atom P (ν).

Note that, throughout this paper, we will mix the “logical” notation shown
above that is often used in papers, and the “code”-like notation that is used
in systems, such as the Vadalog system. The above example would be given as
follows in Vadalog notation:

r(X,Z) :- p(X).
p(Y) :- r(X,Y).

The goal of wardedness is to tame the way null values are propagated during the
construction of the chase instance by posing the following conditions: (i) all the
“dangerous” variables should coexist in a single body-atom α, called the ward ;
(ii) the ward can share only “harmless” variables with the rest of the body, i.e.,
variables that are unified only with database constants during the construction
of the chase.

Warded Datalog± consists of all the (finite) sets of warded existential rules.
As an example of a warded set of rules, the following rules encode part of the
OWL 2 direct semantics entailment regime for OWL 2 QL (see [4,29]):

Type(x, y),Restriction(y, z) → ∃w Triple(x, z, w)
Type(x, y),SubClass(y, z) → Type(x, z)

Triple(x, y, z), Inverse(y, w) → Triple(z, w, x)
Triple(x, y, z),Restriction(w, y) → Type(x,w).

It is easy to verify that the above set is warded, where the underlined atoms are
the wards. Indeed, a variable that occurs in an atom of the form Restriction(·, ·),
or SubClass(·, ·), or Inverse(·, ·), is trivially harmless. However, variables that
appear in the first position of Type, or in the first/third position of Triple can
be dangerous. Thus, the underlined atoms are indeed acting as the wards.



8 L. Bellomarini et al.

Reasoning in Warded Datalog± is PTIME-complete in data complexity [4,
29]. Although polynomial time data complexity is desirable for conventional
applications, PTIME-hardness can be prohibitive for “Big Data” applications.
One such example is towards building knowledge graphs that consider huge
elections in the area of computational social choice [20]. Yet, in fact, this is true
even for linear time data complexity. This is discussed in more detail in [7].

This core language has a number of extensions to make it practical, among
them data types, arithmetic, (monotonic) aggregation, bindings of predicates to
external data sources, binding function symbols to external functions, and more.

We will discuss monotonic aggregation here. Vadalog supports aggregation
(min, max, sum, prod, count), by means of an extension to the notion of mono-
tonic aggregations [44], which allows adopting aggregation even in the presence
of recursion while preserving monotonicity w.r.t. set containment. Such func-
tionality is crucial for performing graph analytics, an example of which is shown
in Sect. 4.

We will discuss some of these extensions throughout this paper. One of the
extensions that are planned is more support consistency, in particular consistent
query answering [3,5] as well as view updates [13,31].

3 Core System

Fig. 1. KGMS reference architecture [7]

The functional architecture of the
Vadalog system, our KGMS, is
depicted in Fig. 1. The knowledge
graph is organised as a repository, a
collection of Vadalog rules. The exter-
nal sources are supported by means of
transducers, intelligent adapters that
integrate the sources into the reason-
ing process.

The Big Data characteristics of
the sources and the complex func-
tional requirements of reasoning are
tackled by leveraging the underpin-
nings of the core language, which are
turned into practical execution strate-
gies. In particular, in the reasoning
algorithms devised for Warded Datalog±, after a certain number of chase steps
(which, in general, depends on the input database), the chase graph [15] (a
directed acyclic graph where facts are represented as nodes and the applied rules
as edges) exhibits specific periodicities and no new information, relevant to query
answering, is generated. The Vadalog system adopts an aggressive recursion and
termination control strategy, which detects such redundancy as early as possi-
ble by combining compile-time and runtime techniques. In combination with a
highly engineered architecture, the Vadalog system achieves high performance
and an efficient memory footprint.



Data Science with Vadalog 9

At compile time, as wardedness limits the interaction between the labelled
nulls, the engine rewrites the program in such a way that joins on specific val-
ues of labelled nulls will never occur. This exploits work on schema mapping
composition and optimisation [32,33,38,42].

The Vadalog system uses a pull stream-based approach (or pipeline app-
roach), where the facts are actively requested from the output nodes to their
predecessors and so on down to the input nodes, which eventually fetch the facts
from the data sources. The stream approach is essential to limit the memory
consumption or at least make it predictable, so that the system is effective for
large volumes of data. Our setting is made more challenging by the presence of
multiple interacting rules in a single rule set and the wide presence of recur-
sion. We address this by means of a specialised buffer management technique.
We adopt pervasive local caches in the form of wrappers to the nodes of the
access plan, where the facts produced by each node are stored. The local caches
work particularly well in combination with the pull stream-based approach, since
facts requested by a node successor can be immediately reused by all the other
successors, without triggering further backward requests. Also, this combination
realises an extreme form of multi-query optimisation, where each rule exploits
the facts produced by the others, whenever applicable. To limit memory occu-
pation, the local caches are flushed with an eager eviction strategy that detects
when a fact has been consumed by all the possible requestors and thus drops it
from the memory. Cases of actual cache overflow are managed by resorting to
standard disk swap heuristics (e.g., LRU, LFU).

More details on the Vadalog system can be found in [10]. The system includes
many other features, such as data extraction with OXPath, which is in use with
our collaborators at dblp [36].

4 Supporting the Data Science Workflow

As the importance of data science constantly increases, the Vadalog system can
support the entire spectrum of data science tasks and processes to a certain
extent. It does not however replace tools specialists like to use, but rather conveys
a universal platform to integrate various approaches and tools into a unified
framework. All integrations are realised in terms of data binding primitives and
functions.

One such key example is the use of the UI/development platform, where
Jupyter was chosen as a platform that data scientists are familiar with. The
Vadalog system has seamless integration with JupyterLab with the use of a
Vadalog extension and kernel (see Fig. 2). JupyterLab is a well-known platform
for data analysts and scientists with a convenient interface for data processing
and visualisation. It has a multi-user support, in which dedicated resources and
the environment are associated with a concrete user. The Vadalog extension and
kernel for JupyterLab give data scientists the possibility to evaluate the correct-
ness of the program, run it, and analyse the derivation process of interesting
output facts. All output is rendered in JupyterLab’s output area.



10 L. Bellomarini et al.

Fig. 2. Example of the Vadalog program for inferring a company control indicator

Data Binding Primitives. Bindings give one a possibility to connect an auto-
matic reasoning workflow with external systems for data exchange. An external
system can represent a database, framework, library or information system. Cur-
rently Vadalog supports relational databases, such as Postgres and MySQL, and
graph databases, such as neo4j. It also has seamless integration with machine
learning tools, e.g., Weka and scikit-learn (see Sect. 5.1), and a web data extrac-
tion tool, OXPath [24] (see Fig. 3). Other integrations are included or can be
easily integrated. Data sources and targets can be declared by adopting @input
and @output annotations. Annotations are special facts augmenting sets of exis-
tential rules with specific behaviours. @input and @output define the direction of
facts into and from the Vadalog program, respectively. Additional @bind anno-
tation defines means for interacting with an external system. A query bind anno-
tation @qbind is a special modification of @bind. It supports binding predicates
to queries against inputs and outputs in the external language (e.g., SQL-queries
for a data source or target that supports SQL). The first parameter of @bind
and @qbind specifies a predicate the external resource is bound to; the second
parameter defines a type of the target (e.g., “postgres”). In case the schema
of an external resource cannot be derived automatically, or should be overrid-
den, additional @mapping annotation can be used to define mapping strategy for
tuples between Vadalog and an external system.



Data Science with Vadalog 11

Fig. 3. Integration of OXPath, a web data extraction tool

In Fig. 2, we give a synthetic example of a Vadalog program to infer a com-
pany control indicator. It can be formulated as follows: A company A “controls”
company B if A owns directly or indirectly (i.e., via shares in other companies)
more than 50% of B’s shares (lines 18–25). As we can see, various strategies
for binding external resources can be used in the Vadalog program. For exam-
ple, data tuples ownsDirectly can be propagated into the program from the
parametric @qbind (lines 6–7 for Postgres via tuples ownsDirectlyDB) or @bind
(line 11 for CSV via tuples ownsDirectlyCSV). For @qbind SQL query is instan-
tiated with the parameter from the predicate relevant country (line 8). The
query instantiation is realised within the join, in which the parameter C from
the relevant country predicate is propagated into the fourth term of the pred-
icate ownsDirectlyDB. In contrast, in case of @bind, all data is streamed into
the Vadalog system and filtered on-the-fly by only selecting information regard-
ing the “relevant country” (line 16). ownsDirectly tuples can also be specified
within the program in terms of facts (line 3). During the evaluation of the pro-
gram, each derived tuple controls is streamed into a Postgres database as it is
specified in lines 26–27.

In Fig. 3, we illustrate an example of binding with OXPath. OXPath [24] is
a web data extraction language, an extension of XPath 1.0 for interacting with
web applications and extracting data from them. In this example, the OXPath
binding streams all articles of Georg Gottlob from dblp website into the Vadalog
program. Extracted articles can be represented as a relation article(authors,
title, publication, pages). Integration with machine learning tools is dis-
cussed in the next section.

Functions. Besides bindings, functions provide a data scientist with a rich set
of value transformations and operations for different data types supported in
Vadalog. A user can write expressions of different complexity with the use of



12 L. Bellomarini et al.

operators and functions to perform arithmetic, manipulate strings, dates, and
compare values. Examples of supported data types are string, integer, double,
date, boolean, set, and a special identifier for unknown values, marked null. A
data scientist can also extend the set of supported functions with those written
in Python, which is enabled in the Vadalog framework. Functions can be com-
bined into libraries. For example, @library("sim:", "simmetrics"). enables
the “simmetrics” library in the Vadalog program, where methods can be invoked
with the prefix sim:, as in sim:removeDiacritics(Text) to remove diacrit-
ics from Text. We also convey libraries for building regression or classification
models on-the-fly and applying those on the data derived during the automatic
reasoning (see Sect. 5.1).

Fig. 4. A screenshot depicting code analysis for an altered Vadalog program in the
company control example

Code Analysis. The correctness of the program is assessed with the use of
the code analysis functionality (see Fig. 4). It checks whether there are essential
or well-known error patterns in the program. For example, in Fig. 4, we altered
the original program illustrated in Fig. 2. The parameter Share of the condition
in the line 18 was replaced with Share2, lines 10–15 were commented, leaving
ownsDirectlyCSV without the binding, and the output controls was changed
to controls2.

Fact Derivation Analysis. The analysis of derivations can be performed with
the use of explanations (see Fig. 5). It gives an explanation of how a certain fact
has been derived within the program and which rules have been triggered.

Bindings and functions make data analytics both more effective and efficient.
Vadalog directly interacts with various data sources regardless of their nature,
be it a database or the Web. Furthermore, with rich reasoning capabilities it
can lift the analysis up from basic values, tuples or relations within databases
to semantically rich structures, e.g., from property graphs such as of neo4j to
concepts of a domain ontology. This makes the code more concise and self-
explanatory.



Data Science with Vadalog 13

Fig. 5. A screenshot of the output depicting a “yes”-explanation for the fact
controls("A", "C") in the company control example

The Vadalog system is a universal tool which can reconcile two opposite
paradigms of data scientists and domain experts, so-called “inductive” (or
bottom-up) and “deductive” (or top-down) approaches. An inductive paradigm
goes along with a statement that “patterns emerge before reasons for them
become apparent” [21]. It certainly refers to data mining and machine learn-
ing approaches which are used for deriving new knowledge and relations from
data. As all data scientists face in practice, “all models are wrong and some are
useful” [12, p. 208], which explains problems of finding the best model given a
dataset. Furthermore, limitations related to labour intensive labelling for some
machine learning algorithms can also cause incorrect or incomplete results. Thus,
knowledge of a domain expert with a deductive approach is important to correct
potential errors propagated from generated models.

5 Integrating Machine Learning

Fig. 6. Schematic view of the interaction
between machine learning and reasoning

In this section, we will discuss
how to integrate machine learning
directly. We will focus on one of
the approaches to machine learning
integration, schematically illustrated
in Fig. 6. In the first subsection, we
will concretely talk about Weka and
scikit-learn integration. The system’s
TensorFlow integration is similar in
style to the scikit-learn integration.
This will be followed in Subsect. 5.2



14 L. Bellomarini et al.

by a case study on feature engineering. We will conclude in Subsect. 5.3 on how
to include custom ML algorithms directly into the system.

Fig. 7. A snippet of Vadalog code, which demonstrates training a J48 Weka model

Fig. 8. A snippet of Vadalog code, which demonstrates the classification phase with a
trained J48 Weka model

5.1 Direct Integration

Weka. Integration with a machine learning framework, Weka, is demonstrated
in Figs. 7 and 8. Figure 7 illustrates the J48 model generation example for the Iris
dataset. Training data is propagated to the bound decision tree classifier asso-
ciated with the predicate j48. Mapping annotations specify attributes and the
class of tuples streamed into the underlying machine learning algorithm. Figure 8
depicts an example of the classification process given a model M. Attributes of
the tuple data to be classified and the generated model are streamed into the
underlying Weka framework via the predicate j48. The results of the classifica-
tion are instantiated in a relation classified data. In the @qbind expression,
the third parameter defines nominal attributes, a class in our case, which had
index 4 in the training phase. The fourth parameter of @qbind defines parameter
propagation template from the predicate j48 into the underlying model.

SciPy Toolkits Machine Learning. An external Python library such as scikit-
learn can be utilised for machine learning tasks over predicates, through Vadalog
Library framework. One basic linear regression example is shown below. The
input consists of predicates in the form of training set(ID,X, Y ). The sk:fit
function feeds input data one by one and returns current training set size. Once
sufficient training set size is reached, sk:train function is called with a boolean
return value. The last rule takes predict inputs one by one and retrieves output
from a trained model. #T stands for boolean value true.



Data Science with Vadalog 15

@library("sk:", "sklearn").

training set("ID1", [1, 1], 2).

training set("ID1", [2, 2], 4).

training set("ID1", [3, 3], 6).

predict("ID1", [17, 17]).

training size(ID, C) :- training set(ID, In, Out), C=sk:fit(ID, In, Out).

classified(ID, R) :- training size(ID, C),C>=3, R = sk : train(ID).

result(ID, In, Out) :-

predict(ID, In), classified(ID, #T), Out = sk:predict(ID, In).

5.2 Case Study: Feature Engineering

We consider a case study of implementing a supervised machine learning frame-
work and post-classification reasoning with Vadalog. Our implementation con-
sists of three phases: (i) feature extraction with Vadalog, (ii) interaction between
Vadalog and a serialised classifier, (iii) post-classification reasoning. We assume
that the classifier has already been trained and serialised and for the reasons
of brevity omit the description of representing a training corpus and training
the classifier with Vadalog, as it can be done through a simple extension of the
framework. The schematic view of the framework we implement in this case
study is given in Fig. 6.

Feature Extraction with Vadalog. Consider the problem of identifying semantic
blocks on a web page, such as pagination bars, navigation menus, headers, foot-
ers, and sidebars [26,35]. The page is represented by the DOM tree and CSS
model. We represent all information contained both in the DOM and CSS as
DOM facts, which are Vadalog edb predicates. An example of three DOM facts
representing the (i) font size of a DOM tree element with ID 100, (ii) its back-
ground colour, (iii) and the coordinates, width, and height of the corresponding
CSS box is listed below.

dom css fontSize("e 100", "16px").

dom css backgroundColor("e 100", "rgb(229, 237, 243)").

dom css boundingBox("e 100", 150, 200, 450, 400, 300, 200).

In the code snippet below we extract the feature, which computes the average
font size of the sub-tree rooted at a given DOM node N, used in the navigation
menu classifier, i.e., the average font size computed on a set unifying node N
and all of its descendant nodes (calculated through the Start and End indices of
DOM nodes).



16 L. Bellomarini et al.

@output("feature").

descendant(N,D) :-

dom element(N, Start, End), dom element(D, StartD, EndD),

Start < StartD, EndD < End.

feature("averageFontSize", N, FontSize) :- dom css fontSize(N, FontSize).

feature("averageFontSize", N, FontSize) :-

descendant(N,D), dom css fontSize(D, FontSize).

@post("feature", "avg(3)").

Note that we use the feature namespace for the predicate, which computes
this particular feature, as well as all other features used by classifiers. The feature
predicates are the output of this feature extraction phase of the framework, so
that they can be further passed on as input to a serialised classifier.

Interaction with a Serialised Classifier. All extracted features are passed on to a
serialised classifier through the @bind operator. For the case of web block classifi-
cation, we use Weka as the machine learning library and J48 decision tree as the
classifier, but the implementation of the framework in Vadalog is both library
and classifier agnostic, e.g., we can seamlessly integrate Vadalog with scikit-
learn, as demonstrated in Subsect. 5.1, and the J48 decision tree classifier can
also be seamlessly changed to any other classifier, e.g., an SVM. The classifica-
tions produced by the classifier are then passed back to Vadalog, also through the
@bind operator. These classifications are in the classification namespace, e.g.,
classification(e 200,"navigation menu") that classifies DOM node with ID
200 as a navigation menu.

Post-classification Reasoning. We can now apply post-classification reasoning
that cannot be easily represented by machine learning classifiers to the classi-
fications computed in the previous phase. For example, given serialised header
and footer classifiers and classifications computed in the previous phase, we can
impose a constraint that a header and a footer cannot overlap.

header footer overlap constraint(N, M) :-

classification(N, "header"), classification(M, "footer"),

no overlap(N, M).

5.3 Direct Use of Algorithms

In case no external support is available, or users want to adapt and tie their algo-
rithms closer to the knowledge graph, a number of Machine Learning algorithms
can be directly implemented in Vadalog. Note that this is a complementary
alternative – in case algorithms should be used out-of-the-box based on existing



Data Science with Vadalog 17

systems and approaches, and no modification or close interaction with the knowl-
edge graph is required, it is certainly a good idea to use such external systems
and algorithms as described in Sect. 5.1. Taking advantage of the declarative
programming paradigm, it requires only concisely expressing the logic of the
definition, instead of explicitly describing the exact algorithm. As a result, the
program is easy for modification, verification or parallel execution. The appli-
cation areas include but are not limited to clustering, anomaly detection, and
weekly supervised learning.

We will use DBSCAN (Density-based spatial clustering of applications with
noise) algorithm as a simple example [22]. Two main parameters of DBSCAN
are eps (distance threshold) and minPts (minimal number of points for a dense
region). The input is a set of points p(ID,X, Y ), ID is a sequential number
representing an identifier.

eps(0.11), minPts(5),
p(1, 0.697, 0.460), p(2, 0.774, 0.376), . . .

Two points are in a neighbourhood if their Euclidean distance is less than
eps. The neighbourhood number is obtained through aggregation as below.

p(A,XA, YA), p(B,XB , YB), C =
√

(XA − XB)2 + (YA − YB)2

→ point pairs(A,B,C).
point pairs(A,B,C), eps(E), C <= E → neighbourhood(A,B).
neighbourhood(A,B), J = mcount(B) → neighbourhood count(A, J).
neighbourhood count(A, J),K = max(J) → neighbourhood number(A,K).

Different types of points, i.e., core, border and noise, are defined as follows.

neighbourhood number(A,K),minPts(M),K >= M → core point(A).
¬core point(A), core point(B), neighbourhood(A,B) → border point(A).
neighbourhood number(A,K),¬core point(A),¬border point(A)
→ noise point(A).

Notions of density reachability and connectivity are defined below.

core point(A), neighbourhood(A,B) → directly reachable(A,B).
directly reachable(A,B) → reachable(A,B).
reachable(A,C), directly reachable(C,B) → reachable(A,B).
reachable(C,A), reachable(C,B) → connected(A,B).

The goal of density clustering process is to find point pairs that satisfy both
connectivity and maximality properties, respectively:

connected(A,X) → cluster(A,X).
reachable(A,X) → cluster(A,X).



18 L. Bellomarini et al.

The cluster is identified by the point (from this cluster) which has the minimal
ID number. This is achieved by the post-processing instruction, @post, which
takes the minimum value for the second term (position) of the relation cluster,
grouping by the first term (position).

@output("cluster"). @post("cluster", "min(2)").
Output Example: cluster(1,1). cluster(2,1). cluster(3,3).

6 Probabilistic Reasoning

In the design of winning data science solutions, it is more and more clear that
completely neglecting domain knowledge and blindly relying only on induc-
tive models (i.e., with parameters learnt from data) easily leads to sub-optimal
results, subject to overfitting when not to wrong conclusions. Thus, data scien-
tists tend to integrate inductive reasoning with deductive approaches, comple-
menting and when it is the case overruling machine learning models with domain
knowledge.

In the Vadalog system, we introduce probabilistic knowledge graphs, a valu-
able tool to craft a new kind of data science solutions where statistical models
incorporate and are driven by the description of the domain knowledge.

Combining uncertainty and logic to describe rich uncertain relational struc-
tures is not new and has been the primary focus of Statistical Relational Learn-
ing (SRL) [27,40]. One prominent representative of this area is Markov Logic
Networks (MLN) [41], which allow to describe relational structures in terms of
first-order logic. A number of algorithms for exact and approximate reasoning
in MLNs and other SRL models [6,23] have been proposed, and systems built
such as Alchemy [41], Tuffy [37] and SlimShot [30]. MLNs have been success-
fully applied in natural language processing [39], ontology matching [2], record
linkage [45], and so on. Yet, one common limitation of SRL models is their logi-
cal reasoning side: logic in SRL is not utilised for deducing new knowledge, but
rather serves the role of a constraint language. Systems that can be built on top
of these models are hence of very limited applicability in data science tasks.

Consider the following example.

Example 1. Let G be a knowledge graph, which contains the following facts
about the ownership and link relationships between companies, augmented with
a Vadalog program composed of rules (1) and (2):

Own(a, b, 0.4),Own(b, c, 0.5),Own(a, d, 0.6),Own(d, c, 0.5),
Linked(a, b),Linked(a, d),Linked(b, c),Linked(d, c).

(1)Own(x, y, s), s > 0.2 → Linked(x, y).
(2)0.8 :: Own(x, y, s),Own(y, z, t), w = sum(s · t) → Own(x, z, w).

Rule (1) expresses that company x is linked to y if x owns directly or indi-
rectly more than 20% of y’s shares. Rule (2) is a recursive rule with an aggregate
operator and expresses indirect shareholding: when x owns a number of com-
panies y, each holding a different share ty of z, then x owns

∑
y(s · ty) of z.



Data Science with Vadalog 19

An example of a “traditional” logical reasoning task is answering the following
question over G: “which companies are linked to a?”. The result of the reasoning
task is the companies b and d, as directly specified by G, and, additionally, c,
which is implied by the program. Indeed, by Rule (2) we first derive the fact
Own(a, c, 0.5), as 0.4 × 0.5 + 0.6 × 0.5 = 0.5, and thus, by Rule (1), we deduce
Linked(a, c).

However, here we are in an uncertain setting: Rule (2) is not definitive but
holds with a certain probability. We say that G is a probabilistic knowledge
graph. Probabilistic reasoning on G would then consist in answering queries over
such uncertain logic programs, i.e., when we can only access a distribution of
the entailed facts. The answer to the question —which companies are linked
to a— would contain companies b and d with probability one and c with some
probability p depending on the “ownership distance” between a and c.

In spite of its high relevance, surprisingly, none of the exiting KGMSs allow
for uncertain reasoning, crucial in many contexts. The Vadalog system aims at
filling this gap.

The Vadalog system provides a form of hybrid logic-probabilistic reasoning,
where logical inference is driven and aided by statistical inference. We adopt
the novel notion of probabilistic knowledge graph, and propose Soft Vadalog,
an extension to Vadalog with soft, weighted rules (such as the ones used in
Example 1) for representing and supporting uncertain reasoning in the Vadalog
system. A Soft Vadalog program is a template for a reason-tailored statistical
model, namely the chase tree, the semantics of which is based on a probabilistic
version of the chase procedure, a family of algorithms used in databases to
enforce logic rules by generating the entailed facts.

In particular, the system adopts the MCMC-chase algorithm: a combina-
tion of a Markov chain Monte Carlo method with the chase. The application of
the chase is guided by the MCMC, so that logical and statistical inference are
performed in the same process. We will report about these achievements soon.

Acknowledgements. This work is supported by the EPSRC programme grant
EP/M025268/1. The Vadalog system is IP of the University of Oxford.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Albagli, S., Ben-Eliyahu-Zohary, R., Shimony, S.E.: Markov network based ontol-
ogy matching. J. Comput. Syst. Sci. 78(1), 105–118 (2012)

3. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: PODS, pp. 68–79. ACM Press (1999)

4. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic
web. In: PODS, pp. 14–26 (2014)

5. Arming, S., Pichler, R., Sallinger, E.: Complexity of repair checking and consistent
query answering. In: ICDT, LIPIcs, SD-LZI, vol. 48 (2016)

6. Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss Markov random fields
and probabilistic soft logic. J. Mach. Learn. Res. (JMLR) 18(109), 1–67 (2017)



20 L. Bellomarini et al.

7. Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data and
knowledge graphs. In: IJCAI, pp. 2–10 (2017)

8. Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data
and knowledge graphs. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J.,
Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 3–16. Springer, Cham
(2018)

9. Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data and
enterprise knowledge graphs. In: AMW, The Vadalog System (2018)

10. Bellomarini, L., Sallinger, E., Gottlob, G.: The Vadalog system: datalog-based
reasoning for knowledge graphs. PVLDB 11(9), 975–987 (2018)

11. Bizer, C., et al.: Dbpedia - a crystallization point for the web of data. J. Web Sem.
7(3), 154–165 (2009)

12. Box, G.E.P., Hunter, J.S., Hunter, W.G.: Statistics for Experimenters: Design,
Innovation, and Discovery, 2nd edn. Wiley, Hoboken (2005)

13. Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations
through views. In: PODS, pp. 150–158. ACM (2002)

14. Cal̀ı, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under
expressive relational constraints. J. Artif. Intell. Res. 48, 115–174 (2013)

15. Cal̀ı, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for
tractable query answering over ontologies. J. Web Sem. 14, 57–83 (2012)

16. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: a fam-
ily of logical knowledge representation and query languages for new applications.
In: LICS, pp. 228–242 (2010)

17. Cal̀ı, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the
query answering problem. Artif. Intell. 193, 87–128 (2012)

18. Christen, P.: Data Matching - Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Data-Centric Systems and Applications.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31164-2

19. The UniProt Consortium: UniProt: the universal protein knowledgebase. Nucleic
Acids Res. 45(Database-Issue), D158–D169 (2017)

20. Csar, T., Lackner, M., Pichler, R., Sallinger, E.: Winner determination in huge
elections with MapReduce. In: AAAI, pp. 451–458. AAAI Press (2017)

21. Dhar, V.: Data science and prediction. Commun. ACM 56(12), 64–73 (2013)
22. Ester, M., Kriegel, H.-P., Sander, J., Xu, X. et al.: A density-based algorithm for

discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp.
226–231 (1996)

23. Fierens, D., et al.: Inference and learning in probabilistic logic programs using
weighted Boolean formulas. TPLP 15(3), 358–401 (2015)

24. Furche, T., Gottlob, G., Grasso, G., Schallhart, C., Sellers, A.J.: OXPath: a lan-
guage for scalable data extraction, automation, and crawling on the deep web.
VLDB J. 22(1), 47–72 (2013)

25. Furche, T., Gottlob, G., Neumayr, B., Sallinger, E.: Towards a lingua franca for
data wrangling. In: AMW, Data Wrangling for Big Data (2016)

26. Furche, T., Grasso, G., Kravchenko, A., Schallhart, C.: Turn the page: automated
traversal of paginated websites. In: ICWE, pp. 332–346 (2012)

27. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). The MIT Press, Cambridge (2007)

28. Glimm, B., et al.: SPARQL 1.1 entailment regimes. W3C Recommendation, 21
March 2013

29. Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime:
rules to the rescue. In: IJCAI, pp. 2999–3007 (2015)

https://doi.org/10.1007/978-3-642-31164-2


Data Science with Vadalog 21

30. Gribkoff, E., Suciu, D.: Slimshot: in-database probabilistic inference for knowledge
bases. PVLDB 9(7), 552–563 (2016)

31. Guagliardo, P., Pichler, R., Sallinger, E.: Enhancing the updatability of projective
views. In: AMW, CEUR Workshop Proceedings, vol. 1087. CEUR-WS.org (2013)

32. Kolaitis, P.G., Pichler, R., Sallinger, E., Savenkov, V.: Nested dependencies: struc-
ture and reasoning. In: PODS, pp. 176–187. ACM (2014)

33. Kolaitis, P.G., Pichler, R., Sallinger, E., Savenkov, V.: Limits of schema mappings.
Theory Comput. Syst. 62(4), 899–940 (2018)

34. Konstantinou, N., et al.: The VADA architecture for cost-effective data wrangling.
In: SIGMOD. ACM (2017)

35. Kravchenko, A., Fayzrakhmanov, R.R., Sallinger, E.: Web page representations
and data extraction with BERyL. In: Proceedings of MATWEP 2018, p. 8 (2018,
in Press)

36. Michels, C., Fayzrakhmanov, R.R., Ley, M., Sallinger, E., Schenkel, R.: Oxpath-
based data acquisition for dblp. In: JCDL, pp. 319–320. IEEE CS (2017)

37. Niu, F., Ré, C., Doan, A.H., Shavlik, J.W.: Tuffy: scaling up statistical inference
in markov logic networks using an RDBMS. PVLDB 4(6), 373–384 (2011)

38. Pichler, R., Sallinger, E., Savenkov, V.: Relaxed notions of schema mapping equiv-
alence revisited. Theory Comput. Syst. 52(3), 483–541 (2013)

39. Poon, H., Domingos, P.M.: Unsupervised ontology induction from text. In: ACL,
pp. 296–305 (2010)

40. De Raedt, L.: Logical and Relational Learning: From ILP to MRDM (Cogni-
tive Technologies). Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68856-3

41. Richardson, M., Domingos, P.M.: Markov logic networks. Mach. Learn. 62(1–2),
107–136 (2006)

42. Sallinger, E.: Reasoning about schema mappings. In: Dagstuhl Follow-Ups, Data
Exchange, Information, and Streams, vol. 5, pp. 97–127. SD-LZI (2013)

43. Sarawagi, S.: Information extraction. Found. Trends Databases 1(3), 261–377
(2008)

44. Shkapsky, A., Yang, M., Zaniolo, C.: Optimizing recursive queries with monotonic
aggregates in deals. In: ICDE, pp. 867–878 (2015)

45. Singla, P., Domingos, P.M.: Entity resolution with Markov logic. In: ICDM, pp.
572–582 (2006)

46. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

https://doi.org/10.1007/978-3-540-68856-3
https://doi.org/10.1007/978-3-540-68856-3


Databases



NoSQL Databases – Seek for a Design
Methodology

Chaimae Asaad(B) and Karim Bäına(B)

Alqualsadi, Rabat IT Center, ENSIAS, Mohammed V University, Rabat, Morocco
chaimaeasaad.email@gmail.com, karim.baina@um5.ac.ma

Abstract. NoSQL has emerged as a novel approach to bypass the rigid-
ity and limits that traditional Databases presented when modeling real
world features. Its heterogeneity, the variety of models it introduced and
its several technical advantages helped NoSQL conquer the industrial
and business world. NoSQL Databases are mostly conceived at physical
design level, following a set of storage and structural rules regulated by
each specific database. As NoSQL thrived, so did NoSQL data modeling.
Research into unified approaches for NoSQL Databases at all design lev-
els has been widely pursued in the last decade or so. This paper presents
a survey of the various proposals aiming to unify all or most NoSQL
Databases under a uniform design methodology. We also present the dif-
ferent data models of each NoSQL Database type, and the numerous
approaches existing in the literature to designing and modeling them, in
addition to an evaluation system for NoSQL design methodologies.

Keywords: NoSQL · Database modeling
NoSQL design methodology · Data models

1 Introduction

NoSQL has become the go-to database type for complex real-life representation
usage. It abolished the outdated concept of one-solution-for-all, and instead,
brought forward a huge number of various, powerful and efficient databases.
The growing interest in NoSQL has first been pushed by industrial powerhouses,
but, research has been catching up in the last decade or so, resulting in a
new wave of published papers presenting different proposals related to NoSQL’s
data models, applications and implementations. Although research into NoSQL
Design Methodologies is fairly new, many promising outcomes have emerged.
The literature presents a number of proposed data models to unify all or most
NoSQL databases. The heterogeneity that characterizes NoSQL is considered a
significant advantage point, however, in data modeling, it represents a major
constraint considered debatebly a direct cause behind the lack of a NoSQL
unified model. Researchers have nevertheless managed to group three of the
major NOSQL databases (Key-Value Stores, Column Family Stores, Document-
Oriented Databases) under the aggregate data model, and consequently unify
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 25–40, 2018.
https://doi.org/10.1007/978-3-030-00856-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_2&domain=pdf


26 C. Asaad and K. Bäına

to some extent their design methodology. To the best of our knowledge, only
two papers so far have managed to present a unifying methodology and include
Graph Databases in their proposal for a NoSQL Design Methodology, which
leaves a huge gap in the field, and presents a goldmine of potential possibilities
for more research into NoSQL to flourish. The main contribution of this paper is
to realize a comprehensive review of NoSQL design methodologies existing in the
literature and propose a subjective evaluation method for NoSQL data models.
The remaining part of this paper is organized as follows. Section 2 presents the
various proposals aiming to unify NoSQL Databases. Section 3 includes a brief
literature review of NoSQL design methodologies relating to each specific cate-
gory of NoSQL databases. Section 4 proposes an evaluation system for NoSQL
data models. Section 5 is a case study. Conclusions and perspectives are given in
Sect. 6.

2 NoSQL Design Methodologies

NoSQL Data Modeling has been approached from different perspectives. Intu-
itively, researchers try to find commonalities between the different data models
in order to conceptualize an abstraction for NoSQL databases. In [1], the authors
state that NoSQL database design can be devised into the same three levels as
Relational database design, namely: A Conceptual Level, A Logical Level and a
Physical Level. Both the first two phases are system-independent and only the
last is specifically related to the choice of database. [1] adds that in the logical
level, databases from the same type or family are modeled following the same
design methodology, whilst in the conceptual phase, only the high-level data
structure is represented. This section will present the different approaches aim-
ing to develop an abstraction through a common conceptual or logical model in
order to unify all or most NoSQL databases under a uniform design methodol-
ogy. The specific data models for target NoSQL databases are implemented on
the physical design level, which is beyond the scope of this paper. The grouping
of Key-Value (e.g. Dynamo, Redis, Scalaris), Column-Family (e.g. Hbase, Mon-
etDB) and Document (e.g. CouchDB, MongoDB, SimpleDB) databases under
the Aggregate Data Model represents a huge breakthrough in NoSQL modeling.
[2] states that the aggregate data model is formally defined as a forest of inde-
pendent aggregates. The term aggregate in the scope of NoSQL data modeling
defines a rich structure of closely related data that makes sense to be stored as
a unit, which is the case in the aforementioned NoSQL database types. In what
follows, we will present the various unifying Design Methodologies for NoSQL
databases.

2.1 Ontology-Driven NoSQL Data Model (ODNSDM)

This proposal was presented in [3] and explored further in [5] and represents
a unifying approach to NoSQL data modeling. To the best of our knowledge,
it’s one of two proposals managing to include Graph Databases in its uni-
fied approach to NoSQL data modeling, and therefore include ALL NoSQL



NoSQL Databases – Seek for a Design Methodology 27

database types. The authors state that [3] has been proposed to conceptualize
data representation facets over heterogeneous types of databases by providing
a common conceptual abstraction level based on semantically enriched formal
vocabularies. They define ontology as the explicit specification of shared con-
ceptualization in terms of concepts, relationships amongs concepts and axioms.
The authors of [3] propose an ontology driven meta-model called ODNSDM
(Ontology Driven NoSQL Data Model) which they claim capable of providing a
universal perception at conceptual level to handle different types of databases,
preserving strong semantics in knowledge exchange, representing hierarchical,
non-hierarchical, symmetric and n-array relationships, and conforming to the
CAP model. The ODNSDM is a proposed conceptualization composed of a set
of constructs and relationships along with their properties. It consists of three
inter-related layers, where each layer has their recognizable construct types mak-
ing it distinct. The three main layers and their respective constructs are Col-
lection(Col), Family(FA) and Attribute(AT). The authors of [3] have formally
specified and explained the different construct types and relationships attached
to them in their paper where further details can be found. They also included
algorithms for transformations from their proposed model to both schema-based
and schema-less databases. The (shema-less db) algorithm was applied on the
NoSQL Document-Oriented database MongoDB. This proposal represents a uni-
fied data model leveraging the commonalities of schema-based and schema-less
databases and including their differences in order to achieve a data modeling
specification based on mathematical logic to create a balance in the variations
at physical level implementations and thus facilitate and conceptualize their
design. This model was validated initially with an ontology editorial tool called
Protégé based on OWL [3].

2.2 Logical Unified Modeling for NoSQL databases (UMLtoNoSQL)

[4] is a recent article proposing a novel (Model Driven Architecture) MDA-based
process transforming a conceptual data model describing Big Data into several
physical models, with the aim of assisting developers in implementing Big Data
on NoSQL systems, and allowing them the choice of system. This approach was
illustrated using a case study in the Healthcare field. The authors of [4] propose
an approach for defining, specifying and automating a process for storing Big
Data on NoSQL systems. They named their process UMLtoNoSQL. They claim
that this process can automatically transform a conceptual model represented
as a UML class diagram into the physical model of a NoSQL system of choice.
They introduce a logical level between conceptual and physical levels in which
they develop a generic model. The novelty of this proposal is its compatibility
with Graph Databases, a challenge which many approaches have not managed to
overcome. The authors excluded Key-Value stores because “Column-Oriented,
Document-Oriented and Graph-Oriented extend the concepts of Key-Value sys-
tems” [4]. Applications of this approach were conducted successfully on Cassan-
dra, MongoDB and Neo4j [4].



28 C. Asaad and K. Bäına

2.3 Query-Oriented Data Modeling Approach (QODM)

A query-oriented data modeling approach for NoSQL databases was presented in
[6]. This approach aims at designing both the data model (defining the entities
and relationships) and data schema (defining the data structure) of an appli-
cation for NoSQL databases. The authors of this paper claim that their con-
tributions consist of: defining a methodology of data query requirements rep-
resentation; designing a meta-model of the platform-independent data schema
for NoSQL DB; and proposing an approach for generating both the data model
and data schema based on particular requirements. The authors developed a
framework for their query-oriented modeling approach consisting of three phases.
Firstly, a description of the stored data structure in the problem domain and the
data query requirements of the application. Then, using the stored data struc-
ture and data query requirements as a basis for the QODM-analyzer to generate
the data model for NoSQL databases. And lastly, based on that data model, the
QODM-analyzer generates the data schema for NoSQL databases. The authors
provide an algorithm for generating the data model [6]. As for the data schema,
adapting to different NoSQL databases imposes having a platform-independent
model from which transformation to specific databases can be conducted. The
QODM approach was evaluated using ElasticInbox as a case study [6]. This app-
roach, although only viable for aggregate-oriented NoSQL databases, presents
a novel way to tackle the data modeling problem. By being query-oriented, it
manages to adapt to the heterogeneous nature of NoSQL, without locking the
user to any specific database. The authors realize the difference that Graph
databases present, and how their inclusion could prove to be inherently diffi-
cult, but believe their approach to have the potential to be revolutionary in the
NoSQL data modeling world.

2.4 The Save Our Systems Platform (SOS)

The SOS platform [7] was proposed as a common programming interface for
NoSQL systems, with the aim of supporting application development by hiding
the specific details of the various systems. This platform is based on a meta-
modeling approach, i.e., the specific interfaces of individual systems are mapped
to a common one [7]. This proposal is one of the pioneering ones aiming to
unify NoSQL data models, and has inspired many other proposals based on
its main idea. The authors’ goals and motivation behind this approach was to
“alleviate the consequences of the heterogeneity” that NoSQL systems present.
They state that SOS is a programming environment where non-relational (i.e.,
NoSQL databases) can be uniformly defined, queried and accessed by an applica-
tion program. The basis for this programming model is a generic and extensible
meta-layer representing a theoritical unifying structure to be implemented in
the specific database [7]. The paper presented a discussion around the imple-
mentation of the approach in three aggregate-oriented NoSQL databases. The
architecture of the SOS system is organized following three modules: the com-
mon interface representing the core of the system and offering the primitives



NoSQL Databases – Seek for a Design Methodology 29

to interact with NoSQL stores; the meta-layer storing the form of the involved
data; and the specific handlers generating the appropriate calls to the specific
database system. The approach was illustrated using a case study consisting
of defining a simplified version of Twitter, and generating implementations for
Redis, MongoDB and HBase [7].

2.5 The NoSQL Abstract Data Model (NoAM)

In a series of papers [8–10], Atzeni et al. present NoAM, a “logical approach
to the NoSQL database design problem, with initial activities that are inde-
pendent of the specific target system”. The approach aims to exploit the com-
monalities of various NoSQL systems, and represents an intermediate abstract
data model designed to represent application data as collections of aggregate
objects. [8] states that database design in the NoSQL world is often widely
based on best practises and guidelines, and systematically related to the specific
chosen database and thus completely relaying on physical level characteristics.
The authors of [8] proclaim that the aim of NoAM is to fill the gap in the
design methodology of NoSQL. This approach manages to unify the aggregate-
oriented NoSQL databases, and does so by defining a proposal consisting of
four main phases, namely: Aggregate Design, Aggregate Partitioning, High-level
NoSQL Database Design,Implementation [8]. The NoAM data model can be
defined as follows [9]: A NoAM Database: A set of collections, where each col-
lection has a distinct name. A Collection: A set of blocks, where each block is
identified by a unique-within-the-collection block key. A Block: A non-empty
set of entries, where each entry is a pair of (entry-key, entry-value). The app-
roach is applied on a running example of an online social game [9]. In [10],
the previously specified NoAM data model is further explored and more details
are included to illustrate the conceptual level of the proposal and its use and
experimental results are also presented. Implementation steps are also further
detailed with respect to a single elected representative of each NoSQL database,
namely: Oracle NoSQL for KV Stores; DynamoDB for Extensible Record Stores;
and MongoDB for Document-Oriented databases. Graph Databases remain, as
in the two other papers, beyond the scope of the approach, since they are not
aggregate-oriented databases and represent entirely different data models [10].

2.6 MDE-based Reverse Engineering Approach

[11] proposes an MDE-based reverse engineering approach designed to infer the
schema of aggregate-oriented NoSQL databases, and uses the obtained schemas
to build database utilities in order to tackle problems relating to the use of
implicit schemas. The authors note that although the schema-less nature of
NoSQL (or rather the lack of explicit schema specification) might be the most
“attractive” feature of NoSQL databases, it has contributed immensly in mak-
ing database design in NoSQL a particularly error-prone task. Their approach
has been designed, as mentioned previously, for NoSQL systems following an
aggregate data model. The authors of [11] state that their proposal represents a



30 C. Asaad and K. Bäına

strategy aiming to infer the implicit schemas in NoSQL databases, taking into
account the different versions of entities, and call them Versioned Schemas, and
proclaim that their usefulness can be illustrated through both schema visual-
ization and automated generation of data validators. The contributions of [11]
as claimed by its authors are twofold. It is a novel approach inferring concep-
tual schemas from NoSQL databases and including all versions of entities and
relationships. And, it presents a road map to using the versioned schemas to
automatically generate different software artifacts. The authors validated their
approach for the MongoDB, CouchDB and HBase databases [11]. The authors
of [11] state that their approach, although only viable for aggregate-oriented
databases, represents a useful tool in generating specifications that describe the
data accurately, and takes into account each version of each entity, thus com-
pletely defining the structure of the data and illustrating the high-level relation-
ships. Graph databases are beyond the scope of this approach.

3 NoSQL Databases Specific Design Methodologies

The heterogeneity of NoSQL databases can be seen even within each type. The
variety and volume of databases existing contributes to the lack of a unified mod-
eling approach, as we have discussed in the previous section, most works only
manage to propose a uniform approach for aggregate-oriented NoSQL databases,
since they present an inherently similar layout, even if their characteristics differ
immensly. Although research into NoSQL data models is somewhat recent, var-
ious works have been conducted to explore the design methodologies of NoSQL
database types, as well as specific data models for target NoSQL databases.
In what follows, we present a brief survey of the various papers and proposals
discussing the modeling of each distinct NoSQL database type presented in the
literature.

3.1 Key-Value Databases

Key-Value stores (or Tuple Stores) are considered somewhat the simplest NoSQL
databases. They consist of a unique key and a “bucket” containing any data the
user wishes to store. The value content of the said bucket is schema-less and
doesn’t need to be consistent. This content usually consists of unstructured or
semi-structured data. The buckets have a huge storage ability for quite large
entries, incuding BLOBs (Basic Large OBjects). The values can be read by
knowing the key and bucket. Key Value Stores are row-based systems designed
to efficiently return data for an entire bucket (interpreted as a row or record)
in as few operations as possible. Essentially, all Key Value Stores run in batch
mode and are therefore used for analytic or caching projects as opposed to
transactional operations [12].



NoSQL Databases – Seek for a Design Methodology 31

- Dynamic Distributed Dimenstional Data Model (D4M):
The D4M data model was presented in [13] as a somewhat technical perspective
aiming to provide a mathematically rich interface to tuple stores by allowing
linear algebra to be readily applied to databases. The goal of this approach is
to combine the advantages of tuple stores to create a database and computation
system that solves the challenges associated with Big Data. Key-Value Stores
(e.g. HBase, Accumulo) are implementations leveraging the Google BigTable
model, and as such, the one-to-one mapping that the D4M associative arrays
provide onto the tables in a tuple store makes complex manipulations simple
to code. To illustrate the model, the authors use D4M for a facet search on a
Document Keyword Table, and claim that the results are consistent and deliver
near the theoritical performance level of the hardware [13].

3.2 Document-Oriented Databases

Document Oriented Databases are based on the paradigm Key-Value, where
the Value is a JSON or XML document. Consequently, one key can get access
to a structured set of information easily. In other words, Document Oriented
databases take the data and aggregate it into documents using a specific format
(e.g. JSON) [14]. Many approaches for the data modeling of this specific NoSQL
type can be found in the literature. The most pertinent might be:

– [15] presents a Workload-Driven Logical Design Approach for NoSQL Docu-
ment Databases consisting of a process aiming to convert a conceptual model
into efficient logical representations for a NoSQL Document database. This
proposed conversion process considers the expected workload of the applica-
tion. The approach was validated with an example of e-commerce application.

– [16] proposes a standard for NoSQL data modeling by using NoQSL
Document-Oriented databases to introduce modeling techniques. The con-
tribution of this paper is presented in its proposal for viewing Document
Databases, and how it is used to build a conceptual data model regulated
by a few assumptions and constraints. The proposal was evaluated on a case
study related to identifying and comparing expression levels of human kidney
and liver RNA sequenced samples [16].

– [17] proposes a NoSQL data modeling standard by introducing techniques
to be used on Document-Oriented databases and including geographical fea-
tures. The authors justify their choice of NoSQL by stating that some non-
functional aspects are common features of both NoSQL databases and spatial
data treatement. This approach uses [16] and adapts the conceptual model
to geospatical features and integrates them using MongoDB.

3.3 Column-Family Databases

A Columnar database is called as such when the smallest information unit to be
manipulated is a column. It represents a two-level data aggregation structure.
Just like in Key-Value databases, the first level is a key identifying an aggregation



32 C. Asaad and K. Bäına

of interest. The difference remains in the second level containing several columns
that can hold either simple or complex values. In addition, these columns can be
accessed either all at once or one at a time. Column-Family databases somehow
neglect the conceptual design phase, making their data modeling a very difficult
one, which explains the gap in modeling proposals in the literature [18].

– [18] proposes an approach for logical design of Columnar databases as a way
to contribute to filling the void between abstract methodologies and the phys-
ical level and technological advances in the NoSQL world. The authors state
that their proposal represents a reconcilitation approach between the classi-
cal database design approach and Columnar databases, contributing with a
logical design process that considers the semantics of the application domain
in order to achieve an optimized conversion from a conceptual schema to a
logical columnar schema.

3.4 Graph Databases

As mentioned in the previous sections, Graph databases are seldom included
in attempts to conceptualize a unifying NoSQL design methodology, because of
their non-conformity to the aggregate-oriented data model, and for their very dif-
ferent nature compared to the other NoSQL families. However, Graph databases
remain debatebly the most well modeled NoSQL databases. Their mathemati-
cal background and the rich history of research into different uses of graphs in
many disciplines resulted in rich literature presence. [21] presents a survey of the
different data models for Graph databases. In this section, we will not discuss
those models, but rather the novel proposals present in the literature to map or
use this highly representative type of databases.

– [22] proposes an approach defining a test model for graph database appli-
cations, taking into account the data model of the graph database systems,
and presents a framework placing model-based testing into the model-driven
architecture context in order to automate the derivation of the test cases
and the evaluation of their adequacy. The authors proclaim that their contri-
butions consist of defining a framework that integrates model-based testing
(MBT) into the model-driven architecture (MDA) paradigm, and presenting
a formal definition of a test model for graph database applications relying on
both the underlying conceptual data model and the system specification [22].

– [23] proposes a model-driven, system-independent design methodology for
Graph databases. The proposed approach starts from a conceptual Entity-
Relationship representation of the interest domain, and proposes a strategy
to devise a graph database in which the data accesses for answering queries
is minimized. The authors state that their methodology relies a logical model
for Graph databases, and demonstrate the effectiveness of their approach with
a number of experimental results over various Graph Database Management
Systems [23].



NoSQL Databases – Seek for a Design Methodology 33

– [24] describes a mapping approach from UML(Unified Modeling Lan-
guage)/OCL(Object Constraint Language) conceptual schemas to Blueprints,
an abstraction layer built on top of a variety of Graph Databases. The authors
also present, via an intermediate Graph metamodel, Gremlin: a graph traver-
sal language. The novelty of this approach is the presentation of the UML-
toGraphDB framework to translate conceptual schemas expressed using UML
into a graph representation and generate database-level queries [24].

4 Discussion

4.1 Evaluation Process

The various NoSQL design methologies existing in the literature address the con-
ceptual and logical steps to NoSQL modeling from different angles and following
different approaches. In this paper, we presented the ones proposing a unified
design methodology for NoSQL databases and their types. In what follows, we
will present a comparison based on numerous criteria to evaluate the approaches
aforementioned in an attempt to seek the “best” design methodology for NoSQL.
To the best of our knowledge, a set of formally defined and agreed upon crite-
ria for evaluating NoSQL design methodologies has not yet been introduced in
the literature. Consequently, the following deductions were made in an ad-hoc
manner and inferred based on a methodology paradigm chosen by the authors.
In this section, we will combine a number of previous research contributions and
use evaluation criteria introduced as means to compare Relational Data Models,
and adjust them according to the NoSQL conceptualization standards.

The data modeling phase represents the pillar of the entire design system,
since its impact on the final result’s quality is undeniably great. However, it
shouldn’t be described as a deterministic process of uncovering the “right”
model. The choice of the most appropriate data model is inherently based on
common sense and experience, and there are generally no guidelines for the eval-
uation of different models [26]. [26,27] presented each a set of evaluation criteria
for design methodologies. The former introduced a framework for objective eval-
uation and improvement of data models, while the latter proposed a number of
qualifying norms for design methodologies. Evidently, these proposals weren’t
specifically tailored after the NoSQL model, however, we will be adapting their
definitions according to our models in order to form a group of only the salient,
adequate and specifically influencing criteria for NoSQL.

4.2 Evaluation Criteria

The following is a combination of different criteria proposed by [26,27], some
redefined or readjusted with respect to our best judgement.



34 C. Asaad and K. Bäına

1. Simplicity: references the size of the model and the complexity of the
methodology. Simpler approaches are often better, their complexity has a direct
correlation with the complexity of the resulting system. A simpler NoSQL Design
Methodology will simplify the modeling process and therefore simplify the next
database design steps.
2. Completeness: expresses resolvability and relates to the smooth transi-
tioning from different levels of abstraction without omitting any logical steps or
having any gaps in the mapping process. The transition from the NoSQL logical
and conceptual levels to the specific NoSQL physical design level should be well
established and not lacking any crucial steps.
3. Flexibility: expresses the adaptability of the model to changes in user
requirements and to automated design tools. The NoSQL model should be flex-
ible and high-level enough to handle new additions or omissions in the physical
level without changing the original data model.
4. Consistency: describes the coherence of the entire methodology. The app-
roach’s various steps shouldn’t contradict one another. Consistency can also
include the methodology’s support of CAP/BASE aspects.
5. Understandability: defines the level of ease that the users of the data model
deal with. [26] notes that one of the major purposes of using data models is as
means of communicating between business specialists and technical specialists.
Therefore, for a NoSQL methodology to be ‘understandable’, it has to be ‘sim-
ple’ enough for users to grasp its main concepts and structures.
6. Scope of the model: specifies the level of inclusion of the methodology. For
a NoSQL design methodology to abide by this criterion, it needs to include the
different data models that NoSQL introduces, or most of them.
7. Implementability: emphasizes the feasibility of the realization of the tran-
sition to the physical design and its implementation. Although a NoSQL design
methodology carries no assumptions of physical requirement specifications, it
should contain practical guidelines to implement the model in target systems.

4.3 Synthesis

In the absence of empirical validation for the criteria, and since measuring the
complexity of models is beyond the scope of this paper, we used approximations
based on common sense and our understanding of the methodologies at hand.
The models included in this work are distinguished in their completeness since
they represent somewhat clear and logical design steps. Intuitively, they comply
with the flexibility criterion, since they are proposing a design for a highly variant
group of databases. The methodologies differ in their understandability levels,
and some of them take special knowledge of a few concepts (e.g. Ontology)
for users to fully grasp them. All methodologies have shown proof of concept
and of implementability by including different case studies. QODM presented
a data model based on query requirements but failed to mention a description
of schema-less data. NoAM proposed a common data model to specify system-
independent realization of the application data, however, dynamically inserted
data into NoSQL databases was overlooked. Most approaches are “good” design



NoSQL Databases – Seek for a Design Methodology 35

Table 1. Evaluation of NoSQL Methodologies (O = Yes, �= Average, ∀ = All,
A= Aggregate-oriented DB)

Methodology

Criterion

Si
m
pl
ic
it
y

C
om

pl
et
en

es
s

F
le
xi
bi
lit
y

C
on

si
st
en

cy

U
nd

er
st
an

da
bi
lit
y

Sc
op

e

Im
pl
em

en
ta
bi
lit
y

ODNSDM O O O ∀ O
UMLtoNoSQL O O O ∀ O
QODM O O O A O
SOS O O O O A O
NoAM O O O A O
MDE-RE O O O A O

methodologies within their scope, but don’t provide a formalism able to deal with
the semantics of data [3]. Table 1 illustrates the results of the aforementioned
methodologies with respect to the criteria specified earlier. Scope-Wise, ‘∀’ means
the approach unifies all NoSQL Databases, and ‘A’ means that it unifies only
the Aggregate-Oriented NoSQL databases.

Evidently, the “perfect” design methodology for NoSQL has not seen the light
yet, but the different proposals discussed in this paper present a steady stepping
stone and fertile ground for more research. A hybrid design methodology based
on two or more of these proposals seems like the right answer, however, due
to differences in perspectives, logical and conceptual designs, it would probably
add unecessary complexity to the design mapping. Based on the criteria, we can
identify ODNSDM [3] as the “best” design methodology for NoSQL primarily
for its wide scope, its logical model and its strenght in capturing the semantics
of the data. This approach has its limits, however, a hybridization with other
models can prove fruitful in polyglot persistence or a multimodel database.

4.4 Limitations and Perspectives

The evaluation criteria we proposed in the previous sections represents a path
to a more concise and precise framework for the evaluation of NoSQL design
methodologies. Some of the most serious deficiencies in the existing literature
relating to the quality of data models is that very few approaches are empiri-
cally validated in practise. Most are either, theoritically or experientially justi-
fied, which leaves a considerable margin of error due to subjective and biased
interpretations. Furthermore, there are relatively few guidelines for evaluating
the quality of data models, and little agreement even among experts on what
makes a ‘good’ model [28]. Our evaluation system suffers the same limitations.
It combines a number of quality factors to compare different NoSQL design



36 C. Asaad and K. Bäına

methodologies, without testing or validation. As [29] notes, defining quality cri-
teria is not enough to ensure quality in practice, since different individuals will
have different interpretations of the meaning of those criteria. In this sense, we
are aware of our process’s need for empirical validation and practical testing. Our
work can be improved by introducing metrics to quantify the different criteria
aforementioned, with the purpose of improving the evaluation system. These
metrics will provide a purely objective and mathematical measure in order to
determine what a ‘good’ model is, and aid in the comparison between different
NoSQL models. However, it is worth mentioning that this might prove to be dif-
ficult given the notion of conceptual manageability (i.e., difficulty to synthesise a
large number of metrics into an overall picture of the quality of the model), and
also since subjective ratings and textual descriptions of quality issues have been
proven in such cases to provide a more holistic view of the quality of the model,
in addition to the fact that requirements analysis is more of an “art” than a
science, due to the difficulty of measuring the quality of a logical specification in
comparison to physical database design (for which quantitative measurements
exist, such as storage space, speed of access and CPU requirements) [29]. The
focus of our research was not to develop a framework of quantitative measures
to evaluate the quality of NoSQL data models, but rather to attempt to lay the
groundwork and serve a quideline for our future work into a hybrid approach
combining quantitative measures with subjective criteria to evaluate the quality
of NoSQL design methodologies and help improve them by pinpointing their
deficiencies.

5 Case Study

In this section, we present a simplified and practical study illustrating both the
mapping process of UMLtoNoSQL and the ODNSDM approach in the case of
a blood bank donation system. The purpose of this case study is to exemplify
how UMLtoNoSQL and ODNSDM can be applied for NoSQL data modeling.
The reason for choosing to apply the case study on these two models is their
compatibility with all NoSQL Databases. Figure 1 represents the UML Class
Diagram of a blood donation system [30] which will be mapped into a generic
model and then used to infer a physical Cassandra model Fig. 2 to illustrate the
UMLtoNoSQL approach. Experiments on real code generation for this mapping
can be carried out using Eclipse Modeling Framework (EMF), the metamodeling
language Ecore, the XML based standard for metadata interchange (XMI) and
the OMG standard for models transformation QVT [4]. The same blood dona-
tion system will be used to illustrate ODNSDM. Figure 3 represents the resulting
Ontology Graph. It is worth mentioning that due to space issues the graph was
simplified by omitting a few Families and Attributes. In this blood donation
system, and as shown in the ontology graph in Fig. 3, blood tests are conducted
on every donor’s blood, and the results determine whether the blood will be
accepted for donation or rejected. Furthermore, these blood results along with
the donor’s medical history do not have a predefined schema (in our example)



NoSQL Databases – Seek for a Design Methodology 37

since they may differ from one case to the other. Consequently, they are to be
inserted dynamically in the database. Accordingly, [3] notes that when some fea-
tures of the data at hand are not predefined and can dynamically change, a high
irregularity and required flexibility in representation are implied, which results
in a requirement for schema-less databases rather than schema-based ones.

Fig. 1. UML class diagram of a blood donation system [30]

In our case study and as shown in Fig. 3, we can distinguish the three
ODNSDM layers: Collection (Donate), Family (Top-most level: Donor, Hospital,
Blood; Bottom-most level: Nurse, Receptionist, etc.), Attribute (Email, Phone,
etc.). Different relationships can be found in the ontology graph. For instance,
Inter Containment relationships join the collection Donate and the top-most
families Donor, Hospital and Blood. Inter Inverse Containment relationships
attach an Attribute element with a Family element (e.g. relationship between
Receptionist and Recep pers info), Intra Containment relationships represent
the level hierarchy between top-most families and their respectively attached
adjacent lower-level families (e.g. relationship between Hospital and Nurse or



38 C. Asaad and K. Bäına

Fig. 2. Generic and physical (Cassandra) model of a blood donation system

Fig. 3. ODNSDM ontology graph for blood donation case study

between Blood and Blood info, etc.), and Intra Inverse Containment illustrates
the relationships between elements of the same layer (e.g. relationship between
two families). To denote relationships required to represent dynamically inserted
data which has no predefined schema, the Inverse Containment relationship is
used (e.g. between Blood info and Blood test results). Additional details about
other types of relationships can be found in [3] along with a conversion algorithm
that can be applied to our resulting ODNSDM to convert it and implement it
in a schema-less database (e.g. MongoDB).



NoSQL Databases – Seek for a Design Methodology 39

6 Conclusion

NoSQL Databases differ in both their structural nature and their modeling. Var-
ious approaches have been proposed, thus enriching the literature of NoSQL
design methodologies. In this paper, we cited the different models unifying
all NoSQL databases, along with those unifying each NoSQL database cate-
gory. Furthermore, we introduced an evaluation system based on various criteria
inspired from evaluation frameworks of relational databases. A case study was
used to illustrate the two main NoSQL design methodologies unifying all NoSQL
databases. Future work will be directed towards classifying the approaches by
their design level and also towards developing a more precise framework for the
evaluation of the quality of NoSQL data models.

References

1. Shin, K., Hwang, C., Jung, H.: NoSQL database design using UML conceptual data
model based on Peter Chens framework. Int. J. Appl. Eng. Res. 12(5), 632–636
(2017)

2. Jovanovic, V., Benson, S.: Aggregate data modeling style. SAIS 2013, 70–75 (2013)
3. Banerjee, S., Sarkar, A.: Ontology driven meta-modeling for NoSQL databases: a

conceptual perspective. Int. J. Softw. Eng. Its Appl. 10(12), 41–64 (2016)
4. Abdelhedi, F., Brahim, A.A., Atigui, F., Zurfluh, G.: Logical unified modeling for

NoSQL DataBases. In: 19th International Conference on Enterprise Information
Systems (ICEIS 2017) p. 249, April 2017

5. Banerjee, S., Sarkar, A.: Modeling NoSQL databases: from conceptual to logi-
cal level design. In: 3rd International Conference Applications and Innovations in
Mobile Computing (AIMoC 2016), Kolkata, India, February, pp. 10–12 (2016)

6. Li, X., Ma, Z., Chen, H.: QODM: a query-oriented data modeling approach for
NoSQL databases. In: 2014 IEEE Workshop on Advanced Research and Technology
in Industry Applications (WARTIA), pp. 338–345. IEEE, September 2014

7. Atzeni, P., Bugiotti, F., Rossi, L.: Uniform access to non-relational database sys-
tems: the SOS platform. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S.
(eds.) CAiSE 2012. LNCS, vol. 7328, pp. 160–174. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31095-9 11

8. Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R.: A logical approach to NOSQL
databases (2013). http://cabibbo.dia.uniroma3.it/pub/noam.pdf

9. Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R.: Database design for NoSQL
systems. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS,
vol. 8824, pp. 223–231. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12206-9 18

10. Atzeni, P., Bugiotti, F., Cabibbo, L., Torlone, R.: Data modeling in the NoSQL
world. Comput. Stand. Interfaces (2016)

11. Sevilla Ruiz, D., Morales, S.F., Garćıa Molina, J.: Inferring versioned schemas from
NoSQL databases and its applications. In: Johannesson, P., Lee, M.L., Liddle,
S.W., Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 467–480.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3 35

12. Vorhies, B.: Lesson 5: key value stores (Aka Tuple stores) (2014). http://data-
magnum.com/lesson-5-key-value-stores-aka-tuple-stores. Accessed 14 May 2018

https://doi.org/10.1007/978-3-642-31095-9_11
http://cabibbo.dia.uniroma3.it/pub/noam.pdf
https://doi.org/10.1007/978-3-319-12206-9_18
https://doi.org/10.1007/978-3-319-12206-9_18
https://doi.org/10.1007/978-3-319-25264-3_35
http://data-magnum.com/lesson-5-key-value-stores-aka-tuple-stores
http://data-magnum.com/lesson-5-key-value-stores-aka-tuple-stores


40 C. Asaad and K. Bäına

13. Kepner, J., et al.:. Dynamic distributed dimensional data model (D4M) database
and computation system. In: 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5349–5352. IEEE, March 2012

14. Issa, A., Schiltz, F.: Document Oriented Databases, ULB, Faculty of Sci-
ence, INFO-H415-Advanced database, October 2015. http://cs.ulb.ac.be/public/
media/teaching/infoh415/student projects/couchdb.pdf. Accessed 14 May 2018

15. de Lima, C., dos Santos Mello, R.: A workload-driven logical design approach for
NoSQL document databases. In: Proceedings of the 17th International Conference
on Information Integration and Web-based Applications & Services, p. 73. ACM,
December 2015

16. Vera, H., Wagner Boaventura, M. H., Guimaraes, V., Hondo, F.: Data modeling
for NoSQL document-oriented databases. In: CEUR Workshop Proceedings, vol.
1478, pp. 129–135, September 2015

17. Boaventura Filho, W., Olivera, H.V., Holanda, M., Favacho, A.A.: Geographic data
modeling for NoSQL document-oriented databases. In: GEOProcessing 2015, 72
(2015)

18. Poffo, J.P.: A Logical Design Process for Columnar Databases. In: ICIW 2016, p.
10 (2016)

19. Chebotko, A., Kashlev, A., Lu, S.:. A big data modeling methodology for Apache
Cassandra. In: 2015 IEEE International Congress on Big Data (BigData Congress),
pp. 238–245. IEEE, June 2015

20. Wang, G., Tang, J.: The nosql principles and basic application of cassandra model.
In: 2012 International Conference on Computer Science & Service System (CSSS),
pp. 1332–1335. IEEE, August 2012

21. Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv.
(CSUR) 40(1), 1 (2008)

22. Blanco, R., Tuya, J.: A test model for graph database applications: an MDA-based
approach. In: Proceedings of the 6th International Workshop on Automating Test
Case Design, Selection and Evaluation, pp. 8–15. ACM, August 2015

23. De Virgilio, R., Maccioni, A., Torlone, R.: Model-driven design of graph databases.
In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp.
172–185. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12206-9 14

24. Daniel, G., Sunyé, G., Cabot, J.: UMLtoGraphDB: mapping conceptual schemas
to graph databases. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S.,
Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 430–444. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46397-1 33

25. Braimniotis, M.: A Transformation from ORM Conceptual Models to Neo4j Graph
Database (Doctoral dissertation, Institute of Computing) (2017)

26. Moody, D.L., Shanks, G.G.: What makes a good data model? Evaluating the
quality of entity relationship models. In: Loucopoulos, P. (ed.) ER 1994. LNCS,
vol. 881, pp. 94–111. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58786-1 75

27. Buchmann, A.P., Dale, A.G.: Evaluation criteria for logical database design
methodologies. Comput. Aided Des. 11(3), 121–126 (1979)

28. Moody, D.L., Shanks, G.G.: Improving the quality of data models: empirical vali-
dation of a quality management framework. Inf. Syst. 28(6), 619–650 (2003)

29. Moody, D.L.: Measuring the quality of data models: an empirical evaluation of the
use of quality metrics in practice. In: ECIS 2003 Proceedings, p. 78 (2003)

30. Denzel, D.: Blood bank system Class Diagram (2012). https://creately.com/
diagram/example. Accessed 18 May 2018

http://cs.ulb.ac.be/public/_media/teaching/infoh415/student_projects/couchdb.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh415/student_projects/couchdb.pdf
https://doi.org/10.1007/978-3-319-12206-9_14
https://doi.org/10.1007/978-3-319-46397-1_33
https://doi.org/10.1007/3-540-58786-1_75
https://doi.org/10.1007/3-540-58786-1_75
https://creately.com/diagram/example
https://creately.com/diagram/example


Mortadelo: A Model-Driven Framework
for NoSQL Database Design

Alfonso de la Vega(B), Diego Garćıa-Saiz, Carlos Blanco, Marta Zorrilla,
and Pablo Sánchez

Software Engineering and Real-Time, University of Cantabria, Santander, Spain
{delavegaa,garciasad,blancobc,zorrillm,p.sanchez}@unican.es

Abstract. In big data contexts, the performance of relational databases
can get overwhelmed, usually by numerous concurrent connections over
large volumes of data. In these cases, the support of ACID transactions
is dropped in favour of NoSQL data stores, which offer quick responses
and high data availability. Although NoSQL systems solve this concrete
performance problem, they also present some issues. For instance, the
NoSQL spectrum covers a wide range of database paradigms, such as
key-value, column-oriented or document stores. These paradigms differ
too much from the relational model, provoking that it is not possible
to make use of existent, well-known practices from relational database
design. Moreover, the existence of that paradigm heterogeneity makes
difficult the definition of general design practices for NoSQL data stores.
We present Mortadelo, a framework devised for the automatic design of
NoSQL databases. Mortadelo offers a model-driven transformation pro-
cess, which starts from a technology-agnostic data model and provides
an automatically generated design and implementation for the desired
NoSQL data store. The main strength of our framework is its generality,
i.e., Mortadelo can be extended to support any kind of NoSQL database.
The validity of our approach has been checked through the implementa-
tion of a tool, which currently supports the generation of column family
data stores and offers preliminary support of document-based ones.

Keywords: NoSQL · Database design · Model-driven engineering

1 Introduction

In the Big Data era [25], NoSQL databases [13] have arisen as a solution for
contexts where many clients perform a massive number of requests over previ-
ously unseen quantities of data. Examples of these contexts are social network
databases like Facebook and Twitter or international online stores such as Ama-
zon. NoSQL is not just a technology, but a global term that comprises differ-
ent database paradigms, including document, key-value or column family-based
stores [6,17].

A common characteristic of NoSQL databases is that they are mainly
used when the support of ACID transactions [14] from traditional Relational
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 41–57, 2018.
https://doi.org/10.1007/978-3-030-00856-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_3&domain=pdf


42 A. de la Vega et al.

DataBase Management Systems (RDBMSs) is not vital and, for instance, some
temporal inconsistencies in data are tolerable [7]. Dropping the support of ACID
transactions allows NoSQL databases, among other things, to scale well against
large volumes of data, and to offer an adequate service for a very high number
of end users [15].

Another common and important characteristic is that the design of databases
for many NoSQL technologies is highly dependent on how the stored data is
accessed [8,21]. In these databases, the structure of the data can be denor-
malized, in order to offer low latencies and high efficiency for the workload
towards which they are prepared [24]. In contrast, this denormalization is not
usually done in RDBMSs, where performance optimizations are obtained by
other means, such as indexes or materialized views [1].

Unfortunately, the differences between NoSQL and RDBMSs shown above
come with some losses for the NoSQL part, being the biggest one the inability to
apply the well-known and heavily-tested design practises of relational databases
to the definition of NoSQL data stores. These practises are based on conceptual
models, such as the Entity-Relationship (ER) model [9] or UML relational spec-
ifications [20], from which many existing CASE tools can automatically infer the
final database implementation [2]. In addition to this lost, the differences among
NoSQL technologies provoke that the design of a NoSQL database may even
vary depending on the paradigm we wish to employ [6]. For instance, the design
decisions would not be the same if we were targeting a column family-based or
a document-based data store [3].

Numerous works about NoSQL design exist in the literature [8,11,19,21].
Nevertheless, due to the heterogeneity of NoSQL, these works usually only focus
on a concrete technology. A high-level and conceptual solution for the design
of NoSQL data stores, such as the ones available for relational systems, would
be beneficial for the centralization of existent, concrete works into a common
framework.

Based on this context, we present Mortadelo, a framework that generates
NoSQL designs for the data store of our choice. By providing a technology-
agnostic data structure model that also includes details about how data are going
to be accessed, our framework is able to automatically generate an implementa-
tion adapted to the specificities and benefits of the targeted NoSQL database.
Mortadelo defines a transformation process which, through a series of steps,
transforms first the provided conceptual model into a logical model dependant
on the used NoSQL paradigm, and then generates the implementation scripts
that would instantiate the targeted NoSQL technology from that paradigm.

The main strength of Mortadelo can be found in its model-driven, modular
architecture, which can be extended to support any new NoSQL paradigm or
technology. This architecture has been developed employing de facto modeling
standards such as the Eclipse Modeling Framework [23], with the objective of
offering an homogeneous treatment of different NoSQL paradigms sustained over
well-known technologies and foundations. With the development of Mortadelo,
we expect to cover the existent gap in NoSQL design practices and, to offer



Mortadelo: A Model-Driven Framework for NoSQL Database Design 43

analogous methodologies to the ones that can be employed for relational-based
systems.

The validity of Mortadelo has been tested through the implementation of an
homonymous tool, which currently supports the generation of specifications for
column family-based systems, with concrete transformations for Cassandra [5].
The support of column-family data stores has supposed the development of a
metamodel for the logical design of this kind of databases, and also the definition
of a set of rules to transform the data structure model to this logical model and
to the final implementation in the concrete technology. Additionally, we briefly
introduce how we are working in the support of document-based data stores,
including an example for MongoDB [10].

The remaining of the paper is structured as follows. In Sect. 2 we detail the
different phases of the transformation process followed by Mortadelo to generate
NoSQL databases. It includes the description of the different metamodels that
intervene in the process and the rules employed in the transformation. In Sect. 3,
we present the prototype tool which implements our framework. Next, in Sect. 4,
related works in NoSQL design are discussed. Finally, we expose our conclusions
and future work in Sect. 5.

2 Framework Description

We start by giving an overview of the transformation process supported by Mor-
tadelo. Then, successive sections describe Mortadelo’s components with more
detail.

2.1 Transformation Process Overview

Figure 1 shows the transformation process supported by Mortadelo. In this
process, an input model is transformed in a succession of steps to obtain an
implementation of certain target NoSQL data store technology. Next paragraphs
comment on these steps.

Fig. 1. Transformation process of Mortadelo.



44 A. de la Vega et al.

As introduced before, Mortadelo follows a model-driven approach. Therefore,
the input of the transformation process is a model, which conforms to a meta-
model that we have denoted as the Generic Data Model (GDM) (Fig. 1, left). An
instance of the GDM represents a conceptual definition of the database provided
by the user. The GDM is composed of two blocks: (i) the Structure Model, which
contains the information about domain entities and their relationships; and (ii)
the Access Queries, which define how data from the structure model are going
to be requested. The GDM is intentionally platform-independent, so it can be
used seamlessly as input for different NoSQL paradigms. We give more details
about the GDM components in Sect. 2.3.

The transformation process starts by validating the provided GDM instance
to assess that it contains no mistakes (Fig. 1, step 1). For instance, if an entity
present in an access query is not defined in the GDM, the validation process
would indicate an error.

In step 2, a model-to-model (M2M) transformation translates the conceptual
GDM model into a logical NoSQL specification by the application of a set of
transformation rules. Due to the heterogeneity of NoSQL, in Mortadelo a logical
metamodel and an associated M2M transformation has to be defined for each
NoSQL paradigm. In the figure, two logical metamodels are shown: a column
family data model and a document data model. These metamodels are interme-
diate representations, which contain information specific to the paradigm they
represent. For instance, the column family data model allows defining the col-
umn families that should be instantiated in the final database. However, these
specifications are still abstracted from any implementation details, i.e., the logi-
cal model of a paradigm can be employed to represent technologies that belong
to the same paradigm.

Finally, the third step of the transformation process consists in a model-to-
text (M2T) transformation. The obtained logical model from the M2M trans-
formation of step 2 is used to automatically generate an implementation script
for the targeted technology. Continuing with the column family example, a M2T
generation from a logical model could be performed to obtain a physical imple-
mentation for Cassandra, a database from this paradigm. An analogous example
could be made for a document data model and a MongoDB implementation.

This transformation process has been specifically devised to make it eas-
ily extensible. For instance, if we wish to support another column family-based
database, we would only need to define the M2T transformation from the col-
umn family logical data model to generate the implementation script of this new
database. In the same way, if we wanted to include a new NoSQL paradigm
that differs from the ones supported by Mortadelo, such as key-value stores, we
would define a new chain of elements such as the one presented with dots in
Fig. 1, starting with a logical model for that new paradigm and a M2M transfor-
mation from the GDM. This new logical model could then be employed in M2T
transformations to target concrete key-value technologies. We consider that the
modularity and extensibility offered by Mortadelo would favour cohesion and
reuse of existent components, such as logical models and transformation rules.



Mortadelo: A Model-Driven Framework for NoSQL Database Design 45

Next sections detail the GDM metamodel and describe concrete examples of
the transformation process for column family and document-based stores.

2.2 Generic Data Model (GDM)

As mentioned in the previous section, we use instances of the Generic Data
Model (GDM) as input for Mortadelo. Figure 2 shows the GDM metamodel. This
metamodel contains both the Structure Model and the Access Queries elements,
which are described below.

Fig. 2. Fragment of the Generic Data Model metamodel.

The Structure Model (Fig. 2, left) is defined in a UML-like fashion. This is
a well-known notation both in the modeling and database research areas, which
presents adequate for the specification of the structure of domain data. Moreover,
it is independent of any database technology, which is one of the requirements
of the presented process. The data structure is defined by the specification of
entities. These entities contain features of two kinds: (i) primitive attributes
which store values of a certain type, and (ii) references to other related entities.
The references of an entity can have variable cardinality, e.g., 1, 2, 4 or unlimited.

The Access Queries (Fig. 2, right) represent the requests that are going to
be performed over the database. These queries are defined in the GDM over
entities from the structure model. Queries are defined through a SQL-like struc-
ture, which facilitates their later specification with a textual notation. A Query
is executed over a main entity, captured by a From element. Any reference from
that entity can be included in the query through an Inclusion element. Inclu-
sions work in the same way as a conventional join of a relational SQL query.
In addition, entities referenced by those that have been included previously can
also be included, i.e., inclusions can be recursively added as long as there are



46 A. de la Vega et al.

references available. The set of projection attributes that are retrieved by the
query is specified as a list of AttributeSelection elements. This list can contain
attributes coming from the From or the Inclusion entities. The condition of a
query is captured with a BooleanExpression, which allows to declare any desired
restrictions. The notation for boolean expressions is not shown in this article
for the sake of simplicity and brevity, as this syntax is probably known by the
reader. Finally, ordering can be specified through a set of AttributeSelections,
again coming from the entities selected by the From and Inclusion elements.

Fig. 3. GDM’s Structure Model of the e-commerce platform example.

We now show a concrete instantiation of the GDM metamodel through an
example. We have selected a database that stores data from an e-commerce
platform. The structure model of this platform is shown in Fig. 3.

Clients of this online shop can make purchases of products. Each Purchase
has an associated shipping Address and a Bill, which is optional. A Product can
belong to different Categories, and it can be purchased from different Providers.
The PurchaseLine entity allows to include different products in the same pur-
chase.

Fig. 4. Example of a GDM access query over entities of the structure model.

Continuing with the GDM instance definition, in Fig. 4 an example of how
an access query from our GDM can be textually specified is shown. This query
retrieves all products of a given category ordered by their prices. The instanti-
ation of the query in the GDM would be as follows. The From entity would be
Product (line 3), and an Inclusion is defined to add the Category entity through
the categories reference (line 4). From these entities, the retrieved attributes are
the name, description and price of the products, and the category name (line
2). The aliases prod and cat are employed to simplify the attribute selection. A



Mortadelo: A Model-Driven Framework for NoSQL Database Design 47

condition is defined in line 5 through an equality that restricts the shown prod-
ucts to those belonging to a specific category, which is indicated by its name.
Lastly, in line 6, an order by clause specifies that the products should be ordered
by their price.

In this section, we have seen how input databases can be specified by the
instantiation of the structure data model and the access queries of the Generic
Data Model. GDM specifications do not contain NoSQL details, which allows
employing them as input for any NoSQL technology. Next section shows the
logical model for column family data stores, and how Mortadelo can perform
the transformations that generate a physical implementation of a Cassandra
database from a GDM instance.

2.3 Transformations for Column Family-Based Stores

Figure 5 shows the logical metamodel for column family-based stores. Any pro-
vided GDM instance model can be automatically transformed with Mortadelo
to conform to these metamodel through a model-to-model transformation.

Fig. 5. Metamodel for the logical modeling of column family-based databases.

In this kind of NoSQL databases, information is stored in structures denoted
Column Families (CFs), which are collections of rows that contain Column val-
ues. These rows are uniquely identified by a key, which is defined by a selection of
columns from the CF. For some CF databases, like Cassandra, the columns that
conform are organized in two subsets: (i) the partition key and (ii) the clustering
key. The partition key is used to distribute the data of a CF into different phys-
ical nodes or machines. Rows with the same partition key are stored together.
The clustering key allows to indicate the physical ordering of the CF rows inside
each partition.



48 A. de la Vega et al.

In this kind of column family databases, because querying rows from different
physical locations would be inefficient, only data from a CF partition can be
queried each time, this is, only a concrete value for the partition key can be
requested on each query. This provokes that the redundancy of having different
CFs storing the same data is not only recommended, but a necessary mechanism
in order to query these data with different conditions.

Columns of a CF can have an assigned type, which can be simple, a collection
of simple elements, or user defined. These last type is a composition of other types
that can help to perform data denormalizations, an operation that is common
in this kind of data stores.

Continuing with the online shop example presented in the previous section,
we could define a CF for the storage of products. In Fig. 6, an instantiation
of this CF with the logical metamodel notation is shown. The CF is denoted
ProductById. It is composed of four simple columns: productId, description, name
and price. The key is composed of a single column, the productId, which acts
as the partition key. This means that each partition would contain data of a
single product, and that each query would have to specify the productId of the
concrete product of interest.

Fig. 6. Example column family from the logical model that stores products data.

Next, we show how Mortadelo can generate a database for Cassandra NoSQL
technology, traversing through the column family logical model. The input GDM
of this example is composed of the Structure Model shown in Fig. 3, while the
following queries conform the GDM’s Access Queries:

Q1 Products data, given their productId.
Q2 Products data, together with the data from their associated categories, given

the product name.
Q3 Products data, given their categories’ names, and ordered by price.



Mortadelo: A Model-Driven Framework for NoSQL Database Design 49

Q4 Purchases data, with their associated bills, given the purchase year, and
ordered by purchaseDate.

Q5 Purchase data, with their purchase lines, the client’s name and the products
data, given the nationality of the client, and ordered by purchaseDate.

Fig. 7. Logical model of the sample database for column family databases.

Figure 7 shows the logical model generated by our framework when applying
a M2M transformation to the provided GDM instance. As instances of logical
models can become too verbose if displayed graphically (e.g. all the elements of
Fig. 6 only represent a column family), we show the column families definition
in a more compact format, where CFs are specified with the <ColumnFam-
ily> stereotype, and <UserDefinedType> does the same for user defined types.
The complete logical model, which follows the format shown in Fig. 6, can be
visualized in the GitHub repository of our tool, Mortadelo1.

The first query (Q1 ) only requests data from one entity, so a simple trans-
formation rule is applied to generate the ProductById column family from Fig. 6
described above. For the query Q2, which involves Product and Category enti-
ties, the column family ProductByName is created, which contains product and
category columns. Given that none of the Category columns belongs to the CF
key, a user defined type denoted categoryType is created, which holds data about
categories. Then, the ProductByName CF stores the categories of a product as
a list of type categoryType.

Although query Q3 involves the same entities than Q2, i.e. Product and Cat-
egory, in this case the categories’ names are part of the partition key. Moreover,
the products’ price belong to the clustering key, in order to introduce ordering.
1 https://github.com/alfonsodelavega/mortadelo.

https://github.com/alfonsodelavega/mortadelo


50 A. de la Vega et al.

Requiring different keys provokes that a new CF must be created, and this time
no user-defined type can be employed. The generated CF is ProductCategories,
which contains as columns the attributes from both entities, as shown in Fig. 7.
Also, given that the two columns used in the query, i.e. category name and prod-
uct price, do not guarantee row uniqueness, an extra field denoted idprodcat has
been added at the end of the clustering key.

Similar rules are applied to generate, from the rest of the sample queries, the
other column families shown. For details about the complete transformations
rules, we remit again to our tool’s repository.

We show in Fig. 8 the resulting database implementation for Cassandra,
which is obtained by our framework in a code generation step from the logical
model. Cassandra offers a SQL-like language for database query and definition,
called Cassandra Query Language (CQL). In this language, column families are
treated and denoted as tables. The primary key, which includes the columns
that uniquely identifies the rows, is divided in two sets of columns: the first set
corresponds to the partition key and the second one to the clustering key.

The current logical metamodel for column families shown in Fig. 5 is also
valid, in its current form, for generating code for other databases, like ScyllaDB,
which works similarly to Cassandra. However, this metamodel may contain cer-
tain concepts that are specific of the Cassandra technology, e.g., the CF keys
structure. We plan to abstract these concepts in future iterations, in order to
ease the support of other column family data stores.

Fig. 8. Cassandra CQL implementation of the sample database.



Mortadelo: A Model-Driven Framework for NoSQL Database Design 51

2.4 Towards Transformations for Document-Based Stores

In this section, we show the current state of our work for the generation of
document-based data stores. These stores are generally schema-less. However,
as the purpose of Mortadelo is the provision of NoSQL designs based on the
storage and data access requirements of the end users, this framework gener-
ates a set of collections, whose objective is to store documents, along with a
proposed structure to which these documents should conform in order to better
support the end user needs. The set of collections and their suggested structure
for the documents is defined in a logical document data model. Figure 9 shows
an example of this model.

As introduced, a document data model is composed of Collections, which have
a name that identifies them. Each collection will be used to store documents. The
structure of these documents is captured in a DocumentType element. At the
moment, collections in Mortadelo are only used to store one kind of document,
i.e., they only have one associated instance of DocumentType. However, if we
later find out that, for some use cases, it is beneficial to store several types
of documents in the same collection, the model will be updated accordingly.
A DocumentType element defines the structure of documents as a collection of
Fields. These fields can be Primitive elements, Arrays of elements, or even nested
DocumentTypes inside the main one. In addition, as some document databases
allow defining indexes over these fields to improve performance, we have included
this functionality in the metamodel (Fig. 10).

Fig. 9. Metamodel for the logical modeling of document-based stores.

Fig. 10. Example of a denormalized collection in MongoDB that answers query Q2.

For this kind of databases, the Access queries of the GDM can be used to
determine whether the logical model must follow a more normalized design,



52 A. de la Vega et al.

with each collection representing a different entity of the Structural Model; or
a more de-normalized one, by embedding some entities into another. Figure 9
shows an example of a document that represents a product in MongoDB. Each
product contains an embedded array to store the data of the categories to which
it belongs. When following this structure, categories are repeated several times,
one for each product belonging to them, which introduces data redundancy in
the system. On the other hand, this de-normalization could be useful to make the
sample query Q2 more efficient, since all the required information is contained
in a single collection, instead of being necessary to consult several of them (e.g.
consulting the categories referenced by a product). We are working in more
mechanisms to adapt the provided GDM and transformations to the specificities
of document databases.

3 Implementation

We have implemented a prototype of Mortadelo to assess the transformation
process presented in the previous section. This implementation has been made
available under a free licence in an external repository2. Next paragraphs sum-
marize the main components of this repository.

The metamodels presented in Sect. 2 can be found in the corresponding
projects of the repository in Ecore [23] format. Precisely, the GDM, column fam-
ily, and document metamodels are included. In addition, the projects also contain
the model-to-model and model-to-text specifications that conform the trans-
formation process. Conventionally, M2M transformations are specified through
model-to-model languages such as ETL or ATL. These languages are useful when
each input element of a certain type is transformed into one or more output ele-
ments. However, this strict mapping could not be appropriate when generating
NoSQL designs. For instance, it could be the case that two queries of the GDM’s
Access Queries can be answered through the same column family of a Cassandra
data store, instead of generating one column family for each query. Therefore, the
data structure and access queries have to be treated all at once in the transfor-
mation, instead of in a one-by-one basis. For this reason, we decided to employ an
imperative language for the M2M transformation process. We selected Xtend3,
which is a Java-based language that offers advanced model manipulation capa-
bilities. In the case of M2T transformations, they have been specified with EGL
(Epsilon Generation Language) [22].

For the GDM metamodel, a textual Domain-Specific Language (DSL) [18] for
the manipulation of GDM instances is also provided. This DSL has been imple-
mented with Xtext [12], which provides a full-featured and easily configurable
editor. Figure 11 shows a screenshot, where the online shop case study is manip-
ulated through the DSL editor. The left window shows the syntax of the DSL,
which allows to define and validate entities and queries over these entities. On
the top right window, the corresponding GDM instance model of the processed
2 https://github.com/alfonsodelavega/mortadelo.
3 https://www.eclipse.org/xtend/.

https://github.com/alfonsodelavega/mortadelo
https://www.eclipse.org/xtend/


Mortadelo: A Model-Driven Framework for NoSQL Database Design 53

Fig. 11. Editor of the provided GDM textual DSL.

“onlineShop.gdm” file is shown. This instance would be the input of Mortadelo’s
transformation process. Below, in the Properties view, individual details of con-
crete elements from the model can be consulted, such as the AttributeSelection
object selected in the figure.

Finally, an examples project is included, which contains the specifications and
resulting NoSQL schemas for the online shop running example of this paper.

4 Related Work

As we mentioned in the introduction, well-known practises of the design pro-
cess of relational databases are not suitable for NoSQL systems because of the
differences between them and RDBMSs [3,21].

There are works in the literature that face the challenge of NoSQL database
design. However, because of the heterogeneity present in NoSQL technologies,
most of these works limit their efforts to a concrete paradigm, such as col-
umn families [8,21], key-value [19] or graph-based [11] stores. For instance, Mior
et al. [21] present NoSE (NoSQL Schema Evaluator), an initially generic tool
for obtaining NoSQL schemas. However, this work focuses on column family
databases and, as the authors state in their conclusions, “NoSE may require
significant changes to fully exploit the capabilities of different data models”.

Nonetheless, the lack of generality of these works does not make them unus-
able for our purposes. As mentioned in Sect. 2.2, one of the steps performed by
our framework is the transformation of a generic conceptual model to the logical
model of a concrete NoSQL paradigm. So, it is possible to include the described
process of individual works for a specific paradigm into Mortadelo, therefore con-
tributing to the homogenisation of these works under the same framework. As



54 A. de la Vega et al.

an example, for column family databases, we have taken as base transformation
rules the ones included in NoSE. Also, we have improved them by overcoming
some of their limitations, such as for example the lack of support for User Defined
Types and Collections that are useful for the design of certain column families.

Instead of by abstracting the design stage, other approaches bring the gener-
ality to the application level by presenting high-level interfaces to access under-
lying data stores. Authors of [4] present one of these interfaces, denoted as SOS
(Save Our Systems), which offers a common data access layer for the intercon-
nection with different NoSQL physical storage systems.

There are two works that require special comments, as their objectives relate
to the ones of Mortadelo. In the first one, Herrero et al. [16] present a NoSQL
design process for analytical workloads. This process, as the one defined by
Mortadelo, is divided in three phases, where a conceptual model is first used
as input to obtain a logical model, which later gets instantiated in a physical
implementation. One of the main differences with respect to our proposal is
that, rather than performing manual steps, we seek to automatically generate
the NoSQL schemas from the provided generic data model. However, authors
of the mentioned work take into account important factors for the analytical
workloads they support, such as data variability. These factors could be included
in a future to improve Mortadelo’s transformation process.

The second of these works, authored by Atzeni et al. [3], presents NoAM
(NoSQL Abstract Metamodel), a design metamodel that does not focus on any
particular NoSQL technology but on giving support to all of them. An instance of
this metamodel represents a technology-agnostic NoSQL schema through high-
level concepts, which have been generalized from the characteristics of existent
NoSQL paradigms.

When we started working on Mortadelo, we studied the possibility of using
NoAM as the intermediate logical model that is employed in the transformation
process, prior to the code-generation step into a concrete NoSQL solution. Nev-
ertheless, we detected that more information than the one contained in NoAM
models was necessary to perform the final transformations for some of the NoSQL
databases. For instance, in the case of column family data stores like Cassandra,
an extra differentiation between partition and clustering keys is necessary for the
final instantiation. We compared the overhead of using a combination of NoAM
plus this extra information against the definition of logical metamodels for each
NoSQL paradigm, and decided than the latter option was simpler in our case.
This is why we employ a column family metamodel and a document metamodel
in Sect. 2, instead of a single intermediate model such as NoAM. The use of a
logical model for each paradigm or family of NoSQL data stores allows Mor-
tadelo to remain agnostic of concrete details of technologies such as Cassandra
or MongoDB until it is necessary (i.e. when the code generation templates for
concrete systems are executed). Moreover, these logical models can be reused
between technologies of the same paradigm, such as MongoDB and CouchDB
for document stores.



Mortadelo: A Model-Driven Framework for NoSQL Database Design 55

5 Conclusions and Future Work

This paper has presented Mortadelo, a framework for the generation of NoSQL
databases. The main contribution of Mortadelo is that, following a model-driven
approach, it can be used to automatically obtain the implementation of a tar-
geted NoSQL database, by using as input a technology-agnostic data structure
model that also includes the description of how data are usually accessed. An
advantage offered by this framework is its modular structure, which eases the
inclusion of support for new database paradigms or technologies.

We have shown how Mortadelo can be used to generate databases for col-
umn family data stores, with a full example for the Cassandra database. We
have detailed all the steps of the proposed framework for this example: (i) the
implementation of a conceptual data model to specify the data structure in a
technology-agnostic way; (ii) the development of an intermediate logical meta-
model that captures details of column family databases; and (iii) the implemen-
tation of a set of rules to automatically transform the data structure model to
the logical model, and this logical model to the implementation code in Cassan-
dra. Also, we have established the first steps to extend our framework for the
support of document-based databases, like MongoDB or CouchDB.

As an additional contribution, we have implemented an homonymous proto-
type tool of Mortadelo. The development of this tool is active, and the meta-
models and transformations explained throughout the paper are available in the
tool’s repository.

We are currently working towards offering full support for document-based
data stores. As future work, we will study the expansion of the framework to sup-
port other kind of NoSQL paradigms, like key-value stores or graph databases.
This will also involve researching how to extend the technology-agnostic data
structure model in order to take into account other components in the trans-
formation process. After the functionality of Mortadelo has been tested, it is
also important to consider the non-functional requirements that usually affect
the design of NoSQL data stores. Issues such as scalability, security, consistency,
technology/storage restrictions, or workload frequency will be taken into account
for future improvements.

Acknowledgements. This work has been partially funded by the Government
of Cantabria (Spain) under the doctoral studentship program from the University
of Cantabria, and by the Spanish Government under grant TIN2014-56158-C4-2-P
(M2C2) and TIN2017-86520-C3-3 R.

References

1. Agrawal, S., Chaudhuri, S., Narasayya, V.: Automated selection of materialized
views and indexes in SQL databases. In: 26th Conference on Very Large Data
Bases, pp. 496–505 (2000)

2. Alur, N.: IBM Infosphere Datastage Data Flow and Job Design. Vervante (2008)



56 A. de la Vega et al.

3. Atzeni, P., Bugiotti, F., et al.: Data Modeling in the NoSQL World. Comput.
Stand. Interfaces (2016)

4. Atzeni, P., Bugiotti, F., Rossi, L.: Uniform access to NoSQL systems. Inf. Syst.
43, 117–133 (2014)

5. Carpenter, J., Hewitt, E.: Cassandra: The Definitive Guide: Distributed Data at
Web Scale. O’Reilly, Modesto (2016)

6. Cattell, R.: Scalable SQL and NoSQL Data Stores. SIGMOD Records 39(4), 12–27
(2011)

7. Chandra, D.G.: BASE analysis of NoSQL database. Futur. Gener. Comput. Syst.
52, 13–21 (2015)

8. Chebotko, A., Kashlev, A., Lu, S.: A big data modeling methodology for apache
Cassandra. In: International Congress on Big Data, pp. 238–245. IEEE (2015)

9. Chen, P.P.S.: The entity relationship model – toward a unified view of data. ACM
Trans. Database Syst. 1(1), 9–36 (1976)

10. Chodorow, K.: MongoDB: The Definitive Guide: Powerful and Scalable Data Stor-
age. O’Reilly Media, Sebastopol (2013)

11. Daniel, G., Sunyé, G., Cabot, J.: UMLtoGraphDB: mapping conceptual schemas
to graph databases. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S.,
Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 430–444. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46397-1 33

12. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: 25th Annual Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pp. 307–309 (2010)

13. Gessert, F.: NoSQL database systems: a survey and decision guidance. Comput.
Sci. Res. Dev. 32(3), 353–365 (2017)

14. Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
Comput. Surv. 15, 287–317 (1983)

15. Hecht, R., Jablonski, S.: NoSQL evaluation: a use case oriented survey. In: Inter-
national Conference on Cloud and Service Computing (CSC), pp. 336–341. IEEE
(2011)

16. Herrero, V., Abelló, A., Romero, O.: NOSQL design for analytical workloads: vari-
ability matters. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S.,
Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 50–64. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46397-1 4

17. Hills, T.: NoSQL and SQL Data Modeling: Bringing Together Data, Semantics,
and Software. Technics Publications, Basking Ridge (2016)

18. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional, Upper Saddle River (2008)

19. Li, C.: Transforming relational database into HBase: a case study. In: IEEE Inter-
national Conference on Software Engineering and Service Sciences. pp. 683–687,
July 2010

20. Li, L., Zhao, X.: UML specification and relational database. J. Object Technol.
2(5), 87–100 (2003)

21. Mior, M.J., Salem, K.: NoSE: schema design for NoSQL applications. IEEE Trans.
Knowl. Data Eng. 29(10), 2275–2289 (2017)

22. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The epsilon generation
language. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol.
5095, pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
69100-6 1

23. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley Professional, Reading (2009)

https://doi.org/10.1007/978-3-319-46397-1_33
https://doi.org/10.1007/978-3-319-46397-1_4
https://doi.org/10.1007/978-3-540-69100-6_1
https://doi.org/10.1007/978-3-540-69100-6_1


Mortadelo: A Model-Driven Framework for NoSQL Database Design 57

24. Vajk, T., Fehr, P., et al.: Denormalizing data into schema-free databases. In: 4th
International Conference on Cognitive Infocommunications, pp. 747–752. IEEE
(2013)

25. Walker, S.J.: Big data: a revolution that will transform how we live, work, and
think. Int. J. Advert. 33(1), 181–183 (2014)



Towards OntoUML for Software
Engineering: Experimental Evaluation
of Exclusivity Constraints in Relational

Databases

Zdeněk Rybola(B) and Michal Valenta

Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic

{zdenek.rybola,michal.valenta}@fit.cvut.cz
http://ccmi.fit.cvut.cz

Abstract. Model-driven development approach to software engineer-
ing requires precise models defining as much of the system as possi-
ble. OntoUML is a conceptual modelling language based on Unified
Foundational Ontology, which provides constructs to create ontologically
well-founded and precise conceptual models. In the approach we utilize,
OntoUML is used for making conceptual models of software application
data and thismodel is then transformed into its proper realization in a rela-
tional database. In these transformations, the implicit constraints defined
by variousOntoUMLuniversal types and relations are realized bydatabase
views and triggers. In this paper, we specifically discuss the realization of
phase partitions of Phase types from the OntoUML model by exclusive
associations and provide an experimental evaluation of this approach.

Keywords: MDD · Transformation · OntoUML
Relational database · Exclusivity constraints · Evaluation

1 Introduction

Software engineering is a demanding discipline that deals with complex sys-
tems [6]. The goal of software engineering is to ensure high-quality software
implementation of these complex systems. To achieve this, various software
development approaches have been formulated. One of these approaches is the
Model-Driven Development (MDD), which is based on elaborating models and
transformations between them [12].

To ensure high quality of a software system, high-quality expressive con-
ceptual models are necessary to define all requirements and constraints for the
system [6]. As OntoUML is based on Unified Foundational Ontology (UFO), it is
domain-agnostic and it provides mechanisms to create ontologically well-founded
conceptual models [7], it qualifies for creating precise conceptual models of appli-
cation data. However, it should hold for the MDD transformations that more
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 58–73, 2018.
https://doi.org/10.1007/978-3-030-00856-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_4&domain=pdf


OntoUML2RDB: Evaluation of Exclusivity Constraints 59

specific models preserve the constraints defined in the more abstract models [7].
Therefore, it is necessary to transform such OntoUML model into its realization
properly, without losing the implicit constraints OntoUML introduces.

This paper is part of a series, where the usage of OntoUML for Software
Engineering is investigated. As conceptual data modelling is the most popular
part of the MDD approach and the relational database management systems
(RDBMSs) are still the most popular type of data storage1, we focus primar-
ily on the proper realization of the OntoUML conceptual models in relational
databases (see, e.g., [17] for the introduction to our approach, or [18,19] for the
transformation of anti-rigid and rigid Sortals, respectively). In this paper, we
discuss explicitely the transformation of the phase partitions from an OntoUML
model into its proper realization in the RDBMS by means of exclusive asso-
ciations as proposed in [18] and we justify the approach by an experimental
evaluation.

The structure of the paper is as follows: in Sect. 2, the background to our app-
roach is presented; in Sect. 3, the gradual transformation of the phase partitions
is presented; in Sect. 4, the experiments justifying our approach are presented;
and finally, in Sect. 5, the conclusion of the paper results is provided.

2 Background

In this section, we outline the background and related work to our paper.

2.1 OntoUML

OntoUML is a conceptual modelling language focused on building ontologically
well-founded models. It was formulated in Guizzardi’s PhD Thesis [7] as a light-
weight extension of UML based on UML profiles. The language is based on
Unified Foundational Ontology (UFO) [9], which is in turn based on cognitive
science and modal logic. Thanks to this fact, it provides expressive and precise
constructs for modellers to capture the domain of interest.

UFO and OntoUML address many problems in conceptual modelling, such
as the distinction between universals and individuals, the identity principle and
the rigidity of properties [7], the concept of roles [10] or part-whole relations [8].

2.2 Our Approach

As OntoUML is based on UFO and supports creation of ontologically well-
founded models, it seems to be well-suited for creating precise conceptual models.
Such model can be also used for modelling conceptual data models of the devel-
oped application, defining various constraints and restrictions for the domain
objects simply by specifying the appropriate universal and relation types (Kinds,

1 According to the ranking published on https://db-engines.com/en/ranking in Febru-
ary 2018, 7 of 10 most popular DBMSs are relational.

https://db-engines.com/en/ranking


60 Z. Rybola and M. Valenta

Subkinds, Roles, Phases, etc.). The principles of OntoUML also guide the mod-
eller to think about many important aspects of the domain objects like their
identity, rigidity and dependencies (both existential and relational). However, in
order to use such conceptual models in the MDD approach, these models must be
transformed into their realizations in such a way, that the implicit constraints
defined by the individual universal and relation types used in the OntoUML
model are not lost.

In [17], an approach to the transformation of such conceptual data models in
OntoUML into their proper realization in a relational database was introduced.
In this approach, the transformation is divided into three consecutive steps:

1. transformation of the initial OntoUML conceptual model (OntoUML PIM)
into a UML platform-independent model (UML PIM),

2. transformation of the resulting UML PIM into a relational platform-specific
model (RDB PSM),

3. and finally the transformation of the resulting RDB PSM into an
implementation-specific model consisting of SQL DDL scripts (SQL ISM).

In the first step, the initial OntoUML PIM with various universal and relation
types is transformed into a pure UML PIM consisting of standard UML classes
and relations. Since OntoUML applies certain constraints to the types based on
the kind of universal represented by each particular type, these constraints are
carried over to the other consecutive models by utilizing OCL constraints, where
it is not possible to express them by the means of the well-known UML Class
diagram notation.

In the second step, the resulting UML PIM with the constraints derived
from the initial OntoUML PIM is transformed into an RDB PSM consisting of
the definitions of tables, references and FOREIGN KEY constraints. Additional
OCL constraints are derived to define the constraints that cannot be defined by
the standard means of a relational schema.

In the final step, the resulting RDB PSM from the previous step is trans-
formed into an SQL ISM, which consists of the SQL DDL scripts. We also deal
with the proper realization of the OCL constraints derived in the previous steps
to preserve the semantics of the model in the database and prevent creating and
querying data violating the constraints.

Although the transformation could be done in a single step, i.e., by generating
the SQL DDL scripts directly from the OntoUML model, our approach brings
several advantages. First, the existing know-how for the transformation of UML
models into relational databases may be utilized (see, e.g., [11,20]), as well as the
existing tools supporting this transformation (e.g., Enterprise Architect2, which
we use for the diagrams in this paper). Second, the first step of the transformation
may be used as a part of the transformation into any other platform, such as
a pure object model of Smalltalk, an object-oriented data model of EJB3, etc.
2 Enterprise Architect is a popular commercial CASE tool used for creating models,
http://www.sparxsystems.com.au/products/ea/index.html.

3 Enterprise Java Beans, http://www.oracle.com/technetwork/java/javaee/ejb/index.
html.

http://www.sparxsystems.com.au/products/ea/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html


OntoUML2RDB: Evaluation of Exclusivity Constraints 61

And, finally, after each of the transformation steps, the resulting model may be
analysed and refactored, in order to optimize the model, simplify it and remove
redundancies and duplicities.

2.3 Related Work

In the past, various approaches like the OO-Method [15], Model-Driven Archi-
tecture [13] or Model-Driven Development in general [12] have been developed
to overcome the distinction between the conceptual and solution models by pre-
cisely defined transformations.

In our approach, we utilize OntoUML for the conceptual modelling. The idea
of similar approach was introduced already in [3], where the author proposes a
transformation of an OntoUML conceptual model into an object-oriented imple-
mentation model in UML. Similar approach is also presented in [16]. There are
also other works dealing with the transformation of OntoUML into other lan-
guages, such as Alloy [2] and OWL [23].

Regarding the transformation of the UML PIM into a relational database,
it is a well-known process documented for instance in [11]. However, in order to
realize the original OntoUML PIM properly, it is necessary to properly trans-
form and realize also the OCL constraints derived from the universal and relation
types used in the OntoUML conceptual model, as well as other constraints such
as special multiplicities of associations or meta-properties isDisjoint and isCov-
ering of the generalization sets, which are usually ignored by the documented
transformations. In our approach, we focus on the proper realization of these
constraints.

In [20], an approach for the realization of special multiplicity constraints in
a relational database was proposed. The approach was inspired by DresdenOCL
Toolkit4, where OCL constraints are transformed into database views querying
data violating the constraints. It was also inspired by the realization of inverse
referential integrity constraints used in IIS*Case tool [1]. In our approach, we
build up on these approaches and use the views and triggers for the realization
of the OntoUML constraints.

There are also several other approaches for the realization of OCL constraints
in a relational database. In [14], the authors present their approach to checking
constraints by incremental SQL queries that select the violating data. In [22], the
author describes an extension plugin for Enterprise Architect that generates the
SQL code realizing OCL constraints. His approach is based on translating OCL
expressions into SQL queries and realizing the constraints by database functions
used to detect the constraint violation. Another related work can be found in [5],
where the authors transform OCL constraints into stored procedures. In contrast
to them, we focus on enforcing the constraints directly for any DML operations
by using triggers to minimize the special handling by the application using the
database.

4 https://github.com/dresden-ocl/dresdenocl.

https://github.com/dresden-ocl/dresdenocl


62 Z. Rybola and M. Valenta

3 Transformation of Phase Partitions

In this section, the transformation of the Phase univerals and their partitions
defined in the OntoUML PIM as proposed in [18] is explained in detail. For
creating the illustrating diagrams, we use the mentioned Enterprise Architect
case tool.

3.1 OntoUML PIM

As discussed in [7], the backbone of the whole OntoUML model is formed by the
Kind universals and their specializing Subkind universals, which define the types
of individuals with unique identity principles. While Kinds define a new unique
identity principles and provide it to their instances, the Subkinds inherit the
basic identity principle from their rigid ancestor (another Kind or Subkind) and
extend it, providing this extended identity principle to their instances. Therefore,
being an instance of a Subkind type automatically means the individual is also
an instance of the supertype with all its properties. Moreover, as both Kinds
and Subkinds are rigid, the identity of an individual provided by one of them
cannot change in the individual’s lifetime.

In contrast to Kinds and Subkinds, Phase universals are anti-rigid [7], and
thus the individuals can change the fact of being its instance. Still, all instances
of a Phase type must follow the same identity principle. This means, that each
instance of a Phase type must also be an instance of a rigid sortal type defin-
ing the identity principle (called identity bearer in this paper) - for instance,
an available copy is a copy, which is in the state of being available. This fact
is modelled by the generalization relation between the Phase types and the
identity bearer type. Moreover, the Phase types always form phase partitions –
{disjoint,complete} generalization sets of the identity bearer type. Thanks
to the completeness and disjointness, each instance of the identity bearer type
must always be an instance of exactly one of the Phase types, but thanks to
the anti-rigidity, the instance of the Phase type can change in time. Because
of these properties of Phases, they are used to model all the possible states or
stages of instances of certain type, defining the properties and relations of such
an instance in each particular phase.

In Fig. 1, an example of a PIM of the book copies in a library organization is
shown using the OntoUML notation. The information about the availability of
the particular book copy is represented by the Phase types Available, Borrowed
and Discarded, which define the only possible states of each copy.

3.2 Transformation of OntoUML PIM into UML PIM

Both Kind and Subkind universals are rigid. Therefore, when transforming an
OntoUML PIM into the UML PIM, each Kind and Subkind type can be simply
transformed into a standard UML class in the UML PIM. Also, the generalization
sets of the Subkind types can be realized by standard UML generalization sets
with the same meta-properties isDisjoint and isCovering [19].



OntoUML2RDB: Evaluation of Exclusivity Constraints 63

- title: String
- ISBN: String
- publish year: int

- copy ID: String

- bookcase: String
- shelf: int

- deadline: date - discarding date: date

«Kind»
Book «Kind»

Copy

«Phase»
Available

«Phase»
Borrowed

«Phase»
Discarded

1

of

«Formal» 0..*

{disjoint,complete}

Fig. 1. PIM of the availability of book copies in a library modelled using the OntoUML
notation

Similar to the Kind and Subkind types, the Phase types from the OntoUML
PIM can also be transformed into standard UML classes in the UML PIM.
However, as the Phases are anti-rigid, the generalization relation between the
Phase types and their identity bearer type cannot be transformed into standard
UML generalization, which is always rigid. Instead, this relation must be trans-
formed into an association to allow the changes of related Phase instances to
any identity bearer instance [18]. Moreover, as the Phase types form the phase
partitions, they must be treated together to correctly preserve the disjointness
and completeness of the partition.

According to the approach presented in [18], there are two general ways to real-
ize a phase partition in the UML PIM: abstract phase and exclusive associations.

Abstract Phase. A new artificial abstract phase class is generated. This class
is related by mandatory one-to-one association with the transformed iden-
tity bearer class. Additionally, the abstract phase class is specialized by the
{disjoint,complete} generalization set of the transformed phase classes.
Together, the mandatory association enforces the mandatory variable relation
between the identity bearer and its phase, while the generalization set speci-
fies the possible states [18]. The resulting UML PIM created by applying this
approach to the OntoUML PIM shown in Fig. 1 is shown in Fig. 2.

This approach is in accordance to the Open-Closed Principle (OCP) [4],
however, it introduces an additional concept not existing in the original domain.
Moreover, as discussed in [18], the realization of the abstract phase class and
its generalization set leads into more complicated model of referencing tables
(also, the generalization set meta-properties should be properly realized!). After
certain optimizations discussed for instance in [21], the transformation results
in almost the same model as in the case of the approach based on exclusive
associations. As this paper focuses on the realization by exclusive associations,
the reader is kindly referred to [18] for more details about this realization.



64 Z. Rybola and M. Valenta

Book

- title: String
- ISBN: String
- publish year: int

Availability

Available

- bookcase: String
- shelf: int

Borrowed

- deadline: date

Discarded

- discarding date: date

Copy

- copy ID: String 1 1

{disjoint,complete}

1

of

0..*

Fig. 2. Resulting UML PIM with an abstract phase

Book

- title: String
- ISBN: String
- publish year: int

Available

- bookcase: String
- shelf: int

Borrowed

- deadline: date

Discarded

- discarding date: date

Copy

- copy ID: String 0..111

of

0..*

0..1

1

0..1

1

Fig. 3. Resulting UML PIM with exclusive phases

Exclusive Associations. Following this approach, the phase partition is trans-
formed into a set of one-to-one associations between the identity bearer ’s class
and the individual transformed phase classes. The associations are mandatory
on the side of the identity bearer class, but they are optional on the side of the
related phase classes. Additionally, to maintain the exclusivity defined by the
{complete, disjoint} phase partition, a special exclusivity constraint must be
defined for this set of relations, checking that exactly one of the relations exists
between the instances [18]. In our approach, we use OCL invariants for defin-
ing such constraints that cannot be defined directly in the UML diagrams. The
resulting UML PIM created by applying this approach to the OntoUML PIM
shown in Fig. 1 is shown in Fig. 3 and the required exclusivity constraint is shown
in Constraint 1.

With this realization, there is no abstract concept with no reflection in the
reality as it is in the case of the abstract phase approach. Also, although not
following the OCP, it is absolutely viable model on the conceptual level, which
the UML PIM in our approach is. Moreover, the realization is much simpler on

Constraint 1 OCL invariant for the exclusivity constraint in UML PIM

context c : Copy inv Copy Ava i l ab i l i t y :
c . ava i l ab l e<>OclVoid XOR c . borrowed<>OclVoid XOR c . discarded<>OclVoid



OntoUML2RDB: Evaluation of Exclusivity Constraints 65

the PSM level as discussed below. The remaining of the paper further discusses
only the transformation based on the exclusive associations approach.

3.3 Transformation of UML PIM into RDB PSM

In the second step of the transformation, the resulting UML PIM is transformed
into the RDB PSM. During this transformation, the classes with attributes are
transformed into tables with columns (in the examples in this paper, we use
Oracle as the target DBMS, therefore we use the Oracle data types) and the
associations between the classes are transformed into the references restricted
by the FOREIGN KEY constraints [17].

According to this approach, the phase partition realized by the exclusive asso-
ciations can be transformed very easily into exclusive references. According to
the multiplicities of the associations, the references are created in the tables rep-
resenting the individual phase classes, referencing records in the identity bearer
table [20]. The example of the transformed UML PIM shown in Fig. 3 is shown
in Fig. 4.

BOOK

«column»
*PK BOOK_ID: NUMBER(8)
* TITLE: VARCHAR2(100)
* ISBN: VARCHAR2(15)

PUBLISH_YEAR: NUMBER(4)

«PK»
+ PK_BOOK(BOOK_ID)

COPY

«column»
*PK COPY_ID: VARCHAR2(10)
*FK BOOK_ID: NUMBER(8)

«FK»
+ FK_COPY_BOOK(BOOK_ID)

«PK»
+ PK_COPY(COPY_ID)

AVAILABLE

«column»
*PK AVAILABLE_ID: NUMBER(8)
*FK COPY_ID: VARCHAR2(10)
* BOOKCASE: VARCHAR2(1)
* SHELF: NUMBER(1)

«FK»
+ FK_AVAILABLE_COPY(COPY_ID)

«PK»
+ PK_AVAILABLE(AVAILABLE_ID)

«unique»
+ UQ_AVAILABLE_COPY_ID(COPY_ID)

BORROWED

«column»
*PK BORROWED_ID: NUMBER(8)
*FK COPY_ID: VARCHAR2(10)
* DEADLINE: DATE

«FK»
+ FK_BORROWED_COPY(COPY_ID)

«PK»
+ PK_BORROWED(BORROWED_ID)

«unique»
+ UQ_BORROWED_COPY_ID(COPY_ID)

DISCARDED

«column»
*PK DISCARDED_ID: NUMBER(8)
*FK COPY_ID: VARCHAR2(10)
* DISCARDING_DATE: DATE

«FK»
+ FK_DISCARDED_COPY(COPY_ID)

«PK»
+ PK_DISCARDED(DISCARDED_ID)

«unique»
+ UQ_DISCARDED_COPY_ID(COPY_ID)

0..1

(COPY_ID = COPY_ID)

«FK»

1

0..*

(BOOK_ID = BOOK_ID)

«FK»1

0..1

(COPY_ID = COPY_ID)

«FK»

1

0..1

(COPY_ID = COPY_ID)

«FK»

1

Fig. 4. Resulting RDB PSM with exclusive references

The only complication lies in the realization of the exclusivity constraint for
the associations between the individual Phase classes and their identity bearer
class. The OCL constraint defined in context of the identity bearer class is trans-
formed into an equivalent OCL constraint defined in the context of the identity
bearer table and the references from the other Phase tables. An example of the
transformed OCL constraint shown in Constraint 1 is shown in Constraint 2.



66 Z. Rybola and M. Valenta

Constraint 2 OCL invariant for the exclusivity constraint in RDB PSM

context COPY inv Copy Ava i l ab i l i t y :
de f Ava i l ab l e In s t anc e : Boolean =

AVAILABLE. a l l I n s t a n c e s ()−> e x i s t s ( a | a .COPY ID = s e l f .COPY ID)
de f Borrowed Instance : Boolean =

BORROWED. a l l I n s t a n c e s ()−> e x i s t s (b | b .COPY ID = s e l f .COPY ID)
de f Di s ca rded Ins tance : Boolean =

DISCARDED. a l l I n s t a n c e s ()−> e x i s t s (d | d .COPY ID = s e l f .COPY ID)

Ava i l ab l e In s t anc e XOR Borrowed Instance XOR Discarded Ins tance

3.4 Transformation of RDB PSM into SQL ISM

The last step of the transformation consists of generating SQL DDL scripts for
creating all the elements defined in the RDB PSM. For each table, a CREATE
TABLE statement is generated, including all its columns, UNIQUE, PRIMARY
KEY and FOREIGN KEY constraints. However, the additional OCL constraints
defining the exclusivity of the references realizing the original phase partition
requires special transformation. As already mentioned, we use Oracle as the
target DMBS, therefore we use the Oracle PL/SQL notation of the triggers and
other constructs.

In most common situations, such constraint is usually not realized in the
database and it is enforced by the application using the database. However, such
approach brings several risks: (a) there can be multiple applications using the
same database, all of them having to realize the constraint; (b) the application
may not fully understand the data constraints; (c) the constraint may not be
correctly realized, allowing to store invalid data. Therefore, we focus on the
realization of the constraint directly in the database, preventing creation and
usage of the invalid data in the tables.

According to [18], the exclusivity constraint can be realized in the relational
database by the following constructs:

Database views. A database view can be generated for querying only the valid
data in the table restricted by the exclusivity constraint. This view does not
prevent creating invalid data in the database, but hides them from the queries
used by the application using the database. Moreover, the view can also be
joined when selecting the data from the related tables representing the indi-
vidual phases. Additionally, according to [19], the view is also updatable and
can be defined with the WITH CHECK OPTION clause. Such a view can
be then used for DML operations on the table while checking the updated
data to meet the condition of the view. The example of such a view for the
constraint shown in Constraint 2 is shown in SQL 1.

Still, the exclusivity constraint can be violated by DML operations on the
Phase tables, and thus the view can reliable be used only for the queries.
Moreover, the views are not mandatory and the original tables can still be
used in the queries to access even the invalid data. Therefore the application
must use them explicitly.



OntoUML2RDB: Evaluation of Exclusivity Constraints 67

Even when using the view just for querying the data, it results in slowing
down the query operations, as the constraint condition is checked to filter
out all invalid records. Therefore, we present the experiments evaluating the
efficiency of the queries with and without such a view in Section 4.

CHECK constraint. According to the specification of SQL:1999, a CHECK
constraint might be used to restrict the possible PK values in the identity
bearer table to values correctly referenced from exactly one Phase table. How-
ever, as the body of the CHECK constraint would be based on selecting data
from multiple tables, it cannot be really used in practice, because the contem-
porary database engines do not support subqueries in CHECK constraints.

Triggers. Triggers can be used to perform complex data validations and manip-
ulations when various DML operations are performed on a table. Thanks to
that, a set of triggers can be generated to check all the operations that can
cause violation of the exclusivity constraint. In total, the following situations
can cause the violation:
S1 Inserting a new record into the identity bearer table without referencing

records in exactly one of the exclusively related phase tables.
S2 Updating a record in the identity bearer table and changing its PRIMARY

KEY value to a value, which is not referenced from exactly one of the
exclusively related phase tables. However, as changing the PRIMARY
KEY value constitutes the change of the identity of the instance, such
operation should not be allowed at all and we do not check it in regards
with the exclusivity constraint.

S3 Inserting a new record into some of the exclusively related phase tables,
referencing a record referenced from another of the exclusively related
tables (thus making it referenced by records in multiple tables).

S4 Updating a record in one of the exclusively related phase tables and
changing its reference value referencing a record in the constrained iden-
tity bearer table. However, as the referenced identity bearer instance
defines the identity of the phase instance and the identity should be
always immutable, this operation should not be allowed at all and we
do not check it in regards with the exclusivity constraint.

S5 Deleting the last record from the exclusively related phase table, which
is referencing an existing record in the constrained identity bearer table
(thus making it referenced by no related record).

The situation S1 can be checked by a trigger defined on the identity bearer
table for the INSERT operation. The trigger needs to check, that for the
inserted record, there is a referencing record in exactly one of the exclusively
related phase tables. As the trigger is based on the new value of the affected
record, it should be executed before each such DML operation and throw an
application error, if the checked constraint is violated. The example of such
trigger for the constraint shown in Constraint 2 is shown in SQL 2.
To allow the correct insertion of the referencing record into the particular
phase table before inserting the referenced record into the identity bearer
table, the FOREIGN KEY constraint of this reference must be defined as



68 Z. Rybola and M. Valenta

SQL 1 Updatable view definition for the exclusivity constraint in SQL ISM

CREATE OR REPLACE VIEW COPY VALID AS
SELECT ∗ FROM COPY c WHERE (
(EXISTS (SELECT 1 FROM AVAILABLE a WHERE a .COPY ID = c .COPY ID)

AND NOT EXISTS (SELECT 1 FROM BORROWED b WHERE b .COPY ID = c .COPY ID)
AND NOT EXISTS (SELECT 1 FROM DISCARDED d WHERE d .COPY ID = c .COPY ID) )

OR (NOT EXISTS (SELECT 1 FROM AVAILABLE a WHERE a .COPY ID = c .COPY ID)
AND EXISTS (SELECT 1 FROM BORROWED b WHERE b .COPY ID = c .COPY ID)
AND NOT EXISTS (SELECT 1 FROM DISCARDED d WHERE d .COPY ID = c .COPY ID) )

OR (NOT EXISTS (SELECT 1 FROM AVAILABLE a WHERE a .COPY ID = c .COPY ID)
AND NOT EXISTS (SELECT 1 FROM BORROWED b WHERE b .COPY ID = c .COPY ID)
AND EXISTS (SELECT 1 FROM DISCARDED d WHERE d .COPY ID = c .COPY ID) ) )

WITH CHECK OPTION;

DEFERRABLE. Then, the reference value is checked at the end of the trans-
action, and thus the referencing phase record can be inserted first, then the
identity bearer record is inserted and checked by the trigger, and at the end
of the transaction, the reference is checked by the deferred FOREIGN KEY
constraint.

Similarly, the situation S3 can be checked by a trigger defined on each of
the exclusively related phase tables for the INSERT operation. These trig-
gers need to check, that for the inserted record, there is no record in the
other exclusively related phase tables with the same reference value. As the
trigger is based on the new value of the affected record, it should be exe-
cuted before each such DML operation and throw an application error, if the
checked constraint is violated. The example of such trigger for the constraint
shown in Constraint 2 and the AVAILABLE table is shown in SQL 3. Similar
triggers should be also defined for the other phase tables.

The situation S5 cannot be actually checked by a trigger. The reason is
that it is necessary to allow the change of the phase for any identity bearer
instance. Because of the trigger checking the situation S3, the new phase
record cannot be inserted while the old phase record exists. Therefore, it is
necessary to first delete the old phase record, violating the exclusivity con-
straint as described in situation S5, and then insert the new phase record
making the data valid again. As the triggers cannot be executed for a set of
DML operations on different tables at once, this change of phases cannot be
checked using triggers. Therefore, the DELETE operation must be allowed
and the view should be always used for ensuring the query of only the valid
data, hiding the data eventually violated by this operation (situation S5).

Beside the views and triggers, there are also other options: (a) stored pro-
cedures and functions manipulating with data in multiple tables at the same
time (e.g., removing one phase record and creating a different phase record); (b)
instead of triggers; or (c) cascading operations (e.g., deleting any phase record
upon deleting the identity bearer record). However, such solutions require the
application to use special database constructs. Moreover, the procedures and
functions are dependent on the exact structure of the tables and any extension
requires update of the procedures as well as the application using them. There-



OntoUML2RDB: Evaluation of Exclusivity Constraints 69

SQL 2 Trigger definition for checking the exclusivity constraint in situation S1

CREATE TRIGGER EX COPY AVAILABILITY
BEFORE INSERT ON COPY FOR EACH ROW
DECLARE
l count NUMBER;

BEGIN
SELECT COUNT(1) INTO l count FROM DUAL WHERE (
(EXISTS (SELECT 1 FROM AVAILABLE a WHERE a .COPY ID = : new .COPY ID)
AND NOT EXISTS
(SELECT 1 FROM BORROWED b WHERE b .COPY ID = : new .COPY ID)

AND NOT EXISTS
(SELECT 1 FROM DISCARDED d WHERE d .COPY ID = : new .COPY ID) )

OR (NOT EXISTS
(SELECT 1 FROM AVAILABLE a WHERE a .COPY ID = : new .COPY ID)

AND EXISTS (SELECT 1 FROM BORROWED b WHERE b .COPY ID = : new .COPY ID)
AND NOT EXISTS
(SELECT 1 FROM DISCARDED d WHERE d .COPY ID = : new .COPY ID) )

OR (NOT EXISTS
(SELECT 1 FROM AVAILABLE a WHERE a .COPY ID = : new .COPY ID)

AND NOT EXISTS
(SELECT 1 FROM BORROWED b WHERE b .COPY ID = : new .COPY ID)

AND EXISTS (SELECT 1 FROM DISCARDED d WHERE d .COPY ID = : new .COPY ID)
) ) ;

IF l c oun t = 0 THEN r a i s e a p p l i c a t i o n e r r o r
(−20101 , ’OCL con s t r a i n t EX Copy Avai labi l i ty v i o l a t ed ! ’ ) ;

END IF ;
END;

fore, our goal is to let the application manipulate the data without any special
care, using standard SQL DML statements and queries.

4 Experiments

In order to justify our approach to the realization of the exclusivity constraints,
we made a series of experiments. The goal of these experiments is to prove, that
although the realization of the constraints in the database slows down some of the
DML or query operations, this slowdown is not substantial. On the other hand,
this slowdown is paid off by increasing the database consistency and preventing
invalid data usage.

The whole experiment was performed on a dedicated database server (a vir-
tual managed by WMware) used for courses of database systems on our faculty
(4 Intel Xeon E5-2630 CPUs with x86 64 architecture, 2.3 GHz, 8 GB of RAM,
CentOS Linux 7 operating system). On the server, Oracle 12c DBMS runs. The
database buffer cache size of the Oracle instance is approximately 500 MB, the
whole SGA (Shared Global Area) consumes approximately 2 GB.

The experiments were executed under a specially created user with unlim-
ited profile settings. The user had its own tablespace on a common filesystem.
Data generators and measurements are written in the form of PL/SQL proce-
dures. It guarantees that all the code runs on the server and hence the whole
measurement is client independent. We used built-in and Oracle-recommended
procedure dbms utility.get time for the time measurement and dbms random



70 Z. Rybola and M. Valenta

SQL 3 Trigger definition for checking the exclusivity constraint in situation S2

CREATE TRIGGER EX COPY AVAILAB AVAIL INS
BEFORE INSERT ON AVAILABLE FOR EACH ROW
DECLARE
l count NUMBER;

BEGIN
SELECT COUNT(1) INTO l count FROM DUAL WHERE (
(EXISTS (SELECT 1 FROM BORROWED b WHERE b .COPY ID = : new .COPY ID)
OR EXISTS (SELECT 1 FROM DISCARDED d WHERE d .COPY ID = : new .COPY ID)

) ) ;

IF l c oun t > 0 THEN r a i s e a p p l i c a t i o n e r r o r
(−20101 , ’OCL con s t r a i n t EX Copy Avai labi l i ty v i o l a t ed ! ’ ) ;

END IF ;
END;

package for the data generation and construction of measurement sets (see bel-
low).

The experiments were made for the model shown in Fig. 4 with five tables:
BOOK, COPY, AVAILABLE, BORROWED, and DISCARDED. We simulated the situation
when there are also incorrect data in the tables, i.e., copies without a phase
and copies having 2 or 3 phases at the same time. There is a view COPY VALID
(see SQL 1) which presents only the valid copies and there are four triggers
(see SQL 2 and SQL 3) to check that the inserting copy and its phase are valid.
Let us note, that for the reason of measurements, we had to change the triggers
in a way that they do not raise an application error if the constraint is violated,
instead they just perform the check and provide a null statement instead of the
raise application error statement.

The strategy of the measurement is described in the following sections.

4.1 Generating Data Sets for the Measurements

The testing data of different sizes were generated, containing both valid and
invalid data. We chose to generate 85% of valid copies, 5% copies without a
phase, 5% copies with two phases, and 5% with three phases. We used a random
generator in order to simulate situation when there are different number of copies
for a book and also to derive the phases of the copies (available, borrowed,
discarded).

The following sizes of the data sets were generated for the individual mea-
surements: 100 k, 500 k, 1 M, 2 M, 4 M, 8 M, and 16 M of COPY records. For the
sizes 100 k, 500 k and 1 M, the described generator was used. For the other sizes,
the INSERT INTO table SELECT ... FROM table statement was used to mul-
tiply the records in the table, because the running time for the generator was
too long. Each measurement described below was repeated 30 times, each time
with a new randomly generated data set of the same size.



OntoUML2RDB: Evaluation of Exclusivity Constraints 71

4.2 SELECT Measurement

In this measurement, a set of 100 SELECT statements from the COPY table, each
for a single record selected at random by the COPY ID value, was measured by the
get time procedure. In the set, we targeted 90 valid copies, 4 copies without the
state, 3 with two states, and 3 with three states. Let us note, that for each round
of measurements, a new data set was generated. Two variants were measured:

– Querying directly the COPY table: The result contains both valid and invalid
records. This measurement is labelled COPY in Table 1.

– Querying the view COPY VALID: The result contains only valid data checked by
the realized constraint. This measurement is labelled COPY VALID in Table 1.

4.3 INSERT Measurement

In this measurement, the time for 100 sets of INSERT statements was measured.
In each such set, an INSERT statement for a single copy and variable number
of states were generated, following the same distribution as for the SELECT
measurement (90, 4, 3, 3). Two variants were measured:

– Without the triggers: The operation results in inserting invalid data into the
tables. This measurement is labelled INSERT in Table 1.

– With the triggers: No invalid data are inserted into the tables. This measure-
ment is labelled INSERT VALID in Table 1.

4.4 Results of the Experiments

The results of the measurements are shown in Table 1. We can see that the query
time for only the valid copies using the view is approximately 5–6 times slower
than the direct access to the table with possibly invalid data. The slowdown
caused by the triggers checking the constraint during the insert process is really
small, less than 20%.

Table 1. Measurement results.

db size[#copies] COPY [ms] COPY VALID [ms] INSERT [ms] INSERT VALID [ms]

100,000 80 430 170 170

500,000 80 450 150 180

1,000,000 80 440 150 180

2,000,000 80 440 150 190

4,000,000 80 450 160 200

8,000,000 80 450 160 180

16,000,000 80 450 160 180

In both cases, the slowdown is independent of the database size. It may look
strange for the first look, but it is not - in the view and the triggers, the violation



72 Z. Rybola and M. Valenta

of the constraint is checked by searching for the referencing records by their FK
values, which are restricted by a UNIQUE index. Therefore, the DBMS uses
this index to find them efficiently using its B*tree structure. As the depth of the
index B*tree is 3 even for 16M of records, there is no impact on the time.

However, this result can be applied only to the realization of the phase parti-
tions, which are automatically related by one-to-one references. In other cases,
there would be no UNIQUE indexes and the slowdown would be much bigger
unless there is another index structure explicitly defined.

5 Conclusions

In this paper, we discussed the transformation of a phase partition of Phase types
from an OntoUML PIM into its proper realization in a relational database. We
specifically discussed the realization by exclusive associations in the intermediate
UML PIM and its implementation in the actual database using a view and a
set of triggers. In order to justify this approach, we made a set of experiments,
measuring the times of SELECT and INSERT operations and comparing the
times with and without the realization of the exclusivity constraint.

As shown by the results of the measurements, the operations are slowed down,
however, the absolute slowdown is rather small. On the other hand, the view and
the triggers help a lot with the enforcement of the constraint satisfaction by the
data and prevents creating and querying invalid data violating the constraint.
Therefore, it helps with improving the database consistency in exchange for a
small decrease in efficiency.

References

1. Aleksić, S., Ristić, S., Luković, I., Čeliković, M.: A design specification and a server
implementation of the inverse referential integrity constraints. Comput. Sci. Inf.
Syst. 10(1) (2013)

2. Benevides, A.B., Guizzardi, G., Braga, B.F.B., Almeida, J.P.A.: Assessing modal
aspects of OntoUML conceptual models in alloy. In: Heuser, C.A., Pernul, G. (eds.)
ER 2009. LNCS, vol. 5833, pp. 55–64. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04947-7 8

3. Carraretto, R.: Separating ontological and informational concerns: a model-driven
approach for conceptual modeling. Master thesis, Federal University of Espirito
Santo (2012)

4. COMPSCI: The Open-Closed Principle. https://www2.cs.duke.edu/courses/
fall07/cps108/papers/ocp.pdf (2007)

5. Egea, M., Dania, C.: SQL-PL4OCL: an automatic code generator from OCL to
SQL procedural language. Softw. Syst. Model. (2017)

6. Ghezzi, C., Jazayeri, M., Mandrioli, D.: Fundamentals of Software Engineering,
2nd edn. (2002)

7. Guizzardi, G.: Ontological Foundations for Structural Conceptual Models, vol. 015.
University of Twente, Enschede (2005)

https://doi.org/10.1007/978-3-642-04947-7_8
https://doi.org/10.1007/978-3-642-04947-7_8
https://www2.cs.duke.edu/courses/fall07/cps108/papers/ocp.pdf
https://www2.cs.duke.edu/courses/fall07/cps108/papers/ocp.pdf


OntoUML2RDB: Evaluation of Exclusivity Constraints 73

8. Guizzardi, G.: The problem of transitivity of part-whole relations in conceptual
modeling revisited. In: van Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009.
LNCS, vol. 5565, pp. 94–109. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-02144-2 12

9. Guizzardi, G., Wagner, G.: A unified foundational ontology and some applications
of it in business modeling. In: CAiSE Workshops, pp. 129–143 (2004)

10. Guizzardi, G.: Agent roles, qua individuals and the Counting Problem. In: Garcia,
A., Choren, R., Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SEL-
MAS 2005. LNCS, vol. 3914, pp. 143–160. Springer, Heidelberg (2006). https://
doi.org/10.1007/11738817 9

11. Kuskorn, W., Lekcharoen, S.: An adaptive translation of class diagram to relational
database. In: International Conference on Information and Multimedia Technology,
ICIMT 2009, pp. 144–148, December 2009

12. Mellor, S.J., Clark, A.N., Futagami, T.: Model-driven development. IEEE Softw.
20(5) (2003)

13. OMG: MDA guide revision 2.0, June 2014. http://www.omg.org/cgi-bin/doc?
ormsc/14-06-01. Accessed 19 July 2018

14. Oriol, X., Teniente, E.: Incremental checking of OCL constraints through SQL
queries. In: Proceedings of the 14th International Workshop on OCL and Textual
Modelling, pp. 23–32 (2014)

15. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-Method Approach
for Information Systems Modeling: From Object-oriented Conceptual Modeling
to Automated Programming. Inf. Syst. 26(7) (2001)

16. Pergl, R., Sales, T.P., Rybola, Z.: Towards OntoUML for software engineering:
from domain ontology to implementation model. In: Cuzzocrea, A., Maabout, S.
(eds.) MEDI 2013. LNCS, vol. 8216, pp. 249–263. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41366-7 21

17. Rybola, Z., Pergl, R.: Towards OntoUML for software engineering: introduction to
the transformation of OntoUML into relational databases. In: Pergl, R., Molhanec,
M., Babkin, E., Fosso Wamba, S. (eds.) EOMAS 2016. LNBIP, vol. 272, pp. 67–83.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49454-8 5

18. Rybola, Z., Pergl, R.: Towards OntoUML for software engineering: transformation
of anti-rigid sortal types into relational databases. In: Bellatreche, L., Pastor, Ó.,
Almendros Jiménez, J.M., Aı̈t-Ameur, Y. (eds.) MEDI 2016. LNCS, vol. 9893, pp.
1–15. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45547-1 1

19. Rybola, Z., Pergl, R.: Towards OntoUML for software engineering: transformation
of kinds and subkinds into relational databases. Comput. Sci. Inf. Syst. (2017)

20. Rybola, Z., Richta, K.: Possible realizations of multiplicity constraints. Comput.
Sci. Inf. Syst. 10(4), 1621–1646 (2013)

21. Rybola, Z., Pergl, R.: Towards OntoUML for software engineering: optimizing kinds
and subkinds transformed into relational databases. In: Enterprise and Organiza-
tional Modeling and Simulation, Tallinn, Estonia, June 2018

22. Sobotka, P.: Transformation from OCL into SQL. Master thesis, Charles University,
Prague, Czech Republic, May 2012. https://is.cuni.cz/webapps/zzp/download/
120076745

23. Zamborlini, V., Guizzardi, G.: On the representation of temporally changing infor-
mation in OWL. In: 2010 14th IEEE International Enterprise Distributed Object
Computing Conference Workshops (EDOCW), pp. 283–292. IEEE (2010)

https://doi.org/10.1007/978-3-642-02144-2_12
https://doi.org/10.1007/978-3-642-02144-2_12
https://doi.org/10.1007/11738817_9
https://doi.org/10.1007/11738817_9
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
https://doi.org/10.1007/978-3-642-41366-7_21
https://doi.org/10.1007/978-3-319-49454-8_5
https://doi.org/10.1007/978-3-319-45547-1_1
https://is.cuni.cz/webapps/zzp/download/120076745
https://is.cuni.cz/webapps/zzp/download/120076745


Ontology and Model Driven Engineering



Scrum and V Lifecycle Combined with Model-
Based Testing and Model Driven Architecture

to Deal with Evolutionary System Issues

Imane Essebaa(&) and Salima Chantit

Computer Science Laboratory of Mohammedia, Faculty of Sciences and
Technologies, Hassan 2 University of Casablanca, Casablanca, Morocco
Imane.essebaa@gmail.com, Salima.chantit@gmail.com

Abstract. Model Driven Engineering (MDE) and Agile Methods (AM) are two
principal domains that are in the way of improvement and evolution in order to
facilitate the realisation of IT projects. However, these areas evolve separately
despite the great number of researches that focus on improving realisation
project’ techniques. Thus, our approach aims to provide an approach that
combines two variants of MDE, Model Driven Architecture approach and
Model-Based Testing with the V development lifecycle used in every scrum
Agile Methodology sprint to deal with system evolution. In order to well
illustrate this approach, we apply it on Rental Car Agency System realisation
using Scrum methodology with some requirements’ evolution.

Keywords: Model Driven Architecture � Model-Based Testing
V incremental lifecycle � Scrum agile methodology � Model transformations
Test generation � Evolutionary system

1 Introduction

Software Development has become more and more important in different application
domains and evolves in a fast manner. To deal with this issue two main areas were
proposed: MDE and Agile Methodologies.

Model Driven Engineering (MDE) is an Object Management Group (OMG) propo-
sition to deal with this issue. MDE is a paradigm based on the use of models throughout
the life cycle of an application as it enhances every step of software development from
design until code and testing, by defining different variants asModel Driven Architecture
(MDA) which is based on transformations between models of different levels of
abstraction, and Model-Based Testing (MBT) that aims to generate automatically test
cases fromModels. The other domain is Agile methodologies that focus on best practices
information programming and their integration in the development process. It is an
approach that defines a disciplined management of software development projects:
Agility recommends iterative and incremental method to develop software systems.

We note that both, MDE and Agile Methodologies (AM) aim to easily manage
frequent requirements changes; AM focus on a methodological aspect that defines the

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 77–91, 2018.
https://doi.org/10.1007/978-3-030-00856-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_5&amp;domain=pdf


process to develop and test the system while MDE is more concerned by an archi-
tectural aspect that aims to automatically generate test cases from requirements models.

Several works have been made on these two domains that allow them to evolve but
separately. However, few works have focused on how to combine MDE and Agility,
which constitutes the main idea of this paper where we aim to combine MDE with its
two variants MDA and MBT inside V development lifecycle that is used to develop all
sprints in scrum agile methodology.

This paper is organized as follow, in the second section we summarize concepts
elaborated in this paper. In the third section, we present and discuss some previous
works made in this context. The following section (Sect. 4) describes our proposed
approach that will be illustrated in the fifth section with a case study of Rental Car
Agency system, and we finish by a conclusion and some of our future works.

2 Overview of Context

2.1 Model Driven Architecture

The MDA (Model Driven Architecture) is an initiative of the OMG (Object Man-
agement Group) released in 2000 [1]. The basic idea of the MDA approach is the
separation of the functional system specifications and its implementation on a particular
platform. The MDA approach lies in the context of the Model Driven Engineering
which involves the use of model and metamodels in the different phases of develop-
ment lifecycle [2], thus MDA defines three viewpoints

• CIM (Computation Independent Model): the objective of this model is to represent
the application in their environment independently of any computation information.

• PIM (Platform Independent Model): the role of the PIM is to give a static and
dynamic vision of the application regardless of the technical conception of it.

• PSM (Platform Specific Model): This model depends on technical platforms; it
represents a template of code that facilitates code generation.

2.2 Model Transformations

The transition from one level to another is realized by applying transformations to
source elements, to generate target elements. There are two types of model transfor-
mations; Model to Model transformation (M2M) that are used to move from CIM to
PIM, and from PIM to PSM. The second type is Model to Text (M2T) which is used for
the generation of source code from PSM (PSM to Code).

2.3 Model-Based Testing

Testing a system is an activity performed to identify software problems and failures in
order to improve the quality of a program. The Model-Based Testing (MBT) is a
variant of test techniques that are based on explicit behaviour models, describing the
expected behaviours of the System Under Test (SUT), or the behaviour of its envi-
ronment, built from functional requirements. The MBT is an evolutionary approach

78 I. Essebaa and S. Chantit



that aims to generate automatically from models, test cases to apply on the developed
software application [3].

2.4 V Life Cycle

Typical V-model shows Software Development activities on the Left-hand side of the
model and the Right-hand side of the model describes actual Testing phases that can be
performed: Unit testing, Integration testing, Validation testing.

2.5 Scrum

The ‘Agile Manifesto’ published in February 2001 [4] based on analysis of previous
experiences that allow to propose good practices to developers, the agile principle
introduced by the agile manifesto is related to time invested in analysis and design [5, 6].

Scrum is a subset of Agile. It is a lightweight process for agile development, and
the most widely-used one. Scrum is most often used to manage complex software and
product development, using iterative and incremental practices. Scrum significantly
increases productivity and reduces time to benefits relative to classic “waterfall”
processes.

3 Related Works

Being aware of the importance of Model Driven Engineering with its both variant
MDA and MBT, agile methodologies and development lifecycles, many works were
made on these domains in order to improve development process considering
managing system changes. However, we note that these domains evolve separately and
their combination was discussed in few works that are presented in the following of this
section.

Caceres et al. propose in their paper [7] a case study of an Agile Model Driven
Development integrated in MIDAS framework which combines Model Driven
Architecture approach and Agile practices based on eXtreme Programming (XP).
MIDAS is a model driven methodology for Web Information Systems (WIS) agile
development. We mention that authors in this paper detail the architecture of the
MIDAS framework while it does not explain how the Agility is integrated in the
process of MIDAS tool. Moreover, we note that the XP practices are specifically
dedicated to the development phase during the software system realisation, which
allows us to note that this approach does not implement all the aspect of the MDA
approach.

In their paper [8], Nakicenovic presents an Agile Model Driven Development
process developed in consideration of lean and agile practices. This paper aims to
provide an approach that shows that MDD and agility can work together exploiting the
benefits of each domain. The proposed approach is applied on both forward and reverse
engineering in order to respond to two issues; accelerating the re-engineering process
of the MDD solution and benefiting from agility and lean while producing MDD

Scrum and V Lifecycle Combined with MBT and MDA 79



solution within a short time frame. The paper describes an approach that combines
MDD and agility based on lean, the approach implementation was made on the Market
Server Capabilities (MSC) project proposed by SunGard company.

Kulkarni et al. discuss and argue in their paper [9] why agile methodology can’t be
used with Model Driven Engineering, then they propose a modification to make on
agile methodologies in order to combine them with MDE. Indeed, this paper describes
a new Software Development process that combines Scrum and MDE. In this approach
authors proposed the use of Meta-Sprints that run in parallel to Sprints in order to
validate models, they suggest two to three months as timescales for meta sprints where
clients must provide feedback on models and prototyping, which is opposite to agility
principles. As a matter of fact, that agility recommends that the feedback of clients must
be in period less than what was proposed in this approach.

Alfraihi in his paper [10] analyses the challenge of combining Agility and Model
Driven Development, the paper describes an approach that aims to increase the
adaptability of these domains by proposing a framework that facilitate Agility and
MDD, this approach proposes recommendations, guidelines, and procedure to use
Agile MDD in practice. We note that even if this approach proposes some practices to
implement the Agile MDD but it does not take account of the architecture of the MDD,
Model Driven Architecture, and how to benefit from the different abstraction levels to
produce sustainable software systems.

In the paper, Wegener [11] presents a study made on the context of the combination
of agility and Model Driven Development, then to propose issues that show how this
combination affect organizations, process and architecture, this paper presents a
comparison of different approaches proposed to use Agility and Model Driven
Development.

In their paper [12], Mahé et al. presents their first reflections about the fusion of the
MDA and Agility in order to have a combination with improved properties than the
additions of the two approaches, they propose a canvas based on processes and agile
practices in both modelling and meta-modelling level.

In their paper [13], the authors present an implementation tool using Model-Based
Testing that deal with system evolutions. In their work, they consider different test
suites to test SUT after evolution (Evolution, stagnation, regression and deletion). For
each test suite, they propose a rule to define it. For the generation of these test suites,
they use TestDesigner which is based on Class Diagram and State Machine Dia-
gram with OCL constraints. Using OCL constraints to generate tests does not allow to
validate all the system, the paper does not describe how to define a set of tests to apply
to SUT after evolution.

Pretschner et al. present in their paper [14] the importance to deal with evolution of
systems in testing phases. They also present their Autofocus tool which implement
Model-Based Testing and that aim to generate test cases. The paper describes some
evolution development process. However, this paper does not propose any method or
approach to how system requirements should be modelled neither how Autofocus
generate test cases and from which model. We note also that this paper does not explain
how to deal with evolution of system using Model-Based Testing.

In the paper [15], the authors discuss how organizations use specific model-based
tools and evolved their existing engineering processes to develop and test applications.

80 I. Essebaa and S. Chantit



The paper highlights challenges and best practices of Model-Based Testing and its
integration in developments life cycles, however, it does not present which model to
use to generate tests.

For the two-last presented works in this section, we note that the use of scrum
methodology does not allow to test all system in its different phases, but only the
validation step to confirm if the developed system satisfies all customer requirements.
Most of works that are based on agile methodologies especially scrum combine it with
a development life cycle in each iteration (Such as V or Y life cycle).

Another point of view on the modelling of software system was presented in Osis
et al.’s book [18], where they presented a method based on Topological Functioning
Modelling (TFM) that was detailed in other works [19, 20].

In order to well manage all development phases, in next sections of this paper, we
will focus on V life cycle and we will show how to combine it with Model Driven
Architecture and Model-Based Testing in Scrum.

4 Proposed Approach

Our approach is a combination between two important areas that aim to improve
software engineering technics to deal with system evolution; Model Driven Engi-
neering represented by different level of its variant Model Driven Architecture and
Agile Methodologies. In this paper we focus on Scrum as an agile method with V
development lifecycle in each iteration.

This approach is divided into three main parts: At the first part we aim to automate
transformations in MDA approach between all levels; from CIM to PIM, then from
PIM to PSM until code generation. The second part is the integration of Model-Based
Testing in V development lifecycle based on MDA approach, while the third part is the
combination of all previous elements following V lifecycle process in each sprint of
scrum methodology to deal with system’ evolutive requirements.

4.1 Transformations Automatization Between MDA Levels

Models transformation is the core of MDA approach. Our approach, that aims to
automate these transformations, consists on:

• Describing system requirements in CIM level by a structured English using SBVR.
• Transforming automatically Business Vocabulary and Business Rules of SBVR into

Use Case Diagram (UCD) in CIM level [16].
• Applying transformation rules to generate Business Class Diagram (BCD) and

System Sequence Diagram (SSD) from SBVR and UCD of CIM level to represent
the PIM level [17].

• Generating PSM level of MVC architecture represented by Detailed Class Dia-
gram (DCD) and Detailed Sequence Diagram (DSD) from PIM level using auto-
matic transformation rules.

• Generating application source code from PSM level.

Scrum and V Lifecycle Combined with MBT and MDA 81



We mention that the automation of the two last steps of the approach will be
implemented as an eclipse plugin which is the continuity of the previous one.

Choosing previous diagrams to model MDA levels is depending on different
aspects that each level should cover according to OMG specifications:

• For CIM level, we define three aspects; Static and Dynamic that are covered by
SBVR, while the Functional aspect is covered by UCD.

• For PIM level, we define two aspects; Structural aspect covered by BCD and
Dynamic one covered by SSD.

• For PSM level, we define in our approach 4 aspects; Static aspect covered by Model
classes of DCD, Structural one covered by Class Diagram, Dynamic aspect covered
by Controller classes and Behavioural one represented by DSD.

In this approach, we automate the two types of transformations Model-to-Model
(M2M) and Model-to-Text (M2T). For M2M, we use QVT language while for M2T we
use Acceleo transformation language. Transformation rules between the different levels
of MDA are implemented as an Eclipse plugin to ensure automaticity and traceability
of transformation rules.

The Fig. 1 below describes an overview of our approach:

4.2 Approach of Integration Model-Based Testing in V Life Cycle Based
on Model Driven Architecture

In this section, we present in the first part our approach to model system requirements
using MDA approach integrated with V life cycle and their combination with MBT; the
second part is to present some rules that we aim to use in order to automate test
generation.

4.3 Modelling System Requirements in V Lifecycle Using MDA
Approach

To well manage system requirements evolution, we aim to combine V process and
MBT. Our approach consists on:

Fig. 1. Overview of MDA transformation approach

82 I. Essebaa and S. Chantit



• Covering Requirements and functional specifications steps in V life cycle by CIM
level of MDA which is represented in our approach by SBVR. The UCD and
Business Rules generated at the CIM level are then used generate “Validation tests”
to validate if the developed system responds to described requirements.

• Generating the High-level design represented in our approach by the PIM level
which is generated automatically from CIM level (To generate PIM level from CIM
one, we use our approach defined in our previous works (Essebaa et al. 2017). This
step is represented by BCD and SSD for each use case element. We then generate
“Integration tests” from these diagrams (BCD and SSD) to test the correct func-
tioning between different elements of the system.

• Generating the low-level design represented by PSM level which is modelled by
CD and DSD (The approach we propose to automate transformations between PIM
and PSM levels will be discussed in our future works). We generate “Unit tests”
from this level to test the generated code.

Figure 2 describes the presented approach:

Test Generation Rules
To generate tests from Models in our approach, we defined three main rules that are
detailed in our previous work [16];

Rule 1: Generate Validation tests from CIM level: Validation tests are generated
from SBVR and Use Case Diagram.

Rule 2: Generate Integration tests from PIM level: Integration tests are generated
from PIM level which is represented using Class Diagram and System Sequence
Diagram.

Rule 3: Generate Unit tests from PSM level: Unit tests in our approach are gen-
erated from PSM level using Detailed Sequence Diagram and Detailed Class Diagram.

The Table 1 below summarize these rules:

Fig. 2. Overview of a combination of MBT in V lifecycle using MDA approach

Scrum and V Lifecycle Combined with MBT and MDA 83



4.4 Combining MDA, MBT and V Process in Scrum

In the two previous parts we present how we automate transformations in MDA and
combine it with MBT in V lifecycle to generate different type of tests, in this part we
will present our approach of managing evolutions of system using MDA and MBT
inside a V lifecycle in scrum method. Our proposal is divided into 5 main steps:

Step 1: Defining system requirement by Backlog Product.
Step 2: Planning features in a RoadMap.
Sprint to Begin:
Step 3: Apply our approach that combine V lifecycle, MDA and MBT presented in

Sects. 4.1 and 4.2.
Step 4: Adding code missing parts manually preceding them with “@added”

annotation.
Step 5: Validation and Planification of following sprints. In this step we define two

cases:

• If there is no system evolution:
– Restart from step 3 for the next sprint

• If there is an evolution:
– Restart from step 1 and keep the old code except the parts preceded by

“@added” annotation of features that still exist in the system (added code of
deleted features is deleted automatically after the new execution)

In the Fig. 3 below we describe an overview of the presented approach in this
paper:

Table 1. Test generation rules

Rule Model Target

SBVR&UCD2VT Use Case Element Requirement to validate
Fact Type Sub feature to test
Business rules of a fact type Validation tests

BCD&SSD2IT Actor and DataObject lifecycle Classes to test
Relationship between classes Integration tests

DCD&DSD2UT Messages Operation to test
Operation in classes Unit tests

Fig. 3. Overview of a combination of MDA, MBT, V lifecycle in scrum

84 I. Essebaa and S. Chantit



5 Case Study

To well illustrate our approach and transformation rules defined, we present in this
section their application on a Rental Car Agency system. The application has three
users’ profiles that have different privileges:

• Customer: A person who can view the cars available in the agency, rates and
promotions and may subscribe. A client must register and authenticate in the system
to search for available cars and book a car by indicating the reservation date and
time.

• Manager: A Manager must also authenticate to view all cars, add, edit or remove
cars. He can also view the bookings made by customers waiting for validation to
decide to accept or refuse them.

• Administrator: Once authenticated into the system, the administrator has the priv-
ilege of modifying and deleting a customer account, as well as the management of
managers account (add, change or delete).

We can also define some management rules as below:

• A customer can rent at least 1 car.
• A car can be rented by at least 1 customer.
• A manager can manage at least 1 car.
• A car is managed by at least 1 manager.
• An administrator can manage at least 1 customer account.
• An administrator can manage at least 1 manager account.

In the following part we present an application of our approach’ steps on Rental Car
Agency System example:

Defining a Backlog Product by System Requirements
After analysing system requirements, the first step in our approach is to define the
backlog product of the project then plan the Roadmap that describes different sprints of
first project’ requirement before any evolution, in this example we plan three sprints to
develop the system, we define 3 sprints where each one takes 2 weeks.

Figure 4 describes the roadmap of Rental Car Agency system:

Fig. 4. Scrum RoadMap of Rental Car Agency System

Scrum and V Lifecycle Combined with MBT and MDA 85



Modelling User Stories of the First Sprint by SBVR and UCD to Cover CIM Level of
MDA
The next step after dispatching features on sprints is to describe CIM level of first sprint
by Business Vocabulary and Business Rules using SBVR standard as described in
following Figs. 5 and 6.

In the same level of MDA, we apply horizontal transformation rules, implemented
as an eclipse plugin, to automatically generate UCD from SBVR. The Fig. 7 below
represents the generated UCD of the first sprint for Rental Car Agency system.

Fig. 5. Examples of SBVR of the first sprint of Rental Car agency

Fig. 6. UML Use Case Diagram of the first sprint of Rental Car Agency System

Fig. 7. Generated BCD and SSD of the first sprint of Rental Car Agency

86 I. Essebaa and S. Chantit



Generating Validation Tests from CIM
As in our approach we use V lifecycle process combined with MDA, after defining
CIM level, we can generate Validation tests from this level as described for “Logs-into”
feature in Table 2 below.

Applying Transformation Rules on CIM to Generate BCD and SSD of PIM Level
Generating PIM level is the first vertical Model-to-Model transformation that aims to
automatically generate BCD and SSD from CIM level for Sprint 1 using our Eclipse
plugin that implements transformation rules, the figure below represents a PIM level of
Rental Car Agency system.

Generating Integration Tests from PIM
According to V lifecycle used in our approach, Integration Tests are automatically
generated from PIM level that covers high level design of V lifecycle, the Table 3
below describes Integration test for “logs_into” feature in sprint 1.

Applying Transformation Rules to Generate DCD and DSD of PSM Level from
PIM
The last level before code is PSM level, which is the result of M2M transformations
applied on PIM level to automatically generate DCD and DSD, Fig. 8 defines diagrams
of PSM level of sprint 1.

Generating Unit Tests from PSM
Unit tests in our approach are generated from low level design step of V lifecycle
covered by PSM level, the Table 4 below describes example of Unit test of “logs_into”
feature in sprint 1:

Generating Application Source Code
The last transformation in our approach is automatic code generation which is the result
of M2T transformations that takes as an input a DCD and DSD of PSM to generate as
an output source code for MVC web application.

Table 2. Validation tests generation from PSM level

Source Target
UseCase
element

Fact type Business rule Requirement Sub
feature

Validation test

Logs_into System
requests
user
credential

It is obligatory
that the system
requests user
credential if
customer logs
into system

The system
must allow
customer to
“logs_into”
the system

Requests
user
credential

The system
must request
user credential
if a customer
try to logs into
the system

Scrum and V Lifecycle Combined with MBT and MDA 87



Evolution of Rental Car Agency System’ Requirements. In this section we will
make some evolutions to the system (addition, deletion and modification of features) in
order to visualize the process of models’ transformation and test generation in V
lifecycle combined in scrum, the evolution will be as follow:

• Modifications: “View car catalogue” feature will be available for all users not only
customers, this modification engender a new actor “User” that it will be a gener-
alization of “Customer” actor, this modification requires changing the actor of
“register” method too.

Table 3. Integration tests generation from PIM level

Source Target
Requirements SD Connection Classes Integration tests

Logs_into The operation requires connection
between “Customer” and “Account”

Customer Customer owns 1
account

Account Account belongs
to 1 customer

Fig. 8. Generated MVC-DCD and MVC-DSD of the first sprint of Rental Car Agency

Table 4. Unit tests generation from PSM level

Source Target
Requirements SD Messages Operation to test Unit tests

Logs_into System requests
User_credential

Request
(User_credential)

Test “requests”
operation

Customer sends
User_credential

Sends
(User_credential)

Test “sends”
operation

System verifies
User_credential

Verifies
(User_credential)

Test “verifies”
operation

System accepts
User_credential

Accepts
(User_credential)

Test “accepts”
operation

System rejects
User_credential

Rejects
(User_credential)

Test “rejects”
operation

88 I. Essebaa and S. Chantit



• Addition: In the new system, “Customer” will be able to validate its rental by
“payment”, The addition of a feature may engender some modifications to old ones,
for example the verification of car availability will be made automatically by a
system.

• Deletion: The addition of “payment” feature requires to delete “manage rental”
feature of “Manager” that allowed him to accept or reject the rental, in the new
system the customer can validate its rental from the system, before proceeding to
payment option the system must be able to check if the chosen car is available for
date specified by the customer.

After studying system requirements’ evolution, we have to make another feature
dispatching on next sprints as presented in Fig. 9:

After the new RoadMap planification, the sequence of the following steps is done
in the same way presented earlier: we start by the CIM description of the new sprint
thus the generation of the following levels up to the generation of the code. The new set
of tests is also automatically generated according to the rules presented in the previous
sections.

6 Conclusion

The primary objectives of this paper are to introduce a scrum approach that combines
two important variants of Model Driven Engineering; MDA and MBT, with V lifecycle
to manage every sprint in order to ensure the quick and performing development
process.

Indeed, in this first work we chose to combine these methods and approaches to
deal with system changing issues and features, we define in this paper, three types of
backlog product evolution; modification or suppression of existing features, and
addition of new features.

As well as saving time, the proposed approach can also make future evolutions and
maintenance easier. This allows team members to concentrate their effort on analysing
and describing the business features of the application.

Fig. 9. Scrum Roadmap of Rental Car Agency system after requirements’ changes

Scrum and V Lifecycle Combined with MBT and MDA 89



In our future works we plan to:

• Propose Metamodel of tests and automate test generation from MDA levels.
• Apply our approach on other case studies to improve it.
• Extend our approach to cover all agile methodologies.

References

1. Miller, J., Mukerji, J.: MDA Guide version 1.0.1. (2003)
2. Soley, R.: Model driven architecture (MDA) (2000). http://www.omg.org/cgibin/doc?omg/

00-11-05
3. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools Approach. Morgan

Kaufmann Publishers Inc., San Francisco (2007)
4. Beck, K., et al.: Agile manifesto (2001–2015)
5. Dyba, T., Dingsoyr, T.: What do we know about agile software development? Software 46,

6–9. IEEE (2009)
6. Caceres, P., Díaz, F., Marcos, E.: Integrating an agile process in a model driven architecture.

In: INFORMATIK 2004 - Informatik verbindet, Band 1, Beitrage der 34. Jahrestagung der
Gesellschaft fur Informatik e.V. (GI), Ulm, 20–24. September 2004, pp. 265–270 (2004)

7. Nakicenovic, M.B.: An agile driven architecture modernization to a model-driven
development solution. Int. J. Adv. Softw. 5(3, 4) (2012)

8. Kulkarni, V., Barat, S., and Ramteerthkar, U.: Early experience with agile methodology in a
model-driven approach. In: 14th International Conference Model Driven Engineering
Languages and Systems, MODELS 2011, Wellington, New Zealandpages, pp. 578–590
(2011)

9. Alfraihi, H.: Towards improving agility in modeldriven development. In: Joint Proceedings
of the Doctoral Symposium and Projects Showcase Held as Part of STAF 2016 Co-located
with Software Technologies: Applications and Foundations (STAF 2016) (2016)

10. Wegener, H.: Agility in model-driven software development? Implications for organization,
process, and architecture (2002)

11. Mahe, V., Combemale, B., Cadavid, J.: Crossing model driven engineering and agility –

preliminary thoughts on benefits and challenges (2010)
12. Bouquet, et al.: A model-based testing approach for evolution (2011)
13. Pretschner, et al.: Model based testing in evolutionary software development (2001)
14. Blackburn et al.: Life cycle integration of model-based testing tools (2005)
15. Essebaa, I., Chantit, S.: Tool support to automate transformations from SBVR to UML use

case diagram. In: Proceedings of the 13th International Conference on Evaluation of Novel
Approaches to Software Engineering (2018)

16. Essebaa et al.: Tool support to automate transformations between CIM and PIM levels. In:
Proceedings of the 12th International Conference on Evaluation of Novel Approaches to
Software Engineering (2017)

17. Essebaa, I., Chantit, S.: A combination of V development life cycle and model-based testing
to deal with software system evolution issues. In: Proceedings of the 6th International
Conference on Model-Driven Engineering and Software Development (2018)

90 I. Essebaa and S. Chantit

http://www.omg.org/cgibin/doc%3fomg/00-11-05
http://www.omg.org/cgibin/doc%3fomg/00-11-05


18. Osis, Janis, Donins, Uldis: Topological UML Modeling: An Improved Approach for
Domain Modeling and Software Development, 1st edn. Elsevier Sci. Pub, Amsterdam
(2017)

19. Nazaruka, E., Osis, J.: Determination of natural language processing tasks and tools for
topological functioning modelling. In: Proceedings of the 13th International Conference on
Evaluation of Novel Approaches to Software Engineering (2018)

20. Nazaruks, V., Osis, J.: Retrieving the topology from the knowledge frame system for
composition of the topological functioning model. In: Proceedings of the 13th International
Conference on Evaluation of Novel Approaches to Software Engineering (2018)

Scrum and V Lifecycle Combined with MBT and MDA 91



Adaptive Algorithms for Computing
Ontologies Metrics Through Processing

of RDF Graphs

Jean Vincent Fonou-Dombeu1(B) and Yannick Kazela Kazadi2

1 School of Mathematics, Statistics and Computer Science,
University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209,

South Africa
fonoudombeuj@ukzn.ac.za

2 Saratoga Software, 4 Greenwich Groove Station road rondebosch,
Cape Town 7700, South Africa

yan.kazela@gmail.com

Abstract. The advent of the Semantic Web has increased the num-
ber of ontologies representing domains knowledge on the internet. These
ontologies are available in the form of thousands of Resource Descrip-
tion Framework (RDF) or Web Ontology Language (OWL) statements
which are difficult to read and understand by a human being. On the one
hand, several tools have been developed to enable the semi-automatic or
automatic access and exploitation of RDF and OWL ontologies. On the
other hand, several metrics have been defined to theoretically measure
the complexity of RDF and OWL ontology graphs. However, implement-
ing computer programs for the empirical analysis of ontology complex-
ity metrics through the automatic exploration of RDF or OWL graphs
remains challenging. This study proposes a set of generic algorithms for
computing ontology complexity metrics through the processing of RDF
graphs. The algorithms are applied on a set of 25 biomedical ontologies
and provide promising results.

Keywords: Algorithm · Biomedical ontologies · BioPortal
Ontology complexity metrics · RDF Graphs

1 Introduction

The past years have witnessed the proliferation of ontologies on the Semantic
Web (SW) due to the advent of Linked Data, ontologies libraries as well as
the adoption of semantic technologies in various application domains. These
ontologies are available on the internet in the form of thousands of Resource
Description Framework (RDF) and Web Ontology Language (OWL) statements
which are difficult to read and understand by human beings.

On the one hand, several tools such as Swoogle [1], Watson [2], BioPortal [3],
etc. have been developed to enable the semi-automatic or automatic access and
exploitation of RDF and OWL ontologies. However, the metadata of ontologies
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 92–106, 2018.
https://doi.org/10.1007/978-3-030-00856-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_6&domain=pdf


Adaptive Algorithms for Computing Ontologies Metrics 93

such as the number of classes, properties and instances, obtained with existing
tools are the basic characteristics of ontologies and are insufficient for the analysis
of the complexity of an ontology [4].

On the other hand, in [5], it is argued that the quantitative measurement of
the complexity of ontology can improve the understanding of its structure and
semantic to ontologies users/developers, thereby, allowing them to better eval-
uate the design of ontology and control its development process. Furthermore,
Yang et al. [4] added that ontology evaluation enables developers to determine
the fundamental characteristics of ontologies in order to improve the quality, esti-
mate cost and reduce future maintenance. To this end, research has proposed
various theoretical metrics for evaluating the complexity of ontologies [4–7]. In
[6] three metrics, namely, the number of root classes, the number of leaf classes,
and the average depth of inheritance tree are presented to measure the cohesive-
ness of an ontology. Another study in [5] used the concept of software metrics to
propose a suite of ontology metrics including the size of vocabulary, edge node
ratio, tree impurity, entropy of ontology graph, number of children, depth of
inheritance, class in-degree and class out-degree for the analysis of the design
complexity of ontologies. In [4] a suite of metrics for measuring the complex-
ity of an ontology are presented. These metrics examined the quantity, ratio
and correlativity of concepts and relationships in the ontology. Another study
in [8] introduced a prototype to assess the quality of ontologies via an online
web platform, using the so-called semiotic-influenced metrics to grade ontology
quality. However, implementing computer programs for the empirical analysis of
the abovementioned ontology complexity metrics through the automatic explo-
ration of RDF or OWL graphs remains challenging. This drawback may ham-
per the widespread reuse of existing Semantic Web ontologies in the scientific
community.

This study proposes a set of algorithms for computing ontology complexity
metrics through the processing of RDF graphs. The algorithms are designed
to comprehensively compute existing ontology complexity metrics including the
entropy of ontology graph, tree impurity [5], average number of paths per class,
class richness, relationship richness [7], average path length of a concept and
average path length of ontology [4]. The proposed algorithms are generic and
could be applied in any knowledge domain to analyze the complexity of ontologies
based on the abovementioned ontology complexity metrics. The study applies the
proposed algorithms on 25 biomedical ontologies and displays promising results.

The rest of the paper is structured as follows. Section 2 discusses related
research. The materials and methods used in the study are described in Sect. 3.
Section 4 presents the proposed algorithms. The experiments and results are
presented and discuss in Sect. 5. A conclusion is drawn in the last section.

2 Related Work

Automatically exploring ontologies has been of interest to many researchers. Two
platforms for exploring ontologies, namely, OntoQuest and OntoXpl are pre-
sented in [10,11], respectively. The interfaces of both platforms enable users to



94 J. V. Fonou-Dombeu and Y. K. Kazadi

access metadata information on ontologies such as the list of concepts, instances
and properties, instances of a particular concept, the domain and range of prop-
erties, and so on. Although both platforms are useful for viewing ontologies
structures, the metadata information provided are considered to be only basic
features of these ontologies [4,5,7]. The existing metrics for measuring the com-
plexity of ontologies are not provided in these platforms [5].

Another study in [12] proposed a set of SPARQL-based algorithms that
implement a so called advanced faceted search on a RDF graph. The Faceted
search is defined as an approach for querying RDF documents through the appli-
cation of filters called facets [13]. Although, the ouputs of these algorithms pro-
vide insights on the semantic structure of ontologies, i.e., how concepts of the
ontologies are semantically related to each other, they were not designed to
explore RDF graphs and compute existing metrics for measuring the complexity
of ontologies.

The proximity and the Jaccard similarity distance between two
nodes/concepts of ontology are computed in [14,15] to measure the semantic
relatedness of concepts and perform concepts alignment between two ontologies,
respectively. The algorithms in [14,15] did not tackle the issue of exploring RDF
graphs of ontologies to compute their complexity metrics as it is done on this
study.

3 Materials and Methods

3.1 Definition

This section defines the underlying concepts used for processing of RDF graphs
in this study. An RDF graph is a collection of triples (subject, predicate and
object) that can be seen as a directed multigraph, that is, two nodes can be
connected by more than one edge; where classes and properties are the nodes
and edges, respectively. An RDF graph G is a tuple <C,P> where C and P
are the sets of classes/nodes and properties/edges, respectively. The inheritance
hierarchy of the RDF graph G is a subgraph G′. G′ is also a tuple <C ′, P ′>
where C ′ is the set of classes and P ′ the set of properties in G′.

A path t between two nodes c0 and cn in G is represented as in Eq. 1 and is
defined as a sequence of unrepeated nodes connected by edges (properties) from
c0 to cn; the length plt of this path is the number of edges on the path.

t = C0 → C1 → C2 → ... → Cn (1)

A path between a root node and a node ci (0 ≤ i ≤ n) is called path of
ci. The total number of paths (pi) between the root node and other nodes ci is
determined using the function p on C as in Eq. 2.

p : C → N, p(Ci) = pi (2)

The set of subclasses of a node ci is determined through the function h in
Eq. 3.

h : C → C, h(ci) = {c ∈ C, c is subclass of ci} (3)



Adaptive Algorithms for Computing Ontologies Metrics 95

The set of superclasses of a node ci is obtained with h−1, the inverse of h as
in Eq. 4.

h−1 : C → C, h−1(ci) = {c ∈ C, c is superclass of ci} (4)

The degree E(ci) of a node ci is the sum of its number of superclasses and
subclasses in G and is given in Eq. 5.

E(ci) = card(h(ci)) + card(h−1(ci)) (5)

where card(X) represents the cardinality of number of elements of the set X.

3.2 Complexity Metrics of Ontologies

Many authors have developed metrics for the quantitative measurement of the
design complexity of ontologies [4–7]. The complexity metrics reviewed below are
those computed by the proposed algorithms in this study Sect. 4. The authors
used a purposive sampling method [16] to chose these metrics amongst the exist-
ing ontology complexity metrics. In the purposive sampling method, the authors
use his own judgement to chose the suitable set metrics for the studies.

1. The average number of paths per concept (ANP ): This metric indicates the
average connectivity degree of a concept to the root concept in the ontology
inheritance hierarchy [4]. This metric is defined as in Eq. 6:

ANP =

m∑

i=1

pi

|C| (6)

where pi is the number of paths of a given concept.
2. Tree Impurity (TIP ): This metric is used to measure how far an ontology

inheritance hierarchy deviates from a tree, and it is given in Eq. 7:

TIP = |P ′ | − |C ′ | + 1 (7)

where P
′
and C

′
represent the sets of relations and concepts in the inheritance

hierarchy, respectively.
3. Average path length of a concept (APLCi

): this metric provides the average
number of ancestors of a specific concept in each of its path. This metric is
defined in Eq. 8:

APLCi
=

pi∑

k=1

pli,k

pi
(8)

where, pli,k represents the length of the kth path for the ith concept.



96 J. V. Fonou-Dombeu and Y. K. Kazadi

4. The average path length of the ontology (APL): This metric indicates the
average number of concepts in a path. It is defined as in Eq. 9:

APL =

m∑

i=1

pi∑

k=1

pli,k

m∑

i=1

pi

(9)

were pli,k and pi are the path length and number of paths of each concept,
respectively.

5. Entropy of ontology graph (EOG): This metric is the application of the loga-
rithm function to a probability distribution over the ontology graph to provide
a numerical value that can be used as an indicator of the graph complexity
[2]. It is defined as in Eq. 10:

EOG =
n∑

i=1

p(i)log2(p(i)) (10)

where p(i) is the probability for a concept to have i relations.
6. Relationship Richness (RR): This metric provides an indication of the distri-

bution of relations in an ontology. It is defined in Eq. 11:

RR =
|R|

|SR| + |R| (11)

where |R| and |SR| represent the number of relations between classes and the
number of subclass relations, respectively.

7. Class Richness (CR): the value of this metric provides an indication of the
distribution of individuals across the ontology classes. It is defined as in Eq. 12:

CR =
|C ′ |
|C| (12)

3.3 Data Structures and Design

The design of the proposed algorithms relies on the Apache Jena library, a
Semantic Web Application Programming Interface (API) and toolkit for Java
developers [9]. In fact, the Jena API features including the set of object classes
and interfaces for creating and managing RDF graphs are used in the design of
the algorithms. Furthermore, various Java constructs including arrays, queues
and lists are used in the design of the algorithms. The proposed algorithms are
presented in the next section.

4 Proposed Algorithms

This section presents the proposed algorithms for computing ontology complexity
metrics in Eqs. 6 to 12. There are in total nine algorithms grouped into three main
groups, namely, path-related, entropy, and class and relation richness algorithms
as presented in the following subsections.



Adaptive Algorithms for Computing Ontologies Metrics 97

4.1 Path-Related Algorithms

This subsection presents four algorithms developed for the computation of the
average number of paths per class, the average path length and the tree impurity.
To compute the average number of paths per class and the average path lengths
of concept and ontology, Algorithm 1 that uses Algorithms 2, 3 and 4 is used.

Algorithm 1 (FINDNUMBPATHS) processes the ontology Model and the
depth of inheritance (obtained from Bioportal together with the ontology) to
obtain a set of paths of leaf nodes in the RDF graph of ontology (FINDNUMB-
PATHS from line 4 to line 16). The resulting set of paths is used to get the
average number of paths per class and the average path length (lines 17–21 and
32–33 of FINDNUMBPATHS). The tree impurity is obtained through the count-
ing of the root nodes, subclass of relations and nodes belonging to the inheritance
hierarchy (FINDNUMBPATHS lines 8–9, 23–25, 28–29 and 34).

Formally, Algorithm 1 works as follows: A set of paths (SetOfPaths) is created
(FINDNUMBPATHS from line 4), and each subset of SetOfPaths is initialized
with a root node (FINDNUMBPATHS from line 4 to line 12). SetOfPaths is
then used along with the Jena Model of the ontology and the value of the depth
of inheritance (line 15 of FINDNUMBPATHS) as parameters to Algorithm 2



98 J. V. Fonou-Dombeu and Y. K. Kazadi

(TOTALPATHS) which returns another set of paths ListOfPaths. ListOfPaths
is further passed as a parameter to Algorithm 3 (DUPLICATE) to remove the
duplicated sets of nodes from the list of paths (line 16 of FINDNUMBPATHS).
The ontology classes in ListOfPaths returned by DUPLICATE are fed together
with the value of the depth of inheritance to Algorithm 4 (PATH) which returns
an array containing the number of paths of input class and the sum of lengths
of its paths.

The outputs of PATH are then used to determine the average path length of
the class (FINDNUMBPATHS lines 19), the sum of the number of paths of all
the classes (FINDPATHS lines 20) and the sum of the lengths of all the paths
(FINDNUMBPATHS lines 21).

Algorithm 2 (TOTALPATHS) receives three parameters which are the Jena
Model of the ontology, the set of paths SetOfPaths created in FINDNUMB-
PATHS algorithm and the depth of inheritance of the ontology.

From line 4 to 14 of TOTALPATHS, a loop is used to determine different
routes from the root nodes to the leaf nodes in the Jena Model (RDF graph)
of the ontology. At each iteration of the While-loop in TOTALPATHS, the last
element of SetOfPaths (a set of nodes) is removed and assigned to SetOfNodes
(in line 5) which is then added to the list of paths ListOfPaths in line 6. If the
size (number of nodes) of SetOfNodes is less than the depth of inheritance (line
7) a group of instructions from line 8 to 13 are executed to find the subclasses
of the last element of SetOfNodes (line 8 and line 9). Each subclass of the
last element is added to SetOfNodes, which in turn is added to SetOfPaths in
line 11.



Adaptive Algorithms for Computing Ontologies Metrics 99

Algorithm 3 (DUPLICATE) removes from the list of paths ListOfPaths
returned by TOTALPATHS the set of duplicated nodes. DUPLICATE uses an
iterative process from line 4 to line 13. Two counters are used at each iteration
to test and remove duplicated nodes (line 4 to 11).

Algorithm 4 (PATH) is executed with the list of paths without duplicates
listOfPaths returned by the DUPLICATE, a class ci and the depth of inheritance.
For every class ci ∈ C ′ a set of instructions is executed from line 6 to line 27 to
determine the number of paths and sum of path lengths. In line 4 a set of paths
pathsci is created and filled with elements of listOfPaths containing the current
class ci (line 8). In line 11 a loop is executed until the value of a counter is equal



100 J. V. Fonou-Dombeu and Y. K. Kazadi

to the depth of the ontology. Within the loop another set of paths posPathsci is
created (line 12) and filled with elements of pathsci where there is a match with
classes at the position of the loop counter (line 15). Thereafter, iterations are
executed from line 18 to line 24 to remove the duplicated paths from posPathsci.

4.2 Entropy Algorithms

These set of algorithms include Algorithms 5 to 8. Algorithm 5 (ENTROPY)
calls the Algorithm 6 (NUMBEDGES) which in turn calls Algorithms 7
(MAXNUMBEDGES) and 8 (TOTALEDGES). The ENTROPY receives as
input the number of classes and the Jena Model of the ontology; it uses the
list returned by NUMBEDGES (ENTROPY line 4) to compute the entropy of
the ontology graph (line 5 to 12).

The ENTROPY starts by creating a list of integers in line 3; this list is pop-
ulated by NUMBEDGES (ENTROPY line 4). An iterative process is executed
(ENTROPY lines 5 to 11) to test the value of each edge of the ontology graph
(ENTROPY line 6); this value is then divided by the number of classes to obtain
the probability for a class ci to have i relations in the ontology (ENTROPY line
7). In lines 8 and 9 the calculation of the entropy of the ontology graph is com-
pleted and its value is multiplied by -1 and returned in line 12.

In Algorithm 6 (NUMBEDGES) the total number of edges (max) in the
ontology graph is obtained with Algorithm 7 (MAXNUMBEDGES) in line 3.
This number is then used to create a list of integers with the size equal to max
plus one (line 4). Thereafter, an iterative process is applied (lines 5 to 9) to
determine the degree of each class ci, E(ci) with Algorithm 8 (TOTALEDGES).
MAXNUMBEDGES determines the maximum degree value in the ontology
graph. An iterative process from line 4 to 9 determines the degree E(ci) of
each class ci in the ontology graph using TOTALEDGES (MAXNUMBEDGES
lines 4 and 5); the values obtained are iteratively compared amongst them-
selves to determine the bigger one (MAXNUMBEDGES lines 6 and 7).



Adaptive Algorithms for Computing Ontologies Metrics 101

The TOTALEDGES is executed with two parameters the Jena Model of the
ontology and a class ci of this ontology; it determines and return the degree
E(ci) of the class ci.

4.3 Class and Relation Richness Algorithm

Algorithm 9 (RICHNESS) counts the number of instances of classes in the ontol-
ogy graph (lines 4 to 8); this number is further divided by the total number of
classes in the ontology to obtain the value of the class richness (RICHNESS
line 9). The computation of the relation richness (RR) starts in line 10 of the
RICHNESS by collecting all the statements in the ontology. These statements
are then tested in lines 11 to 17. The test determines and counts the subclassOf
relations (RICHNESS line 12) and the relations other than subclassOf which are
restrictions (RICHNESS line 15). The number of subclassOf and other relations
are accumulated in line 19 and used to compute the RR in line 20 of RICHNESS.



102 J. V. Fonou-Dombeu and Y. K. Kazadi

5 Experiments and Evaluation

5.1 Dataset

A set of 25 biomedical OWL ontologies downloaded from the Bioportal repos-
itory [3] is used in the experiments. For each ontology in the dataset, Table 1
provides the index, number of classes, size (in kilobytes) and execution times (in
milliseconds) of the path-related, entropy and richness algorithms.

Table 1. Execution time of the algorithms on 25 biomedical ontologies

Ontology index Number of classes Size (KB) Execution time (MS)

Path-related Entropy Richness

O1 51346 21731 3299702 659 50

O2 6544 2629 15991 291 8

O3 9795 6310 90309 297 55

O4 8850 6115 823512 113 21

O5 3003 2304 70937 486 23

O6 5278 3462 56742 182 7

O7 4326 4288 4095 188 32

O8 16377 23938 1020351 210 15

O9 2366 1977 30466 76 5

O10 9484 21268 37845 148 52

O11 42241 60987 2714577 542 41

O12 3165 2146 8193 79 6

O13 108063 171095 6599404 1713 130

O14 5930 2968 82256 212 17

O15 67663 20597 4348298 868 66

O16 4186 2862 20695 113 7

O17 10580 3977 50105 600 21

O18 4612 3947 13188 130 5

O19 2520 828 18573 77 5

O20 4530 2813 7717 155 6

O21 2339 852 4287 61 11

O22 3066 1708 3697 220 6

O23 3593 2146 2500 18 18

O24 1734 842 1322 93 5

O25 746 510 733 45 3



Adaptive Algorithms for Computing Ontologies Metrics 103

5.2 Computer and Software Environments

The experiments were carried out on a computer with the following characteris-
tics: 64-bit Genuine Intel (R) Celeron (R) CPU 847, Windows 8 release preview,
2 GB RAM and 300 GB hard drive. The algorithms for computing and analysing
the complexity metrics were implemented in Java Jena API configured in Eclipse
Integrated Development Environment (IDE) Version 4.2.

5.3 Performance Analysis

The performance analysis concerns the main algorithms including: FINDPATHS,
ENTROPY and RICHNESS. The analysis consists of determining the asymp-
totic behaviour of the function f(n) of the execution time of these 3 algorithms.
The asymptotic behaviour of a function f(n) of the execution time of an algo-
rithm refers to the growth of f(n) as n gets larger with n representing the size
of the input to the algorithm [17]. The asymptotic behaviour of the 3 above-
mentioned algorithms is based on the Big − O notation which considers only
the variable n with its highest order while ignoring other low-order terms in
f(n) [17].

Asymptotic Behaviour of FINDPATHS Algorithm. Based on the rule of
thumb from the algorithm complexity theory related to the number of loops in an
algorithm [17], the function f(n) of the FINDPATHS algorithm is O(n); this is
due to the fact that FINDPATHS has three simple loops (not nested). Further,
based on the rule of the worst-case or highest number of iterations of a loop
[17] n is considered as the number of classes of the ontology evaluated. Figure 1
presents the results of the execution time of the FINDPATHS algorithm on the
dataset. The results in Fig. 1 show that the execution time of FINDPATHS on
the dataset is higher on the ontologies with a large number of classes (e.g. O1,
O11, O13 and O15) and smaller on the ontologies with a low number of classes
(e.g. O5, O10, O16 and O25). This is an indication that the execution time of
FINDPATHS depends on the number of classes of the ontology.

Fig. 1. Execution time FINDPATHS algorithm



104 J. V. Fonou-Dombeu and Y. K. Kazadi

Asymptotic Behaviour of ENTROPY Algorithm. The ENTROPY algo-
rithm is mainly based on a loop that processes a list of integers where each
value corresponds to the number of classes with E(ci) equal to the position of
the value in the list. Therefore, one can deduce that the f(n) of ENTROPY
is O(n) with the worst-case corresponding to case where for 2 classes ci and
cj , E(ci) �= E(cj). Figure 2 presents the results of the execution time of the
ENTROPY on the dataset. Once more the findings presented in Fig. 2 suggests
that running ENTROPY over the ontologies with a larger number of classes
(e.g. O1, O11, O13 and O15) takes more time than running it on ontologies with
a smaller number of classes (e.g. O4, O10, O16 and O25).

Fig. 2. Execution time of ENTROPY algorithm

Asymptotic Behavior of RICHNESS Agorithm. The RICHNESS algo-
rithm mainly relies on two loops to processes every class and every statement
of the ontology. Therefore, the function f(n) of RICHNESS is O(n) with the
worst-case being when a higher number of classes lead to a higher number of
statements in the ontologies. The results in the Fig. 3 show that for the ontologies
in the dataset with a large number of classes (e.g. O1, O13 and O15), the execu-
tion time for RICHNESS is greater than on the ontologies with lower number of
classes (e.g. O4, O12, O16 and O25).

Fig. 3. Execution time of RICHNESS algorithm



Adaptive Algorithms for Computing Ontologies Metrics 105

The above analysis shows that the execution times of the proposed algo-
rithms are linear O(n) and proportional to the size of the input ontologies. This
suggests that the proposed algorithms are efficient and could be used in real
world applications.

6 Conclusion

This study proposed a set of algorithms for computing the complexity metrics
of ontologies through the automatic exploration of RDF/OWL graphs. These
algorithms were implemented using the Apache Jena library and executed on
a set of 25 biomedical ontologies in order to assess their time complexity per-
formance. The experiments showed that the execution times of the proposed
algorithms are linear and proportional to the size of the input ontologies. This
is a promising results as the proposed algorithms may be implemented in real
world applications. In future we intend to develop a framework that would help
classify ontologies based on their level of complexity. The framework will rely on
the algorithms implemented in this study and on a module that implements a
decision making process for ranking ontologies.

References

1. Ding, L., et al.: Swoogle: a search and metadata engine for the semantic web. In:
13th ACM Conference on Information and Knowledge Management, Washington,
DC, USA, pp. 652–659 (2004)

2. d’Aquin, M., Motta, E.: Watson, more than a Semantic Web search engine. Seman.
Web J. 2, 1–9 (2011)

3. Rubin, D.L., Moreira, D.A., Kanjamala, P.P., Musen, M.A.: BioPortal: a web portal
to biomedical ontologies. In: AAAI Spring Symposium: Symbiotic Relationships
between Semantic Web and Knowledge Engineering, Palo Alto, California, USA,
pp. 74–77 (2008)

4. Yang, Z., Zhang, D., Ye, C.: Evaluation metrics for ontology complexity and evolu-
tion analysis. In: Proceedings of the IEEE International Conference on e-Business
Engineering, Shanghai, China, pp. 162–170 (2006)

5. Zhang, H., Li, Y.F., Tan, H.B.K.: Measuring design complexity of semantic web
ontologies. J. Syst. Soft. 83, 803–814 (2010)

6. Yao, H., Orme, A.M., Etzkorn, L.: Cohesion metrics for ontology design and appli-
cation. J. Comput. Sci. 1, 107–113 (2005)

7. Tartir, S., Arpinar, B., Moore, M., Sheth, A., Aleman-Meza, B.: OntoQA: metric-
based ontology quality analysis. In: Proceedings of IEEE Workshop on Knowledge
Acquisition from Distributed, Autonomous, Semantically Heterogeneous Data and
Knowledge Sources, USA, pp. 45–53 (2005)

8. Myneni, S., Amith, M., Geng, Y., Tao, C.: Towards an ontology-driven frame-
work to enable development of personalized mHealth solutions for cancer survivors’
engagement in healthy living. Stud. Health Technol. Inform. 216, 113–117 (2015)

9. Carroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seabone, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: Proceedings of the
13th International World Wide Web Conference on Alternate Track Papers &
Posters, New York, NY, USA, pp. 74–83 (2004)



106 J. V. Fonou-Dombeu and Y. K. Kazadi

10. Chen, L., Martone, M., Gupta, A., Fong, L.: OntoQuest: exploring ontological data
made easy. In: Proceedings of the 32nd International Conference on Very Large
Databases, Korea, pp. 1183–1186 (2006)

11. Haarslev, V., Lu, Y.: ONTOXPL-intelligent exploration of OWL ontologies. In:
Proceedings of International Conference on Web Intelligence, China, pp. 45–66
(2004)

12. Aranas, M., Grau, B.C., Kharlamov, E., Marciuska, S., Zheleznyakov, D.: Faceted
search over ontology enhanced RDF data. In: Proceedings of Conference on Infor-
mation and Knowledge Management, China, pp. 939–948 (2014)

13. Tunkelang, D.: Faceted search. In: Synthesis Lectures on Information Concepts,
Retrieval, and Services, vol. 1, pp. 1–80. Morgan & Claypool Publishers (2009)

14. Leal, J.P.: Using proximity to compute semantic relatedness in RDF graphs. Com-
put. Sci. Inf. Syst. 10, 1727–1746 (2013)

15. Tongchim, S., Kruengkrai, C., Sornlertlamvanich, V., Srichaivattana, P., Isahara, H.:
Analysis of an iterative algorithm for term-based ontology alignment. In: Dale, R.,
Wong, K.-F., Su, J., Kwong, O.Y. (eds.) IJCNLP 2005. LNCS (LNAI), vol. 3651, pp.
346–356. Springer, Heidelberg (2005). https://doi.org/10.1007/11562214 31

16. Palys, T.: Purposive sampling. In: Given, L.M. (ed.) The Sage Encyclopedia of
Qualitative Research Methods, vol. 2, pp. 697–698 (2008)

17. Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st Edn.
Cambridge University Press (2009)

https://doi.org/10.1007/11562214_31


CRank: A Novel Framework for Ranking
Semantic Web Ontologies

Jean Vincent Fonou-Dombeu(B) and Serestina Viriri

School of Mathematics, Statistics and Computer Science,
University of KwaZulu-Natal, Durban, South Africa

{fonoudombeuj,viriris}@ukzn.ac.za

Abstract. To support the reuse of ontologies on the Semantic Web
(SW), various approaches have been proposed to rank these ontologies
to help the users or ontology engineers to choose the appropriate ones
that suit their needs. However, although some of the existing approaches
for ranking ontologies are very effective, they all have been designed with
a complete disregard of the degree or level of complexity of the ontolo-
gies on the SW. In fact, it is argued that the study of the complexity
of ontologies in a domain provide useful information for the selection of
the appropriate ones for reuse. This study proposes the CRank frame-
work for ranking ontologies on the SW based on their degree or level of
complexity. The CRank framework consists of two phases, namely, the
pre-processing and ranking. In the pre-processing phase, the graph of
each ontology in the dataset is processed to compute seven complexity
metrics that measure the design complexity of ontologies. Thereafter, a
decision making algorithm is applied in the ranking phase to rank the
ontologies in the dataset by aggregation of their complexity metrics. The
CRank framework was applied on a set of 100 ontologies of the biomed-
ical domain and displayed promising results.

Keywords: Ontology · Semantic web · Complexity metrics
Decision making · Ontology ranking

1 Introduction

The semantic web was launched by Berners-Lee et al. [1] as an improvement
of the current World Wide Web (WWW). In semantic web, the content of the
WWW is enhanced with semantic annotations to enables both humans and com-
puters to understand and process it. The semantic annotation of the Web con-
tent is done with ontology. Ontology is an abstract and simple view of a domain
through its concepts, entities and objects, and the relationships between them
[2]. Ontology is further represented in logic-based syntax in standard languages
such as Resource Description Framework (RDF) and Web Ontology Language
(OWL) to enable the automatic interpretation and processing of Web content
by computers.
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 107–121, 2018.
https://doi.org/10.1007/978-3-030-00856-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_7&domain=pdf


108 J. V. Fonou-Dombeu and S. Viriri

Since the inception of the semantic web, ontology has been widely adopted in
various domains as a technology for realising the integration and interoperability
of heterogeneous systems on the internet. Furthermore, the advent of Linked
Data has increased the use of ontologies on the Web and many initiatives have
been undertaken to create ontology libraries [3] to store in dedicated locations
the ontologies of various domains, to promote their access sharing and reuse on
the semantic web.

Despite the increase in the number of ontologies on the semantic web, building
ontology remain a challenging task due to the time, cost and domain expert
knowledge required [4]. Therefore, the trend is towards the reuse of existing
ontologies in new applications rather than building a new ontology de novo [5].
Ontology reuse would require the users or ontology engineers to be able to select
the appropriate ontology amongst the existing ontologies, for their applications.

To this end, various approaches have been proposed to rank the ontologies
on the semantic web [6–8] to help the users or ontology engineers to choose
the appropriate ones that suit their needs. The existing approaches for ranking
ontologies are based on two main criteria including the structural features of
concepts [6,7] and semantic relations and hierarchy of classes [6,8]. None of the
previous studies has attempted to rank ontologies on the semantic web based
on their design complexity. However, it is argued that the study of the design
complexity of ontologies in a domain provide useful information for the selection
of the appropriate ontologies for reuse [9].

This study proposes the CRank framework for ranking ontologies on the
SW based on their degree or level of complexity. The CRank framework con-
sists of two phases, namely, the pre-processing and ranking. In the preprocessing
phase, the graph of each ontology in the dataset is processed to compute seven
complexity metrics that measure the design complexity of ontologies. There-
after, decision making algorithms are applied in the ranking phase to rank the
ontologies in the dataset by aggregation of their complexity metrics. The CRank
framework was applied on a set of 100 ontologies of the biomedical domain and
displayed promising results.

The rest of the paper is structured as follows. Section 2 provides the back-
ground of the study. The CRank framework is designed and specified in Sect. 3.
Section 4 presents the experimental results of the study and a conclusion ends
the paper in Sect. 5.

2 Related Work

The task of ranking ontologies on the semantic web has been of interest to many
researchers in the past years [4,5,7,8,10–12]. Alani et al. [4] argued that the
task of ranking a set of ontologies should be done based on multidimensional
criteria. The authors then proposed the AKTiveRank system which uses four
criteria, namely, centrality, class match, density and betweenness to rate and
rank ontologies on the semantic web.

Another study in [8] proposed an approach, namely, ARRO for ranking
ontologies on the semantic web based on the semantic relations and hierarchy



CRank: A Novel Framework for Ranking Semantic Web Ontologies 109

structure of classes in ontologies. Like the AKTiveRank system [4], the ARRO
approach ranks each ontology based on its relevance to the user’s query terms.
A similar approach to ARRO, namely, OntologyRank was proposed in [5]. Like
the ARRO approach, the OntologyRank measures the semantic relationships
between the classes of ontologies to weight and rank them; the classes consid-
ered are those that match the user’s query terms.

The ARRO approach was improved in [10] to develop the OS Rank approach
for ranking ontologies. The OS Rank approach uses three criteria including the
class name, ontology structure and semantic relations to measure the coverage
of a user’s concept by the ontologies. The weight of each ontology class that
matches a user’s concept is calculated as a weighted sum of the values of the
three criteria for that class. The rank of an ontology in OS Rank is obtained as
a weighted sum of the weights of all the classes that match the concepts/terms
from a user’s query.

Jones and Alani [11] proposed a content-based method for ranking ontologies.
The ranking scores of ontologies are obtained by matching the classes to a pre-
determined corpus of terms extracted from Google and expanded in WordNet;
the corpus is built based on a user’s query. The content-based ranking method
differ from the AKTiveRank and ARRO in that the classes of ontologies are not
directly matched to the user’s query terms but to a corpus that best represent
the domain of interest.

The content-based [11] and OntologyRank [5] methods are combined in [12] to
create the Content-OR method for ranking ontologies. The Content-OR method
takes advantage of the strong ranking measures developed in OntologyRank to
further rank the ontologies that best represent a domain of interest to the users
or knowledge engineers, outputted by the content-based method. In fact, in the
Content-OR, the content-based method is first applied to rank the ontologies;
thereafter, the output of the content-based is used as input to the OntologyRank
to perform the final ranking of the ontologies.

A recent approach for ranking ontologies on the semantic web, namely,
DWRank was proposed in [7]. Two measures, namely, centrality and author-
ity are computed for each concept of an ontology that match a user’s query
term. The centrality of a concept is related to the connectivity of this concept
to other concepts in the ontology, whereas, the authority of a concept repre-
sents its relationship with other concepts in the ontology. Thereafter, a ranking
model based on a Learning to rank algorithm is applied to learn the weights
of concepts/classes based on their centrality and authority values and rank the
ontologies.

None of the previous ranking methods discussed above has dealt with the
complexity of the output ranked ontologies. The interest of authors of the pre-
vious ranking methods have been mainly to find and rank ontologies that match
the user’s or knowledge engineer’s query terms. However, an inexperienced user
may want to use a less complex ontology from the list of ranked ontologies or
an experienced knowledge engineer may want to use a complex or less complex
ontology from the list of ranked ontologies, based on the application at hand.



110 J. V. Fonou-Dombeu and S. Viriri

Furthermore, ontology libraries have been developed in the past years to store
ontologies of specific domains; for instance, the BioPortal, oeGov, AgroPortal
libraries [3] store the ontologies of the biomedical, e-government and agriculture
domains, respectively. For these ontology libraries that include ontologies that
best describe their respective domains, some of the current ranking algorithms
may not be useful. The ranking of the ontologies in the libraries requires new
ranking techniques like the CRank framework proposed in this study to assist
the users or knowledge engineers in the choice of the appropriate ontologies
for reuse in a domain. The proposed CRank framework is suitable for ranking
ontologies representing a domain based on their degree or level of complexity.
The CRank framework may also be used as a complement to existing ontology
ranking methods to further rank the output ontologies from these methods to
provide additional help to users or ontology engineers in the choice of suitable
ontologies for reuse.

3 Design of the CRank Framework

In this section, the architecture of the proposed CRank framework is presented.
Thereafter, the theoretical background on the metrics for measuring the design
complexity of ontologies and the decision-making algorithms are described.
Finally, the platform utilised in the CRank to parse the ontologies is presented.

3.1 Architecture of the CRank Framework

Figure 1 shows the overall architecture of the CRank framework. The framework
operates offline in two phases including the pre-processing and ranking phases.
In the pre-processing phase, each ontology in the ontology repository is parsed
and its complexity metrics are computed. The ontologies stored in the ontol-
ogy repository of the CRank framework are from either the existing ontologies
libraries [3] or the outputs of other lexical-based ontologies ranking methods
[4,5,7,8,10–12]. In fact, the existing lexical-based ontologies ranking methods
output a ranked list of ontologies in the form of Uniform Resource Identifiers
(URIs). These URIs are utilised to download these ontologies from the internet
and load them into the ontology repository of the CRank framework.

As mentioned earlier, the ontology libraries keep the ontologies of the same
domain in a dedicated location on the internet. Therefore, the ontologies are
downloaded from websites on the Internet and loaded into the ontology repos-
itory of the CRank framework. After the parsing of an ontology, the pre-
processing phase of the CRank framework ends with the computation of the
complexity metrics of the ontology. All the complexity metrics of ontologies
are submitted as input to the ranking phase. In the ranking phase of the CRank
framework, a decision-making algorithm is applied on the ontologies indexes and
their complexity metrics to rank the ontologies. The theoretical background on
the metrics for measuring the design complexity of ontologies and the decision-
making algorithm are presented in the next subsections.



CRank: A Novel Framework for Ranking Semantic Web Ontologies 111

Fig. 1. Architecture of the CRank framework

3.2 Complexity Metrics of Ontologies

Many authors have developed metrics for the quantitative measurement of the
design complexity of ontologies [9,13–15]. The complexity metrics reviewed
below are those computed for each ontology in the pre-processing phase of the
CRank framework in Fig. 1 and used in the ranking phase to rank the ontologies.

1. The average number of paths per concept (ANP ): This metric indicates the
average connectivity degree of a concept to the root concept in the ontol-
ogy inheritance hierarchy [13]. This metric illustrates the average level of
inheritance of concepts in the ontology. A higher ANP shows that a class
inherits from many other classes; it also shows that there is a great number
of interconnections between classes. This metric is defined as in Eq. 1:

ANP =

m∑

i=1

pi

|C| (1)

where pi is the number of paths of a concept and C the set of concepts/classes
in the ontology. The value ANP for any ontology must be greater or equal
to 1; a ANP = 1 indicates that an ontology inheritance hierarchy is a tree.

2. Tree Impurity (TIP ): This metric is used to measure how far an ontology
inheritance hierarchy deviates from a tree, and it is given in Eq. 2:

TIP = |P ′ | − |C ′ | + 1 (2)

where P
′
and C

′
represent the set of relations and concepts in the inheritance

hierarchy, respectively.
3. Size of vocabulary (SOV ): This metric defines the total number of named

classes, properties and instances in the ontology; it is defined as in Eq. 3:

SOV = |P | + |C| + |I| (3)



112 J. V. Fonou-Dombeu and S. Viriri

where C, P and I are the sets of classes, properties and instances in the
ontology, respectively.

4. The average path length of the ontology (APL): This metric indicates the
average number of concepts in a path. It is defined as in Eq. 4:

APL =

m∑

i=1

pi∑

k=1

pl
i,k

m∑

i=1

pi

(4)

were pl
i,k and pi are the length of the kth path and number of paths of the

ith concept, respectively.
5. Entropy of ontology graph (EOG): This metric is the application of the loga-

rithm function to a probability distribution over the ontology graph to provide
a numerical value that can be used as an indicator of the graph complexity
[9]. It is defined as in Eq. 5:

EOG =
n∑

i=1

p(i)log2(p(i)) (5)

where p(i) is the probability for a concept to have i relations.
6. Relationship Richness (RR): This metric provides an indication of the distri-

bution of relations in an ontology. It is defined in Eq. 6:

RR =
|R|

|SR| + |R| (6)

where |R| and |SR| represent the number of relations between classes and the
number of subclass relations, respectively.

7. Class Richness (CR): the value of this metric provides an indication of the
distribution of individuals across the ontology classes [15]. It is defined as in
Eq. 7:

CR =
|C ′ |
|C| (7)

The value of the CR is a percentage that indicates the amount of instantiation
of classes in the ontology.

3.3 Decision Making Process

To rank the ontologies in the CRank framework based on their complexity met-
rics, a multi-attributes decision making (MADM) algorithm, namely, Weighted
Linear Combination Ranking Technique (WLCRT) is used. A MADM algorithm
has several parameters including the alternatives, attributes/criteria, criteria
weights and decision matrix [16,17]. These parameters are explained below.



CRank: A Novel Framework for Ranking Semantic Web Ontologies 113

Alternatives. They are the different choices of action available to the decision
maker. Usually, the set of alternatives is assumed to be finite, ranging from
several to hundreds. They are supposed to be screened, prioritized and eventually
ranked. In a decision making problem the set of M alternatives is defined as a
set A = {A1, A2, A3, ..., AM}.

Attributes or Criteria. They represent the different dimensions from which
the alternatives can be viewed. In a decision making problem the set of N criteria
is defined as a set C = {C1, C2, C3, ..., CN}.

Criteria Weights. MADM algorithms determine and use the weights or impor-
tance levels of each of the criteria. The criteria weights indicate how an attribute
is important than another. The set of criteria weights is given by the vector
W = (w1, w2, w3, ..., wN ). Usually the sum of the criteria weights is equal to 1
as in Eq. 8. ∑

j

wj = 1 (8)

Decision Matrix. A MADM problem with M alternatives and N criteria is
usually represented in the form of a matrix called decision matrix. A decision
matrix D is a matrix of M × N dimensions where each element dij corresponds
to the performance of the alternative Ai when it is evaluated in terms of decision
criterion Cj , (for i = 1, 2, 3, ...,M, and j = 1, 2, 3, ..., N).

In this study, the alternatives are the ontologies in the dataset, whereas, the
attributes or criteria are the complexity metrics of these ontologies. The MADM
algorithm applied in the ranking phase of the CRank framework is presented in
the next subsection.

3.4 Weighted Linear Combination Ranking Technique

The Weighted Linear Combination Ranking Technique (WLCRT) is based on the
linear combination of matrix algebra calculations [18]. The WLCRT algorithm
uses the Pearson correlation coefficients and the eigenvector method to calculate
the criteria weights. The steps of the WLCRT algorithm are explained below.

Construction of the Normalized Decision Matrix. The normalized deci-
sion matrix D

′
in WLCRT is obtained by transforming the decision matrix D in

two steps. The first step consists of computing the elements d
′
ij of D

′
from the

elements of D with Eq. 9.

d
′
ij =

dij − djmin

djmax − djmin
(for i = 1, 2, 3, ...,M, and j = 1, 2, 3, ..., N) (9)

The second step consists of computing the normalized decision matric R of
D based on D

′
as in Eq. 10.

rij = 0.1 + 0.8d
′
ij (for i = 1, 2, 3, ...,M, and j = 1, 2, 3, ..., N) (10)



114 J. V. Fonou-Dombeu and S. Viriri

Elicitation of Criteria Weights. The determination of the criteria weights
begins with the calculation of the Pearson correlation coefficients from the nor-
malised decision matrix R. The Pearson correlation coefficient correl(x, y) of
two discrete variables x = [x1, x2, ...., xn−1, xn] and y = [y1, y2, ...., yn−1, yn] is
a value that expresses the distance (or linear dependence) between these vari-
ables [19]. It is used to determine whether 2 variables are related. The Pearson
correlation coefficients are calculated with Eq. 11.

correl(x, y) =

n∑

i

(xi − x).(yi − y)

√√√√
n∑

i

(xi − x)2.

√√√√
n∑

i

(yi − y)2

(11)

where −1 ≤ correl(x, y) ≥ 1; x = 1
n

n∑

i

xi and y = 1
n

n∑

i

yi. Therefore, if each

column of the normalized decision matrix R is a discrete variable, the Pear-
son correlation coefficients between M criteria of R form a proximity matrix
C(M × M) [18]. The proximity matrix C expresses a set of observations on
how correlated the criteria are. According to Chou [18], the weights of the cri-
teria represent the priorities of the elements of the principal diagonal of the
proximity matrix; these weights are the absolute values of the eigenvectors that
correspond to the maximum eigenvalue λmax. Given a linear transformation (or
linear matrix) P , a non-zero vector w is defined as an eigenvector of C if there
is a scalar λ that satisfies the Eq. 12.

Pw = λw (12)

where, the scalar λ is called the eigenvalue of C for the eigenvector w [20]. Given
the set of eigenvectors and their corresponding eigenvalues, one can obtain a
diagonal matrix where each element of the diagonal corresponds to an eigenvalue
[18]. This matrix is given in Eq. 13.

W−1.P.W = diagonal{λ1, λ2,− − −, λmax} (13)

Where, W is a matrix composed of the eigenvectors of P and W−1 the inverse
of W .

Aggregation of the Preference or Alternative Information. The aggre-
gation of preference or alternatives consists in transforming a set of numerical
values into a unique representative value of an alternative [21]. An aggregation
is a continuous function h : [0, 1]n → [0, 1] that determines the unique value of
an alternative [21]. Given the weights of criteria of a decision-making process,
the aggregation operator h in the WLCRT method is defined as in Eq. 14; it is
a parametric function called the weighted generalised mean.

hα(Ai) = (
N∑

j

wj .rij)
1
α (for i = 1, 2, 3, ...,M, and j = 1, 2, 3, ..., N) (14)



CRank: A Novel Framework for Ranking Semantic Web Ontologies 115

where, Ai is an alternative, wj the weight of criterion Cj and rij the performance
of the alternative Ai to a criterion Cj . α(−∞ < α < +∞) is a non-zero real
number, it is the parameter of the aggregation operator h. The score of the
alternative Ai corresponds to the mean or average of hα [18] and it is calculated
as in Eq. 15.

hα =

∫ b

a
hαdα

b − a
(15)

where, hα is the mean value of hα, a and b the beginning and end of an arbitrary
interval [a, b] ⊆ [−∞,+∞]. The trapezoidal rule is used to approximate the value
of

∫ b

a
hαdα as in Eq. 16.

∫ b

a

hαdα ≈ Δα.[
ha + hb

2
+

u−1∑

i=1

hαi
] (16)

where, u is an arbitrary number of the subinterval of [a, b], a + b = 0,Δα = b−a
u

and αi = a + i.Δα. Equation 16 can be further written as in Eq. 17 [18].

∫ b

a

hαdα ≈ b − a

2u
(ha +2ha+Δα +2ha+2Δα + ....+2hb−2Δα +2hb−Δα +hb) (17)

By substituting Eq. 17 into Eq. 15 one obtains a new representation of hα as
in Eq. 18.

hα =
1
2u

(ha + 2ha+Δα + 2ha+2Δα + .... + 2hb−2Δα + 2hb−Δα + hb) (18)

Ranking of Alternatives. Alternatives are ranked based on their respective
mean values calculated with Eq. 18. The last step of the WLCRT algorithm is
the sensitivity analysis.

Sensitivity Analysis. The sensitivity analysis of a decision-making problem
consists in determining the set of criteria for which the smallest change of their
weights will impacts the ranking order of alternatives [22]. As the sum of criteria
weights is always equal to 1, a change to one criterion weight will lead to a
change of other criteria weights. Let?s assume the weight wi is changed into w

′
i,

the change of another criterion weight wk into w
′
k is expressed as in Eq. (19).

w
′
k =

1 − w
′
i

1 − wi
.wk (19)

3.5 Ontology Parser

To parse and process ontologies in the CRank framework, a semantic web library,
namely, Jena API is used. It is an open source library for developing Semantic



116 J. V. Fonou-Dombeu and S. Viriri

Web applications through extraction and manipulation of RDF graphs of ontolo-
gies. The Jena API library includes interfaces for RDF and OWL ontologies, a
SPARQL engine and RDF parsers. In Jena, a RDF graph is represented by the
Model interface which represents the set of statements of RDF ontology. The
Model interface also provides functions for retrieving and saving RDF graphs
from and to files as well as functions for creating resources, properties and liter-
als, and the statements for linking them [23].

4 Experiments

This section presents and discusses the experimental results of the study. The
dataset, the computer and programming environments as well as the calculated
complexity metrics of ontologies in the dataset are presented. Thereafter, the
ranking results of the CRank framework applied on the ontologies in the dataset
is presented and discussed.

4.1 Dataset

The dataset in this study is constituted of 100 biomedical ontologies downloaded
from the BioPortal Repository [24]. Due to space constraint, the list of these
ontologies could not be provided in this paper. However, the 100 ontologies are
encoded Oi, 1 ≤ i ≤ 100, to ease the reference to them in the discussions. The
ontologies in the dataset are the semantic modelling of different branches of the
biomedical domain. The computer and software environments that was used to
conduct the experiments in this study is presented next.

4.2 Computer and Software Environments

The experiments were carried out on a computer with the following characteris-
tics: 64-bit Genuine Intel (R) Celeron (R) CPU 847, Windows 8 release preview,
2 GB RAM and 300 GB hard drive. The implementation of the CRank frame-
work was done in Java Jena API library [23] configured in Eclipse Integrated
Development Environment (IDE) Version 4.2.

4.3 Experimental Results

Amongst the 100 ontologies in the dataset, only the codes of 70 were success-
fully parsed in Jena API to enable the calculation of their complexity metrics.
Table 1 presents the ranking results of the 70 ontologies that were successfully
processed by the parser of the CRank framework. The complexity metrics (Eqs. 1
to 7) of the ontologies were computed in the pre-processing phase of the CRank
framework. Thereafter, WLCRT decision making algorithm was applied to the
complexity metrics of the ontologies along with their indexes (Oi, 1 ≤ i ≤ 100)
in the ranking phase of the CRank framework to rank the ontologies. In Table 1
the ranking results is provided in increasing order from 1 to 70. Due to the



CRank: A Novel Framework for Ranking Semantic Web Ontologies 117

Table 1. Ranking results of the CRank framework

Index Rank Index Rank Index Rank Index Rank Index Rank Index Rank

O44 1 O48 13 O45 25 O76 37 O56 49 O57 61

O66 2 O53 14 O17 26 O42 38 O21 50 O16 62

O97 3 O91 15 O2 27 O75 39 O26 51 O24 63

O34 4 O80 16 O73 28 O60 40 O95 52 O11 64

O88 5 O28 17 O86 29 O50 41 O100 53 O85 65

O96 6 O69 18 O71 30 O18 42 O54 54 O78 66

O43 7 O63 19 O51 31 O98 43 O36 55 O70 67

O94 8 O55 20 O9 32 O1 44 O82 56 O14 68

O99 9 O3 21 O84 33 O49 45 O8 57 O29 69

O30 10 O40 22 O90 34 O12 46 O72 58 O4 70

O13 11 O89 23 O35 35 O20 47 O61 59

O5 12 O32 24 O7 36 O33 48 O46 60

large number of ontologies involved in the ranking, patterns of information are
looked at in three regions in the ranking results, namely, the first, middle and
last 10 positions; these are the ranges of positions: 1 to 10, 31 to 40 and 61 to 70.
Tables 2, 3 and 4 presents the complexity metrics of the ontologies in the three
ranges including the ANP , APL, TIP and SOV .

In [25], it is demonstrated that ontologies with high values for the complexity
metrics including: ANP , APL and TIP are highly complex. The analysis of
the complexity metrics of the first 10 ontologies in the CRank ranking Tables 1
reveals that they have lower values for the ANP , APL and TIP Table 2. This
is an indication that the first 10 ontologies in the CRank ranking results are less

Table 2. Complexity metrics of the first 10 ontologies in the CRank ranking results

Index Ranges of complexity metrics of ontologies in the dataset

[1 ≤ ANP ≤ 133] [1 ≤ APL ≤ 6] [1 ≤ TIP ≤ 58741] [150 ≤ SOV ≤ 112377]

O44 4 1 2 7510

O66 4 1 715 582

O97 3 1 2 990

O34 1 1 5 796

O88 5 1 1 284

O96 5 1 20 528

O43 3 1 2507 4105

O94 3 1 98 937

O99 3 1 257 638

O30 3 1 1048 3719



118 J. V. Fonou-Dombeu and S. Viriri

Table 3. Complexity metrics of the last 10 ontologies in the CRank ranking results

Index Ranges of complexity metrics of ontologies in the dataset

[1 ≤ ANP ≤ 133] [1 ≤ APL ≤ 6] [1 ≤ TIP ≤ 58741] [150 ≤ SOV ≤ 112377]

O57 1 1 907 211

O16 71 3 30562 42382

O24 45 5 5176 4267

O11 44 5 2919 31554

O85 50 5 39915 11482

O78 13 2 781 4151

O70 7 2 455 4530

O14 49 6 1533 2465

O29 75 6 2644 4502

O4 75 6 122 20279

Table 4. Complexity metrics for the middle 10 ontologies in the CRank ranking results

Index Ranges of complexity metrics of ontologies in the dataset

[1 ≤ ANP ≤ 133] [1 ≤ APL ≤ 6] [1 ≤ TIP ≤ 58741] [150 ≤ SOV ≤ 112377]

O51 9 2 248 210

O9 9 2 610 3602

O84 37 1 249 298

O90 10 2 47 240

O35 11 1 1368 4235

O7 31 2 899 5952

O76 9 1 1340 2333

O42 12 2 359 1056

O75 9 2 332 1239

O60 19 5 635 1619

complex compared to the rest of the ontologies in the dataset. This finding is
supported in [25] where it is shown that these ontologies have low number of
classes and properties.

The last 10 ontologies in the CRank ranking have higher values for the com-
plexity metrics: ANP , APL and TIP Table 3 compared to the first 10 ontologies
Table 2. This indicates their high level of complexity [9,25]. This finding is also
supported by the high size of vocabulary (SOV) of these ontologies (rightmost
column of Table 3).

Table 4 shows that the middle 10 ontologies in the CRank ranking have higher
values for the complexity metrics including ANP , APL and TIP , than those
in the first 10 positions Table 2; furthermore, these metrics are lower than that
of the ontologies in the last 10 positions Table 3. This finding suggests that
the CRank framework has successfully ranked the ontologies in the dataset in
increasing order on their level or degree of complexity.



CRank: A Novel Framework for Ranking Semantic Web Ontologies 119

Compared to other ontology ranking approaches, Alani et al. [4] suggested
that a multi-dimensional approach in which all possible features of an ontology
is considered should be adopted to address the task of ranking ontologies on the
semantic web. This multi-dimensional ranking approach would give the users
or ontology engineers the freedom to control all ranking criteria as required [4].
Therefore, the CRank framework is a complement to existing ontology ranking
methods in that it can be applied to further rank the output ontologies from
these methods based on their degree or level of complexity, thereby, provid-
ing additional help to the users or ontology engineers in the choice of suitable
ontologies for reuse.

5 Conclusion

This study proposed a novel framework for ranking ontologies on the semantic
web. The framework namely, CRank offers two phases for ranking semantic web
ontologies. In its pre-processing phase, the CRank framework parses each ontol-
ogy in the dataset and computes its complexity metrics. The resulting complexity
metrics of ontologies are submitted as input to the ranking phase of the CRank
framework. In the ranking phase, the WLCRT decision-making is applied on the
complexity metrics of the ontologies to rank them. The CRank framework was
successfully applied to parse and rank 70 ontologies of the biomedical domain
in increasing order on the aggregation of their complexity metrics. The ranking
results constitute important guidelines for the selection and reuse of biomed-
ical ontologies in the dataset. The CRank framework is suitable for ranking
ontologies from existing ontology libraries. Furthermore, the CRank framework
can also be used as a complement to existing ontology ranking methods to fur-
ther rank the outputs ontologies from these methods to provide additional help
to users or ontology engineers in the choice of suitable ontologies for reuse. In
future, the authors intend to investigate the use of Machine Learning algorithms
in the ranking phase of the CRank framework to classify ontologies based on
their complexity metrics.

References

1. Berners-lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Am., 29–37 (2001)
2. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge

sharing. Int. J. Hum.-Comput. Stud. 43, 907–928 (1995)
3. Naskar, D., Dutta, B.: Ontology libraries: a study from ontofier and ontologist

perspectives. In: 19th International Symposium on Electronic Theses and Disser-
tations, Lille, France, pp. 1–12 (2016)

4. Alani, H., Brewster, C., Shadbolt, N.: Ranking ontologies with AKTiveRank. In:
5th International Conference on the Semantic Web, Athens, Greece, pp. 1–15
(2006)

5. Park, J., Ohb, S., Ahn, J.: Ontology selection ranking model for knowledge reuse.
Expert Syst. Appl. 38, 5133–5144 (2011)



120 J. V. Fonou-Dombeu and S. Viriri

6. Sridevi, K., Umarani, R.: Ontology ranking algorithms on semantic web: a review.
Int. J. Adv. Res. Comput. Commun. Eng. 2, 3471–3476 (2013)

7. Butt, A.S., Haller, A., Xie, L.: DWRank: learning concept ranking for ontology
search. Semant. Web 7, 447–461 (2016)

8. Yu, W., Cao, J., Chen, J.: A novel approach for ranking ontologies on the semantic
web. In: 1st International Symposium on Pervasive Computing and Applications,
Urumchi, Xinjiang, China, pp. 608–612 (2006)

9. Zhang, H., Li, Y.F., Tan, H.B.K.: Measuring design complexity of semantic web
ontologies. J. Syst. Softw. 83, 803–814 (2010)

10. Yu, W., Chen, J.: Ontology ranking for the semantic web. In: 3rd International
Symposium on Intelligent Information Technology Application, NanChang, China,
pp. 573–574 (2009)

11. Jones, M., Alani, H.: Content-based ontology ranking. In: 9th International Protg
Conference, Stanford, CA, USA, pp. 1–4 (2006)

12. Subhashini, R., Akilandeswari, J., Haris, S.: An integrated ontology ranking
method for enhancing knowledge reuse. Int. J. Eng. Technol. (IJET) 6, 1424–1431
(2014)

13. Yang, Z., Zhang, D., Ye, C.: Evaluation metrics for ontology complexity and evo-
lution analysis. In: IEEE International Conference on e-Business Engineering, UK,
pp. 162–170 (2006)

14. Manso, M.E., Genero, M., Piattini, M.: No-redundant metrics for UML class dia-
gram structural complexity. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS,
vol. 2681, pp. 127–142. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-45017-3 11

15. Tartir, S., Arpinar, B., Moore, M., Sheth, A., Aleman-Meza, B.: OntoQA: metric-
based ontology quality analysis. In: IEEE Workshop on Knowledge Acquisition
from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge
Sources, USA, pp. 45–53 (2005)

16. Triantaphyllou, E., Shu, B., Nieto Sanchez, S., Ray, T.: Multi-criteria decision
making: an operations research approach. In: Webster, J.G. (ed) Encyclopedia
of Electrical and Electronics Engineering, vol. 15, pp. 175–186. Wiley, New York
(1998)

17. Chen, S., Hwang, C.: Fuzzy Multiple Attribute Decision Making Methods and
Applications. Lecture Notes in Economics and Mathematical Systems, vol. 375.
Springer, Heidelberg (1992)

18. Chou, J.R.: A weighted linear combination ranking technique for multi-criteria
decision analysis. S. Afr. J. Econ. Manage. Sci. Spec. 16, 28–41 (2013)

19. Hauke, J., Kossowski, T.: Comparison of values of Pearsonś and Spearmanś corre-
lation coefficients on the same sets of data. Quaestiones Geographicae 30, 87–93
(2011)

20. Pentland, A., Moghaddam, B., Starner, T.: A view-based and modular eigenspaces
for face recognition. In: IEEE Internation Conference on Computer Vision and
Pattern Recognition, pp. 84–91 (1994)

21. Smilikova, R., Wachiowak, M.P.: Aggregation operator for selection problems. J.
Fuzzy Sets Syst. Spec. Issue Soft Decis. Anal. 131, 23–34 (2002)

22. Wallace, S.W.: Decision making under uncertainty: is sensitivity analysis of any
use? Oper. Res. 48, 20–25 (2000)

23. McBride, B.J.: Implementing the RDF model and syntax. Specification. In: 2nd
International Workshop on the Semantic Web - SemWeb 2001, Hong Kong, China,
pp. 1–6 (2001)

https://doi.org/10.1007/3-540-45017-3_11
https://doi.org/10.1007/3-540-45017-3_11


CRank: A Novel Framework for Ranking Semantic Web Ontologies 121

24. Noy, N.F., et al.: BioPortal: ontologies and integrated data resources at the click
of a mouse. In: International Conference on Biomedical Ontology, New York, USA,
p. 197 (2009)

25. Kazadi, Y.K., Fonou-Dombeu, J.V.: Analysis of advanced complexity metrics of
biomedical ontologies in the bioportal repository. Int. J. Biosci. Biochem. Bioinf.
7, 20–32 (2017)



Data Fusion, Classification and Learning



A New Way of Handling Missing Data
in Multi-source Classification
Based on Adaptive Imputation

Ikram Abdelkhalek1(B), Afef Ben Brahim2, and Nadia Essousi1

1 Institut Supérieur de Gestion de Tunis, LARODEC, Université de Tunis,
Tunis, Tunisia

ikram.abdelkhalek28@gmail.com
2 Tunis Business School, LARODEC, Université de Tunis, Tunis, Tunisia

Abstract. Data fusion is an interesting methodology for improving the
classification performance. It consists in combining data acquired from
multiple sources for more informative decision and better decision mak-
ing. This latter is a challenging task due to many issues. The main of
these issues arises from the data to be fused. Missing data presents one of
the issues, their presence affects the performance of the algorithms and
results on a misleading prediction. Appropriately handling missing data
is crucial for accurate inference. Several approaches have been proposed
in the literature to deal with multi-source classification problems, how-
ever they neglect the presence of missingness in the data and assume that
the data are complete which is not the case in real life. Other approaches
use directly simple data imputation before the learning process, which
is not always enough to obtain a reliable learning and prediction model.
In this paper, we propose a new approach to deal with missing data in
multi-source classification problem. In our approach, we avoid the direct
imputation when the concerned feature is not important, but we also
adjust the predictions fusion process based on the missing data rate in
each data source and in the new instance to classify. This approach is
used with Random Forests as an ensemble classifier, and it has shown
improved classification performance compared to existing approaches.

Keywords: Data fusion · Missing data · Classification
Random forests

1 Introduction

In several disciplines, information underlying the same problem can be acquired
from different sources. For intelligent decision making, taking advantage of all
the data available is important to consolidate different concepts. Data fusion is
well suited to solve this problem as it combines data acquired from multiple het-
erogenous sources and leads therefore for a better decision making [1]. There are
mainly three types of fusion strategies [2], namely data fusion (low level fusion),
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 125–136, 2018.
https://doi.org/10.1007/978-3-030-00856-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_8&domain=pdf


126 I. Abdelkhalek et al.

feature fusion (intermediate level fusion), and decision fusion (high level fusion).
In the low level raw data provided from multiple sources are combined into new
raw data that is expected to be more synthetic and informative. However, this
level suffers from the alignment problem since the data are presented in differ-
ent way and it is difficult to provide a general frame. Feature fusion requires
the extraction and combination of different features to remove redundant and
irrelevant ones. The disadvantage here, is that this reduction may affect the per-
formance of the learning algorithm. Decision fusion uses a set of classifiers and
combines their outputs by various methods for better and unbiased result. Sev-
eral methods of decision fusion exist like Majority voting [3], weighted majority
voting [4] and Dempster-Shafer evidence theory [5], etc. In our work, we are
interested in the decision fusion level since it the most appropriate for multi-
source data merging, it can deal with multiple learning algorithm and the most
important multiple combination techniques. It is also advantageous because of
its feasibility and its low computational complexity.

Significant research efforts for robust fusion of information and for making
combined decisions from these sources are being pursued at a rapid pace. Ensem-
ble methods have been heavily applied for this purpose in many areas and they
have proven their effectiveness. In [6] a methodology is developed for combining
multi-season Landsat and ancillary data using the Random Forests algorithm.
It has shown improved accuracy result compared with state of the art. Authors
in [7] proposed a classifier fusion approach using two data sources.

Most of these works have been primarily focused on the cases where the
data is complete across all the different sources and can not effectively integrate
sources in the presence of missing data. However, the multitude and diversity
of the sources of acquisition gives rise to a large amount of data of different
nature, characterized by incompleteness, incoherence, noise, etc. This makes the
data fusion a challenging task. Missing data presents one of the challenges, their
presence affects the performance of the algorithm and leads to a misleading
prediction. Thus, it is important to appropriately handling them [8].

In this paper, we propose a new fusion method for incomplete data based on
adaptive imputation. This method is able to deal with missing data in a new way
through an adaptive imputation and its main aim is to improve the prediction
performance in multi-source classification. The object to classify is committed
to an imputation only if the missing values concern features that are relevant.
We applied the weighted majority voting as a fusion rule. Since there will be
still some bias associated with the filling of the missing data no matter what
imputation method is chosen, we propose a new weight assignment formula in
the decision fusion process which takes into account if an imputation process
has been performed during the prediction phase or not. Also, it consider the
percentage of missing values in each data source.

The reminder of the paper is organized as follows. Section 2 presents the
related work of missing data imputation methods in multi-source classification.
We describe our proposed approach in Sect. 3. In Sect. 4, we conduct an exper-



Fusion Method 127

imental study on two data sets and with comparison to existing approaches.
Section 5 concludes this paper.

2 Related Work

Process of filling in the missing data is an intimidating task, which has almost
always to be confronted in data mining. There are several approaches that can
be used to fill in the missing data, depending on the type and amount of missing
data.

One of the approaches to deal with missing data is to discard the instances
which contain missing values [9]. This is the case deletion method and it is
the easiest solution to deal with missing data, however, the problem here is that
important information may be lost. This method is useful for datasets containing
small amount of missing values, Acuna et al. [10] demonstrated that in this case
there is no significant difference between case deletion and other imputation
approaches. The other approach is feature selection, it concerns the deletion of
non relevant feature that contain missing values. A feature is considered to be
irrelevant if it correlates poorly with the class attribute. The third approach
which is the frequently used to treat missing data is the imputation of missing
values. The method chosen depends on the type of variable and the amount of
missing data, i.e. for missing numerical data, mean or median are used instead
of mode. Those methods are detailed in [10].

For missing data in multi-source problem, Yuan et al. propose an incom-
plete Multi-Source Feature learning method in Alzheimer’s patients classifica-
tion problem [11]. In their approach, they first divide the samples to many
blocks according to the different combinations of available data sources, and
learn shared sets of features based on a multi-task problem. After that, they
combine the results from all data blocks to obtain a consistent feature learning
result without necessarily estimating before the missing values.

In [12], authors propose the Heterogeneous boosting (HBOOST), an exten-
sion of AdaBoost algorithm that exploits complete and partial information from
multiple data sources. To ensure improved accuracy, the HBOOST method
boosts the decisions from the individual sources using a modification to
AdaBoost. This modification concerns the reweighting, where the importance
of an object present in only one source out of n sources will be increased.

The described methods focus on dealing with missing data, but do not take
into account whether an imputation process has been applied or not during the
multi-source learning model building, nor during the classification of new data.

In our proposed approach, we avoid the direct imputation when the feature
is not important, but we also adjust the prediction process based on the missing
data rate in each source. We use both the feature selection and the imputation
method to benefit from the advantages of each one according to our needs.



128 I. Abdelkhalek et al.

3 Our Proposed Approach

To ensure the improved classification accuracy when combining incomplete data
from multiple sources, we propose to deal with missing values by adaptive impu-
tation based on feature selection. It is followed by a learning process where a
classification ensemble model is built from different data sources. Then, a fusion
process is done where the ensemble decisions are combined. In the latter step,
the predictions are adjusted by a coefficient calculated based on the missingness
rate in each data source and in the new instance to classify. The proposed app-
roach is named Fusion Method based on Adaptive Imputation (FMAI) and it
consists of three phases namely: the learning phase, the prediction phase, and
the fusion phase. These phases are detailed in what follows.

3.1 Learning Phase

The aim of the first phase is to build the models from the different sources,
where a source represents a dataset, to be used in the next phase to classify
an object. Before the building process step FMAI computes the percentage of
missing data in the sources which will be used further in the fusion phase since
it has an important impact on the reliability assigned to that source.

Then, an imputation process is performed on different datasets using the
rough method. This method works one of two ways. If the variable being imputed
is numeric, it is roughly imputed by its median value. If it is categorical, then
the most common class of the variable that is being imputed is selected as
the imputed value. Computationally, this method is not expensive, it is fast.
In addition, it gives good performance [13]. Thereafter, the building process is
performed using a classification algorithm able to learn from multiple sources.
We choose Random Forests (RF) algorithm as it is known to be efficient for input
data with heterogeneous types, and is able to solve feature selection problem on
which we are also interested [6], thus we used RF for classification but also for
identifying relevant features.

Random Forests
RF is a popular decision tree ensemble famous for its robustness and good per-
formance in relation with other algorithms.

As a decision tree ensemble, RF needs to create several different decision
trees. In order to do so, each tree is built iteratively based on a bootstrap sample
from the original training data. Then to determine the split at each node, a
random selection of features is applied. To classify a new instance classifiers
outputs are combined using the majority vote [7].

We apply the RF algorithm for different sources and based on the model built,
the relevant features are ranked in a vector. We can easily remark that a feature
selection occurs into the random forests algorithm, by selecting features which
improve the most the predictive performance to put them in the tree nodes. In
[14], authors discussed the use of random forests in feature selection. Relevant
features play a main role for achieving an accurate classification. Therefore,
selecting them is a crucial step in this phase since they are the pieces on which



Fusion Method 129

we will rely on in the prediction phase. In order to find relevant features, we get
an essential need to quantify the feature importance. RF offer this possibility.
The most used score of importance is the increasing in mean of the error of a
tree, misclassification rate for classification problems. With RF to calculate the
importance of a specific feature, the observed values of this feature are randomly
permuted in the (Out Of Bag) OOB sample (instances that are not included in
the bootstrap sample used to build the tree t). Such method for measuring
feature importance is called random forests permutation importance and it is
described in [14].

All those steps are performed for each data source separately. Algorithm (1)
represents the different steps of this phase.

Algorithm 1. Model building
1: Input: sourcei: Dataset from sourcei
2: Output: PM: Percent of missing values in the dataset, Modeli : Built model, IF:

vector of important features
3: Begin
4: PM = Compute MV(sourcei) Calculate the percent of missing value in

the dataset
5: Complete data =Imput(sourcei) Filling in the missing value with the rough

method
6: Model = Random Forest(Attribute class, learning set =sourcei, Nbtree)
7: IF = Importance(Model)
8: End

3.2 Prediction Phase

The next phase consists in classifying a new instance. It takes as input the infor-
mation about the new instance to classify and the outputs of the previous phase
and gives as result the initial class according to each source through an adap-
tive imputation. Three possible cases occurs: (i) the new object contains missing
values for attributes that are important, then an imputation is performed to
allow the prediction of the class, (ii) the missing values concern also features
that are not important, in this case the prediction is performed based only on
the other available features. Note here that we avoid the imputation of irrele-
vant features to reduce the risk of mis-prediction because an irrelevant feature
with approximative estimation of its value has a higher risk of giving misleading
prediction later in the classification phase. Another reason for not considering
irrelevant features is to reduce the complexity and the execution time when it is
about high dimensional data. (iii) There are no missing values, a classification is
performed directly. Since we deal with multi source classification, the instance
to classify has multiple source of information. Each information source is repre-
sented by a vector Vi which contains the information about this instance from
sourcei, where i = 1..n and n denotes the number of data sources. Algorithm (2)
provides a description of this procedure.



130 I. Abdelkhalek et al.

Algorithm 2. Initial class prediction process
1: Input: Modeli: Built model from sourcei, Vi: the information about

the instance to classify from sourcei, IFi: vector of important features of
sourcei;

2: Output: Predicted initial class C
3: Tab = Evaluate(Vi);
4: If(Tab is null) The matrix does not contain missing features

C = Predict(Modeli,Vi)
Else If(Tab ∈ IFi) There is missing important features in the matrix
NewVi = Impute(Vi)
C = Predict(Modeli,NewVi)
Else There is missing features but they are not important
NewVi = Eliminate(Vi) Discard missing features
C = Predict(Modeli,Vi) Prediction performed based only on available
features

3.3 Fusion Phase

In the last phase, the final class is obtained by combining the different initial
classes based on a weighted majority voting. It is obvious from the literature
that the imputation gives only approximative estimation of missing values no
matter what imputation method is chosen and researchers are still working on
improving the imputation methods. For this reason in our proposed method, the
assigned weight checks if an imputation has been performed during the prediction
phase or not. It is important to check the completeness of the information about
the instance to be classified since it influences the prediction. An instance with
complete information has more chance to be classified correctly since there will
be still some bias associated with filling of the missing values. Also, we take
into account the amount of missing data in each source since this latter has an
impact on the performance of the classifier. Thus, the proposed weight for each
model by our method is computed as follows:

Wi =
Accuracy(Modeli)

βi + ε

where βi is the sum of PMi (the percentage of the missing values in sourcei) and
pm (the percentage of missing values in the new instance) and ε is a value very
close to zero (e.g.: 0,001) used to avoid the division by zero error in case there
are no missing values in all the data sources. Figure 1 presents the flowchart of
our proposed approach.

4 Experimental Study

In this section we report the experimental setup and results of our fusion method
proposed in Sect. 3. This method is applied to two data sets described in Sect. 4.1.
We use the Holdout protocol for our experiments, which splits the whole data



Fusion Method 131

….
S1 S2 Sn

Yes

Learning phase

Prediction phase

Object to 
classify

Computation of  the percentage of 
missing values

Missing data
imputation

Model building Selection of the important
features

Fusion phase

Missing important 
features

No missing
features

Classification

Classification with
available feature
value

Imputation wih
rough mehtod

Weighted majority voting

….Weighted
class from s1

Weighted
class from s2

Weighted
class from sn

Final class

No

Fusion Method for Incomplete data based on Adaptive Imputation (FMAI)

Fig. 1. Flowchart of the proposed method

set into a training and a test set. Also, we evaluate our method in terms of accu-
racy, Specificity, F-measure, Recall and precision which are the main evaluation
measures.

4.1 Datasets

In our frame, FMAI considers heterogenous sources of data for the same prob-
lem. The heterogeneity concerns the source of acquisition. Hence it is tested on
two datasets that contain data acquired from different information sources for
the same problem. These datasets are available at the UCI Machine Learning
Repository.

The first dataset allows the diagnosis of the breast cancer disease. The data
are acquired from three heterogenous sources where the second and third contain
missing values. The first source represents the cell nucleus characteristics that
were created from digitized image of a fine needle aspiration of a breast mass.
This dataset consists of 569 instances and 32 features. Each property was ranged
between 0 and 1 (0 if it is malignant and 1 if it is benign). The second source
represents the clinical cases reported for each patient exhibiting breast cancer.



132 I. Abdelkhalek et al.

The features are in number of 34 and represent the properties of the patients.
There are 198 cases of patients in this dataset involving class B if the breast
cancer is benign or M if it is malignant.

Concerning the last source, the data are acquired from digital mammography.
It is the most effective method for breast cancer screening available today. This
dataset is used to check the severity (benign or malignant) of a mammographic
mass lesion from BI-RADS attributes and the patient’s age.

We consider additionally the Heart disease dataset that consists of four
datasets concerning heart disease diagnosis. All of them contain missing values
and each one has the same instance properties, however with different number of
objects. Since the data are collected from four different locations namely Cleve-
land, Hungarian, Switzerland and Long Beach VA. The number of features in
each dataset is 76 and the number of instances is 303, 294, 123, 200 respectively
for each location.

4.2 Experimental Results

In order to evaluate the performance of our approach, we performed several
experiments with regards to the collected data sets. In the first one, we stud-
ied the robustness of our method when the amount of missing data in both the
learning and test set increase gradually. Table 1, present the results obtained
when increasing the number of missing values in the training set for each source
(*10) at each iteration. With an increase of the percent of missing data in the
training set. The given results in Table 1 show that the performance of our app-
roach almost has not changed throughout the iterations for both datasets. The
method gives good learning results in terms of accuracy, F-measure, Recall and
precision. A slight change has been performed in the specificity measure for
the breast cancer dataset, since it has decreased. This means that the features
of the observations having negative class in this data sources were incorrectly
estimated, since the specificity measures how effectively a classifier identifies neg-
ative labels. However, the increase of the missing values in the test set provides
different impact on the performance of the method. In Table 2 we can notice that
the accuracy decreased on a small scale at each iteration until it becomes stable
from the 5th iteration to 0.79 for breast cancer dataset and 0.81 for heart disease
datasets. This decrease is quite normal because with a large amount of missing
data in the sources of the object to be classified the performance of the model
can be affected. However, our method can be considered robust to missing data
because the decrease of the accuracy remains in a small scale in both datasets.
Mainly, the results prove the robustness of our method facing the increase in
the amount of missing values in both the training and test set. Consequently, it
proves the reliability of our method independently of the amount of missingness
in the data.

Our algorithm FMAI proposes two contributions: first a new adaptive impu-
tation of missing data, and second an adjustment of the fusion’ results based
on the data missingness rate. Thus, to prove the effectiveness of our algorithm,
we compared it to different settings where we first vary the fusion method, and



Fusion Method 133

Table 1. The impact of missing values on the FMAI performance

Percentage of missing value
in training set

Accuracy F-measure Specificity Recall Precision

Results given by the Breast cancer datasets

20% 0,86 0,81 0,73 0,88 0,76

30% 0,86 0,80 0,69 0,84 0,78

40% 0,85 0,80 0,84 0,83 0,78

50% 0,84 0,79 0,76 0,83 0,76

60% 0,84 0,78 0,67 0,82 0,75

70% 0,83 0,78 0,63 0,81 0,72

Results given by the Heart disease datasets

20% 0,87 0,80 0,72 0,88 0,74

30% 0,86 0,80 0,79 0,82 0,77

40% 0,86 0,80 0,85 0,82 0,77

50% 0,85 0,79 0,76 0,83 0,76

60% 0,85 0,78 0,77 0,82 0,75

70% 0,84 0,78 0,73 0,81 0,72

Table 2. The impact of missing value in the test set on the performance of FMAI

Percentage of missing value
in test set

Accuracy F-measure Specificity Recall Precision

Results given by the Breast cancer datasets

20% 0,84 0,81 0,74 0,89 0,75

30% 0,84 0,80 0,74 0,82 0,77

40% 0,84 0,82 0,72 0,84 0,79

50% 0,79 0,76 0,72 0,81 0,74

60% 0,79 0,78 0,71 0,82 0,75

70% 0,79 0,78 0,71 0,81 0,72

Results given by the Heart disease datasets

20% 0,85 0,81 0,74 0,89 0,75

30% 0,87 0,80 0,74 0,82 0,77

40% 0,86 0,80 0,74 0,82 0,77

50% 0,82 0,77 0,72 0,81 0,74

60% 0,81 0,78 0,73 0,82 0,75

70% 0,81 0,77 0,73 0,80 0,71



134 I. Abdelkhalek et al.

then vary the imputation techniques. For all these settings, RF is used as an
ensemble classifier.

First, Table 3 shows the performance of the fusion method in FMAI compared
to the simple majority vote rule. For FMAI, the number of data sources is not
a constraint. However, it is obvious from the literature that the simple majority
voting rule can be used only under the condition that the number of classifiers is
odd. For this reason, to compare with our approach, we only tested on the breast
cancer datasets since this latter consists of three sources while the heart disease
consists of four datasets. The obtained results in Table 3 show the effectiveness of
FMAI in improving the classification results, and another advantage concerning
our method is that it can deal with any number of data sources.

Then, to focus on evaluating the performance of the adaptive imputation
proposed with our method, we compared FMAI to the classic setting where a
simple imputation process is used to deal with missing data. For comparisons, we
tested two different imputation methods which are the mean and the K-Nearest
Neighbors (KNN) imputation [15]. The results are given in Table 4 and they show
that our approach gives promising results in terms of all evaluation measures
for both datasets. It also outperforms other settings where simple imputation
methods are applied. Based on Tables 3 and 4, we can also deduce that for breast
dataset, the fusion technique in FMAI outperforms the simple majority vote
independently of the applied imputation method. This explains the advantage
of adjusting the predictions’ fusion process based on the missing data rate in
each data source and in the new instance to classify.

Table 3. Classification results for Breast cancer datasets with FMAI and Simple major-
ity voting

Accuracy F-measure Specificity Recall Precision

FMAI 0,86 0,80 0,77 0,88 0,74

Simple majority voting 0,73 0,72 0,66 0,71 0,76

To further evaluate our proposed approach, Table 5 reports it classifica-
tion results compared with The Heterogenous boosting (HBOOST) method [12]
described in Sect. 2, since the two methods address the same problem of clas-
sifying multi-source data with missing information. Let’s remind that FMAI is
based on RF ensemble classifier while HBOOST is based on AdaBoost. Given
the results in Table 5 the proposed approach FMAI outperformed the HBOOST
method with higher accuracy, specificity, precision, recall and F-measure scores.
Furthermore, we can observe that the HBOOST based method results did not
exceed a specificity of 0.69, a recall of 0.72 and an accuracy of 0.77. Thus, our
goal of improving the classification quality is achieved using FMAI and RF.



Fusion Method 135

Table 4. Classification results using FMAI imputation and simple imputation tech-
niques

Accuracy F-measure specificity Recall Precision

Results given by the Breast cancer datasets

FMAI 0,86 0,83 0,77 0,88 0,77

Method using Mean
imputation

0,74 0,74 0,68 0,73 0,78

Method using KNN
imputation

0,75 0,75 0,69 0,74 0,79

Results given by the Heart disease datasets

FMAI 0,86 0,84 0,78 0,88 0,78

Method using Mean
imputation

0,77 0,76 0,69 0,74 0,80

Method using KNN
imputation

0,74 0,74 0,68 0,74 0,78

Table 5. Comparison of the different measures for FMAI and the HBOOST

Method Accuracy F-measure Specificity Recall Precision

Breast cancer datasets

FMAI 0,86 0,82 0,73 0,88 0,76

HBOOST 0.71 0.78 0.69 0,72 0,77

Heart disease datasets

FMAI 0,84 0,80 0,71 0,88 0,74

HBOOST 0.76 0.80 0.66 0,74 0,79

5 Conclusion

We propose a new fusion method for incomplete data, FMAI, based on adap-
tive imputation. The objective is to take benefits of the information acquired
from multiple sources and combine them for improved prediction. Our proposed
approach shows encouraging results both for improving the classification perfor-
mance and for dealing with missing data in multi-source classification. Exper-
iments on two datasets show that our proposed approach FMAI improves the
classification quality in terms of accuracy, specificity, precision, recall and F-
measure compared to different settings using existing imputation and fusion
methods. Experiments show also the robustness of our proposed method regard-
ing the missing data rate. In the future work, the method can be extended by
studying conflicting and noisy data in order to enhance learning results. Another
direction is to adapt it to scale in the case of big dimensionality.



136 I. Abdelkhalek et al.

References

1. Hall, D.L., Llinas, J.: An introduction to multisensor data fusion. Proc. IEEE
85(1), 6–23 (1997)

2. Dasarathy, B.V.: Decision Fusion. IEEE Computer Society Press, Los Alamitos
(1994)

3. Kittler, J., Hatef, M., Duin, R.P., Matas, J.: On combining classifiers. IEEE Trans.
Pattern Anal. Mach. Intell. 20(3), 226–239 (1998)

4. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput.
108(2), 212–261 (1994)

5. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

6. Ghosh, A., Sharma, R., Joshi, P.K.: Random forest classification of urban landscape
using Landsat archive and ancillary data: combining seasonal maps with decision
level fusion. Appl. Geogr. 48, 31–41 (2014)

7. Wang, Y., Dunham, M.H., Waddle, J.A., Mcgee, M.: Classifier fusion for poorly-
differentiated tumor classification using both messenger RNA and microRNA
expression profiles. In: Proceedings of the 2006 Computational Systems Bioinfor-
matics Conference (CSB 2006), Stanford, California (2006)

8. Lahat, D., Adali, T., Jutien, C.: Multimodal data fusion: an overview of methods,
challenges, and prospects. Proc. IEEE 103(9), 1449–1477 (2015)

9. Momeni, A., Pincus, M., Libien, J.: Imputation and missing data. Introduction to
Statistical Methods in Pathology, pp. 185–200. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-60543-2 8

10. Acuna, E., Rodriguez, C.: The treatment of missing values and its effect on classi-
fier accuracy. In: Banks, D., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classifica-
tion, Clustering, and Data Mining Applications, pp. 639–647. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-642-17103-1 60

11. Yuan, L., Wang, Y., Thompson, P., Narayan, V., Ye, J.: Multi-source feature learn-
ing for joint analysis of incomplete multiple heterogeneous neuroimaging data.
NeuroImage 61(3), 622–32 (2012)

12. Aziz, M.S., Reddy, C.K.: Robust prediction from multiple heterogeneous data
sources with partial information. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, pp. 1857–1860 (2010)

13. Williams, G.: Random forests. Data Mining with Rattle and R, pp. 245–268.
Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9890-3 12

14. Genuer, R., Poggi, J.M., Tuleau-Malot, C.: Variable selection using random forests.
Pattern Recogn. Lett. 31(14), 2225–2236 (2010)

15. Batista, G.E., Monard, M.C., et al.: A study of k-nearest neighbour as an imputa-
tion method. In: Proceedings of the International Conference on Hybrid Intelligent
Systems, pp. 251–260 (2002)

https://doi.org/10.1007/978-3-319-60543-2_8
https://doi.org/10.1007/978-3-319-60543-2_8
https://doi.org/10.1007/978-3-642-17103-1_60
https://doi.org/10.1007/978-1-4419-9890-3_12


Feedback-Oriented Assessor Model

Application: Allocation of Submissions in Online Peer
Assessment

Mohamed-Amine Abrache(&), Khalid Megder,
and Chihab Cherkaoui

IRF-SIC Laboratory, FSA - Ibn Zohr University, Agadir, Morocco
mohamed-amine.abrache@edu.uiz.ac.ma

Abstract. Ensuring effective feedback for learners is an important factor in the
success of the learning experience. In the context of MOOCs, instructors are
unable to provide feedback to a big, heterogeneous community of participants.
Different platforms and tools have adopted peer assessment to solve this prob-
lem. However, they have been faced with a large number of learners who do not
have enough capacity to generate accurate assessments and meaningful feed-
back. This finding leads to relying on the intelligence of the mass in order to
generate more valid and effective feedback. At this level, one limitation of most
tools and platforms is that they create random groups of assessors without
considering the individual characteristics of its members. For this reason, this
article proposes an updated assessor model that focuses on the characteristics of
learners related to assessment capacity and their ability to provide correct,
objective and useful feedback for their peers. Based on this feedback-oriented
assessor model, we consider the aforementioned characteristics in the context of
an algorithm that creates groups of assessors and allocates submissions in order
to optimize peer feedback.

Keywords: Online learning � MOOC � Online assessment � Peer feedback
Peer assessment � Assessor model � Allocation of submissions

1 Introduction

Within the context of modern online learning, especially in MOOCs, the formative and
timely feedback is a key factor in achieving the objectives of the learning process [1, 2].
Yet, due to the massiveness of such environments, instructors lack the ability to
conduct formative assessment along with providing effective feedback [3].

In order to include the formative element of assessment, many MOOCs use the
automatically evaluated multiple-choice questions (MCQs), although this tool does not
capture enough information about the current performance of participants, which may
cause a lack of the provided effective feedback [4].

Besides, the assessment of open-ended questions and problem-based tests can be
used for measuring the achievement of some deeper educational objectives, such as

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 137–149, 2018.
https://doi.org/10.1007/978-3-030-00856-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_9&amp;domain=pdf


critical analysis and synthesis skills [5]. Aspects that cannot be reliably assessed
through MCQs [6].

On the other hand, the traditional view of learning experience considers assessment
as a task whereby instructors exercise their usual judgmental authority over the lear-
ner’s performance. However, the advances in the fields of information technology and
modern education have contributed to fundamental shifts in the design of the evalua-
tion process. In fact, instructors tend to consider a more active participation of learners
in the task of evaluating and judging their own achievements and those of their fellow
students.

Moreover, the more interaction with learners the more they develop trust and
positive attitude toward the course content [7]. Peer assessment (PA) is a solution that
fosters the engagement and the interaction of students within the activities of
assessment [8].

PA also reduces the burden of evaluation for teachers [3] and can be applied to
different forms of assessment as the aforementioned open-ended questions and
problem-based tests.

PA is a task in which the learner evaluates the nature of her\his peers work in terms
of quality, level or value [9]. PA can combine formative and summative purposes.
However, Sluijsmans [10] emphasized that the benefit of peer assessment is more
effectively realized in the context of a formative approach. Being a summative tool, PA
is limited to the measurement of the failure or success of the students in achieving
learning expectations [11]. On the other hand, the formative approach includes com-
ments of learners in which they identify the qualities of peers’ work, as well as
suggestions on how to improve their performance. These generated comments are
called “Peer Feedback” (PF) [12].

PF fosters the contribution and the retention of participants as long as it is relevant
and organized [13]. The instructors are keen to reap the benefits of PF for learners, even
if they still question the ability of this exercise to be a source of meaningful and helpful
information about the learner’s performance and progression, which is due to a variety
of factors and variables that influence the generation of comments and then its
acceptance by students.

In the context of this paper, we introduce an updated assessor model that gathers
different characteristics that shape the learner’s assessment quality and mainly her\his
capacity to provide effective feedback. We also propose an application of this model in
the context of an algorithm for the allocation of submissions that considers assessors’
characteristics.

The remainder of this paper is organized as the following; Sect. 2 represents a brief
overview of the features of peer feedback, Sect. 3 introduces the feedback-oriented
assessor model. In Sect. 4, we describe an application of the assessor model within the
allocation of submissions in the context of a MOOC; the last section emphasizes the
conclusion and the perspectives for future work.

138 M.-A. Abrache et al.



2 Peer Feedback

Peer feedback (PF) is an element of a perspective of human learning that emphasizes
the active involvement of students in the process of knowledge construction more than
its simple acquisition [14].

According to Flachikov [15], peer feedback can be part of the learning process
because it encourages students to think and build their self-confidence. It also urges
them to take responsibility for learning and to understand the educational materials.

PF represents a key element of the collaborative learning along with providing
learners with an increased motivation, reduced anxiety, a clearer view of how learning
works, and consequently a development of their constructive critical thinking [16].

Moreover, the feedback provided by a group of assessors may be as valid as expert
comments [17]. PF can be applied at the end of the course as part of the summative
evaluation or for formative purposes with the progress of learning activities.

Furthermore, through the generation of feedback, learners-as-assessors benefit from
an experience that helps them enhance their cognitive abilities such as analyzing prob-
lems and developing logical arguments. They also profit from an opportunity that allows
developing their meta-cognitive skills in order to self-regulate their learning [9, 18].

At the same time, by the means of the received feedback, learners-as-assessees
perceive their work’s strengths and weaknesses along with receiving guidance to
improve their performances and behaviors [19]. In fact, students tend to be more
motivated when they manage and understand their learning process [20–22].

The peer assessment can take the form of written comment, face-to-face or online
discussions, and possibly audio or video records.

Table 1 shows a summary of why, when, and how the peer feedback is taking part
in the learning process mainly in online environments.

Table 1. Why? When? How? to feedback.

Peer feedback

Why? • To provide learners with their current level of performance
• To supply arguments related to learners awarded rating and include guidance for
improvement

• To improve the independence and the motivation of learners as well as their
understanding of the educational content

• To make the student able to criticize her\his own work besides the work of her\his
peers

When? • As a summative measurement of the learner performance at the end of the course
units

• As a formative tool with the progress in learning activities
How? • In a form of written comments, face-to-face or online discussions, audio or video

records

Feedback-Oriented Assessor Model 139



The application of peer assessment underlines PF in some online assessment tools
that stimulate the active participation of learners. For instance, Peerceptiv is an online
evaluation platform that aims to improve the critical thinking of learners [23]. It asks
learners to comment on the work of peers effectively and encourages them to evaluate
the level of the helpfulness of their received feedback. Similarly, Moodle Workshop
allows learners to rate the comments that have been received [24]. The rating of the
assessor feedback takes part of her\his overall score.

Besides, the assessment in Aropä online platform relies more on peer feedback than
on peer grading, which is due to the fact that learners tend to provide comments instead
of rating the work of peers [10]. Aropä includes an algorithm that compares learners
comments in order to improve the validity of the assessment [25].

Moreover, a number of complementary controls are adopted in order to limit the
impact of subjective factors in peer feedback, such as ensuring the anonymity of the
assessor and the assessee, which aims to support the acceptance of criticism and the
making of effective comments [26]. Indeed, the characteristics of online learning
environments help students to supply anonymous ratings and feedback without time or
space constraints [16, 27, 28].

In addition, to compensate for deficiencies in the expected results of the peer-based
assessment, some procedures are undertaken prior to the start of the assessment pro-
cess. For instance, before allocating peers’ submissions to assessors, several online
assessment platforms provide guidelines and training for assessors in order to foster the
understanding of the assessment criteria and improve the ability to identify errors and
gaps in knowledge [29].

Some other systems have chosen to intervene at the end of the assessment process
in order to correct the result of peer assessment. Piech et al. [30] proposed a statistical
model that assumes the existence of observed variables like the peer’s assigned score,
along with other latent (unobservable) variables that have to be estimated such as the
true score and the potential level of subjectivity of assessment.

Goldin [31] who developed an experiment on a small group of 28 students proposes
a similar but slightly different model. He collected the results of exams assessed by
students, as well as those evaluated by teachers, so the model can provide an estimation
of the actual student homework scores and learner assessment errors.

Furthermore, the Fuzzy Constraint Networks (FCN) are generally used for defining
inaccurate knowledge. Then, in order to reduce the subjectivity and improve the quality
of the assessment, Lai’s et al. [32] model represents learner assessment in the form of
two fuzzy constraints: the scores and the satisfaction rate. Considering the prejudices
and subjective aspects related to the character of the assessor, the importance or rep-
resentativeness of the assessment of each student might be different. Thus, the model
adjusts the assessment of students according to their characteristics.

Yet, the three above-mentioned models that function at the end of the assessment
process are highly interested in the accuracy and the reliability of the summative
grading more than the formative aspect of providing effective feedback; even if Lai’s
et al. model includes a component that encourages providing rich feedback.

Besides, monitoring and intervening in the middle of peer assessment tasks are
possibly achieved within online learning environments. By way of example, Staubitz
et al. [33] have adopted a principle of submission priority to motivate learners to

140 M.-A. Abrache et al.



become more involved in the context of evaluation and feedback. This principle
consists of placing a higher priority on the submissions of learners who have completed
their assigned assessment tasks. Thus, the work of these learners is assigned first when
allocating submissions.

The next section describes the assessor model that represents the individual factors
related to the learner rating and feedback generating experience.

3 Feedback-Oriented Assessor Model

The assessor model is a representation of the parameters that influence the assessor
experience in the context of peer assessment. It considers learners’ personal factors that
determine the ability to perform the assessment task, in addition to those that are
affected by the practice of this exercise.

Learners may lack sufficient knowledge and skills in a particular field of study to
enable them to evaluate their peers fairly. Yet, peer feedback may be biased not only
because of the inadequate knowledge and performance of the assessor but also because
of different parameters that affect its providence whether they are learning or thinking
styles [32, 34], preferences, or social interactions, etc.

Learners feel the power of their peers and doubt of their abilities [35]. This kind of
feeling may cause a negative attitude toward this assessment exercise. Besides, the
perception of the assessment and the context in which it takes place are also parameters
that influence the quality of peer feedback. If learners work in competitive situations,
their assessment may be weak or unfair and not reflect the performance of learners,
unlike students who view peer feedback as a cooperative learning situation [27].

Moreover, Panadero [19] has separated the aspects related to the assessment
exercise on three basic categories: intra-individual factors, interpersonal aspects, cog-
nitive aspects. Where the intra-individual factors represent the perception of the indi-
vidual assessor in terms of motivation, emotions, level of fairness and sense of comfort
\discomfort.

The interpersonal aspects are part of collaborative learning. For instance, the
psychological safety refers to which extent the learner feels safe when providing or
receiving effective feedback. The cognitive aspects represent the confidence of the
learner in her\his own and peers’ assessment capacities, besides the sense of com-
mitment over the evaluation process and the degree of dependence between the two
parties of the assessment task.

Figure 1 represents the assessor model that considers the aforementioned factors
besides others that were presented on our first model of the assessor [36, 37]. The
actual model has been enriched with parameters that are mainly related to the gener-
ation of feedback. Among these factors and parameters, we can mention:

• The level of competency in writing effective feedback, which is also linked to
the language proficiency:
Effective feedback helps in reducing the rejection of peer-based assessment [38].
The quality of feedback depends heavily on language proficiency and writing

Feedback-Oriented Assessor Model 141



ability, which are parameters that also affect the comprehension of the educational
material and peers’ assignments [39].

• The training and the expertise of learners over peer feedback and peer
grading:
Finding difficulties in generating feedback is a common feature of most learners
[40]. More trained assessors with assessment guidance have more ability to provide
effective and meaningful feedback [41].

• The number of assessment tasks that have been affected to learners:
Peer feedback is associated with numerous pedagogical benefits. However, it is
noteworthy that this activity can be time-consuming [15], which implies that the
allocation of the submitted assignments must be performed in a way that does not
impose an overwhelming assessment load on students.

The number of assigned assessment tasks may represent a parameter that
influences the quality of the learner rating and feedback besides the motivation and
engagement within the process.

• The learning and thinking styles that may shape some characteristic of learner
feedback:
In their peer assessment model, Lan et al. [32] have emphasized a correspondence
between learning styles and the ability to provide assessment according to some
specific assessment criteria. Besides, receiving holistic or specific feedback also has
a different influence on the performance of learners with respect to their thinking
styles [34, 42].

Fig. 1. Feedback oriented assessor model

142 M.-A. Abrache et al.



• Different behavior patterns affect the participation of learners in peer assess-
ment [43]:
The more learner has a sense of professionalism and ethical decision-making the
more she\he tends to provide fair, non-biased grading and feedback.

The next section represents an algorithm for the allocation of submissions
within the context of peer assessment that stands on the feedback-oriented assessor
model.

4 Application Within an Algorithm for the Allocation
of Submissions in Online Peer Assessment

In different online learning platform as Peerceptiv, Turnitin PeerMark, PeerScholar,
and Calibrated Peer Review (CPR) [26, 44–46], the making of assessors groups is
performed randomly. Thus, we believe that making heterogeneous groups of assessors
according to their capacity of providing effective feedback may have a positive
influence on the quality of feedback.

Haddadi et al. [47] stand on the same convictions to provide a technic of clustering
assessors according to their profiles (performances, certificates, and preferences). From
our side, we propose an algorithm for the allocation of submissions (formation of
assessors groups) based on an indicator of the learner’s assessment capacity, which we
called the assessor score (AS).

Our proposed algorithm classes learners with similar assessing capacities into
categories of assessors, and for each submitted homework, the system takes a member
of each category to form the heterogeneous assessment group.

Assessors Stored Data
(Profiles based on the assessor model). 

Forming assessors' categories according to their scores

Forming Assessors Heterogeneous Group

Calculation of 
Assessors’ scores

Submission of an 
Assignment

Categorization 
Of Assessors

Fig. 2. The process of the algorithm of submissions allocating

Feedback-Oriented Assessor Model 143



Figure 2 summaries the process of the algorithm that consists of three basic stages:

(1) Calculation of assessors’ scores.
(2) Grouping assessors with convergent levels into categories.
(3) Composing assessment groups by selecting an assessor from each category.

The assessor score is a measure of the capacity of learners to assess peers work and
provide feedback. This AS is calculated by determining a number of elementary scores,
each of which represents a qualitative measure of the skill level for the corresponding
characteristic of the assessor model.

However, these characteristics do not have the same importance and impact on the
assessor’s overall capacity, which implies the need to provide each character with a
weight that represents its level of significance in terms of rating capacity and feedback.

The weight determination of the characteristics can be considered as part of a
multiple-criteria decision analysis problem. Indeed, through a study of the related
literature, we have chosen SWARA (Step-wise Weight Assessment Ratio Analysis)
[48] to calculate the weights reflecting the impact of the characteristics on the assessor
capacity.

The SWARA process consists of two main stages. The first is to rank the criteria
(the characteristics) according to their importance by a comity of experts of the field in
question. In the second stage, the low-importance criteria are excluded by reference to
the expert ranking, and then the weights of the remaining criteria are determined based
on a calculation algorithm.

Motivated by the interest in the learner capability to provide effective feedback, our
research team gave a higher ranking for the parameters with the higher impact on the
generation of feedback. Table 2 represents the calculated weights for these criteria
using SWARA.

Moreover, the measured elementary scores are either static or dynamic. For the
static parameters, the participant himself provides the scores through an auto-estimation
of the concerned skills, while the scores of dynamic parameters are collected by
observing the effective experience of the learner within peer assessment process.

The following formula resumes the calculation of the assessor score Ŝi:

Ŝi ¼ WT � Si ¼
Xn

j¼1
Wj � Sij ð1Þ

Table 2. The calculated weights of criteria

Rank Criterion Weight

1 Feedback providing skills 0.47
2 PA Expertise 0.25
3 PA training 0.13
4 Language proficiency 0.08
5 Assessees acceptance 0.07

144 M.-A. Abrache et al.



With n the number of the selected criteria (characteristics).
Si is the matrix of the elementary scores obtained by the assessor i.
W is the matrix of the calculated weights of the criteria.

On the other hand, according to their scores, the system performs the classification
phase by grouping the assessors into four categories with an equal number of members.
The first category consists of the assessors considered expert according to their higher
scores; the second is formed of the advanced assessors and so on for the remaining two
categories (intermediates and beginners). The equal number of categories members
allows a fair workload for each assessor.

When a new assignment is submitted, the system checks the number of submissions
allocated to each assessor. Then, it assigns this assignment to a member of each
category (making of the group) in order to provide more credibility for/the assessment
and a higher probability of receiving meaningful and effective feedback per submis-
sion. Figure 3 represents the results of the allocation of submissions in the context of a
simulation.

The results of the simulation showed that the created groups of assessors consist of
members belonging to the four different categories. This is accompanied by an equal
number of tasks assigned to the participants in a manner that guarantees that no major
burden is placed on each assessor.

Fig. 3. Results of the simulation of the algorithm of submissions allocating

Feedback-Oriented Assessor Model 145



5 Conclusion

Peer feedback is reflected in observations, critiques, and recommendations made by
learners for their peers in the context of an assessment exercise. It provides many
educational benefits to the participants in their roles of assessors or assessees.

PF helps improve the cognitive and metacognitive abilities of individuals, as well
as their interpersonal expressions. However, many instructors and learners funda-
mentally wonder about its purpose and the importance of its use.

Much research has focused on the outcomes of adopting peer feedback within an
evaluation strategy, along with developing its process by introducing methods that help
to obtain peer-based assessments that identify learner performance correctly.

In the same sense, we presented in the context of this contribution a feedback-
oriented assessor model that stands on the factors that shape the capacity of an assessor
to provide effective feedback. Different characteristic has been considered within this
model such as the level of validity of assessors, their assessment expertise, their lan-
guage proficiency and their attitudes, etc.

Monitoring and intervening within the processes of peer assessment and feedback
begin with the training of learners. This training helps clear the misconceptions about
the task and influences positively the quality of the feedback that the assessees will
receive afterward. It is highly recommended to inform students about the outcomes and
the usefulness of peer feedback in order to increase their motivation and positive
attitude toward such exercise.

After this phase starts the construction of the assessment groups and the allocation
of submissions. Indeed, based on the assessor model, we proposed an algorithm for the
allocation of submission that gives more significance to the parameters that influence
feedback providence.

After computing the assessor score for each participant, the algorithm classifies
learners into categories with respect to their scores (assessment capacities). Then, for
each submitted assignment, it takes one assessor from each category to construct its
assessment group.

For the perspectives of this work, we plan to integrate more intelligent components
for the classification of assessors and then for the allocation of submissions. The
assessor model is always extendible and can play an important role in the represen-
tation of data linked to all the elements of learners’ assessment experience. This work
needs also a comparative study of the impact of using the algorithm of allocating
submissions against a random assignment of submissions.

146 M.-A. Abrache et al.



References

1. Wanner, T., Palmer, E.: Formative self-and peer assessment for improved student learning:
the crucial factors of design, teacher participation and feedback. Assess. Eval. High. Educ.
43, 1–16 (2018)

2. Mills, J., Glover, C., Stevens, V.: Using assessment within course structures to drive student
engagement with the learning process. In: Proceedings of the 2005 13th International
Symposium Improving Students Learning: Improving Student Learning Through Assess-
ment, Refocusing feedback. Alden Press, Oxford (2006)

3. Suen, H.K.: Peer assessment for massive open online courses (MOOCs). Int. Rev. Res. Open
Distrib. Learn. 15(3), 312–327 (2014)

4. Anand, I.M., Djoudi, L.A.: Assessment issues for MOOCs and large scale examinations and
robust, objective testing with reverse multiple-choice. In: Proceedings of the International
Conference on e-Learning, e-Business, Enterprise Information Systems, and e-Government
(EEE) (2015). The Steering Committee of the World Congress in Computer Science,
Computer Engineering and Applied Computing (WorldComp)

5. Krathwohl, D.R.: A revision of Bloom’s taxonomy: an overview. Theor. Pract. 41(4), 212–
218 (2002)

6. Herman, J.L., Klein, D.C., Wakai, S.T.: American students’ perspectives on alternative
assessment: do they know it’s different? Assess. Educ.: Principles Policy Pract. 4(3), 339–
352 (1997)

7. Bendou, A., Abrache, M.-A., Cherkaoui, C.: Contribution of pedagogical agents to motivate
learners in online learning environments: the case of the PAOLE agent. In: Ben Ahmed, M.,
Boudhir, A.A. (eds.) SCAMS 2017. LNNS, vol. 37, pp. 344–356. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-74500-8_32

8. Yuan, J., Kim, C.: The effects of autonomy support on student engagement in peer
assessment. Educ. Technol. Res. Develop. 66(1), 25–52 (2018)

9. Topping, K.J.: Peer assessment. Theor. Pract. 48(1), 20–27 (2009)
10. Sluijsmans, D.M., et al.: Peer assessment in problem based learning. Stud. Educ. Eval. 27(2),

153–173 (2001)
11. Topping, K.J., et al.: Formative peer assessment of academic writing between postgraduate

students. Assess. Eval. High. Educ. 25(2), 149–169 (2000)
12. Gielen, S., et al.: Improving the effectiveness of peer feedback for learning. Learn. Instr. 20

(4), 304–315 (2010)
13. Choi, B., et al.: Socialization tactics in wikipedia and their effects. In: Proceedings of the

2010 ACM Conference on Computer Supported Cooperative Work. ACM (2010)
14. Ertmer, P.A., et al.: Using peer feedback to enhance the quality of student online postings: an

exploratory study. J. Comput.-Mediated Commun. 12(2), 412–433 (2007)
15. Falchikov, N.: Peer feedback marking: developing peer assessment. Program. Learn. 32(2),

175–187 (1995)
16. Arch-Int, N.: Multidimensional assessment of open-ended questions for enhancing the

quality of peer assessment in e-Learning environments. In: Handbook of Research on
Applied e-Learning in Engineering and Architecture Education, p. 263 (2015)

17. Cho, K., MacArthur, C.: Student revision with peer and expert reviewing. Learn. Instr. 20(4),
328–338 (2010)

18. Casey, G.: Students as “assessors” and “assessees” in an era of social media. In: Assessment
in Online and Blended Learning Environments, p. 55 (2015)

19. Panadero, E.: Is it safe? social, interpersonal, and human effects of peer assessment. In:
Handbook of Human and Social Conditions in Assessment, p. 247 (2016)

Feedback-Oriented Assessor Model 147

http://dx.doi.org/10.1007/978-3-319-74500-8_32


20. Topping, K.: Peer assessment between students in colleges and universities. Rev. Educ. Res.
68(3), 249–276 (1998)

21. Van Gennip, N., et al.: Reactions to 360 feedback: the role of trust and trust-related
variables. Int. J. Hum. Resour. Develop. Manage. 10(4), 362–379 (2010)

22. Elliott, N., Higgins, A.: Self and peer assessment–does it make a difference to student group
work? Nurse Educ. Pract. 5(1), 40–48 (2005)

23. Cho, K., Schunn, C.D.: The SWoRD is mightier than the pen: scaffolded writing and
rewriting in the discipline. In: 2004 Proceedings of IEEE International Conference on
Advanced Learning Technologies. IEEE (2004)

24. Using Workshop – MoodleDocs (2017). https://docs.moodle.org/29/en/Using_
Workshop#Grade_for_assessment

25. Purchase, H.C., Hamer, J.: Peer review in practice: eight years of experiences with Aropä.
School of Computing Science University of Glasgow, 31 January 2017

26. Cho, K., Schunn, C.D.: Scaffolded writing and rewriting in the discipline: a web-based
reciprocal peer review system. Comput. Educ. 48(3), 409–426 (2007)

27. Lin, S.S.-J., Liu, E.-F., Yuan, S.-M.: Web based peer assessment: attitude and achievement.
IEEE Trans. Educ. 44(2), 13 (2001)

28. Li, L.: The role of anonymity in peer assessment. Assess. Eval. High. Educ. 42(4), 645–656
(2017)

29. Sluijsmans, D., Dochy, F., Moerkerke, G.: Creating a learning environment by using self-,
peer-and co-assessment. Learn. Environ. Res. 1(3), 293–319 (1998)

30. Piech, C., et al.: Tuned models of peer assessment in MOOCs. arXiv preprint arXiv:1307.
2579 (2013)

31. Goldin, I.M.: Accounting for peer reviewer bias with bayesian models. In: Proceedings of
the Workshop on Intelligent Support for Learning Groups at the 11th International
Conference on Intelligent Tutoring Systems. Citeseer (2012)

32. Lan, C.H., Graf, S., Lai, K.R.: Enrichment of peer assessment with agent negotiation. IEEE
Trans. Learn. Technol. 4(1), 35–46 (2011)

33. Staubitz, T., et al.: Improving the peer assessment experience on MOOC platforms. In:
Proceedings of the Third ACM Conference on Learning@ Scale. ACM (2016)

34. Lin, S.S., Liu, E.Z.-F., Yuan, S.-M.: Web-based peer assessment: feedback for students with
various thinking-styles. J. Comput. Assist. Learn. 17(4), 420–432 (2001)

35. Liu, N.-F., Carless, D.: Peer feedback: the learning element of peer assessment. Teach. High.
Educ. 11(3), 279–290 (2006)

36. Abrache, M., Qazdar, A., Cherkaoui, C.: Involvement of learners’ characteristics within the
allocation of submissions in the context of peer assessment in MOOCs. Int. J. Comput. Appl.
168(12), 7–11 (2017)

37. Abrache, M.-A., Qazdar, A., Bendou, A., Cherkaoui, C.: The allocation of submissions in
online peer assessment: what can an assessor model provide in this context? In: Ben Ahmed,
M., Boudhir, A.A. (eds.) SCAMS 2017. LNNS, vol. 37, pp. 276–287. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-74500-8_25

38. Brown, G.A., Bull, J., Pendlebury, M.: Assessing Student Learning in Higher Education.
Routledge, londin (2013)

39. Fini, A.: The technological dimension of a massive open online course: the case of the
CCK08 course tools. Int. Rev. Res. Open Distrib. Learn. 10(5), 6 (2009)

40. Kulkarni, C., et al.: Peer and Self Assessment in Massive Online Classes, in Design
Thinking Research, pp. 131–168. Springer, Cham (2015). https://doi.org/10.1007/978-3-
319-06823-7_910

41. Ngoon, T.J., et al.: Interactive Guidance Techniques for Improving Creative Feedback
(2018)

148 M.-A. Abrache et al.

https://docs.moodle.org/29/en/Using_Workshop#Grade_for_assessment
https://docs.moodle.org/29/en/Using_Workshop#Grade_for_assessment
http://arxiv.org/abs/1307.2579
http://arxiv.org/abs/1307.2579
http://dx.doi.org/10.1007/978-3-319-74500-8_25
http://dx.doi.org/10.1007/978-3-319-06823-7_910
http://dx.doi.org/10.1007/978-3-319-06823-7_910


42. Van Zundert, M., Sluijsmans, D., Van Merriënboer, J.: Effective peer assessment processes:
research findings and future directions. Learn. Instr. 20(4), 270–279 (2010)

43. Cook, S., et al.: Going’massive’: learner engagement in a MOOC environment. THETA
2015-Create, Connect, Consume-Innovating today for tomorrow (2015)

44. Prescott, T.: How does using Turnitin in a formative way change student attitudes towards
plagiarism (2012). plagiarismadviceorg/documents/Prescott_fullpaper.pdf. Accessed 4 Oct
2014

45. Paré, D.E., Joordens, S.: Peering into large lectures: examining peer and expert mark
agreement using peerScholar, an online peer assessment tool. J. Comput. Assist. Learn. 24
(6), 526–540 (2008)

46. Russell, J., et al.: Variability in students’ evaluating processes in peer assessment with
calibrated peer review. J. Comput. Assist. Learn. 33(2), 178–190 (2017)

47. Lynda, H., et al.: Peer assessment in MOOCs based on learners’ profiles clustering. In: 2017
8th International Conference on Information Technology (ICIT). IEEE (2017)

48. Karabasevic, D., et al.: An Approach to criteria weights determination by integrating the
DELPHI and the adapted SWARA methods. management. J. Sustain. Bus. Manage.
Solutions Emerg. Econ. 17 (2017)

Feedback-Oriented Assessor Model 149

https://www.plagiarism.org/


Communication and Information
Technologies



A Gamification and Objectivity Based
Approach to Improve Users Motivation

in Mobile Crowd Sensing

Hasna El Alaoui El Abdallaoui(&), Abdelaziz El Fazziki,
Fatima Zohra Ennaji, and Mohamed Sadgal

Computing Systems Engineering Laboratory (LISI),
Cadi Ayyad University, Marrakesh, Morocco

h.elalaoui@edu.uca.ac.ma, {elfazziki,sadgal}@uca.ma,

f.ennaji@edu.uca.ma

Abstract. The advent of new communication and information technologies
offers great potential for capturing and transmitting information related to
mobility. The use of these technologies makes it possible to collect information
and transmit it in a participative production (crowdsourcing) perspective for
organizational government services such as suspect investigation. The objective
of this work is to improve the process of identifying suspects by combining
collective intelligence with mobile devices. To do this, this article proposes an
approach for the development of a framework based on the gathering of
information by the crowd (crowd sensing), their filtering and their analysis. This
framework increases the user participation by integrating the gamification
technique as a motivation approach. The reliability of the crowd sensed infor-
mation, in turn, is provided by an objectivity analysis algorithm. The experi-
mental results of the case study, carried out through AnyLogic simulations,
show that the methods and technologies incorporated in the suspect identifica-
tion procedures accelerated the search and location process by ensuring high
system performance as well as by improving the quality of the sensed data.

Keywords: Crowd sensing � Gamification � Objectivity analysis
Suspect investigation � User motivation

1 Introduction

Crowdsourcing is a concept that was described by J. Howe and M. Robinson in 2006
[1] that can literally be translated as participatory production. It is based on the use of
the expertise and skills of a large audience or crowd to perform certain tasks, solve
problems or collect information. Depending on the type of skills required, the tools
used and the type of problems to be solved, a crowdsourcing activity can take many
forms. In some situations, participants are only asked to carry out the detection and the
collection of relevant information, a form known as crowd sensing (CS) [2]. The
deployment of this mechanism has become possible through the new technologies of
the Internet, mobile platforms and telecommunications. Mobile Crowd Sensing
(MCS) is, therefore, a new form of data collection exploiting the crowd of intelligent

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 153–167, 2018.
https://doi.org/10.1007/978-3-030-00856-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_10&amp;domain=pdf


terminals already deployed around the world to massively collect data. The principle is
that each contributor is a potential data sensor. Mobile phones with their ability to
determine a position (based on GPS, WiFi or 3G/4G) offer the ideal sensor for col-
lecting data on mobility.

From these observations, we can note the huge potential of crowd sensing, but also
its limits and its risks. Recurring questions about the concept of participant motivation
and the accuracy of the information provided by the crowd can be raised. First, the
success of a CS operation relies on the participation of the crowd, specifically on the
participation of a number of individuals large enough to benefit from their diversity. It
is therefore for the actors of the CS initiative to encourage the participation of the
crowd. Indeed, the attraction ability of the crowd and relationship management in a CS
activity has been the subject of several research works [3–7]. These approaches dis-
tinguish the intrinsic motivations related to the satisfaction associated with the task or
its social dimension (leisure, pleasure, interest, etc.) [3] and the extrinsic motivations
encouraged by all the external incentives offered by the crowdsourcer (monetary
benefits, price, etc.) [3].

Secondly, even if the user motivation management allows the guarantee of a large
participation and a massive collection of data, it does not manage all the detection
information provided by the crowd and ensure or verify their reliability. With the large-
scale data that a crowdsourcing activity provides, it is difficult to determine the veracity
of each piece of information received. Several approaches worked in this direction and
proposed a set of methods [8–11]. For example, the authors in [12], categorized three
methods to explain the general principle of this analysis: iterative methods that are
easier to understand and to implement, optimization-based methods and PGM-based
solutions (Probabilistic Graphical Model) that are more difficult to assimilate.

This work includes the concept of crowdsourcing as a new paradigm used by
institutions to solve many organizational problems, we will focus mainly on locating,
tracking, and identifying suspects using human mobility. It will also discuss issues
related to participant motivation by integrating gamification techniques into CS plat-
forms and proposing an algorithm for objectivity analysis as a method to improve the
quality of the sensed data. To sum up, the aim of this research is the development of a
crowd sensing framework that facilitates to the authorities, the collecting, the analysing
and the interpretation of data provided by citizens. This framework is mainly based on
these points:

• The use of mobile crowd sensing to collect information from the public.
• The verification of the collected data credibility using an objectivity analysis.
• The crowd participation will be encouraged by means of the integration of

gamification techniques in the crowd sensing application.

The rest of this paper is organized as follows: Sect. 2 presents a literature review
about the most important concepts used in this paper. The proposed approach is
detailed in Sect. 3 including its process and architecture. The concepts of the objec-
tivity analysis and the gamification mechanisms used in this paper are also structured in
Sect. 4. Section 5 introduces a case study of a suspect investigation using the proposed
framework and presents the experiment results. Finally, we conclude with a discussion
and a conclusion sections.

154 H. El Alaoui El Abdallaoui et al.



2 Literature Review

2.1 Crowdsourcing and Suspect Tracking

Several founding works are mainly based on the techniques to be incorporated into the
investigation process, but few of them have focused on the human potential or to
promote the crowdsourcing concept. Table 1 below summarizes their functionalities
and presents their advantages and limitations.

Table 1. Tracking systems comparison

Literature
document

Tool(s) used System description Advantages Limitations

[13] CCTV Systems Image taken from
live streaming
CCTV is compared
to a criminal
database and
information are
displayed if a
matching exists

*Automatic
system
*Crime
prevention

Effectiveness not
reliable and is
affected by many
factors

[14] Semantic Web + 3D
models

Tracking suspects
and their activities
around the globe by
referring to the
social networks and
the semantic data

*Help officials
to have an
idea about a
suspect’s
behaviour
*Avert crimes
and terrorist
attacks

Not all
information can be
available or shared
on semantic web

[15] GIS *Decision support
system that provides
spatial and non-
spatial information
*Identify police
stations closest to the
crime scene and
determine the
shortest paths

*Useful
system and
quick
response
*Suspect
tracking

The system
identifies large
evacuation areas
and not the exact
position of the
suspect

[16] Artificial
Intelligence + Natural
Language Processing

Promoting generic
reporting while
automating the
process of crime
detection,
summarisation and
delegation

*Newer in-
formation
sharing
techniques
*Sophisticated
sensors
*Responsive
feedback

Application of
technology to
mitigate existing
issues and less
citizen implication

A Gamification and Objectivity Based Approach to Improve Users Motivation 155



Our study of the literature allowed us to explore some of the other issues with such
systems like the negligence of citizens’ involvement. The framework we are presenting
will mainly take advantage of crowdsourcing, specifically mobile crowd sensing, to
identify and to detect the exact position of a suspect and this will form the contribution
of this paper.

2.2 Objectivity Analysis in a CS Initiative

In the era of information explosion, we are continuously generating data through
various channels, blogs, social media, crowdsourcing platforms, etc. Hence, the major
problem with current crowdsourcing environments is the lack of manageability. As a
result of the openness of Web based platforms, where anybody can join and participate,
quality assurance becomes challenging.

Thereby, numerous researches have tried to tackle this challenge using different
approaches as described in [12]. They estimate the reliability of each source and the
credibility of the information it provides using quality assurance (QA) or truth dis-
covery (TD) methods [8–10]. In [10], the authors proposed a fuzzy-based system to
enhance the quality of human computation in crowdsourcing applications. Likewise,
the authors in [17] proposed an approach to further improve the efficiency and safety in
the trust discovery process.

The authors in [12] presented a comprehensive comparison between different
methods depending on the input data and the source reliability. Their examination was
done under 5 different aspects and they concluded that more directives should be
deployed for large-scale data.

2.3 Crowd Motivation Techniques: Gamification

The users’ motivation is the key factor that determines the contribution quality and/or
quantity in a crowdsourcing context. In this work, we focused mainly on the users’
motivation while performing a CS activity. The approach to be adopted is gamification.
It is the transfer of game mechanics into serious areas that have nothing to do with
gaming (making activities which are not considered as games more playful [18]). It is
thus based on the observation of the mechanics allowing to build a “good” game, and
on the study of the players’ behaviour.

In crowdsourcing, the gamification became an effective approach for increasing
crowdsourcing participation: Organizations make crowdsourcing activities more like a
game to motivate participants or allow the creation of positive motivations [18].

The most modest and classic way to design a gamified crowdsourcing application is
to incorporate the most often used mechanics from the game world as part of a
gamification approach; for example: the attribution of a score, the attribution of a status
linked to a level or time of use, ranking, the use of quizzes, the use of the notion of
mission, leader boards, etc. [18].

156 H. El Alaoui El Abdallaoui et al.



3 The Proposed Approach

3.1 A General Overview

Although the law enforcement domain has constantly evolved and incorporated new
techniques that have improved investigation’s effectiveness, crowd’s collaboration has
often been a necessity. It has always led the investigation towards successful paths
better than depending only on the latest technologies. With the emergence of mobile
technologies, many applications have largely enabled the crowd to collect real time
data. Mobile Crowd Sensing (MCS), has recently been widely applied by decision-
makers who use citizens and their mobile devices as an important source of information
in situations like suspect identification. The presence of several built-in sensors in smart
phones can capture information about the user’s environment. This data is then
transferred to the database servers. The data is usually geo-stamped and time-stamped
and may include multimedia content.

Besides the aforementioned suspect investigation’s improvement, particular chal-
lenges must be faced: striking a balance between crowd’s participation and the infor-
mation correctness is crucial. The objective behind this work is threefold: (i) to involve
as many people as possible in helping the authorities to identify and locate the suspect
through the use of a gamified crowdsourcing application that will play a key role in
increasing the motivation of participants (ii) then, to use the crowd and their mobile
devices as an important large-scale data sources. This will help the authorities to gather
as much information as possible. (iii) These collected data will be verified using the
algorithm of objectivity analysis (OA) that will keep only the relevant data and will
eliminate any data likely to disturb the process of investigation. Figure 1 summarizes
the structure of the proposed approach.

3.2 The Suspect Investigation Process

The proposed suspect investigation process begins after the authorities receive an alert
about an assault or an aggression. Figure 2 describes the steps that the framework
follow starting from collecting information about the suspect to his tracking and
localization.

Fig. 1. The mobile crowd sensing approach infrastructure

A Gamification and Objectivity Based Approach to Improve Users Motivation 157



The framework is based on four generic steps including methods and techniques
developed to solve the problems discussed previously:

1. Profiling inputs collecting. The victims and the witnesses present at the time of the
offense are a real source of information that must be exploited to collect useful
information about the suspect (profiling inputs). In addition to the description of the
suspect, digital exhibits can be retrieved like surveillance cameras videos or crowd
mobile devices visuals.

2. Data analysis. The objective behind this step is to ensure the identity of the suspect
by performing his profile.

• Research and identification: image processing techniques are exploited to
search, in the authority databases, for a profile that matches with the suspect one
(from an image taken by the crowd or video from surveillance cameras).

• Profile developing: If no video or picture of the suspect was taken, a sketch
generation will be established.

3. Profile sharing. The profile of the suspect realized during the last steps will be
shared with the crowd. Social networks and other media, like TVs and newspapers,
will be an interesting tool to hugely disseminate the profile.

4. Crowd sensing for suspect localization. This solution allows the participants to
mark the suspect’s position and all relevant information (date, time, additional
information such as transport vehicle). The result is a map (made accessible only for
the authorities) where all the suspect’s movements and whereabouts are displayed.
They are first checked by the OA algorithm before getting stored in a database.

3.3 The Framework Structuring

In this section, we will present the overall structure of the framework consisting of six
components schematized with their interactions in Fig. 3.

Fig. 2. The suspect investigation proposed process

158 H. El Alaoui El Abdallaoui et al.



• Database Administration Component (DAC): It keeps data updated in the database.
It is linked to the authorities’ database that stores a set of important data.

• Objectivity Analyzer (OA): Responsible for checking the trustworthiness of the
crowd sensing data. Any information that is sensed by the crowd must firstly be
verified by the objectivity analysis algorithm implemented in this module.

• The Crowd Manager (CM): Responsible for managing the crowd activities and
participations on the gamified mobile application (dashboards, scores, rewards).

• The Information Disseminator Module (IDM): It is using the adequate algorithms
and APIs to broadcast the suspect profile to mobile devices and social media.

• The Crowd Sensing Monitor (CSM): Associated to the OA module, this component
monitors the localization data provided by the crowd in the framework. Once a
localization information is validated by the OA module, it is then transferred to the
DAC to be stored in the database. All suspect’s localizations are then assembled by
this module in a single map perceptible by all police officers.

• The Suspect Identification Module (SIM): It incorporates the whole forensic
investigation procedure that emphasizes the suspect video/image analysis process in
addition to the sketch generation development.

4 The Framework Implementation Methods

4.1 The Objectivity Analysis

An objectivity analysis algorithm is proposed in this paper to verify the trustworthiness
of the information provided by the crowd (suspect localization). For starters, the
locations reported by the crowd are grouped together in the same cluster if they are
close in time. This step was performed by the K-means algorithm. The different colors
of the markers illustrated in Fig. 4 indicate the different clusters obtained after per-
forming K-means algorithm. Then, we apply the algorithm of the objectivity analysis
presented below for each group or cluster.

Fig. 3. The framework structuring

A Gamification and Objectivity Based Approach to Improve Users Motivation 159



By fixing a time T = t ± Δt, we define some parameters for the credibility com-
putation as follows:

• S: the number of participants (the crowd).
• L: set of sensed information reported at the time T where L = {l0, l1… ln} and li is

the ith group of localizations (a cluster) at the time T and n the number of clusters.

For each location li, the Algorithm 1 infers the objectivity score of the cluster li
based on the current estimation. At the end of n iterations, it returns the cluster with the
highest score, which indicates the most trustworthy information.

Fig. 4. The grouping of close localizations into the same location (cluster)

160 H. El Alaoui El Abdallaoui et al.



4.2 Crowd Motivation: Gamification in Crowdsourcing

Application analysis. The first step is to determine the functionalities that a user can
achieve with the application in a given context (summarized in Table 2 below).

Designing. This step consists of defining the system of points, scores and rewards
awarded to a player once s/he completes a task in the application. For example, if the
user (the player) reports the localization of the suspect, 5 points will be offered.
Whereas if s/he records, in addition to the localization, the date and the time, s/he will
be able to earn 10 points instead of 5. The daily authentication will allow players to

Table 2. Game’s contexts and corresponding actions

Context Actions

Installation &
registration

-User downloads and installs the application on his/her mobile device.
-User registers anonymously to the application by entering a nickname
and a password

Authentication -If first authentication, the user can customize his/her game avatar.
-User can access his/her profile to edit account’s information (nickname,
password)
-User can access his/her dashboard to visualize his/her scores (points,
badges, etc.)

Suspect
identification

-User can provide real picture of the suspect instead of his/her identikit
-User can provide a video containing the suspect recorded while
committing a criminal act
-User can provide any important information concerning the suspect
(name, address, etc.)

Suspect
localization

-User can report the suspect’s localization on the map
-User can report, in addition to the localization, the date and time of
localization
-User can report, in addition to the previous data, additional information
concerning the suspect (vehicle, clothes, persons accompanying
him/her, etc.)

Table 3. Player’s levels and their corresponding badges

A Gamification and Objectivity Based Approach to Improve Users Motivation 161



accumulate a large number of points and to receive bonuses (e.g. new accessories).
Along with the points, the game offers badges to the players. Table 3 presents the
badge attributed to a participant when reaching a given score in the game.

5 Case Study

Due to the unavailability of real data or the possibilities to test the proposed solution in
the real world, we decided to simulate a scenario close to the reality using a simulation
software; the AnyLogic[1] simulator. It helped to reflect the crowd’s behavior in the
case of an aggression by modelling the process we proposed in this paper.

The second part of the case study will present a first prototype of the gamified
application including some screenshots of the player’s board.

Finally, for the automatic face analysis (image and video processing), we used the
OpenCV[2] library in Java and the FBI Faces software for the identikit generation.

5.1 Experimental Results

The implementation is illustrated by the Anylogic simulation. Using Anylogic, we
simulate the aggression environment. In this environment, different agents exist: a
crowd of men, women and children randomly walking in this environment, police
officers set in separate places and a suspect who moves among the crowd to chase his
victim. Figure 5-a shows the aggression scene taken by a camera following the suspect
and Fig. 5-b his escape between the crowds (the suspect is enclosed by a yellow circle).

Fig. 5. The aggression (a) and the suspect’s escape after the aggression (b)

1 https://www.anylogic.com/.
2 http://opencv.org/.

162 H. El Alaoui El Abdallaoui et al.

https://www.anylogic.com/
http://opencv.org/


People near the assault’s location provide the closest police officer with the sus-
pect’s profiling inputs as shown in Fig. 6-a. These profile inputs will be summarized
and archived in order to be broadcasted later. Then, if a person identifies the suspect,
s/he uses the gamified application to report all the localization’s information (Fig. 6-b).

The gamified application. It essentially allows the crowd to report any information
about the suspect or his location easily. Figure 7-a shows the interface enabling the
avatar customization. New body, face, hair features, wardrobe and accessories are
available at each new level. Another important gamification technique integrated in this
application is the player board where all his/her obtained scores, badges and rewards
are displayed (Fig. 7-b).

Face recognition and identikits. The aim is to test the crowd accuracy in comparison
to the machine’s performance in the case of face recognition from a profile image and a
digital sketch. To do so; we carried out, in a previous work [19], a set of experiments:
the crowd’s wisdom were experienced by asking 83 people to answer a google form.

All the automatic face analysis experiments and comparisons with human intelli-
gence are available in [19] and proved that crowd intelligence has largely exceeded the
capabilities of the machine especially in cases where some facial properties were
imperceptible or the picture quality was poor.

Fig. 6. (a) Collecting suspect’s profile inputs and (b) suspect detection

Fig. 7. (a) Avatar customization and (b) Player board (rewards, badges, score, etc.)

A Gamification and Objectivity Based Approach to Improve Users Motivation 163



5.2 Results

We took into consideration the human error margin during the implementation of the
Anylogic simulation. Therefore, the analysis module of the Anylogic tool allowed the
extraction of data representing the movement of the suspect according to the X and Y
coordinates of the created environment from the aggression time (t = 25). In parallel,
we retrieved the suspect’s positions reported by the crowd after receiving the alert
message (Fig. 8).

We plot, in Fig. 9-a, the reported localizations (red points) and the real suspect’s
positions (the blue curve) using MATLAB simulator, while Fig. 9-b shows the
obtained results after applying the objectivity analysis algorithm. The application of the
Algorithm 1, however, allowed to retain only the most reliable data and the closest to
the real values.

Fig. 8. The suspect’s localizations reported by the crowd

Fig. 9. MATLAB results (Color figure online)

164 H. El Alaoui El Abdallaoui et al.



6 Discussion

This work raised an important question: would the use of the crowd and new tech-
nologies increase the capacities of the authorities to control and monitor the popula-
tion? This paper leans towards to show that the answer is positive. The bursting of
urban space and the rise of local agencies (private and public security), engaged in the
contest against insecurity, have resulted in a fragmentation of knowledge acquired
through technical devices used to monitor and/or protect people. More fundamentally,
the spread of smartphones, crowd sensing and video surveillance in urban areas marks
the emergence of a new “economy of visibility” in the exercise of public order which is
characterized by a decentralized power tracking without release malicious or even
ordinary citizens.

The reorganization of the legal field and the management of public order are not
without impact on the very nature of their exercise in the urban spaces. As a result,
there is a little more to do with “public order” because the managers of the surveillance
systems work primarily for the clients who employ them, when they are not simply
working to defend their own interests. This means that security has changed imper-
ceptibly by nature: from a right recognized by all and guaranteed by the state, it has
become a good of market value, a good that only the richest (individuals, businesses,
communities, etc.) can afford. In the same way, with regard to local authorities, the
mapping of the surveillance systems implementation in the territory suggests a distri-
bution determined essentially by the wealth of the municipalities which must be able to
raise the funds necessary for the installation of the device but also to its daily operation.

Has the spread of these devices in the territories of a city led to increased
surveillance by the police of the population? If we mean all the forms of control and
standardization organized and provided by authorities and private companies, the
answer is negative. This hyperspecialization limits the prospects of the information
sharing and confrontation of knowledge acquired in different places and by different
operators. It is very hopeful to think that private and public security management will
respond relentlessly to the needs - especially expectations and the demands of the
public interest. Why not have the necessary human and technical resources to act
autonomously in all public areas? This is undoubtedly one of the main features of this
new strategy of visibility: a surveillance exercised by a multiplicity of “people”, in
charge of the whole territory and animated by a logic and a gamification to motivate the
defense of the common interest.

7 Conclusion

Advances in mobile computing and social networking services are enabling people to
probe the dynamics of a public interest. In this paper, we addressed the problem of
locating, tracking, and identifying suspects by using crowd sensing concept with,
human mobility. Unlike existing suspicious tracking methods, we identify suspects
based on the routing behavior of people in an urban area. The suspect tracking system
can benefit both private and public areas. On the other hand, this work studies the
gamification mechanisms and their application for the promotion of participatory urban

A Gamification and Objectivity Based Approach to Improve Users Motivation 165



detection. Participatory detection, which uses users’ smartphones, focuses on an
effective and economical detection mechanism for large areas. However, continuing to
motivate many participants for a long time is difficult. In addition, financial incentives
are generally limited. To solve these problems, gamification mechanisms are consid-
ered as a promising technique because they have the potential to suppress financial
incentives by maintaining participants’ motivation.

Crowdsourcing offers a great potential for the field of forensic investigations and
the search for suspects. In this paper, we were interested in exploiting the concept of
Mobile Crowd Sensing (MCS), for the collection of relevant data on a suspect by the
crowd and their mobile devices. Building on the strength of modern technologies, the
proposed framework provides answers to the following questions:

1. How can crowdsourcing be adopted in the context of suspect investigations and
how can the authorities benefit from collective intelligence?

2. How to strengthen the participation of the crowd to capture their potential value?
3. How to trust the data delivered by the crowd or verify their reliability?

Through the experimental results presented in this paper, we have demonstrated
that collective intelligence can be very useful and achieve goals that even the most
powerful machines cannot achieve, such as the case of identifying a suspect via a
surveillance image or video.

In order to increase the participation of the crowd, the CS actors have a range of
motivations on which they can rely on by setting up various stimuli such as the interest
of the task, the remuneration and/or the intrinsic valorisation. In this article, we have
chosen gamification as a motivation approach widely used in crowdsourcing initiatives.
Making the search for a suspect an attractive game is an innovative contribution in the
e-government field.

Finally and to answer the last sub-question, this article has highlighted a simple and
powerful objectivity analysis algorithm to clean the information received from the
crowd from any noisy data that can hinder the investigation process progress. The
simulations of this paper have proved that this algorithm gives very satisfactory results
and quite close to the real values.

References

1. Howe, B.J.: The Rise of Crowdsourcing. Wired Mag. 14(6), 1–4 (2006)
2. Guo, B., Wang, Z., Yu, Z., et al.: Mobile crowd sensing and computing: the review of an

emerging human-powered sensing paradigm. ACM Comput. Surv. 48(1), 1–31 (2015).
http://dl.acm.org/citation.cfm?doid=2808687.2794400

3. Hossain, M.: Users’ motivation to participate in online crowdsourcing platforms. In: 2012
International Conference on Innovation, Management and Technology Research, ICIMTR
2012, pp. 310–315 (2012). https://doi.org/10.1109/ICIMTR.2012.6236409

4. Kamar, E., Horvitz, E.: Incentives for truthful reporting in crowdsourcing. In: 11th
International Conference on Multiagent Systems, pp. 1329–1330 (2012). http://dl.acm.org/
citation.cfm?id=2343988

166 H. El Alaoui El Abdallaoui et al.

http://dl.acm.org/citation.cfm?doid=2808687.2794400
http://dx.doi.org/10.1109/ICIMTR.2012.6236409
http://dl.acm.org/citation.cfm?id=2343988
http://dl.acm.org/citation.cfm?id=2343988


5. Hossain, M.: Crowdsourcing: activities, incentives and users’ motivations to participate. In:
2012 International Conference on Innovation, Management and Technology Research,
ICIMTR 2012, pp. 501–506 (2012). https://doi.org/10.1109/ICIMTR.2012.6236447

6. Yang, G., He, S., Shi, Z., Chen, J.: Promoting cooperation by the social incentive mechanism
in mobile crowdsensing. IEEE Commun. Mag. 55(3), 86–92 (2017)

7. Shen, X., Lee, M.K.O., Cheung, C.M.K.: Computers in human behavior exploring online
social behavior in crowdsourcing communities: a relationship management perspective.
Comput. Hum. Behav. 40, 144–151 (2014). https://doi.org/10.1016/j.chb.2014.08.006

8. Ye, C., Wang, H., Gao, H., Li, J., Xie, H.: Truth discovery based on crowdsourcing. In:
International Conference on Web-Age Information Management, pp. 453–458 (2014).
https://doi.org/10.1007/978-3-319-08010-9_48

9. Huang, C., Wang, D., Chawla, N.: Towards time-sensitive truth discovery in social sensing
applications. In: Proceedings - 2015 IEEE 12th International Conference on Mobile Ad-hoc
and Sensor Systems, MASS 2015, pp. 154–162 (2015)

10. Folorunso, O., Mustapha, O.A.: A fuzzy expert system to trust-based access control in
crowdsourcing environments. Appl. Comput. Inform. 11(2), 116–129 (2015). https://doi.org/
10.1016/j.aci.2014.07.001

11. Howard, C., Jones, D., Reece, S., Waldock, A.: Learning to trust the crowd: validating
“crowd” sources for improved situational awareness in disaster response. Procedia Eng. 159,
141–147 (2016). https://doi.org/10.1016/j.proeng.2016.08.141%0A

12. Li, Y., Gao, J., Meng, C., et al.: A survey on truth discovery. ACM SIGKDD Explor. Newsl.
17(2), 1–16 (2016). https://doi.org/10.1145/2897350.2897352

13. Mali, P., Rahane, V., Maskar, S., Kumbhar, A., Wankhade, S.V.: Criminal tracking system
using CCTV. Imp. J. Interdiscip. Res. 2(7) (2016). http://www.onlinejournal.in

14. Mathew, A., Sheth, A., Deligiannidis, L.: SemanticSpy: suspect tracking using semantic data
in a multimedia environment. In: Mehrotra, S., Zeng, D.D., Chen, H., Thuraisingham, B.,
Wang, F.-Y. (eds.) ISI 2006. LNCS, vol. 3975, pp. 492–497. Springer, Heidelberg (2006).
https://doi.org/10.1007/11760146_46

15. El-Aziz, E.M.A., Mesbah, S., Mahar, K.: GIS-based decision support system for criminal
tracking. In: International Conference on Computer Theory and Applications, ICCTA,
pp. 30–34. IEEE (2012)

16. James, A.B.: Crime intelligence 2.0: reinforcing crowdsourcing using artificial intelligence
and mobile computing (2017). https://cloudfront.escholarship.org/dist/prd/content/
qt39s3k7bw/qt39s3k7bw.pdf

17. Xu, G., Li, H., Tan, C., Liu, D., Dai, Y., Yang, K.: Achieving efficient and privacy-
preserving truth discovery in crowd sensing systems. Comput. Secur. 69, 114–126 (2017).
https://doi.org/10.1016/j.cose.2016.11.014

18. Morschheuser, B., Werder, K., Hamari, J., Abe, J.: How to gamify? A method for designing
gamification. In: Proceedings 50th Annual Hawaii International Conference on System
Sciences (HICSS), Hawaii, USA, 4–7 January 2017, pp. 1–10 (2017). https://doi.org/10.
24251/HICSS.2017.155

19. El Alaoui El Abdallaoui, H., Ennaji, F.Z., El Fazziki, A.: An image processing based
framework using crowdsourcing for a successful suspect investigation. In: Abraham, A.,
Haqiq, A., Muda, A.K., Gandhi, N. (eds.) SoCPaR 2017. AISC, vol. 737, pp. 70–80.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76357-6_7

A Gamification and Objectivity Based Approach to Improve Users Motivation 167

http://dx.doi.org/10.1109/ICIMTR.2012.6236447
http://dx.doi.org/10.1016/j.chb.2014.08.006
http://dx.doi.org/10.1007/978-3-319-08010-9_48
http://dx.doi.org/10.1016/j.aci.2014.07.001
http://dx.doi.org/10.1016/j.aci.2014.07.001
http://dx.doi.org/10.1016/j.proeng.2016.08.141%0A
http://dx.doi.org/10.1145/2897350.2897352
http://www.onlinejournal.in
http://dx.doi.org/10.1007/11760146_46
https://cloudfront.escholarship.org/dist/prd/content/qt39s3k7bw/qt39s3k7bw.pdf
https://cloudfront.escholarship.org/dist/prd/content/qt39s3k7bw/qt39s3k7bw.pdf
http://dx.doi.org/10.1016/j.cose.2016.11.014
http://dx.doi.org/10.24251/HICSS.2017.155
http://dx.doi.org/10.24251/HICSS.2017.155
http://dx.doi.org/10.1007/978-3-319-76357-6_7


Modeling and Evaluating Cross-layer
Elasticity Strategies in Cloud Systems

Khaled Khebbeb1,2(&), Nabil Hameurlain2, and Faiza Belala1

1 LIRE Laboratory, Constantine 2 University – Abdelhamid Mehri,
Constantine, Algeria

{khaled.khebbeb,faiza.belala}@univ-constantine2.dz,

khaled.khebbeb@univ-pau.fr
2 LIUPPA Laboratory, University of Pau, Pau, France

nabil.hameurlain@univ-pau.fr

Abstract. Clouds are complex systems that provide computing resources in an
elastic way. Elasticity property allows their adaptation to input workload by (de)
provisioning resources as the demand rises and drops. However, due to the
numerous overlapping factors that impact their elasticity and the unpredictable
nature of the workload, providing accurate action plans to manage cloud sys-
tems’ elastic adaptations is a particularly challenging task. In this paper, we
propose an approach based on Bigraphical Reactive Systems (BRS) to model
cloud structures and their elastic behavior. We design elasticity strategies that
operate at service and infrastructure cloud levels to manage the elastic adapta-
tions. Besides, we provide a Maude encoding to permit generic executability and
formal verification of the elastic behaviors. One step ahead, we show how the
strategies can be combined at both levels to provide different high-level elastic
behaviors. Finally, we evaluate the different cross-layer combinations using
Queuing Theory.

Keywords: Cloud Computing � Elasticity � Cross-layer elastic behavior
Modeling � Bigraphical Reactive Systems � Maude

1 Introduction

Cloud computing [25] is a recent paradigm that has known a great interest in both
industrial and academic sectors. It consists of providing a pool of virtualized resources
(servers, virtual machines, etc.) as on-demand services. These resources are offered by
cloud providers according to three fundamental service models: infrastructure as a
service (IaaS), platform as a service (PaaS), and software as a service (SaaS). The most
appealing feature that distinguishes the cloud from other models is the elasticity
property [16]. Elasticity [11] allows to efficiently control resources provisioning
according to workload fluctuation in a way to maintain an adequate quality of service
(QoS) while minimizing operating cost. Such a behavior is implemented by an elas-
ticity controller: an entity usually based on a closed control loop [18] that decides of the
elasticity actions to be triggered to adapt to the demand. In fact, managing a cloud
system’s elasticity can be particularly challenging. Elastic behaviors rely on many
overlapping factors such as the available resources, current workload, etc. Managing

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 168–183, 2018.
https://doi.org/10.1007/978-3-030-00856-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_11&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_11&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_11&amp;domain=pdf


these dependencies significantly increases the difficulty of modeling cloud systems’
elasticity controller. To address this challenge, formal methods characterized by their
efficiency, reliability and precision, present an effective solution to deal with these
numerous factors.

In this paper, we provide a formal modeling approach that reduces the complexity
of designing cloud systems and the elasticity controller behavior. We adopt Bigraph-
ical Reactive Systems (BRS) [26] as a meta-model for specifying structural and
behavioral aspects of elastic cloud systems. Bigraphs are used to model the structure of
cloud systems and the elasticity controller. Bigraphical reaction rules describe the
elastic behavior of a cloud system. We focus on the infrastructure (IaaS) and service
(SaaS) levels to define reactive elasticity strategies for provisioning and deprovisioning
cloud resources in a cross-layered way. A strategy provides the logic that governs
resources provisioning. It enables the elasticity controller to manage the cloud system’s
elastic behavior. It consists of a set of actions (bigraphical reaction rules) that are
triggered according to the specified conditions (i.e., reactive strategies take the form: if
condition(s) then action(s)).

Furthermore, we turn to Maude [23] as a semantic framework to encode the BRS
modeling approach and to provide a generic executable solution of cloud elastic
behavior. Maude is a formal tool environment based on rewriting logic. It can be used
as a declarative and executable formal specification language, and as a formal verifi-
cation system. It provides good representation and verification capabilities for a wide
range of systems including models for concurrency. This enables us to easily map the
BRS specifications into Maude modules and to manage the non-determinism that
characterizes cloud systems’ elastic behavior.

Finally, we present a way to combine different strategies at both infrastructure and
service levels to enable different high level elastic behaviors. We propose a queuing-
based approach as an analytical support for the elastic behavior. Precisely, we conduct
experimental simulations of different execution scenarios to provide a quantitative
evaluation of the multiple cross-layer elasticity strategies combinations.

The remainder of the paper is structured as follows. In Sect. 2, we present our
vision of cloud systems and explain how their elastic behavior is managed by the
elasticity controller. In Sect. 3, we introduce and use BRS formalism to provide a
modeling approach for cloud systems. We model the elasticity controller and define
elasticity strategies. In Sect. 4, we encode the bigraphical specifications of elastic cloud
systems into Maude. We provide a quantitative evaluation of the elasticity strategies
combinations using a queuing approach in Sect. 5. In Sect. 6, we review the state of art
on elasticity and formal specification of elastic cloud systems. Finally, Sect. 7
summarizes and concludes the paper.

2 Cloud Systems and Elasticity

At a high level of abstraction, an elastic cloud system can be divided in three parts: the
front-end part, the back-end part and the elasticity controller. The front-end represents
the client interface that is used to access the cloud system and to interact with it. The
back-end part refers to the cloud system’s hosting environment, i.e., the set of computing

Modeling and Evaluating Cross-layer Elasticity Strategies in Cloud Systems 169



resources (servers, virtual machines, service instances, etc.) that are deployed in the
system and that are provided to satisfy its incoming workload. Cloud systems offer their
computing resources in an elastic way. Elasticity is property that was defined as “the
degree in which a system is able to adapt to workload changes by provisioning and
deprovisioning resources in an autonomic manner such that at each point in time the
available resources match the current demand as closely as possible.” [13].

Elastic cloud systems usually work according to the closed-loop architecture shown
in Fig. 1, where the elastic cloud system receives end-users’ requests through its client
interface. The amount of received requests (i.e., the input workload) can oscillate in an
unpredictable manner. The growing workload, thus the system’s load can cause users
Quality of Experience (QoE) degradations (e.g. performance drop). The cloud infras-
tructure provider hosts the controlled system (i.e., the cloud hosting environment). It
provides costs to the cloud service provider according to the provisioned resources
(that are allocated to the service provider’s running applications). When the input
workload drops, the eventually unnecessarily allocated resources are still billed. The
elasticity controller monitors the controlled system and determines its adaptation (i.e.,
its elastic behavior). The adaptation actions (i.e. (de)provision cloud resources) are
triggered to satisfy high-level policies that are set by the service provider such as
minimize costs, maximize performance, etc.

The behavior of an elastic system can be intuitively described as follows. During its
runtime, the system’s load can increase. Which might lead to overload the provisioned
resources. To avoid the saturation, an elastic system stretches, i.e., it scales by provi-
sioning more computing resources. Conversely, when the system load decreases, some
resources might become underused. To reduce costs, the elastic system contracts, i.e., it
scales by deprovisioning the unnecessarily allocated resources [4]. However, due to the
complexity of cloud systems and the multiplicity of the overlapping factors that impact
their elasticity, specifying and implementing the elastic behavior is a particularly
tedious task. Elasticity is specified by strategies that are designed to satisfy the high-
level policies in an autonomic way. In this paper, we address this challenge by relying
on formal methods. We provide a BRS based modeling of cloud systems’ structure and
the elasticity controller’s behavior. Then we encode the proposed specification into
Maude language to provide an executable solution of the elastic behaviors.

Fig. 1. High level view of cloud systems’ elastic behavior

170 K. Khebbeb et al.



3 BRS Based Specification of Elastic Cloud Systems

Bigraphical reactive systems (BRS) are a recent formalism introduced by Milner [26,
27], for modeling the temporal and spatial evolution of computation. It provides an
algebraical model that emphasize both connectivity and locality via a link graph and a
place graph respectively. A BRS consists of a set of bigraphs and a set of reaction
rules, which define the dynamic evolution of the system by specifying how the set of
bigraphs can be reconfigured.

3.1 Bigraphical Modeling of Cloud Systems

A cloud system is represented by a bigraph CS including all cloud architectural ele-
ments. The sorting logic introduces mapping rules and expresses all the constraints and
formation rules, that CS needs to satisfy, to ensure proper and accurate encoding of the
cloud semantics into BRS concepts. Formal definitions are given in what follows.

Definition 1. Formally, a cloud system is defined by a bigraph CS, where:

CS ¼ VCS;ECS; ctrlCS;CS
P;CSL

� �
: ICS ! JCS

– VCS and ECS are sets of nodes and edges of the bigraph CS.
– ctrlCS : VCS ! KCS a control map that assigns each node v 2 Vcs with a control

k 2 Kcs.
– CSP ¼ VCS; ctrlCS; prntCSð Þ : mCS ! nCS is the place graph of CS where

is a parent map. mCS and nCS are the number of sites
and regions of the bigraph CS.

– CSL ¼ VCS;ECS; ctrlCS; linkCSð Þ : XCS ! YCS represents link graph of CS, where
is a link map, XCS and YCS are respectively inner

and outer names and PCS is the set of ports of CS.
– ICS ¼ mCS;XCSh i and JCS ¼ nCS; YCSh i are the inner and outer interfaces of the

cloud system bigraph CS.

Nodes VCS represent the physical (servers) or logical (VM and service instances)
elements of the cloud system. Edges ECS represent the links (e.g. communication
canals) that connect the nodes via their ports PCS. Control map ctrlCS associate
semantics to the nodes. The place graph CSPgives the hierarchical construction of the
system basing on the parent map prntCS for nodes and regions (e.g. a server node is a
parent for a VM node, or hosts is). Regions represent the different parts of the system
(e.g. the hosting environment). Sites are used to neglect parts of the system that are not
included in the model. The link graph CSL gives the link map linkCS that show all the
connections between ports and names. Inner and outer interfaces ICS and JCS give the
openness of the system to its external environment (other bigraphs). Inner and outer
names XCS and YCS give labels to different parts of the system for interfacing purposes.

Modeling and Evaluating Cross-layer Elasticity Strategies in Cloud Systems 171



Definition 2. The sorting discipline associated to CS is a triple
RCS ¼ HCS;KCS;UCSf g.

Where HCS is a non-empty set of sorts. KCS is its signature, and UCS is a set of
formation rules associated to the bigraph. Table 1 gives for each cloud concept the
mapping rules for BRS equivalence. It consists of the control associated to the entity,
its arity (number of ports) and its associated sort. Sorts are used to distinguish node
types for structural constraints while controls identify states and parameters a node can
have. For instance, a server noted SE has control SEL when it is overloaded and SEU

when unused but all nodes representing servers are of sort e.

Table 2 gives the formation rules that define construction constraints over the
bigraphical model. Rule U0 specifies that servers are at the top of the hierarchical order
of the deployed entities in the bigraph. Rules U1–3 give the structural disposition of the
hosting environment where a server hosts VMs, a VM runs service instances and a
service instance handles requests. All connections are port-to-port links to illustrate
possible links between the different cloud entities. In U5–6, we use the name w (for
workload) to illustrate the connection the cloud system has with its abstracted front-end
part. A server is linked to its hosted VMs and a VM is linked to the service instances it
is running [19]. Rule U4 gives the active elements, i.e., that may take part in reactions.

Table 1. The sorting discipline of the bigraph CS

Cloud element Control Arity Sort

Server SE 2 e
Overloaded server SEL 2 e

Unused server SEU 2 e

Virtual machine VM 2 v
Overloaded VM VML 2 v

Unused VM VMU 2 v

Service instance S 1 s
Overloaded service instance SL 1 s

Unused service instance SU 1 s

Request q 0 r

Table 2. Construction constraints UCS of the bigraph CS

Rule description

U0 All children of a 0-region (hosting environment) have sort e
U1 All children of a e-node have sort v
U2 All children of a v-node have sort s
U3 All children of a s-node have sort q
U4 All devsq-nodes are active
U5 In an e-node, one port is always linked to a w-name and the other may be linked to

v-nodes
U6 In a v-node, one port is always linked to a e-node and the other may be linked to

s-nodes

172 K. Khebbeb et al.



3.2 The Elasticity Controller as a Behavioral Entity

The elasticity controller determines the adaptations of the cloud system’s hosting
environment. In our modeling approach, we consider this entity as the set of reaction
rules that describe the system’s behavior and the logic that governs the rules’ trig-
gering. This logic is implemented as strategies that describe different adaptations of the
cloud system in a cross-layered manner (i.e., at infrastructure and service cloud levels).

Reaction Rules. A reaction rule Ri is a pair R;R0ð Þ; where redex R and reactum R0 are
bigraphs that have the same interface. The evolution of the cloud bigraph CS is derived
by checking if R is a match in CS and by substituting it with R0 to obtain a new system
CS0. This is made with triggering the suitable reaction rule Ri. The evolution is noted

CS!Ri CS0.
Table 3 gives the algebraic description of the different reaction rules that implement

the adaptation actions of the elasticity controller. Sites (expressed as dÞ are used to
neglect the elements that are not included in the reaction. The specified rules define the
horizontal scale elasticity actions at different cloud levels. Reaction rules are applied
for provisioning (R1–2) and deprovisioning (R3–4) resources by scaling-out and
scaling-in the hosting environment. Rules R5–6 specify migration actions for service
instances and requests, which are used to balance the system’s load.

Table 3. Reaction rules describing adaptation actions

Adaptation
action

Reaction rule algebraic form

Scale-Out
Replicate
service
instance

R1 ¼def SE: VM: S:d2ð Þjd1ð Þjd0ð Þ id ! SE: VM: S:d2ð ÞjSð Þjd1ð Þj jd0Þjid

Replicate
VM instance

R2 ¼def SE: VM: S:d2ð Þjd1ð Þjd0ð Þ id ! SE: ð VM: S:d2ð Þjd1ð Þj VMð Þð Þj jd0Þjid

Scale-In
Consolidate
service
instance

R3 ¼def SE:ð VM: S:d3ð Þ S:d2ð Þj jd1ð Þjd0Þjid ! SE:ððVM: S:d2ð Þjd1Þjd0Þjid

Consolidate
VM instance

R4 ¼def SE: ð VM: S:d3ð Þjd2ð Þj VM:d1ð Þð Þjd0Þjid ! SE:ððVM: S:d2ð Þjd1Þjd0Þjid

Load Balancing
Migrate
service
instance

R5 ¼defSE: ð VM: S:d3ð Þjd2ð Þj VM:d1ð Þð Þjd0Þjid
! SE: ð VMjd2ð Þj VM: S:d3ð Þð Þð Þjd0Þjid

Transfer
request

R6 ¼defSE: VM: S:qjd4ð Þjd3ð Þ VM: S:d2ð Þjd1ð Þj jd0ð Þjid
! SE: VM: S:d4ð Þjd3ð Þ VM: S:qjd2ð Þjd1ð Þj jd0ð Þjid

Modeling and Evaluating Cross-layer Elasticity Strategies in Cloud Systems 173



Elasticity Strategies. As explained before, the specified strategies define the logic that
governs the elastic behavior of the controlled cloud system. We use reactive strategies
to make decisions about the elastic adaptations of the deployed entities by reasoning on
their states. A reactive strategy takes the form: IF Condition(s) THEN Action(s) where
conditions are expressed in predicates logic and actions are reaction rules. Table 4
defines the scaling (out/in) policies at both service and infrastructure levels.

Infrastructure Level. We introduce two strategies to express different provisioning
policies for VM instances, as follows.

• Strategy V1: ensures VM instances’ high availability. It states that the system scales
out, i.e., provision a new VM instance, by executing rule R2 when at least one VM
is overloaded, i.e., when it reaches its upper threshold of hosted service instances. In
other terms, when it has control VML.

• Strategy V2: is designed to ensure the limited availability in terms of VM instances.
It states that scale-out adaptations (provisioning VM instances) are triggered when
all available VMs are overloaded.

• Both V1 and V2 specify that the system scales-in, i.e., deprovisions an empty VM
instance (of control VMU) by executing rule R4, if one is detected and no over-
loaded VM is available. This choice prevents having contradictory adaptation loops.

Service Level. We define two strategies to describe the system’s service instances
provisioning behaviors, as follows.

• Strategy S1: ensures service instances’ high availability. It states that a new instance
of service is provisioned by executing rule R1, when at least one available instance
is overloaded (when it has control SLÞ.

• Strategy S2: defines service instances’ limited availability. It states that scale-out
adaptations (provisioning service instances) are triggered when all available service
instances are overloaded.

• Strategies S1 and S2 specify that the system scales in, i.e., deprovisions an empty
service instance (which has control SU) by executing rule R3, when one is detected,
and no overloaded instance is available.

Table 4. Scaling strategies at service and infrastructure levels

Strategy Scale-Out Scale-In

Infrastructure level
V1 IF 9v 2 VCS ctrlCS vð Þ ¼ VMLTHEN R2 IF 8v 2 VCS9v0 2 VCS ctrlCS

vð Þ 6¼ VML^ctrlCS v0ð Þ ¼ VMUTHEN R4V2 IF 8v 2 VCS ctrlCS vð Þ ¼ VMLTHEN R2

Service level
S1 IF 9s 2 VCS ctrlCS sð Þ ¼ SLTHEN R1 IF 8s 2 VCS9s0 2 VCS ctrlCS sð Þ 6¼ SL ^ctrlCS s0ð Þ

¼ SUTHEN R3S2 IF 8s 2 VCS ctrlCS sð Þ ¼ SLTHEN R1

174 K. Khebbeb et al.



In addition, we define two strategies for the system’s load balancing at both service
and infrastructure levels as follows.

• Strategy LB-V: describes the system load balancing at infrastructure level, it states
that service instances are migrated from loaded VMs to less loaded ones (executing
rule R5) to reach a VMs load equilibrium.

• Strategy LB-S: states that requests are transferred from loaded service instances to
less loaded ones (by applying rule R6) to achieve load balancing at service level.

Modeling the Elastic Behavior with LTL. Modeling the introduced elastic behavior
with Linear Temporal Logic allows the specification of formulas to verify the system’s
elastic adaptations. To this purpose, we define a model of temporal logic with a Kripke
structure ACS, as follows.

Definition 3. Given a set APCS of atomic propositions, we consider the Kripke
structure ACS ¼ A;!A; LCSð Þ. Where A is the set of states, !A is the transition
relation, and LCS : A ! APCS is the labeling function associating to each state a 2 A,
the set LCS að Þ of the atomic propositions in APCS that hold in the state a. LTL APCSð Þ
denotes the formulas of the propositional linear temporal logic. The semantics of
LTL APCSð Þ is defined by a satisfaction relation: ACS; a�u, where u 2 LTL APCSð Þ.

We consider the set APCS ¼ Stable;Overloaded;Underused; LBTrue;Mf g of the
atomic propositions that describe the hosting environment’s states. For the sake of
simplicity, these states are symbolic and relate to the elastic behavior of the system.
The system is considered Overloaded/Underused when at least one entity (VM,
Service) is overloaded/unused. It is Stable otherwise. LBTrue is a non-exclusive
proposition that can hold together with Stable, Overloaded or Underused (that are
exclusive) when load balancing at VM or Service levels is applicable. M holds when
the system is being monitored. In other terms, different structural states of the system in
A (i.e., configurations) can be gathered (i.e., labeled) in the same class of equivalence
with respect to the global symbolic state of the system in APCS.

The non-deterministic finite-state automaton in Fig. 2 shows the transitions
Scale-Out, Scale-In and LB (for Load Balancing) that represent the adaptation actions
that are executed by the elasticity controller. The transitions Input and Output stand for
receiving and releasing end-users’ requests. Initially, the controlled system is in the
monitoring phase. When monitored, it can be at any elastic state.

Fig. 2. Elastic behavior non-deterministic finite-state automaton

Modeling and Evaluating Cross-layer Elasticity Strategies in Cloud Systems 175



Note that the evolution of the system’s state depends on its elastic constraints
(bounded resources capacity introduced by thresholds, triggering predicates, etc.).
Thus, reaching the stable state is not always possible (i.e., all elastic states can be final).

To describe the elastic behaviors that are triggered by the elasticity controller in
LTL, we introduce the set LTL APð Þ ¼ Scale�Out; Scale�In; LoadBalancef g of the
propositional formulas, as follows.

• Scale�Out � G Overloaded ! F Stableð Þ
• Scale�In � G Underused ! F Stableð Þ
• LoadBalance � G LBTrue ! F� LBTrueð Þ

Where the formulas Scale-Out and Scale-In state that a given system that is
Overloaded/Underused will eventually reach its Stable state. LoadBalance formula
ensures that the system will eventually apply load balancing as long as it is possible.
We use the symbol * for negation. The symbols G and F are LTL operators that
respectively stand for “always” and “eventually”.

4 Principles of Maude Encoding and Property Verification

To verify the correctness of the introduced elasticity strategies and to watch the aimed
cross-layered elasticity, it is important to provide an executable solution for the
specified elastic behaviors. Theoretically, BRS provide good meta-modeling bases to
specify cloud systems’ structure and their elastic behavior. As for their executable
capabilities, the few existing tools built around BRS as BigraphER [5] and BPL Tool
[14] are limited and only suitable for some specific application domains. Furthermore,
the BRS model-checker BigMC [30] that was used in [32], allows formal verification of
safety properties. However, the possible verifications rely on very limited predefined
predicates. These tools lack of providing concurrent and autonomic executability of the
specified BRS models. In this paper, we turn to Maude language to tackle these
limitations and to provide a generic executable solution of elasticity strategies together
with their verification.

4.1 Motivating the Use of Maude

Maude [9] is a high-level formal specification language based on equational and
rewriting logics. A Maude program is a logical theory and a Maude computation is
logical deduction which uses the axioms specified in the program/theory. A Maude
specification is structured in two parts. (1) A functional module that specifies a theory
in membership equational logic. Such a theory is a pair (R;E [AÞ, where the signature
R specifies the type structure (sorts, subsorts, operators etc.). E is the collection of the
(possibly conditional) equations declared in the functional module, and A is the col-
lection of equational attributes (associative, commutative, etc.) declared for the oper-
ators. (2) And a system module that specifies a rewrite theory as a triple R;E [A;Rð Þ.
Where R;E [Að Þ is the module’s equational theory part, and R is a collection of
(possibly conditional) rewrite rules.

176 K. Khebbeb et al.



The Bigraphical specifications for cloud systems’ structure (in Sect. 3.1) can be
encoded in a functional module. Where the declared operations and equations define
the constructors that build the system’s elements. Similarly, BRS dynamics (in
Sect. 3.2) that describe the elasticity controller’s behavior can be encoded in a system
module. Where the elasticity strategies are described as conditional rewrite rules. The
set of rewrite rules R express the bigraphical reaction rules. Their triggering conditions
expressed as equations from the functional module encode the strategies’ predicates.

4.2 Setting up Elastic Cloud Systems

To encode the BRS modeling approach for cloud structures and their elastic behavior in
Maude, we first map the BRS model into Maude language as shown in Table 5.

Structure Encoding. In the functional module, the bigraph sorts e, v and s (i.e., server,
VM and service) are defined as CS, VM and S. Note that we enriched Maude sorts with
additional information as the maximum hosting thresholds and the entities states. A sort
is built according to its associated constructor. For instance, a cloud server is built by
the term CS < x,y,z/VML:state > , where x, y and z are naturals that encode
upper hosting thresholds at server, VM and service levels. VML is a list of VMs, this
relationship is expressed by the declaration of sort VM as a subsort of sort VML. The
element state gives a state out of the constructors (overloaded, unused, stable, etc.).
To enable horizontal scale strategies according to configurable preferences, we define
the sort HSCALE(V i, S j) :: cs. Where the parameters i; j 2 1; 2½ � indicate which
strategies are applied at infrastructure (V1 or V2) and service (S1 or S2) levels of the
cloud system cs.

Table 5. Encoding the BRS cloud model into Maude

Modeling and Evaluating Cross-layer Elasticity Strategies in Cloud Systems 177



System State Predicates Encoding. We define a set of system predicates in the
functional module that give information about the managed cloud system configuration
(that we express as a cloud server in Maude). For instance, AoverV() is a predicate for
“all VMs are overloaded” and EunS() is a predicate for “there exists an unused service
instance”. We also encode system state predicates isStable(), isOverloaded() and
isUnderused() that are true if the cloud system is stable, overloaded or underused.

Elasticity Strategies Encoding. Strategies are encoded as conditional rewrite rules in
the system module. Their conditions are the states and monitoring predicates and their
actions (bigraph reaction rules) are encoded as Maude functional computation. For
instance, load-balancing strategy at VM level is specified as the following rewrite rule:
crl[LB-VM-level]:cs => LBV(cs) if LBVpred(cs). Where cs is a given
cloud system, LBV(cs) is an equation that reduces the term cs in such a way to apply
load-balancing at VM level and LBVpred(cs) is a predicate that is true if load-
balancing at VM level in cs is possible. LBV() and LBVpred() are defined as equations
in the functional module.

Formal Verification of Elasticity. To verify the elastic behavior of the system as
encoded in the system module, we define a Maude property specification based on
Linear Temporal Logic. Maude allows associating Kripke structures to the rewrite
theory specified in the system module. The semantics introduced by the Kripke
structure ACS in Sect. 3.2 allowed us to define a generic LTL model checking that can
reason on any system configuration. For instance, determining that a cloud configu-
ration is stable in terms of elasticity is specified with: cs � Stable = true if
isStable(cs) == true. Where cs is a given cloud configuration. Stable is a
proposition 2 APCS that represent the symbolic elastic state “stable”. And isStable
(cs) is a predicate for “the cloud system cs is stable” which is defined in the func-
tional module.

We execute Maude’s LTL model-checker with, as parameters, a cloud configura-
tion as an initial state and a property formula in LTL APCSð Þ to verify. The model-
checker can give counter examples showing the succession of the triggered rewrite
rules that are applied on the initial state of the system, in such a way to verify the given
property according to the specified elasticity strategies.

5 A Queuing Approach for Quantitative Evaluation

As its input workload rises, the congestions that may result in a system are in fact
waiting queues that indicate the insufficiency of the provisioned resources. For this
reason, we advocate that a queuing approach is a relevant support to study the elastic
behavior of a system and to evaluate the performance of elasticity strategies. To pro-
ceed to a quantitative evaluation of the introduced strategies, we perform queuing-
based offline simulations of elastic cloud systems.

Queuing Model. We consider a queuing model, defined by a set of parameters as
introduced by the Kendall notation: A/S/C/Q/N/D [3], where C is the number of service
instances. A is the arriving process describing how the requests arrive into the system.

178 K. Khebbeb et al.



D is the serving discipline describing how the requests are processed (e.g., first come
first served). The service process S gives the amount of time required to process the
requests. Q is the maximum number of requests that the system can hold, and N is the
number of requests expected to arrive into the system. In our evaluation, we consider
that Q and N ¼ 1. We consider that A is a Poisson process which gives an expo-
nential distribution of the received requests (at each time unit) with the average value of
k. S also follows an exponential law with the average value of µ to give the number of
requests that are processed by service instances. The essence of elasticity being the
adaptations, we use a queuing model with on-demand number C of service instances,
inspired from [15], to show how the system adapts to its varying input workload by
(de)provisioning resources at service and infrastructure levels.

Experiment. To evaluate elasticity, we consider the example of a cloud-based voting
service where initially one VM is provisioned in which one service instance is
deployed. We define the upper-bound hosting thresholds v ¼ 2, s ¼ 2 and w ¼ 40, for
the cloud system, the VMs and the service instances respectively in terms of VMs,
service instances and requests. We simulate the execution of a cloud system from the
same initial configuration according to the defined strategies, for both infrastructure
(V1, V2) and service (S1, S2) levels. The simulations are performed within 50 time
units over a scenario where k ¼ 50 and l ¼ 35. The results give the system’s average
resources provisioning, performance and efficiency. Introducing thresholds makes the
systems bounded in terms of hosting capabilities. Thus, the displayed rates are given in
function of the maximum capacity of service/VM instances and their average recorded
deployment. Idem for the system load (i.e., the processed requests per time unit). The
delay represents the ratio between the pending requests and those being served.

Knowing that load balancing (LB-V, LB-S) is applied when possible, the graphs in
Fig. 3 show the cross-layer behaviors resulting from combining the scaling strategies
introduced in Sect. 3.2.

Intuitively, combining high availability for both infrastructure and service levels
(V1, S1) leads to high-performance, i.e., low processing delay (1%), but also brings
high provisioning costs, i.e., high hosting environment deployment (93% service and
100% VM instances capacity).

Fig. 3. Evaluation of cross-layer elasticity strategies

Modeling and Evaluating Cross-layer Elasticity Strategies in Cloud Systems 179



Inversely, applying limited availability at both levels (V2, S2) implies low costs i.e.,
high economy but also low performance, i.e., high processing delay (28%).

The combination (V2, S1) ensures infrastructure costs optimization, i.e., new VMs
are provisioned only when the available ones are fully loaded (by scaling-out at service
level). It brings better overall optimization than (V1, S1) with less average service
deployment and better average system load (with respectively 73% and 44% service
instances provisioning and usage rate for combination (VS, S1) versus 93% and 32%
for combination (V1, S1)), yet with lower performance (i.e., higher delay).

The combination (V1, S2) doesn’t seem to describe a specific behavior (labeled “x”)
in this simulation. It leads to mediocre rentability of the VMs and to consequent delay
regarding the recorded usage rate of the Service instances.

To conclude this evaluation, we want to emphasize the fact that the concept of
“good” strategy is not absolute. It depends on the case study (i.e., the system config-
uration, workload tendencies, available resources, etc.) and on the preferences set by
the cloud service provider [29]. Indeed, having strategies that describe different high-
level behaviors gives a certain range of possibilities to endow the managed cloud
system with the desirable elastic behaviors.

6 Related Work

There have been several researches in the literature about cloud systems’ elasticity such
as [1, 7, 10, 21, 33]. However, only a few works like [12, 20, 22, 28] were proposed to
study elasticity property using formal methods.

In the context of modeling cloud systems and their elastic behaviors, authors in [4]
adopted the temporal logic named CLTLt(D) (Timed Constraint LTL) to model some
properties related to cloud systems such as elasticity, resource management and quality
of service. In their work, they considered cloud resources as virtual machines and did
not address service level. In [2] authors proposed a Petri Nets based formalization to
describe cloud-based business processes’ elastic behaviors. They introduced elasticity
strategies for routing, duplicating and consolidating cloud components at service level.
They focused on the application layer of a cloud configuration but did not address the
cloud infrastructure in their model. As for our adopted formalism, BRS were proven
useful in the specification of ubiquitous, context aware and distributed systems [17, 24]
and in other domains [6]. BRS were used in [31] to provide a generic model of elastic
cloud systems. Authors modeled cloud structures with bigraphs in three parts: the front-
end part, the back-end part and the elasticity controller. They relied on bigraphical
reaction rules to express the front/back-end interactions along with the adaptation
actions of cloud configurations at service and infrastructure levels. However, they
lacked providing elasticity strategies that operate in an autonomic manner.

In our previous work [19], we proposed a BRS modeling for elastic cloud systems
in two parts. First, we defined a bigraphical specification for the hosting environment
and the elasticity controller structures. And second, we used bigraphical reaction rules
to model the adaptation actions, which describe the elasticity controller’s behavior.

180 K. Khebbeb et al.



In this present paper, we propose a different approach. We use a bigraphical
modeling to describe the structural aspect of a cloud system’s hosting environment
only; and we model the elasticity controller as a behavioral entity. The controller is
modeled using bigraphical reaction rules alongside with the logic that triggers the
reactions. This logic is represented by elasticity strategies that specify the elastic
behavior of the cloud system in a cross-layered manner (i.e., at service and infras-
tructure levels). This new approach enables seeing the elasticity controller as an
intrinsic entity of the cloud system. Therefore, monitoring tasks over the controlled
cloud system enables considering it as “self-aware”; and the adaptation actions that are
triggered in function of its state enables considering it as “self-adaptive” [8]. In
addition, we propose a way to combine the different designed strategies to provide
multiple cross-layer elastic patterns. We evaluate the combinations to highlight the
resulting high-level elastic behaviors.

Besides, Control Theory was used for resources management in distributed [35]
and cloud [34] systems. One of the main limitations of this approach is the non-
linearity of most inter-relationships in computing systems [36]. This requires designing
nonlinear and adaptive controllers that are difficult to understand and implement. In this
paper, we inspire from closed-loop based approaches to design our elasticity controller.
It aims at having the controlled cloud system reach a “stable” global state (which is
defined in predicates logic) by relying on elasticity strategies we specified using BRS.
Maude encoding of these behaviors ensures autonomic and concurrent execution of the
elastic adaptations. And Maude’s LTL model-checking enables verifying the correct-
ness of the adaptations regarding the reachability of the “stable” state.

7 Conclusion

In this paper, we provided a modeling approach for cloud systems’ structure and elastic
behaviors based on Bigraphical Reactive Systems. We use bigraphs and bigraphical
reactive rules to express both aspects respectively. These behaviors implement the
elasticity controller and are described by elasticity strategies. We propose different
strategies for horizontal scale (de)provisioning of cloud system resources and for load
balancing at service and infrastructure levels. Strategies describe the logic that enables
the elasticity controller to reason over the entire cloud system’s state and manage its
elastic adaptations.

One step further, we encoded the modeling approach into Maude language to
provide a generic executable solution for elasticity in cloud systems. We also provided
formal verification of elasticity property using the LTL model-checker integrated in
Maude.

Besides, we presented an original way to compose different elasticity strategies at
both service and infrastructure levels to provide multiple high-level elastic behaviors.

Finally, we proposed a queuing-based approach to conduct experimental simula-
tions of the different elasticity strategies combinations in order to provide a quantitative
evaluation of the adaptations.

Modeling and Evaluating Cross-layer Elasticity Strategies in Cloud Systems 181



As on-going work, we aim to enlarge the specifications of cloud system’s elastic
behavior. Our goal is to provide a more complete solution that considers vertical scale
elasticity for cloud resources management.

References

1. Ali-Eldin, A., Tordsson, J., Elmroth, E.: An adaptive hybrid elasticity controller for cloud
infrastructures. In: 2012 IEEE Network Operations and Management Symposium, Maui, HI,
pp. 204–212 (2012)

2. Amziani, M.: Modeling, evaluation and provisioning of elastic service-based business
processes in the cloud. Thesis. Institut National des Télécommunications, 2015. English. <
NNT: 2015TELE0016 > . < tel-01217186>

3. Baynat, B.: Théorie des files d’attente. Hermès Science publications, Paris (2000). http://
books.google.fr/books?id=NWWgMQEACAAJ

4. Bersani, M., Bianculli, D., et al.: Towards the formalization of properties of cloud based
elastic systems. In: Proceedings of the 6th International Workshop on Principles of
Engineering Service-oriented and Cloud Systems – PESOS 2014, Hyderabad, pp. 38–47
(2014)

5. Sevegnani, M., Calder, M.: BigraphER: rewriting and analysis engine for bigraphs. In:
Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 494–501. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-41540-6_27

6. Calder, M., Sevegnani, M.: Modeling IEEE 802.11 CSMA/CA RTS/CTS with stochastic
bigraphs with sharing. Form. Asp. Computing. 26(3), 537–561 (2014)

7. Chatziprimou, K., Lano, K., Zschaler, S.: Runtime infrastructure optimization in cloud iaas
structures. CloudCom 1, 687–692 (2013)

8. Chen, T., Bahsoon, R., Yao, X.: A survey and taxonomy of self-aware and self-adaptive
cloud autoscaling systems. ACM Comput. Surv. 51(3), 61:1–61:40 (2018)

9. Clavel, M., Duran, F., et al.: Maude Manual V 2.7.1 (2017)
10. Copil, G., Moldovan, D., et al.: “Multi-level elasticity control of cloud services. In: Service-

oriented Computing, 2013, pp. 429–436 (2013)
11. Dustdar, S., Guo, Y., Satzger, B., Truong, H.: Principles of elastic processes. IEEE Internet

Comput. 15, 66–71 (2011)
12. Freitas, L., Watson, P.: Formalizing workflows partitioning over federated clouds: Multi-

level security and costs. International Journal of Computer Mathematics, 91(5), 881–906
(2014)

13. Galante, G., Bona, L.: A survey on cloud computing elasticity. In: 2012 IEEE Fifth
International Conference on utility and Cloud Computing, Chicago, Il, 2012, pp. 263–270
(2012)

14. Glenstrup, A.J., Damgaard, T.C., et al.: An implementation of bigraph matching”. Technical
Report 2010-135. ITUniversitetet Kobenhavn, Copenhagen (2010)

15. Gurtov, A., Mazalov, V.: Queueing system with on-demand number of servers. Math. Appl.
40(2), 1–12 (2012)

16. Herbst, N., Kounev, S., Reussner, R.: Elasticity in cloud computing: What it is, and what it is
not. In: Proceedings of the 10th International Conference on Autonomic Computing, San
Jose, CA: uSENIX (2013)

17. Wang, J., Xu, D., Lei, Z.: Formalizing the structure and behaviour of context-aware systems
in bigraphs. In: First ACIS International Symposium on Software and Network Engineering
(2011)

182 K. Khebbeb et al.

http://books.google.fr/books?id=NWWgMQEACAAJ
http://books.google.fr/books?id=NWWgMQEACAAJ
http://dx.doi.org/10.1007/978-3-319-41540-6_27


18. Jacob, B.: A Practical Guide to the IBM Autonomic Computing Toolkit. IBM, International
Technical Support Organization, Raleigh (2004)

19. Khebbeb, K., Sahli, H., Hameurlain, N., et al.: A BRS Based Approach for Modeling Elastic
Cloud Systems. In: Service-Oriented Computing – ICSOC 2017 Workshops, pp. 5–17

20. Kikuchi, S., Hiraishi, K.: Improving reliability in management of cloud computing
infrastructure by formal methods. In: Network Operations and Management Symposium
(NOMS) pp. 1–7 (2014)

21. Letondeur, L.: Planification pour la gestion autonomique de l’élasticité d’applications dans le
cloud. Computer Science [cs]. Thesis at Joseph Fourier University, (2014). French. < tel-
01140128>

22. Rady, M.: Formal definition of service availability in cloud computing using OWL. In:
Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2013. LNCS, vol.
8111, pp. 189–194. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53856-
8_24

23. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol.
4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

24. Mansutti, A., Miculan, M., Peressotti, M.: Multi-agent systems design and prototyping with
bigraphical reactive systems. In: DAIS 2014, pp. 201–208 (2014)

25. Mell, P., Grance, T.: The NIST definition of cloud computing. In: National Institute of
Standards & Technology, Special Publication, 2011, pp. 800–145 (2011)

26. Milner, R.: Bigraphs and their algebra. Electron. Notes Theor. Comput. Sci. 209, 5–19
(2008)

27. Milner, R.: The space and motion of communicating agents. Cambridge University Press,
Cambridge (2009)

28. Naskos, A., Stachtiari, E., et al.: Cloud elasticity using probabilistic model checking. CoRR,
vol. abs/1405.4699 (2014)

29. Netto, M., Cardonha, C., et al.: Evaluating auto-scaling strategies for cloud computing
environments. In: 2014 IEEE 22nd International Symposium on Modelling, Analysis &
Simulation of Computer and Telecommunication Systems (2014)

30. Perrone, G., Debois, S., Hildebrandt, T.: A model checker for bigraphs. In: Proceedings of
the 27th ACM Symposium in Applied Computing ACM-SAC 2012 (2012)

31. Sahli, H., Hameurlain, N., Belala, F.: A bigraphical model for specifying elastic cloud
systems and their behaviour. Int. J. Parallel Emergent Distrib. Syst. (2016). https://doi.org/
10.1080/17445760.2016.1188927

32. Sahli, H., Belala, F., Bouanaka, C.: Model-checking cloud systems using BigMC. In: 8th
International Workshop on Verification and Evaluation of Computer and Communication
Systems. Bejaïa, Algeria, September 2014

33. Trihinas, D., Sofokleous, C., Loulloudes, N., Foudoulis, A., Pallis, G., Dikaiakos, M.D.:
Managing and monitoring elastic cloud applications. In: Casteleyn, S., Rossi, G., Winckler,
M. (eds.) ICWE 2014. LNCS, vol. 8541, pp. 523–527. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-08245-5_42

34. Mendieta, M., Martin, C., et al.: A control theory approach for managing cloud computing
resources: a proof-of-concept on memory partitioning. In: IEEE Second Ecuador Technical
Chapters Meeting (ETCM) (2017)

35. Liu, X., Zhu, X., et al.: Adaptive entitlement control of resource containers on shared
servers. In: 9th IFIP/IEEE International Symposium on Integrated Network Management
(2005)

36. Zhu, X., Uysal, M., et al.: What does control theory bring to systems research?
ACM SIGOPS Oper. Sys. Rev. 43(1), 62–69 (2009)

Modeling and Evaluating Cross-layer Elasticity Strategies in Cloud Systems 183

http://dx.doi.org/10.1007/978-3-642-53856-8_24
http://dx.doi.org/10.1007/978-3-642-53856-8_24
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1080/17445760.2016.1188927
http://dx.doi.org/10.1080/17445760.2016.1188927
http://dx.doi.org/10.1007/978-3-319-08245-5_42
http://dx.doi.org/10.1007/978-3-319-08245-5_42


Thing Federation as a Service:
Foundations and Demonstration

Zakaria Maamar1(B), Khouloud Boukadi2, Emir Ugljanin3, Thar Baker4,
Muhammad Asim5, Mohammed Al-Khafajiy4, Djamal Benslimane6,

and Hasna El Alaoui El Abdallaoui7

1 Zayed University, Dubai, UAE
zakaria.maamar@zu.ac.ae

2 Sfax University, Sfax, Tunisia
3 State University of Novi Pazar, Novi Pazar, Serbia
4 Liverpool John Moores University, Liverpool, UK

5 National University of Computer and Emerging Sciences, Islamabad, Pakistan
6 Université Lyon 1, Lyon, France

7 Cadi Ayyad University, Marrakesh, Morocco

Abstract. This paper presents the design and implementation guide-
lines of thing federation-as-a-service. The large and growing number of
things compliant with the Internet-of-Things (IoT) principles need to
be “harnessed” so, that, things’ collective over individual behaviors pre-
vail. A federation gathers necessary things together according to the
needs and requirements of the situation that this federation is tasked
to handle. Two types of federations exist: planned whose things are all
known at design-time and ad-hoc whose things are known after a com-
petitive selection at run-time. In this paper, federations handle situations
about emergency services that involve different stakeholders with differ-
ent backgrounds raising the complexity of ensuring a successful delivery
of these services. A system for patient emergency transfer following a
tunnel closure is implemented demonstrating the technical doability of
thing federation-as-a-service.

Keywords: Federation-as-a-Service · Internet of Things
Emergency services

1 Introduction

According to Gartner (www.gartner.com/newsroom/id/3165317), 6.4 billion
connected things were in use in 2016, up 3% from 2015, and will reach 20.8 billion
by 2020. It is, also, predicted that the total economic impact of the Internet-of-
Things (IoT) will reach between $3.9 trillion and $11.1 trillion per year by the
year 2025 [3]. This large and growing number of things need to be “harnessed”
so, that, among other benefits, collective over individual behaviors prevail. A
promising way of achieving this benefit is to put-in-place federations that would
gather relevant things together according to the needs and requirements of the
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 184–197, 2018.
https://doi.org/10.1007/978-3-030-00856-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_12&domain=pdf
www.gartner.com/newsroom/id/3165317


Thing Federation as a Service: Foundations and Demonstration 185

situations that these federations will be tasked to handle. In this paper, we exem-
plify situations with emergency services that involve different stakeholders with
different backgrounds raising the complexity of ensuring a successful delivery of
these services.

Contrarily to system/cloud/identity federations that are “thoroughly” inves-
tigated by the ICT community (Sect. 2.1), thing federation remains, to the best
of our knowledge, overlooked (or barely touched) for different reasons. The
ICT community’s current concern is to tackle challenges that hinder the oper-
ations of individual things (acting as silos). These challenges result from the
diversity and multiplicity of things’ development and communication technolo-
gies [1], users’ reluctance and sometimes rejection because of privacy invasion
caused by things [7], lack of killer applications that would justify the existence
of things [6], lack of an IoT-oriented software engineering discipline that would
guide thing analysis, design, and development [13], and, finally, passive nature
of things that primarily act as data suppliers (with limited actuating capabili-
ties) [3]. Thing federation requires a different thinking by, for instance, identify-
ing those things that would have the necessary capabilities in support of other
available things in the same federation.

We advocate for 2 types of federations that would be associated with the
same situations: planned and ad-hoc. The former is formed ahead of time and
has its thing constituents already identified (i.e., known) with respect to a situ-
ation’s needs and requirements. Contrarily, the latter is formed on-the-fly when
none of the existing planned federations can handle a situation and, hence, neces-
sary thing constituents that will satisfy this situation’s needs and requirements,
need to be identified. In either way, a set of criteria for selecting things among
similarly-functional things are deemed necessary and will constitute what we
refer to, in this paper, as Quality-of-Thing (QoT) model1. We, also, discuss, in
this paper, how ad-hoc federations evolve into planned federations over time.

Our contributions are manifold: (i) definition of QoT model in support of
thing identification and selection, (ii) definition of federations in preparation to
handling situations, (iii) development of planned versus ad-hoc federations, and
(iv) technical demonstration of federation use using a case study. The rest of this
paper is organized as follows. Section 2 presents some related work and a case
study. Section 3 is about the core concepts and principles of thing federations.
Some implementation details are, also, included in this section. Conclusions and
future work are drawn and listed in Sect. 4, respectively.

2 Background

This section first, discusses federations in other ICT domains like cloud and
identity, and, then, presents a case study requiring emergency services.

1 QoT is similar to Quality-of-Service (QoS) that is adopted in other disciplines like
service computing [9] and uses non-functional properties like reliability and latency.



186 Z. Maamar et al.

2.1 Related Work

Despite the growing interest in IoT [10], there are not, to the best of our knowl-
edge, dedicated works that particularly examine thing federation. The below
related-work paragraphs discuss the concept of federation from device, cloud,
and identity perspectives.

Heil et al. define IoT as a context-aware federation of devices [5]. The objec-
tive of setting-up such a federation is to support users access, connect, and locate
arbitrary devices according to their functionalities. Heil et al.’s thing federation
is different from ours in the sense that we advocate for gathering devices/things
together in response to specific situations’ needs, and, not, for accessing these
devices/things, only. Heil et al.’s approach takes advantage of the concept of
Federated Devices Assemblies (FDX) for integrating real-world devices into ser-
vice federations. This integration encapsulates and exposes devices’ capabilities
for external use in terms of operations, status variables, and events. According
to the authors, FDXs are already designed to communicate among each other
irrespectively of the hardware addressed underneath.

Mathlouthi and Ben Saoud discuss cloud federation to enable a flexible com-
position of System of Systems (SoS) [8]. A SoS is about the cooperation of several
constituents that are complex, heterogenous, autonomous, and independently
governed, but capable of working cooperatively to achieve common goals. These
constituents’ characteristics raise concerns with respect to interoperability, fault
tolerance, continuous monitoring, etc. Because these systems are deployed over
different clouds, the federation of clouds at the software level (SaaS where the
1st S could be SoS) is deemed necessary. In line with Mathlouthi and Ben Saoud,
we will show later that thing federation could benefit from cloud federation in
the sense that thing federations could be deployed over multiple clouds when
handling complex situations.

*aaS where everything is software, platform, infrastructure, data, or thing
federation2 is a model that exposes “resources” to the external world through
services for different reasons thoroughly discussed in the literature [11]. In sup-
port of exposing thing federation as a service, Celesti et al. discuss IoT as a
service (IoTaaS) in conjunction with the development that cloud computing is
being subject to and that is leading to IoT cloud and cloud federation [2]. The
authors suggest 3 stages towards a true IoT cloud federation. The first stage,
“monolithic IoT clouds”, is the current stage where IoT clouds are independent;
IoT devices interact with a remote cloud system that is in charge of collect-
ing the sensed and actuated data coming from heterogenous IoT devices. The
second stage, “vertical supply chain”, requires a smart, improved coordination
system for enabling the cooperation of different involved IoT cloud providers.
Finally, the third stage is about IoT cloud federation that calls for a logical layer
between the physical infrastructure and services. 2 types of clouds are identi-
fied in the federation: home IoT and foreign IoT. The former is a provider that
needs extra external sensing and actuating capabilities and, consequently, for-
wards federation requests to the latter with the purpose of elastically enlarging
2 With the first three defining the essence of cloud computing.



Thing Federation as a Service: Foundations and Demonstration 187

its IoT infrastructure. It is worth noting that an IoT cloud provider could simul-
taneously be home cloud and foreign cloud. Finally, Celesti et al. recommend a
3 layer cloud federation reference-architecture that would meet 3 requirements:
automatism and scalability, interoperable resource provisioning, and interopera-
ble security. These layers are virtualization, virtual infrastructure manager, and
cloud manager. The latter is capable of providing IoTaaS in the form of IaaS,
PaaS, and SaaS.

The aforementioned paragraphs discuss federation from different perspectives
but overlook the perspective of things forming federations. Despite the latest
IoT development [12], today’s things’ limited capabilities call for their grouping
into federations capable of handling complex situations.

2.2 Case Study

We consider a temporarily-closed tunnel resulting from a car accident. In com-
pliance with the emergency procedures and in response to the tunnel-closure sit-
uation, a federation of back-up cameras is automatically activated so, that, live
images are broadcasted to the rescue teams while meeting their non-functional
requirements (e.g., upload speed and resolution quality). To handle the closed-
tunnel situation, 2 cases are possible:

1. 1st time tunnel-closure: an ad-hoc camera federation is formed (by some engi-
neers) after selecting the necessary cameras with respect to the rescue teams’
non-functional requirements. Once the closure is over, the ad-hoc camera fed-
eration becomes a planned camera federation that could be initiated in the
future, should a similar situation happen along with similar non-functional
requirements.

2. Recurrent tunnel-closure: a planned camera federation, among those that
were initiated in the past, is selected with respect to the rescue teams’
non-functional requirements. If the selection is unsuccessful, then the case
is treated as 1st time tunnel-closure.

Over time, tunnel-closure situation becomes associated with different planned
camera federations, each satisfying this situation’s changing non-functional
requirements (i.e., one time the focus was on streaming quality, and on another
time the focus was on streaming reliability). The pool storing all planned camera
federations permits to benchmark things in federations and federation as well
using our proposed QoT model (Sect. 3.4).

Questions that we would like to address in this work are, but not limited to,
the following: how to define the QoT model in support of thing selection, how to
define federations in preparation to assigning them situations, how to develop
planned versus ad-hoc federations, and how to technically demonstrate the use
of federations using a case study?

3 Concepts and Operations of Thing Federations

This section is about the core concepts and operations of defining, forming,
managing, and deploying federations.



188 Z. Maamar et al.

3.1 Definitions

Federation is about gathering multiple things into the same virtual space. Things
become members of a federation because of their capabilities that permit to
satisfy the needs and requirements of the situation assigned to this federation
for handling. To this end, things are to be described, discovered, and, then,
selected before they sign-up in federations.

From a management perspective, a federation could make a thing sign-off
if its QoT-driven performance (e.g., unreliable data and recurrent failure) does
not meet its expectations that are, in fact, related to meeting situations’ non-
functional requirements. A thing can, also, willingly leave a federation if the
business in the federation is no longer appealing (e.g., data-sharing rate among
the members drops below a threshold). To avoid unexpected departures from
federations, incentives (monetary or in-kind) could be used to ensure that things
remain committed to the same federations, assuming that there is still some
“work” to do.

To distinguish planned from ad-hoc federations, we define abstract versus
concrete things. The latter instantiates the former at run-time and executes
operations related to the under-handling situation.

– A planned federation has, at both design- and run-time, all its concrete
thing members already identified and ready to act, should this federation
be selected.

– An ad-hoc federation has, at design-time, its abstract thing members identi-
fied prior to looking for concrete things that will instantiate them, at run-time.
After execution, the ad-hoc federation is inserted, as planned, into the pool
of planned federations linked to a particular situation.

3.2 Architecture

Figure 1 represents our ecosystem of things and federations hosting things. Fed-
erations, whether planned or ad-hoc, are expected to transition through certain
stages that are assembling, storage, either activation or instantiation, and ulti-
mately disassembling.

– Assembling is about identifying things that will populate federations. Things
are either concrete in the context of planned federations or abstract in the
context of ad-hoc federations. The assembling, also, calls for specifying the
collaboration among things in the federation according to the situation to
handle.

– Storage is about grouping planned federations in a dedicated pool in prepa-
ration for their selection and then activation, and, also, grouping ad-hoc fed-
erations in another dedicated pool in preparation for their loading and then
instantiation. Over time, a situation becomes associated with several planned
federations and one ad-hoc federation.



Thing Federation as a Service: Foundations and Demonstration 189

handling

Ecosystem

Situation

Engineer
screening

xor

Federation
activationassignment

Federation
instantiation

assignment

activation

instantiation

Pool of
ad-hoc

federations

gn
id

ao
l

noit celes

Pool of
planned

federations

Announcement
board

insertion

gn
i

mo
cn

i

Edge 1 Edge i

yo
lp

ed

yo
lp

ed

Deployment theater

yolped

y olped

Things

gniogtuo

Thing vetting

clean things

membership

tne
mecuonna

membership

Ad-hoc
federation j

Planned
federation i

Deployment theater

Cloud 1 Cloud j

gn
in

ee
rc

s

Fig. 1. Representation of the ecosystem of things and federations hosting things

– Activation is about initiating the execution of a planned federation following
its selection from the pool of planned federations with respect to a situa-
tion’s non-functional requirements. The planned federation’s concrete things
are already known and now need to be activated.
xor
Instantiation is about searching for concrete things that correspond to abstract
things referred to in the ad-hoc federation’s specification. The search and selec-
tion of concrete things is driven by a situation’s non-functional requirements.

– Disassembling is about putting an end to a planned federation after review-
ing its performance like limited competitiveness compared to other planned
federations all linked to the same situation. We recall that upon instantiating
an ad-hoc federation, this one becomes a planned federation and is inserted
into the pool of planned federations. Thus, disassembling targets planned
federations, only.



190 Z. Maamar et al.

The modules associated with the functioning of the ecosystem of things and
federations are listed below (Fig. 1):

1. Thing-vetting module has a dual role. For the incoming flow, the vetting
ensures that concrete things, first, comply with the ecosystem’s regulations
in order to maintain a safe ecosystem and, second, are described so they are
properly assigned to federations. For the outgoing flow, the vetting ensures
that concrete things do not, for instance, carry any private detail or “abuse”
any peer prior to leaving the ecosystem. Thanks to the vetting, all things in
the ecosystem are “clean”.

2. Federation-activation module targets planned federations whose necessary con-
crete things and operations are identified ahead of time. The ecosystem engi-
neer identifies these things after screening the announcement board upon
which concrete things post their capabilities. The federation-activation mod-
ule is coupled to a pool that stores planned federations.

3. Federation-instantiation module targets ad-hoc federations whose necessary
abstract things and operations are identified waiting to be instantiated after
screening the announcement board upon which concrete things post their
capabilities. The federation-initiation module is, also, coupled to a pool that
stores ad-hoc federations.

4. Announcement-board module acts as a broker between federations having sit-
uations’ needs to satisfy and concrete things having capabilities to offer.

In addition to the ecosystem of things and federations of things, Fig. 1 shows
2 deployment theaters hosting (computation, storage, and/or communication)
resources at the cloud and edge levels. Depending on the situations to handle
(e.g., transfer of injured drivers and monitoring of deviated traffic), we consider
that some federations could be deployed over clouds, only, over edges, only, or
over both clouds and edges. Although the deployment concern is not directly
aligned with this paper’s main purpose, we identify some requirements that
would help decide on the relevant deployment model as follows:

1. Frequency is about the rate of data transfer from thing federations to fog/-
cloud nodes. In the case of high frequency, we recommend transferring data of
things to fog nodes, first, for any initial storage and/or processing and, then,
to cloud nodes, if necessary. This 2-stage transfer should help guarantee data
freshness since the edge nodes are “close” to things producing data.

2. Sensitivity is about the nature of data exchanged between thing federations
and fog/cloud nodes. Highly-sensitive data of things should not be exposed
longer on networks during the exchange and, hence, we recommend trans-
ferring such data to fog nodes, first, and, then, cloud nodes, if necessary.
Securing sensitive data could happen at the level of edge nodes compensating
the limited processing capabilities of things.

3. Volume is about the amount of data that thing federations produce and need
to be stored. In the case of high volumes, we recommend sending data of
things to cloud nodes, first, for any initial storage and/or processing and,
then, sharing whatever data (with or without processing) is required with
the edge nodes, if necessary.



Thing Federation as a Service: Foundations and Demonstration 191

Applying the 3 requirements to the situation of transferring injured patients
would privilege edge over cloud. Indeed, during the transfer, patients’ vitals
need to be frequently and securely sent to rescue teams. Contrarily, monitoring
deviated traffic would feature volume over sensitivity, and, hence, cloud over
edge would be privileged.

3.3 Federation Formation

According to Sect. 3.2, the handling of a situation (si) could be assigned to either
(1 ) one of the multiple Planned Federations (PFsi

j=1···) whose necessary Concrete
Things (CTsi

j,k=1···) are already identified for each federation, or (2 ) an ad-Hoc
Federation (HFsi) whose necessary Abstract Things (ATsi

k=1···) are already iden-
tified, too. At run-time, the abstract things are instantiated by making them
bind to concrete things. This binding is driven by the situation’s non-functional
requirements and concrete things’ non-functional properties (reported in their
respective QoT models).

In addition to the close-tunnel situation (s1), let us consider another situation
that is traffic monitoring (s2). The federation of things to put in place includes
a traffic light, a speed-limit sign, and a mobile radar. Assuming that this is the
1st time that traffic-monitoring situation happens, HFs2 is formed as per the
following details: HFs2 = {ATs2

1 ,ATs2
2 ,ATs2

3 } where AT1 is traffic light, AT2 is
speed-limit sign, and AT3 is mobile radar. After instantiation, HFs2 becomes
PFs2

1 having the following concrete things {CTs2
1,1,CT

s2
1,2,CT

s2
1,3} where CTs2

1,1 is
traffic lightAA corresponding to AT1,CT

s2
1,2 is speed-limit signBB corresponding

to AT2, and CTs2
1,3 is mobile radarCC corresponding to AT3. It should be noted

that CTs2
1,1,CT

s2
1,2, and CTs2

1,3 are selected based on their QoT models meeting
the non-functional requirements of traffic-monitoring situation.

After several rounds of handling traffic-monitoring situation, a pool of
planned federations is formed (PFs2

1,2,3,···, Fig. 1). Each time there is a need of
handling this situation again, this pool is checked first. If none of the planned
federations meets the traffic-monitoring situation’s new non-functional require-
ments, the ad-hoc federation is loaded from the pool of ad-hoc federations in
preparation for its instantiation (Fig. 1).

3.4 Quality-of-Things Model

Defining a QoT model for IoT-compliant things is in line with the trend of
defining similar models in other ICT contexts. We cite the quality model for
cloud service selection [4]. Eisa et al. refer to this model as a degree to which
a set of attributes/properties of a service fulfils stated requirements. Eisa et al.
base their definition on ISO9000 and ISO9000:2015 statements about quality.

To allow a competitive selection of (concrete) things with respect to situa-
tions’ non-functional requirements, we resort to developing properties that would
constitute a thing’s QoT model. This model would revolve around 3 core features



192 Z. Maamar et al.

describing the operation of any IoT ecosystem (Fig. 2): sensing (in the sense of
collecting/capturing data), actuating (in the sense of processing data), and com-
municating (in the sense of sharing/distributing data). According to Fig. 2, (i) a
thing is meant for sensing the surroundings (whether virtual or physical), so,
that, it generates some outcomes; (ii) a thing is meant for actuating outcomes
with focus on the outcomes that result from sensing; and (iii) a thing is meant for
communicating with the surroundings (whether virtual or physical) the outcomes
that result from both sensing and actuating. It is worth noting that sensing and
actuating have an impact how their respective outcomes will be communicated.
Communicating, only, relays what is available for distribution/sharing.

Thing

sensing actuating communicating

is meant for

impacts impacts

impacts

Fig. 2. Features defining a thing’s QoT model

In the following, we propose some QoT properties with respect to the features
of sensing, actuating, and communicating:

1. QoT properties for assessing sensing include:
– Frequency of sensing (e.g., continuous versus intermittent).
– Quality of sensed outcome that determines for instance, the accuracy and

validity of the outcome (e.g., high versus low accuracy; high-accuracy
outcome would not require any further verification).

– Resource (e.g., energy, CPU, and storage) consumption during sensing
(e.g., high versus low energy).

2. QoT properties for assessing actuating include:
– Quality of actuated outcome that determines for instance, the accuracy

and validity of the outcome.
– Resource (e.g., energy, CPU, and storage) consumption during actuating

(e.g., high versus low).
3. QoT properties for assessing communicating include:

– Reception rate of sensed and/or actuated outcome (incoming flow) that
determines for instance, data loss, data volume with respect to a band-
width, etc.

• Acceptance rate of received outcome is about the outcome that has
been accepted for distribution; some received outcome could be
rejected.

– Delivery rate of sensed and/or actuated outcome (outgoing flow) that
determines data loss, data volume with respect to a bandwidth, etc.



Thing Federation as a Service: Foundations and Demonstration 193

• Acceptance rate of delivered outcome is about the outcome that has
been accepted after distribution at the recipient end; some delivered
outcome could be rejected.

– Resource (e.g., energy and bandwidth) consumption during communicat-
ing (e.g., high versus low bandwidth).

In Fig. 2, sensing, actuating, and communicating features constitute 4 inde-
pendent life cycles listed below:

1. Sensing ⇒ actuating ⇒ communicating: the outcomes of sensing are passed
on to actuating whose outcomes are passed on to communicating.

2. Sensing ⇒ actuating: the outcomes of sensing are passed on to actuating
whose outcomes are finals.

3. Sensing ⇒ communicating: the outcomes of sensing are passed on to commu-
nicating for distribution.

4. Actuating ⇒ communicating: the outcomes of actuating are passed on to
communicating for distribution.

The established life cycles point out how some QoT properties in a feature
could impact some QoT properties in other features. For instance, a high-quality
actuated outcome should lead to a better acceptance of this outcome by potential
recipients that communicating will distribute to these recipients.

3.5 Testbed Setup and Experiment Scenarios

Our testbed shown in Fig. 3 includes a Lenovo Ideapad laptop (i5 1.8 GHz CPU,
8 GB RAM) connected to the Internet over Ethernet cable and fitted with an
HD Lenovo EasyCamera Webcam with 0.92 MP. In addition to the laptop, a traf-
fic light, Raspberry PI 3 -model B (RPI) (Quad Core 1.2 GHz CPU, 1 GB RAM)
connected to the Internet over Ethernet cable, has 2 LED diodes (Green and
Red) wired through the breadboard to the RPI. The traffic light receives signals
over Message Queuing Telemetry Transport (MQTT) protocol via the subscribed
topic3 “dev/traffic” upon which it changes to green or red. Finally, the testbed’s
message sign display is a Wemos D1 R1 (ESP8266) microcontroller connected to
the Internet via WiFi, and has a 16× 2 LED display connected via the bread-
board. The message sign display subscribes to MQTT topic “dev/message” and
uses message payload to show appropriate messages.

Our experiment includes 4 things: ambulance carrying injured drivers from
the tunnel, camera broadcasting live images from the way to the tunnel, traf-
fic light regulating the access to the tunnel, and message sign display warning
drivers. To detect ambulances, we developed an in-house Python image recog-
nition program that processes RGB images and sends 14 frames/second using
an Open Source Computer Vision (OpenCV, opencv.org) Library. Upon ambu-
lance detection via a nearby camera to the tunnel, the program sends a message
to the traffic light, to stop the traffic to the tunnel, over MQTT protocol via

3 A topic is a UTF-8 String that MQTT broker uses to decide on which client receive
which message.



194 Z. Maamar et al.

Fig. 3. Devices used during the experiment

topic “dev/traffic” requesting to set the traffic light sign to red. In the same
vein, the program posts relevant messages on the sign display via topic “dev/mes-
sage” in JSON format (e.g., “type”:“warning”,“message”:“Car accident in the
tunnel”). When the ambulance leaves the tunnel, the traffic light is changed to
green and the message sign displays other messages inviting vehicles’ owners to
use the tunnel again.

For evaluation needs, 2 simulation scenarios were carried out as per the fol-
lowing details:

Scenario1: we considered a planned federation of 2 things namely 1 camera,
camera1, and 1 traffic light and measured the total time required to execute
this federation. Camera1 detects ambulances heading to the tunnel where
the accident has taken place and sends a signal to the traffic light. During
the same execution lifecycle, we set the detection to 10 times (i.e., 10 ambu-
lances), 50 times, and 100 times. The objective was to observe how the testbed
behaves with respect to the number of detected ambulances and number of
messages exchanged. Figure 4 reports the results of the process of recording
and recognizing objects, detecting if these objects are ambulances, alerting
the traffic light, and finally switching the light to red.



Thing Federation as a Service: Foundations and Demonstration 195

Scenario2: we expanded scenario1’s planned federation to 3 things namely
2 cameras, camera1 and camera2, and 1 traffic light and measured the total
time required to execute this federation compared to the initial federation of
2 things, only. In this scenario, the vision of camera1, which is located in the
tunnel entrance, is obscured by an object (e.g., another vehicle parked on the
roadside or stopped on hard shoulder of the tunnel to allow the ambulance to
overtake) and could not verify whether the passed vehicle was an ambulance
or not. In this case, camera1 requests (in ad-hoc way) a confirmation from
camera2 so that the traffic light (in planned way) is properly notified. We run
this scenario 6 times along with increasing the number of ambulances so that
federation1 refers to 1 ambulance, federation2 refers to 2 ambulances, etc.

Fig. 4. Execution time per number of detected ambulances

Fig. 5. Execution time related to planned versus ad-hoc federation



196 Z. Maamar et al.

We checked how the testbed behaves when ad-hoc things (here camera2) are
added to a planned federation. Figure 5 illustrates the results showing cases
of different federations; it took between 80 ms to 1.1s to execute ad-hoc fed-
erations and between 14 ms to 17 ms to execute planned federations.

4 Conclusion

Gartner is expecting a remarkable growth reaching 20.8 billion of connected
things by 2020. This growth highlights the importance of combining things so,
that, collective over individual behaviors emerge. A promising way of achieving
this combination is to form federations that would gather relevant things accord-
ing to the needs and requirements of the situations assigned these federations for
handling. In this paper, we proposed the design and implementation guidelines
of thing federation-as-a-service. We presented 2 types of federations, planned and
ad-hoc, that should cater to the changing needs and requirements of situations.
A planned federation is established ahead of time and has its thing constituents
already identified. Contrarily, an ad-hoc federation is formed on-the-fly when
none of the existing planned federations can handle a situation and, hence, nec-
essary thing constituents need to be identified after a round of competitive selec-
tion. This selection is based on a set of things’ non-functional properties that
form what is referred tom in this paper, as Quality-of-Thing (QoT) model. The
technical feasibility of thing federation-as-a-service has been demonstrated with a
system for patients’ emergency transfers calling for 3 things: ambulance, traffic
light, and variable message sign. Upon ambulance automatic detection, traffic
lights and variable message signs are promptly adjusted allowing a smooth trans-
fer of patients. A federation of these 3 things was ready for activation. In term of
future work, we would like to examine federation use and federation comparison.
The former helps adapt existing (planned) federations to new situations and the
latter helps rank existing (planned) federations. Refining the QoT model is also
part of our future work.

References

1. Androèc, D., Tomas̀, B., Kìsasondi, T.: Interoperability and lightweight security for
simple IoT devices. In: Proceedings of the Information Systems Security Conference
(ISS 2017) Held in Conjunction with the 40th Jubilee International Convention
on Information and Communication Technology, Electronics, and Microelectronics
(MIPRO 2017), Opatija, Croatia, May 2017

2. Celesti, A., Fazio, M., Giacobbe, M., Puliafito, A., Villari, M.: Characterizing cloud
federation in IoT. In: Proceedings of the 2016 30th International Conference on
Advanced Information Networking and Applications Workshops (WAINA 2016),
Crans-Montana, Switzerland (2016)

3. DZone: The Internet of Things, application, protocols, and best practices. Techni-
cal report (2017). https://dzone.com/guides/iot-applications-protocols-and-best-
practices. Accessed May 2017

https://dzone.com/guides/iot-applications-protocols-and-best-practices
https://dzone.com/guides/iot-applications-protocols-and-best-practices


Thing Federation as a Service: Foundations and Demonstration 197

4. Eisa, M., Younas, M., Basu, K.: Analysis and representation of QoS attributes
in cloud service selection. In: Proceedings of the 32nd International Conference on
Advanced Information Networking and Applications (AINA 2018), Cracow, Poland
(2018)

5. Heil, A., Knoll, M., Weis, T.: The Internet of Things - context-based device fed-
erations. In: Proceedings of the 40th Hawaii International Conference on System
Sciences (HICSS 2007), Hawaii, USA (2007)

6. Leppänen, T., Riekki, J.: A lightweight agent-based architecture for the Internet
of Things. In: Proceedings of the WEICE Workshop on Smart Sensing, Wireless
Communications, and Human Probes, Wuxi, China, March 2013

7. Mart́ınez-Ballesté, A., Pérez-Mart́ınez, P.A., Solanas, A.: The pursuit of citizens’
privacy: a privacy-aware smart city is possible. IEEE Commun. Mag. 51(6), 136–
141 (2013)

8. Mathlouthi, W., Saoud, N.B.B.: Flexible composition of system of systems on
cloud federation. In: Proceedings of the 2017 IEEE 5th International Conference
on Future Internet of Things and Cloud (FiCloud 2017), Prague, Czech Republic
(2017)

9. Menascé, D.A.: QoS issues in web services. IEEE Internet Comput. 6(6), 72–75
(2002)

10. Perera, C., Liu, C.H., Jayawardena, S., Chen, M.: A survey on Internet of Things
from industrial market perspective. IEEE Access 2, 1660–1679 (2014)

11. Rittinghouse, J.W., Ransome, J.F.: Cloud Computing: Implementation, Manage-
ment, and Security. Taylor & Francis (2009)

12. Taivalsaari, A., Mikkonen, T.: A roadmap to the programmable world: software
challenges in the IoT era. IEEE Softw. 34(1), 72–80 (2017)

13. Zambonelli, F.: Key abstractions for IoT-oriented software engineering. IEEE
Softw. 34(1), 38–45 (2017)



Formalizing Reusable Communication
Models for Distributed Systems

Architecture

Quentin Rouland1, Brahim Hamid1(B), and Jason Jaskolka2

1 IRIT, University of Toulouse, Toulouse, France
{quentin.rouland,brahim.hamid}@irit.fr

2 Systems and Computer Engineering Carleton University Ottawa, Ontario, Canada
jaskolka@sce.carleton.ca

Abstract. Building distributed computing systems involves complex
concerns integrating a multitude of communication styles, technologies
(IoT, cloud and big data...), stakeholders (architects, developers, inte-
grators, etc.) and addressing a multitude of application domains (smart
cities, health, mobility, etc.). Existing architectural description languages
fail to rigorously bridge the gap between the abstract representation of
communication styles and those supported by existing execution infras-
tructures. In this paper, we aim at specifying software architecture of dis-
tributed systems using an approach combining semi-formal and formal
languages to build reusable model libraries to represent communication
solutions. Our contribution is two fold. First, we propose a metamodel
to describe high level concepts of architecture in a component- port-
connector fashion focusing on communication styles. Second, we attempt
to formalize those concepts and their semantics following some proper-
ties (specifications) to check architectural conformance. To validate our
work, we provide a set of reusable connector libraries within a set of
properties to define architectures for systems with explicit communica-
tions models like message passing and remote procedure calls, that are
common to most distributed systems.

Keywords: Component · Connector · Communication · Reuse
Meta-modeling · Formalization

1 Introduction

The shift from traditional computer systems towards the Internet of Things, i.e.
devices connected via the Internet, Machine-to-Machine communication (M2M),
wireless communication or other interfaces requires a reconsideration of complex
software-dependent and distributed systems engineering processes. In fact, this
reconsideration introduces new types and levels of risks, including those inher-
ited from the underlying technologies like communication, virtualization and
containerization. This is especially true for industrial systems, as they exist in
many use cases, and systems using web applications with the recent growth of
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 198–216, 2018.
https://doi.org/10.1007/978-3-030-00856-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_13&domain=pdf


Formalizing Reusable Communication Models 199

more applications in cloud-based computing systems. Many of these systems
belong to critical infrastructure, on which other economic and social aspects
are based on. The foundation for comprehensive rigorous systems engineering
facing strong non-functional requirements such as security [21,26], is a compre-
hensive understanding of modern communication systems and technologies and
their implications on the underlying critical infrastructure [3]. We took this need
towards software engineering for distributed software systems, focusing on the
problem of integrating communication styles at the level of architecture design
to foster reuse. We employ Model-Driven Engineering (MDE) [25] and attempt
to add more formality to improve parts of the system design.

When we study distributed systems, we often use models to denote some
abstract representation of a distributed system. To encode distributed comput-
ing (programs) in such systems, we use a common means of communication
[3], where system components have only local vision of the system and inter-
act only with their neighbors with explicit communications models like mes-
sage passing, remote procedure calls and distributed shared memory, common
to most distributed systems. The program executed at each node consists of a
set of variables (state) and a finite set of actions. A component can write to its
own variables and interact with its neighbors following a specific communica-
tion style. In our context, we model software architectures with message passing
and remote-procedure call styles that we expect the architectural description to
adhere to. The aim of this modeling and verification is to check if the architec-
ture models satisfy all the desired properties such as security properties and do
not hold any undesired property such as deadlock property.

In this paper, we present a formal framework to support the rigorous design of
software architectures focusing on the communication aspects at the architecture
level. It is based on the definition of a metamodel to describe high level concepts
of architecture in a component- port- connector fashion focusing on communica-
tion styles and a formal definition of those concepts and their semantics following
some properties (specifications). The former offers a transparent structural def-
inition of communication styles (mainly message passing and remote procedure
call mechanisms). The latter supports the application designer in the rigorous
development process to model and analyze architectural communication styles.
In the scope of this paper, we propose to use Alloy [10] for formalizing those com-
munication styles and verifying conformance of the communication style at the
model level. The formal specification and verification of a software architecture is
represented through an Alloy module based on a set of reusable models, namely
connectors corresponding to each of the considered communication styles. We
provide a set of reusable connector libraries within a set of properties to define
architectures for systems with explicit communications model such as message
passing and remote procedure calls.

The remainder of the paper is organized as follows. Section 2 compares our
work with related work. Section 3 presents our component based architectural
metamodel. Section 4 describes the communication style semantics through finite
state machine models. Then, Sect. 5 presents our approach for supporting the



200 Q. Rouland et al.

formalization and verification of these communication models using Alloy.
Section 6 provides a motivating example that models a software architecture for
a web application. Finally, Sect. 7 concludes and sketches directions for future
work.

2 Related Work
Recent times have seen a paradigm shift in terms of software architecture design
[22] by combining multiple software engineering paradigms, namely, Component-
Based Development [4], Model-Driven Engineering(MDE) [25] and formal meth-
ods [23]. In the spirit of using multi-paradigms, many description languages and
formalisms for modeling complex distributed systems have been proposed in the
literature. A significant proportion of these works have aimed to capture the
communication, concurrency, and some non-functional properties of the compo-
nents that make up a given system. Examples of these existing works include
those using process algebras (e.g., CSP [9]), architectural modeling languages
(e.g., CCM [13], AADL [24], MARTE [16], SysML [14], and the recent OMG
initiative UCM [18]), architectural formal languages (e.g., OCL [15], Wright [2],
labeled transition systems [20]).

While each of the above mentioned modeling formalisms and modeling lan-
guages have already been successful in many application domains, in this paper
we build a new communication-based architectural formal modeling language
using Alloy for the structural and behavioral specification and analysis of dis-
tributed systems. Closely related to this vision is the approach of Khosrav et al.
[11] which provides a modeling and analysis of the Reo connectors using Alloy
and the approach of Garlan [5] that describes a formal modeling and analysis of
software architectures built in terms of the concepts of components, connectors
and events. Alloy is a lightweight modeling language, based on first-order rela-
tional logic. It provides support for reuse through a separation between the defi-
nition of connectors as modules from the description of the software architecture
using them. The Alloy formal language is supported by an efficient tool called
Alloy Analyzer [1] that will serve as the analysis tool in our experimentations.
We provide support for specifying systems at various levels of abstraction by
combining the characteristics of both state-based and trace-based models, offer-
ing a flexible and verifiable view of communication where several non-functional
requirements could be specified and treated in a fine-grained fashion. In contrast
to our work, other modeling and formal languages for capturing the communi-
cation and non-functional requirements of complex distributed systems do not
directly provide such a simple and understandable view.

3 Software Architecture Metamodel

In the context of reliable distributed systems, a connection between distributed
components should perform a reliable and trusted communication. While this
could be done with standard specification of distributed component-based appli-
cations, such as those based on CCM [13,15] and ADL-like [2,24], it would be



Formalizing Reusable Communication Models 201

impossible to configure and control the reliability and trustworthiness of commu-
nication connections at design time. This motivates the usage of the connector
concept to embed specific interaction semantics and multiple implementations
of the semantics within distributed computing systems. The basic idea of this
extension is that the semantics of an interaction is defined by a certain port type
and that one or more connectors can support this port type. The port types are
already fixed at component design time, whereas the choice of a connector (and
a specific communication style) is also constrained by the deployment charac-
teristics.

A connector has certain similarities with a component. The main difference
is that it is dedicated for communication purposes. Since a connector is respon-
sible for incoming, outgoing, intercepting, and blocking data and messages, it
is an ideal place for the integration of security and dependability mechanisms.
However, connectors are still non-standard interaction mechanisms. For instance
there is no corresponding concept in the architecture description languages used
in industrial contexts, i.e., containing an UML-like [17] vocabulary.

Fig. 1. Component-port-connector metamodel

We propose to build a modeling framework to define architectural models
that are conceptually close to the industrial practice, i.e., containing an UML-
like and an UCM-like vocabulary. Figure 1 visualizes a metamodel as a class
diagram. The metamodel provides concepts for describing software architectures
in terms of different views [12], with a focus on:
1. Logical view to capture the functional architecture of the system in terms of

components.
2. Physical view to describe the deployment of the software onto the hardware

taking into account the distributed aspects.
3. Scenario view which builds upon the logical and the physical views, describing

the behavioral aspects of the system.



202 Q. Rouland et al.

4 Modeling
In order to verify any communication style formally, it is mandatory to model
that style carefully. Therefore, in modeling each communication style, each of
the two communication parties (client and server) and the channel (connector
connecting two ports) between them are described as a finite state machine.

4.1 Message Passing
In the message passing communication style (MPS), a channel is used for sending
a message from a client to a server. The message is simply transmitted without
any acknowledgement. The communication channel is modeled as a set of fixed
length for messages offering two operations: (a) push to add an element in the
set and (b) pull to remove an element from the set.

The left side of Fig. 2 shows the states of a client for sending a message. It
is shown that if the state is sent (0) and a send event occurs when the buffer is
not full (∼ (#buf = max)), it changes its state from 0 to 1 for sending 1. On
the other hand, if the buffer is full (#buf = max), it remains at state 0. It also
shows that if the state is sending and the message is in the buffer (mess in buf),
it changes its states from 1 to 0 for sent.

Similarly, the right side of Fig. 2 shows the states of a server for receiving a
message. It is shown that if the state is received (0) and the buffer has a message
(mess in buf), it changes its state from 0 (received) to 1 for receiving a message.
On the other hand, if the message is not in the buffer, it remains at state 0. It
also shows that if the state is receiving and the message is no longer anymore in
the buffer, it changes its states from 1 to 0 for received.

Fig. 2. States of a client (resp. server) for sending (resp. receiving) messages

Figure 3 shows the states of a connector for pulling and pushing a message.
It is shown that if the state is 0 for waiting to receive messages from a caller
and a message is pushed into the buffer, it changes its state from 0 to 1. If
the current state 1 for waiting to receive message from a caller or retrieving a
message from a receiver, it shows that if an event push or pull is executed and
the buffer has more than one message but is not full (max > #buf > 1), then
it stays in the state 1. Otherwise, if a pull occurs and the buffer only has one
message (#buf = 1), it changes its states from 1 to 0. But if a push occurs and
the buffer is full minus 1 message (#buf = max − 1), it changes its state from
1 ∼ Q denotes the negation of the statement Q and #A denotes the cardinality of the
set A.



Formalizing Reusable Communication Models 203

1 to 2 for retrieving messages from a receiver. Finally, it shows that to change
from state 2 to 1 only a pull event is required.

Fig. 3. States of a MPS connector

4.2 Message Passing with FIFO Ordering

The message passing with FIFO (First-in-first-out) ordering communication style
is identical to message passing with a preservation of the order from the perspec-
tive of a sender. If a sender sends one message before another, it will be delivered
in this order at the receiver. Here, the communication channel is modeled as a
queue of fixed length for messages offering two operations: (a) push to add an
element in the head of the queue and (b) pop to remove the element at the tail
of the queue.

The left side of Fig. 4 shows the states of a client for sending a message. It
is shown that if the state is sent and a send event occurs when the buffer is not
full, it changes its state from 0 (Send) to 1 for sending. On the other hand, if the
buffer is full, it remains at state 0. It also shows that if the state is sending and
the message is at the head of the buffer (mess head buf), it changes its states
from 1 to 0 for sent.

Similarly, the right side of Fig. 4 shows the states of a server for receiving a
message. It is shown that if the state is received and a message is at the tail of
the buffer (mess tail buf) it changes its state from 0 (received) to 1 for receiving
a message. On the other hand, if the message is not at the tail of the buffer, it
remains at state 0. It also shows that if the state is receiving and the message is
no longer in the buffer, it changes its states from 1 to 0 for received.

Fig. 4. States of a client (resp. server) for sending (resp. receiving) messages



204 Q. Rouland et al.

Figure 5 shows the states of a connector for popping and pushing messages.
It is shown that if the state is 0 for waiting to receive a message from a caller
and a message is pushed into the buffer, it changes its states from 0 to 1. If its
current state is 1 for waiting to receive a message from a caller or retrieving a
message from a receiver, it shows that if an event pop or pull happens and the
buffer has more than one message but is not full, then it stays in the state 1.
Otherwise, if a pop occurs and the buffer only has one message, it changes its
state from 1 to 0. But if a push occurs and the buffer is full minus 1 message, it
changes its state from 1 to 2 for retrieving messages from a receiver. Finally, it
shows that to change from state 2 to 1 only a pop event is required.

Fig. 5. States of a MPS FIFO connector

4.3 Remote Procedure Call
In the typical remote procedure call (RPC) communication style [3], a channel
is used for sending invocation (request) messages from a client to a server and
for receiving acknowledgement (reply) messages from a server to a client. The
communication channel is modeled as a queue of fixed length for both request
and reply messages from a client and a server respectively. Note that RPC is a
special case of the general message-passing model.

Figure 6 shows the states of a client for sending invocation messages and
receiving reply messages. It is shown that if the state for send is sending and the
buffer is not full, it changes its state from 0 (invocation sent) to 1 for waiting
for a reply. On the other hand, if the state is sending and the buffer is full, it
remains at state 0. It is also shown that if the state is waiting to receive a reply
(1) and the reply is in the buffer, it changes its state from 1 to 2 for receiving
a reply. Otherwise, if the reply is not yet in the buffer, it remains at state 1.
On the other hand, if the state is receiving and the reply is not in the buffer, it
changes its state from 2 to 0.

Figure 7 shows the states of a connector for pushing and pulling invocation
and reply messages. It is shown that if the state is waiting to receive from the
caller (0) and a push of an invocation occurred, it changes its state from 0 to
1. The connector stays in state of retrieving an invocation to the receiver (1)
until a pull of an invocation which changes its state from 1 to 2 for waiting for a
reply. Figure 7 also shows also that the connector remains in this new state until
a push of a reply occurs then it changes its states from 2 to 3 indicating that it



Formalizing Reusable Communication Models 205

is receiving a reply. Finally, it changes its state from 3 to 0 if a pull of a reply
occurred.

Fig. 6. States of a client for invocation/receiving reply messages

Fig. 7. States of a RPC connector

Figure 8 shows the states of a server for receiving invocation and sending
reply messages. It is shown that if the state is waiting to receive an invocation
and an event receiveInvocation occurs in the case that an invocation is present
in the buffer it changes it state from 0 to 1. Otherwise, if the invocation is absent
it remains in the same state. It also shows that after the execution when an event
reply, if the buffer is not full it changes its state from 1 to 2. Otherwise, if the
buffer is full it stays in state 1. Finally, from state 2 it returns to state 0 when
a reply is in the buffer.



206 Q. Rouland et al.

Fig. 8. States of a server for receiving invocation/sending reply message

5 Formalization and Verification

In this section, we discuss the definition of our software architecture metamodel
in Alloy, followed by the specification and verification of the connectors. It con-
sists of a set of definitions, facts, predicates, assertions and functions. We attempt
to formalize software architecture models and their semantics following some
properties (specifications) to check architectural conformance. We facilitate this
by providing an architectural meta model in Alloy, that incorporates the con-
cepts of the metamodel presented in Sect. 3 and involves new concepts to capture
the behavioral aspects of the specific communication styles.

5.1 Software Architecture Metamodel in Alloy
A software architecture as described in Sect. 3 is mapped to our Alloy meta model
as follows. The mapping of structural elements is straightforward. An architec-
tural component, port, connector, interface, methods, and data are mapped to
their namesake types in Alloy, as are nodes and links. Before two (or more)
components can interact, we assume that a connector must be present between
them. We used the Time module provided within Alloy, where time is explicitly
modeled as a set of discrete, ordered Time instances. Therefore, associations
(such as the set of ports connected by one connector) can be made by adding a
relationship with the Time set (i.e., the connects relationship that relates con-
nector to port is a relationship from connector over port to Time). Furthermore,
if a connector exists between components on different nodes, then there must be
a corresponding link between those nodes to host the Connector.

A component is connected to a connector through a number of ports. The
three basic concepts in the model are components, ports and connectors that
are represented as a set of Alloy signatures as depicted in Listing 1.1. With



Formalizing Reusable Communication Models 207

regard to the scenario view, we defined two additional concepts: MsgPassing and
Invocation. Each of them is created by the client and consumed by the server.
For instance, once a send is executed by the sender component, MsgPassing is
buffered in a connector. When it is received by the receiving component, it is
removed from the connector.
s ig Port {}
s ig Component {

uses : set Port
}
abstract s ig Connector {

connects : set Port −> Time
}{

a l l d i s j c1 , c2 : Component , t : Time {
c1 . uses + c2 . uses in connects . t implies

some n1 , n2 : Node {
c1 in n1 . hosts . t
c2 in n2 . hosts . t
n1 = n2 or some l : Link | n1+n2 in l . connects . t

}
}

}
abstract s ig Channel extends Connector {

dis j portI , portO : one Port
}{

a l l t : Time | connects . t = por t I + portO
}
abstract s ig CommunicationArtifact {

c l i e n t : one Component ,
s e rv e r : one Component

}{
c l i e n t != s e rv e r

}
s ig MsgPassing extends CommunicationArtifact {

msgData : one Message
msgType : one DataType

}
s ig Invocat ion extends CommunicationArtifact {

i n v o c a t i on o f : one Method ,
a rguments ca l l : set Argument ,
arguments reply : set Argument −> Time

}

Listing 1.1. Software architecture metamodel in Alloy

5.2 Formal Specification of the Connectors
Listings 1.2, 1.3 and 1.4 depict an excerpt of the formalization of the three
studied connectors, respectively message passing connector, message passing with
FIFO ordering connector and remote procedure call connector. The semantics of
these connectors are the same as those of the modeling presented in Sect. 4.
To specify the behavior of a connector, we use traces of computation which is a
common technique in Alloy. For each connector we define a trace of computation
as a sequence of states. To model a trace in Alloy, we reuse the Alloy standard
ordering module which creates a single linear ordering over the instances of
the signature provided as its input. Therefore, we provide a fact that puts a
constraint on the behavior of the connector. For example, in Listing 1.2, the fact
constrains the acceptable state transitions of the message passing connector to
form a valid executable trace.
s ig ConnectorMPS extends Channel{

bu f f e r : set MsgPassing −> Time ,
capac i ty : Int

}
pred MPS init [ t : Time ] {

a l l c : ConnectorMPS | # c . bu f f e r . t = 0
}
pred MPS push [ t , t ’ : Time , c : ConnectorMPS , mp: MsgPassing ] {

#c . bu f f e r . t < c . capac i ty
c . bu f f e r . t ’ = c . bu f f e r . t + mp



208 Q. Rouland et al.

}
pred MPS pull [ t , t ’ : Time , c : ConnectorMPS , mp: MsgPassing ] {

mp in c . bu f f e r . t
c . bu f f e r . t ’ = c . bu f f e r . t − mp

}
fact t r a c e s {

MPS init [TO/ f i r s t ]
a l l t : Time − TO/ l a s t | l e t t ’ = TO/next [ t ] |
some c : ConnectorMPS , mp: MsgPassing | MPS push [ t , t ’ , c , mp]
or MPS pull [ t , t ’ , c , mp]

}

Listing 1.2. Message passing connector

s ig QMessage extends QElem {
message : one MsgPassing

}
s ig ConnectorMPSFIFO extends Channel{

bu f f e r : one Queue ,
}
pred MPSFIFO init [ t : Time ] {

a l l c : ConnectorMPSFIFO | QEmpty [ t , c . bu f f e r ]
}
pred MPSFIFO push [ t , t ’ : Time , c : ConnectorMPSFIFO , mp: MsgPassing ] {

one qm: QMessage | qm. message = mp and QEnq [ t , t ’ , c . bu f f e r , qm]
}
pred MPSFIFO pop [ t , t ’ : Time , c : ConnectorMPSFIFO , mp: MsgPassing ] {

QLast [ t , c . bu f f e r ] . message = mp
QDeq [ t , t ’ , c . bu f f e r ]

}
fact t r a c e s {

MPSFIFO init [TO/ f i r s t ]
a l l t : Time − TO/ l a s t | l e t t ’ = t . next |
some mp: MsgPassing , c : ConnectorMPSFIFO | MPSFIFO push [ t , t ’ , c , mp]
or MPSFIFO pop [ t , t ’ , c , mp]

}

Listing 1.3. Message passing with FIFO ordering connector

s ig ConnectorRPC extends Channel{
bu f f e r : Invocat ion lone −> Time

}
pred RPC Init [ t : Time ] {

a l l c : ConnectorRPC | c . bu f f e r . t = none
}
pred RPC push [ t , t ’ : Time , c : ConnectorRPC , i : Invocat ion ] {

c . bu f f e r . t = none
c . bu f f e r . t ’ = i

}
pred RPC pull [ t , t ’ : Time , c : ConnectorRPC , i : Invocat ion ] {

c . bu f f e r . t = i
c . bu f f e r . t ’ = none

}
pred RPC pushInvocation [ t , t ’ : Time , c : ConnectorRPC , i : Invocat ion ] {

# c . bu f f e r . t . arguments reply . t = 0
RPC push [ t , t ’ , c , i ]

}
pred RPC pullInvocation [ t , t ’ : Time , c : ConnectorRPC , i : Invocat ion ] {

# c . bu f f e r . t . arguments reply . t = 0
RPC pull [ t , t ’ , c , i ]

}
pred RPC pushReply [ t , t ’ : Time , c : ConnectorRPC , r : Invocat ion ] {

# c . bu f f e r . t . arguments reply . t ’ != 0
RPC push [ t , t ’ , c , r ]

}
pred RPC pullReply [ t , t ’ : Time , c : ConnectorRPC , r : Invocat ion ] {

# c . bu f f e r . t . arguments reply . t != 0
RPC pull [ t , t ’ , c , r ]

}
fact t r a c e s {

RPC Init [TO/ f i r s t ]
a l l t : Time − TO/ l a s t | l e t t ’ = TO/next [ t ] |
some c : ConnectorRPC , i : Invocat ion , r : Invocat ion
| RPC pushInvocation [ t , t ’ , c , i ] i f f not RPC pullInvocation [ t , t ’ , c , i ]
i f f not RPC pushReply [ t , t ’ , c , r ] i f f not RPC pullReply [ t , t ’ , c , r ]

}

Listing 1.4. Remote procedure call connector



Formalizing Reusable Communication Models 209

5.3 Formal Specification of the Communication Primitives
Moreover, we define the corresponding communication primitives associated with
each of the corresponding communication styles. The semantics of these primi-
tives are the same as those of the modeling presented in Sect. 4.

Message Passing Communication. Communication in the message passing
communication style is performed using the send() and receive() primitives.
The send() primitive requires the name of the receiver component, the trans-
mitted data and the expected data types as parameters, while the receive()
primitive requires the name of the anticipated sender component and should
provide storage variables for the message data and the expected data types (see
Listing 1.5).

In spite of blocking primitives that are often chosen, for the sake of easier
realization, here we consider the semantics of a non-blocking primitives to cap-
ture the more general asynchronous communication paradigm. The non-blocking
send(receiver, data) returns control to the sender immediately and the message
transmission process is then executed concurrently with the sender process. The
sender executes a send(receiver, data) which results in the communication sys-
tem constructing a message and sending it to the receiver through the corre-
sponding connector. The receiver executes a receive(sender, data) which causes
the receiver to be blocked, awaiting a message from the sender. When the mes-
sage is received, the communication system removes the message from the cor-
responding connector, extracts the data from the message and delivers it to the
receiver. As a prerequisite, we added the check type interaction data predicate
to ensure that message’s types are supported at both the sending and receiving
components. Without data type checking, the support of the message type is
only verified at execution time.
pred ch e ck type i n t e r a c t i on da t a [mp: MsgPassing ]{

one di : Data , p :mp. c l i e n t . uses | di in p . r e a l i z e s and di . kind = DATA OUT and
mp. msgType in di . DataType
one di : Data , p :mp. s e rv e r . uses | di in p . r e a l i z e s and di . kind = DATA IN and
mp. msgType in di . DataType

}
pred Component . send [ r e c e i v e r : Component , d : Message , typ : DataType , t : Time ] {

some mp: MsgPassing{
mp. c l i e n t = this
mp. s e rv e r = r e c e i v e r
mp. msgData = d
mp. msgData . msgType= typ
che ck type i n t e r a c t i on da t a [mp]

one t ’ : t . next | l e t c = { c : ConnectorMPS | c . portO in mp. c l i e n t . uses and
c . por t I in mp. s e rv e r . uses} | MPS push [ t , t ’ , c ,mp]
}

}
pred Component . r e c e i v e [ sender : Component , d : Message , typ : DataType , t : Time ] {
some mp: MsgPassing{

mp. c l i e n t = sender
mp. s e rv e r = this
mp. msgData = d
mp. msgData . msgType= typ
che ck type i n t e r a c t i on da t a [mp]
one t ’ : t . next | l e t c = { c : ConnectorMPS | c . portO in mp. c l i e n t . uses and
c . por t I in mp. s e rv e r . uses} | MPS pull [ t , t ’ , c ,mp]
}

}

Listing 1.5. Message passing communication

Remote Procedure Call Communication. Communication in the remote pro-
cedure call communication style is performed using the call(), executeCall(),
reply() and executeReply() primitives. As depicted in Listing 1.6, the call()



210 Q. Rouland et al.

primitive executed at the caller component requires the name of the callee com-
ponent providing the invoked method, the method being invoked and the asso-
ciated arguments as parameters. The executeCall() primitive requires the name
of the anticipated caller component, the corresponding invoked method and its
input and output arguments. The reply() primitive requires the name of the
anticipated caller component, the corresponding invoked method and its result
parameters. The executeReply() primitive requires the name of the anticipated
callee component, the corresponding invoked method and its result parameters.

The semantics of RPC in distributed systems are the same as those of
a local procedure call in a non distributed systems: The caller component
calls and passes input arguments to the remote procedure and it blocks
at the call(callee,method, input, result) while the remote procedure executes
(executeCall(caller,method, input, result)). When the remote procedure com-
pletes, the callee component can return result parameters to the calling compo-
nent (reply(caller,method, result)) and the caller becomes unblocked and con-
tinues its execution (executeReply(callee,meth, result)). As a prerequisite, we
added the check type interaction interface predicate to ensure that operations
are present at the sending and receiving components before an invocation is exe-
cuted. Without interface type checking, the presence of the invoked operation is
only verified at execution time.
pred c h e c k t y p e i n t e r a c t i o n i n t e r f a c e [ i : Invocat ion ]{

one i f : I n t e r f a c e , p : i . c l i e n t . uses | i f in p . r e a l i z e s and i f . kind = REQUIRED and i .
i n v o c a t i on o f in i f . methods

one i f : I n t e r f a c e , p : i . s e rv e r . uses | i f in p . r e a l i z e s and i f . kind = PROVIDED and i .
i n v o c a t i on o f in i f . methods

}
pred Component . c a l l [ c a l l e e : Component , meth : Method , in : set Argument , out : set

Argument , t : Time ]{
some i : Invocat ion{
i . c l i e n t = this
i . s e r v e r = c a l l e e
i . i n vo c a t i on o f = meth
i . a rguments ca l l = in
# i . arguments reply . t = 0
ch e c k t yp e i n t e r a v t i o n i n t e r f a c e [ i ]
one t ’ : t . next | l e t c = { c : ConnectorRPC | c . portO in i . c l i e n t . uses
and c . por t I in i . r e c e i v e r . uses} | RPC pushInvocation [ t , t ’ , c , i ]
}

}
pred Component . executeCa l l [ c a l l e r : Component , meth : Method , in : set Argument , out : set

Argument , t : Time ] {
some i : Invocat ion{
i . c l i e n t = c a l l e r
i . s e r v e r = this
i . i n v o c a t i on o f = meth
i . a rguments ca l l = in
# i . arguments reply . t = 0
c h e c k t y p e i n t e r a c t i o n i n t e r f a c e [ i ]
one t ’ : t . next | l e t c = { c : ConnectorRPC | c . portO in i . c l i e n t . uses
and c . por t I in i . s e r v e r . uses}
| RPC pullInvocation [ t , t ’ , c , i ] and c . bu f f e r . t ’ . arguments reply . t ’ = args out
}

}
pred Component . r ep ly [ c a l l e r : Component , meth : Method , out : setArgument , t : Time ] {

some r : Invocat ion{
r . c l i e n t = c a l l e r
r . s e r v e r = this
i . i n v o c a t i on o f = meth
i . a rguments ca l l = in
i . arguments reply = out
c h e c k t y p e i n t e r a c t i o n i n t e r f a c e [ i ]
one t ’ : t . next | l e t c = { c : ConnectorRPC | c . portO in r . c l i e n t . uses
and c . por t I in r . s e r v e r . uses}
| RPC pushReply [ t , t ’ , c , r ]
}

}
pred Component . executeReply [ c a l l e e : Component , meth : Method , in : set Argument , out : set

Argument , t : Time ] {
some r : Invocat ion{
r . c l i e n t = this



Formalizing Reusable Communication Models 211

r . s e r v e r = c a l l e e
i . i n vo c a t i on o f = meth
i . a rguments ca l l = in
i . arguments reply = out
c h e c k t y p e i n t e r a c t i o n i n t e r f a c e [ i ]
one t ’ : t . next | l e t c = { c : ConnectorRPC | c . portO in r . c l i e n t . uses
and c . por t I in r . s e r v e r . uses}
| RPC pullReply [ t , t ’ , c , r ]
}

}

Listing 1.6. Remote procedure call communication

5.4 Formal Verification and Results
To analyze the connectors, the modeling formalism developed in this work allows
to specify the properties to be checked in terms of first-order predicate logic
formulas. Then, the Alloy Analyzer automatically checks the properties using
a SAT solver. Among the set of possible and yet specified characteristics of
the behaviors of the message passing and remote procedure call communication
styles, a subset of them are encoded in terms of properties as predicates and
assertions and the results of their verification are stated below.

Some of the properties that are specified and verified reflect typical liveness
properties of concurrent and communicating systems. In order to ensure that
such systems are dependable, liveness properties such as property (a) given below
for both message passing and remote procedure call communication are vital to
ensuring reliable communications and system behaviors.

– Message passing communication.
• (a) “once the client c1 sends a message to server s1, eventually that server

receives it”.
pred s end ev en tua l l y r e c e i v ed {

one t : Time | one t ’ : t . nexts | some c1 , c2 : Component | some d : Message | some
typ : DataType |

c2 . send [ c1 , d , typ , t ’ ] => c1 . r e c e i v e [ c2 , d , typ , t ]
}

• (b) “once the server s1 receives a message, it must already have been sent
by a certain client c1”.
assert r e c i e v e mus t be s en t {

one t : Time | one t ’ : t . nexts | some c1 , c2 : Component | some d : Message | some
typ : DataType |

c2 . r e c e i v e [ c1 , d , typ , t ’ ] => c1 . send [ c2 , d , typ , t ]
}

• (c) “messages sent from the client c1 to the server s1 reach the server s1
in the same order as they were sent from c1”.
assert is FIFO {

a l l d i s j c1 , s1 : Component | a l l d i s j d1 , d2 : Message | some typ1 , typ2 :
DataType | a l l t s1 : Time | l e t t s2 = ts1 . nexts | a l l t r1 : Time | a l l t r2 :

Time |
( c1 . send [ s1 , d1 , typ1 , t s1 ] and c1 . send [ c2 , d2 , typ2 , t s2 ]
and s1 . r e c e i v e [ c1 , d1 , typ1 , t r1 ]
and s1 . r e c e i v e [ c1 , d2 , typ2 , t r2 ] )
=> t r2 in t r1 . nexts

}

The Alloy Analyzer shows that properties (a) and (b) hold for both types
of message passing connector (simple and FIFO). It also shows that prop-
erty (c) does not hold for a simple message passing connector. Since the



212 Q. Rouland et al.

property does not hold, Alloy produces a counter example, which shows
the main reason why the specified property does not hold. However, the
Alloy analyzer shows that this property holds for a FIFO ordered message
passing connector.

– Remote procedure call communication.
• (a) “Once the caller c1 sends an invocation to callee c2, the caller even-

tually receives an acknowledgement from that callee”.
pred s e n d i s e v e n t u a l l y r e p l i e d {

one t : Time | one t ’ : t . nexts | some c1 , c2 : Component | some m: Method
| some a r g s i n : Argument | some arg s out : Argument |
c1 . c a l l [ c2 ,m, a rg s in , args out , t ] => c1 . executeReply [ c2 ,m, a rg s in , args out

, t ’ ]
}

• (b) “Once the caller c1 receives results corresponding to an invocation of
a method m at a certain server c2 and the caller c1 starts the next invo-
cation of the same method at the same server, the callee c1 is eventually
executing that invocation”.

pred r e p l y a n d c a l l i s e v e n t u a l l y r e c e i v e d {
one t : Time | one t ’ : t . nexts | one t ’ ’ : t ’ . next |
some c1 , c2 : Component | some m: Method |

some dis j args in1 , args out1 , a rgs in2 , a rgs out2 : Argument |
c2 . r ep ly [ c1 ,m, args in1 , args out1 , t ] and c1 . c a l l [ c2 ,m, args in2 , args out2 , t

’ ] =>
c2 . executeCa l l [ c1 ,m, args in2 , args out2 , t ’ ’ ]

}

The Alloy Analyzer shows that both properties (a) and (b) hold for a RPC
connector.

6 Use Case

We use a college library website system [19] to exemplify the proposed app-
roach. Figure 9 shows the overall architecture description of the web application.
It consists of a the following software components: a client, a web server and
a database server. The website provides online services for searching for and
requesting books. The users are students, college staff and librarians. Staff and
students will be able to log in and search for books, and staff members can
request books. Librarians will be able to log in, add books, add users, and search
for books. We use a UML class diagram to describe the high level architecture
model of the web application, where software components are represented by
classes, and connectors between these components are represented by associa-
tions. However, effective realizations of these connectors are not modeled in the
UML class diagram; they may be subject to certain changes and/or adapta-
tions (e.g., new solutions, deletions, modifications of realization), verifications
(e.g., formal verification) and reuse (e.g., in the same domain or across domains)
while the structure of the main software architecture can be maintained. Each
connector represents a communication pattern which rigorous software develop-
ers, mainly architects would like software modeling and analysis languages to
easily express.



Formalizing Reusable Communication Models 213

Fig. 9. A web application example in UML

6.1 Expressing the Architecture of a Web Application Example

Listing 1.7 depicts the Alloy specification of the web application architecture
described in Fig. 9. We start by defining the component types, and the interfaces
and connectors as simple extensions to the concepts of our software architecture
metamodel. Then, we reuse our connector models, the corresponding commu-
nication primitives and their associated properties to specify the structure and
the behavior of the software architecture describing the example in Alloy.
one sig UserBrowser extends Component {
}{

uses = Port Inter faceBrowser
}
one sig Webserver extends Component {
}{

uses = Port Inter faceWebserver + PortDataWebserver
}
one sig Database extends Component {
}{

uses = PortDataDatabase
}
one sig In te r faceBrowser extends I n t e r f a c e {
}{

getBook in methods
}
one sig Inter faceWebserver extends I n t e r f a c e {
}{

getBook in methods
}
one sig DataWebserver extends Data {
}
one sig DataDatabase extends Data {
}
one sig Port Inter faceBrowser extends Port {
}{

r e a l i z e s = Inte r faceBrowser
}
one sig PortInter faceWebserver extends Port {
}{

r e a l i z e s = Inter faceWebserver
}
one sig PortDataWebserver extends Port {
}{

r e a l i z e s = DataWebserver
}
one sig PortDataDatabase extends Port {
}{

r e a l i z e s = DataDatabase
}
one sig BrowerWebserverConnector extends ConnectorRPC {
}{

portO = Port Inter faceBrowser
por t I = Port Inter faceWebserver

}
one sig DatabaseWebserverConnector extends ConnectorMPS {
}{

portO = PortDataDatabase
por t I = PortDataWebserver

}

Listing 1.7. A web application example in Alloy



214 Q. Rouland et al.

6.2 Expressing and Verifying Functional Requirements

To illustrate the usage of the developed model, we studied two functional require-
ments of the example. Listing 1.8 depicts their encoding in Alloy. Then, the
architect can verify whether these two requirements hold using the Alloy ana-
lyzer.

– Req 1. It should be possible for somebody to visualize a book page.
– Req 2. It should be possible for the database to transmit data to the Webserver.

pred Req 1{
some ws : Website , bw : Browser , op : getBook , a rg s in , a rg s out : set Argument , t : Time ,

t ’ : t . nexts |
bw. c a l l [ ws , op , a rg s in , args out , t ] and
bw. executeReply [ ws , op , a rg s in , args out , t ’ ]

}
pred Req 2 {

some ws : Webserver , db : Database , c : Message , typ : DataType , t : Time , t ’ : t . nexts
|

db . send [ ws , c , typ , t ] and
ws . r e c e i v e [ db , c , typ , t ’ ]

}

Listing 1.8. Examples of requirements of a web application

The Alloy analyzer shows that both Req 1 and Req 2 hold, within the specified
scope. This check enforces that the model is complete w.r.t. the current level of
design.

7 Concluding Remarks and Future Works

Formalization and verification techniques are useful in the rigorous development
of computer-based systems. In this paper, our experience in verifying message
passing and RPC communication styles using Alloy is presented. Here, we have
verified some most common properties of these two styles of communication and
found that the properties hold. Thus from our experience we can say that the
connectors and the software architecture using them are verifiable for building
reliable distributed systems. Our next goal is to improve our Patten Based Sys-
tem Engineering (PBSE) framework [7] considering security and safety require-
ments within software architectures built on-top of these communication styles.
We plan to transform our PBSE pattern modeling concepts to Alloy specifica-
tions to ensure semantic validation. In addition, we aim at refining our model-
ing framework with properties and reasoning of Security Modeling Framework
(SeMF) [6]. Our starting point is modeling security patterns in Alloy from [8].
Moreover, some timing and/or other resource constraints can also be enforced
to verify the architecture models.



Formalizing Reusable Communication Models 215

References

1. Alloy Analyzer. http://alloy.mit.edu. Accessed June 2017
2. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Trans.

Softw. Eng. Methodol. 6(3), 213–249 (1997)
3. Coulouris, G., Dollimore, J., Kindberg, T., Blair, G.: Distributed Systems: Con-

cepts and Design, 5th edn. Addison-Wesley Publishing Company, Boston (2011)
4. Crnkovic, I.: Component-based software engineering for embedded systems. In:

Proceedings of the 27th International Conference on Software Engineering, ICSE
2005, pp. 712–713. ACM (2005)

5. Garlan, D.: Formal modeling and analysis of software architecture: components,
connectors, and events. In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS,
vol. 2804, pp. 1–24. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-39800-4 1

6. Hamid, B., Gürgens, S., Fuchs, A.: Security patterns modeling and formalization
for pattern-based development of secure software systems. Innov. Syst. Softw. Eng.
12(2), 109–140 (2016)

7. Hamid, B., Perez, J.: Supporting pattern-based dependability engineering via
model-driven development: approach, tool-support and empirical validation. J.
Syst. Softw. 122, 239–273 (2016)

8. Heyman, T., Scandariato, R., Joosen, W.: Reusable formal models for secure soft-
ware architectures. In: Joint Working IEEE/IFIP Conference on Software Archi-
tecture and European Conference on Software Architecture, pp. 41–50 (2012)

9. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

10. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2006)

11. Khosravi, R., Sirjani, M., Asoudeh, N., Sahebi, S., Iravanchi, H.: Modeling and
analysis of Reo connectors using alloy. In: Lea, D., Zavattaro, G. (eds.) COORDI-
NATION 2008. LNCS, vol. 5052, pp. 169–183. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-68265-3 11

12. Kruchten, P.: Architectural blueprints - the “4+1” view model of software archi-
tecture. IEEE Softw. 12(6), 42–50 (1995)

13. OMG: CORBA Specification, Version 3.1. Part 3: CORBA Component Model
(2008). http://www.omg.org/spec/CCM. Accessed Nov 2009

14. OMG. OMG Systems Modeling Language (OMG SysML), Version 1.1 (2008).
http://www.omg.org/spec/SysML/1.1/,. Accessed Jan 2013

15. OMG: Object Constraint Language (OCL), Version 2.2 (2010). http://www.omg.
org/spec/OCL/2.2. Accessed Jan 2013

16. OMG: UML profile for Modeling and Analysis of Real-Time and Embedded
Systems (MARTE), Version 1.1 (2011). http://www.omg.org/spec/MARTE/1.1/.
Accessed Jan 2013

17. OMG: Unified Modeling Language (UML), Version 2.4.1 (2011). http://www.omg.
org/spec/UML/2.4.1. Accessed Jan 2013

18. OMG: Unified Component Model for Distributed, Real-Time And Embedded Sys-
tems, Version 1.0 (2017). http://www.omg.org/spec/UCM/20170601/. Accessed
Jan 2018

19. OWASP: Application threat modeling (2017). https://www.owasp.org/index.php/
Application Threat Modeling. Accessed Dec 2017

http://alloy.mit.edu
https://doi.org/10.1007/978-3-540-39800-4_1
https://doi.org/10.1007/978-3-540-39800-4_1
https://doi.org/10.1007/978-3-540-68265-3_11
https://doi.org/10.1007/978-3-540-68265-3_11
http://www.omg.org/spec/CCM
http://www.omg.org/spec/SysML/1.1/,
http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/UML/2.4.1
http://www.omg.org/spec/UML/2.4.1
http://www.omg.org/spec/UCM/20170601/
https://www.owasp.org/index.php/Application_Threat_Modeling
https://www.owasp.org/index.php/Application_Threat_Modeling


216 Q. Rouland et al.

20. Alur, R., Dill, D.: The theory of timed automata. In: de Bakker, J.W., Huizing,
C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 45–73.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031987

21. Ravi, S., Raghunathan, A., Kocher, P., Hattangady, S.: Security in embedded sys-
tems: design challenges. ACM Trans. Embed. Comput. Syst. 3(3), 461–491 (2004)

22. Taylor, R.N., Medvidovic, N.: Software Architecture: Foundation, Theory, and
Practice. Wiley, Hoboken (2010)

23. Rodano, M., Giammarc, K.: A formal method for evaluation of a modeled system
architecture. Procedia Comput. Sci. 20, 210–215 (2013)

24. SAE: Architecture Analysis & Design Language (AADL) (2009). http://www.sae.
org/technical/standards/AS5506A. Accessed Jan 2011

25. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003)

26. Zurawski, R.: Embedded systems in industrial applications - challenges and trends.
In: International Symposium on Industrial Embedded Systems (SIES). IEEE
(2007)

https://doi.org/10.1007/BFb0031987
http://www.sae.org/technical/standards/AS5506A
http://www.sae.org/technical/standards/AS5506A


Safety and Security



A Valid BPMN Extension for Supporting
Security Requirements Based on Cyber

Security Ontology

Mohamed El Amine Chergui1(&) and Sidi Mohamed Benslimane2

1 EEDIS Laboratory, Djillali Liabes University, Sidi Bel Abbès, Algeria
amine.chergui@univ-sba.dz

2 LabRI-SBA Laboratory, Ecole Superieure en Informatique,
Sidi Bel Abbes, Algeria

s.benslimane@esi-sba.dz

Abstract. Business Process Model and Notation (BPMN) is the de facto
standard for business process modeling. One of the most important aspect of
business process models is security. Since most business processes revolve
around the exchange of information, the security of such information assets
becomes a critical factor for the success of the overall business process.
Therefore, it is very important to capture the security requirements at conceptual
level in order to identify the security needs in the first place. There is a need for
an integrated tools and methodology that allows for specifying and enforcing
compliance and security requirements for business process-driven enterprise
systems. Furthermore, BPMN do not support the specification of security
requirements along the business process modelling. This will increase the vul-
nerability of the system and make the future development of security for the
system more difficult. In this paper, we extend the BPMN language to explicitly
support the specification of security requirements derived from cyber security
ontology. We incorporate visual constructs for modeling security requirements.
In order to provide a commonly usable extension, these enhancements were
implemented as a valid BPMN extension. An application example from the
healthcare domain is used to demonstrate our approach. The experimentation
denotes that the authors’ approach achieves better results in terms comprehen-
sive understanding of incorporated security requirements.

Keywords: BPMN extension � Security in business process
Business process modeling

1 Introduction

Modern enterprise systems are often process-driven. Adopting business process
modeling standards to express and design the functional requirements of their business.
Business process models are used for communication business requirements between
system experts and business experts. Modern business processes combine human tasks
with automated tasks (e.g., implemented by web services), a business process

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 219–232, 2018.
https://doi.org/10.1007/978-3-030-00856-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_14&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_14&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_14&amp;domain=pdf


modelling language needs to bridge the gap between the language used by business
experts and the language used by system experts (Brucker et al. 2012).

Integrating high level security and compliance requirements into process models
are a major concern for designing and running business process driven systems. In
addition, security requirements have been recognized as an important preoccupation
among system developers and users. Based on these facts, the association between
business process and security is inevitable. Empirical studies shows that those who
model the business process i.e. business domain expert are able to specify security
requirements at high level of abstraction i.e. while designing the system (Rodriguez
et al. 2007).

Many software development methods often treat security, separately at later stage.
Business process modelling is the most appropriate layer to describe security
requirements (Menzel et al. 2009). Business process modelling is normally performed
in a modelling language such as UML or BPMN. However in practice, business
domain expert mainly focus on the functionality because business domain expert is not
a security expert (Rodriguez et al. 2007). These modelling languages do not support
natively annotation security, which may result in significant problems regarding the
comprehensibility and maintainability of these ad hoc models. Several approaches have
been proposed to model the security requirements along the business process model.
However, those approaches remain theoretical and miss many important security
concepts (Maines et al. 2016). BPMN is used as a modelling language for our work;
which is an industry standard for business modelling (Rodriguez et al. 2007). Current
BPMN-security extensions have made attempts, but they are being constructed
unsystematically, without any empirical evidence to support their choice of concepts
(Leitner et al. 2013) and most extensions are not compliant with the BPMN standard
(Braun et al. 2014).

The main goal of this paper is to assess the design and modeling of security
concepts in business processes. An ontology-based extension approach is proposed to
model security requirements through business process. We will summarize our BPMN
extension for modeling secure business process through Business Process Diagrams,
and we will apply this approach to case study business process. This security annotative
business process model will facilitate the security expert while defining concrete
security implementation.

The remaining part of the paper is organized as follows: In Sect. 2, the most related
work is briefly reviewed. Section 3 introduces fundamentals in terms of general
extensibility of BPMN. In Sect. 4 we present the proposed extension that support
security annotation. Section 5 provide an illustration with use case to demonstrate
integration of security concepts. Finally, Sect. 6 concludes the paper and outlines
directions for future work.

2 Literature Review

There are several research papers that are related to analyzing security requirements for
designing security extensions in BPMN, we briefly review the most related work.

220 M. E. A. Chergui and S. M. Benslimane



(Wolter et al. 2009) have introduced an approach to express security goals at the
business process level. The foundation constitutes their generic security model that
specifies security goals, policies, and constraints based on a set of basic entities, such as
objects, attributes, interactions, and Effects. The concepts they specify are confiden-
tiality, authentication, authorisation, integrity, traceability and auditing, and availabil-
ity. (Rodriguez et al. 2007) have presented a BPMN metamodel with core element and
extension that allow incorporating security requirements into Business Process Dia-
grams that will increase the scope of the expressive ability of business analysts. They
used concepts as nonrepudiation, attack/harm detection, integrity, privacy, access
control, security role, and security permissions. We note the lack of availability con-
cept; it is a necessary requirement that should have been included.

(Mulle et al. 2011) present a rich language to represent security constraints for
business processes and provide security support from the modelling to the runtime
phase of a business-process lifecycle. Serval’s concept introduced as confidentiality
and integrity, authorization, authentication, auditing.

(Basin et al. 2011) introduce a new approach to aligning security and business
objectives for information systems. Using CSP, they modeled a system at two levels of
abstraction: the control-flow level, modeling a system’s business objectives, and the
task execution level, modeling who executes which tasks. Furthermore, they presented
a novel approach to scope SoD and BoD constraints to subsets of task instances using
release points.

(Brucker et al. 2012) proposed a model-based approach for designing and operating
business-process-driven systems that integrates security and compliance requirements
on the design-time modeling as well as the run-time enforcement of security and
compliance requirements. The authors focuses on access control but also provides
support for the other concepts: separation of duty, binding of duty and need to know.

(Saleem et al. 2012) presented a DSL, to model the security requirements along the
business process model. They emphasise the need for specifying security requirements
at design-time. In their approach, only core concepts (Confidentiality, integrity and
availability) are used (Salnitri et al. 2014) introduced a framework that enables spec-
ifying information systems in SecBPMN, a security-oriented extension of BPMN.
There are several concepts used in their framework as accountability, auditability,
authenticity, availability, confidentiality, integrity non-repudiation and privacy. These
concepts derived from the Reference Model of Information Assurance and Security
(RMIAS) (Cherdantseva et al. 2013).

In (Altuhho et al. 2013), they propose a structured approach that extended BPMN
to represents security risks. They specifies different colors for representing different
resources. In addition, Tasks elements are used to model security activities, such as to
authenticate users. However, those approaches miss many important security concepts.
(Labda et al. 2014) proposes a novel extension to the visual notation of BPMN towards
supporting privacy concerns. The extension focuses on representing privacy require-
ments about personal data. Their extension focus on privacy the concepts included
focusing only on specifics sections of cyber security: separation of tasks, access con-
trol, binding of tasks, necessity to know and user consent.

(Maines et al. 2015) propose a new comprehensive ontology including all concepts
potentially modellable in BPMN related to cyber security. The diagram also illustrates

A Valid BPMN Extension for Supporting Security Requirements 221



T
ab

le
1.

O
ve
rv
ie
w

of
se
cu
ri
ty
-r
el
at
ed

B
PM

N
ex
te
ns
io
n

222 M. E. A. Chergui and S. M. Benslimane



the relationships between each class (concept) and their respective subclasses. How-
ever, the approach remains theoretical.

(Sang et al. 2015) provide a solution to model the security concepts in BPMN by
extending it with new designed security elements, which can be integrated with the
BPMN diagram. It provides the opportunity to improve and raise the security aware-
ness in the healthcare process.

(Maines et al. 2016) propose the application of a third dimension to BPMN as a
means of representing cyber security requirements. They include all concepts poten-
tially modellable in BPMN related to cyber security. However, the approach remains
theoretical and not valid BPMN extension.

(Argyropoulos et al. 2017) introduce an approach for the verification of security in
business process models based on structural properties of the workflow of the process.
To that end, they added a series of attributes to existing BPMN 2.0 concepts and
algorithms for checking the compliance of a process model against the most common
security requirements.

Table 1 displays BPMN security extensions found in the literature review. Each
extension was analyzed with respect to the cyber security concepts and the standard
conformity criterion regarding the syntactical and semantic correctness of the extension
in the light of the BPMN standard (Braun et al. 2014). There is no single extension
incorporating all security concepts. It is remarkable, that extensions listed are not
compliant with the BPMN standard (not use BPMN extension mechanism).

3 Fundamentals

This section presents fundamentals in terms of general extensibility of BPMN and
outlines the extension method of (Stroppi et al. 2011) as well domain analysis.

BPMN provides a “extension by addition” mechanism that enables the definition
and integration of domain-specific concepts and ensures the validity of the BPMN core
elements. The following elements are defined for the specification of valid BPMN
extensions: An Extension Definition is a named group of new attributes that can be
used by BPMN elements. Thus, new elements can be built implicitly. An Extension
Definition consists of several Extension Attribute Definitions that define the particular
attributes. Values of these Extension Attribute Definitions can be defined by the
Extension Attribute Value class. Therefore, primitive types from the Meta Object
Facility (MOF1) can be used.

The element Extension binds the entire extension definition and its attributes to a
BPMN model definition. By doing so, all extension elements are accessible for existing
BPMN elements. Despite the fact that BPMN offers a well-defined extension interface,
only very few BPMN extensions make use of it. Instead, most extensions are only
defined graphically. This hampers both comprehensibility and comparability between
developed extensions and impedes the straightforward integration of extensions in

1 http://www.omg.org/spec/MOF/.

A Valid BPMN Extension for Supporting Security Requirements 223

http://www.omg.org/spec/MOF/


BPMN modeling tools due the missing compliances with the BPMN metamodel. One
reason for that is the missing procedure model for building extensions in the BPMN
specification. Although extension elements are defined, methodical guidance for their
creation is missing (Braun et al. 2014).

According to our research, Stroppi’s approach (Stroppi et al. 2011) is the only one
that address the stated problem. They define a model-transformation based procedure
model for the methodical development of valid BPMN extensions. The procedure
model consists of the following steps:

1. Conceptualizing the domain by defining a Conceptual Domain Model of the
Extension (CDME) as UML class diagram.

2. Transformation of the CDME into a valid BPMN extension model by using UML
profiles (BPMN+X).

3. Transformation of the BPMN+X into a XML Schema Extension Definition Model.
4. Transformation of the XML Schema Extension Definition Model into a XML

Schema Extension Definition Document.

For our approach, we used a cyber-security ontology (Maines et al. 2015) in the
domain analysis step to clarify the concepts (Stroppi et al. 2011). The concrete syntax
of the extension will be defined in a final step within the development process.

4 Cyber Security Ontology-Based BPMN Extension

In this section, we provide a BPMN extension with complete set of security concepts
derived from cyber security ontology to enable the modelling of the security require-
ments. The design of the extension is presented gradually below.

4.1 Domain Analysis

There is a need for specifying accurately cyber security requirements within BPMN.
We propose the use of new comprehensive ontology, which includes all concepts

Fig. 1. Domain model for BPMN extension

224 M. E. A. Chergui and S. M. Benslimane



potentially modellable in BPMN related to cyber security. Current BPMN-security
extensions are being constructed unsystematically, without any empirical evidence to
support their choice of concepts (Leitner et al. 2013). A common problem when
creating security extensions lies with the lack of clear, predetermined concepts to be
modelled. To address this problem, an ontology of cyber security for security exten-
sions was created by (Maines et al. 2015). The main objective being to ensure any
cyber security requirement a user may wish to model within BPMN is present within
the ontology. We conceptualizing the domain by defining a Conceptual Domain Model
of the Extension (CDME) (Fig. 1).

4.2 BPMN Extension Model (BPMN+X)

The second step is accomplished by developing a BPMN+X model based on the CDME
resulting of the first step. BPMN+X is a language developed by (Stroppi et al. 2011) as a
UML profile. Thus, it can be supported by existing UML tools. Another benefit of
defining BPMN+X as a profile is that its learning curve will be more effective as UML
it’s a popular modeling language. The semantics and the abstract syntax of the BPMN
+X elements are based on the specification of the BPMN extension mechanism (Fig. 2).

The BPMN+X model is enhanced with stereotypes. The ExtensionDefinition
stereotype describes a container and corresponds to the respective class in the MOF
extensibility mechanism. The ExtensionElement stereotype is defined in the BPMN-X
UML profile and matches the ExtensionAttributeValue class of the MOF extensibility
mechanism. This allows representing the various elements as class objects for the next
transformation step.

Fig. 2. BPMN+X extension model

A Valid BPMN Extension for Supporting Security Requirements 225



4.3 BPMN Transformation of the BPMN+X Model into an XML Schema
Extension Definition Model

The third step consists of transforming the BPMN+X model into an XML Schema
Extension Definition Model that is an instance of a MOF metamodel representing the
concepts of the XML Schema specification.

– An ExtensionElement element is transformed into a ComplexTypeDenition
element.

– An ExtensionEnum element is transformed into a SimpleTypeDenition element.
– BPMNElement and BPMNEnum elements are not transformed into any kind of

XML Schema element. This is because the generated Schema imports the BPMN
specification so the BPMN elements can be referenced by the other elements
defined in the ExtensionModel (Stroppi et al. 2011).

The third step of the method is supported by a model-to-model transformation by
using the QVT. This transformation takes a BPMN+X model and returns an XML
Schema Extension Definition Model, which is an instance of an Ecore representation of
XML Schema.

4.4 Transformation of the XML Schema Extension Definition Model
into an XML Schema Document

The last step of the method consists of generating an XML Schema document repre-
senting the elements of the XML Schema Extension Definition Model resulting of the
third step. This document is produced by means of a straightforward model-to-code
transformation producing one element in the resulting document per each element in
the input model. This step is supported by a model-to-code transformation developed
using the JET. It produces one XML Schema element in the resulting XML Schema
Extension Definition Document for each element in the input XML Schema Extension
Definition Model.

4.5 BPMN Notation Extension

For visualizing the extended modeling elements in a process model, we propose a
corresponding extension of the notation. To describe process models as diagrams,
BPMN provides a schema for diagram interchange (BPMN: DI) which is meant to
facilitate interchange between modeling tools. This schema allows specifying the visual
attributes of a process model in its XML representation (Schultz and Radloff 2014). In
this regard, the BPMN specification provides neither guidelines for the graphical
representation of extension elements nor an extensibility mechanism for new notation
elements. The notation has to be implemented separately to the semantics in a modeling
tool (Stroppi et al. 2011). In general, the notation of an extension must not alter the
BPMN notation and should be as close as possible to it (look and feel). Our notation
extends the shapes of the BPMN Activity respectively the BPMN Task, Message and
Data Object. We add an icon to the shape as shown in Table 2.

226 M. E. A. Chergui and S. M. Benslimane



5 Case Study

To demonstrate the using of our BPMN extension approach, we annotate a typical
business process of admitting a patient to a hospital (Rodriguez et al. 2007). Three
Pools describe the business process (see Fig. 3). Patient represents individuals who
receives medical care. Administration Area is divided into two Lanes, where the
Medical Institution records details about costs and insurances. Finally, the Pool
Medical Area is divided into Lanes (Medical Evaluation and Exams) where pread-
mission tests, exams, evaluations and complete clinical data collecting are carried out.
Security requirements are included in this business process specification. We consid-
ered several aspects of security. We define confidentiality for activity admission
request, with the aim of preventing the disclosure of sensitive information about
Patients.

– Non-repudiation has been defined over the message flow that goes from the pool
Patient to the pool administration with the aim of avoiding the denial of the
“Admission Request.

– Authentication has been defined for activity “review admission request”.
– Audit Trail specification has been added to activity “fill out cost’. This implies that

it must register role name, date and time of all events related to the update of cost.

Integrity (high) requirement has been specified for Data Object “Clinical Infor-
mation” and “Accounting data”.

Table 2. Notation for security extension

A Valid BPMN Extension for Supporting Security Requirements 227



– Finally, we specified Attack Harm Detection for “Medical Evaluation” with audit
requirement. All events related to attempt or success of attacks or damages must be
registered.

As illustrated, the example shows how our security extensions improve the current
BPMN standard in order to support the security requirements specification in the
process of modelling.

Fig. 3. Business process of admitting a patient to a hospital

228 M. E. A. Chergui and S. M. Benslimane



Considering current approaches to security extensions and modelling languages in
general, our solution offer complete set of security concepts with their graphical pre-
sentation to simplify modeling security requirements.

6 Experimental Evaluation

In a design science research project, the evaluation step tries to observe and measure
how well the designed artifact supports a solution for the addressed problem (Schultz
and Radloff 2014). In order to evaluate the BPMN security extension, we designed an
experiment involved a comprehension task. Participants were shown a business process
diagram. They were then asked 10 questions to test their understanding of some
elementary semantics of the security concepts.

6.1 Design and Measures

A 1 � 2 between-group experiment is designed. Three dependent measures were used
as in (Bodart et al. 2001):

• Accuracy: Participants were asked 10 questions about the semantics underlying the
security concepts. We evaluate their response as either correct or incorrect. Their
accuracy score was the total number of questions that they answered correctly.

• Time: We recorded the time taken (in seconds) by a participant to answer each
question. Their time score was the total time taken for them to answer the 10
questions.

• Normalized accuracy: Where accuracy and time are performance measures, it is
well known that participant may make tradeoffs—for example, they may compro-
mise accuracy in their responses for increased response speed. Accordingly, a
normalized accuracy score was calculated, which is a participant’s accuracy score
divided by their time score. A participant’s normalized accuracy score on each trial
is the number of accurate answers they provided per elapsed second.

6.2 Materials and Participants

Materials were based upon a student enrolment process. Two business process dia-
grams were created. The first was a diagram enhanced with security-related information
based on the previously presented BPMN extension (group BPMN+C). The second
was a traditional BPMN diagram with security matrix concepts (separately from the
process models).

Participants in the experiment were 50 computer science students, recruited through
Djillali Liabes University, who have taken at least one conceptual modelling course in
which they had studied the BPMN (thus, they were second-year computer science
students and above). Furthermore, 15 teachers from the same University are asked for
voluntary participation.

A Valid BPMN Extension for Supporting Security Requirements 229



6.3 Procedures

The two groups receive the same business process of student enrolment process and
related security concepts. One group obtains information on security concepts (security
matrix) separately from the process models (group BPMN). The other group has access
to process models that are enhanced with security concepts. Their goal was to answer
these questions as accurately and completely as possible.

In this evaluation, we focus on model interpretation. For evaluating the quality of
model interpretation two perspectives are discussed: Accuracy (how faithfully does the
interpretation of the model supports the reader to understand the domain semantics
included in the model?) and normalized accuracy (comprehension task efficiency)
(Burton-Jones et al. 2009). In our experiment following hypothesis are tested:

• H1: accuracy is positively affected by using the BPMN extension for representing
security concepts in process models.

• H2: normalized accuracy is positively affected by using the BPMN extension for
representing security concepts in process models.

The experiment took place entirely online using the Qualtrics research suite2.

6.4 Results

Table 3 shows the results for the three performance measures.

The BPMN Security extension group outperformed the BPMN group in terms of
accuracy and normalized accuracy. The two groups did not differ so much in terms of
time. The experimental results indicate that the BPMN extension has a positive effect
on accuracy with regard to the representation and the assessment of security concepts in
process models. One potential interpretation is that the integrated security concepts
reduces the cognitive load for model interpretation. We believe that the presented
extension meet security experts needs for modelling all security concepts clearly.

Table 3. Performance statistics

Accuracy Time Normalized accuracy

Group with BPMN security extension 6.077 82.38 0.080
Group BPMN 4.462 90.14 0.052

2 https://www.qualtrics.com/fr/.

230 M. E. A. Chergui and S. M. Benslimane

https://www.qualtrics.com/fr/


7 Conclusions and Perspectives

In this paper, we evaluated existing BPMN security extensions. From this literature
review, we were able to highlight the key problems current extensions have that our
solution aims to solve. We conservatively extend BPMN to address the many short-
comings that it exhibits when it comes to describing security requirements in the first
place by applying the (Stroppi et al. 2011). In order to ensure a reasonable design of
extension elements, we provide a valid BPMN extension with complete set of security
concepts derived from cyber security ontology to enable the modelling of the security
requirements, which will extensively improve the system’s security analysis capability.
The usage of the security extensions is illustrated with a simple example (admission of
patients in hospital).

A university experiment with 65 participants showed that the extension increases
interpretational efficiency compared to a separated security requirements
documentation.

With this extension, business analysts will be able to express security requirements
from their own perspective and be able to improve and raise the security awareness.

To evolve the contribution of this paper, we plan to enrich the security requirements
specifications, and assess the learnability and usability of our extension model by
applying it to different domains. Afterwards, we aim to tackle the development a
comprehensive security-aware business process modeling and execution framework to
enforce security constraints during runtime.

References

Menzel, M., Thomas, I., Meinel, C.: Security requirements specification in service-oriented
business process management. In: International Conference on Availability, Reliability and
Security, ARES 2009, pp. 41–48 (2009)

Rodriguez, A., Fernandez-Medina, E., Piattini, M.: A BPMN extension for the modeling of
security requirements in business processes. IEICE Trans. Inf. Syst. E90–D(4), 745–752
(2007)

Brucker, A.D., Hang, I., Lückemeyer, G., Ruparel, R.: SecureBPMN. In: Proceedings of the 17th
ACM symposium on Access Control Models and Technologies - SACMAT 2012, pp. 123–
126 (2012)

Qaiser, S.M., Jaafar, J.B., Hassan, M.F.: A domain-specific language for modelling security
objectives in a business process models of SOA applications. Int. J. Adv. Inf. Sci. Serv. Sci. 4
(1), 353–362 (2012)

Salnitri, M., Dalpiaz, F., Giorgini, P.: Modeling and verifying security policies in business
processes. In: Bider, I., et al. (eds.) BPMDS/EMMSAD -2014. LNBIP, vol. 175, pp. 200–
214. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43745-2_14

Cherdantseva, Y., Hilton, J.: A reference model of information assurance and security. In: 2013
International Conference on Availability, Reliability and Security, pp. 546–555 (2013)

Wolter, C., Menzel, M., Schaad, A., Miseldine, P., Meinel, C.: Model-driven business process
security requirement specification. J. Syst. Architect. 55(4), 211–223 (2009)

A Valid BPMN Extension for Supporting Security Requirements 231

http://dx.doi.org/10.1007/978-3-662-43745-2_14


Labda, W., Mehandjiev, N., Sampaio, P.: Modeling of privacy-aware business processes in
BPMN to protect personal data. In: Proceedings of the 29th Annual ACM Symposium on
Applied Computing - SAC 2014, pp. 1399–1405 (2014)

Mülle, J., Stackelberg, S.V., Böhm, K.: A security language for BPMN process models. In:
Karlsruhe Reports in Informatics (2011)

Maines, C.L., Llewellyn-Jones, D., Tang, S., Zhou, B.: A cyber security ontology for BPMN-
security extensions. In: The IEEE International Conference on Computer and Information
Technology, Ubiquitous Computing and Communications, Dependable, Autonomic and
Secure Computing, Pervasive Intelligence and Computing, pp. 1756–1763 (2015)

Sang, K.S., Zhou, B.: BPMN security extensions for healthcare process. In: The IEEE
International Conference on Computer and Information Technology, Ubiquitous Computing
and Communications, Dependable, Autonomic and Secure Computing, Pervasive Intelligence
and Computing, pp. 2340–2345 (2015)

Altuhhov, O., Matulevičius, R., Ahmed, N.: An extension of business process model and
notation for security risk management. Int. J. Inf. Syst. Model. Des. 4(4), 93–113 (2013)

Basin, D., Burri, S.J., Karjoth, G.: Obstruction-free authorization enforcement: aligning security
with business objectives. In: 2011 IEEE 24th Computer Security Foundations Symposium,
pp. 99–113 (2011)

Maines, C.L., Zhou, B., Tang, S., Shi, Q.: Adding a third dimension to BPMN as a means of
representing cyber security requirements. In: 2016 9th International Conference on
Developments in eSystems Engineering (DeSE), pp. 105–110 (2016)

Argyropoulos, N., Mouratidis, H., Fish, A.: Attribute-based security verification of business
process models. In: 2017 IEEE 19th Conference on Business Informatics (CBI), pp. 43–52
(2017)

Braun, R., Esswein, W.: Classification of domain-specific BPMN extensions. In: Frank, U.,
Loucopoulos, P., Pastor, Ó., Petrounias, I. (eds.) PoEM 2014. LNBIP, vol. 197, pp. 42–57.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45501-2_4

Stroppi, L.J.R., Chiotti, O., Villarreal, P.D.: Extending BPMN 2.0: method and tool support. In:
Dijkman, R., Hofstetter, J., Koehler, J. (eds.) BPMN 2011. LNBIP, vol. 95, pp. 59–73.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25160-3_5

Braun, R., Schlieter, H., Burwitz, M., Esswein, W.: BPMN4CP: design and implementation of a
BPMN extension for clinical pathways. In: 2014 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), pp. 9–16 (2014)

Leitner, M., Miller, M., Rinderle-Ma, S.: An analysis and evaluation of security aspects in the
business process model and notation. In: 2013 International Conference on Availability,
Reliability and Security, pp. 262–267 (2013)

Schultz, M., Radloff, M.: Modeling concepts for internal controls in business processes – an
empirically grounded extension of BPMN. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM
2014. LNCS, vol. 8659, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-10172-9_12

Bodart, F., Patel, A., Sim, M., Weber, R.: Should optional properties be used in conceptual
modelling? a theory and three empirical tests. Inf. Syst. Res. 12(4), 384–405 (2001)

Burton-Jones, A., Wand, Y., Weber, R.: Guidelines for empirical evaluations of conceptual
modeling grammars. J. Assoc. Inf. Syst. 10(6), 495–532 (2009)

232 M. E. A. Chergui and S. M. Benslimane

http://dx.doi.org/10.1007/978-3-662-45501-2_4
http://dx.doi.org/10.1007/978-3-642-25160-3_5
http://dx.doi.org/10.1007/978-3-319-10172-9_12
http://dx.doi.org/10.1007/978-3-319-10172-9_12


A Correct-by-Construction Model
for Attribute-Based Access Control

Hania Gadouche(B), Zoubeyr Farah, and Abdelkamel Tari

LIMED Laboratory, Faculty of Exact Sciences, University of Bejaia, Béjäıa, Algeria
gad.hania@gmail.com, zoubeyr.farah@gmail.com, tarikamel59@gmail.com

Abstract. In this paper, a formal specification approach of the
Attribute-Based Access Control (ABAC) is proposed using the Event-B
method. We apply an a-priori formal verification to build a correct model
in a stepwise manner. Correctness of the specification model is insured
during the construction steps. The model is composed of abstraction
levels that are generated through refinement operations. A set of ABAC
properties is defined in each level of refinement starting from the highest
abstract level to the most concrete one. These properties are preserved
by proofs with the behavior specification.

Keywords: ABAC · A priori verification · Correct-by-Construction
Event-B · Formal methods · Proof and refinement
Specification and validation

1 Introduction

In safety-critical systems, serious vulnerabilities can result from incorrect access
definition to sensitive data. Access Control Policies (ACP) are a common solution
for controlling access to resources. Hence, several access control models have
been proposed in the literature [1–4], namely the Mandatory Access Control
(MAC), the Discretionary Access Control (DAC), the Role Based Access Control
(RBAC) and the Attribute Based Access Control (ABAC). Each access model
has been designed to meet specific security requirements. Moreover, research on
the MAC, DAC, RBAC and ABAC has proven that an access control model,
which can express the RBAC policies is also capable of enforcing both MAC
and DAC policies, as well that ABAC can express RBAC policies. The ABAC
model improves RBAC since it enables fine-grained access control by defining
the notion of attributes. The additional use of attributes when defining access
control rules overcome the met shortcomings and make the handled objects more
reachable in a secured way.

Validating and ensuring correctness of ACP specifications generally involve
the use of systematic verification [5] which consists of checking absence of incon-
sistency and incompleteness in the built model. Regardless of used formalism,
many specification and verification approaches are based on testing, simulation

c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 233–247, 2018.
https://doi.org/10.1007/978-3-030-00856-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_15&domain=pdf


234 H. Gadouche et al.

or model checking. These latter implement a-posteriori verification techniques
[6] but are generally restricted to the following limitations:

– The state-space explosion problem;
– The checking is performed when the model instantiation is achieved.

Most of the existing literature approaches have used the XACML (eXtensible
Access Control Markup Language) [7] which is a standard for specifying ABAC
policies. XACML as a practical standard of OASIS has been covered in many
testing and verification researches. However, the XACML complexity make these
testing and verification methods limited. To overcome this, we propose an Event-
B based approach to build a valid ABAC model free from specification inconsis-
tencies and errors. Specification approaches that are based on formal methods,
such as Event-B [8], are widely used to model faultless critical systems. The use
of formal methods has significantly improved the quality of computer systems
[9], including analysis and design of software, also, verification of hardware and
embedded systems. Similar improvements can be achieved by integrating formal
methods into the development of secure systems [10,11]. Using formal meth-
ods requires understanding the system behavior and the relations between its
components. Several works in the literature have used the Event-B method to
specify the RBAC standard [12,13], but to the best of our knowledge, no work
has addressed ABAC using the Event-B method.

We use the Event-B formal method, since it allows the specification of systems
according to a correct-by-construction methodology, additionally, it provides a
large selection of tools and techniques for specifying, validating and checking
properties of systems. The proposed specification approach is based on refine-
ment and gives a multilevel view of the access control model. The refinement
starts from a high abstract level of specification to the most concrete one. The
specification consistency is preserved through all its levels as the model proper-
ties are linked to the behavior. Indeed, defining properties of the model according
to its behavior allows to get an a priori verification of the specification correct-
ness. Thus, our approach is based on an a priori formal verification process, sim-
ilarly to the one proposed to validate communicating systems in [14,15]. When
the model is instantiated, all proved properties of the generic model remain valid
thanks to the correct-by-construction approach. RODIN platform [8] is used to
develop and validate the model.

The key features of our proposal are as follows:

– The approach is progressive and based on proving refinement, accordingly it
avoids the combinatorial explosion.

– The behavior and properties of the model are correctly specified following a
correct-by-construction approach, consequently the consistency of the speci-
fication is proved in the overall refinement levels.

– The approach allows specific views of the model rather than a global inte-
grated one which simplifies the model analysis.



A Correct-by-Construction Model for ABAC 235

The remainder of the paper is organized as follows: Sect. 2 gives a presentation of
the ABAC standard. Section 3 describes the Event-B formal method. Section 4
gives a browse of each level of the proposed Event-B specification approach. Proof
obligations of the model are mentioned in Sect. 5. Related works are discussed
in Sect. 6. Finally, the conclusion and some research perspectives are given in
Sect. 7.

2 ABAC

In this section, an overview of ABAC is given. In the special publication [16] the
NIST gives the following official definition of ABAC: “An access control method
where a subject requests to perform operations on objects are granted or denied
based on assigned attributes of the subject, assigned attributes of the object,
environment conditions, and a set of policies that are specified in terms of those
attributes and conditions”.

Accordingly, we identify the following components for ABAC (Fig. 1):

• Policy: is a set of rules that determine if a requested access should be allowed,
given the values of the attributes of the subject, object, and probably envi-
ronment conditions or other constrains. A policy is created and owned by the
resource administrator and plays a crucial role in the operation of ABAC.

• Subjects: is a set of entities requesting to perform permissions upon objects.
Subjects are characterized by a set of attributes.

• Objects: is a set of system resources, such as devices, files, records, tables,
processes, programs, networks . . . etc. Objects are the entities to be protected
from unauthorized use. The objects attributes are provided by their owners.

• Permissions: known as authorizations, access rights, or privileges. A permis-
sion consists of granting rights to a subject request on an object according to
policy rules.

Fig. 1. ABAC basic architecture



236 H. Gadouche et al.

• Attributes: are characteristics of subjects, objects, or environment conditions.
Attributes allow administrators to apply access control policies for unlimited
number of subjects that might require access without prior knowledge of
them. Thus, new subjects can join the system without modifying the rules
and objects. Each attribute can be either atomic or set of values.

• Environmental conditions: consist of the operational or situational context
in which access requests to objects are formulated. Environmental conditions
are characterized by a set of attributes.

3 Event-B Method

Event-B is a formal method used to model and analyze systems. An Event-B
development model [17] is based on components of two kinds: Contexts and
Machines. Contexts contain the static parts (axiomatization and theories) of the
model, whereas the Machines implement the dynamic parts (states and transi-
tions). Machines and contexts have various relations: a machine can be “refined”
by another one, and a context can be “extended” by another one. Moreover, a
machine can “see” one or several contexts. A Context is defined by a set of
clauses as follows:

• CONTEXT represents the name of the component that should be unique in
a model.

• EXTENDS declares the Context(s) extended by the described Context.
• SETS describes a set of abstract and enumerated types.
• CONSTANTS represents the constants used by a model.
• AXIOMS describes, in first-order logic expressions, the properties of the

defined elements in the CONSTANTS and SETS clauses. Types and con-
straints are described in this clause as well.

• THEOREMS are logical expressions that can be deduced from the axioms.

Similarly to Contexts, Machines are defined by a set of clauses:

• MACHINE represents the unique name of the component in an Event-B
model.

• REFINES declares the Machine that is refined by the described Machine.
• SEES gives the list of Contexts imported by the described Machine.
• VARIABLES represents the state variables of the model. Refinement may

introduce new variables in order to enrich the described system.
• INVARIANTS describes, using first-order logic expressions, the properties of

the variables defined in the VARIABLES clause. Typing information, func-
tional and safety properties are usually described in this clause. These prop-
erties must remain true in the whole model. Invariants need to be preserved
by events. It also expresses the gluing invariant required by each refinement.

• THEOREMS defines a set of logical expressions that can be deduced from
the invariants.

• VARIANT introduces a natural number or a finite set that the “convergent”
events must strictly make smaller at every execution.



A Correct-by-Construction Model for ABAC 237

Table 1. Structure of an Event-B development

The general structure of an Event-B development is illustrated in the Table 1,
where s denotes sets, c denotes constants and v denotes the declared variables of
the machine. Axioms are denoted by A (s, c) and theorems by T (s, c) , whereas
invariants are denoted by I (s, c, v) and local theorems by T (s, c, v). For an
event evt, its guards are denoted by G (s, c, v, x) and its actions by the before-
after predicate BA (s, c, v, x, v′). The clause defines a list of events (transitions)
that can occur in a given model. Each event is characterized by its guards and
is described by a set of actions (substitutions). Each machine must contain an
initialization event. The events occurring in an Event-B model affect the state
described in clause. An event consists of the following clauses:

• Refines: declares a list of events refined by the described event.
• Any: lists a set of the event parameters.
• Where: expresses a set of guards for the event. An event can be fired when

its guard turns to true. If several guards of events become true, only a single
event is fired.

• Then: contains a set of actions of the event that are used to modify variables.

Event-B is based on a refinement methodology, it allows the system developer to
start with an abstract model of the system considering its context, and gradually
add details to the model. This process leads to a sequence of concrete models
until the final implementation is reached. A number of proof obligations are
generated through this process, which guarantees the correctness of the model as
well as any desired invariants (properties) that the model should preserve. Proof
obligations can then be proved by automatic or interactive theorem provers or
model-checking tools and the model itself can be simulated in runtime. Proving
obligations, checking invariants and model simulating are functions that are
supported by tools such as ProB [18] which is available in RODIN platform. The
latter, made for the Rodin project, supplies a set of tools to support Event-B
development. It also provides effective support for refinement and mathematical
proofs.



238 H. Gadouche et al.

4 Event-B Specification of ABAC

The proposed ABAC specification is detailed in this section. In the suggested
approach, properties of the model are given in conjunction with the behavior
specification. The model is developed in a way to link up between behavior and
properties of ABAC components. We define a correct-by-construction approach
following an a-priori verification. Consequently, the validity and the correctness
of the ABAC model are guaranteed through the specification steps. The devel-
oped Event-B model contains one context that forms the static part of the speci-
fication, and four machines that form the dynamic part. Each machine expresses
a level of the ABAC properties specification. Figure 2 gives the structure of the
proposed Event-B model.

ABAC_Context
sees

refines

Global_Level

-Abstract_Usage
Events

Subj_Obj_Level

-Abstract_Usage
refines Abstract_Usage

-Set_SuBjects

-Set_Objects
...

Events

Subj_Obj_Attr_Level

-Set_Subjects_A�ributes 
refines Set_Subjects

-Set_Objects_A�ributes 
refines Set_Objects
...

Events

Subj_Obj_Attr_Rules_Level

-Set_Rules

-Set_Subject_A�ributes_Rule 
refines Set_Subjects_A�ributes

-Set_Object_A�ributes_Rule 
refines Set_Objects_A�ributes
...

Events

refines

...
...

seessees sees
refines

Fig. 2. Architecture of the ABAC specification

The Global Level gives the general authorization structure to be provided
by the access model. The subjects and the requested objects are introduced
and detailed in the Subj Obj Level which refines the Global Level. Attributes
of subjects and requested objects are introduced in the Subj Obj Attr Level
in order to decide the appropriate privileges to assign since access decisions
are granted based on attribute values. The access rules, defined in the last level
Subj Obj Attr Rules Level, manage access to resources according to ABAC enti-
ties attributes (subjects, objects, environment,. . . etc.) Environment attributes
and privileges are detailed in this level. We detail each specification level in the
following:

– ABAC Context: The basic elements of ABAC are introduced in the static part
of the specification. These elements are reported in the CONTEXT named
ABAC Context. All the required static definitions to operate the dynamic
part of the model are declared in this context (see Table 2).



A Correct-by-Construction Model for ABAC 239

In ABAC Context, the declared working sets are: SUBJECTS,
OBJECTS, attributes of subjects(SUBJ ATTRIBUTES), attributes of objects
(OBJ ATTRIBUTES), attributes of the system environment
(ENV ATTRIBUTES) and PRIVILEGES of the access model. The required
conditions when defining these sets are stated as axioms: The sets must be finite
and not empty.

– Global Level: The dynamic specification starts with a level that gives a global
and high view of ABAC. It is expressed by the machine Global Level as
depicted in the Table 3. In this level, details are not important; the ABAC
structure has just to be in a brief and perceivable view. The ABAC pol-
icy is expressed by the variable Authorizations. The considered properties in
this level are about the typing of authorizations and the definition of relation-
ships between their components. Authorizations are manipulated in the event
Abstract Usage that generates abstract view of the access model. To preserve
the abstraction, non-deterministic assignment (:∈) is used. This affectation
will gradually be determined in the refinement process.

– Subj Obj Level: This level provides more precision on the access requesters
subjects and the requested objects. Subjects and Objects are introduced in
the model in the events depicted in the Table 4. A precision concerning the
subjects and the objects involved in the authorization is brought in this level
by the refinement of the event Abstract Usage as depicted in the Table 5.

– Subj Obj Attr Level: The key feature of ABAC is the use of attributes to
decide the suitable authorizations to grant. In this level, subject and object
attributes are introduced to define the rules composing the concrete autho-
rizations in the next refinement level. Attributes of subjects are introduced
by refining the event Set Subjects in the event Set Subjects Attributes as
depicted in the Table 6. In the refinement of the Set Subjects event, a witness
relation is used to ensure that every Subject is given its own attributes. In
the same way, the event Set Objects is refined in Set Objects Attributes. To
preserve consistency between the introduction of subjects and objects and
their attributes, some invariants are given (see Table 7).

– Subj Obj Attr Rules Level : In this level, the defined rules are used to con-
cretize the authorizations variable. A rule matches attributes of subjects to
requested objects attributes, as well as the system environment attributes, to
establish a privilege assignment. The event Set Rules is given in the Table 8.
To preserve consistency between the subjects and objects attributes and their
definition in the context of a rule, two invariants are added (see Table 9).



240 H. Gadouche et al.

Table 2. ABAC context

Table 3. Global-Level machine



A Correct-by-Construction Model for ABAC 241

Table 4. Subject and Object introduction events

Table 5. Refinement of the Abstract-Usage event

Table 6. Subject attributes definition



242 H. Gadouche et al.

Table 7. Invariants of the attributes level introduction

Table 8. The Set Rules event

Table 9. Invariants of rules introduction



A Correct-by-Construction Model for ABAC 243

5 Proofs of the Model

The initial Event-B model presented above has been developed within the Rodin
platform. This latter generates automatically Proof Obligations in the form of
sequences [17]. The automatic Prover of RODIN can discharge automatically
many of the POs, the remainder of non-discharged POs can be tackled by the
interactive Prover. The developed model led to 24 proof obligations. 21 were
proved automatically and three needed few interactive proof steps. Table 10
details the statistic proofs of the initial model.

Table 10. Statistic of proofs

Model components Proof obligations Automatic proofs Interactive proofs

Global Level 1 1 0

Subj Obj Level 2 2 0

Subj Obj Attr Level 14 12 2

Subj Obj Attr Rules Level 7 6 1

The adopted specification approach engendered a reduced number of POs
since the properties of the ABAC were expressed with the model behavior as
events properties. Accordingly, many POs were automatically proved.

6 Related Works

Several approaches in the literature address the ABAC model specification and
verification; most of them have used the XACML.

A work that addresses the logic programming is presented in [19], where a
stratified framework for ABAC is defined based on computable and hereditarily
set theory to represent policies making them consistent, complete and trans-
formable to perform faster runtimes.

The authors in [20] present a model-checking algorithm for the access control
policies evaluation. Which consists of ensuring that the authorized users are
granted enough permissions to achieve their goal, also, to avoid the achievement
of malicious goals from unauthorized users. The algorithm consists of two modes:
the assessing mode and the intrusion detection mode.

In [21] the authors define a formal model to specify access to resources using
XACML. Their approach define access control properties in many ordering rela-
tions and translate them into Boolean satisfiability problems. To grant access
decisions and verify automatically the access control properties, the authors used
the SAT solver. However, they admit that their approach has some limitations
in terms of correctness of the access decisions issued from the Boolean problems.



244 H. Gadouche et al.

The authors in [22] propose an approach based on mutation for the assess-
ment of policy properties quality and its verification. A policy mutate into several
variants called mutant policies with a single fault for each one. The verification
process identifies the fault of the mutant policy in case of properties are not
preserved.

Authors in [23] investigate a two-step approach to validate a non-specific
ACP using Event-B. The first step constructs the secured system from combin-
ing the unsecured system and the desired security. The second step performs a
verification on the resulting combined system against safety temporal properties.
The combination is based on many levels of abstraction and refinement where
each level expresses a class of properties. For illustration, they apply the app-
roach on a banking system. Although the specification of the two parts of the
system is done by design, the combination step includes a verification process to
ensure absence of combining specification errors.

[24] define a method to efficiently detect the conflicts in ABAC policies using
the formal notions of semantically equivalent policies and statically conflicting
rules. The proposed method is based on two optimization techniques: The first
technique reduces the semantically equivalent rules into a set of compact, then
the binary-research technique is applied to detect conflicts in the set of the
reduced rules.

In [25] the authors develop a tool named ACPT (Access Control Policy Test-
ing) for the correct modeling, implementation and verification of XACML access
control policies. The developed tool supports both of the static and the dynamic
verification in order to decrease policies faults.

Authors in [26] present an abstraction-refinement-based approach to ver-
ify ACP. The principle is to define a bounded model-checker by computing an
approximate size of the policy to be verified, then, fix a bound of checking opera-
tions to perform where any error can be detected. This allows to reduce verifica-
tion complexity since the access errors research is not exhaustive. They demon-
strate that the proposed approach scales better when input policies increase
in size. They apply their approach on ARBAC model, which is a variant of
ABAC. Although this technique scales well, the detection of all possible errors
is not always assured and the correctness of the specification model is not fully
guaranteed.

Most of the specification and verification of ABAC models follow an a-
posteriori verification technique. Whether it is testing, simulation or model-
checking based, the use of the a-posteriori verification becomes inappropriate
when the access model increases in size and functionality. Indeed, testing tech-
niques can be performed when an implementation of the model is available, fur-
thermore, they can only be used to prove the existence of some specific errors,
for the simulation and model-checking techniques they are limited by the state
explosion problem. In this paper, a correct-by- construction specification app-
roach is proposed to overcome the aforementioned limitations. Indeed, unlike
existing approaches defined to specify and validate ABAC models, the correct-
ness of the model behavior is ensured by proofs during the specification steps,



A Correct-by-Construction Model for ABAC 245

which means that we define an a-priori approach to specify a correct behavior
in a stepwise manner. Additionally, we adopt a specification methodology where
ABAC components are progressively introduced by refinement. Consequently,
the specification process is simplified and will not be affected when the system
scales in size and functionality.

7 Conclusion

In this paper an Event-B formal specification approach for ABAC is presented.
Due to the limitation of the a-posteriori based specification and verification of
ABAC and in order to deal with large-scale systems, an a-priori formal approach
is proposed. Accordingly, we construct an Event-B model of ABAC where all the
properties are validated and the correct behavior is proved. The main advantages
of the solution are:

– The model complexity of the system is decreased since the model is built
step-by-step with refinements and proving based specification.

– The approach generates a model with different abstraction views which sim-
plify the observation and analysis of the specified model.

– All the validated properties of the general model remain valid after instanti-
ation independently of the size of the model component instances.

As future work, the aim would be to:

– Complete the model in order to illustrate it through an application on a case
study.

– Improve the model in order to support access system reconfigurations.

References

1. Osborn, S., Sandhu, R., Munawer, Q.: Configuring role-based access control to
enforce mandatory and discretionary access control policies. ACM Trans. Inf. Syst.
Secur. (TISSEC) 3(2), 85–106 (2000)

2. Yong, J., Bertino, E., Roberts, M.T.D.: Extended RBAC with role attributes. In:
PACIS 2006 Proceedings, p. 8 (2006)

3. Mammass, M., Ghadi, F.: Access control models: State of the art and comparative
study. In: 2014 Second World Conference on Complex Systems (WCCS), pp. 431–
435. IEEE (2014)

4. Hu, V.C., Kuhn, D.R., Ferraiolo, D.F.: Attribute-based access control. Computer
48(2), 85–88 (2015)

5. Hu, V.C., Kuhn, R., Yaga, D.: Verification and test methods for access control
policies/models. NIST Spec. Publ. 800, 192 (2017)

6. Heljanko, K., Junttila, T., Keinänen, M., Lange, M., Latvala, T.: Bounded model
checking for weak alternating Büchi automata. In: Ball, T., Jones, R.B. (eds.) CAV
2006. LNCS, vol. 4144, pp. 95–108. Springer, Heidelberg (2006). https://doi.org/
10.1007/11817963 12

https://doi.org/10.1007/11817963_12
https://doi.org/10.1007/11817963_12


246 H. Gadouche et al.

7. Anderson, A., et al.: eXtensible Access Control Markup Language (XACML) ver-
sion 1.0. OASIS (2003)

8. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Int. J. Softw. Tools Tech-
nol. Transf. 12(6), 447–466 (2010)

9. Romanovsky, A., Thomas, M. (eds.): Industrial Deployment of System Engineering
Methods. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33170-
1

10. Voas, J., Schaffer, K.: Whatever happened to formal methods for security? Com-
puter 49(8), 70 (2016)

11. Chong, S., et al.: Report on the NSF workshop on formal methods for security.
Technical report, USA (2016)

12. Huynh, N., Frappier, M., Mammar, A., Laleau, R., Desharnais, J.: A formal val-
idation of the RBAC ANSI 2012 standard using B. Sci. Comput. Program. 131,
76–93 (2016)

13. Idani, A., Ledru, Y.: B for modeling secure information systems. In: Butler, M.,
Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 312–318. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25423-4 20

14. Farah, Z., Ait-Ameur, Y., Ouederni, M., Tari, K.: A correct-by-construction model
for asynchronously communicating systems. Int. J. Softw. Tools Technol. Transf.
19(4), 465–485 (2017)

15. Benyagoub, S., Ouederni, M., Aı̈t-Ameur, Y., Mashkoor, A.: Incremental construc-
tion of realizable choreographies. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 1–19. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-77935-5 1

16. Hu, C.T.: Attribute based access control (ABAC) definition and considerations.
Technical report (2014)

17. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

18. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

19. Wang, L., Wijesekera, D., Jajodia, S.: A logic-based framework for attribute based
access control. In: Proceedings of the 2004 ACM Workshop on Formal Methods in
Security Engineering, pp. 45–55. ACM (2004)

20. Zhang, N., Ryan, M., Guelev, D.P.: Evaluating access control policies through
model checking. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005.
LNCS, vol. 3650, pp. 446–460. Springer, Heidelberg (2005). https://doi.org/10.
1007/11556992 32

21. Hughes, G., Bultan, T.: Automated verification of access control policies using a
sat solver. Int. J. Softw. Tools Technol. Transf. 10(6), 503–520 (2008)

22. Martin, E., Hwang, J., Xie, T., Hu, V.: Assessing quality of policy properties in ver-
ification of access control policies. In: Computer Security Applications Conference,
ACSAC 2008. Annual, pp. 163–172. IEEE (2008)

23. Hoang, T.S., Basin, D., Abrial, J.R.: Specifying access control in event-b. Technical
report 624 (2009)

https://doi.org/10.1007/978-3-642-33170-1
https://doi.org/10.1007/978-3-642-33170-1
https://doi.org/10.1007/978-3-319-25423-4_20
https://doi.org/10.1007/978-3-319-77935-5_1
https://doi.org/10.1007/978-3-319-77935-5_1
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/11556992_32
https://doi.org/10.1007/11556992_32


A Correct-by-Construction Model for ABAC 247

24. Shu, C., Yang, E.Y., Arenas, A.E.: Detecting conflicts in ABAC policies with rule-
reduction and binary-search techniques. In: IEEE International Symposium on
Policies for Distributed Systems and Networks, POLICY 2009, pp. 182–185. IEEE
(2009)

25. Hwang, J., Xie, T., Hu, V., Altunay, M.: ACPT: a tool for modeling and verifying
access control policies. In: 2010 IEEE International Symposium on Policies for
Distributed Systems and Networks (POLICY), pp. 40–43. IEEE (2010)

26. Jayaraman, K., Tripunitara, M., Ganesh, V., Rinard, M., Chapin, S.: Mohawk:
abstraction-refinement and bound-estimation for verifying access control policies.
ACM Trans. Inf. Syst. Secur. (TISSEC) 15(4), 18 (2013)



Algorithmics and Text Processing



Voronoi-Diagram Based Partitioning
for Distance Join Query Processing

in SpatialHadoop

Francisco Garćıa-Garćıa1, Antonio Corral1(B), Luis Iribarne1,
and Michael Vassilakopoulos2

1 Department of Informatics, University of Almeria, Almeria, Spain
{paco.garcia,acorral,luis.iribarne}@ual.es

2 Department of Electrical and Computer Engineering, University of Thessaly,
Volos, Greece

mvasilako@uth.gr

Abstract. SpatialHadoop is an extended MapReduce framework sup-
porting global indexing techniques that partition spatial data across
several machines and improve query processing performance compared
to traditional Hadoop systems. SpatialHadoop supports several spatial
operations efficiently (e.g. k Nearest Neighbor search, spatial intersection
join, etc.). Distance Join Queries (DJQs), e.g. k Nearest Neighbors Join
Query, k Closest Pairs Query, etc., are important and common operations
used in numerous spatial applications. DJQs are costly operations, since
they combine joins with distance-based search. Therefore, performing
DJQs efficiently is a challenging task. In this paper, a new partitioning
technique based on Voronoi Diagrams is designed and implemented in
SpatialHadoop. A new kNNJQ MapReduce algorithm and an improved
kCPQ MapReduce algorithm, using the new partitioning mechanism, are
also developed for SpatialHadoop. Finally, the results of an extensive set
of experiments are presented, demonstrating that the new partitioning
technique and the new DJQ MapReduce algorithms are efficient, scalable
and robust in SpatialHadoop.

Keywords: Data partitioning · k Nearest Neighbors Join
k Closest Pairs · SpatialHadoop · MapReduce

1 Introduction

In the age of smart cities and mobile environments, the increase of the volume
of available spatial data (e.g. location, routing, etc.) is huge all over the world.
Recent developments of spatial big data systems have motivated the emergence of
novel technologies for processing large-scale spatial data on shared-nothing clus-
ters in a distributed environment. SpatialHadoop [8] is a disk-based Distributed

Work funded by the MINECO research project [TIN2017-83964-R].

c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 251–267, 2018.
https://doi.org/10.1007/978-3-030-00856-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_16&domain=pdf


252 F. Garćıa-Garćıa et al.

Spatial Data Management System (DSDMS) based on Hadoop-MapReduce that
allows users to work on distributed spatial data without worrying about compu-
tation distribution and fault-tolerance. SpatialHadoop is a full-fledged MapRe-
duce [6] framework with native support for spatial data.

Data partitioning is a powerful mechanism for improving efficiency of data
management systems, and it is a standard feature in modern database systems.
Aside from the fact that data partitioning improves the overall manageability of
large datasets, it also improves query performance. By partitioning such datasets
into smaller units, it enables processing of a query in parallel and reduces the I/O
activity by only scanning a few partitions that contain relevant data for the query
constraints. Spatial data partitioning, however, is challenging, especially due to
several important properties that are particular to spatial data and query pro-
cessing, like spatial data skew and boundary object handling [1]. SpatialHadoop
[7] supports seven partitioning strategies to handle large-scale spatial data [7].
They are classified as space-based (Grid and Quadtree), data-based (STR, STR+
and k-d tree) and space filling curve-based (Z-curve and Hilbert-curve) parti-
tioning strategies. The incorporation of a distance-based partitioning technique
(based on Voronoi Diagrams) in SpatialHadoop may be worth for improving the
performance of distance join queries.

Distance Join Queries (DJQs) in spatial databases have received considerable
attention from the database community, due to their importance in numerous
applications, such as geographical information systems (GIS), location-based
systems, continuous monitoring in streaming data settings and road network
constrained data, among others. DJQs are costly queries because they combine
two datasets, taking into account a distance metric. Two of the most representa-
tive and known DJQs are the k Nearest Neighbor Join Query (kNNJQ) and the
k Closest Pairs Query (kCPQ). Given two point datasets P and Q, the kNNJQ
finds, for each point of P, its k nearest neighbors in Q. The kCPQ finds the k
closest pairs of points from P×Q according to a certain distance function. Several
research works have been devoted to improve the performance of these DJQs by
proposing efficient algorithms in centralized environments [3–5]. However, with
the fast increase in the scale of the big input datasets, processing large-scale
data in parallel and distributed fashions is becoming a popular practice. For this
reason, a number of parallel DJQ algorithms in MapReduce have been designed
and implemented for kNNJQ [12,13,16]. A kCPQ [9,10] algorithm has been also
developed particularly in SpatialHadoop.

The contributions of this paper are the following:

– We design and implement an efficient partitioning technique based on Voronoi
Diagrams in SpatialHadoop.

– We present a new kNNJQ MapReduce algorithm in SpatialHadoop and
improve the existing kCPQ MapReduce algorithm [9,10], both using the new
partitioning mechanism.

– We execute an extensive set of experiments, studying efficiency and scalabil-
ity, to compare the proposed distance-based partitioning technique with the
existing ones in SpatialHadoop, using big real-world spatial datasets.



Voronoi-Diagram Based Partitioning 253

This paper is organized as follows. In Sect. 2, we review related work on par-
titioning techniques and provide the motivation for this paper. In Sect. 3, we
present preliminary concepts related to DJQ, SpatialHadoop and partitioning
techniques based on Voronoi Diagrams. Section 4 proposes a partitioning tech-
nique based on Voronoi Diagrams in SpatialHadoop. In Sect. 5, the parallel and
distributed algorithms for processing kNNJQ and kCPQ in SpatialHadoop are
proposed. In Sect. 6, we present the most representative results of the exper-
iments that we have performed, using real-world datasets, for comparing the
new partitioning technique in SpatialHadoop. Finally, in Sect. 7, we provide the
conclusions arising from our work and discuss related future work directions.

2 Related Work and Motivation

In [1], an extension of SATO [15], that is a spatial data partitioning frame-
work for scalable query processing, is presented. The main objective of [1] is
to provide a comprehensive guidance for spatial data partitioning to support
scalable and fast spatial data processing in distributed computing environments
such as MapReduce. To accomplish this, the authors provide a systematic eval-
uation of six spatial partitioning methods with a set of different partitioning
strategies, and study their implications on the performance of spatial queries
in MapReduce. In particular, the proposed spatial partitioning algorithms were
Binary Split Partitioning (BSP), Fixed Grid Partitioning (FG), Strip Partition-
ing (SLC), Boundary Optimized Strip Partitioning (BOS), Sort-Tile-Recursive
Partitioning (STR) and Hilbert Curve Partitioning (HC). The most important
results are the runtime cost of the partitioning algorithms (there are three cat-
egories: fast -FG, BSP-, medium -HC, STR- and slow -SLC, BOS-) and spatial
join query performance between two datasets, where BSP and STR have the
best performance in terms of running time and, FG and HC are the worst.

In [7], seven different spatial partitioning techniques in SpatialHadoop are
presented, and an extensive experimental study on the quality of the generated
index and the performance of range and spatial join queries is reported. These
seven partitioning techniques are also classified in two categories according to
boundary object handling: replication-based techniques (Grid, Quadtree, STR+
and k-d tree) and distribution-based techniques (STR, Z-Curve and Hilbert-
Curve) [7]. The distribution-based techniques assign an object to exactly one
overlapping cell and the cell has to be expanded to enclose all contained points.
The replication-based techniques avoid expanding cells by replicating each point
to all overlapping cells, but the query processor has to employ a duplicate avoid-
ance technique to account for replicated elements. The most important conclu-
sions of [7] for distributed join processing, using the overlap spatial predicate,
are the following: (1) the smallest running time is obtained when the same par-
titioning technique is used for the join processing, (2) Quadtree outperforms all
other techniques with respect to running time, since it minimizes the number of
overlapping partitions between the two files by employing a regular space parti-
tioning, (3) Z-Curve reports the worst running times, and (4) k-d tree gets very
similar results to STR.



254 F. Garćıa-Garćıa et al.

The most representative papers that adopt the Voronoi-Diagram based parti-
tioning technique within MapReduce are [2,11,12]. In [2], this partitioning is used
to answer range search and kNN search queries in 2d spaces. In [12], the prob-
lem of answering the kNNJ using MapReduce is studied. This is accomplished
by exploiting the Voronoi-Diagram based partitioning method, that divides the
input datasets into groups, such that kNNJ can answer by only checking object
pairs within each group. Moreover, several pruning rules to reduce the shuffling
cost as well as the computation cost are developed in the PGBJ (Partitioning
and Grouping Block Join) algorithm, which works with two MapReduce phases.
Finally, in [11], the vector projection pruning technique is proposed to process
efficiently kNNJ, since it enables to prune non-kNN points and reduce the cost
of distance computation. A new algorithm, kNN-MR, using this new pruning
technique, that performs better than PGBJ, is presented.

Apart of [11,12], other parallel and distributed kNNJ algorithms that do not
use the Voronoi-Diagram based partitioning technique has been published in the
literature. The most remarkable ones are [13,14,16]. In [16], novel (exact and
approximate) algorithms in MapReduce to perform efficient parallel kNNJQ on
large datasets are proposed, and they use the R-tree and Z-value-based partition
joins to implement them. In [14], the existing solutions that perform the kNNJ
operation in the context of MapReduce are reviewed and studied from the theo-
retical and experimental point of view. Finally, the only DJQ algorithm already
included in SpatialHadoop is the kCPQ MapReduce algorithm [9,10], that con-
sists of a MapReduce job, adopting the plane-sweep technique and improving
the computation of an upper bound of the distance value of the k-th closest pair
from sampled data as a global preprocessing phase.

Based on the previous observations, the incorporation of a new partitioning
technique (based on Voronoi Diagrams) in SpatialHadoop which could lead to
efficient algorithms for processing the kNNJQ and kCPQ over large-scale spatial
datasets is a promising research direction and the motivation for this paper.

3 Preliminaries and Background

In this section, we first present the basic definitions of the kNNJQ and kCPQ,
followed by a brief introduction of preliminary concepts of SpatialHadoop, and
finally the main concepts and properties of the Voronoi Diagrams.

3.1 Distance Join Queries

To introduce the details of the semantics of the DJQs studied in this paper, we
define the kNNJ and kCP queries. Moreover, we also define the distance-based
query that is the basis of kNNJQ, the k Nearest Neighbor (kNN) query, where
just one dataset is processed.

Given one points dataset, the kNNQ discovers the k closest points to a given
query point (i.e. it reports only the top k points). It is one of the most important
and studied spatial operations, where one spatial dataset and a distance function
are involved. The formal definition of the kNNQ for points is the following:



Voronoi-Diagram Based Partitioning 255

Definition 1. k-Nearest Neighbor query, kNN query
Let P = {p0, p1, · · · , pn−1} a set of points in Ed (d-dimensional Euclidean space),
a query point q in Ed, and a number k ∈ N

+. Then, the result of the k Near-
est Neighbor Query with respect to the query point q is an ordered collection,
kNN(P, q, k) ⊆ P, which contains the k (1 ≤ k ≤ |P|) different points of P, with
the k smallest distances from q:
kNN(P, q, k) = (p1, p2, · · · , pk) ∈ P, such that for any pi ∈ P \ kNN(P, q, k) we
have dist(p1, q) ≤ dist(p2, q) ≤ · · · ≤ dist(pk, q) ≤ dist(pi, q).

When two datasets (P and Q) are combined, two of the most studied DJQs
are the k Nearest Neighbor Join (kNNJ) and the k Closest Pairs (kCP) queries.

The kNNJQ, given two points datasets (P and Q) and a positive number k,
finds for each point of P, its k nearest neighbors in Q. The formal definition of
this kind of DJQ is given below.

Definition 2. kNearest Neighbor Join query, kNNJ query
Let P = {p0, p1, · · · , pn−1} and Q = {q0, q1, · · · , qm−1} be two set of points in
Ed, and a number k ∈ N

+. Then, the result of the k Nearest Neighbor Join query
is a set kNNJ(P,Q, k) ⊆ P×Q, which contains for each point of P (pi ∈ P) its
k nearest neighbors in Q:
kNNJ(P,Q, k) = {(pi, qj) : ∀ pi ∈ P, qj ∈ kNN(Q, pi, k)}

On the other hand, the kCPQ discovers the k pairs of points formed from
two datasets (P and Q) having the k smallest distances between them (i.e. it
reports only the top k pairs). The formal definition of this DJQ is as follows.

Definition 3. k Closest Pairs query, kCP query
Let P = {p0, p1, · · · , pn−1} and Q = {q0, q1, · · · , qm−1} be two set of points in
Ed, and a number k ∈ N

+. Then, the result of the k Closest Pairs query is an
ordered collection, kCP (P,Q, k) ⊆ P × Q, containing k different pairs of points
ordered by distance, with the k smallest distances between all possible pairs:
kCP (P,Q, k) = ((p1, q1), (p2, q2), · · · , (pk, qk)), (pi, qi) ∈ P×Q, 1 ≤ i ≤ k, such
that for any (p, q) ∈ P×Q\kCP (P,Q, k) we have dist(p1, q1) ≤ dist(p2, q2) ≤
· · · ≤ dist(pk, qk) ≤ dist(p, q).

3.2 SpatialHadoop

SpatialHadoop [8] is a full-fledged MapReduce framework with native support
for spatial data. It is an efficient disk-based distributed spatial query processing
system. Note that MapReduce [6] is a scalable, flexible and fault-tolerant pro-
gramming framework for distributed large-scale data analysis (i.e. MapReduce is
a shared-nothing platform for processing large-scale datasets). A task to be per-
formed using the MapReduce framework consists of two phases: the map phase
which is specified by a map function that takes input typically from Hadoop Dis-
tributed File System (HDFS) files, possibly performs some computations on this
input, and distributes the result to worker nodes; and the reduce phase which
processes these results as specified by a reduce function. An important aspect



256 F. Garćıa-Garćıa et al.

of MapReduce is that both the input and the output of the map step are rep-
resented as key/value pairs, and that pairs with the same key will be processed
as one group by the reducer. Additionally, a combiner function can be used to
run on the output of the map phase and perform some filtering or aggregation
to reduce the number of keys passed to the reducer.

SpatialHadoop is a comprehensive extension to Hadoop that injects spatial
data awareness in each Hadoop layer, namely, the language, storage, MapRe-
duce, and operations layers. MapReduce layer is the query processing layer that
runs MapReduce programs, taking into account that SpatialHadoop supports
spatially indexed input files. The Operation layer enables the efficient implemen-
tation of spatial operations, considering the combination of the spatial indexing
in the storage layer with the new spatial functionality in the MapReduce layer.
In general, a spatial query processing in SpatialHadoop consists of four steps
[8–10]: (1) Preprocessing, where the data is partitioned according to a specific
spatial index (partitioning), generating a set of partitions or cells (indexing). (2)
Pruning, when the query is issued, where the master node examines all parti-
tions and prunes (by a filter function) those ones that are guaranteed not to
include any possible result of the spatial query. (3) Local Spatial Query Pro-
cessing, where a local spatial query processing is performed on each non-pruned
partition in parallel on different machines. And finally, (4) Global Processing,
where the results are collected from all machines in the previous step and the
final result of the concerned spatial query is computed. A combine function can
be applied in order to decrease the volume of data that is sent from the map
task. The reduce function can be omitted when the results from the map phase
are final.

3.3 Partitioning Technique Based on Voronoi Diagrams

For the sake of brevity, let R = {r0, r1, · · · , rr−1} be a set of r distinct points
in the plane; these points can be called generators or pivots. We define the
Voronoi Diagram of R as the subdivision of the plane into r cells, one for each
pivot in R, with the property that a point p lies in the cell corresponding to a
pivot ri if and only if dist(p, ri) < dist(p, rj) for each rj ∈ R with j �= i. We can
denote the Voronoi Diagram generated by R as V D(R). The cell of V D(R) that
corresponds to a pivot ri is called the Voronoi Cell of ri and is denoted by V C(ri).
The Voronoi Diagram has also the following property: V D(R) =

⋃r−1
i=0 V C(ri)

and
⋂r−1

i=0 V C(ri) = ∅.
According to [12], given a dataset P, the main idea of Voronoi-Diagram based

partitioning technique is to select a set R of points (which may not necessarily
belong to P) as pivots, and then split the points of P into |R| disjoint partitions,
where each point is assigned to the partition of its closest pivot ri. In the case of
multiple pivots that are closest to a particular point, then that point is assigned
to the partition with the smallest number of points. In this way, the whole
data space is split into |R| disjoint Voronoi Cells. Let R be the set of pivots
selected, ∀ri ∈ R, PP

i denotes the set of points from P that has ri as its closest



Voronoi-Diagram Based Partitioning 257

pivot. In addition, we denote U(PP

i ) and L(PP

i ) as the maximum and minimum
distance from the pivot ri to the points of PP

i , respectively. That is, U(PP

i ) =
max{dist(p, ri) : ∀p ∈ PP

i } and L(PP

i ) = min{dist(p, ri) : ∀p ∈ PP

i }.

4 Voronoi-Diagram Based Partitioning Technique in
SpatialHadoop

In SpatialHadoop, the Partitioning phase of the indexing algorithm runs in three
steps [1]. The first step computes the number of desired partitions x based on
file size and HDFS block capacity, which are both fixed for all partitioning tech-
niques. The second step reads a random sample (Sampling), with a sampling
ratio ρ, from the input file and uses this sample to partition the space (Space
subdivision) into x cells/partitions, such that the number of sample points in
each cell is at most �s/x	, where s is the sample size. Finally, the third step par-
titions the file by assigning each point to one or more cells (Indexing). Actually,
SpatialHadoop supports seven spatial partitioning techniques: Grid, Quadtree,
STR, STR+, k-d tree, Z-Curve and Hilbert-Curve.

Similarly, to include into SpatialHadoop the new partitioning technique based
on Voronoi-Diagram, we have implemented the following steps: (1) Initially, Spa-
tialHadoop provides a random sample, S, from a dataset P and the values of the
parameters x and s = |S| (Sampling). (2) A set R of pivots is obtained from
the random sample S (Space subdivision), using some pivot selection technique
such as random selection or k-means algorithm as described in [12]. For the
former, �s/x	 random sets of pivots are generated and the set with the largest
sum of distances between each pair of pivots is chosen. For the latter, an stan-
dard k-means algorithm is initialized using a random set of x pivots from the
random sample S and a threshold distance is used as the convergence criterion
of the algorithm to reduce partitioning time, especially when a larger number of
elements is partitioned. (3) Finally, the points are assigned to their closest pivot
ri ∈ R (Indexing) and some properties of the pivot are calculated, such as the
number of elements, the minimum bounding rectangle MBR, U(PP

i ) and L(PP

i ).

5 DJQ MapReduce Algorithms in SpatialHadoop

In this section, we first present a new MapReduce algorithm for kNNJQ in
SpatialHadoop, and next, an existing kCPQ MapReduce algorithm in Spatial-
Hadoop is briefly reviewed and improved by Voronoi-Diagram based partitioning.

5.1 kNNJQ MapReduce Algorithm in SpatialHadoop

From the definition of kNNJQ, we can observe that it can be formulated on the
basis of kNNQ. In [8], a kNNQ operation on SpatialHadoop was presented. The
proposed kNNQ MapReduce algorithm is composed of the three steps: the initial
answer, the correctness check and the answer refinement. Keeping this in mind,



258 F. Garćıa-Garćıa et al.

to develop a kNNJQ MapReduce algorithm in SpatialHadoop, we have followed
the kNNJQ algorithm presented in [13]. The proposed kNNJQ algorithm in
[13], on two datasets P and Q, consists of a series of phases of MapReduce
jobs: information distribution phase, primitive computation phase, update lists
phase and unify lists phase. In the information distribution phase, a uniform
partitioning of the dataset Q is made and the number of elements from P that
are inside the partitions of Q are counted. Then, in the primitive computation
phase, an initial response is provided by calculating the kNNQ for each point
pi of P with the points of Q of the partition in which pi is located. Once this
phase is completed, it is necessary to refine these initial kNN lists for each point
of P, if there have been found less than k neighbors, or if there are nearby cells
that overlap with the distance to each k-th nearest neighbor. All this refinement
is done in the update lists phase where new non final kNN lists are obtained.
Finally, in the unify lists phase, the merge of the all the kNN lists resulting from
previous phases is performed, obtaining the final answer.

To adapt and implement the previous kNNJQ MapReduce algorithm in Spa-
tialHadoop, we have to carry out several extensions and improvements that are
the following: (1) The information distribution phase is implemented using the
indexing methods provided by SpatialHadoop, allowing us to use non-uniform
partitions such as STR, Quadtree, Hilbert, etc. with the different improvements
and particularities that they can offer. (2) The information distribution phase
is performed only once for each dataset and is reused for further kNNJ queries.
(3) SpatialHadoop indices are used in each of these phases to accelerate the
processing of the partitions. (4) An implementation of new kNNQ based on a
plane-sweep algorithm is carried out, which reduces the number of operations
and calculations obtaining a higher performance join operation. (5) Finally, a
new repartitioning phase is added as a first step to speed up the algorithm. This
new phase uses Grid or Quadtree partitioning so as to split the largest partitions
in smaller ones, dealing with skew problems and getting smaller tasks.

Fig. 1. Overview of the kNNJQ MapReduce algorithm in SpatialHadoop.

Figure 1 shows the phases of the proposed kNNJQ MapReduce algorithm
in SpatialHadoop: Repartitioning, Bin kNNJ, kNNJ on Overlapping Cells and
Merge Results. First phase, called Repartitioning, uses an existing partitioning
technique, e.g. Grid or Quadtree, to subdivide the largest partitions from dataset
Q and saves the information for further use in subsequent phases. Then in the
Bin kNNJ phase (information distribution and primitive computation in [13]),
a Bin-Spatial Join of the input datasets, in which the join operand is the kNNQ,
is accomplished. In the map function of the Bin kNNJ phase, each point of P is



Voronoi-Diagram Based Partitioning 259

combined with the partition in which it is located in the dataset Q, so that in
the reduce function, the plane-sweep kNNQ of that point with the points of Q
in the same partition is executed. The result of this phase is a kNN list for each
point of P. Then a completeness check is made to find which of the previous kNN
lists are not final and therefore it is necessary to continue with their processing.
For the kNNJ on Overlapping Cells phase (update lists in [13]), in the map
function is checked if the previous kNN lists for each point of P contain less than
k results and also if there are neighboring cells that overlap with the circular
range, centered on p and with radius the distance to the current k-th nearest
neighbor. These points are then sent together with the calculated neighboring
cells to the reduce phase where another plane-sweep kNNQ will be performed
for each cell. Finally, the Merge Results phase (unify lists in [13]) consists of
collecting the non final kNN lists of the two previous phases, obtaining the final
kNNQ results for each point.

Fig. 2. Using Voronoi-Diagram based partitioning on the initial partitioning of the
datasets (a) and in the repartitioning and kNNJ on Overlapping Cells phases (b).

Voronoi-Diagram based partitioning can be incorporated, as shown in
Fig. 2(a), into the proposed kNNJQ MapReduce algorithm in two ways: (a)
performing the initial partitioning of the datasets, and/or (b) subdividing the
partitions from Q in the repartitioning phase individually and then using its
properties on the kNNJ on Overlapping Cells phase. With the first one, we
can take advantage of the characteristics of this technique globally, using the
defaults parameters given by SpatialHadoop, in the same way that it is done for
any built-in query. For the second one, we can accelerate the kNNJQ processing
by decomposing the initial partitioning, which can use another partitioning tech-
nique, in smaller partitions given a maximum number of elements to solve skew
data problems and reduce the number and size of the tasks of the Bin kNNJ
and kNNJ on Overlapping Cells. Furthermore, when calculating the overlapping
cells the coordinates of each pivot ri and the U(PP

i ) and L(PP

i ) values can be
used to get greater performance and accuracy than using only the MBR of each



260 F. Garćıa-Garćıa et al.

partition. Figure 2(b) shows that only the shaded part can contain points within
the MBR of a PP

i partition and therefore there is no overlap with the distance
of the current k-th nearest neighbor of pi.

5.2 kCPQ MapReduce Algorithm in SpatialHadoop

In general, the kCPQ MapReduce algorithm [9,10] in SpatialHadoop consists
of a MapReduce job. The map function aims to find the kCP between each
local pair of partitions from P and Q with a plane-sweep kCPQ algorithm and
the result is stored in a binary max heap (called LocalKMaxHeap). The reduce
function aims to examine the candidate pairs of points from each LocalKMax-
Heap and return the final set of the k closest pairs in another binary max heap
(called GlobalKMaxHeap). To improve this approach, for reducing the number
of possible combinations of pairs of partitions, we need to find in advance an
upper bound of the distance value of the k-th closest pair of the joined datasets,
called β. This β computation can be carried out by sampling globally from both
datasets or by sampling locally for an appropriate pair of partitions and, then
executing a plane-sweep kCPQ algorithm (PSKCPQ, see Fig. 3(a)) over both
samples. The filter function takes as input each combination of pairs of cells in
which the input set of points are partitioned and the distance value β, and it
prunes pairs of cells which have minimum distances (mindist mbrs) larger than
β.

Fig. 3. β computation using Voronoi-Diagram based partitioning by sampling locally
from both datasets (a) and partition refinement by its MBR, U(PP

i ) and L(PP

i ) prop-
erties and maximum minimum distance calculation (b).

Using Voronoi-Diagram based partitioning, as shown in Fig. 3(a), the kCPQ
MapReduce algorithm can be improved by modifying its local β computation
and filter function. For the former, the most appropriate partitions, where an
initial kCPQ is performed, are those whose pivots are closer to each other and
have both higher density of points and area of intersection. Figure 3(b) shows
that for each partition of this partitioning technique, we have both its MBR
and its U(PP

i ) and L(PP

i ) values, allowing to detect areas of the former in which
there are no points. Moreover, for the filter function a new distance metric
can be used, the minimum distance between pivots (mindist pivots) defined as
the distance between pivots minus their U(PP

i ) values. Therefore, as shown in



Voronoi-Diagram Based Partitioning 261

Fig. 3(b), this function prunes pairs of partitions which have maximum minimum
distance (minmaxdist = max{mindist mbrs,mindist pivots}) larger than β.

6 Experimentation

In this section, we present the most representative results of our experimental
evaluation. We have used real-world 2d point datasets to test our DJQ algo-
rithms in SpatialHadoop. We have used datasets from OpenStreetMap1: LAKES
(L) which contains 8.4M records (8.6 GB) of boundaries of water areas (poly-
gons), PARKS (P) which contains 10M records (9.3 GB) of boundaries of parks
or green areas (polygons), ROADS (R) which contains 72M records (24 GB)
of roads and streets around the world (line-strings), BUILDINGS (B) which
contains 115M records (26 GB) of boundaries of all buildings (polygons), and
ROAD NETWORKS (RN ) which contains 717M records (137 GB) of road net-
work represented as individual road segments (line-strings) [8]. To create sets
of points from these five spatial datasets, we have transformed the MBRs of
line-strings into points by taking the center of each MBR. In particular, we have
considered the centroid of each polygon to generate individual points for each
kind of spatial object. The main performance measure that we have used in our
experiments has been the total execution time (i.e. total response time).

All experiments were conducted on a cluster of 12 nodes on an OpenStack
environment. Each node has 4 vCPU with 8 GB of main memory running Linux
operating systems and Hadoop 2.7.1.2.3. Each node has a capacity of 3 vCores
for MapReduce2/YARN use. Finally, we used the latest code available in the
repositories of SpatialHadoop2.

Our first experiment aims to compare our new proposed Voronoi-Diagram
based partitioning algorithms, using k-means (Voronoik, Vk) and random selec-
tion (VoronoiR, VR), with the Quadtree (Q) built-in partitioning technique
which has shown to obtain the best performance results with the different queries
present in SpatialHadoop [7–10]. In Fig. 4, the partitioning of different datasets
is shown with respect to the execution time, for both the Space subdivision and
Indexing phases. The first conclusion is that the execution times for VoronoiR
and Quadtree grow similarly as the size of the datasets is increased. On the
other hand, for Voronoik the increase in execution times is much higher, since
a k-means algorithm is used in the Space subdivision phase. This k-means algo-
rithm takes longer times to converge towards a solution as the size of the datasets
increases, despite using a threshold value as convergence criterion to accelerate
it. Finally, VoronoiR presents the fastest execution times, mainly because it con-
sumes the smallest time in the Indexing phase of the data, since in the Space
subdivision phase the times are very similar to those of Quadtree. In Table 1,
we can observe information of data distribution (points per partition) about the
partitioning of RN dataset for each technique. On one hand, Quadtree presents
a higher mean value due to having a slightly lower number of partitions than the
1 Available at http://spatialhadoop.cs.umn.edu/datasets.html.
2 Available at https://github.com/aseldawy/spatialhadoop2.

http://spatialhadoop.cs.umn.edu/datasets.html
https://github.com/aseldawy/spatialhadoop2


262 F. Garćıa-Garćıa et al.

Voronoi-Diagram based techniques. On the other hand, Voronoik has a much
lower standard deviation that allows better handling of data skew problems by
having a more proportional distribution.

Vk VR Q Vk VR Q Vk VR Q Vk VR Q
0

20

40

60

80

100

120

140

160

180

200

L P R B

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
s)

Space subdivision Indexing

Fig. 4. Partitioning cost (total execution time) per phase, considering different parti-
tioning techniques and datasets.

Table 1. Information of data distribution of RN dataset per partitioning techniques.

MEAN MIN MAX STDEV

Voronoik 1400486 19914 3684694 623909

VoronoiR 1400486 42921 10225199 1092866

Quadtree 1667555 218 4275451 1130277

In Fig. 5, left chart, the kCPQ for a fixed k = 100 and for real spatial
datasets (L × P , P × R, R × B and B × RN) is shown with respect to the
execution time for the different partitioning techniques (Voronoik, VoronoiR
and Quadtree). We can observe that the execution times in all partitioning tech-
niques grow almost linearly as the size of the datasets is increased. For kCPQ,
the best partitioning technique is Quadtree, which is approximately 18% faster
than Voronoik. Moreover, for the combinations of L × P and P × R, Voronoik
is slightly faster than Quadtree (e.g. for P × R Voronoik is just 2 s faster than
Quadtree), but for the combinations of the biggest datasets (R×B and B×RN)
Quadtree is the fastest, e.g. for B × RN Quadtree is 18% (278 s) faster than



Voronoi-Diagram Based Partitioning 263

Voronoik. That is, Voronoik exhibits smaller runtime values for smaller dataset
sizes, since it produces a slightly larger number of partitions (e.g. 24 vs 23 par-
tition pairs for L × P ) that are better distributed in tasks for this cluster of
nodes. But for big dataset sizes, Quadtree is the fastest for kCPQ, since it min-
imizes the number of partitions for each dataset and the number of the ones
that overlap between each other. Finally VoronoiR shows the worst results, not-
ing that the indexing time of Voronoik is much higher. Figure 5, right chart,
shows the effect of increasing the k value for the combination of the biggest
datasets (BUILDINGS ×ROAD NETWORKS) for kCPQ. This experiment
shows that the total execution time grows slowly as the number of results to be
obtained (k) increases. All partitioning techniques report very stable execution
times, even for large k values (e.g. k = 105), although, we can see that Quadtree
still has the lowest execution times.

L× P P ×R R×B B ×RN
0

500

1,000

1,500

2,000

2,500

P×Q: Datasets joined

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
s)

Datasets joined - kCPQ

1 10 102 103 104 105
0

500

1,000

1,500

2,000

2,500

k: # of closest pairs

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
s)

BUILDINGSxROAD NETWORKS - kCPQ

VORONOIk VORONOIR QUADTREE

Fig. 5. Total execution time of kCPQ, considering different partitioning techniques
(left) and varying the k values (right).

The last experiment compares the three repartitioning techniques Voronoik,
VoronoiR and Quadtree for the kNNJQ in SpatialHadoop, based on the exe-
cution time, of each of the phases. In Fig. 6, left chart, the kNNJQ for the
combination of different datasets (L × P , L × R, L × B and L × RN) is shown
for each repartitioning technique and for a fixed k = 10. We can observe that
the Voronoik repartitioning technique exhibits the best performance. Moreover,
Quadtree is much slower, especially in the kNNJ on Overlapping Cells phase.
This is due to the fact that with both Voronoi techniques, every point of P is
assigned to Q partition that contains at least k elements, so after the Bin kNNJ
phase there are more final kNN lists and therefore the processing time of the
next phase is reduced. Note that the kNNJ on Overlapping Cells phase is usu-
ally more expensive if the number of final kNN lists, from the previous phase, is
lower, because when the range query on the nearby cells is executed, there is a



264 F. Garćıa-Garćıa et al.

large growth of the number of partitions to search for kNN candidates. Moreover,
this same behaviour can be observed in Fig. 6, right chart, where as the k value
is increased for the combination of the datasets, LAKES × PARKS, the exe-
cution time of the kNNJ on Overlapping Cells phase is also higher. Continuing
with the left chart of Fig. 6, the differences in execution time between the three
repartition techniques are reduced with the combination of the larger dataset,
L × RN , mainly because the Quadtree technique returns more final kNN lists.
As the volume and size of Q are much greater, the volume of points of P that
fall into partitions of Q is also greater, obtaining final results that reduce the
execution time of the algorithm. Another conclusion that can be obtained from
the results is that Quadtree is the fastest while Voronoik is the slowest for the
Repartitioning phase. This is due to the use of an algorithm based on k-means
that makes the time increase considerably larger, in the same way to the Indexing
time in previous experiment. However, thanks to this processing, the best results
are obtained, due to less skewed data (for instance, the time spent in the Bin
kNNJ phase is the smallest), improved only by VoronoiR for L×R and because
of its own random properties. Note that the increase of the Repartitioning phase
time for Voronoik is less than that shown in the indexing process. This is due
to the fact that the former is done within each partition using a MapReduce
job, while the latter is carried out in the master node. Finally, in the Merge
Results phase, we can observe how Quadtree exchanges more information than
both Voronoi techniques, since in the previous phase more kNN lists have been
generated for all the dataset combinations. For the sake of clarity, the data of
Fig. 6 are shown in Tables 2 and 3, respectively.

Vk VR Q Vk VR Q Vk VR Q Vk VR Q
0

500

1,000

1,500

2,000

2,500

3,000

L× P L×R L×B L×RN

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
s)

P×Q: Datasets joined - kNNJQ

Vk VR Q Vk VR Q Vk VR Q Vk VR Q
0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

k = 25 k = 50 k = 75 k = 100

T
ot
al

E
xe
cu

ti
on

T
im

e
(i
n
s)

LAKESxPARKS - kNNJQ

Repartitioning Bin kNNJ kNNJ on Overlapping Cells Merge Results

Fig. 6. Total execution time of kNNJQ, considering different partitioning techniques
(left) and varying the k values (right).



Voronoi-Diagram Based Partitioning 265

Table 2. kNNJQ cost (in sec), varying the combination of datasets and considering
different partitioning techniques.

L × P L × R L × B L × RN

Vk VR Q Vk VR Q Vk VR Q Vk VR Q

Repartitioning 53 34 38 61 53 50 77 63 65 325 282 235

Bin kNNJ 347 488 303 266 241 330 372 548 870 905 1142 1210

kNNJ on Over. 59 61 1299 92 101 284 130 150 342 737 721 1192

Merge Results 90 78 121 85 83 116 80 86 113 98 103 95

Total 549 661 1761 504 478 780 659 847 1390 2065 2248 2732

Table 3. kNNJQ cost (in sec) for the combination of the datasets, LAKES×PARKS,
considering different partitioning techniques and varying the k values.

k = 25 k = 50 k = 75 k = 100

Vk VR Q Vk VR Q Vk VR Q Vk VR Q

Repartitioning 49 39 36 58 35 37 66 43 38 61 35 35

Bin kNNJ 413 601 406 613 757 562 940 1380 832 657 1019 958

kNNJ on Over. 142 97 1303 165 159 3546 232 238 4105 306 268 4033

Merge Results 229 188 233 466 465 742 865 913 1092 1162 981 1590

Total 833 925 1978 1302 1416 4887 2103 2574 6067 2186 2303 6616

The main conclusions extracted for this set of experiments on the proposed
Voronoi-Diagram based partitioning techniques are the following: (1) the parti-
tioning execution times for VoronoiR are the smallest and grow almost linearly
as the size of the datasets, while, for Voronoik, this increment is much higher
due to its k-means based pivot selection algorithm. (2) Quadtree outperforms
all other techniques with respect to the execution time for the kCPQ (it follows
a global query processing schema), although both Voronoi techniques present
only slightly lower performance, especially, for the smaller datasets combinations.
(3) For kNNJQ (it follows a multiple nearest neighbor query processing schema),
both Voronoi-Diagram partitioning techniques are faster than Quadtree, because
they deal better with data skew and they get more final results in the Bin kNNJ
phase. And (4), being the Repartitioning phase a MapReduce job, it is worth
using Voronoik instead of VoronoiR, since the loss of time in the k-means pivot
selection is compensated by the gain in performance in later phases.

7 Conclusions and Future Work

Distance Join Queries (DJQs) are important and common operations used in
numerous spatial applications. DJQs are costly operations, since they combine
joins with distance-based search. and therefore, the execution of DJQs efficiently
is a challenging task. For this reason, in this paper, a new partitioning technique



266 F. Garćıa-Garćıa et al.

based on Voronoi Diagrams in SpatialHadoop is designed and implemented. A
new kNNJQ algorithm and an improved kCPQ MapReduce algorithm, using
this new partitioning mechanism, with two pivot selection algorithms, random
selection (VR) and k-means (Vk), have also been proposed. The execution of a set
of experiments has demonstrated that both algorithms using Voronoi-Diagram
based partitioning have shown good results in terms of running times, compared
to other spatial partitioning techniques implemented already in SpatialHadoop.
For kCPQ, Quadtree shows slightly better performance than Vk and VR. How-
ever, in the case of kNNJQ, the use of these new techniques to repartition the
data leads to a great improvement in performance, especially through the use
of k-means. Our proposal is a good foundation for the development of further
improvements, such as implementing the k-means pivot selection algorithm in
MapReduce in order to speed it up. Other future work might include improve-
ments of our kNNJQ MapReduce algorithm, exploiting properties of Voronoi-
Diagram based partitioning, similarly to how these were exploited in [12] and
the comparison with other MapReduce algorithms.

References

1. Aji, A., Vo, H., Wang, F.: Effective spatial data partitioning for scalable query
processing. CoRR abs/1509.00910 (2015)

2. Akdogan, A., Demiryurek, U., Kashani, F.B., Shahabi, C.: Voronoi-based geospa-
tial query processing with MapReduce. In: CloudCom Conference, pp. 9–16 (2010)

3. Böhm, C., Krebs, F.: The k-nearest neighbour join: turbo charging the KDD pro-
cess. Knowl. Inf. Syst. 6(6), 728–749 (2004)

4. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest pair
queries in spatial databases. In: SIGMOD Conference, pp. 189–200 (2000)

5. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Algorithms
for processing k-closest-pair queries in spatial databases. Data Knowl. Eng. 49(1),
67–104 (2004)

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
In: OSDI Conference, pp. 137–150 (2004)

7. Eldawy, A., Alarabi, L., Mokbel, M.F.: Spatial partitioning techniques in spatial
hadoop. PVLDB 8(12), 1602–1613 (2015)

8. Eldawy, A., Mokbel, M.F.: SpatialHadoop: a MapReduce framework for spatial
data. In: ICDE Conference, pp. 1352–1363 (2015)

9. Garćıa-Garćıa, F., Corral, A., Iribarne, L., Vassilakopoulos, M., Manolopoulos,
Y.: Enhancing SpatialHadoop with closest pair queries. In: Pokorný, J., Ivanović,
M., Thalheim, B., Šaloun, P. (eds.) ADBIS 2016. LNCS, vol. 9809, pp. 212–225.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44039-2 15

10. Garćıa-Garćıa, F., Corral, A., Iribarne, L., Vassilakopoulos, M., Manolopoulos, Y.:
Efficient large-scale distance-based join queries in SpatialHadoop. GeoInformatica
22(2), 171–209 (2018)

11. Kim, W., Kim, Y., Shim, K.: Parallel computation of k-nearest neighbor joins using
MapReduce. In: Big Data Conference, pp. 696–705 (2016)

12. Lu, W., Shen, Y., Chen, S., Ooi, B.C.: Efficient processing of k nearest neighbor
joins using MapReduce. PVLDB 5(10), 1016–1027 (2012)

https://doi.org/10.1007/978-3-319-44039-2_15


Voronoi-Diagram Based Partitioning 267

13. Nodarakis, N., Pitoura, E., Sioutas, S., Tsakalidis, A., Tsoumakos, D., Tzimas,
G.: kdANN+: a rapid AkNN classifier for big data. In: Hameurlain, A., Küng, J.,
Wagner, R., Decker, H., Lhotska, L., Link, S. (eds.) Transactions on Large-Scale
Data- and Knowledge-Centered Systems XXIV. LNCS, vol. 9510, pp. 139–168.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49214-7 5

14. Song, G., Rochas, J., Beze, L.E., Huet, F., Magoulès, F.: K nearest neighbour joins
for big data on mapreduce: a theoretical and experimental analysis. IEEE Trans.
Knowl. Data Eng. 28(9), 2376–2392 (2016)

15. Vo, H., Aji, A., Wang, F.: SATO: a spatial data partitioning framework for scalable
query processing. In: SIGSPATIAL Conference, pp. 545–548 (2014)

16. Zhang, C., Li, F., Jestes, J.: Efficient parallel kNN joins for large data in MapRe-
duce. In: EDBT Conference, pp. 38–49 (2012)

https://doi.org/10.1007/978-3-662-49214-7_5


Graph Pattern Matching Preserving
Label-Repetition Constraints

Houari Mahfoud(B)

LRIT Laboratory, Abou-Bekr Belkaid University, Tlemcen, Algeria
houari.mahfoud@gmail.com

Abstract. Graph pattern matching is a routine process for a wide vari-
ety of applications such as social network analysis. It is typically defined
in terms of subgraph isomorphism which is NP-Complete. To lower
its complexity, many extensions of graph simulation have been proposed
which focus on some topological constraints of pattern graphs that can
be preserved in polynomial-time over data graphs. We discuss the satis-
faction of a new topological constraint, called Label-Repetition constraint.
To the best of our knowledge, existing polynomial approaches fail to pre-
serve this constraint, and moreover, one can adopt only subgraph isomor-
phism for this end which is cost-prohibitive. We present first a necessary
and sufficient condition that a data subgraph must satisfy to preserve
the Label-Repetition constraints of the pattern graph. Furthermore, we
define matching based on a notion of triple simulation, an extension of
graph simulation by considering the new topological constraint. We show
that with this extension, graph pattern matching can be performed in
polynomial-time, by providing such an algorithm. We extend our solution
to deal with edges that have counting quantifiers of the form “≥ p”.

Keywords: Subgraph isomorphism · Triple simulation
Label-Repetition constraint

1 Introduction

Modeling data with graphs is one of the most active topics in the database com-
munity these days. This model has recently gained wide applicability in numer-
ous domains that find the relational model too restrictive, such as social networks
[6], biological networks, Semantic Web, crime detection networks and many oth-
ers. Indeed, it is less complex and also most natural for users to reason about an
increasing number of popular datasets, such as the underlying networks of Twit-
ter, Facebook, or LinkedIn, within a graph paradigm. In emerging applications
such as social networks, edges of data graphs (resp. pattern graphs) can be typed
[7] to denote various relationships such as marriage, friendship, recommendation,
co-membership, etc. Moreover, pattern graphs can define multi-labeled vertices
[18] to look, e.g., for persons with different possible profiles.

Given a data graph G and a pattern graph Q, the problem of graph pattern
matching is to find all subgraphs of G that satisfy both the labeling properties
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 268–281, 2018.
https://doi.org/10.1007/978-3-030-00856-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_17&domain=pdf
http://orcid.org/0000-0003-0277-1928


Graph Pattern Matching Preserving Label-Repetition Constraints 269

and topological constraints carried by Q. Matching here is expressed in terms
of subgraph isomorphism which consists to find all subgraphs of G that are
isomorphic to Q. Graph pattern matching via subgraph isomorphism is an NP-
Complete problem as there are possibly an exponential number of subgraphs in
G that match Q. To tackle this NP-Completeness, graph simulation has been
adopted for graph pattern matching [17] to preserve child-relationships only.
Unlike subgraph isomorphism which requires a bijective mapping function from
pattern nodes to data nodes, graph simulation is defined by a simple binary
relation which can be computed in quadratic time. A cubic-time extension of
graph simulation, called strong simulation, has been proposed [14] by enforcing
two additional conditions: duality to preserve child and parent relationships of
the pattern graph; and locality to overcome excessive matching by considering
only subgraphs that have radius bounded by the diameter of the pattern graph.
Nonetheless, strong simulation may return incorrect matches as shown below.

Fig. 1. Querying a recommendation network.

Example 1. Consider the real-life example taken from [14]. A headhunter (HR)
wants to find a biologist (BIO) to help a group of software engineers (SE)
analyze genetic data. To do this, she uses the network G depicted in Fig. 1. In G,
nodes denote persons with different profiles, and edges indicate recommendations
between these persons. The cycle between the nodes d9 and d12 contains many
DM (data mining specialist) that are all connected to the BIO represented by
the node d2. The biologist BIO to find is specified with the pattern graph Q1

of Fig. 1. Intuitively, the BIO has to be recommended by: (a) an HR person
since the headhunter trusts the judgment of a person with the same occupation;
(b) at least two SE that are recommended by the same HR person (to increase
incredibility), that is, the BIO has a strong experience by working with different
SEs; and (c) a DM, as data mining techniques are required for the job. Moreover,
there is an artificial intelligence expert (AI) who recommends the DM and is
recommended by a DM. When strong simulation is adopted, the subgraph G2

of G is returned as the only match of Q1 in G. However, the BIO of this match,
represented by the node d1, is recommended by only one SE, which is incorrect
w.r.t Q1. To make search less restrictive, one can look for a BIO with the same



270 H. Mahfoud

constraints specified by Q1 excepting that this BIO can be recommended by only
one SE. This search is specified by the pattern graph Q2 of the same figure. In
this case, strong simulation returns G2 as the only match of Q2 in G, which is a
correct. Notice however that strong simulation does not make difference between
Q1 and Q2 since they are matched over G to the same match result.

The pattern graph Q1 illustrates a new kind of topology called Label-
Repetition (LR) constraint: nodes that have the same label but not necessarily
the same set of children and parents (see Example 5). Graph simulation [17]
and its counterparts [8,14] fail to preserve this constraint in the sense that some
nodes of the pattern query, that have the same label l and supposed to be dif-
ferent, may be matched to only one data node that is labeled with l. One can
adopt subgraph isomorphism to preserve LR constraints during graph pattern
matching. The challenge is that subgraph isomorphism is NP-Complete and
real-life data graphs are often big, e.g., the social graph of Facebook has billions
of nodes and trillions of edges [12]. This motivates us to study an extension of
graph simulation in order to preserve LR constraints in polynomial-time.

Contributions and Road-Map. Our main contributions are as follows:1 (1)
We introduce a new extension of graph simulation, called triple simulation, to
preserve LR constraints (Sect. 3). (2) We define a necessary and sufficient con-
dition that characterizes the satisfaction of LR constraints and we compute its
time complexity (Sect. 4). (3) We develop a graph pattern matching algorithm
which requires a polynomial time to preserve Child and Parent relationships,
as well as LR constraints (Sect. 5.1). We show how to improve the quality of
our match results by using the notion of locality (Sect. 5.2). Finally, we discuss
an extension of our approach to deal with simple counting quantifiers on edge
(Sect. 6).

Related Work. We categorize related work as follows.

Polynomial-time graph pattern matching: Traditional matching is by subgraph
isomorphism, which is NP-Complete [4] and found often too restrictive to cap-
ture sensible matches [8]. To loosen the restriction, one direction is to adopt
graph simulation [17]. Matching based on graph simulation preserves only child
relationships of the pattern graphs, which makes it useful for some applications
like Web sites classification [2]. In other applications however, e.g. social network
analysis, the result of such matching may have a structure drastically different
from that of the pattern graph, and often very large to analysis and under-
stand. To handle this, strong simulation is proposed [14] to capture child and
parent relationships (notion of duality), and to make match results bounded
by the diameter of the underlying pattern graph (notion of locality). This app-
roach has proven efficient since it is in PTIME. However, it can not preserve LR
constraints.

Quantified pattern graphs: Closer to our work is [11] that introduces quantified
pattern graphs (QGPs), an extension of pattern graphs by supporting simple
1 Proofs and other details are available in the full version [16].



Graph Pattern Matching Preserving Label-Repetition Constraints 271

counting quantifiers on edges. A QGP naturally expresses numeric and ratio
aggregates, and negation besides existential and universal quantification. Notice
that any ratio aggregate can be translated into numeric aggregate. They show
that quantified matching (based on subgraph isomorphism) is NP-Complete in
the absence of negation and DP-Complete for general QGPs.

2 Background

We review here some graph pattern matching approaches.

Graphs. A directed graph (or simply a graph) is defined with G(V,E, λ) where:
(1) V is a finite set of nodes; (2) E ⊆ V × V is a finite set of edges in which
(u, u

′
) denotes an edge from nodes u to u

′
; and (3) λ is a labeling function that

maps each node u ∈ V to a label λ(u) in a set
∑

(G) of labels. We simply denote
G as (V,E) when it is clear from the context.

In this paper, both data graphs and pattern graphs are specified with the pre-
vious graph structure. Moreover, we assume that pattern graphs are connected,
as a common practice.

Distance and Diameter [14]. The distance from nodes n to n
′
in a graph G,

denoted by dist(n, n
′
), is the length of the shortest undirected path from n to

n
′

in G. The diameter of a connected graph G, denoted by dG, is the longest
shortest distance of all pairs of nodes in G, that is, dG = max (dis(n, n

′
)) for all

nodes n, n
′
in G.

Graph Pattern Matching. A data graph G(V,E, λ) may match a pattern
graph Q(VQ, EQ, λQ) via different methods.

(A) Subgraph isomorphism: A subgraph Gs(Vs, Es, λs) of G matches Q via sub-
graph isomorphism, denoted Gs ≺iso Q, if there exists a bijective function
f :VQ → Vs s.t.: (1) for each node n ∈ VQ, λQ(n) = λs(f(n)); and (2) for
each edge (n, n

′
) ∈ EQ, there exists an edge (f(n), f(n

′
)) ∈ Es.

(B) Graph simulation: G matches Q via graph simulation [17], denoted Q ≺ G,
if there exists a binary match relation S ⊆ VQ × V s.t.: (1) For each (u, v) ∈ S,
λQ(u) = λ(v); and (2) For each node u ∈ VQ, there exists a node v ∈ V

where: (a) (u, v) ∈ S; and (b) for each edge (u, u
′
) ∈ EQ, there exists an edge

(v, v
′
) ∈ E with (u

′
, v

′
) ∈ S.

Intuitively, graph simulation preserves only child relationships.

(C) Dual simulation: G matches Q via dual simulation [14], denoted Q ≺D G, if
there exists a binary match relation SD ⊆ VQ ×V s.t.: (1) For each (u, v) ∈ SD,
λQ(u) = λ(v); and (2) For each node u ∈ VQ, there exists a node v ∈ V where:
(a) (u, v) ∈ SD; (b) for each edge (u, u

′
) ∈ EQ, there exists an edge (v, v

′
) ∈ E

with (u
′
, v

′
) ∈ SD; and moreover (c) for each edge (u

′
, u) ∈ EQ, there exists an

edge (v
′
, v) ∈ E with (u

′
, v

′
) ∈ SD.

Dual simulation enhances graph simulation by imposing the condition (c) in
order to preserve both child and parent relationships. As mentioned in [14], the



272 H. Mahfoud

graph pattern matching via graph simulation (resp. dual simulation) is to find the
maximum match relation S (resp. SD). Ma et al. [14] show that graph/dual simu-
lation may do excessive matching of pattern graphs which makes the graph result
very large and difficult to understand and analysis. For this reason, they pro-
pose strong simulation, an extension of dual simulation by imposing the notion
of locality. This notion requires that each subgraph of the final match result must
have a radius bounded by the diameter of the pattern graph.

(D) Strong simulation: G matches Q via strong simulation, denoted Q ≺L
D G, if

there exists a node v ∈ V and a subgraph Gs of G centered at v s.t.:

1. The radius of Gs is bounded by dQ, i.e., for each node v
′
in Gs, dist(v, v

′
)≤ dQ;

2. Q ≺D Gs with the maximum match relation SD.

Informally, rather than matching the whole data graph G over Q we extract,
for each node n ∈ V , a subgraph Gs of G centered at n and which has a radius
equals to dQ. Then, we match Gs over Q via dual simulation. In this way, the
match result will be composed of subgraphs of reasonable size that satisfy both
child and parent relationships of Q.

Match Results. (A) When Q ≺iso G then the match result Miso(Q,G) is
the set of all subgraphs of G that are isomorphic to Q. (B) When Q ≺ G with
the maximum match relation S then the match result M(Q,G) w.r.t S is each
subgraph G(Vs, Es) of G in which: (1) a node n ∈ Vs iff it is in S; and (2) an edge
(v, v

′
) ∈ Es iff there exists an edge (u, u

′
) ∈ EQ with (u, v) ∈ S and (u

′
, v

′
) ∈ S.

(C) When Q ≺D G then the match result MD(Q,G) is defined similarly to
graph simulation but w.r.t the maximum match relation SD. (D) When Q ≺L

D G
then the match result ML

D(Q,G) is defined with
⋃

i MD(Q,Gi) where each Gi

is a subgraph of G that satisfies the conditions of strong simulation.

Potential Matches. Given a data graph G(V,E, λ) and a pattern graph
Q(VQ, EQ, λQ). For any node u ∈ VQ, we call potential match each node v ∈ V
that has the same label as u (i.e. λQ(u) = λ(v)). Moreover, sim(u) refers to the
set of all potential matches of u in G.

Example 2. Consider the data graph G and the pattern graph Q2 of Fig. 1. With
dual simulation, both G1 and G2 are found as matches of Q2 in G. Remark
that the cycle of two nodes AI and DM in Q2 is matched with the long cycle
d9 → · · · → d12 → d9 in G2, which may be hard to analysis. With the notion
of locality, strong simulation returns G1 as the only match of G over Q2 and
ignores G2 since it represents an excessive matching.

3 Triple Simulation

We start first by presenting a new topological constraint that one would like to
preserve during graph pattern matching. We then define a new extension of graph
simulation by imposing this constraint. We compare our extension with only
strong simulation [14] since this is the more expressive graph pattern matching



Graph Pattern Matching Preserving Label-Repetition Constraints 273

approach that requires a polynomial-time. Notice that another polynomial-time
approach exists [8], called bounded simulation, which imposes constraints on
edges. However, our extension concerns nodes constraints.

Given a data graph G and consider the pattern graphs Q1 = a → b and
Q2 = b ← a → b. It is obvious that these two patterns are not equivalent: Q1

requires that each node v in G that matches a must have at least one child node
labeled with b, however, Q2 requires that v must have at least two child nodes
labeled with b. Strong simulation fails to make this difference and considers Q1

and Q2 as equivalent patterns (as illustrated by Example 1).

Definition 1. Given a data graph G(V,E) and a pattern graph Q(VQ, EQ).
A Label-Repetition (LR) constraint defined over a node u ∈ VQ with label l
specifies that: (1) there is a maximum subset Cu = {u1, . . . , uK} (K ≥ 2) of
children (resp. parents) of u that are all labeled with l; and (2) any match v of
u in G must have a subset Cv = {v1, . . . , vK} of children (resp. parents) ordered
in such a way that allows to match each vi to a child ui of u.

Intuitively, a LR constraint concerns a repetition of some label either among
children or among parents of some node in Q. If children (resp. parents) of each
node in Q have distinct labels, then Q is defined with only child and parent
relationships and, thus, can be matched correctly via strong simulation. The
limitation of this latter is observed when some children (resp. parents) of the
same node are defined with the same label.

Example 3. Consider the pattern graph Q1 of Fig. 1. There is an LR constraint
defined over the node q2 with label SE. It specifies that each node of the data
graph that matches q2 must have at least two children labeled SE s.t. one of
them matches the node q3 and the other one matches the node q4.

We propose next a new extension of graph simulation in order to satisfy LR
constraints.

Definition 2. A data graph G(V,E, λ) matches a pattern graph Q(VQ, EQ, λQ)
via triple simulation, denoted by Q ≺T G, if there exists a binary match relation
ST ⊆ VQ × V s.t.:

– For each (u, v) ∈ ST , λQ(u) = λ(v).
– For each u ∈ VQ there exists (u, v) ∈ ST .
– For each (u, v) ∈ ST and for all edges (u, u1), ..., (u, un) ∈ EQ, there exists at

least n distinct children v1, ..., vn of v in G s.t.: (u1, v1), ..., (un, vn) ∈ ST .
– For each (u, v) ∈ ST and for all edges (u1, u), ..., (un, u) ∈ EQ, there exists at

least n distinct parents v1, ..., vn of v in G s.t.: (u1, v1), ..., (un, vn) ∈ ST .

MT (Q,G) is the match result that corresponds to the maximum match relation
ST

2.

2 This match result can be defined similarly to graph (dual) simulation.



274 H. Mahfoud

Intuitively, if a node u in Q has n children (resp. parents) then each match
v of u in G must have at least n distinct children (resp. parents) s.t. we can
match, w.r.t some order, each child (resp. parent) of v to only one child (resp.
parent) of u. This new restriction imposed by conditions (3) and (4) prevents
matching of distinct children (resp. parents) of some node u in Q to the same
node in G, as may be done by strong simulation. Notice that triple simulation
preserves also child and parent relationships and not only LR constraints.

Example 4. Consider the data graph G and the pattern graphs Q1 and Q2 of
Fig. 1. The node q1 with label BIO in Q1 has two parents, q3 and q4, that have the
same label SE. Remark that d1 and d2 are potential matches of q1 in G. Accord-
ing to triple simulation, d1 (resp. d2) must have at least two distinct parents s.t.
one can match q3 and the other one can match q4. This is not the case since d1
(resp. d2) has only one parent labeled SE. Thus, we can conclude that no sub-
graph in G satisfies the LR constraint of Q1, and then, MT (Q1, G) = ∅. When
triple simulation is adopted for Q2 over the subgraph G2, we obtain the following
maximum match relation: ST = {(q1, d1), (q2, d3), (q4, d4), (q5, d5), (q6, d6)}. The
match result that corresponds to ST is the whole subgraph G2, which is correct.

We use CPL relationships to refer to Child and Parent relationships (called
duality properties), as well as relationships based on LR constraints. Our moti-
vation is to preserves CPL relationships in polynomial-time.

Fig. 2. Problem of preserving LR constraints.

4 Satisfy LR Constraints

We first present the problem of satisfying LR constraints and show that a naive
approach may lead for exponential cost. Next, we define a necessary and sufficient
condition to satisfy LR constraints and which can be checked in polynomial-time.

Example 5. Consider the graphs depicted in Fig. 2. The pattern graph Q looks
for each professor (Pr) which has supervised at least three PhD thesis in topics
related respectively to Cloud Computing (CC), Collaborative Editing (CE) and
Electronic Vote (EV). The node d1 in G1 is a potential match of q1. To satisfy the
condition (3) of triple simulation (Definition 2), d1 must have at least three child
nodes which is the case, and there must be some order that allows to match each
child of d1 to a child of q1. However remark that: if we match q2 with d2 then we



Graph Pattern Matching Preserving Label-Repetition Constraints 275

can not have match neither for q3 nor for q4; and moreover, if we match q2 with
d3 then we can match either q3 with d2 or q4 with d2. Clearly, there is no order
over the children d2, d3, d4 of d1 that allows to match all the children q2, q3, q4 of
q1 in Q. Therefore, the data graph G1 does not satisfy the LR constraint of Q.
The data graph G2 matches correctly Q: there is an order that allows to match
each child of d1 to a child of q1, i.e., q2, q3, q4 can be matched respectively with
d3, d4, d2. Thus, the LR constraint of Q is satisfied over G2.

Given the aboves, one can think that checking LR constraints may lead
to exponential cost (since we must consider all orders over some data nodes).
However, we show later that this process can be done in polynomial-time.

Definition 3. Given a data graph G(V,E) and a pattern graph Q(VQ, EQ).
Consider all the LR constraints defined over children (resp. parents) of some
node u ∈ VQ, and let v ∈ V be a potential match of u. The bipartite graph
BG(X ∪ Y,E) that inspects these LR constraints w.r.t v is defined as follows:

– X ⊆ VQ contains each child (resp. parent) of u that is concerned by an LR
constraint.

– Y ⊆ V contains each child (resp. parent) of v that (potentially) matches some
node in X.

– (u
′
, v

′
) ∈ E if u

′ ∈ X is (potentially) matched with v
′ ∈ Y .

A complete matching over BG is a maximum matching [5] that covers all nodes
in X.

Consider only the LR constraints defined over children of u. The set X of
the bipartite graph BG contains all children of u that are concerned by some LR
constraint, and the set Y contains each child of v that (potentially) matches some
child u

′
of u, provided that u

′
is concerned by an LR constraint (i.e. u

′ ∈ X).
Moreover, an edge in E ⊆ X × Y denotes some child of u in X that can be
(potentially) matched with some child of v in Y . For LR constraints defined
over parents of u, the bipartite graph that inspects them is defined in the same
manner (i.e. X is a subset of parents of u, and Y is a subset of parents of v).

Example 6. Consider the graphs Q, G1 and G2 depicted in Fig. 2. Recall that
there is an LR constraint defined over the children of the node q1 in Q. The
bipartite graph BG1 that inspects this LR constraint, w.r.t the potential match
d1 of q1 in G1, is depicted in Fig. 2(d). Moreover, w.r.t the potential match d1
of q1 in G2, the corresponding bipartite graph BG2 is given in Fig. 2(e).

The next theorem states our main contribution which is a necessary and
sufficient condition to satisfy LR constraints.

Theorem 1. Given a data graph G(V,E), a pattern graph Q(VQ, EQ), and a
node u ∈ VQ with a potential match v ∈ V . Let BG be the bipartite graph that
inspects all the LR constraints defined over children (resp. parents) of u w.r.t
v. These LR constraints are satisfied by some children (resp. parents) of v iff
there is a complete matching over BG. Moreover, this can be decided in at most
O(|VQ||V |√|VQ| + |V |) time.



276 H. Mahfoud

We emphasize that for each node u in Q and each potential match v of u in G,
we construct at most two bipartite graphs to inspect respectively LR constraints
defined over children of u and those defined over parents of u.

Example 7. As seen in Example 5, the LR constraint defined over the children
of q1 in Q is not satisfied by the children of its potential match d1 in G1. This
is confirmed by the bipartite graph BG1 of Fig. 2(d) which has a maximum
matching of size 2 (does not cover the set X). Thus, no complete matching exists
over BG1 and, according to Theorem 1, we can conclude that the underlying
LR constraint is not satisfied by the children of d1. Consider the bipartite graph
BG2 of Fig. 2(e) that inspects the same LR constraint w.r.t d1 of G2. Bold edges
in BG2 represent a maximum matching of size 3. Thus, a complete matching
exists over BG2 which implies that the LR constraint, defined over the children
of q1 in Q, is satisfied by the children of its potential match d1 of G2.

5 An Algorithm for Triple Simulation

5.1 Description and Complexity

Our algorithm, referred to as TSim, is shown in the Fig. 3. Given a pattern
graph Q and a data graph G, TSim(Q,G) returns the match result MT (Q,G),
if Q ≺T G, and ∅ otherwise. This match result contains each subgraph of G that
satisfies all CPL relationships of Q.

First, we compute for each node u ∈ VQ, the set sim(u) of all its potential
matches in V [line 1–3]. In order to preserve efficiently the CPL relationships of
Q over G, we define four auxiliary structures [line 4] as follows. For any node
u ∈ VQ, CP(Q,u) contains all children and parents of u that are concerned
by Child and/or Parent relationships; and LR(Q,u) contains those concerned
by some LR constraints. Moreover, for any query node u and a data node v,
ChildAsMatch(Q,G, v, u) returns the number of v’s children that are potential
matches of u in G (i.e. each child v

′
of v with v

′ ∈ sim(u)); and ParentAs-
Match(Q,G, v, u) returns the number of v’s parents that are potential matches
of u in G.

Algorithm TSim preserves the Child and Parent relationships of Q [line 6–
15] as follows. Given a node u ∈ VQ, a potential match v of u is kept in sim(u)
unless: (1) u has a child u

′ ∈ CP(Q,u) but v has no child that matches u
′
(i.e.

ChildAsMatch(Q,G, v, u
′
)=0); or (2) u has a parent u

′ ∈ CP(Q,u) but v has no
parent that matches u

′
(i.e. ParentAsMatch(Q,G, v, u

′
)=0). If one of these two

conditions is satisfied then v is an incorrect match of u, w.r.t duality properties,
and is removed from sim(u) [line 8 + 13]. The checking of LR constraints [line
17–19] is done through the procedure LR Checking given in Fig. 4. Given a
node u ∈ VQ with a potential match v ∈ V . According to Definition 3, the
procedure LR Checking constructs two bipartite graphs: BG1 that inspects
all the LR constraints defined over the children of u [line 2–7]; and BG2 that
inspects those defined over the parents of u [line 8–13]. If a complete matching
exists over BG1 and another one exists over BG2 then, according to Theorem 1,



Graph Pattern Matching Preserving Label-Repetition Constraints 277

Algorithm TSim(Q, G)
Input : Graph pattern Q(VQ, EQ, λQ), data graph G(V, E, λ).
Output : The match result MT (Q, G) if Q ≺T G and ∅ otherwise.

1: for each u ∈ VQ do /* Potential matches of each node in Q */
2: sim(u) := {v | v ∈ V and λQ(u)=λ(v)};
3: end for
4: initAuxStruct(Q, G);
5: do
6: for each (u, v) with v ∈ sim(u) do
7: for each child u

′
of u with u

′ ∈ CP(Q, u) do
8: if (ChildAsMatch(Q, G, v, u

′
)= 0) then

9: sim(u) := sim(u)\{v}; UpdateStruct(G, u, v);
10: end if
11: end for
12: for each parent u

′
of u with u

′ ∈ CP(Q, u) do
13: if (ParentAsMatch(Q, G, v, u

′
)= 0) then

14: sim(u) := sim(u)\{v}; UpdateStruct(G, u, v);
15: end if
16: end for
17: if (LR Checking(Q, G, u, v)=false) then
18: sim(u) := sim(u)\{v}; UpdateStruct(G, u, v);
19: end if
20: if (sim(u) = ∅) then return < ∅, ∅ > ; end if
21: end for
22: while there are changes;
23: ST := {(u, v) | u ∈ VQ and v ∈ sim(u)};
24: Construct the match result MT (Q, G) that corresponds to ST ;
25: return MT (Q, G);

Fig. 3. Algorithm for triple simulation.

we conclude that: (a) all the LR constraints defined over the children of u are
satisfied by some children of v; and (b) all the LR constraints defined over the
parents of u are satisfied by some parents of v. Thus, the procedure returns true
only if these two complete matching exist over BG1 and BG2. If the procedure
returns false then there is at least one LR constraint defined over the children
(resp. parents) of u which is not satisfied by the children (resp. parents) of v.
In this case, v is an incorrect match of u, w.r.t LR constraints, and is removed
from sim(u) [line 18]. The procedure CompleteMatch3 is an implementation
of the algorithm of Hopcroft and Karp [13].

3 This procedure finds the maximum matching over BG1 (resp. BG2), using the algo-
rithm of Hopcroft et al. [13], and then checks whether the size of this maximum
matching is equals to |X1| (resp. |X2|).



278 H. Mahfoud

Procedure UpdateStruct(Q, G, u, v)
Input : A pattern graph Q, data graph G(V, E), a query node u with a removed
potential match v.
Output : Updates the auxiliary structures ChildAsMatch and ParentAsMatch.

1: for each (v
′
, v) ∈ E do

2: ChildAsMatch(Q, G, v
′
, u) := ChildAsMatch(Q, G, v

′
, u) - 1;

3: end for
4: for each (v, v

′
) ∈ E do

5: ParentAsMatch(Q, G, v
′
, u) := ParentAsMatch(Q, G, v

′
, u) - 1;

6: end for

Procedure LR Checking(Q, G, u, v)
Input : Pattern Q(VQ, EQ), data graph G(V, E), a node u ∈ VQ with its match v ∈ V .
Output : If LR constraints defined over u are satisfied by children and/or parents of v.

1: BG1 := (X1 ∪ Y1, E1); BG2 := (X2 ∪ Y2, E2); where X1=Y1=X2=Y2=E1=E2=∅;
2: for each child u

′
of u with u

′ ∈ LR(Q, u) do
3: X1 := X1 ∪ {u

′};
4: for each v

′ ∈ sim(u
′
) with (v, v

′
) ∈ E do

5: Y1 := Y1 ∪ {v
′}; E1 := E1 ∪ {(u′

, v
′
)};

6: end for
7: end for
8: for each parent u

′
of u with u

′ ∈ LR(Q, u) do
9: X2 := X2 ∪ {u

′};
10: for each v

′ ∈ sim(u
′
) with (v

′
, v) ∈ E do

11: Y2 := Y2 ∪ {v
′}; E2 := E2 ∪ {(u′

, v
′
)};

12: end for
13: end for
14: return true only if (CompleteMatch(BG1) & CompleteMatch(BG2));

Fig. 4. The procedures used by TSim.

Each time a data node v is removed from sim(u), the cardinalities stored
by the structures ChildAsMatch and ParentAsMatch are updated according to
the couple (u, v). This is done by the procedure UpdateStruct given in Fig. 4.
The two phases discussed above (checking of duality properties and LR con-
straints) are repeated until there are no more changes [line 5–22]. Finally, the
corresponding match result MT (Q,G) is constructed and returned.

Theorem 2. For any pattern graph Q(VQ, EQ) and data graph G(V,E), algo-
rithm TSim takes at most O(|Q||G| + |VQ|3|V |2√|VQ| + |V |) time to decide
whether Q ≺T G and to find the match result MT (Q,G). Moreover, it takes
O(|Q||G|) time if Q has no LR constraint.4

4 Given a graph G(V,E), |G| = |V | + |E|.



Graph Pattern Matching Preserving Label-Repetition Constraints 279

The worst-case time complexity of TSim is bounded by O(|Q|2|G|1.5). As
opposed to the NP-Completeness of its traditional counterpart via subgraph
isomorphism [11], triple simulation preserves LR constraints in polynomial-time.

5.2 TSim with Locality

The next example suggests to incorporate the notion of locality [14] into our
algorithm TSim in order to overcome excessive matching and thus to improve
the quality of our match results.

Example 8. Consider the graphs depicted in Fig. 1. We extend the subgraph G1

with the following relationships: d1 ← d13 ← d7 where d13 is a new node labeled
with SE. Let G

′
1 be the subgraph that results from this modification. When triple

simulation is adopted, TSim returns G
′
1 as the only match of Q1 in G. The BIO

found in G
′
1 (node d2) is recommended by two SE (d8 and d13) as specified by

Q1. However, TSim returns an excessive match of the cycle AI � DM, i.e. the
cycle d9 → · · · → d12 → d9 in G

′
1, that one does not want.

Next, we extend triple simulation with the notion of locality.

Definition 4. A data graph G matches a pattern graph Q via triple simulation
and under locality, denoted Q ≺L

T G, if there exists a subgraph Gs of G centered
at some node v that satisfies the following conditions: (a) the radius of Gs is
bounded by dQ, i.e., for each node v

′
in Gs, dist(v, v

′
)≤ dQ; and (b) Q ≺T Gs

with the maximum match relation ST .
The match result ML

T (Q,G) is defined with
⋃

i MT (Q,Gi) where each Gi is a
subgraph of G that satisfies the previous conditions.

To implement the Definition 4, one can replace only the procedure dual-
Sim in the algorithm Match [14] with our algorithm TSim. Let Match+ be
the algorithm that results from this combination. Given a data graph G and a
pattern graph Q. Algorithm Match+5 extracts a subgraph Gv over each node
v in G, provided that its radius does not exceed dQ. It then matches Gv over
Q via triple simulation (instead of dual simulation). The match found on each
subgraph has a reasonable size and satisfies all the CPL relationships of Q.

Theorem 3.6 For any pattern graph Q(VQ, EQ) and data graph G(V,E), algo-
rithm Match+ takes at most O(|V |2+|Q||G||V |+|VQ|3|V |3√|VQ| + |V |) time to
decide whether Q ≺L

T G and to find the corresponding match result ML
T (Q,G).

The complexity of Match+ is bounded by O(|Q|2|G|2) while that of
Match[14] is bounded by O(|Q||G|2). This promises that combining our results
with existing orthogonal approaches will not increase drastically the complexity.

5 Not given here since its definition is trivial.
6 This result is a combination of our Theorem 2 and Theorem 4.1 of Ma et al. [14].



280 H. Mahfoud

6 Deal with Simple Counting Quantifiers

We study the case of pattern graphs that contain simple counting quantifiers
on edges. We show that matching of this kind of pattern graphs can be done in
polynomial-time by extending our solution for LR constraints.

Definition 5. A pattern graph with counting quantifiers, called quantified pat-
tern graph (QGP), is defined with Q(V,E, λ, C) where V , E, and λ are the same
as their conventional counterparts; and C is a function s.t., for each edge e ∈ E,
C(e) is a counting quantifier (CQ) of the form “≥ p” (p ≥ 1).

Notice that conventional pattern graphs are a special case where for each
edge e, C(e)=“≥ 1”. We omit C(e) from e in this case. The semantic of CQs is

stated intuitively as follows. The QGP A
≥p−−→ B → C specifies that: (1) each

data node v that matches A must have at least p child nodes that match B; and
(2) all these p nodes must have at least one child node that matches C. An LR
constraint, however, specifies the minimum number of children (resp. parents)
that must have some node such that they have the same label but not necessarily
the same topological properties (see the graph pattern Q of Example 5).

Proposition 1. Given a QGP Q(VQ, EQ, λQ, C), a data graph G(V,E), and a
node u ∈ VQ with a potential match v ∈ V . Each CQ defined over some child of
u can be transformed into an LR constraint. Moreover, children of v satisfy this
CQ iff they satisfy its equivalent LR constraint.

Based on the above proposition, we show next that matching QGPs is in
PTIME when it is treated as an extension of graph simulation, contrary to the
NP-Completeness found in [11] when subgraph isomorphism is considered.

Theorem 4. Given a QGP Q(VQ, EQ, λQ, C) with possible LR constraints and
a data graph G(V,E). Let p be the largest cardinality of counting quantifiers in
Q. It takes at most O(|Q||G|+p.|VQ|3|V |2√p.|VQ| + |V |) time to decide whether
G matches Q and to find the corresponding match result.

The overall time complexity of our approach in case of QGPs is bounded by
O(p1.5|Q|2|G|1.5). Notice that p is very small in practice [1]. This result can be

extended easily to deal with counting quantifiers of the form A
≥p%−−−→ B7.

7 Conclusion

We have discussed pattern graphs with LR constraints that existing approaches
do not preserve [8,14] or preserve in exponential time [11]. To tackle this
NP-Completeness, we have showed that LR constraints can be preserved in
polynomial-time when treated as maximum matching in bipartite graphs, and

7 See [11] for the semantic.



Graph Pattern Matching Preserving Label-Repetition Constraints 281

we proposed an algorithm to implement this result. We are to stduy other con-
straints that can be preserved in polynomial-time, e.g., negation and optional
edges. The polynomial-time of our algorithm may make graph pattern match-
ing infeasible when conducted on graphs with millions of nodes and billions of
edges (e.g. Facebook [12]). To boost the matching on large data graphs, we plan
to extend our work with some optimization techniques: (1) incremental graph
pattern matching [10], (2) pattern matching on distributed data graphs [3,19],
and (3) pattern matching on compressed data graphs [9,15]. These techniques
are orthogonal, but complementary, to our work.

References

1. Arias, M., Fernández, J.D., Mart́ınez-Prieto, M.A., de la Fuente, P.: An empirical
study of real-world SPARQL queries. CoRR (2011)

2. Cho, J., Shivakumar, N., Garcia-Molina, H.: Finding replicated web collections.
In: Proceedings of SIGMOD (2000)

3. Cong, G., Fan, W., Kementsietsidis, A.: Distributed query evaluation with perfor-
mance guarantees. In: Proceedings of SIGMOD (2007)

4. Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (Sub)Graph isomorphism
algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26,
1367–1372 (2004)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

6. Fan, W.: Graph pattern matching revised for social network analysis. In: Proceed-
ings of ICDT (2012)

7. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y.: Adding regular expressions to graph
reachability and pattern queries. In: Proceedings of ICDE (2011)

8. Fan, W., Li, J., Ma, S., Tang, N., Wu, Y.: Graph pattern matching: from intractable
to polynomial time. Proc. VLDB Endow. 3, 264–275 (2010)

9. Fan, W., Li, J., Wang, X., Wu, Y.: Query preserving graph compression. In: Pro-
ceedings of SIGMOD (2012)

10. Fan, W., Wang, X., Wu, Y.: Incremental graph pattern matching. ACM Trans.
Database Syst. 38 (2013)

11. Fan, W., Wu, Y., Xu, J.: Adding counting quantifiers to graph patterns. In: Pro-
ceedings of SIGMOD (2016)

12. Grujic, I., Dinic, S.B., Stoimenov, L.: Collecting and analyzing data from
e-government facebook pages (2014)

13. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipar-
tite graphs. SIAM J. Comput. 2, 225–231 (1973)

14. Ma, S., Cao, Y., Fan, W., Huai, J., Wo, T.: Strong simulation: capturing topology
in graph pattern matching. ACM Trans. Database Syst. 39 (2014)

15. Maccioni, A., Abadi, D.J.: Scalable pattern matching over compressed graphs via
dedensification. In: Proceedings of SIGKDD, pp. 1755–1764 (2016)

16. Mahfoud, H.: Graph pattern matching preserving label-repetition constraints.
CoRR (2018)

17. Milner, R.: Communication and Concurrency (1989)
18. Shemshadi, A., Sheng, Q.Z., Qin, Y.: Efficient pattern matching for graphs with

multi-labeled nodes. Knowl. Based Syst. 109, 256–265 (2016)
19. Tung, L.-D., Nguyen-Van, Q., Hu, Z.: Efficient query evaluation on distributed

graphs with hadoop environment. In: Proceedings of SoICT (2013)



Standard and Dialectal Arabic Text
Classification for Sentiment Analysis

Mohcine Maghfour(B) and Abdeljalil Elouardighi

LM2CE Laboratory, FSJES, Hassan 1st University, Settat, Morocco
maghfour.mohcin@gmail.com, abdeljalil.elouardighi@uhp.ac.ma

Abstract. In social networks, the users tend to express more themselves
by sharing publicly their opinions, emotions and sentiments, the benefits
of analyzing such data are eminent, however the process of extracting
and transforming these raw data can be a very challenging task partic-
ularly when the sentiments are expressed in Arabic language. Two main
categories of Arabic are massively used in social networks, namely the
modern standard Arabic, which is the official language, and the dialec-
tal Arabic, which is itself, subdivided to several categories depending
on countries and regions. In this paper, we focus on analyzing Face-
book comments that are expressed in modern standard or in Moroccan
dialectal Arabic; therefore we put these two language categories under
the scope by testing and comparing two approaches. The first one is the
classical approach that considers all Arabic text as homogeneous. The
second one, that we propose, require a text classification beforehand sen-
timent classification, based on language categories: the standard and the
dialectal Arabic. The idea behind this approach is to adapt the text pre-
processing on each language category with more precision. In supervised
classification, we have applied two of the most reputed classifiers in sen-
timent analysis applications, Naive Bayes and SVM. The results of this
study are promising since good performance were obtained.

Keywords: Sentiment analysis · Natural language processing
Supervised classification · Language classification
Modern standard Arabic · Moroccan dialectal Arabic
Facebook comments

1 Introduction

The increasing number of social network users and the frequency of their daily
use reflects the importance and interest attributed to these platforms. In the
light of this progress, the volume of information generated has also increased.
Among the shared information the personal thought, sentiments and opinions
represents an interesting raw material for which a big effort was made in order
to develop methods necessary for extracting these information and therefore the
creation of knowledge [15].

c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 282–291, 2018.
https://doi.org/10.1007/978-3-030-00856-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_18&domain=pdf


Standard and Dialectal Arabic Text Classification for Sentiment Analysis 283

Sentiment analysis (SA), or opinion mining, is a field of study that analyzes
people’s opinions and sentiments that are expressed via web platforms in a text
format. These sentiments are consequently very broad and changing in time
because they may concern various topics, products, organizations, individuals,
events, etc. [8]. SA is a special application of text mining, indeed, the linguistic
aspects and proprieties are imposing the mean difficulties in this analysis. Specif-
ically the Arabic language is considered one of the most challenging languages
in term of its processing, because of its complex morphology and its dialectal
varieties.

The modern standard Arabic (MSA), which is the official form, is distin-
guished by a compact morphology since the words has more attachment and
concatenation capabilities. Otherwise, the dialectal Arabic (DA) is a variety of
vernacular languages spoken in the daily life within a country or a region, such
as the Moroccan dialectal Arabic (MDA), the Egyptian Arabic, the Saudi Ara-
bic, etc. [20]. The challenges of the DA resides mostly in the spelling variation,
as one word may be written differently depending on the writer, in addition the
adopted habits and styles of writing in social networks introduce more ambigu-
ity to the text because of misspelling, the interaction between users and topic
shifting and divergence [9].

MSA and DA are both used in social networks jointly, however despite the
common aspects shared between them in term of structure and vocabulary, every
dialect possess its own specificities, which require a more extended and advanced
processing.

This work is focus on SA based on Arabic comments that are shared in MSA
and in MDA, thus we aim to compare two different SA approaches, in the first
one we treat all the Arabic texts (whether they are in MSA or in MDA) as one
homogeneous corpus on which we apply the same preprocessing. In the second
approach we proceed by classifying the Arabic corpus depending on the language
beforehand sentiment classification, in this case we apply on each sub-corpus the
correspondent preprocessing.

The rest of this paper is organized as follow: in the next section we introduce
some related work and present their proposed approaches and results, in Sect. 3
we present the proposed approaches of this study, then in Sect. 4 we discuss the
obtained results and finally we conclude this work by summarizing its important
findings and its perspectives.

2 Related Work

Several works have addressed SA based on standard and dialectal Arabic text.
They have proposed and tested many preprocessing tasks and classification
approaches to deal with the complexity and challenges of Arabic language.
Medhaffar et al. [10] collected and annotated a Tunisian dialect corpus of 17.000
comments from Facebook, then they have developed and tested a SA system for
Tunisian dialect based on three classification algorithms SVM, NB, and MLP
(multi-layer perceptron). The results shows better performance of their system
compared to models trained on other dialects or MSA dataset.



284 M. Maghfour and A. Elouardighi

In [16] Rafee and Risier raised some encountered challenges, when analyzing
opinions from twitter, such as language varieties and topic shifting, they have
collected a dataset composed from 3000 multidialectal Arabic tweets, then the
SVM algorithm was applied in sentiment classification stage. The results showed
good performance with cross-validation; however, it has significantly decreased
when evaluating the models on a test set that was collected later in time.

Hammad et al. [7] led a study to examine how different configurations of the
Bag of Words model and text representation scheme affect the results of the
supervised classification by applying three classifiers, namely SVM, Compliment
Naive Bayes, and Multinomial Naive Bayes. Their experimentation concerned
three datasets from twitter with different dialects, Saudi dataset (11000 +), an
Egyptian dataset and a multidialectal dataset that was used in [16]. Their results
showed no significant improvement when simple processing task like cleaning and
normalization were applied, however, when they have applied a light stemmer
or a dialectal stemmer the performance have improved.

Shoukry and Rafea [19] conducted their study on tweets that comes in stan-
dard Arabic and in Egyptian dialect. The major issues outlined concerned the
dialectal aspects, because preprocessing tasks that were developed specifically
for the MSA tend to fail with a dialectal Arabic text. Therefore, the authors
have proposed their own stemming solution in order to resolve these issues.

In their work, Salamah and Elkhlifi [17] have proposed a Microblogging Opin-
ion Mining Approach for Kuwaiti Dialect based on four stages, collecting, prepro-
cessing, opinion extraction and supervised classification using SVM and decision
trees. At the processing stage, the collected tweets were segmented into sentences
before tokenization. The obtained results yielded an average value of precision
and recall of 76% and 61% respectively.

Alomari et al. [3] carried out a SA study on tweets in MSA and Jordanian
dialect; their experimental framework covered filtering stemming, light stemming
and no stemming, the results showed better scores of root stemming when SVM
was used. On the contrary, the better performance was obtained when the light
stemmer was tested with NB.

Nabil et al. [11] presented an Arabic sentiment tweets dataset (ASTD) which
is a corpus composed 10000 tweets published mostly in MSA and Egyptian
dialect. In The experimentation, after they exposed the statistical properties
of the studied data set, they have tested a wide range of standard classifiers
including SVM, KNN, MNB on balanced and unbalanced data. Their conclusions
shows the difficulty encountered in sentiment classification with balanced data
and the outperformance of SVM when compared to other algorithms.

In [1] Al-Kabi et al. led a sentiment analysis study on MSA and multidi-
alectal Arabic comments (4625 comment) collected from Yahoo!-Maktoob. In
the preprocessing step, the stemming task was applied. Moreover, they have
exploited two of the most reputed classifiers in sentiment classification, namely
SVM and NB. The experimentation stage was based two dataset balanced and
unbalanced. The overall results were under expected because the best accuracy
did not exceed 70%.



Standard and Dialectal Arabic Text Classification for Sentiment Analysis 285

Several SA works dealt with Arabic corpus that includes both standard and
dialectal Arabic. Some of them proposed additional natural language processing
that are specific to the dialect in question [10,19]. Their approaches were based
on all documents without the categorization between those published in standard
Arabic and the dialectal ones, in our work we aim to focus exactly on this idea.

3 Two-Step Arabic Text Classification for Sentiment
Analysis

3.1 Dataset Description

The first step toward a SA is data collection. In this work, we have collected
Arabic Facebook comments (in MSA and MDA) that concern broad and various
topics in Morocco, including politics, economy, sport, religion, society and others.
The main source of the collected comments was the public Facebook pages of
Moroccan online news. A double annotation task was performed on a total of
9901 collected comment. Each comment was annotated as positive or negative
and at the same time classified in two classes MSA or MDA. Table 1 provides a
dataset description depending on the sentiment and the language.

Table 1. The dataset composition

Positive Negative Total

MSA 2221 4138 6359

MDA 0684 2858 3542

Total 2905 6996 9901

3.2 The Proposed Approach

In social networks, one of the main challenges of the SA based on Arabic cor-
pus is the presence of standard Arabic text and at least one dialect. MSA and
MDA shares many common aspects; however, the differences exist at the level
of morphology and vocabulary. The essential complexity of the MSA is reflected
in the concatenation capabilities of its words [6]. The MDA also possesses this
aspect but in addition, the lack of the standardization in its writing amplify in
advance the morphological complexity of the dialect [2].

In this work, we aim to inspect if it is helpful to classify in advance the
Arabic corpus depending on the language forms, standard or dialectal, before
the sentiment classification step. Thus, two schemes were tested and compared.
One-step classification (Fig. 1) is a straightforward sentiment classification. All
the Arabic text is considered as one same corpus; in this case, the same prepro-
cessing tasks are applied on all the document. Two-step classification (Fig. 2): is
based on an additional step of standard/dialectal classification, followed by the



286 M. Maghfour and A. Elouardighi

specific preprocessing applied on each sub-corpus. The preprocessing is intended
to reduce the embedded noise in the text, furthermore the shared text via social
network may contain more irregularities and anomalies [9].

In this context preprocessing tasks such as cleaning, normalizing and tokeniz-
ing are applied in prior to sentiment classification. These tasks can be considered
as basic because they are required independently of the used language. Therefore,
we have applied them in both schemes, at one level in Fig. 1, and at three lev-
els in Fig. 2 before each classification stage: MDA/MSA sentiment classification,
MDA sentiment classification and MSA sentiment classification.

Arabic corpus

Preprocessing

(MDA Stemmer)

Sentiment 
classification

Fig. 1. One-step classification approach

Arabic Corpus

MSA 
Corpus

MDA 
Corpus

Preprocessing

(MSA Stemmer)

Sentiment 
Classification

Sentiment 
classification

MSA/MDA classification

Preprocessing

(MDA Stemmer)

Fig. 2. Two-step classification approach

Despite the MSA and the MDA diverge on a morphological level, yet helpfully
they still share mostly the same word stems. For example the word in MSA
(I know them) and its equivalent in MDA are based on the same stem

(know). Thus, a relevant stemming that considers both the MSA and MDA
specificities is expected yielding to better performance when applied to a corpus
containing texts in MSA and in MDA . The unavailability of such tools adapted
to process the MDA texts had led us to develop and to implement a new Arabic
light stemmer through which we have tried to deal with the complexities of this



Standard and Dialectal Arabic Text Classification for Sentiment Analysis 287

dialect. The dialectal stemmer provides two stemming options: MSA or MDA,
where the MDA stemming option incorporates almost all the MSA operations,
moreover it include also the specific tasks to process the MDA. In Fig. 1 we have
applied MDA light stemming since the standard-dialectal discrimination was
ignored in the corpus. In Fig. 2, the MDA and the MSA stemmers were applied
respectively to each correspondent sub-corpus.

3.3 Supervised Classification

The performance of text categorization application is heavily influenced by the
specificity of the studied dataset such as language, topic, text length, etc. [13].
Therefore, we have tested four configurations of feature representation with the
combination of weighting schemes and extraction schemes:

– TF/Unigram
– TF/Unigram + Bigram
– TF-IDF/Unigram
– TF-IDF/Unigram + Bigram

At the classification stage, we have applied two most used classification algo-
rithms for text classification in SA: Naive Bayes (NB) and SVM with linear
kernel. These classifiers have shown good performance in many SA works based
on English corpus [4,5,12]. With the four adopted configuration, each dataset
was randomly split into two subsets. The learning subset with 75% of the obser-
vations, in which we have applied 10 folds cross-validation and parameters opti-
mization. The subset with 25% of unseen data for testing the performance of
the developed models. The Fscore was chosen as evaluation metric [18]. We have
used python programming language in preprocessing and scikit-learn library [14]
in the classification step.

4 Results and Discussion

In this work, for analyzing the effect of Arabic language on SA, we have proposed
and tested two approaches. The first one is the one step-classification approach
(Fig. 1) which is the classical one. Table 2 presents the obtained results with the
classifiers NB and SVM for two level of preprocessing.

At first, the basic preprocessing that includes cleaning, normalizing etc. was
used. Then, in addition to these tasks, the dialectal stemmer was applied before-
hand the sentiment classification. In overall, these results show the important
contribution of the stemming in the improvement of the sentiment classification.
The best Fscore was obtained under NB classifier with Unigram+Bigram/ TF
configuration (84.10%). Whit two step-classification, the best performance at
the level of language classification (Table 3) was registered under NB classifier
through the configuration Unigram/TF (Fscore = 85.79%).



288 M. Maghfour and A. Elouardighi

Table 2. One-step classification results

MSA+MDA NB SVM

Basic processing MDA stemmer Basic processing MDA stemmer

1 g/TF 81.33% 83.94% 79.15% 82.89%

1+2 g/TF 81.33% 84.10% 79.15% 83.13%

1 g/TFIDF 78.63% 82.04% 80.07% 83.20%

1+2 g/TFIDF 78.90% 82.42% 80.36% 83.37%

Table 3. Two step classification results: language classification

NB SVM

Unigram/TF 85.79% 78.89%

Uni+Bigram/TF 85.57% 78.71%

Unigram/TFIDF 84.49% 79.34%

Uni+Bigram/TFIDF 84.93% 79.41%

Table 4. Two-step classification results: sentiment classification of MDA comments

MDA NB SVM

Basic processing MDA stemmer Basic processing MDA stemmer

1 g/TF 77.96% 81.25% 75.61% 77.99%

1+2 g/TF 78.44% 81.83% 74.78% 78.36%

1 g/TFIDF 74.78% 75.82% 74.98% 78.55%

1+2 g/TFIDF 76.56% 78.78% 75.22% 78.94%

At the stage of sentiment classification, the dialectal light stemmer was
applied on the MDA corpus. Table 4 presents the obtained results.

The obtained results were less good than those obtained with the one step-
classification approach (Table 2). These can be explained by two factors: on one
hand the complexity of the MDA, on the other hand the dataset size, which is
smaller (3542 comments). Although the effect of stemming is still significant,
because the best Fscore in this case, was yielded by NB classifier with the con-
figuration Unigram+Bigram/TF (Fscore = 81.83%).

When the MSA corpus was processed independently (Table 5), the results of
the sentiment classification have increased compared with those obtained with
the one-step classification approach where the corpus contained both standard
and dialectal texts. Indeed, the reason behind this improvement was determined
by the best precision of the stemming. The best Fscore was obtained with NB
classifier using the configuration Unigram/TF.

In summary, despite the two-step classification is more expensive due to the
double annotation at the level language and sentiment classification, it shows
precisely the effect of preprocessing on sentiment classification with each sub-
corpus. Otherwise, one-step classification tend to have more stemming error
because of the linguistically heterogeneous texts contained in the corpus (stan-
dard and dialectal texts), but this approach benefits from the cumulative effect of



Standard and Dialectal Arabic Text Classification for Sentiment Analysis 289

Table 5. Two-step classification results: sentiment classification of MSA comments

MSA NB SVM

Basic processing MSA stemmer Basic processing MSA stemmer

1 g/TF 81.57% 84.56% 78.98% 83.30%

1+2 g/TF 81.43% 84.30% 78.65% 83.53%

1 g/TFIDF 80.12% 82.57% 80.15% 83.46%

1+2 g/TFIDF 80.24% 82.67% 79.98% 84.33%

the dataset size. We can say that the two classification approaches are effective.
To choose which approach to adopt many criteria might be considered, such as
the data set size, the weight of language categories, and the possible relationship
between the text language and sentiment polarity.

Similar SA works were based on other arabic dialects, in [17] Salamah and
Elkhlifi collected a dialectal Kuwaiti corpus, The Fscore found was equal to
70.55%, which is slightly less than the score obtained in our study.

Mdhaffar et al. [10] led their SA on facebook comments that have been writ-
ten in Tunisian dialectal Arabic, they adopted the error rate as a performance
measure, the best obtained score was 23%, which has some similarity to our
finding, although the measure is different than we have applied (Fscore). At the
end, these results show that the nature and properties of the analyzed dataset
influence the quality of sentiment classification.

5 Conclusion

Arabic content in the web continue to increase specially in social networks and
enclose a lot information that is valuable for decisions making. To take the advan-
tage of this content and make it valuable, analysis techniques must be applied. In
social networks, one of the main challenges of the SA based on Arabic text is the
presence of the modern standard and the dialectal Arabic text. Several SA works
dealt with corpus including both standard and dialectal Arabic. Some of them
proposed additional natural language processing that are specific to the Arabic.
However, their analysis focused on all documents without distinction between
those published in modern standard or in dialectal Arabic. In this paper, we
have dealt with the SA for Facebook comments written and shared in MSA or
in MDA. Our main objective is to inspect if it is useful to classify at first the
Arabic corpus according to its forms: MSA or MDA before the sentiment classi-
fication step. For this, we have tested and compared two schemes of Arabic SA.
The first scheme was the classical method where the basic preprocessing that
includes cleaning, normalizing etc. was used. In addition to these tasks, the Ara-
bic dialectal stemmer was applied beforehand the sentiment classification. In the
second scheme, we have incorporated an additional text classification step for
all corpus according to its forms: MSA or MDA, followed by the specific prepro-
cessing applied on each sub-corpus. At the stage of sentiment classification, the
dialectal light stemmer was applied on the MDA corpus. The obtained results



290 M. Maghfour and A. Elouardighi

with the MDA corpus were less good than those obtained with the classical
schemes. This is mainly due to the complexity of the Arabic dialectal processing
and the dataset size used. The obtained results whit the MSA corpus were better.
This variance in the obtained results give us the opportunity for improvements.
In the future work, we believe that there is a promising trend to obtain the best
results for Arabic SA. As we have seen, most of the work in the field of Arabic
SA has focused on the use of supervised learning techniques and lexicon-based
approaches. We intend to propose and develop a new hybrid method using deep
learning technique and big data technique such as Hadoop and MapReduce to
solve some of the existing problems in MDA for SA.

References

1. Al-Kabi, M.N., Abdulla, N.A., Al-Ayyoub, M.: An analytical study of Arabic sen-
timents: Maktoob case study. In: 2013 8th International Conference for Internet
Technology and Secured Transactions (ICITST), pp. 89–94. IEEE (2013)

2. Al-Sabbagh, R., Girju, R.: Yadac: yet another dialectal arabic corpus. In: LREC,
pp. 2882–2889 (2012)

3. Alomari, K.M., ElSherif, H.M., Shaalan, K.: Arabic tweets sentimental analysis
using machine learning. In: Benferhat, S., Tabia, K., Ali, M. (eds.) IEA/AIE 2017.
LNCS (LNAI), vol. 10350, pp. 602–610. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-60042-0 66

4. Dave, K., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: opinion extrac-
tion and semantic classification of product reviews. In: Proceedings of the 12th
International Conference on World Wide Web, pp. 519–528. ACM (2003)

5. Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant
supervision. CS224N Project Report, Stanford 1(12) (2009)

6. Habash, N.Y.: Introduction to arabic natural language processing. Synth. Lect.
Hum. Lang. Technol. 3(1), 1–187 (2010)

7. Khalil, T., Halaby, A., Hammad, M., El-Beltagy, S.R.: Which configuration works
best? An experimental study on supervised Arabic twitter sentiment analysis.
In: 2015 First International Conference on Arabic Computational Linguistics
(ACLing), pp. 86–93. IEEE (2015)

8. Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Hum. Lang. Technol.
5(1), 1–167 (2012)

9. Liu, B.: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cam-
bridge University Press, New York (2015)

10. Medhaffar, S., Bougares, F., Esteve, Y., Hadrich-Belguith, L.: Sentiment analysis
of Tunisian dialects: linguistic resources and experiments. In: Proceedings of the
Third Arabic Natural Language Processing Workshop, pp. 55–61 (2017)

11. Nabil, M., Aly, M., Atiya, A.: ASTD: Arabic sentiment tweets dataset. In: Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language Processing,
pp. 2515–2519 (2015)

12. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using
machine learning techniques. In: Proceedings of the ACL-02 Conference on Empir-
ical Methods in Natural Language Processing, vol. 10, pp. 79–86. Association for
Computational Linguistics (2002)

13. Pang, B., Lee, L.: Opinion mining and sentiment analysis. Found Trends Inf. Retr.
2(1–2), 1–135 (2008)

https://doi.org/10.1007/978-3-319-60042-0_66
https://doi.org/10.1007/978-3-319-60042-0_66


Standard and Dialectal Arabic Text Classification for Sentiment Analysis 291

14. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

15. Pozzi, F.A., Fersini, E., Messina, E., Liu, B.: Sentiment Analysis in Social Net-
works. Morgan Kaufmann, San Francisco (2016)

16. Refaee, E., Rieser, V.: An Arabic twitter corpus for subjectivity and sentiment
analysis. In: LREC, pp. 2268–2273 (2014)

17. Salamah, J.B., Elkhlifi, A.: Microblogging opinion mining approach for Kuwaiti
dialect. In: The International Conference on Computing Technology and Informa-
tion Management (ICCTIM2014), pp. 388–396. The Society of Digital Information
and Wireless Communication (2014)

18. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput.
Surv. (CSUR) 34(1), 1–47 (2002)

19. Shoukry, A., Rafea, A.: Preprocessing Egyptian dialect tweets for sentiment min-
ing. In: The Fourth Workshop on Computational Approaches to Arabic Script-
based Languages, p. 47 (2012)

20. Zaidan, O.F., Callison-Burch, C.: Arabic dialect identification. Comput. Linguist.
40(1), 171–202 (2014)



A Graph-Based Model for Tag
Recommendations in Clinical Decision

Support System

Sara Qassimi(B), El Hassan Abdelwahed, Meriem Hafidi, and Rachid Lamrani

Laboratory ISI, Cadi Ayyad University, Marrakesh, Morocco
{sara.qassimi,meriem.hafidi,rachid.lamrani}ced.uca.ma,

abdelwahed@uca.ac.ma

Abstract. The healthcare providers use clinical decision support sys-
tems to manage the patients’ electronic health records. In this paper,
we aim to enhance the computer-aided diagnosis in medical imaging. We
developed a graph-based tag recommendations approach that suggests
relevant diseases and pathologies by analysing the tagged medical images.
Healthcare providers can rapidly get an improved diagnostic value of
radiographs using the graph-based tag recommendations that enable dis-
covering common and relevant diseases used within the patient’s commu-
nity, his related images and semantically tied tags. The dataset ChestX-
Ray14 has been conducted to evaluate the accuracy and effectiveness
of our proposal. Futures works will address the online evaluation of the
suggested tags by exploiting the healthcare providers’ feedback.

Keywords: Tag recommendations · Graph-based model
Network analysis · Electronic health record · Clinical decision support

1 Introduction

The use of electronic health record EHR has been widely implemented in health-
care systems worldwide. The Clinical Decision Support System CDSS benefits
from the wealth of information provided by the EHRs in order to deliver effi-
cient healthcare organizations. For instance, the CDSS optimizes patients’ care
by including patients’ follow up, reminders, warning systems, and diagnostic sug-
gestions [1]. The EHRs are presented in structured and unstructured forms like
free-text documentation “clinical notes” medical histories, imaging results, labo-
ratory test results and physician reports. Even though the structured information
enables a faster data analysis, it does not consistently facilitate communication of
patients’ information. Moreover, the majority of clinicians do not trust the EHR
structured information and prefer verbal communication as a means to gather
and convey important information about their patients [2]. However, it is time-
consuming to enter free-text electronic notes and not easily accessed for viewing
[3]. In fact, physicians spend two hours of desk work on documenting a patient’s
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 292–300, 2018.
https://doi.org/10.1007/978-3-030-00856-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_19&domain=pdf


Graph-Based Tag Recommendations 293

EHR for each hour of clinical consulting [4]. Besides, physicians prefer to read
succinct and brief medical notes. Therefore, it is crucial to managing textual
notations and encourage the use of shortcut “Tags” presenting well-defined and
meaningful information. Actually, physicians need to be involved in generating
succinct and easily readable notes that contain essential information [5]. Tags
are descriptive annotations that define the commonly used clinical terms. The
use of tags will capture sharable information in an efficient and timely manner.
Moreover, tagging EHRs will meet the patients’ consent to exchange some parts
of their medical record, like diagnosed pathologies, but not their other personal
parts.

In this paper, consideration has been given to tagging medical images where
tags represent the common diseases or pathologies. Tagging approach, a repre-
sentation of semantic interpretations, has proven benefits in managing, searching
and discovering pictures for specific use [8]. It will facilitate diagnosis of diseases
by reducing loosely labelled or undescribed medical images. However, it is still
very difficult to achieve clinically relevant computer-aided detection and diagno-
sis in chest X-ray images [6]. Therefore, this paper proposes a graph based tag
recommendations aiming to describe and organize the patients’ medical images.
The recommender system of tags will aid the CDSS to detect further diagnosis on
medical images in order to execute high-quality patient-centred care. Indeed, the
primary interest is not about getting correct CDSS pieces of advice but rather
is the extent to which the CDSS improve the diagnostic hypotheses of clinicians
and suggest relevant clinical findings [7]. The suggestion of tags -diseases- will
not only help healthcare providers to generate relevant interpretation reports
summarizing the findings and impressions but will also enable them to navigate
and retrieve the right tag before creating or reading a patient’s EHR.

The rest of the paper is organized as follows: Sect. 2 provides some back-
grounds and related research papers. Section 3 depicts the proposed approach of
graph-based tag recommendations. The experimental results and evaluation are
described in Sect. 4. Finally, the conclusion and future directions are delineated
in Sect. 5.

2 Background and Related Work

The term “tag” has emerged with the arrival of the social web to describe the web
resources [10]. In the clinical activity, tags are the commonly used medical terms.
The clinical text contains various type of information (e.g., radiology reports)
that can be used to improve CDSS performances. The authors [11] proposed a
de-identified corpus of clinical text annotated to support information extraction
from the free text notes. Some machine learning techniques for text mining are
used for the pre-processing of free-text breast cancer pathology reports [12]. The
authors [6] provided a chest X-ray database “ChestX-ray8” that compromises
frontal view X-ray images of unique patients with fourteen diseases in form of
labels. The image labels represent diseases’ keywords (tags) extracted from the
radiological reports using NLP. However, a golden training set of an adequate



294 S. Qassimi et al.

annotated clinical text notes is required for the off-the-shelf NPL tools using
machine learning-based methods. Tag recommendation is beneficial for the tag-
ging process. It has multiple recommender techniques, like, content-based, tag
co-occurrence based and graph-based [9]. The graph-based tag recommendation
method extract tags based on the neighbourhood of the target item (or user).
A hypergraph-based method is proposed for image tagging that exploits the
image content and geo-localisation [13]. Various multi-label classification meth-
ods exploit label correlations in order to annotate multi-label images [14]. A
coverage of the multi-label classification is beyond the scope of this paper. Our
motivation position is to achieve clinically relevant computer-aided detection and
diagnosis of medical images. We aim to make a great use of the extracted diag-
nostic labels (tags) from the free text report to enhance the categorisation and
annotation of medical images using a graph-based recommender system of tags.

3 Proposed Approach

The tag recommendations will help healthcare providers making clinical deci-
sions by detecting diagnosis in medical images and facilitate their interpretation.
The proposed approach is based on graphs generated by analyzing previously
tagged medical images of the community of patients. The graphs modeling (see
Fig. 1) is derived from three interconnected layers, namely the patients, images
and tags layers. Therefore, three associative networks are generated. A simple
network is a single-layer network, represented by a graph. A graph is a tuple
G = (V, E), where V is the set of nodes and E⊆ V × V is the set of edges
connecting the pair of nodes.

Fig. 1. Graphs modeling of the tripartite relationship among patients, images and tags



Graph-Based Tag Recommendations 295

A community of patients P have a set of images I annotated with a set of
tags T. P= {P1, ..., Pl} I = {I1, ..., Ik} T = {t1, ..., tn} Where, l, k and n are
respectively the number of patients, images and tags. Three weighted undirected
graphs are defined, namely patients, images and tags graphs, denoted by GP , GI

and GT . The instances of patients, images and tags are respectively the nodes
of GP , GI and GT , related with weighted edges. Besides, we have considered
identifying the most central nodes in network analysis. The centrality measures
address the insights concerning a node within the whole network. With regard
to the nature of the generated networks, we consider weighted degree centrality
measure because the node strength takes into consideration the weights of ties.
The weighted degree centrality of a node is computed by summing the weights
across all its related nodes.

The weighted edge of the graph of images is denoted by W(iPi, jPi), where
iPi, jPi are images belonging to the same patient Pi ∈ P.

The tag recommendation method based on the graph of images (Algorithm 1,
procedure RecommendationGraphImages) recommends the previously assigned
tags corresponding to the patient Pi in order to remind the healthcare providers
about his already detected diseases.

The creation of communities is processed by grouping a set of sim-
ilar patients having the same diseases. The community of patients is
an undirected graph whose nodes are patients tied with the weighted
edges. For patients Pi, Pj∈ P , the weighted edge is W (Pi, Pj) =
Number of same tags annotating images of Pi and Pj

Number of tags in the corpus . The weighed degree centrality

of the patient Pi is wc(Pi) =
l∑

j

W (Pi, Pj). The method of community graph-

based tag recommendation (Algorithm 1, procedure RecommendationGraph-
Community) suggests tags assigned to the k most related patients Pj of the
target patient Pi.

A tag is relevant - well spread and common diseases - if it is annotating
important amount of medical images corresponding to active patients (who have
a great number of medical images). The weighted edge of two tags ti ,tj∈ T is
denoted by W (ti, tj) =WP (ti, tj) × WI(ti, tj) . It considers the patient based

weight WP (ti, tj) = Number of patients having images annotated by ti and tj
Number of patients with annotated images and the

image based weight WI(ti, tj) = Number of images annotated by ti and tj
Number of annotated images . Each tag

ti has its weighted degree centrality wc(ti) =
n∑

j

W (ti, tj).

The graph of tags will enhance the recommendation of tags by suggesting the
semantically close tags within the graph. The Tags’ graph based recommenda-
tion of tags (Algorithm 1, procedure RecommendationGraphTags) recommends
related tags to the suggested tags of either the graph of images or the commu-
nity graph based tag recommendation. Otherwise, the graph of tags suggests the
strongly related tags in order to solve the cold start problem.



296 S. Qassimi et al.

Algorithm 1. Graph-based tag recommendations
Pi, Pj∈ P ; IPi⊂I ; TPi,TPj⊂T ; tj∈T; tPi∈TPi; tPj∈TPj ; iPi, jPi ∈IPi ; RtiPi,
RtcPi, ReltPi ⊂ TPi

RtiPi : a set of recommended tags based on the images’ graph
RtcPi : a set of recommended tags based on the patients’ community graph
ReltPi : a set of recommended tags based on the tags’ graph
procedure RecommendationGraphImages(Pi,iPi )

for W(iPi, jPi )=1 do
RtiPi ←list of tPj annotating iPj

end for
return RtiPi

end procedure
procedure RecommendationGraphCommunity(Pi)

for Pj ∈ P do
if W(Pi, Pj) > 0 then

ω ←W(Pi, Pj)× wc(Pj)
RtcPi ←list of tPj ranked by ω limit k

end if
end for
return RtcPi

end procedure
procedure RecommendationGraphTags(Pi,iPi,tPi)

RtiPi ←RecommendationGraphImages(Pi,iPi)
RtcPi ←RecommendationGraphCommunity(Pi)
if tPi∈TPi OR tPi ∈ RtiPi OR tPi ∈ RtcPi then

for tj ∈ T do
ω ←W(tPi, tj)× wc(tj)
if ω > threshold then

ReltPi ←list of tj ranked by ω
end if

end for
end if
return ReltPi

end procedure

4 Experimental Results and Evaluation

Our experimental dataset was taken from the “ChestX-ray8” chest X-ray
database [6]. In our experiments, we used a number of 1000 patients having
3663 images with 14 pathologies categories considered as tags (Atelectasis, Con-
solidation, Infiltration, Pneumothorax, Edema, Emphysema, Fibrosis, Effusion,
Pneumonia, Pleural thickening, Cardiomegaly, Nodule, Mass and Hernia). The
dataset generates 1000 patients nodes related with 63627 edges and 14 tags nodes
tied with 339 edges (see Fig. 2). To evaluate our proposed approach of the graph
based tag recommendations, we have considered 9 patients to whom the tag rec-
ommendations were performed in order to suggest tags for their X-ray images
(10 distinct X-ray images) (see Table 3). The evaluation of tag recommendations



Graph-Based Tag Recommendations 297

Table 1. Tag recommenda-
tions

Fig. 2. Tags weighted network using Gephi

is performed using the automatic or offline evaluation that considers the previ-
ously assigned tags (used tags) as the ground truth (true positive). The common
accuracy metrics are calculated from the number of tags that are either used or
unused and either recommended or not (see Table 2).

Table 2. Confusion matrix accumulating the possible results of tag recommendations

Used Not used

Recommended True-positive (Tp) False-positive (Fp)

Not recommended False-negative (Fn) True-negative (Tn)

Precision P = Tp
Tp+Fp represents the probability that a recommended tag

is the used tag. Recall R = Tp
Tp+Fn represents the probability that a used tag

is recommended. The F1-measure F = 2×P×R
P+R combines precision and recall

into a single score. Accuracy A = Tp+Tn
Tp+Fp+Fn+Tn is the number of all correct

predictions (the recommended used tags and the not recommended unused tags)
divided by the total number of the recommended and not recommended tags.
The false positive rate FPR = Fp

Fp+Tn is the probability that an unused tag is
recommended. The false negative rate of FNR = Fn

Tp+Fn is the probability that
a used tag is not recommended.



298 S. Qassimi et al.

Table 3. Evaluation

The evaluation table shows that an untagged image has lower or absent mea-
sures’ scores in the images graph based tag recommendation, for example, the
X-ray images “208 000.png” and “282 000.png”. Which underlines the use of
tags recommended by the graph of tags and the community graph. Otherwise,
the scores of the precision, recall and F1-measure are generally high. The recall
R = 1 means that the community graph and images graph based tag recommen-
dations always recommend the used tags (previously assigned tags). In the com-
munity graph based tag recommendation, all the healthcare providers’ used tags
are recommended that the reason why the FNR = 0. For instance, the patient
“372” who has the X-ray image “372 005.png” previously tagged with three tags
(diseases) “Infiltration; Effusion; Atelectasis” (see Table 1) has higher measures
scores using the tag graph based tag recommendation which indicates that these
three previously used tags are strongly related within the graph of tags. Even
though the accuracy is lower for the graph of community compared to the graph
of tags, the recommender system can be moderated by adding the recommended
unused tags. Despite the low cost, coverage and scalability in large-scale tag
recommendations, the offline evaluation still lowers the effectiveness of the rec-
ommendations compared to the online one. Some of the recommended tags, the
unused recommended tags or false positive, might be considered relevant tags for
the online evaluation that relies on healthcare stakeholders to evaluate manually
the suggested tags describing pathologies detected in the X-ray image.

5 Conclusion and Perspectives

To achieve clinically relevant computer-aided detection and diagnosis in medical
images (e.g. the chest X-rays), we have developed a graph-based recommender
system of tags that suggests relevant diseases (or pathologies) to annotate the



Graph-Based Tag Recommendations 299

medical images and improve their interpretation. Three graphs are generated
namely a graph relating different diseases (tags), a graph of images and another
graph of patients’ community. Therefore, the system of recommendation will
aid the radiologists to detect and interpret invisible diseases of the underly-
ing anatomical structure. It may also help in early revealing and diagnosis of
cancerous lung nodules from chest X-ray images. The experimental evaluation
has shown relevant results attesting the effectiveness of our approach. However,
we aim to call for healthcare providers’ online evaluation. To foster our future
research, we aim to apply other centrality measures to detect the centrality
of nodes for each graph. Also, we will expand the community of patients in
order to support consistent and meaningful testing on a larger dataset. Future
perspectives will focus on capturing, integrating and investigating other addi-
tional information (e.g. context, the patient’s personal information) to adjust
the semantic relationships among the graphs and enhance the nodes’ clustering.
In future works, we will promote the interactions within a network by recom-
mending divers items in the different domain of interest (e.g. the collaborative
learning and the valorization of cultural heritage).

References

1. Castaneda, C., Nalley, K., Mannion, C.: Clinical decision support systems for
improving diagnostic accuracy and achieving precision medicine. J. Clin. Bioin-
form. 5, 4 (2015)

2. Finn, C.: Narrative nursing notes in the electronic health record: a key communi-
cation tool. Online J. Nurs. Inform. (OJNI) 19(2) (2015)

3. Moss, J., Andison, M., Sobko, H.: An analysis of narrative nursing documentation
in an otherwise structured intensive care clinical information system. In: AMIA
Annual Symposium Proceedings, pp. 543–547 (2007)

4. Sinsky, C., Colligan, L., Li, L., Prgomet, M., Reynolds, S., Goeders, L.: Allocation
of physician time in ambulatory practice: a time and motion study in 4 specialties.
Ann. Intern. Med. 165, 753–760 (2016)

5. Han, H., Lopp, L.: Writing and reading in the electronic health record: an entirely
new world. Med. Educ. Online 18 (2013). https://doi.org/10.3402/meo.v18i0.
18634

6. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.: Chestx-ray8:
hospital-scale chest x-ray database and benchmarks on weakly-supervised classifi-
cation and localization of common thorax diseases. In: Proceedings of the CVPR,
pp. 3462–3471 (2017)

7. Hasman, A., Safran, C., Takeda, H.: Quality of health care: informatics founda-
tions. Methods Inf. Med. 42, 509–518 (2003)

8. Chiu, M.P., Cheng, W., Chu, K., Lin, C., Yeung, S.: Do medical professionals tag
images differently from non-medical professionals? An implication of retrieving
user-generated images of everyday medical situations. Proc. Assoc. Info. Sci. Tech.
53, 1–5 (2016)

9. Belém, F., Almeida, J., Gonalves, M.: A survey on tag recommendation methods.
J. Assoc. Inf. Sci. Technol. 68(4), 830–844 (2016)

10. Ouhammou, Y., Ivanovic, M., Abelló, A., Bellatreche, L. (eds.): MEDI 2017. LNCS,
vol. 10563. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66854-3

https://doi.org/10.3402/meo.v18i0.18634
https://doi.org/10.3402/meo.v18i0.18634
https://doi.org/10.1007/978-3-319-66854-3


300 S. Qassimi et al.

11. Savkov, A., Carroll, J., Koeling, R., Cassell, J.: Annotating patient clinical records
with syntactic chunks and named entities: the Harvey Corpus. Lang. Resour. Eval.
50, 1–26 (2016)

12. Napolitano, G., Marshall, A., Hamilton, P., Gavin, A.T.: Machine learning classifi-
cation of surgical pathology reports and chunk recognition for information extrac-
tion noise reduction. Artif. Intell. Med. 70, 77–83 (2016)

13. Pliakos, K., Kotropoulos, C.: Simultaneous image tagging and geo-location pre-
diction within hypergraph ranking framework. In: Proceedings of the IEEE Inter-
national Conference on Acoustic, Speech and Signal Processing, pp. 6894–6898
(2014)

14. Tan, Q., Liu, Y., Chen, X., Yu, G.: Multi-label classification based on low rank
representation for image annotation. Remote Sens. 9(2), 109 (2017)



Spatial Batch-Queries Processing Using
xBR+-trees in Solid-State Drives

George Roumelis1, Michael Vassilakopoulos1(B), Antonio Corral2,
Athanasios Fevgas1, and Yannis Manolopoulos3

1 Data Structuring & Engineering Lab., Department of Electrical and Computer
Engineering, University of Thessaly, Volos, Greece

{groumelis,mvasilako,fevgas}@uth.gr
2 Department of Informatics, University of Almeria, Almeria, Spain

acorral@ual.es
3 Faculty of Pure and Applied Sciences, Open University of Cyprus, Nicosia, Cyprus

yannis.manolopoulos@ouc.ac.cy

Abstract. Efficient query processing in spatial databases is of vital
importance for numerous modern applications. In most cases, such pro-
cessing is accomplished by taking advantage of spatial indexes. The
xBR+-tree is an index for point data which has been shown to out-
perform indexes belonging to the R-tree family. On the other hand,
Solid-State Drives (SSDs) are secondary storage devices that exhibit
higher (especially read) performance than Hard Disk Drives and nowa-
days are being used in database systems. Regarding query processing, the
higher performance of SSDs is maximized when large sequences of queries
(batch queries) are executed by exploiting the massive I/O advantages
of SSDs. In this paper, we present algorithms for processing common
spatial (point-location, window and distance-range) batch queries using
xBR+-trees in SSDs. Moreover, utilizing small and large datasets, we
experimentally study the performance of these new algorithms against
processing of batch queries by repeatedly applying existing algorithms for
these queries. Our experiments show that, even when the existing algo-
rithms take advantage of LRU buffering that minimizes disk accesses,
the new algorithms prevail performance-wise.

Keywords: Spatial indexes · xBR+-trees · Query processing
Solid-State Drives

1 Introduction

Nowadays, the volume of available spatial data (e.g. location, routing, navigation
data, etc.) is continuously increasing world-wide. To exploit these data, efficient
processing of spatial queries is of great importance due to the wide area of appli-
cations that may address such queries. The most common spatial queries where
points are involved are point-location, window, distance-range and K nearest-
neighbor queries (PLQs, WQs, DRQs and KNNQs, respectively, in the sequel).
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 301–317, 2018.
https://doi.org/10.1007/978-3-030-00856-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_20&domain=pdf


302 G. Roumelis et al.

At a higher level, such queries have been used as the basis of many complex oper-
ations in advanced applications, for example, geographical information systems
(GIS), location-based systems (LBS), geometric databases, CAD, etc.

The use of efficient spatial indices is very important for performing spatial
queries and retrieving efficiently spatial objects from datasets according to spe-
cific spatial constraints [5]. Hierarchical indices are useful due to their ability
to focus on the interesting subsets of data. This focusing results in an efficient
representation and execution times on query processing and thus, it is partic-
ularly useful for performing spatial operations. An example of such indices is
the Quadtree [20], which is based on the principle of recursive decomposition of
space and has become an important access method for spatial applications [21].

The External Balanced Regular (xBR)-tree [23] is a secondary memory struc-
ture that belongs to the Quadtree family (widely used in GIS applications, which
is suitable for storing and indexing points and, in extended versions, line seg-
ments, or other spatial objects). We use an improved version of xBR-tree, called
xBR+-tree [19], which is also a disk-resident structure. The xBR+-tree improves
the xBR-tree in the node structure and in the splitting process. The node struc-
ture of the xBR+-tree stores information which makes query processing more
efficient. In addition, the xBR+-tree outperforms R*-tree and R+-tree (in terms
of I/O activity and execution time) for the most common spatial queries, like
PLQs, WQs, DRQs, KNNQs, etc. [18].

The advent of non-volatile memories (NVM) has enabled a brand-new class
of storage devices with exciting features that will prevail in the storage market
in the near future. Their high read and write speeds, small size, low power con-
sumption and shock resistance are some of the reasons that made them storage
medium of choice. NAND flash is undoubtedly the most popular NVM today.
Storage devices based on NAND Flash are found both in consumer devices and
enterprise data-centers. However, upcoming technologies, such as 3D XPoint
from Intel and Micron, make possible even more efficient devices [6]. At the very
beginning, raw Flash memory chips were embedded in mobile devices and other
electronics. However, soon enough, the increasing needs for efficient storage drove
the emergence of Solid-State Drives (SSDs). SSDs are composed by Flash chips,
embedded controllers and DRAM [3]. Contemporary devices incorporate from
a few to many NAND chips, supplying capacities even of tens of terabytes in
high-end systems. Flash controller, usually a 32-bit embedded CPU, executes the
firmware that controls SSD operation, while DRAM is utilized to store metadata,
information regarding address mapping and for user data caching. Firmware is
fundamental for SSD operation [2]. Its main responsibility is to map virtual
addresses, as they are seen by the host, to physical addresses in flash chips.
For this reason is also known as Flash Translation Layer (FTL). FTL performs
tasks for garbage collection, wear leveling and management of bad blocks. SSDs
exhibit higher write and especially read performance than Hard Disk Drives.
This performance advantage is maximized when issuing commands that mas-
sively write to/read from SSDs large sequences of consecutive pages (due to
exploiting the internal parallelism of SSDs), instead of issuing commands that



Spatial Batch-Queries Processing using xBR+-trees in Solid-State Drives 303

write to/read from SSDs the pages of such sequences in small subsequences, or
even, one-by-one [12].

In this paper, we present new algorithms for processing large sequences of
common spatial queries (PLQs, WQs, DRQs) using xBR+-trees in SSDs. These
algorithms are especially designed to massively read from SSDs large sequences
of pages needed for answering such queries. Such large sequences of queries
(batch queries) appear frequently in applications. Moreover, using small and
large datasets, we experimentally study the performance of these new algorithms
against processing of batch queries by repeatedly applying existing algorithms
for these queries. In addition, several experiments have been executed, showing
that the new algorithms are performance winners.

The sequel is organized as follows. In Sect. 2 we review related work on spatial
query processing over xBR-trees, as well as, on indices taking advantage of SSDs
performance and provide the motivation of this paper. In Sect. 3, we describe
the most important characteristics of the xBR+-tree. Section 4 presents new
algorithms for batch queries processing using xBR+-tree in SSDs. The results of
our experiments are discussed in Sect. 5. Finally, Sect. 6 provides the conclusions
arising from our work and discusses future work directions.

2 Related Work and Motivation

In this section, we first briefly review the xBR-tree family. Then, the most rep-
resentative spatial indexes, taking advantage of SSD performance, are revised.
Finally, the main motivation of this work is exposed.

2.1 The xBR-tree Family

The xBR-tree was initially proposed in [23] as a secondary-memory pointer-
based structure that belongs to the Quadtree family. The original xBR-tree was
enhanced in [15]. The xBR+-tree [18,19] is a further improved extension of the
xBR-tree regarding performance of tree creation and spatial query processing.
Bulk-loading and bulk-insertion methods for xBR+-trees are presented in [16]
and [17], respectively.

In [18], an exhaustive performance comparison (I/O activity and execution
time) of xBR+-trees (non-overlapping trees of the Quadtree family), R+-trees
(non-overlapping trees of the R-tree family) and R*-trees (industry standard
belonging to the R-tree family) is performed. In this comparative study, sev-
eral performance aspects are studied, like tree building and processing single
point dataset queries (PLQs, WQs, DRQs and KNNQs) and distance-based join
queries (DJQs), using medium and large spatial (real and synthetic) datasets.
As a conclusion, the xBR+-tree is a clear winner for tree building and query
performance. The excellent building performance of the xBR+-tree is due to the
regular subdivision of space that leads to much fewer and simpler calculations.
The higher query performance of the xBR+-tree is due to the combination of
the regular subdivision of space, the additional representation of the minimum



304 G. Roumelis et al.

rectangles bounding the actual data objects, the algorithmic improvements of
certain spatial queries and the storage order of the entries of internal nodes.

2.2 Spatial Indexes for Flash SSDs

NAND Flash provides superior performance compared to traditional magnetic
disks but has some intrinsic characteristics. It exhibits asymmetry in the read,
write, and erasure speeds and a page must be erased first before being re-
programmed. Erase operations take place at block level, while reads and writes
are performed at page level. SSDs inherit some of these characteristics, thus in
most devices read operations are faster than writes, while difference exist among
the speeds of sequential and random I/Os as well. Especially, random writes may
initiate garbage collection which is impacts the efficiency of the device. On the
other hand, the high degree of internal parallelism of latest SSDs substantially
contributes to the improvement of I/O performance [13]. Many research efforts
have been made for Flash efficient database indexes. The works for spatial data
processing mostly concern the R-tree.

The RFTL [24] is the first effort towards a flash efficient implementation of
the R-tree. It is based on recording deltas for update operations. An in-memory
buffer is utilized to hold the deltas before be persisted in batches. The same
method has also been applied for the Aggregated R-tree in [11].

The LCR-tree [10] exploits a small section of SSD to log update operations.
In contrary to other works it accumulates all the deltas for a particular node to
one page in Flash. This way it ensures only one additional page reading to reach
a tree node. The LCR-tree exhibits better performance than the original R-tree
and the RFTL in mixed search/insert experimental scenarios. In the FOR-tree
[7] authors aim to reduce small random writes by introducing overflow nodes
to the R-tree. They propose new search and insert algorithms and a buffering
algorithm for efficient caching of original and overflow nodes.

Regarding to non R-tree spatial indexes, the F-KDB [8] is a log-structured
implementation of the K-D-B-tree for Flash, the MicroGF [9] is a 2D Grid File
like structure for raw Flash, that is embedded in wireless sensor nodes, while a
first effort towards to an efficient Grid-File for SSDs is presented in [4].

Furthermore two generic frameworks for spatial indexing have been proposed
so far, which can encapsulate different data structures. FAST [22] utilizes the
original insertion and update algorithms, buffers updates in RAM and flashes
them to the SSD at once. eFIND [1] is a newer generic framework that provides
better performance than FAST.

MPSearch [13,14] is a multi-path search algorithm for the B+-tree that per-
forms batch searches considering the characteristics of SSDs to accelerate perfor-
mance. To the best of our knowledge, there are not any works concerning spatial
batch-queries processing for Flash SSDs. Motivated by this observation, in this
paper, we develop new algorithms for processing common spatial batch queries
(PLQs, WQs, DRQs), using xBR+-trees in SSDs. These algorithms are designed
for maximizing performance by exploiting the internal parallelism of SSDs.



Spatial Batch-Queries Processing using xBR+-trees in Solid-State Drives 305

3 The xBR+-tree Structure

In this section, for the sake of self-containment of the paper, we present the basics
of the xBR+-tree. The xBR+-tree [19] is a hierarchical, disk-resident Quadtree-
based index for multidimensional points (i.e. it is a totally disk-resident, height-
balanced, pointer-based tree for multidimensional points). For 2d space, the
space indexed is a square and is recursively subdivided in 4 equal subquad-
rants. The tree nodes are disk pages of two kinds: leaves, which store the actual
multidimensional data and internal nodes, which provide a multiway indexing
mechanism.

Internal node entries in xBR+-trees contain entries of the form (Shape, qside,
DBR, Pointer). Each entry corresponds to a child-node, having a region related
to a subquadrant of the original space. Shape is a flag that determines if this
region is a complete or non-complete square (the area remaining, after one or
more splits; explained later in this subsection). This field is heavily used in
queries. qside is the side length of the subquadrant of the original space that
corresponds to this child-node. DBR (Data Bounding Rectangle) stores the coor-
dinates of the rectangular subregion of this child-node region that contains point
data (at least two points must reside on the sides of the DBR), while Pointer
points to this child-node.

The subquadrant of the original space related to a child-node is expressed by
an Address. This Address (which has a variable size) is not explicitly stored in the
xBR+-tree, although it is uniquely determined and can be easily calculated using
qside and DBR. Here, we depict the Address only for demonstration purposes.
Each Address represents a subquadrant that has been produced by Quadtree-like
hierarchical subdivision of the current space (of the subquadrant of the original
space related to the current node). It consists of a number of directional digits
that make up this subdivision. The NW, NE, SW and SE subquadrants of a
quadrant are distinguished by the directional digits 0, 1, 2 and 3, respectively.
For example, the Address 1 represents the NE quadrant of the current space,
while the Address 12 the SW subquadrant of the NE quadrant of the current
space.

The actual region of the child-node is, in general, the subquadrant of its
Address minus a number of smaller subquadrants, i.e. the ones corresponding to
the next entries of the internal node. The entries in an internal node are saved
in sequential groups, consisting of subgroups. The first entry of each group is
the parental entry of the rest entries of this group. Each entry of a group is a
descendant of the entry on its left, or it is the parent of a new (sub)group. For
example, in Fig. 1 an internal node (a root) that points to 5 internal nodes that
point to 15 leaves is depicted. The region of the root is the original space, which
is assumed to have a quadrangular shape with origin (0,0) on the upper left
corner and side length 1. The region of the rightmost entry (220*) is the NW
subquadrant of the SW subquadrant of the SW quadrant of the original space
(the * symbol is used to denote the end of a variable size Address). The flag
shape is set at the value ‘S’ which expresses that this subquadrant is a complete
square and thus, no part of its region will be found anywhere in the index, except



306 G. Roumelis et al.

for the child nodes of the subtree rooted at this entry. The region of the next
(on the left) subquadrant is the SW subquadrant of the SW quadrant of the
whole space. For this subbquadrant, the Address is 22* (non-complete square,
denoted by ‘noS’). The next two (on the left) entries cover the whole space of the
NE quadrant (1*) and the NW quadrant (0*) of the whole space, respectively.
Finally, the first entry in the root of this example expresses the whole space
minus the four descendant regions (0*, 1*, 22* and 220*), and of course it is
a non-complete square area. During a search, or an insertion of a data element
with specified coordinates, the appropriate leaf and its region is determined by
descending the tree from the root.

 0

 0.25

 0.5

 0.75

 1
 0  0.25  0.5  0.75  1

0* 1* 22* 220*

2*

noS

noS

noSSS S

S

*

*

Leaf Capacity =6CL

i-Node Capacity =5Ci

2*
noS noS*

5 p 4 p 3 p

300*
S

2*
noS*

3 p 5 p 2 p 4 p

32*
S

33*
S

1* 3*
noS noS S S
* 10*

4 p 3 p5 p 5 p

5 p

2*
noS S*

5 p 6 p5 p

S

Fig. 1. A collection of 64 points, its grouping to xBR+-tree nodes and its xBR+-tree.

External nodes (leaves) of the xBR+-tree simply contain the data elements
and have a predetermined capacity CL. When CL is exceeded, due to an insertion
in a leaf, the region of this leaf is partitioned in two subregions.

An example that demonstrates split of a leaf and an internal node follows. In
the left upper part of the Fig. 2, an xBR+-tree having one internal (root) node
with 5 entries (its cardinality equals the maximum capacity of internal nodes,
Ci = 5) is depicted. The 5 entries point to 5 leaves containing the first 25 points
of the total number of 64 points of the dataset of Fig. 1. The next (26th) point
p must be inserted in a leaf that already contains 6 points and is pointed by
the first entry of the root (*) . Since CL = 6, this leaf overflows and is split in
two (itself and a new leaf). The new leaf covers the region of the subquadrant
2* and holds 3 points (left lower part of Fig. 2). The other 4 points remain in
the existing leaf (*). An entry for the new leaf (2*) must be inserted in the root
node which is already full. The root overflows and is split in two internal nodes
(itself and a new node). In order to maintain the cohesion of the tree, a new root
node having 2 entries is created. The first entry (*) points to the old root node
and the second entry points to the new node (0*). The resulting xBR+-tree,
consisting of 3 internal nodes with 6 entries pointing to 6 leafs, is depicted in
the right part of Fig. 2. The final tree, after inserting the rest of the 64 points



Spatial Batch-Queries Processing using xBR+-trees in Solid-State Drives 307

and the space partitioning of the xBR+-tree are shown in Fig. 1. Details on the
algorithms for splitting leaf and internal nodes appear in [19].

0* 02* 1* 12*
noS noS noSS S
*

6 p 6 p 5 p 4 p 4 pp

0* 02* 1* 12*
noS noS noSS S*

4 p 6 p 5 p 4 p 4 p

2*
S

3 p

Leaf Capacity =6CL

i-Node Capacity =5Ci

0*

2*

noS

noS

S

S

*

*1* 2*
noS noS S S
* 12*

4 p 4 p4 p 3 p 6 p 5 p

Fig. 2. Up-left: an xBR+-tree root pointing to 5 leaves. Down-left: an overflown xBR+-
tree root pointing to 6 leaves. Right: the resulting xBR+-tree after splitting of the root.

4 Algorithms for Batch-Queries Processing

In the following, we present algorithms for processing the batch versions of three
common single-dataset queries, using xBR+-trees in SSDs. These algorithms are
designed for maximizing performance when applied on SSDs. They make use
of a main memory area (denoted by M in the following), group read accesses
needed by several queries of the batch, reorder the pages to be read and, at the
same time, avoid unnecessary re-reading of the same pages and issue massive
read operations of large sequences of consecutive pages (exploiting the internal
parallelism of SSDs).

4.1 Algorithm for Processing of Batch Point-Location Queries

In this subsection, we present our new processing method for Batch Point-
Location Queries (BPLQ) using xBR+-trees in SSDs. The definition of this
query is as follows: Given an index IP of a dataset P of points and a set
of query points Q, the BPLQ returns the largest subset R ⊆ Q such that
R = {p : p ∈ Q ∧ p ∈ P}. The basic idea is as follows. We use the main memory
area M (the size of M is defined by the system administrator and its size, a few
MBs, is not significant in comparison to the size of the datasets) and we divide
Q in subsets such that of each subset can be processed within M . Hierarchically,
we visit the tree nodes and partition the query points in groups such that each
group uniquely falls within one subregion of the current node and massively
read the nodes corresponding to the resulting subregions into M . This process
continues down to the leaf level, where we read the leaves corresponding to the
resulting subregions into M . For each leaf, we determine all the query points of
Q that exist in this leaf. The algorithm is described in more details as follows.



308 G. Roumelis et al.

– Considering the maximum memory size of M available to our program, we
calculate the maximum cardinality of each subset of Q that can be processed
within M . We divide Q in subsets that do not exceed this maximum cardi-
nality.

– For each of these subsets, we begin at the root.
• For a subset of query points, we call a procedure that visits a tree node

and partitions this subset in groups such that each group uniquely falls
within one subregion of this node.

• If this node points to internal nodes, we calculate and allocate the memory
(part of M) that is required for reading the node entries that contain
query points and massively read the nodes pointed by these entries.

∗ For each of the nodes read and the group of points that fall within
the region of this node, we recursively apply this procedure.

• If a node read points to leaf nodes, we calculate and allocate the memory
(part of M) that required for reading the leaves that contain query points
and massively read the leaves pointed by the node entries.

∗ For each of the leaves read and the group of points that fall within this
leaf, we sort this group of points according to the axis along which
the leaf points have been sorted and determine the query points that
exist in the leaf (using a plane-sweep based technique to minimize
comparisons).

4.2 Algorithm for Processing of Batch Window Queries

Here, we present our processing method for Batch Window Queries (BWQ)
using xBR+-trees in SSDs. The definition of this query is as follows: Given
an index IP of a dataset P and a set of rectangular query windows W , the
BWQ returns the largest set R that contains pairs of objects (p,w) such that
R = {(p,w) : p ∈ P ∧ p falls inside w ∈ W}. The basic idea (an extension
of the method in Subsect. 4.1) is as follows. We use a main memory area M
and we divide W in subsets such that processing of each subset can be done
within M . Hierarchically, we visit the tree nodes and for each node we process
the regions of the entries contained within, to create a list of the query windows
corresponding to each entry, since each region intersected with a query window
may be a candidate for containing points of the pairs of the result (R). For the
entries of the current node that contain a non-empty list of query windows, we
massively read the nodes corresponding to these entries into M . This process
continues down to the leaf level, where we read the leaves corresponding to these
entries into M . For each leaf, we determine all the points of P that exist into the
leaf and fall inside the regions of the query windows of the list. The algorithm
is described in more details as follows.

– Considering the maximum memory size of M available to our program, we
calculate the maximum cardinality of each subset of W that can be pro-
cessed within M . We divide W in subsets that do not exceed this maximum
cardinality.



Spatial Batch-Queries Processing using xBR+-trees in Solid-State Drives 309

– For each of these subsets of query windows, we begin at the root.
• For a subset of query windows, we call a procedure that visits a tree

node and in each entry of the node we append a list of query windows
whose region is intersected with the region of the entry (in Subsect. 4.1,
we didn’t need such lists, since a query point falls in at most one region).

• If this node points to internal nodes, we calculate and allocate the memory
(part of M) that is required for reading the node entries that contain non-
empty lists of query windows and massively read the nodes pointed by
these entries.

∗ For each of the nodes read and the list of query windows that has
intersection with the region of this node, we recursively apply this
procedure.

• If a node read points to leaf nodes, we calculate and allocate the memory
(part of M) that is required for reading the leaves that contain non-empty
lists of query windows and massively read the leaves pointed by the node
entries.

∗ For each of the leaves read and the list of query windows that have
intersection with the region of this leaf we apply the refinement step
as follows. We sort this list of windows using as key the maximum
coordinate of the axis along which the leaf points have been sorted
and determine the leaf points that fall inside the regions of the query
windows (using a plane-sweep based technique, to minimize compar-
isons).

4.3 Algorithm for Processing of Batch Distance-Range Queries

In this subsection, we present our processing method for Batch Distance-Range
Queries (BDRQ) using xBR+-trees in SSDs. The definition of this query is as
follows: Given an index IP of a dataset P and a set of query pairs of form (query
point, distance threshold) Q, the BDRQ returns the largest set R that contains
objects (p, (q, ε)) such that R = {(p, (q, ε)) : p ∈ P, (q, ε) ∈ Q ∧ distance(p, q) ≤
ε}. The basic idea is as follows. We utilize a main memory area M . We divide
Q in subsets such that processing of each subset can be done within M .

– One method of processing is the following. Every query pair could be seen as a
query window with circular schema. Therefore, we can follow the filtering step
of the BWQ method (presented in Subsect. 4.2) down to the leaf level for the
Minimum Bounding Square (MBS ) of each query pair. At the leaf level, we
apply a refinement step for the leaves and the actual query pairs (which are
circles). Hierarchically, we visit the tree nodes and for each node we process
the regions of the entries contained within, to create a list of the corresponding
query pairs for each entry, since each region intersected with the minimum
bounding square of a query pair may be a candidate for containing points of
the objects of the result (R). For the entries of the current node that contain
a non-empty list of query pairs we massively read the nodes corresponding
to these entries into M . This process continues down to the leaf level, where



310 G. Roumelis et al.

we read the leaves corresponding to these entries into M . For each leaf, we
determine all the points of P that exist into the leaf and fall inside the regions
of the query pairs of the list. Since, in this method we utilize MBSs, we call
it BDRQ-MBS.

– According to an alternative processing method, every query pair could be seen
as the actual circle it represents. Therefore, we can apply the filtering step as
follows. Hierarchically, we visit the tree nodes and for each node we process
the regions of the entries contained within, to create a list of the corresponding
query pairs for each entry. For each entry e of a tree node, we calculate the
minimum distance between the region of the entry and the point of the query
pair q (minDist(e, q)). Every point q with minDist(e, q) ≤ ε is added into
the query list of e. It is expected that each region entry having intersection
with a query pair may be a candidate to contain points of the objects of the
resulting set (R). For the entries of the current node that contain a non-empty
list of query pairs, we massively read the nodes corresponding to these entries
into M . To simplify the calculations (reduce the execution time) we calculate
the square of minDist between a point and the region of an entry and we
compare this metric with the square of the given ε. This process continues
down to the leaf level, where we read the leaves corresponding to these entries
into M . For each leaf, we determine all the points of P that exist into the leaf
and fall inside the regions of the query pairs of the list. Since, in this method
we utilize minDist, we call it BDRQ-mD.

5 Experimental Results

We run a large set of experiments to compare the repetitive application of the
existing algorithms for processing batch queries to the new algorithms, designed
especially for batch queries, in SSDs. We used real spatial datasets of North
America representing roads (NArdN with 569082 line-segments) and rail-roads
(NArrN with 191558 line-segments). To create sets of 2d points, we transformed
the MBRs of line-segments from NArdN and NArrN into points by taking the
center of each MBR (i.e. |NArdN| = 569082 points, |NArrN| = 191558 points).
Moreover, to get the double amount of points from NArdN, we chose the two
points with min and max coordinates of the MBR of each line-segment (i.e. we
created a new dataset, |NArdND| = 1138164 points. The data of these three files
were normalized in the range [0, 1]2. We have also created synthetic clustered
datasets of 250000, 500000 and 1000000 points, with 125 clusters in each dataset
(uniformly distributed in the range [0, 1]2), where for a set having N points,
N/125 points were gathered around the center of each cluster, according to Gaus-
sian distribution. We also used three big real datasets (retrieved from http://
spatialhadoop.cs.umn.edu/datasets.html), which represent water resources of
North America (Water) consisting of 5836360 line-segments and world parks or
green areas (Park) consisting of 11503925 polygons and world buildings (Build)
consisting of 114736539 polygons. To create sets of points, we used the centers
of the line-segment MBRs from Water and the centroids of polygons from Park

http://spatialhadoop.cs.umn.edu/datasets.html
http://spatialhadoop.cs.umn.edu/datasets.html


Spatial Batch-Queries Processing using xBR+-trees in Solid-State Drives 311

and Build. All experiments were performed on a Dell Precision T3500 worksta-
tion, running CentOS Linux 7 with Kernel 4.15.4 and equipped with a quad-core
Intel Xeon W3550 CPU, 8 GB of main memory, an 1TB 7.2K SATA-3 Seagate
HDD used for the operating system and a 512 GB SM951A Samsung SSD hosted
on PCI-e 2.0 interface, storing our executables and data. Since our algorithms
are especially designed for maximizing performance when applied on SSDs, the
xBR+-tree was stored on the SSD of our system. However, we tested storing our
structure on the HDD, too and obtained execution times 2 orders of magnitude
larger than the ones on the SSD. Therefore, we present results of execution on
the SSD only.

We run experiments for studying the performance of existing and new algo-
rithms for processing batches of PLQs, WQs and DRQs. We tested batches
consisting of 210, 212, 214 and 216 queries. We also tested tree node sizes equal to
4 KB, 8 KB and 16 KB. In each experiment, we counted actual disk accesses and
total execution time. Since the existing algorithms answer batch queries by repet-
itive application for each query of the batch (One-by-One, or ObO, execution),
we experimented with and without the use of LRU buffer equal to 256 internal
nodes and 256 leaf nodes. This discrimination of the two parts of LRU buffer is
necessary, since internal nodes are significantly fewer and a common LRU buffer
would get frequently emptied from internal nodes, although the same internal
nodes are more likely to be needed for separate queries of the batch. Our experi-
ments showed that this buffer size is adequate for maximizing performance, even
for the largest trees tested. The maximum size of M was comparable to LRU size
(although, in many cases this maximum size was not utilized by the algorithms
studied). Therefore, for each query (PLQ, WQ and DRQ), we tested no-LRU
ObO, LRU ObO and the respective new algorithm. The total number of exper-
iments performed equals 972 (combinations of 9 datasets, 3 node sizes, 4 batch
sizes, 3 queries and 3 algorithms for each query). Due to space limitations, in the
following we present indicative (or, a limited part of the) experimental results,
expressing the general trends found.

5.1 PLQ Experiments

To study PLQs, we created batches consisting of 50% existing and 50% non-
existing points in each dataset. Both existing and non-existing points cover the
whole indexed space. In Fig. 3 right, in the upper bar chart, we depict the (%)
gain of LRU ObO vs no-LRU ObO, regarding actual disk accesses and total exe-
cution time, for the NArdN dataset, the 3 node sizes (4 KB, 8KB and 16 KB) and
212 batch size. Note that the gain is defined (for both metrics) as the fraction of
the difference of performance of the second and the first algorithms over the per-
formance of the second algorithm (gain = noLRU ObO−LRU ObO

noLRU ObO , in this chart).
The LRU version is a clear winner (gain more than 90%, for disk accesses and
more than 88%, for execution time). In Fig. 3 left, in the upper table, we depict
the exact (%) gain figures of LRU ObO vs no-LRU ObO, regarding actual disk
accesses and total execution time for all batch sizes (the first column denotes



312 G. Roumelis et al.

number of queries, #Q) and the same values for the rest experimental param-
eters. Note that the line in bold font corresponds to the diagram next to the
table. It is clear that the LRU version maximizes performance for all batch
sizes. Among the execution of PLQs using these two algorithms for all datasets,
the min/max gain for disk accesses was 80.7%/99.4%, while the min/max gain
for execution time was 74.4%/98.2%. In all datasets, as batch size increases, gain
is also increased.

#Q
Disk Read Acc Exec Time
4KB 8KB 16KB 4KB 8KB 16KB
LRU ObO vs no-LRU ObO

210 89.6 88.9 91.4 87.3 84.9 87.5
212 92.7 92.0 93.6 90.9 88.3 92.4
214 93.6 92.6 94.2 92.2 90.5 92.4
216 94.1 93.0 94.5 92.8 90.9 93.2

BPLQ vs LRU ObO
210 0.3 0.4 0.5 11.6 23.1 28.8
212 17.9 18.6 17.7 33.0 45.8 37.7
214 38.1 40.4 43.7 55.3 62.7 67.5
216 59.9 70.1 77.9 75.2 84.9 89.6

  0%

 20%

 40%

 60%

 80%

100%

Dataset NArdN, Query PL, Batch 212 queries
4KB 8KB 16KB

  0%

 10%

 20%

 30%

 40%

 50%

Disk Acc. Exec. Time

Fig. 3. PLQ: % performance gain (regarding Disk Accesses and Exec. Time) of LRU
ObO vs no-LRU ObO and BPLQ vs LRU ObO, for the NArdN dataset.

In Fig. 3 right, in the lower bar chart, we depict the (%) gain of BPLQ vs
LRU ObO, regarding actual disk accesses and total execution time, for the same
experimental settings as in the upper bar chart. BPLQ is approximately 18%
more efficient than LRU ObO regarding disk accesses and more than 33% more
efficient than LRU ObO regarding execution time. Note that gain increases in
the case of execution time, meaning that BPLQ minimizes computations even
more than minimizing disk accesses, in relation to LRU ObO. In Fig. 3 left, in
the lower table, we depict the exact (%) gain figures of BPLQ vs LRU ObO,
regarding actual disk accesses and total execution time for all batch sizes and
the same values for the rest experimental parameters. Note that again the line
in bold font corresponds to the diagram next to the table. It is clear that BPLQ
maximizes performance for all batch sizes. Among the execution of PLQs using
these two algorithms for all datasets, the min/max gain for disk accesses was
0.2%/95.3%, while the min/max gain for execution time was 2.8%/95.8%. Again,
in all datasets, as batch size increases, gain is also increased (in the case of BLPQ
vs LRU ObO, the relative gain improvement is larger than the one between no-
LRU ObO vs LRU ObO).



Spatial Batch-Queries Processing using xBR+-trees in Solid-State Drives 313

5.2 WQ Experiments

To study WQs, we created batches with query windows that cover the whole
indexed space. Figure 4 (which is analogous to Fig. 3) depicts indicative results
for the WQ and the 1000KCN dataset. As it is evident from the upper chart
of this figure, the LRU version is a clear winner (gain more than 68% for disk
accesses and more than 66% for execution time). It is also clear from the upper
table of this figure that the LRU version maximizes performance for all batch
sizes. Among the execution of WQs using these two algorithms for all datasets,
the min/max gain for disk accesses was 1.4%/95.7%, whereas the min/max gain
for execution time was −2.7%/93.8%. In all datasets, gain increases with increas-
ing batch size. Note that the minimum values of gain with respect to actual disk
accesses are observed in the cases of smaller batch sizes consisting of query
windows with large dispersion. This way, the use of LRU buffering becomes
ineffective because it causes an increase in the execution time of the queries
(the overhead of buffer management overcomes the benefit of saving accesses).
It is evident from the lower chart of Fig. 4 that BWQ is more than 31% more
efficient than LRU ObO, regarding disk accesses and more than 75% more effi-
cient than LRU ObO, regarding execution time. Note that gain increases in
the case of execution time, meaning that BWQ minimizes computations even
more than minimizing disk accesses, in relation to LRU ObO. The dominance
of BWQ is verified for all batch sizes, in the lower table of Fig. 4. Among the
execution of WQs using these two algorithms for all datasets, the min/max gain
for disk accesses was 0%/97.6%, while the min/max gain for execution time
was 42.1%/97.1%. Again, in all datasets, as batch size increases, gain is also
increased.

#Q
Disk Read Acc Exec Time
4KB 8KB 16KB 4KB 8KB 16KB
LRU ObO vs no-LRU ObO

210 36.6 39.4 50.8 34.2 38.4 50.8
212 58.7 59.8 67.1 55.6 58.6 66.6
214 72.5 68.3 70.9 69.9 66.9 70.4
216 74.7 69.4 71.5 73.3 67.7 70

BWQ vs LRU ObO
210 0.6 1 2.3 43.9 45.4 48.9
212 5.7 8.1 24.7 51.6 63.3 77.2
214 31.7 56.1 75.1 79.3 88.8 92.7
216 78.2 87.7 93.4 93.5 95.7 96.7

  0%

 20%

 40%

 60%

 80%

100%

Dataset 1000KCN, WQ, Batch 214 queries
4KB 8KB 16KB

  0%

 20%

 40%

 60%

 80%

100%

Disk Acc. Exec. Time

Fig. 4. WQ: % performance gain (regarding Disk Accesses and Exec. Time) of LRU
ObO vs no-LRU ObO and BWQ vs LRU ObO, for the 1000KCN dataset.



314 G. Roumelis et al.

5.3 DRQ Experiments

To study DRQs, we created batches with query windows that cover the whole
indexed space. In the experimental results, the new algorithm used was BDRQ-
mD, since, BDRQ-MBS showed worse execution time performance, especially for
big datasets. Although, BDRQ-MBS is faster regarding CPU processing, this is
overcome by the smaller number of disk accesses needed by BDRQ-mD. Figure 5
(which is analogous to Figs. 3 and 4) depicts indicative results for the DRQ and
the Park dataset. As it is evident from the upper chart of this figure, the LRU
version is a clear winner (gain more than 78% for disk accesses and more than
77% for execution time). It is also clear from the upper table of this figure
that the LRU version maximizes performance for all batch sizes. Among the
execution of DRQs using these two algorithms for all datasets, the min/max gain
for disk accesses was 1.2%/95.6%, while the min/max gain for execution time
was −0.7%/93.7%. In all datasets, as batch size increases, gain is also increased.
Note that the minimum values of gain for the metric of actual disk accesses are
observed in the cases of smaller batch sizes consisting of query distance ranges
with large dispersion. This way, the use of LRU buffering becomes ineffective as
the query execution time is increased. It is evident from the lower chart of Fig. 5
that BDRQ is from 18% more efficient than LRU ObO regarding disk accesses
and more than 64% more efficient than LRU ObO regarding execution time.
Note that gain increases in the case of execution time, meaning that BDRQ
minimizes computations even more than minimizing disk accesses, in relation to
LRU ObO. The dominance of BDRQ is verified for all batch sizes, in the lower
table of Fig. 5. Among the execution of DRQs using these two algorithms for all
datasets, the min/max gain for disk accesses was 0%/97.6%, while the min/max

#Q
Disk Read Acc Exec Time
4KB 8KB 16KB 4KB 8KB 16KB
LRU ObO vs no-LRU ObO

210 9.9 19.4 25.8 9 16.2 21.3
212 28.4 45 53.5 28.1 41.3 47.9
214 53.6 69.7 75.3 54.1 66.2 68.7
216 78.6 86.9 88.7 77.6 83.9 82.9

BDRQ-mD vs LRU ObO
210 0.6 0.4 1 80.5 76.2 69
212 2 2.4 3.4 75.6 70.1 62.3
214 5.8 7 9.3 71.4 64 63.1
216 18.5 21.4 27.1 66.3 64 64.7

  0%

 20%

 40%

 60%

 80%

100%

Dataset park, DRQ, Batch 216 queries
4KB 8KB 16KB

  0%
 10%

 20%
 30%
 40%
 50%

 60%
 70%

Disk Acc. Exec. Time

Fig. 5. DRQ: % performance gain (regarding Disk Accesses and Exec. Time) of LRU
ObO vs no-LRU ObO and BDRQ vs LRU ObO, for the Park dataset.



Spatial Batch-Queries Processing using xBR+-trees in Solid-State Drives 315

gain for execution time was 31.4%/97.1%. Again, in all datasets, gain increases
with batch size increasing.

6 Conclusions and Future Work

In this paper, for the first time in the literature, we present algorithms for
common spatial batch queries on single datasets, using xBR+-trees in SSDs.
Processing of spatial queries in SSDs has not received considerable attention in
the literature, so far. The new algorithms proposed outperform the repetitive
application of existing algorithms by exploiting the massive I/O advantages of
SSDs, both regarding actual disk access and execution time, even if the I/O of
existing algorithms are assisted by LRU buffering.

For all three queries studied, all batch sizes and all datasets, the new algo-
rithms always exhibit better performance than the existing algorithms, for both
metrics (actual disk accesses and execution time). For all three queries stud-
ied, the new algorithms exhibit maximum gain of execution time that exceeds
95% for large batches and big datasets. Therefore, the processing proposed is
best suited to heavily queried big data. Nevertheless, in the case of WQs and
DRQs, maximum gain of execution time is significant (more than 41% and 32%,
respectively) even for small batches and small datasets.

Future work plans include:

– Developing and studying the performance of algorithms for other common
spatial queries (e.g. K Nearest Neighbors, queries involving two datasets, like
K Closest Pairs, Distance-Range Joins, All K Nearest Neighbors, etc.) in
SSDs.

– Developing algorithms for spatial queries in SSDs that utilize other structures
(e.g. of the R-tree family, or Grid files).

– Developing parallel algorithms, utilizing multiple CPUs/GPU cores, for spa-
tial queries in SSDs.

Acknowledgments. Work of Antonio Corral, Michael Vassilakopoulos and Yannis
Manolopoulos funded by the MINECO research project [TIN2017-83964-R].

References

1. Carniel, A.C., Ciferri, R.R., de Aguiar Ciferri, C.D.: A generic and efficient frame-
work for spatial indexing on flash-based solid state drives. In: Kirikova, M., Nørv̊ag,
K., Papadopoulos, G.A. (eds.) ADBIS 2017. LNCS, vol. 10509, pp. 229–243.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66917-5 16

2. Cho, S., Chang, S., Jo, I.: The solid-state drive technology, today and tomorrow.
In: ICDE Conference, pp. 1520–1522 (2015)

3. Cornwell, M.: Anatomy of a solid-state drive. Commun. ACM 55(12), 59–63 (2012)
4. Fevgas, A., Bozanis, P.: Grid-file: towards to a flash efficient multi-dimensional

index. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.)
DEXA 2015. LNCS, vol. 9262, pp. 285–294. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-22852-5 24

https://doi.org/10.1007/978-3-319-66917-5_16
https://doi.org/10.1007/978-3-319-22852-5_24
https://doi.org/10.1007/978-3-319-22852-5_24


316 G. Roumelis et al.

5. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv.
30(2), 170–231 (1998)

6. Hady, F.T., Foong, A.P., Veal, B., Williams, D.: Platform storage performance
with 3d XPoint technology. Proc. IEEE 105(9), 1822–1833 (2017)

7. Jin, P., Xie, X., Wang, N., Yue, L.: Optimizing R-tree for flash memory. Expert
Syst. Appl. 42(10), 4676–4686 (2015)

8. Li, G., Zhao, P., Yuan, L., Gao, S.: Efficient implementation of a multi-dimensional
index structure over flash memory storage systems. J. Supercomput. 64(3), 1055–
1074 (2013)

9. Lin, S., Zeinalipour-Yazti, D., Kalogeraki, V., Gunopulos, D., Najjar, W.A.: Effi-
cient indexing data structures for flash-based sensor devices. TOS 2(4), 468–503
(2006)

10. Lv, Y., Li, J., Cui, B., Chen, X.: Log-compact R-tree: an efficient spatial index
for SSD. In: Xu, J., Yu, G., Zhou, S., Unland, R. (eds.) DASFAA 2011. LNCS,
vol. 6637, pp. 202–213. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-20244-5 20

11. Pawlik, M., Macyna, W.: Implementation of the aggregated R-tree over flash mem-
ory. In: Yu, H., Yu, G., Hsu, W., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA
2012. LNCS, vol. 7240, pp. 65–72. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29023-7 7

12. Roh, H., Kim, S., Lee, D., Park, S.: As B-tree: a study of an efficient B+-tree for
SSDs. J. Inf. Sci. Eng. 30(1), 85–106 (2014)

13. Roh, H., Park, S., Kim, S., Shin, M., Lee, S.: B+-tree index optimization by exploit-
ing internal parallelism of flash-based solid state drives. PVLDB 5(4), 286–297
(2011)

14. Roh, H., Park, S., Shin, M., Lee, S.: Mpsearch: multi-path search for tree-based
indexes to exploit internal parallelism of flash SSDs. IEEE Data Eng. Bull. 37(2),
3–11 (2014)

15. Roumelis, G., Vassilakopoulos, M., Corral, A.: Performance comparison of xBR-
trees and R*-trees for single dataset spatial queries. In: Eder, J., Bielikova, M.,
Tjoa, A.M. (eds.) ADBIS 2011. LNCS, vol. 6909, pp. 228–242. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23737-9 17

16. Roumelis, G., Vassilakopoulos, M., Corral, A., Manolopoulos, Y.: Bulk-loading
xBR+-trees. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez, J.M., Aı̈t-Ameur,
Y. (eds.) MEDI 2016. LNCS, vol. 9893, pp. 57–71. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45547-1 5

17. Roumelis, G., Vassilakopoulos, M., Corral, A., Manolopoulos, Y.: Bulk insertions
into xBR+-trees. In: Ouhammou, Y., Ivanovic, M., Abelló, A., Bellatreche, L. (eds.)
MEDI 2017. LNCS, vol. 10563, pp. 185–199. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66854-3 14

18. Roumelis, G., Vassilakopoulos, M., Corral, A., Manolopoulos, Y.: Efficient query
processing on large spatial databases: a performance study. J. Syst. Softw. 132,
165–185 (2017)

19. Roumelis, G., Vassilakopoulos, M., Loukopoulos, T., Corral, A., Manolopoulos, Y.:
The xBR+-tree: an efficient access method for points. In: Chen, Q., Hameurlain,
A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp.
43–58. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22849-5 4

20. Samet, H.: The quadtree and related hierarchical data structures. ACM Comput.
Surv. 16(2), 187–260 (1984)

21. Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading (1990)

https://doi.org/10.1007/978-3-642-20244-5_20
https://doi.org/10.1007/978-3-642-20244-5_20
https://doi.org/10.1007/978-3-642-29023-7_7
https://doi.org/10.1007/978-3-642-29023-7_7
https://doi.org/10.1007/978-3-642-23737-9_17
https://doi.org/10.1007/978-3-319-45547-1_5
https://doi.org/10.1007/978-3-319-45547-1_5
https://doi.org/10.1007/978-3-319-66854-3_14
https://doi.org/10.1007/978-3-319-66854-3_14
https://doi.org/10.1007/978-3-319-22849-5_4


Spatial Batch-Queries Processing using xBR+-trees in Solid-State Drives 317

22. Sarwat, M., Mokbel, M.F., Zhou, X., Nath, S.: FAST: a generic framework for
flash-aware spatial trees. In: Pfoser, D. (ed.) SSTD 2011. LNCS, vol. 6849, pp.
149–167. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22922-
0 10

23. Vassilakopoulos, M., Manolopoulos, Y.: External balanced regular (x-BR) trees:
new structures for very large spatial databases. In: Advances in Informatics:
Selected papers of the 7th Panhellenic Conference on Informatics, pp. 324–333.
World Scientific (2000)

24. Wu, C., Chang, L., Kuo, T.: An efficient R-tree implementation over flash-memory
storage systems. In: ACM-GIS Conference, pp. 17–24 (2003)

https://doi.org/10.1007/978-3-642-22922-0_10
https://doi.org/10.1007/978-3-642-22922-0_10


Specification, Verification and
Validation



Formalizing Railway Signaling System
ERTMS/ETCS Using UML/Event-B

Abderrahim Ait Wakrime1(B), Rahma Ben Ayed1, Simon Collart-Dutilleul1,2,
Yves Ledru1,3, and Akram Idani1,3

1 Institut de Recherche Technologique Railenium, 59300 Famars, France
{abderrahim.ait-wakrime,rahma.ben-ayed}@railenium.eu

2 IFSTTAR-Lille, 20 Rue Elisée Reclus,
BP 70317, 59666 Villeneuve d’Ascq Cedex, France

simon.collart-dutilleul@ifsttar.fr
3 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

{yves.ledru,akram.idani}@imag.fr

Abstract. Critical systems like railway signaling systems need to guar-
antee important properties such as safety. Formal methods have achieved
considerable success in designing critical systems with verified desir-
able properties. In this paper, we propose a formal model of ERTM-
S/ETCS (European Rail Traffic Management System/European Train
Control System) which is an innovative railway signaling system. This
work focuses on Hybrid ERTMS/ETCS Level 3 which is currently under
design, by studying and modeling the functionalities and relations of its
different sub-systems. The proposed model is based on model transfor-
mation from UML (Unified Modeling Language) class diagrams to the
Event-B formal language. UML is used as the primary modeling nota-
tion to describe the structure and the main characteristics of the studied
system. The generated Event-B model is enriched by the formalization of
safety properties. We verify and validate the correctness of the proposed
formalization using the ProB model-checker and animator.

Keywords: Formal methods · Verification · Event-B · UML
Model checking · Railway Signaling System · ERTMS/ETCS

1 Introduction

In order to harmonize the variety of railway signaling in Europe, European
countries launched a major industrial project, ERTMS/ETCS, to streamline
international rail traffic. This is achieved by improving border crossings of the
signaling systems of each country and by eliminating the need for locomotive
changes due to poor interoperability at border points between two countries.
ERTMS/ETCS provides benefits regarding lower investment costs and improved
safety.

Three levels of ERTMS/ETCS are defined in [1], which differ in the operated
equipment and the operation mode. The first two levels are already operational.
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 321–330, 2018.
https://doi.org/10.1007/978-3-030-00856-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_21&domain=pdf


322 A. Ait Wakrime et al.

Level 3 is in design and experimentation phases. Among the main objectives
of installing this level is the reduction of operating costs. The ERTMS/ETCS
Level 3 implementation requires a prior study which analyses requirements in
order to satisfy railway signaling system needs. In this paper, we are interested
in Hybrid ERTMS/ETCS Level 3 specified in [2]. We focus on the management
of train movements by fixed virtual blocks.

The goal of the research is the formalization of Hybrid ERTMS/ETCS Level 3
in the Event-B formal language. The latter is an evolution of the (classical) B
method [3]. Historically, the B method was chosen to develop and validate the
automatic train control system in the scope of Meteor project [4]. It has been
also used for the development of several safety critical railway systems [5].

In this paper, the starting point of our approach is the modeling of Hybrid
ERTMS/ETCS Level 3 system as a UML class diagram. Thereafter, the
B4MSecure tool [6] is used to transform the class diagram into B formal spec-
ification. The generated model is then adapted to Event-B and enriched with
safety properties. Finally, the Event-B model is verified and validated, using
model checking and animation. In brief, we adopt the following two phases: (i)
we first propose a formal model based on Event-B whose data structures are pro-
duced from a UML class diagram, (ii) then we validate the correctness of this
formal model using a model-checking and animation technique starting from a
given initial state.

This paper is organized as follows. In Sect. 2, some principles of ERTM-
S/ETCS signaling system and UML modeling of Hybrid ERTMS/ETCS Level 3
are presented. In Sect. 3, we detail our proposed Event-B formalization and our
verification process of Hybrid ERTMS/ETCS Level 3. Finally, in Sect. 4, we
conclude and provide insights for future work.

2 UML Modeling of Hybrid ERTMS/ETCS Level 3

Figure 1 gives an overview of the basic ERTMS/ETCS components: track-
side equipment, on-board sub-system and GSM-R (Global System for Mobile
Communications-Railway). RBC (Radio Block Center) and Eurobalise belong
to trackside equipment. RBC uses train reports and interlocking status to gen-
erate MA (Movement Authority), an authorization given to a train to move to a
given point as a supervised movement. Eurobalise is a spot transmission device
mainly for location referencing. As on-board sub-system, EVC (European Vital
Computer) is connected with trackside equipment to ensure speed regulation of
the train. GSM-R is a radio system used to provide communication, i.e. exchange
information (voice and data), between trackside equipment and on-board sub-
system. Three levels of ERTMS/ETCS are defined. The ERTMS/ETCS Level 3
is in design and experimentation phases. Among the main objectives of installing
this level is the reduction of operating costs, because it reduces the need for
trackside equipment. The ERTMS/ETCS Level 2 and ERTMS/ETCS Level 3
have similar ERTMS equipment and functionalities, but in the Level 3, shown
in Fig. 1, the train detection and the train integrity check are performed by the



Formalizing Railway Signaling System ERTMS/ETCS Using UML/Event-B 323

Fig. 1. Hybrid ERTMS/ETCS Level 3

on-board sub-system. The movement authority, in the Level 3, is used without
visual signals or marker boards. It is sent by RBC to the train via GSM-R. This
movement authority is based on train position and integrity reported by the
train. In Fig. 1, the TTD (Trackside Train Detection) corresponds to conven-
tional trackside train location equipment (e.g. track circuits and axle counters).
This TTD can be divided into several VSSs (Virtual Sub-Sections). These sub-
division principles represent the Hybrid ERTMS/ETCS Level 3, a variant of
ERTMS/ETCS Level 3 system. Figure 2 represents an extract of class diagram
that is a static view of our proposed Hybrid ERTMS/ETCS Level 3 model. This
model provides an overview of the management of train movements depending
on the occupancy state of the VSSs. This diagram shows the following system’s
classes: Train, MA, VSS and TTD.

Fig. 2. Class diagram of a part of Hybrid ERTMS/ETCS Level 3.

VSSs are used by RBC and interlocking to ensure the safety of the system
since it allows the spacing between trains going in the same direction on the
same track. The presence of a train detected by a TTD in a given VSS, makes



324 A. Ait Wakrime et al.

the VSS state Occupied. If a TTD did not detect a train in a VSS, the VSS
state becomes Free. In this paper, we do not deal with others VSS states like
Ambiguous and Unknown. In the nominal situation, an MA is determined, by
the RBC, according to the position of the other trains in front of it in terms
of VSSs. In this paper, we deal with nominal situation when train movements
are under FS (Full Supervision) operating mode. Under this mode, the real
speed, maximal authorized speed, and optionally the target speed and the target
distance are displayed by driver machine interface. In addition, the on-board
system supervises train speed and movements.

3 Formalizing Hybrid ERTMS/ETCS Level 3

3.1 Proposed Approach

Our approach follows two steps. First, we use the B4MSecure tool [6] to trans-
late the class diagram of Hybrid ERTMS/ETCS Level 3 into B specifications.
B4MSecure produces data structures and basic operations for model instan-
tiation (object constructor/destructor, setters for attributes and associations).
Some of these basic operations are not useful in our work. However, the data
structure is relevant since it reproduces correctly the structure of the class dia-
gram. Then, we adapt the generated B model to Event-B model manually by
keeping the data structure of the model, suppressing B operations and introduc-
ing events. This is accomplished by introducing user defined events describing the
behavioral semantics of Hybrid ERTMS/ETCS Level 3. We also introduce the
formalization of safety properties as invariants in the generated model. Finally,
we proceed with the verification process using the ProB model-checker and ani-
mator. The full details of the Event-B method are not given in this paper,
references [3,7] can be useful. We give a short description of Event-B method
for understanding the Event-B model of our case study below. Event-B is a
state-based formal method for modeling and analyzing systems. A model uses
two types of entities to describe a system: Machines and Contexts. A Machine
represents the dynamic part of a model i.e. states and transitions. A Context
contains the static part of the model i.e. static types (constants and sets). In
our case, Hybrid ERTMS/ETCS Level 3 is modeled by a single Machine, that
includes both static and dynamic parts. Generally, a model is defined by a name,
sets, constants and their properties, variables and their invariants and events.
An event takes the form: evt � any x where G then Act end. Where x is the
list of event parameters, G represents predicates which define the guard of the
event and Act is an action that modifies some state variables. When the guard
is satisfied, the event can be fired.

In summary, the main steps of our approach are depicted in Fig. 3: (1) Formal-
ization of Hybrid ERTMS/ETCS Level 3, that is motivated by the management
of VSSs. (2) Validation of obtained Event-B formalization using a model-checker
and an animator.



Formalizing Railway Signaling System ERTMS/ETCS Using UML/Event-B 325

3.2 Hybrid ERTMS/ETCS Level 3 Event-B Model

In the initial step, the B4MSecure tool is used to automatically generate the
B data structure of the class diagram. Thereafter, this model is enriched by
some safety properties as invariants and by the definition of events. The guard
and action of each event must be specified in such a way that it establishes
invariant preservation. To illustrate our approach, we generate the B Machine
from the UML class diagram shown in Fig. 2. Listing 1 represents an extract of
the generated machine called ERTMSETCS3.

Fig. 3. Overview of the transformation approach.

In Listing 1, the TRAIN, VSS AS, TTD AS, MA AS are specified as sets in
the Event-B Machine corresponding respectively to Train, VSS, TTD and MA
classes. In this paper, we introduced only the useful invariants for the presented
events. The model is more complicated than that, because it covers other mecha-
nisms like propagation timers, waiting timers, mute timers and state of integrity
connection. These latter are used to constrain changes in the state of a VSS, for
example going from Ambiguous to Occupied states [2]. This work does not show
these mechanisms in the Event-B formalization. We focus only on the VSS state
changes from Free to Occupied and from Occupied to Free.
Added Variables. We manually enrich the formalization of the generated
Machine with some variables to expand the state space of the Machine with
additional information. These variables are represented in the abstract variables
added manually part of Listing 1.
Added Invariants. We define the typing invariant properties of each added
variable to complete the model construction. Listing 1. includes the invariants
generated by B4MSecure tool and the added invariants (see comments in the
invariant clause). These added invariants ease the formalization of the safety
properties and the specification of events.

MACHINE ERTMSETCS3
SETS V SS AS;TTD AS;MA AS;TRAIN ;ModeMA = {OS, FS};

StateV SS = {V SS fr, V SS oc, V SS un, V SS am};
StateTTD = {TTD fr, TTD oc}

ABSTRACT_VARIABLES
\\The generated abstract variables by B4MSecure tool
V SS, TTD,MA,MA Mode, Train, V SS State, TTD State, Train MA,
MA V SS, TTD V SS, IntegerTrain,MA Distance
V SS next, TTD next



326 A. Ait Wakrime et al.

\\The abstract variables added manually
train V SS current, train TTD current, last V SS MA, V SS with TTD

INVARIANT
\\The generated invariants by B4MSecure tool
V SS ⊆ V SS AS ∧ TTD ⊆ TTD AS ∧
MA ⊆ MA AS ∧ MA Mode ∈ MA → ModeMA ∧
Train ⊆ TRAIN ∧
V SS State : V SS → StateV SS ∧
TTD State : TTD → StateTTD ∧ MA Distance : MA → Integer
MA V SS ∈ MA ↔ P(V SS) ∧ \\ Set of VSS of each MA
TTD V SS ∈ TTD ↔ P(V SS) ∧ \\ Set of VSS of each TTD
Train MA ∈ Train → MA ∧ \\ MA of each train
TTD next ∈ TTD � TTD ∧ \\ Next TTD of each TTD
V SS next ∈ V SS � V SS ∧ \\ Next VSS of each VSS
IntegerTrain ∈ Train → BOOL \\ Train integrity

\\The invariants added manually
train V SS current ∈ Train → V SS ∧ \\ Occupied VSS by train
train TTD current ∈ Train → TTD ∧ \\ Occupied TTD by train
V SS with TTD ∈ V SS � TTD ∧ \\ TTD of each VSS
last V SS MA ∈ MA � V SS ∧ \\ Last VSS of each MA
∀(vss, vssSet, tr,ma).(vss ∈ V SS ∧ vssSet ∈ P(V SS) ∧ tr ∈ Train ∧ ma ∈ MA ∧

(tr 	→ vss ∈ train V SS current) ∧ (tr 	→ ma ∈ Train MA) ∧
(ma 	→ vssSet ∈ MA V SS) ⇒ ¬(vss : vssSet))

\\ Current VSS does not belong to MA ...
END

Listing 1. The description of SETS, ABSTRACT VARIABLES and INVARIANT
clauses.

Safety Invariants. In nominal situations, a movement authority of a train
moving under FS mode is composed of free VSSs so that the train can run at
the maximum authorized speed. However, in some exceptional situations, such
as the coupling of two trains (e.g. in OS mode), there are degraded modes which
allow the train to be moved to an occupied VSS. We specify the safety properties
avoiding trains accidents under FS mode as invariants, in Listing 2. The first
invariant allows to verify that, in FS mode, all VSSs affected to an MA are
free. The second one checks that each VSS will never contain two trains, hence
accidents can not happen. However, the last one ensures that two MA of two
different trains do not share any VSS.

MACHINE ERTMSETCS3
INVARIANT
\\Invariant 1
∀ma.(ma ∈ MA ∧ MA Mode(ma) = FS ⇒

∀vss.(vss ∈ V SS ∧ vss ∈ MA V SS(ma) ⇒ V SS State(vss) = V SS fr)) ∧
\\Invariant 2
∀(t1, t2).(t1 ∈ Train ∧ t2 ∈ Train ∧ t1 �= t2 ∧
MA Mode(Train MA(t1)) = FS ∧ MA Mode(Train MA(t2)) = FS ⇒
train V SS current(t1) �= train V SS current(t2)) ∧

\\Invariant 3
∀(t1, t2).(t1 ∈ Train ∧ t2 ∈ Train ∧ t1 �= t2 ∧
MA Mode(Train MA(t1)) = FS ∧ MA Mode(Train MA(t2)) = FS ⇒
MA V SS(Train MA(t1)) ∩ MA V SS(Train MA(t2)) = ∅)

END

Listing 2. Safety properties invariants under FS mode.

Events Specification. In this stage, we specify events in order to model the
system behavior. In Listing 3, the event MoveTrain allows to move the train
from a VSS to another one. However, it does not release the VSS just left by



Formalizing Railway Signaling System ERTMS/ETCS Using UML/Event-B 327

the train. This release is insured by the OccupiedToFreeVSS event in Listing 4.
Here, we do not take into account the intermediate state in which the train is
located on two VSSs. The train moves to the next VSS if it is free and if it
belongs to the allocated MA of this train. We note that trains circulate in the
same direction. Once the train moves from the current VSS to the next one, the
next VSS becomes occupied. The MA is updated by removing the new current
VSS. In fact, the current VSS does not belong to the MA (the last invariant in
Listing 1). If the train leaves a TTD to go to the next one, the state of this new
current TTD changes to occupied. To update MA in parallel with movement of
train, we define MATrainUP event which is not described here for lack of space.
It allows to extend the MA of a train with a free VSS. This event updates an
authority for a train to proceed up to an end point of a VSS where it has to
stop. It exhibits the safe path of a train in terms of free VSSs.

MACHINE ERTMSETCS3
EVENTS

MoveTrain = ANY train, vss crnt, vss nxt,ma
WHERE train ∈ Train ∧ vss crnt ∈ V SS ∧ vss nxt ∈ V SS ∧ ma ∈ MA ∧

vss crnt 	→ vss nxt ∈ V SS next ∧
train V SS current(train) = vss crnt ∧
train 	→ ma ∈ Train MA ∧ vss nxt ∈ MA V SS(ma) ∧
V SS State(vss nxt) = V SS fr

THEN train V SS current := train V SS current �− {train 	→ vss nxt} ||
train TTD current := train TTD current �−

{train 	→ V SS with TTD(vss nxt)} ||
TTD State(V SS with TTD(vss nxt)) := TTD oc ||
MA V SS := MA V SS �− {ma 	→ MA V SS(ma)

− {V SS next(train V SS current(train))}} ||
V SS State(vss nxt) := V SS oc

END; ...
END

Listing 3. Moving train event.

The event OccupiedToFreeVSS, as shown in Listing 4, represents the tran-
sition from occupied state to free state of a VSS. When a train with checked
integrity (specified by IntegerTrain function whose state changes in a specific
event) has reported to have left the VSS, the VSS that the train leaves will
become free (using a total function VSS State(vss crnt) := VSS fr). It is the
same case for each TTD: when all its VSSs are free, the TTD becomes free.

MACHINE ERTMSETCS3
EVENTS

OccupiedToFreeV SS = ANY vss crnt, vss nxt, ttd crnt, ttd nxt, train
WHERE ttd crnt ∈ TTD ∧ ttd nxt ∈ TTD ∧

vss crnt ∈ V SS ∧ vss nxt ∈ V SS ∧
train ∈ Train ∧
V SS State(vss crnt) = V SS oc ∧
vss crnt 	→ vss nxt ∈ V SS next ∧
ttd crnt 	→ ttd nxt ∈ TTD next ∧
IntegerTrain(train) = TRUE ∧
train V SS current(train) = vss nxt ∧
vss crnt /∈ ran(train V SS current)

THEN V SS State(vss crnt) := V SS fr
END; ...

END

Listing 4. OccupiedToFreeVSS event.



328 A. Ait Wakrime et al.

3.3 Verification and Validation

We aim to validate Event-B models and to verify that the invariants (typing
and safety properties invariants) are preserved by all events. These models have
finite state spaces, i.e. the objects set remains constant, because, the events do
not add Train, TTD, VSS or MA instances. Figure 4 represents our motivating
example derived from [2]. It is a running of two single trains (train1 and train2)
with integrity confirmed by external device. This example includes three TTDs:
TTD10, TTD20 and TTD30. Each TTD contains a set of VSSs like: TTD10 is
composed of VSS11 and VSS12, TTD20 consists of VSS21, VSS22 and VSS23,
TTD30 is composed of VSS31, VSS32 and VSS33. We give values to the con-
stants, carrier sets and the variables of the model through INITIALISATION
clause. This clause specifies the Hybrid ERTMS/ETCS Level 3 model elements
values in the initial state. This initialisation and events must preserve typing
and safety invariants showing the absence of rear-end accidents. In this model,
the face to face accidents are not treated since we do not take into consideration
trains moving in opposite directions. We use the ProB model-checker [8]. In this
work, theorem proving is not used, because, it requires more training and effort
than model checking. On the other side, since the system has a finite state space,
the model checking is sufficient to check safety properties for a given initial state.
Step 1 of Fig. 4. represents an initial state of our case study.

Fig. 4. An example of running of two single trains with integrity confirmed.

Verification Using Model Checking. Model checking is an automatic for-
mal verification technique that is widely applied for the verification of a desired
behavioral property of a given system [9]. It allows to verify that a system sat-
isfies a given property using efficient algorithms. These algorithms are based
on exhaustive enumeration (explicit or implicit) of all the reachable states from
initial state. All experiments were conducted on a 64-bit PC, Ubuntu 16.04 oper-
ating system, an Intel Core i5, 2.3 GHz Processor with 4 cores and 8 GB RAM.
Using the ProB model-checker and based on mixed breadth and depth search
strategy, we have explored all states: 100% of checked states with 1347 distinct



Formalizing Railway Signaling System ERTMS/ETCS Using UML/Event-B 329

states and 3431 transitions during 2566 ms. No invariant violation was found,
and all the operations were covered. This verification ensures that invariants are
preserved by each event. Otherwise, a counter-example would have been gener-
ated.
Validation by Animation. ProB can be used as an animator. It allows auto-
matic animations of Event-B model and to play several scenarios. Indeed, ProB
animator displays the values of each variable, the enabled events and the history
of chosen events. We have successfully applied the animation of ProB on the
operational scenario of Fig. 4. ProB checks our model step by step from initial
step to the final one and it shows the behaviour of model in clear terms.

4 Conclusion and Future Works

In this paper, we have presented a formalization and verification of Hybrid
ERTMS/ETCS Level 3, using the Event-B modeling language. This approach
is based on model transformation of a UML class diagram to Event-B. To do
so, we used the B4MSecure tool to transform the structure of the class dia-
gram to Event-B. Then, we enriched the generated model with the specifications
of Hybrid ERTMS/ETCS Level 3 and with safety properties to prevent train
collisions. We used the ProB model-checker to verify invariant preservation for
a given initial state. In addition, we used ProB animator to validate that it
supports the simulation of operational scenarios.

In our future work, we are interested in enriching our model by adding agents
(e.g. train driver, traffic agent) to the model of Hybrid ERTMS/ETCS Level 3.
This model will complement the current model, presented in this paper, to
express which human and software agents have permission to access the objects
and operations of the current model. This adopts a separation of concerns app-
roach similar to the one used in information systems.

Acknowledgments. This work is funded by the NExTRegio project of IRT Raile-
nium. The authors would like to thank SNCF Réseau for its support.

References

1. Schön, W., Larraufie, G., Moëns, G., Poré, J.: Railway Signalling and Automation.
Work in Three Volumes. La Vie du Rail, Paris (2013)

2. European Economic Interest Group: Hybrid ERTMS/ETCS Level 3: Principles,
Brussels, Belgium, July 2017

3. Abrial, J.R., Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge
University Press, New York (2005)

4. Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application
of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999.
LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48119-2 22

5. Lecomte, T., Servat, T., Pouzancre, G., et al.: Formal methods in safety-critical
railway systems. In: 10th Brasilian Symposium on Formal Methods, pp. 29–31 (2007)

https://doi.org/10.1007/3-540-48119-2_22
https://doi.org/10.1007/3-540-48119-2_22


330 A. Ait Wakrime et al.

6. Idani, A., Ledru, Y.: B for modeling secure information systems. In: Butler, M.,
Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 312–318. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25423-4 20

7. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York (2010)

8. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Int. J. Softw. Tools Technol. Transf. 10(2), 185–203 (2008)

9. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge
(1999)

https://doi.org/10.1007/978-3-319-25423-4_20


A Dynamic Analysis for Reverse Engineering
of Sequence Diagram Using CPN

Chafik Baidada(&), El Mahi Bouziane, and Abdeslam Jakimi

Software Engineering and Information Systems Engineering Team,
Faculty of Sciences and Technics, Errachidia, Morocco

chafik29@gmail.com, bouzianeelmahi@gmail.com,

ajakimi@yahoo.fr

Abstract. Reverse engineering is a very efficient way to extract automatically
behavioral models from legacy systems. This paper proposes a new approach to
detect and decipher dynamic information from these systems in order to recover
the corresponding sequence diagram. The approach is composed of three steps:
trace generation and collection, trace merging using Colored Petri Nets and
sequence diagram extraction. Our results show that this approach can produce a
more accurate high-level sequence diagram with main operators: “seq”, “alt”,
opt” and “par”.

Keywords: Reverse engineering � UML � Sequence diagram � CPN
Dynamic analysis

1 Introduction

Software engineering activities like maintenance, testing, and integration deals with
legacy systems. The most important aspect of all these processes is the comprehension
of the components of existing systems and the relationships existing between them.
According to some studies, up to 60% of the maintenance time is devoted to under-
standing these systems [1]. Therefore, it is important to develop tools and techniques
that facilitate the task of understanding such systems. An effective comprehension
technique to understand these systems is reverse engineering. Reverse engineering can
help to understand existing systems by retrieving models from the available software
artifacts. The IEEE-1219 [2] standard recommends reverse engineering as a techno-
logical solution to deal with legacy systems without updated documentation. In the
object-oriented world, the target modeling language most used for reverse engineering
is UML (Unified Modeling Language) [3] due to its significant presence in the industry.
To better understand systems behavior, dynamic models are needed, such as Sequence
Diagrams (SD). UML SD takes an important place in software engineering. They help
software engineers to understand existing systems through the visualization of inter-
actions between its objects [4]. To extract SD from an oriented-object program, we
concentrate on reverse engineering relying on dynamic analysis. As mentioned in [5],
dynamic analysis is more adapted to the reverse engineering of SD due to inheritance,
polymorphism and dynamic binding.

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 331–345, 2018.
https://doi.org/10.1007/978-3-030-00856-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_22&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_22&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_22&amp;domain=pdf


The paper is organized as follows: Sect. 2 presents some related work. Section 3
introduces a background in reverse engineering of UML SD using Colored Petri Nets
(CPN). Section 4 introduces our approach. Section 5 presents our case study. Finally,
Sect. 6 concludes this paper.

2 Related Work

Reverse engineering as opposite of forward engineering is the process for identifying
and analysis of software’s system components, their interrelationships and the repre-
sentation of their entities at a higher level of abstraction [6, 7].

In reverse engineering, program analysis usually takes place either through two
kind of analysis: static analysis and dynamic analysis. Static analysis concerns ana-
lyzing the source code of a program by building an abstracted model of it. Various
approaches have been developed to capture a system’s behavior through static analysis
[8–11]. One of the main of these works is that of Rountev et al. [11]. They proposed an
approach for the extraction of UML Sequence Diagram from the source code of a
system through building control flow graphs. In this study, the nodes represent the
basic blocks of a program and the links represent all kinds of interactions between these
blocks. The dynamic analysis, on the other hand, is to analyze a software system under
execution. As such, runtime objects can be detected, thus making it possible to expose
occurrences of polymorphism and late binding in contrast to static analysis. The pro-
duced execution traces contain very detailed information on how a system operates.
Several studies try to generate SD by analyzing the execution traces. Taniguchi et al.
[12] propose an automatic approach for the reverse engineering of SD from the exe-
cution traces of an object-oriented program. They present these traces in the form of a
tree where each node represents a method call. They present four compaction rules,
including compaction of repetitions and compaction of recursive calls, in order for the
traces to be reduced in size, thereby producing compact sequence diagrams. In [13],
they try to build a High Level Sequence Diagram (HLSD) from combined fragments
using the state vector describing the system. The approach presented consists of two
phases. During the first phase, a simple SD is generated containing just the method
calls. The second phase makes it possible to draw HLSD by combining the diagrams
generated in the first step. This is done by analyzing the different states of the system.
In [14], it is proposed an approach based on dynamic analysis. They use LTS (Labeled
Transition System) for modeling execution traces. Then they generate a HLSD from
this LTS.

These approaches have succeeded in generating representative SD. However, they
recognize some limitations. These limitations include information filtering problems.
As mentioned in [15] Cornelissen et al. defined a catalog of abstractions and filtering in
the context of reverse engineering of sequence diagrams. The approaches mentioned
above do not use this filtering technics. Its alsow

In addition, these approaches do not lead to the UML operator “par” that is very
important in the context of multi-threading applications.

332 C. Baidada et al.



3 UML Sequence Diagram and CPN

In this section, we discuss the dynamic analysis of the reverse engineering of SD
diagrams from multiple execution traces and we give some definitions, which helps to
explain clearly the proposed approach. First, we explain what a sequence diagram in
UML 2.x is. Second, we present the execution trace and how it is obtained. Finally, we
introduce CPN and how we used it to represent a HLSD.

3.1 UML2 Sequence Diagrams

Sequence Diagram is the more commonly used diagram for capturing inter-object
behavior. Graphically, a SD has two dimensions: a horizontal dimension representing
the instances participating in the scenario, and a vertical dimension representing time.
SD is typically associated with use case realizations in the logical view of the system
under development. It is been significantly changed in UML 2.0 [3].

Notable improvements include the ability to define HLSD. A HLSD is a Sequence
Diagram that refers to a set of Basic Sequence Diagrams (BSD) and composes them
using a set of interaction operators. The main operators are: seq for sequence, alt for
alternatives, loop for iterative actions, and par for parallelism.

Figure 1 shows an example of a HLSD composed of two BSDs using the operators
loop and alt. For example, the basic SD BSD1 describes the interactions between two
instances a1 (instance of the A class) and b1 (instance of the B class). The behavior
specified in the HLSD is then equivalent to the expression loop (BSD1 alt BSD2).

Fig. 1. Example of a HLSD

A Dynamic Analysis for Reverse Engineering 333



3.2 Execution Traces

To build HLSD using dynamic analyses we have to generate traces of program exe-
cutions describing the behavior of each thread of a program. Each trace corresponds to
a scenario of a given use case. In what follows, we introduce a set of definitions
relatives to execution traces, which are necessary to understand the approach.

Definition 1. A trace line is a method invocation or control structure.

Definition 2. A method invocation is a triplet T1=<Sender, Message, Receiver>where:

– Sender is the caller object, expressed in the form threadNumber:package:class:
object.

– Message is the invoked method of the receiver object, expressed in the form
methodName (par1, par2, …).

– Receiver is the called object, expressed in the form package:class:object.

Definition 3. A control structure is a triplet T2=<operator, status, condition>where:

– operator have the values: alt, else or loop.
– status express the start or the end of the control structure
– condition (optional) is the condition associated to alt and loop.

Definition 4. An execution trace is a set of trace lines.
Table 1 shows an example of generated execution traces where each trace corre-

spond to a given scenario of an use case. Trace1 describes the Scenario1 and Trace2
describes the Scenario2.

Table 1. An example of traces

334 C. Baidada et al.



These traces are composed of several lines. L0 to L11 correspond to the name
number of each line. Pack1 to Pack2 represents the packages to which classes A, B, C
and D belong. m1() to m6() correspond to the methods calls of objects a, b, c and d. the
numbers 0 and 1 correspond to the IDs of the threads.

3.3 Colored Petri Nets (CPN)

Petri nets [16] are a well-known and developed formalism with a rich theory, practical
applications ranging from communication networks to healthcare systems and are
supported by a wide range of commercial and noncommercial tools. CPN are a
backward compatible extension of Petri nets. CPN preserve useful properties of Petri
nets and at the same time extend initial formalism to allow the distinction between
tokens. CPN allow tokens to have a data value attached to them. This attached data
value is called token color.

Petri Net blocks are blocks of Petri Nets that have unique input and output places,
which are referred to as precondition and post condition respectively. From the many
existing variants of Petri nets, CPN are used in composing and integrating scenarios
that are represented in the form of SD [17]. Four operators for composing scenarios
have been implemented: sequential, conditional, iterative and concurrent. CPNs suit
our approach as they can map a HLSD efficiently (Figs. 2 and 3). Transitions can
represent BSD or operators such as alt, loop, and par. Colors are used to distinguish
between places. All places from the same trace have the same color. That is very
helpful to distinguish between scenarios in a HLSD.

Figure 2 shows how a HLSD can be mapped easily into a CPN. P0 represents the
initial precondition when P3 represents the final post condition of the Petri Net block.
Transition “if c1” represent the operator alt with the condition C1 that lead to the place
P1. Transition “m1()” refers to the BSD which describes that the object a of the class
A sends the message m1 to the object b of the class B. Transition “else” describes when
the condition c1 is not verified. This transition leads to the place P2. The transition
“m2()” refers to the BSD which describes that the object a sends the message m2 to
the object b. The operators par and seq can be mapped also as it is shown in Fig. 3.

Fig. 2. A HLSD mapped onto CPN with operators loop and alt.

A Dynamic Analysis for Reverse Engineering 335



In Fig. 3 transition “m1()” represents the BSD1 which describes that the object a
sends the message m1 to the object b. Transition “m2()” represents BSD2 which
describes that the object a sends the message m2 to the object b. Transition “m3()”
represents BSD3 which describes that the object a sends the message m3 to the object b.
The transition par represents that the BSD2 and BSD3 are executed in parallel.

From what precedes, we can conclude that, for a HLSD, we can generate a CPN
that can represent all major UML SD operators such as seq, alt, par and loop.
We can also do the reverse transformation by mapping a CPN into a HLSD.

In this section, we discussed the reverse engineering of SD and gave definitions that
are necessary for the good comprehension of our approach. The problem that arises is
how we can reverse this process. I.e.: how, from execution traces, can we generate a
CPN that can be mapped onto a HLSD? In the next section, we propose an approach
that deals with this problem.

4 Overview of Approach

The proposed approach for reverse engineering of UML Sequence Diagram is illus-
trated in Fig. 4. The approach is defined in three main steps: trace generation and
collection, trace merging using CPN and HLSD extraction. In the following subsec-
tions, each step is detailed.

Fig. 4. Overview of our approach.

Fig. 3. A HLSD mapped onto CPN with operators par and seq.

336 C. Baidada et al.



4.1 Trace Generation and Collection

To extract HLSD from an object- oriented program, we concentrate on reverse engi-
neering relying on dynamic analysis. As mentioned in [4], dynamic analysis is more
suited to the reverse engineering of SD of object-oriented systems. This dynamic
analysis is usually performed using execution traces. There are multiple ways to
generate execution traces [1]. This can include instrumentation of the source code, the
byte code, virtual machines (for java programs for instance) or the use of a customized
debugger. From these technics, we choose to use byte code instrumentation. In some
legacy systems the source code does not have to be available and is therefore not
manipulated.

Among several trace collection tools for Java software systems, we chose AspectJ
[18]. This one is a Java intermediate code instrumentation tool. It provides a flexible
way to instrument an application while the functionality is centrally managed in the
aspect.

The system behavior is related to the environment entry data, in particular, values
introduced by the user to initialize specific system variables. Thus, one execution
session is not enough to identify all system behaviors. Therefore, we chose to run the
system several times to generate different executions traces. Each execution trace
corresponds to a particular scenario of a given use case of the system. Using AspectJ, a
filtering process is applied for the system when it is running. This process is based on
two filtering rules: distinction between business classes and architecture classes or the
exclusion of certain packages. No lines that contain a package that is not interesting
will appear on traces. This process enables us to concentrate on the main behavior of
the system. The form of collected traces can differ from one tool to another, which has
forced us to develop an adapter that reorganizes the traces into a new adapted form as
described in Definition 1, Definition 2 and Definition 3. The role of the adapter is to
restructure the trace into a form appropriate to the processing of merging traces.

4.2 Trace Merging Using CPN

This is the main step of our approach. It deals with the known problem of analyzing
traces. Indeed, one of the major challenges to reverse engineering HLSD is to analyzing
the multiple execution traces to identify operators and method invocations throughout
the input traces. Independently from the reverse engineering of SD, the challenge of
merging traces is well identified in the grammar inference domain where several well-
defined techniques were proposed [19].

In this subsection, we chose to use CPNs in order to merge these execution trace.
This is done in two steps: CPN Initialization and Merging.

CPN Initialization
In this step, one CPN for each execution trace is generated. The challenge in this step is
identifying the operator “par”. As shown in the Subsect. 3.2 every line trace has a
thread number. We have developed an algorithm that compares between threads
numbers in order to create for each line trace the correspondent CPN. The algorithm
focuses on the threads number to detect the “par” operator. After that the first line in
trace with child thread number is found, a transition labeled with “par” is added to the

A Dynamic Analysis for Reverse Engineering 337



CPN. After that, the algorithm create a CPN path for all trace lines that have the same
thread number. These paths are attached to the transition “par”. All places that represent
trace lines have the same color. These colors allow us to distinguish between the
scenarios. This gives the possibility of subdividing an HLSD into several HLSDs to
facilitate the task of understanding the system.

CPN Merging
In the previous step, every trace has a correspondent CPN. This CPN includes as
transition only method invocation or operator “par”. In this second step, the CPNs of
the different traces are merged to obtain a single CPN that merges the initial traces. This
is done by using the Kbehavior [20]. The Kbehavior is inspired by the Ktail algorithm
[21]. Both are used to build an automaton from execution traces. These techniques
allow learning a target regular grammar from a set of sequences. For this, a general-
ization procedure of the automaton is applied iteratively by successive fusion of
compatible states. Ktail has a major limitation: The Ktail algorithm is not able to reuse
already learned knowledge to adapt to new generated traces, which is not the case for
Kbehavior. In our case, we took the main idea of this algorithm. We adapt it to deal
with CPNs. When a new trace is given to the algorithm, adapted Kbehavior first
identifies sub-traces of the input trace that are accepted by sub-CPN in the current CPN
(the sub-traces must have a minimal length k, otherwise they are considered too short to
be relevant). Then adapted Kbehavior extends the CPN with the addition of new
branches that suitably connect the identified sub-CPN, producing a new version of the
CPN that accepts the entire input trace (Fig. 5).

4.3 HLSD Extraction

In this step, we can easily build HLSD by mapping the resulting CPN using trans-
formation rules as is it shown in Figs. 3 and 2.

Fig. 5. Example of merging traces using adapted Kbehavior (k = 2)

338 C. Baidada et al.



5 Case Study

To show the feasibility of our approach, we choose the example of Sales application.
The application code provide different types of behavioral interactions (parallel, iter-
ative, optional and alternative) that are the subject of our study. The application
developed in Java with six classes: Vendor, Sale, Calcul, Invoice, Payslip and Delivery.
The application allows sellers to create sales of articles. To achieve this, the seller sends
an order to create a new sale and he can subsequently add articles and calculate the
sum. Then the routine addition of items and calculation of the sum is repeated as the
number of items ordered (repetitive behavior). After that, either a delivery slip or an
invoice must be established in order to be signed by the seller (alternative behavior). If
the vendor choose to sign an invoice, a waiting message is displaying while the invoice
is established (parallel behavior).

Finally, the creation of a pay slip is the object of choice for the customer (optional
behavior). Listing1 shows the source code of some classes of the application.

A Dynamic Analysis for Reverse Engineering 339



5.1 Trace Collection

After the instrumentation of bytecode by AspectJ, and the execution of the instru-
mented program, a trace file is generated. The AspectJ tool provides a very interesting
option. The user can choose among the methods of classes of the program those he
wants to follow and instrument. This process enables us to ignore some methods and
concentrate on the main behavior of the system.

To organize the execution log files according to the form proposed by our
approach, we use the adapter that we developed for this purpose. The final execution
traces generated as illustrated in Table 2 can provide different types of behavioral
interactions.

340 C. Baidada et al.



Table 2. Generated traces

A Dynamic Analysis for Reverse Engineering 341



5.2 Trace Merging

In the previous step, for each scenario an execution trace is generated. At this step
every trace has a correspondent CPN. These CPNs include as transition only method
invocation or operator “par”. The next step is to merge the CPNs of the different traces
to obtain a single CPN that represent all the system behaviors. We use for that the
adapted kbehavior algorithme. we initialize the variable K of the algorithme with the
number 2. Figure 6 shows the obtained CPN from merging traces corresponding to
scenario1, scenario2 and scenario3. In this CPN scenario1 has the red color, scenario2
has the bleu color while scenario3 has the green color.

5.3 HLSD Extraction

In this step, the HLSD is completely constructed. This is done by mapping the resulting
CPN using transformation rules as is it shown in Figs. 2 and 3. It represents all the
system behaviors.

Fig. 6. The merged CPN (Color figure online)

342 C. Baidada et al.



Our approach, as shown in Fig. 7, is able to generate a comprehensive HLSD with
the main UML2 operators (seq, alt, par, and loop). The conditions relating to the
combined fragments operators “loop” and “alt” are also extracted. most approaches
based on dynamic analysis do not provide these conditions. The operator par is also
detected. It is an important operator because it helps to describe the behavior of threads
running in multi-threaded systems. In addition, the approach is also independent from
programing languages. The tracer tool can be changed to support the new language.

6 Conclusion

In this paper, we presented an overview on our approach for the reverse engineering of
Sequence Diagram of an object-oriented software system. The approach is based on
dynamic analysis. It use an adapted version of the Kbehavior algorithm to merge CPNs
that represent execution traces. The colors of petri nets are used to distinguish between
scenarios. This enables subdividing an HLSD into several HLSDs to facilitate the task
of understanding the system. The approach detects UML interaction operators such as
alt, seq, opt and loop. It also enables the detection of the interaction operator par that
help to describe parallel behavior of a system.

Fig. 7. Extracted HLSD

A Dynamic Analysis for Reverse Engineering 343



Our future work is to evaluate our approach on more complex systems. In addition,
we will try to handle the problem of extracting a state diagram and other types of
diagrams of UML.

Acknowledgements. We would like to thank the FST Errachidia for providing us with assist us
in the development part of our research. Our sincere thanks also go to Moulay Ismail University
for its financial support of the project “Algorithmic and software support for transformational
approaches to UML”.

References

1. Cornelissen, B., Zaidman, A., van Deursen, A.: A controlled experiment for program
comprehension through trace visualization. IEEE Trans. Softw. Eng., 2 (2011)

2. IEEE. std 1219: Standard for Software maintenance. IEEE Computer Society Press, Los
Alamitos (1998)

3. OMG: Unified Modeling Language (OMG UML), Superstructure. V2.1.2, November 2007
4. Briand, L.C., Labiche, Y., Leduc, J.: Towards the reverse engineering of UML sequence

diagrams for distributed Java software. IEEE Trans. Softw. Eng. 32(9), 642–663 (2006)
5. Bennett, C., et al.: A survey and evaluation of tool features for understanding reverse-

engineered sequence diagrams. J. Softw. Maint. Evol. 20(4), 291–315 (2008)
6. Chikofsky, E.J., Cross II, J.H.: Reverse engineering and design recovery: a taxonomy. IEEE

Softw. 7(1), 13–17 (1990)
7. Clerk Maxwell, J.: A Treatise on Electricity and Magnetism, vol. 2, 3rd edn. Clarendon,

Oxford (1892). pp. 68–73
8. Kollmann, R., Gogolla, M.: Capturing dynamic program behaviour with UML collaboration

diagrams. In: Proceedings of the 5th Conference on Software Maintenance and Reengi-
neering (CSMR 2001), pp. 58–67. IEEE Computer Society (2001)

9. Kollmann, R., Selonen, P., Stroulia, E., Systä, T., Zundorf, A.: A study on the current state
of the art in tool-supported UML-based static reverse engineering. In: Proceedings of the 9th
Working Conference on Reverse Engineering (WCRE 2002), pp. 22–32. IEEE Computer
Society (2002)

10. Rountev, A., Volgin, O., Reddoch, M.: Static control-flow analysis for reverse engineering
of UML sequence diagrams. In: ACM SIGSOFT Software Engineering Notes, vol. 31, no. 1,
pp. 96–102. ACM (2005)

11. Rountev, A., Connell, B.H.: Object naming analysis for reverse-engineered sequence
diagrams. In: Proceedings of the 27th International Conference on Software Engineering
(ICSE 2005), pp. 254–263. ACM (2005)

12. Taniguchi, K., Ishio, T., Kamiya, T., Kusumoto, S., Inoue, K.: Extracting sequence diagram
from execution trace of Java program. In: International Workshop on Principles of Software
Evolution (IWPSE 2005), pp. 148–151 (2005)

13. Delamare, R., Baudry, B., Le Traon, Y.: Reverse-engineering of UML 2.0 sequence
diagrams from execution traces. In: Proceedings of the Workshop on Object-Oriented
Reengineering at ECOOP 06 (2006)

14. Ziadi, T., da Silva, M.A.A., Hillah, L.M., Ziane, M.: A fully dynamic approach to the reverse
engineering of UML sequence diagrams. In: 16th IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS, Las Vegas, United States, April 2011

344 C. Baidada et al.



15. Cornelissen, B., van Deursen, A., Moonen, L., Zaidman, A.: Visualizing test suites to aid in
software understanding. In: Proceedings of the 11th European Conference on Software
Maintenance and Reengineering (CSMR 2007), pp. 213–222. IEEE Computer Society
(2007)

16. Jensen, K.: A brief introduction to coloured Petri Nets. In: Brinksma, E. (ed.) TACAS 1997.
LNCS, vol. 1217, pp. 203–208. Springer, Heidelberg (1997). https://doi.org/10.1007/
BFb0035389

17. Jakimi, A., Sabraoui, A., Badidi, E., Salah, A., El Koutbi, M.: Using UML Scenarios in B2B
Systems. IIUM Eng. J. (2010)

18. AspectJ: The AspectJ project at Eclipse.org. http://www.eclipse.org/aspectj/
19. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
20. Mariani, L., Pezze, M.: Dynamic detection of cots component incompatibility. IEEE Softw.

24(5), 76–85 (2007)
21. Biermann, A., Feldmann, J.: On the synthesis of finite state machines from samples of their

behavior. IEEE Trans. Comput. 21, 592–597 (1972)

A Dynamic Analysis for Reverse Engineering 345

http://dx.doi.org/10.1007/BFb0035389
http://dx.doi.org/10.1007/BFb0035389
http://www.eclipse.org/aspectj/


A Formalized Procedure for Database
Horizontal Fragmentation

in Isabelle/HOL Proof Assistant

Cheikh Salmi(B), Mohamed Chaabani(B), and Mohamed Mezghiche(B)

LIMOSE, University of M’Hamed Bougarra, Boumerdes, Algeria
Salmi.cheikh@univ-boumerdes.dz, medchaabani@gmail.com,

mohamed.mezghiche@gmail.com

Abstract. We propose a logical procedure for the horizontal fragmen-
tation problem based on predicate abstraction over the entire domain of
database relations. The set of minterm predicates is constructed using
rewriting rules similar to the well-known semantic tableau algorithm.
The procedure start from an initial set of simple predicates, build the
set of minterm predicates until rules are no longer required. To ensure
this proposition, we give a formal proof of its correctness namely, it’s
soundness, completeness and termination with Isabelle proof assistant.
The main contribution of this work are: refining the minterm approach
by adding a semantic layer to predicates, minimizing the set of minterm
predicates by automatically eliminating contradictory ones, detecting
and handling subsumptions between them. This leads to the best con-
struction time of the final partitioning schema. Finally, a source code of
the procedure is generated automatically by the Isabelle proof assistant.

Keywords: Horizontal fragmentation · Database optimization
Minterm · Tableau calculus · Proof assistant · Formal methods

1 Introduction

Fragmentation is a database optimization process that splits large relations into
smaller ones so that the query executor retrieve only a reduced data set when
running a user application. It is an important technique in database design since
it aims to improve the database system performance. There are two types of frag-
mentation, vertical and horizontal. Vertical fragmentation creates a set of vertical
disjoint fragments each contains a subset of one or more relations columns while
horizontal fragmentation (HF) generates disjoint sets of tuples. The usage of
query predicates to perform (HF) was studied first in [1–4]. However, the app-
roach has not been formalized and the algorithms (eg. commin) using it are not
practical especially when dealing with properties such as minimality, complete-
ness, relevance and implications set definition [4]. To our knowledge, the only
research addressing the question of (HF) using predicate abstraction is [5] which
is also based on commin. However, our approach brings several benefits.
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 346–353, 2018.
https://doi.org/10.1007/978-3-030-00856-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_23&domain=pdf


A Formalized Procedure for Database Horizontal Fragmentation 347

– We formally define a procedure for (HF) of a relation by integrating mini-
mality and completeness rules at the semantic level of predicates.

– Our procedure reduce the number of predicates that are used to perform HF.
– Our approach can be used to resolve other database optimization such as

materialized view selection.
– It can be combined with other algorithms, for instance, the solution given by

our procedure can be used as a starting point for a genetic algorithm instead
of starting with a random solution.

The code of the (HF) procedure can be automatically extracted form our proof
assistant formalization as a Scala program, which is a type-safe Java Virtual
Machine language that incorporates both object oriented and functional pro-
gramming. The remainder of this paper is organized as follows. We begin in
Sect. 1 by formally defining the horizontal fragmentation and it’s related work.
In Sect. 2 the formalization of abstract horizontal fragmentation. In Sect. 3 we
present the tableau calculus for the HF. Finally, in Sect. 4, we conclude and
discuss future work.

2 Abstract Horizontal Fragmentation

Let R = {A1 : D1, A2 : D2, ...An : Dn} be a relation schema where each Ai is
an attribute defined over a domain Di. A simple predicate is a condition in the
form of pk : Ai θ V alue where θ ∈ {=, �=, <,≤, >,≥} and V alue ∈ Di. A set
of all simple predicates is denoted by Pr = {P1, P2, ...Pm}. The set of minterm
predicate, M = {m1,m2, ...mm}, over Pr is defined as the conjunctive normal
form of simple predicates or their negations:

M = {mj |mj = ∧
pk∈Pr

p∗
k}, k = 1, ...,m, j = 1, ...m

where p∗
k = pk or p∗

k = ¬ pk. Each minterm defines a horizontal fragment.

Example 1. Let R = (Age : int;Name : varchar(30);DateofBirth : date)
be a relation. It can be fragmented by using one of the following minterm. (1)
{Gender = m} generates two fragments, one contains tuples those values for Gen-
der which are masculine and a second fragment those values for gender which are
feminine. (2) {DateOfBirth >′ March − 11 − 1973′ ∧ DateOfBirth ≤′

April − 13 − 1979′} generates two fragments: one with values for DateofBirth
between ‘March-11-1973’ and ‘April-13-1979’, and the second with values greater
than ‘April-13-1979’ or less than ‘March-11-1973’

Isabelle is a proof assistant [6] or an interactive theorem prover. It includes
powerful specification tools, e.g. for (co)datatypes, (co)inductive definitions and
recursive functions with complex pattern matching. To be able to formalize the
(HF) in Isabelle, it is necessary to map relations concrete domains, simple and
minterm predicates to abstract ones at the syntactic and semantic level.



348 C. Salmi et al.

2.1 Syntax

Given a relation R, and a set of attributes {A1, ..., An} where each attribute Ai

belongs to a definition domain Di. A simple predicate is a boolean expression
over attributes of the relation R and constants from its attributes domains. A
minterm is a logical combination of simple predicates. The list L of all minterm
predicates over a relation R is defined by following BNF grammar:

< L > ::=< SP > | < ¬MT > | < MT > ∧ < MT > | < MT > ∨ < MT >

< SP > ::=< A > θ < v >

where SP is a simple predicate, MT is a minterm, A is a database attribute
and θ is a binary operation tha belongs to the set {=, �=, <,≤, >,≥}.

To implement the minterm set in Isabelle proof assistant, we need to define
the following abstract data types and functions:

datatype op-ord = Eq |Lt |Le
Which defines the basic operators =, < and ≤. A simple predicate is then abstracted
by:
datatype ( ′nv , ′na) predicate =
sp ′na bool op-ord ′nv

Where ′nv is a set of values and ′na is an attribute name. Note that the
�=, > and ≥ operators are derived using the bool constructor. For example the
abstract simple predicate att �= val is matched by the rule "sp att False Eq
val". For the rest of this paper the abstract simple predicates sp att True Eq
val and pr att False Eq val are simply denoted respectively by “[=] att val”
and “[�=] att val”. The same notation is used to simplify simple predicates that
uses other operators (<,>,>=, <=).

The negative form of a predicate sp ( ¬sp) can then be easily defined by:

fun nf-predicate ::( ′nv , ′na) predicate ⇒ ( ′nv , ′na)predicate where
nf-predicate (sp att bool op-ord val) = (sp att (¬ bool) op-ord val)

For instance, the negative form of “[=] att val” is “[�=] att val”.

Finally, the abstraction of a minterm is defined over simple predicates by
applying a set of logical operators: negation, conjunction and disjunction, as
follows:

datatype ( ′nv , ′na) form =
Atom ( ′nv , ′na) predicate
|Neg ( ′nv , ′na) form
|Conj ( ′nv , ′na) form ( ′nv , ′na) form
|Disj ( ′nv , ′na) form ( ′nv , ′na) form

2.2 Semantics

The semantic of predicates allows us to detect relations between predicates,
which allows to keep only the most relevant to the fragmentation process.



A Formalized Procedure for Database Horizontal Fragmentation 349

It checks for each of the predicates whether it is satisfiable, eliminated or not. For
instance, if the current predicate is already treated by the procedure, it will be
eliminated if it appears a second time in its positive or negative form. Another
important aspect of the semantic of the predicate is their subsumption. For
example, suppose two queries that include two conditions predicates p1 : σA=20

and p2 : σA<30. The commin algorithm generates and tests at least four minterm.
This number might increase if these two simple predicates are combined with
others. Our procedure only considers two minterm. Two cases are eliminated
by subsumption rule (p < 30 ∧ p = 20) and contradiction (p ≥ 30 ∧ p = 20)
rules. Therefore, unlike commin, the total number of cases will be significantly
improved in case of combination with other simple predicates. Note that our
semantic formalization, supports all kind of relations between minterm. This
set-theoretic semantics is provided by an interpretation function I. This inter-
pretation function I is a pair (attI , valI) mapping an attribute att to a set of
individuals (subsets of domain) and a value name val to an individual element
of a domain.

record ( ′nv , ′na) Interp-g =
interp-a :: ′na ⇒ ′nv set
interp-v :: ′nv ⇒ ′nv

In the case of databases, the values assigned to attributes are interpreted by
themselves, hence, valI = val. The simple predicates interpretation is imple-
mented by the following function:

fun interp-predicate::( ′nv , ′na)predicate⇒( ′nv ::linorder , ′na)Interp ⇒ ′nv set where
interp-predicate ([=]att val) i= (if val ∈ interp-a i att

then{ val} else {})
|interp-predicate ([�=]att val) i= (interp-a i att)−{val}
|interp-predicate ([<]att val) i= {x∈ interp-a i att . x < val}
|interp-predicate ([≥]att val) i= {x∈ interp-a i att . x ≥val}
|interp-predicate ([≤]att val) i= {x∈ interp-a i att . x ≤ val}
|interp-predicate ([>]att val) i= {x∈ interp-a i att . x > val}

The first step to prove the correction of this interpretation function is to
demonstrate that the interpretation of a simple predicate is a subset of its related
attribute domain. This proof is implemented via this lemma

lemma interp-pr-att :interp-predicate (sp att bool op-ord val) i ⊆ interp-a i att

The interpretation of the disjunction of a simple predicate SP and its nega-
tion that are defined on an attribute a is the union of their interpretations which
is the hole domain of the attribute a.

lemma union-pr-opposite:SP = sp att bool op-ord val =⇒
interp-predicate SP i ∪ interp-predicate (nf-predicate SP) i = interp-a i att

As described by the following lemma, the conjunction of a predicate SP and
its opposite is interpreted as the empty set.

lemma inter-pr-opposite:
interp-predicate sp1 i ∩ interp-predicate (nf-predicate sp1 ) i = {}



350 C. Salmi et al.

Predicates subsumption is an important issue in optimizing the horizontal
fragmentation process. It can allow us to reduce the number of simple predi-
cates by taking into account their subsumption relations. The pattern matching
function subsume is a simple predicate subsumption expression in which pattern
matching is performed immediately on the argument.

This function checks if a predicate SP is subsumed by SP ′ (SP � SP ′) such
that both SP and SP ′ are defined on the same attribute att. This function will
be used to simplify a set of predicates by eliminating the subsumed ones.

fun subsume::( ′nv ::linorder , ′na) predicate ⇒ ( ′nv , ′na) predicate ⇒ bool where
subsume ([=] att val) (sp att2 bool op-ord val2 ) =

(if att= att2 then
(case (sp att2 bool op-ord val2 ) of
([=] att val2 ) ⇒ val=val2

| ([�=] att val2 ) ⇒ val �=val2
| ([<] att val2 ) ⇒ val < val2
| ([≤] att val2 ) ⇒ val ≤ val2
| ([>] att val2 ) ⇒ val > val2
| ([≥] att val2 ) ⇒ val ≥ val2 )

else False)

To show that this function is semantically correct, we need to demonstrate the
implication: if SP � SP ′ then SP I ⊆ SP I . In Isabelle this can be formulated
by the following lemma:

lemma subsume-proof :
subsume SP SP ′ =⇒ interp-predicate SP i ⊆ interp-predicate SP ′ i

Another important property used in reasoning on predicates, is their contra-
diction called her “Clash”. This property means that predicates are disjoint and
can not be allowed to be together in the same minterm. It is implemented via
the pattern matching function Clash predicate.

This function decides if a boolean combination of the two minterm SP and
SP ′ defined on the same attribute leads to a Clash. This function is formalized
in Isabelle by the function clash predicate as follows:

fun predicate-clash::( ′nv ::linorder , ′na) predicate ⇒ ( ′nv , ′na) predicate ⇒ bool where
predicate-clash ([=] att val) (sp att2 bool op-ord val2 ) = (if att= att2 then

(case (sp att2 bool op-ord val2 ) of
([=] att val2 ) ⇒ val �=val2

| ([�=] att val2 ) ⇒ val = val2
| ([<] att val2 ) ⇒ val ≥ val2
| ([≤] att val2 ) ⇒ val > val2
| ([>] att val2 ) ⇒ val ≤ val2
| ([≥] att val2 ) ⇒ val < val2 )

else False)

This function is symmetric, if SP is the opposite predicate of SP ′ then
SP ′ is also the opposite predicate of SP ′. From a semantic point of view the
interpretation of each predicate is disjoint from the other.

lemma sem-contraduction:
predicate-clash SP SP ′ =⇒ interp-predicate SP i ∩ interp-predicate SP ′ i ={}



A Formalized Procedure for Database Horizontal Fragmentation 351

3 Abstract Tableau Calculus for HF

We now describe our logical procedure for obtaining horizontal fragmentation.
We first describe the tableau rules on an abstract level, as a transition system
transforming a set of simple predicate (i.e. , set of terms) into an optimized one.
We then describe in details the procedure of construction of minterm and discuss
its main properties in (Sect. 3.1).

Elim

f = (att θ value) θ ∈ {�=, ≥, >} (f, True) ∈ S
S ′ = (S − {(f, True)}) ∪ {(¬f, True)}

S f
↪−→ S ′

Eq

f = (att = value) app = True (f, app) ∈ S
S ′ = (S − {(f, app)}) ∪ {(f, False)} ∨ S ′ = (S − {(f, app)}) ∪ {(¬f, False)}

S f
↪−→ S ′

Leq

f = (att ≤ value) app = True (f, app) ∈ S
S ′ = (S − {(f, app)}) ∪ {(f, False)} ∨ S ′ = (S − {(f, app)}) ∪ {(¬f, False)}

S f
↪−→ S ′

Lt

f = (att < value) app = True (f, app) ∈ S
S ′ = (S − {(f, app)}) ∪ {(f, False)} ∨ S ′ = (S − {(f, app)}) ∪ {(¬f, False)}

S f
↪−→ S ′

Subsume
(f, False) ∈ S (f ′, False) ∈ S f 	 f ′ S ′ = S − {(f, False)}

S f
↪−→ S ′

Fig. 1. Tableau rules

In Fig. 1 we depict what we call transformation rules. These rules typically
have the form A sp

↪−→ A′, where A is the original set of predicate, A′ is its tableau
transformation and sp is the predicate in A on which the transformation rule
is applied. The procedure start with an initial set S of simple predicates, we
associate to each predicate a boolean flag called applicable (initially True) to
indicate that the predicate is already transformed or not.

As each predicate or its negative form produce the same set of minterm, the

procedure transforms all negative forms to positive ones using the rule
Elim

↪−−−→,
hence, predicates will be written only using =,< and ≤ operators. Note that all
rules are subject to preconditions, which are of two kinds: preconditions ensuring
the correctness of the rule, see Sect. 3.1, and those ensuring the termination of
the whole calculus (typically the flag “applicable”).

As shown in Fig. 2, the execution of our procedure creates a tree whose
root is the initial set of predicates and leaves represents the final horizontal



352 C. Salmi et al.

(a=20,T),(a<10,T)(a≥10,T)

(a=20,T),(a<10,T)

(a=20,F),(a<10,T) (a  =20,F), (a<10,T)

(a=20,F),(a<10,F) (a=20,F),(a≥10,F) (a  =20,F),(a<10,F) (a  =20,F),(a≥10,F)

(a=20,F) (a<10,F) (a  =20,F),(a≥10,F)

Fig. 2. Horizontal fragments generation tree example

fragments. Interpretation of interior nodes depends on the flag “applicable”. The

procedure continues until no more rule (
=

↪−→,
<

↪−→,
≤

↪−→ or
Subsume

↪−−−−−−→) is applicable.
Formally, we say that a set of predicate is saturated for a rule, saturated A rl,
iff ∀A′.¬rl A A′.

3.1 Properties of Tableau Rules

The main properties of the calculus are soundness, completeness, minmality and
termination.

Satisfiability: A simple predicate SP defined on attribute att, (denoted by SPatt)
is interpreted by (SPatt, T rue)I = attI otherwise, (SPatt, false)I = SP I

att, (see
Sect. 2.2). The interpretation of a minterm Matt based on a set of simple pred-
icates defined on the same attribute att is the intersection of interpretations of
all its simple predicates, i.e., MI

att =
⋂

SP I
att, Matt is satisfiable iff MI

att �= ∅.
Finally, a set of minterm is said to be satisfiable iff all its Matt are satisfiable.

Soundness: A rule rl is said to be sound iff its application does not introduce a
new instance (new model).

∀S S ′.rl S S ′ −→ satisfiable S ′ −→ satisfiable S

Completenss: A rule is complete if the satisfiability of a set of predicates S
implies that there exists at least one satisfiable set of predicates S′ obtained
from S by this rule application.

Minmality: A rule rl preserves a minimality if after its application, each value
belongs to the left or the right node but not to both.

Termination: The calculus terminates after a finite number of rules applica-
tion. Its easy to prove this property since the number of applicable predicates
(applicable = true) decreases after each rule application.



A Formalized Procedure for Database Horizontal Fragmentation 353

4 Conclusion

In this paper we presented a formal procedure for the minterm horizontal par-
titioning approach. Then, we showed how to use this procedure to generate
horizontal fragments for a relational database or a data warehouse using only
qualitative data access informations. We show it’s correctness by proving com-
pleteness and termination properties with the Isabelle proof assistant.

The procedure can be easily enhanced by quantitative informations such as
the physical properties of attributes, storage devices and buffers. A cost model
can then be used to improve the quality of the obtained fragments. Our procedure
can be used directly to deal with many other database optimization problems
such as vertical partitioning and materialized views selection. A possible direc-
tion for a short-term extension of this work is to combine it with a heuristic
algorithm to do partitioning with a cost model. Another important theoretical
research direction is to use a different formal framework to interpret minterm.
One can use description logic as a formal framework. In this case, abstract pred-
icates can be viewed as concepts and their mapping to concrete domains can be
done using roles. Finally, we plan to apply our approach on a real case study
and validate the results on real database management system such as Oracle or
SQL server.

References

1. Ceri, S., Negri, M., Pelagatti, G.: Horizontal data partitioning in database design. In:
Proceedings of the 1982 ACM SIGMOD International Conference on Management
of Data, SIGMOD 1982, pp. 128–136. ACM, New York (1982)

2. Bellatreche, L., Karlapalem, K., Simonet, A.: Algorithms and support for horizontal
class partitioning in object-oriented databases. Distrib. Parallel Databases 8(2),
155–179 (2000)

3. Ceri, S., Pelagatti, G.: Distributed Databases: Principles and Systems. McGraw-Hill
Computer Science Series. McGraw-Hill, New York (1984)

4. Ozsu, M.T.: Principles of Distributed Database Systems, 3rd edn. Prentice Hall
Press, Upper Saddle River (2007)

5. Dimovski, A., Velinov, G., Sahpaski, D.: Horizontal partitioning by predicate
abstraction and its application to data warehouse design. In: Catania, B., Ivanović,
M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 164–175. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15576-5 14

6. Nipkow, T., Wenze, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic, vol. 2283. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45949-9

https://doi.org/10.1007/978-3-642-15576-5_14
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9


Domain-Oriented Verification
Management

Vincent Leildé2(B), Vincent Ribaud1, Ciprian Teodorov2,
and Philippe Dhaussy2

1 Lab-STICC, Team MOCS, Université de Bretagne Occidentale, Avenue le Gorgeu,
Brest, France

Vincent.Ribaud@univ-brest.fr
2 Lab-STICC, Team MOCS, ENSTA-Bretagne, rue François Verny, Brest, France
{vincent.leilde,ciprian.teodorov,philippe.dhaussy}@ensta-bretagne.fr

Abstract. V. Basili stated twenty years ago that a software organiza-
tion that manages quality should have a corporate infrastructure that
links together and transcends the single projects by capitalizing on suc-
cesses and learning from failures. For critical systems design, the verifica-
tion tasks play a crucial role; when an unexpected situation is detected,
the engineer analyzes the cause, performing a diagnosis activity. To
improve the quality of the design, diagnosis information have to be man-
aged through a well-defined method and with a suitable system. In this
paper we present how a Verification Organizing System together with
a problem-oriented method could achieve these issues. The key aspect
of the approach is to follow a step-wise building of the solution, reusing
known problems that are relevant for the system under study.

Keywords: Organizing system · Diagnosis · Problem oriented method

1 Introduction

D. Bjorner defines software engineering as a triptych: from descriptions of the
application domain we construct prescriptions of the requirements; and from pre-
scriptions of the requirements we design the software, i.e. construct specifications
of software [7]. Our area of interest is software formal verification, especially with
a model-checking approach. We start the model-checking process with a model
of the system under consideration and a formal characterization of the property
to be checked, i.e. two legs of the triptych: design and requirements. Then we
run the model-checker to check the validity of the property in the system model.
When property is violated, the model checker provides us with a counterexample
(a witness trace) that triggers a diagnosis activity to analyze the trace and to
outline the error causes. Consequently, the system model is corrected and a new
process cycle - verification, diagnosis, and correction - is repeated. The third leg
is a domain-oriented verification, defined as a process by which information used
in verifying software systems is identified, captured, and organized regarding the
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 354–370, 2018.
https://doi.org/10.1007/978-3-030-00856-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_24&domain=pdf


Domain-Oriented Verification Management 355

domain knowledge, with the purpose of making it reusable when modeling and
verifying new systems. The process can be applied to various domains, including
critical system design.

Our research work is focused on methods and tools intended to ease the
verification process, especially diagnosis activities. Generally speaking, research
addressing model-checking and diagnosis issues [2,4,6,15,20] are faced with the
same difficulties.

First, diagnosing the cause of abnormalities suffers from too detailed observa-
tions. It is hard, for instance, to localize relevant parts in a detailed source-level
trace when we look for the reasons a verification run failed [14]. Some tech-
niques focus on linking low level information with more abstract information,
like model-based diagnosis [30], or case-based reasoning [1].

Second, the techniques require a set of data that is not always available.
In addition to the verification steps, the entire verification should be planned,
administered, and organized. This is called verification organization by Baier and
Katoen [3]. During the engineering process, heterogeneous artifacts are produced,
including requirements, system models, properties, runs, or diagnoses. As stated
by Ruys [31], they are poorly managed and controlled. As a result, expertise is
poorly shared by the verification engineers, and cannot be used for the above
techniques.

Third, verification at early stages of the engineering process prevents the
presence of expensive defects in the final product. A software organization that
manages quality should have a corporate infrastructure that links together and
transcends the single projects by capitalizing on successes and learning from
failures [5]. These tasks require to manage past diagnosis experiences (gathering
a set of heterogeneous artifacts) and to correlate discovered abnormalities with
experiences. This can be achieved with a knowledge based system together with
a well-defined method. We propose to structure the knowledge base around prob-
lem cases. A problem case packages a problem description with related solutions.

Briefly stated, our approach aims to answer the issues above with a general
diagnosis ontology [26], a Verification Organizing System [25], and a domain-
oriented method, the latter being the subject of this paper. Some relevant
parts of the ontology will be presented in Sect. 3.1. The organizing system - an
intentionally arranged collection of resources and the interactions they support
[13] - makes easier the management of verification objects and supports rea-
soning interactions that facilitates diagnosis decisions; some features related to
the method are drafted in Sect. 5.1. The method we propose in this paper relies
on the idea of performing round trips between problem and solution spaces for
improving the verification process. It should help the engineer to bring closer
high-level information and abnormalities observations. It focuses on a progres-
sive constitution of a problem cases knowledge base, containing both problems
and solutions, that can be reused. Solutions are packaging formal designs and ver-
ification runs, and problem cases are formalized with a set of properties together
with a structure of various solutions.



356 V. Leildé et al.

Section 2 overviews background and related work. In Sect. 3, we present the
proposed method, its steps and a straightforward example. Section 4 shows the
application of the method on the mutual exclusion problem. Section 5 discusses
the knowledge base and its services, and Sect. 6 concludes the study.

2 Background and Related Work

Newell and Simon introduced in [28] the problem-space hypothesis: the fun-
damental organization unit of all human goal-oriented activity is the problem
space. M. Jackson introduced the concept of problem frame [21] for presenting,
classifying and understanding software development problems. Problem frames
structure the analysis of the world in which the problem is located - the prob-
lem domain - and describe what is there and what effects one would like a
system located therein to achieve [17]. A problem frame is defined in terms of
its context and the characteristics of its domains, interfaces and requirements
[21]. The problem frame approach allows engineers to build domain expertise
and let practitioners gain experience from this knowledge base. POSE (Prob-
lem Oriented Software Engineering) [18] is an extension and generalization of
problem frames. It is a representation and step-wise transformation of software
problems to progress towards the solution. Software architecture [8], as well as
development framework and design patterns [12] have same goals of knowledge
construction, share and reuse. This kind of knowledge is generally attributed
to the solution space. Compelling arguments justify an early understanding of
stakeholders’ requirements (focus on the problem). Equally compelling argu-
ments justify an early construction of a suitable software-system architecture
(focus on the solution).

Life-cycle model evolved from waterfall models to spiral models. Fine-grained
spiral models are used by agile methods. The cornerstone of these processes is
that developers craft a system’s requirements and its architecture concurrently,
and interleave their development [32]. Researchers from the Open University
proposed an adaptation of the spiral life-cycle model, called the Twin Peaks
Model to emphasize the equal status given to requirements and architecture [17].
The proposed model of software development is an iterative process during which
problem structures and solution structures are detailed and enriched. In this
context, the Open University team sees the use of architectural support as aiding
the focus on the essential design requirements of the problem by allowing design
concerns to be treated more abstractly and to be combined with behavioural
requirements [17]. They extended problem frames towards this end.

To some extent, the method we propose in this paper borrows the Twin
Peaks idea of performing round trips between problem and solution spaces for
leveraging diagnoses.

3 Method

The method focuses on a progressive understanding of the problem. First, this
should help the designer to find rapidly a solution to his/her problem, by



Domain-Oriented Verification Management 357

decomposing the problem in smaller subproblems, and reusing existing solutions.
Second, it should help the verifier to understand the root causes of abnormalities
for a selected solution, by feeding diagnosis task with relevant information. This
section describes formalization of problems, and the different steps of the flow.

3.1 Problem Formalization

According to Venkatasubramanian [33], Abnormal Event Management, a key
component of supervisory control, involves the timely detection of an abnormal
event, diagnosing its causal origins and then taking appropriate supervisory con-
trol decisions and actions to bring the process back to a normal, safe, operating
state. Generally speaking, we have three main tasks; fault detection, diagnosis,
and correction.

Let see the tasks in a model-checking approach. Fault detection establishes
that a system run raises an abnormal event: the exhaustive exploration encoun-
ters a state that violates the property under consideration, the model checker
provides a counterexample, an execution path that leads from the initial system
state to the violating state. Many researchers [4,9,10,14] divide the diagnosis
in two main tasks: isolation (localization) and causal analysis. Isolation extracts
the subset of model parts that needs to be corrected. Causal analysis associates
causes to the observed abnormalities.

These are generally burden tasks, particularly due to a huge amount of unre-
lated information the engineer needs to understand and correlate. One example,
known as the semantic gap, is the discrepancy between formalisms used during
design and low-level traces obtained during verification. Reasoning on problem
cases affords the advantage of raising the level of abstraction to a less technology-
dependent level.

A conceptual model of the domain is given in Fig. 1. The knowledge about a
problem is structured in a problem case. Problem cases aim to understand and
capture both problems and solutions during the design of a software system.
Engineers thus constitute a reusable base of expertise related to their engineer-
ing domain. Problem cases provide models to reason about the chosen solution
and facilitates the diagnosis activity. A problem case is composed of other prob-
lem cases, that are made of propositional objects. Propositional objects comprise
immaterial items that are, or represent in some sense, sets of propositions about
real or imaginary things [11], essentially about the system objects. For instance,
a mutual exclusion algorithm or a counter-example related to a design error
are both propositional objects. Three classes of propositional objects play a key
role during the verification process: design, verification and requirement objects.
Systems under verification are modeled with automata and design objects are
processes, events, transitions and states. Requirement objects are mainly for-
mal properties expressed with LTL and more informal requirements. Verifica-
tion objects are runs and resulting traces when the run failed. Problem cases
are connected together with combination mechanisms, through hooks exposing
connection points. A set of combinations between problem cases may causes
abnormalities, for instance when a problem case property is violated, and thus



358 V. Leildé et al.

Fig. 1. Problem conceptual model

reveals an issue. The issue organizes results in a diagnosis. As a result of previ-
ous work [26], we defined a diagnosis as a structured set of propositional objects
by means of associations of different kinds: causal, nature, evolution.

3.2 Illustration

To illustrate how the conceptual model is used, let us consider the following
example. Suppose a board game with one board and two players. The board asks
an infinite number of questions to each player, in a non deterministic manner.
A player gives either a right answer, that increases its score by one point, or a
wrong answer, and no point is awarded. The match ends when a player reaches
3 points. The behavior of the solution is presented in Fig. 2.

Fig. 2. Initial problem, first design



Domain-Oriented Verification Management 359

Transitions between states conforms to the Event-Condition-Action scheme
represented as Si

{Event}[Condition]Action−−−−−−−−−−−−−−−−−→ Sj. Si and Sj are states, arrows stand
for transitions, labeled with events that cause transitions to be triggered. A
condition is a boolean expression, and an action represents a statement such
as a variable assignment or event sending. When an event occurs, the guard
condition is evaluated and the transition is fired only if the condition is true,
and the action is performed.

The model is made of three processes, the player one, the player two and a
board, and two variables, score one (s1) and score two (s2). Players share the
same behavior. They wait for a question from the board (event p1 is a question
from the board to the player one, and event p2 is a question from the board
to the player two). Each player replies to the board. The response can be right
(event r1 or r2) or wrong (event w1 or w2). When the board is in the idle state
(Bi), it asks a question, either to the player one or the player two (respectively
by sending events p1 or p2), if and only if none of the players have a score equals
to 3 (c1 condition is false). If a question is asked to the player one, the board
goes in state BP1, and if a question is asked to the player two, the board goes in
state BP2. In these states, the board waits for a response, either a right response
(event r1 or r2) and in that case the score is incremented, or a wrong response
(event w1 or w2). When one of the players reaches a score of 3, the board goes
in state EP1 or EP2, and the game is finished.

Fig. 3. Simple problem, second design

This model is not fair because in some cases, the board may ask more ques-
tions to one player rather the other one. To enable fairness, one can modify the
design intuitively, or reuse a shared experience, represented as a problem case. A
turn mechanism consists in memorizing the current entity that is authorized to
do something. The authorized entity changes alternatively, thus, turn is a pos-
sible mechanism for fairness. As depicted in Fig. 3, a turn problem case has two



360 V. Leildé et al.

sides. From the problem side, two properties, PTurn and PChange, ensure that
each entity takes its turn. The solution provides a variable turn, representing
the current turn, and a mechanism to change the turn.

Reusing the turn problem case with the current design can be achieved at
the expense of updating the design and defining suited combinations links. One
relies on connection points called hooks. The turn problem case provides two
hooks, one for changing the turn, and one for retrieving the turn variable.

The combination is a causal set of actions invoked from the Bi state. The turn
change is invoked, then, a new turn value is retrieved, indicating the recipient
for the next question. Since each question causes the change of the turn, fairness
property is held.

The example presented how a problem case is defined, and how it can be
used to produce a new solution. In certain cases combination as a COTS is not
possible, and other mechanisms may be used. In the following section, we present
method steps and various combinations mechanisms.

3.3 Method Steps

The step-wise method is presented by the activity diagram in Fig. 4. The method
is reiterated until a satisfactory solution is achieved.

Fig. 4. Method steps

(1) The problem is formulated as a set of properties and constraints (architec-
tural or technical choices), according to the conceptual model of Fig. 1, and cap-
tured in a knowledge base. For instance, “at the end of the game, each player has
played the same number of times”. (2) The problem is decomposed into subprob-
lems, either known problems - called problem cases - selected from the knowledge



Domain-Oriented Verification Management 361

base, or unknown situations. For instance, “a turn mechanism is used”. (3) When
the need for a concrete view occurs, we move towards the solution space. The
solution elements are organized. For instance, “the turn problem case is intro-
duced into the current solution”. (4) We consider how to combine the selected
problem case with the solution1. The problem case may be either (5) composed
with other parts of the solution, (6) applied as a pattern, or acts only as spec-
ifications and (7) an ad-hoc design is left to the engineer. (8) At this point, we
built a part of the expected solution; hence we are able to start a verification
cycle. When abnormalities are observed, it triggers a diagnosis process. Verifi-
cation results are stored in the knowledge base. (9) When the diagnosis process
is performed, knowledge about problem cases can be used to ease the process.
The design is corrected, and the verification endeavor repeated. In some cases,
the selected problem case does not suit, hence we have to backtrack and rework
the problem cases combination, and it might be useful to keep track of the failed
attempt.

This step-wide method is repeated several times while useful components can
be combined. The engineer is left with a reduced problem for which no known
solution exist and where a classical design and verification activity has to be
done. The method performs roundtrips between two parts, the problem space,
that consists in the problem elaboration, and the solution space, that consists
in design and verifying the solution. While the problem elaboration produces
specification to the solution design, the resulting solution produces expanded
specifications (from design choices) to the problem space. This is similar to the
Twin Peak proposal [17], a software iterative development process that focuses
on the combination of problem structures and solutions structures.

The method applicability is illustrated in the next section onto a mutual
exclusion problem design.

4 Application: Alice and Bob Share a Yard

We borrow our example from an invited talk given by Lamport [22] about two
neighbors, Alice and Bob. Alice and Bob share a yard, but also have dogs, and
naturally they want to let the dogs use the yard. The problem is that these dogs
don’t like each other, and they fight, so only one dog at a time can be in the
yard. To demonstrate how our method can be applied, we build this example
from some initial requirements, and from a minimal set of domain knowledge.

4.1 Domain Description

We suppose that a knowledge base as been defined from previous experiences.
In particular, it contains problem cases related to the mutual exclusion domain
[23,24]. For improving the readability, the i-th property is named Pi and each
state (named Si) in a process (named PRi) is noted PRi@Si.

1 Each kind of combination is represented with a particular arrow shape.



362 V. Leildé et al.

A concurrent system problem case is composed of asynchronous processes,
noted PRi. A basic property is that there be no deadlock; the set of processes
must ensure the property noted PDeadlock.

In the mutual exclusion problem case, each process of the collection alter-
nately executes a critical section noted PRi@CS and a noncritical section noted
PRi@NCS. Two processes cannot execute their critical sections concurrently. A
process structure is composed of the following states: - noncritical (PRi@NCS);
- trying (PRi@T ); - critical (PRi@CS); - exit (PRi@E). Both processes in Fig. 5
conform to the structure.
Mutual exclusion problem case must ensure the following properties: (1)
PMutex: “For any pair of distinct processes PRi and PRj, no pair of oper-
ation executions PRi@CS and PRj@CS are concurrent”. An equivalent LTL
formula is �¬PRi@CS ∧ PRj@CS. (2) PNolockout (starvation free): “In every
execution, if a process PRi is in the trying state PRi@T , then there is a later
state in which that same process is in the critical section PRi@CS”. An equiv-
alent LTL formula is �(PRi@T → ♦PRi@CS).

Because the mutual exclusion problem case is a concurrent system problem
case, it must ensure PDeadlock. If there is a deadlock, it means that “one or
more processes are trying to enter PRi@CS, but no process ever does”. There
is also the possibility that a deadlock occurs because all the processes are stuck
in their PRi@T state.

4.2 First Solution

Problem Formalization. The initial requirements are P1 (and P2 ), when
Alice (or Bob) tries to reach the yard, she(he) must finaly access it, and P3, Alice
and Bob must not be together in the yard. The requirements are formalized in
LTL as P1 : �(Alice@Trying → ♦Alice@Y ard),
P2 : �(Bob@Trying → ♦Bob@Y ard), P3 : �¬(Alice@Y ard ∧ Bob@Y ard).

Problem Decomposition. Following the method, we decompose our problem
and we look for known subproblems. The P3 formula structure is similar to
the abstract formula of mutual exclusion, PMutex : �¬(PRi@CS ∧ PRj@CS),
considering that PRi is Alice, PRj is Bob and CS is the Yard. We make the
assumption that they address the same problem case, and thus new properties
emerge from this assumption, PDeadlock and PNoLockout.

Design and Pattern Application. The design is illustrated in Fig. 5. There
are two processes Alice and Bob, and a shared variable Y ard. The design
applies the mutual exclusion problem case. It gathers a problem side (prop-
erties PMutex, PDeadlock and PNoLockout), and a solution side, that provides
a structure representing one partial solution (NCS, T,CS,E).

Each process (Alice and Bob) conforms to the structure presented in Sect. 4.1.
The behavior is the following: Alice tries to access the yard (Alice@Trying);
then Alice goes into the yard (Alice@Y ard), the Yard corresponds to the CS ;
and finally exit the yard(Alice@Exit). The same goes for Bob.



Domain-Oriented Verification Management 363

Fig. 5. Automata for Alice and Bob 1

Verification and Diagnosis. Verification can be done using several techniques
such as static analysis, theorem proving, or model checking. The later is a formal
technique that, given a formal model of the system and a set of properties,
explores all possible system states in a brute-force manner [3]. If abnormalities
are detected in the design, counter examples are produced, i.e. a trace from the
initial state to an unexpected situation. Then diagnosis is triggered based on the
observations of such traces. We use a model checker to check exhaustively the
properties for this model.

PMutex is violated, indicating that Alice and Bob can be together in the
yard at the same time. Since the structure of mutual exclusion problem case is
applied to Alice and Bob, each element of Alice and Bob can be understood from
the point of view of mutual exclusion problem case.

4.3 Second Solution - Turn

Problem Decomposition. At this point, we need a mechanism to ensure the
access to the critical section. Browsing the knowledge base, we can choose to pick
the turn problem case. From the specification point of view, the turn problem
case is defined by a turn variable, and two properties, PChange: after a process
has finished its execution turn must be changed; PTurn: a process cannot be in
execution if it is not its turn.

Ad Hoc Design. The turn problem case is used to alternate the yard access.
The design is presented with the automata in Fig. 6. The turn mechanism has
to be combined with Alice and Bob structure (NCS → Tr → CS → Ex). We
suppose that the combination is complex enough to require an ad hoc design.
The process that had the last access is stored, using the turn integer variable.
A process checks the value of the turn variable in PRi@Trying statement. If
the value is equal to its personal turn, it is authorized to access the yard. Then,
PRi@Exit statement sets the turn variable to the other process.



364 V. Leildé et al.

Fig. 6. Automata for Alice and Bob using Turn

Verification and Diagnosis. A new run is performed, the requirement
PMutex is verified, but PNoLockout is violated.

Ad hoc design implies that the concepts of an integrated problem are
widespread into the solution. Thus, parts of the problem are difficult to observe.
According to the description of PNoLockout, Bob is continuously trying to
access the yard (Bob@Trying), but cannot pursue in Bob@CS. Indeed, Bob has
not the turn until Alice does not take it. If Alice does not take the turn any-
more (Alice never goes in Alice@Trying state), and if Bob requires the turn,
starvation occurs for Bob.

4.4 Turn Problem Formalization

Turn approach is formalized and stored in the knowledge base as follows.
Turn is defined by a turn variable, followed by the properties: PChange: after
PRi@Exit, turn must be equals to 1 and After PRj@Exit, turn must be equals
to 0; PTurn: PRi cannot be in the PRi@CS if turn is not equals to 0 and PRj
cannot be in the PRj@CS if turn is not equals to 1.

4.5 Using Flags

Problem Decomposition. The turn problem case is interesting if we not con-
sider the PNoLockout property. Another idea consists in sharing the intention
of Alice and Bob to access the yard. This intention can be captured using two
flags, one for Alice and one for Bob. A raised flag means that the person wants
to go in the yard, and reciprocally, a lowered flag means the person does not
need to.



Domain-Oriented Verification Management 365

Design of a New Solution. The new solution is based on an array named
flag of two booleans. The first boolean indicates if Alice want to access to the
Alice@Y ard or not. The second boolean indicates if Bob want to access to the
Bob@Y ard or not. Alice can access to the Y ard if and only if Bob hasn’t raised
his flag. The same goes for Bob. When Alice or Bob are in the yard, she/he
raises the flag. Finally the flag is lowered in the Exit state. The design is
illustrated in Fig. 7.

Fig. 7. Automata for Alice and Bob using Flag

Verification and Diagnosis. A new run is performed, and as a result, a dead-
lock occurs.

Suppose that Alice and Bob are interrupted in their Trying section. At this
point each has claimed for entering in the yard but is not yet sure if the Yard
is in use. Then each of them sees the flag of the other one and wait. Each is
waiting indefinitely for the other, a deadlock has occurred.

4.6 Flag Problem Formulation

Flag approach is formalized and stored in the knowledge base as follows. It
contains an array of two boolean called flags, and a set of following properties:
(1) PRaise, PRi raises its flag in PRi@Trying state, and PRj raises its flag
in PRj@Trying state; (2) PLower, PRi lower its flag in PRi@Exit state and
PRj lower its flag in PRj@Exit state; (3) PWait, PRi cannot access PRi@CS
if flag of PRj is raised, and PRj cannot access PRj@CS if flag of PRi is true.



366 V. Leildé et al.

4.7 Taking Turn and Raising Flags

Problem Formulation. Now, we decide to design a solution that solves all
the problems mentioned above. We know that the property PMutex is fulfilled
either with a turn or a flag. But the first solution violates PNolockout property,
and the second violates PDeadlock property. We try to combine the problem
cases together to fulfill all properties.

Ad Hoc Design. The Flag problem case supposes that a flag raised by a
process indicates its intention to enter in the critical section. The Turn problem
case supposes a priority to enter in the critical section. We combine these two
mechanisms; entering to the critical section is granted for PRi if PRj does not
want to enter the critical section, or if PRj has given up priority to PRi by
setting turn to PRi. The design is given in Fig. 8.

Fig. 8. Automata for Alice and Bob using Flags and Turns

Verification and Problem Reformulation. It turns out that the whole set
of properties are verified, thus the solution is acceptable. Finally, we formulate
our problem of Alice and Bob sharing a yard, as a combination of Concurrent
Process, Mutual Exclusion, Turn and Flag problem cases.

5 Tool Support

The approach is effective when a significant amount of experiences is available.
For capturing experiences, our method must be combined with tools for creating,
storing, querying and retrieving problem cases.



Domain-Oriented Verification Management 367

5.1 A Verification Organizing System

In a previous article [25], we presented the Verification Organizing System (VOS)
“an Organizing System is an intentionally arranged collection of resources and
the interactions they support [13].” The VOS is a three-layered infrastructure
made of a storage tier, a knowledge tier, and an access tier.

The storage tier is characterized by a variety of sources, heterogeneous with
respect to several dimensions concerning form and content properties. It is based
on a Software Configuration Management (SCM) system that controls versioned
artifacts produced. It includes problem cases, gathering no exhaustively verifica-
tion endeavors (run, traces), properties or models.

The knowledge tier, a logic-based, knowledge-rich level, plays the central role
of a shared language to connect people to people, people to information, and
information to information, represented as an ontology. It allows for knowledge
creation, query and inference.

The access tier is used for diagnosis tools interoperability. Heterogeneous
tools can interoperate by the underlying mechanism of model federation [16].

These tools can be classified in three categories, model-based, process-history-
based and interaction-based. Model-based tools assumes that a model of the
system is available [30] allowing to localize the subset of system’s constituents
generating abnormalities. Process history-based tools relies on the availability
of large amount of historical process data, and thus, can be used for extract-
ing knowledge [27], or reasoning [1]. Interaction-based tools allow for observing,
controlling, understanding and altering the system execution. Examples includes
omniscient debuggers [29], or visualization tools [19].

5.2 Knowledge and Inference

Figure 9 illustrates the various artifacts produced at each step of the method.
Problem cases (1) are progressively decomposed into other problem cases (2).
Given the problem case structure, the organizing system can be used for querying
and retrieving problems cases that are the most relevant. This may be achieved,
for instance, according to three tasks, search, initially match, and select [1].
Combining problem cases (4) is achieved with a certain level of automation.
Component integration (5) is the most automated way. Problem cases are on
the shelf solutions connected through well defined connection points. For pattern
application (6), the degree of freedom lies in the rules of application between the
problem pattern and the given solution. Ad hoc design (7) means that the design
is left to the engineer. (8) It shows how the previous combination techniques may
affect the diagnosis task. Possible error locations are represented with black stars.
Component integration mainly results in connections errors, pattern application
mainly generates errors in the rules of pattern application, and ad hoc design
may produce widespread errors. Finally, a solution is kept in the organizing
system. It involves the selection of relevant information from the new problem
case to keep.



368 V. Leildé et al.

Fig. 9. Artifacts produced

6 Conclusion

Designing a solution for a given problem and diagnosing possible faults in the
proposed solution, are tedious tasks. It is mainly due to poorly understood prob-
lem and poorly managed information, that results in a lack of diagnosis support
and solution reuse. Our hypothesis is that a method is required for analyzing the
current problem, storing relevant information, and reusing known solutions as
much as possible. When a new solution is designed, for which abnormalities are
observed, problem cases provide a model for reasoning on the solution problem.
In this paper, we have shown the possibility of applying our approach to a typi-
cal case. Future works will aim to evaluate the approach scalability by applying
it on a real application in a cyber-security context.

References

1. Agnar, A., Enric, P.: Case-based reasoning: foundational issues, methodological
variations, and system approaches. AI Commun. 1, 39–59 (1994)

2. Alrajeh, D., Kramer, J., Russo, A., Uchitel, S.: Automated support for diagnosis
and repair. Commun. ACM 58(2), 65–72 (2015)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, Cambridge
(2008)

4. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: localizing errors in
counterexample traces. ACM SIGPLAN Not. 38, 97–105 (2003)

5. Basili, V.R., Caldiera, G.: Improve software quality by reusing knowledge and
experience. MIT Sloan Manage. Rev. 37(1), 55 (1995)

6. Bertoli, P., Bozzano, M., Cimatti, A.: A symbolic model checking framework for
safety analysis, diagnosis, and synthesis. In: Edelkamp, S., Lomuscio, A. (eds.)
MoChArt 2006. LNCS (LNAI), vol. 4428, pp. 1–18. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74128-2 1

https://doi.org/10.1007/978-3-540-74128-2_1


Domain-Oriented Verification Management 369

7. Bjørner, D.: Software Engineering 3. Texts in Theoretical Computer Science.
An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-
33653-2

8. Buschmann, F. (ed.): Pattern-Oriented Software Architecture: A System of Pat-
terns. Wiley, Chichester, New York (1996)

9. Clarke, E.M., Kurshan, R.P., Veith, H.: The localization reduction and
counterexample-guided abstraction refinement. In: Manna, Z., Peled, D.A. (eds.)
Time for Verification. LNCS, vol. 6200, pp. 61–71. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13754-9 4

10. Cleve, H., Zeller, A.: Locating causes of program failures, p. 342. ACM Press (2005)
11. Doerr, M.: The CIDOC conceptual reference module: an ontological approach to

semantic interoperability of metadata. AI Mag. 24(3), 75–92 (2003)
12. Gamma, E. (ed.): Design Patterns: Elements of Reusable Object-Oriented Soft-

ware. Addison-Wesley Professional Computing Series. Addison-Wesley, Reading
(1995)

13. Glushko, R.J.: Foundations for “organizing systems”. In: Glushko, R.J. (ed.) The
Discipline of Organizing (2012)

14. Groce, A., Visser, W.: What went wrong: explaining counterexamples. In: Ball,
T., Rajamani, S.K. (eds.) SPIN 2003. LNCS, vol. 2648, pp. 121–136. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-44829-2 8

15. Gromov, M., Willemse, T.A.C.: Testing and model-checking techniques for diagno-
sis. In: Petrenko, A., Veanes, M., Tretmans, J., Grieskamp, W. (eds.) FATES/Test-
Com -2007. LNCS, vol. 4581, pp. 138–154. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-73066-8 10

16. Guychard, C., Guerin, S., Koudri, A., Beugnard, A., Dagnat, F.: Conceptual inter-
operability through models federation. In: Semantic Information Federation Com-
munity Workshop (2013)

17. Hall, J., Jackson, M., Laney, R., Nuseibeh, B., Rapanotti, L.: Relating software
requirements and architectures using problem frames, pp. 137–144. IEEE Com-
puter Society (2002)

18. Hall, J.G., Rapanotti, L., Jackson, M.: Problem oriented software engineering: a
design-theoretic framework for software engineering, pp. 15–24. IEEE, September
2007

19. Hamou-Lhadj, A., Lethbridge, T.C.: A survey of trace exploration tools and tech-
niques. In: Proceedings of the 2004 Conference of the Centre for Advanced Studies
on Collaborative research, pp. 42–55. IBM Press (2004)

20. Holzmann, G.J.: The theory and practice of a formal method: NewCoRe. In: IFIP
Congress, vol. 1, pp. 35–44 (1994)

21. Jackson, M.: Problem Frames: Analysing and Structuring Software Development
Problems. Addison-Wesley, Harlow (2001). oCLC: 247895444

22. Lamport, L.: Solved problems, unsolved problems and non-problems in concur-
rency. ACM SIGOPS Oper. Syst. Rev. 19(4), 34–44 (1985)

23. Lamport, L.: The mutual exclusion problem: part I–a theory of interprocess com-
munication. J. ACM (JACM) 33(2), 313–326 (1986)

24. Lamport, L.: The mutual exclusion problem: part II–statement and solutions. J.
ACM (JACM) 33(2), 327–348 (1986)

25. Leilde, V., Ribaud, V., Dhaussy, P.: An organizing system to perform and enable
verification and diagnosis activities. In: Yin, H., et al. (eds.) IDEAL 2016. LNCS,
vol. 9937, pp. 576–587. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46257-8 62

https://doi.org/10.1007/3-540-33653-2
https://doi.org/10.1007/3-540-33653-2
https://doi.org/10.1007/978-3-642-13754-9_4
https://doi.org/10.1007/3-540-44829-2_8
https://doi.org/10.1007/978-3-540-73066-8_10
https://doi.org/10.1007/978-3-540-73066-8_10
https://doi.org/10.1007/978-3-319-46257-8_62
https://doi.org/10.1007/978-3-319-46257-8_62


370 V. Leildé et al.

26. Leildé, V., Ribaud, V., Teodorov, C., Dhaussy, P.: A diagnosis framework for crit-
ical systems verification (Short Paper). In: Cimatti, A., Sirjani, M. (eds.) SEFM
2017. LNCS, vol. 10469, pp. 394–400. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66197-1 27

27. Liu, Y., Xu, C., Cheung, S.: AFChecker: effective model checking for context-aware
adaptive applications. J. Syst. Softw. 86(3), 854–867 (2013)

28. Newell, A., Simon, H.A., et al.: Human Problem Solving, vol. 104. Prentice-Hall,
Englewood Cliffs (1972)

29. Pothier, G., Tanter, É., Piquer, J.: Scalable omniscient debugging. ACM SIGPLAN
Not. 42(10), 535–552 (2007)

30. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95
(1987)

31. Ruys, T.C., Brinksma, E.: Managing the verification trajectory. Int. J. Softw. Tools
Technol. Transf. (STTT) 4(2), 246–259 (2003)

32. Swartout, W., Balzer, R.: On the inevitable intertwining of specification and imple-
mentation. Commun. ACM 25(7), 438–440 (1982)

33. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N.: A review of process fault
detection and diagnosis. Comput. Chem. Eng. 27(3), 313–326 (2003)

https://doi.org/10.1007/978-3-319-66197-1_27
https://doi.org/10.1007/978-3-319-66197-1_27


A Formal Model for Interaction
Specification and Analysis

in IoT Applications

Souad Marir1,2(B), Faiza Belala1, and Nabil Hameurlain2

1 LIRE Laboratory, University of Constantine 2 -Abdelhamid Mehri,
Constantine, Algeria

{souad.marir,faiza.belala}@univ-constantine2.dz
2 University of PAU, LIUPAA, Pau, France

nabil.hameurlain@univ-pau.fr

Abstract. The Internet of Things (IoT) is a concept where connected
entities can work and interact with each other in order to facilitate daily
life. Although, many research efforts in the IoT realm have been to date
devoted to device, networking and application service perspectives, for-
malization and analysis of IoT systems are still in their infancy. This
paper introduces a new BRS-based approach aiming to support specifi-
cation and verification of interaction and interoperability aspects in IoT
systems. The proposed approach is based on a bigraphical-agent model
that investigates the spatial structure of the IoT system and its logical
structure defining the behaviour and interactions of its different entities.
The Tree Query Logic (TQL) is used to formally express and verify some
properties inherent to IoT systems.

Keywords: IoT · BRS · Formal specification · Interaction model
TQL

1 Introduction

The Internet of Things (IoT) is the connection of heterogeneous objects, geo-
graphically separated, consuming and producing data, in order to offer services.
Generally considered as intelligent, IoT systems facilitate considerably every
day life of human beings, with a minimum of intervention, working on inter-
operable networks and reacting to their environment. Developing IoT systems
become more and more challenging; due to the ever growth of technologies,
IoT systems are wider, distributed, heterogeneous, and involve different types
of systems communication. Thus, the interaction between elements of the same
system as well as the interaction between different systems is primordial. Mod-
elling and developing IoT systems can be particularly very challenging for many
reasons. For instance, the architecture of IoT systems relies on many overlap-
ping factors that should be considered earlier in the design phase. The hardware

c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 371–384, 2018.
https://doi.org/10.1007/978-3-030-00856-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_25&domain=pdf


372 S. Marir et al.

and software components dependencies along with the complexity of the IoT
systems architectures, increase significantly the difficulty of modelling these sys-
tems. The aim of this paper is twofold: in one hand, we propose a comprehensive
and a generic formal model for IoT applications, reducing their complexity and
design, using a judicious combination of BRS model and software agents. Our
BCAM4 IoT model (Bigraphical Communicating Agent Model for the Internet of
Things) gives precise semantics to possible interactions that govern the complex
behaviour of these systems. On the other hand, we show how the spatial logic
TQL is used to express and analyse more conveniently some relevant properties
such as: communication, context awareness and interoperability, which repre-
sents a huge interest in the scientific community, we can cite the INTER-IoT
project [1] that aims to allow the interoperability among different IoT platforms,
the VICINITY project [2], that proposes to define the “interoperability as a ser-
vice” for IoT by guaranteeing it in the communication part of an IoT system.

Bigraphical Reactive Systems (BRS) via the bigraph model, defined by Mil-
ner in [3], emphasize on both locality and connectivity in IoT systems. They
propose two types of graphs: a place graph expressing physical/logical location
of IoT components, and a link graph describing their interconnections. Addi-
tionally, BRS are expressive enough to be adopted for representing IoT system
dynamics; in terms of reaction rules. Besides, software agents describe the pos-
sible reasoning of each entity and how it self-adapts to context changes. The
spatial logic TQL [4] has emerging as an interesting tool to describe properties
of several structures. Models for this logic include computational structures such
as heaps, trees, graphs [4], concurrent objects [4] as well as process calculi and
the Ambient Calculus [4].

The remainder of the paper is structured as follows: in the Sect. 3, we present
a multi-levels architecture for IoT, separating physical components (hardware of
software) of IoT systems from logical ones. In this section we also explain the
most important properties of IoT systems, namely interoperability and context-
awareness. In Sect. 4, we introduce the BRS formalism together with the TQL
logic. In Sect. 5, we propose BCAM4 IoT (Bigraphical Communicating Agent
Model for the Internet of Things), a formal model extending the bigraphical
agent one for the IoT in order to deal with interaction aspects in IoT systems.
In Sect. 6, we explain how the two most challenging properties, interoperability
and context-awareness could be expressed and checked in terms of TQL. Section 7
summarises the paper and discusses ongoing work.

2 Related Work

Recently, some approaches in the literature try to apply existing formalisms to
model IoT systems while favouring certain aspects to the detriment of others.
In this section, we cite some distinctive approaches that deal with formal speci-
fication of IoT systems.

Authors of [5] used a model inspired from the nature to specify the behaviour
of distributed and dynamic systems while considering the interaction unities as
a basic concept. IoT applications has been shown just as a case of study.



A Formal Model for Interaction Specication and Analysis 373

In [6], authors propose a runtime model-driven approach focusing on sen-
sor device models description, while our approach focuses on modelling the
behaviour of an IoT system with its physical, logical and interaction parts sup-
porting the modelling of IoT systems and thus they proposed a generic archi-
tecture for IoT systems.

On the other hand, the research work in [7] focused only on the physical part
of an IoT system. Their model supports the heterogeneity of objects and may be
applied to all types of IoT systems. Their contribution lies in the definition of an
ontology that captures the basic considered concepts and models the dynamical
process in a static way.

On another side, there is a few number of works that attempt to check for-
mally models destined to IoT Systems, we can cite authors of [8] that use the
SPIN tool (based on the Linear Temporal Logic LTL), to check whether a smart
house system modelled in petri nets is working properly. In this work, they
focused more on the model checking than on the IoT aspects, it is not specified
how their model supports the IoT systems characteristics, in the opposite of our
proposition, where we try to model IoT systems aspects.

Contrary to the above cited work, our approach consists in modelling the
behaviour of an IoT system, combining the software agents and the bigraphs,
which are formal tools, while emphasizing the aspect of interaction between their
elements. Moreover, we use appropriate spatial logic in order to check some of
their properties.

3 A Multi-levels Architecture for IoT

At a high level of abstraction, IoT applications may be considered as a set of
physical and logical components connected via interaction elements. To master
their complexity, we propose a generic architecture (Fig. 1) dealing with the
separation of the physical part from the logical one, and even the physical part
can be structured hierarchically. Thus, entities of the system will be distributed
between the layers, and charges of each layer are divided through the components
of these layers.

Through this section, we will give, in an incremental manner, the three essen-
tial parts of the proposed architecture: Physical part, Logical part and Interac-
tion part.

3.1 Physical Part

Elements belonging to this part may be classified in four different layers:

1. Hardware: contains input hardware identifying the objects that capture data
from the environment; output hardware for the objects that actuate on the
environment and input/output hardware for the components used to interact
in an eventual network;

2. Abstraction: constitutes an interface, containing all the protocols needed
by the top layers to interact with the hardware components;



374 S. Marir et al.

Fig. 1. Multi-layered architecture for an IoT application

3. Communication: contains protocols of rooting information from the hard-
ware to the software components (and vice-versa), or from one system to
another;

4. Application: divided into two sub layers: the former recognizes the type of
information received, extracts data and gives it an analysable format; the
second sub layer is needed to process the desired IoT application.

3.2 Logical Part

The logical part of this architecture is supported by a set of reactive agents
which behave according to a control loop (observation, analysis, control), each
layer of the physical part (except the hardware one) is managed by one agent
type.

– In the abstraction layer, the agent controls each solicitation of the hard-
ware entities by elements of the layers above and vice-versa. It also decides if
the interaction can occur or not, according to the result of its observation’s
analysis.

– The agent that manages the communication layer is responsible of making
the decisions to send or not information for internal or another system.

– Finally, in the application layer, the agent makes the decisions to make a
perceptible action after analysing the data received and the data produced
by the specific support.

These agents are responsible of the various communications that may exist
between the systems or their components.



A Formal Model for Interaction Specication and Analysis 375

3.3 Interaction Part

In an IoT system, the interactions between objects are the most important con-
cept requiring a particular attention. In this architecture, unidirectional arrows
are used to illustrate these interactions, that may be of two types:

– Agent/Component: In the three high levelled layers of the architecture,
the only interaction defined is between agents and physical components. At
each time, agents obtain some information from a component, analyse it, and
decide to obtain other information from the same component, or to actuate
on another one. Modelling a system with a set of agents involve specifying
the communications between them using interaction protocols. Specifying the
way they interact is interesting and challenging because of their heterogeneity
and autonomy [9]. In [10], we modelled the architecture proposed with its
different aspects, using the formalism of bi-agents, but, we didn’t take care
of the communication between the agents which was the weak point of this
model.

– Component/Component: This kind of interaction exists only between the
abstraction layer entities and the hardware ones. It represents the hardware’s
solicitations of the system’s application side and vice versa. It is shown that
the abstraction agent doesn’t interact directly with the hardware components,
but through interfaces (this allows the heterogeneity of objects needed in real
IoT systems).

The separation of IoT system components using a layered architecture facilitates
its modelling. The interaction between the elements of the system becomes the
most important part to define in order to reduce more this complexity. In the
present paper, by extending an existing architecture [10], we are interested in
modelling and checking the two following properties:

- Interoperability: The definition of interoperability in IoT is currently being
developed, so a standard definition is not yet established. In the following sec-
tions, we consider that interoperability [11] is to deal with the fact that devices
must support interoperable communication protocols and can interact with other
devices and also with the infrastructure;

- Context awareness [11]: It is the ability of the sensor nodes to gain knowl-
edge about the surrounding context, based on the sensed information about the
physical and environmental parameters. The decisions that the sensor nodes take
thereafter are context-aware.

In order to model this architecture formally, according to its hierarchical
aspects, the different types of connections between its entities, and the manage-
ment aspect made by agents, the formalism of bigraphical agents seems to be
the most adequate. Hence, we choose the Tree Query Logic to check the consid-
ered properties using this resulted model. We are motivated by its adaptability
to tree structured models as bigraphical ones. Being a spacial logic, it can be
used for the analyses of a model’s structure as it is given by the properties of
interoperability and context awareness, that are independent of the execution
scenarios. Some aspects related to the formalism of biagent and the TQL are
presented in the next section.



376 S. Marir et al.

4 Basic Concepts

In this section, we briefly recall the formal concepts used to model and check an
IoT system.

4.1 Bigraphical Reactive Systems

A Bigraphical Reactive System (BRS) [3] is the set of bigraphs representing the
states of the system obtained from an initial bigraph, and the reaction rules
applied successively on it. A bigraph, as shown in the Fig. 2 is composed of
two graphs, the place graph used to model the location of physical and logi-
cal components, and the link graph can express the connectivity between the
components:

– The place graph with a set of nodes {v0, v1} and a parent function prnt:sites�
nodes → nodes � regions, the roots are called regions (as 0 and 1 in Fig. 2),
and some special nodes are called sites (dashed boxes 0, 1 and 2 in Fig. 2).

– The link graph is defined also with a set of nodes {v0, v1}, hyperedges e0
and the link function X � ports → hyperedges � Y , where X are the internal
names (oriented to the bottom) and Y the external ones (oriented to the top).

In addition to that, dynamics of an specified system is defined in terms of reaction
rules as explained in [3].

Fig. 2. Example of a bigraph [3] 〈3, {x, y}〉 → 〈2, ∅〉

4.2 The Tree Query Logic

The Tree Query Logic (TQL) [4] is a spatial logic used in order to reason about
eventual updates of tree structures and also permits the model checking of some
relevant properties. The TQL is inspired by the Ambient logic, that describes a
finite unordered labelled trees called information trees, noted, i.t.’s. This logic



A Formal Model for Interaction Specication and Analysis 377

Table 1. Some TQL logical formula [4]

0 The empty information tree

n[A] Single-edge i.t.’s labelled n and leading to a subtree satisfying A

A|B i.t.’s splittable into two i.t.’s satisfying A and B respectively

T All information trees

¬A All i.t.’s not satisfying A

A∧B i.t.’s satisfying A and B

A∨B i.t.’s satisfying A or B

permits the use of the quantifiers ∀ and ∃. To understand well a TQL statement,
The Table 1 contains some notations:

The empty information tree 0 represents the concept of nothing, having an
edge leading to nothing means that there is nothing after. n[A] means that
there is an edge of label n leading to something that is between [ ]. The | is
the most important operator in a spatial logic, it makes the separation between
the elements of the model, if the representation of the model contains at least
one |, that means that the model can be separated into at least two parts. T
helps avoiding repetition. ∧, ∨ and negativity as in all logics are needed for the
expression of most properties.

We can express a formula F and checking it by deciding if a tree T satisfies
this formula, we note F (T � F ). For validating some property, its formula F is
valid, if and only if, non F is not satisfiable, we note ¬(∃T.T � ¬F ).

The formalism of bigraphs is used to model the behaviour and the structure
of a system. In order to verify structural and dynamical properties, spatial and
temporal logics are used respectively. We notice that the structure of bigraphs
can be represented as trees which permits us to use the TQL as a logic of
verification of some structural properties. We see in the Sect. 6 how this can be
done.

5 BCAM4 IoT Model

In this model, we focus on the importance of defining the interaction that
exists between the different elements of an IoT system. Agents in Fig. 1 are
responsible of the communication in an IoT system, our proposed model
should deal with these communication types. This model is formally defined
as: BCAM4 IoT=a

(i)
IoT∗ • BIoT (BCAM for Bigraphical Communicating Agent

Model), where BIoT its structural part is given by the Definition 1, and a
(i)
IoT∗

its virtual part, by the Definition 2.

Definition 1 (The physical structure)

BIoT = (B,R,U, B0, F )



378 S. Marir et al.

– B is the set of bigraphs.
– R is the set of reaction rules.
– U ⊂ VB×R is the set of controls, which is the application of a reaction rule to

a specific node in the bigraph with VB the set of nodes of every bigraph B ∈ B.
– B0 ∈ B is the first bigraph of B.
– F is the control function defining the transition between a bigraph and another

according to a control ui ∈ U.

In the Definition 1, the chosen IoT application is modelled by the set of
bigraphs B. Each bigraph represents a state of the system, and the transition
from a state to another is defined by a control. In order to avoid the non-
determinism of a particular reaction rule, there are controls U that are the
application of a reaction rule to a specific node, in other words, they repre-
sent an action that changes the system’s state according to a specific condition.
B0 ∈ B represents the initial state of the IoT system.

Definition 2 (Virtual structure of BCAM4IoT)

a
(i)
IoT∗ = (O, obs, an, ctr,mgrt, int,U ,D, host0)

– O ⊂ B is the observation space.
– the function of observation obs which provides an observation o ∈ O using a

bigraph and the host of the observant agent: obs(b, h) = o.
– the analysis function that, with an observation or a set of observations and a

host, analyses this host or its sons and returns a decision: an(o, h) = α ∈ D.
– The control function which gives the next succession of rules to be executed,

according to a node, using the result of an analysis: ctr(α) = u ∈ U .
– The migration function that provides the next host of the agent according to

the current host and an observation: mgrt(o, h) = h′.
– the interaction function int, using the decision made α ∈ D and the host of

the agent with whom it interacts, the agent interacts with another one using
this function: int(h, α)

int :VB × D
(h, α)

– U , D and host0 are respectively the space of controls, of decisions and the
initial host of the agent.

The Definition 2 shows how the semantic of an agent in BCAM4 IoT is defined,
each one has:

– A set of observations,
– A set of controls,
– A set of decisions,
– An initial host,
– It observes bigraphs,
– It analyses its observation,



A Formal Model for Interaction Specication and Analysis 379

Fig. 3. Example of a trace

– It interacts with other agents giving them its decision.

The regions App, Com and Ab represent respectively the application, the
communication and the abstraction layers. The nodes GS, SS, ECL and ICL
represent the generic support, the specific support, the external communication
layer and the internal communication layer In BCAM4 IoT, we emphasis that
an agent makes actions according to its context, it analyses its observations and
launches a trace of actions after interacting with agents likely to be influenced
by its decision.

5.1 Example

We consider a case of a collision avoidance system as example, provided with a
radar, a vibrator and a wifi card. We present a simple scenario showing the con-
tribution of BCAM4 IoT to support the definition of the interaction semantics
between agents. For instance, we present the sequence of executions materialized

by the trace: T = B0

R1≺ B1

R2≺ in Fig. 3. Each state of the system is represented by
a bigraph (containing the layers Ab, Com and App), Each layer is represented as
a region (dotted boxes) of the bigraph and sub systems, as ECL (External Com-
munication Layer) and ICL (Internal Communication Layer) are represented by
simple squares. (In the Fig. 3, the agent is not visible). The radar (input) cap-
tures a suspect sound, the abstraction agent captures the sound through the
interface of the radar R1−−→. After its observation obs−−→, it migrates in the informa-
tion node representing the sound (RI)

mgrt−−−→ in order to analyse its content α−→.



380 S. Marir et al.

It interacts with the communication agent giving the resulting decision int−−→:
the sound will be sent to the ICL in order to be formatted, and returns to the
abstraction layer

mgrt−−−→. After that, the ICL formats the information R2−−→ and the
communication agent observes the bigraph representing this state of the system
obs−−→. Before migrating into this format

mgrt−−−→ and analysing the packet α−→, the
communication agent interacts with the application agent int−−→ saying that the
packet will be sent to the general support and returns to its layer

mgrt−−−→. After
this sequence of executions T , the application agent manages the highest layer
and the instructions cascade down to the hardware.

From T , two projection of traces can be defined:

tAbAg = (B0, 0)
R1≺ (B1, 0)

obs≺ (B1, 0)
mgrt≺ (B1, I)

α≺ (B1, I)
int≺ (B1, I)

mgrt≺ (B1, 0)

tComAg =(B1, 1)
R2≺ (B1, 1)

obs≺ (B1, 0)
mgrt≺ (B1, CF )

α≺ (B1, CF )
int≺ (B1, CF )

mgrt≺
(B1, 1)

The trace rules defined in this section may serve to model various evolution
scenarios of IoT systems. Each scenario consists of a sequence of trace rules
applications. In the following section, we proceed to the checking of BCAM4 IoT,
expressing the considered properties of interoperability and context-awareness,
using the TQL logic, and move on to execute the checking process.

6 Formal Analysis

The hierarchical aspect of BCAM4 IoT allows us to use the TQL in order to
express structural properties of some models. These expressions are made in
the purpose of checking our model in terms of a query and its verification.
Here, we are interested by two properties: (i) Interoperability guaranteed by the
verification of three atomic ones PICP, FRI and AI. (ii) Context-awareness.

Presence of Interoperable Communication Protocols (PICP).
This is defined in BCAM4 IoT by the existence of the node ICP (interoperable
communication protocols) in the node ICL (internal communication layer) in the
region 1 (communication layer) of the bigraph representing a state of the system.
This property is represented in the TQL by an information tree (see Fig. 4) and
it is noted:

B[ region [ 1 [ subsystemNode [ ICL [ ICP [0 ] ] ] |T ] ] |T ]

Formatting Raw Information into Packets (FRI).
This is defined in BCAM4 IoT by the ability of the node ICL (internal commu-
nication layer) to format (CF) raw information (RI) into packets. This property
is represented in the TQL by an information tree (Fig. 5) and it is noted:

B[ region [ 1 [ subsystemNode [ ICL [ ICP [0 ] ] | [CF [RI ] ] ] |T ] ] |T ]



A Formal Model for Interaction Specication and Analysis 381

Fig. 4. Formal notation of PICP property

Fig. 5. Formal notation of FRI property

Ability of Interacting (AI).
This is defined in BCAM4 IoT by the fact that all the elements of the physi-
cal layer interact with each other, by the capacity of the abstraction agent to
communicate its decision to the communication agent; from the abstraction layer
(0), to the communication layer (1); and by its influence on the interfaces (input,
input\output and output) of these elements. This property is represented in the
TQL by an information tree as in Fig. 6 and it is noted:

B[ region [ 0 [Agents [AgAb [Operations [ int [ decision [content]] | [ 0 [ 1 ] ] ] |
[ ctr [ interfaceNode [methodes ] ] ] |T] ] ] ] |T]

In the bigraphical representation of AI property, the operations of the agents
are not visible; the following definition of the abstraction agent, especially the
functions int and ctrl, complete the structural definition of BCAM4 IoT with



382 S. Marir et al.

Fig. 6. Formal notation of AI property

the details used to express this property.

aAb
IoT = (O, obs, an, ctr,mgrt, int,U ,D, host0)

Note 1. We notice that the interoperability between the hardware components
of the system is established by making the software components, and their rep-
resentation in the model, interoperable.

The Context Awareness Property: in BCAM4 IoT, this property is defined
as: every Action is triggered in the application layer according to an extracted
information EI made in the general support sub system GG from the raw infor-
mation RI formatted with the communication format CF received from the com-
munication layer and captured previously. So the system must have these three
states to own this property. In the TQL, it is interpreted as follows:

B[ region [ 2 [ subsystemNode [GS [CF [RI ] ] ] ] |T ] |T ]
∧ B[ region [ 2 [ subsystemNode [GS [EI [0 ] ] ] ] |T ] |T ]
∧ B[ region [ 2 [ subsystemNode [A [EI [0 ] ] ] ] |T ] |T]

We propose a representation of the initial state in the TQL noted as follows

B[region[0[input]|[in\out]|[output]|[site]|[Agent[Ab[...]]]]]|[1[subsystemNode[ICL

[ICP [0]]]|[ECL[ECP |PV S]]]|[Agent[com[...]]]]|[2[GS[...]]|[SS[...]]|[Agent[app[...]]]]

For example, if we proceed to the validation of the property PICP in the
initial state, we find that it is true; but if we try to check for FRI in the same
state, it is not valid, because in the initial state of the system, there are no raw
information captured yet.



A Formal Model for Interaction Specication and Analysis 383

7 Conclusion

Development of IoT applications becomes each year more complex and chal-
lenging, this is due to, the highly dynamic cooperation among heterogeneous
things, the need of ensuring interconnectivity of software and hardware (physi-
cal) entities, and the support of a huge scale of interconnected devices. This paper
focused on the use of formal methods to design and specify such applications
by supporting the characteristics of complex, distributed and heterogeneous sys-
tems. We have proposed an extended Biagent model (called BCAM4 IoT), that
inherits the benefits of each of the implied concepts (BRS and software agents).
The BRS have been adopted to specify the physical part of an IoT application
dealing with the spatial distribution, the mobility and the heterogeneity of its
constituents. The Agents allowed to describe the logical reasoning of IoT ele-
ments, a behavioural semantics of an agent in BCAM4 IoT considers various
action types, including observation (of the context), analysis (of possible situa-
tions), control and communication (with each other).

A nice consequence of using a formal model is that trace rules have been
exploited to formally specify IoT systems behaviour, dealing with context-aware
feature and interoperability one. We also showed the adequacy of the TQL logic
to express and validate these important properties. As a future work, we plan
to investigate the formal verification of other IoT inherent properties and also,
implementing a tool that permits the edition of our model BCAM4 IoT, provided
with a model checker which checks the structural and dynamical properties of
an IoT system using the bigraphical logic and the TQL.

References

1. INTER-IoT Project: Inter-IoT - Interoperability Internet of Things (2016). http://
www.inter-iot-project.eu

2. European Platforms Initiative: Vicinity — Open Virtual Neighbourhood Network
to Connect IoT Infrastructures and Smart Objects (2016). https://vicinity2020.
eu/vicinity

3. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, New York (2009)

4. Conforti, G., Ghelli, G., Flesca, S., Greco, S., Saccà, D., Zumpano, E.: Spatial tree
logics to reason about semistructured data. Language 17, 16 (2003)

5. Ikram, A., Anjum, A., Hill, R., Antonopoulos, N., Liu, L., Sotiriadis, S.: Approach-
ing the Internet of Things (IoT): a modelling, analysis and abstraction framework.
Concurr. Comput. Pract. Exp. 27(8), 1966–1984 (2015)

6. Chen, X., Li, A., Zeng, X., Guo, W., Huang, G.: Runtime model based approach
to IoT application development. Front. Comput. Sci. 9(4), 540–553 (2015)

7. Bermudez-Edo, M., Elsaleh, T., Barnaghi, P., Taylor, K.: IoT-Lite: a lightweight
semantic model for the Internet of Things. In: Ubiquitous Intelligence & Comput-
ing, Advanced and Trusted Computing, Scalable Computing and Communications,
Cloud and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 International IEEE Con-
ferences, pp. 90–97. IEEE (2016)

http://www.inter-iot-project.eu
http://www.inter-iot-project.eu
https://vicinity2020.eu/vicinity
https://vicinity2020.eu/vicinity


384 S. Marir et al.

8. Yamaguchi, S., Tsugawa, S., Nakahori, K.: An analysis system of IoT services
based on agent-oriented Petri net PN2. In: 2016 IEEE International Conference on
Consumer Electronics-Taiwan (ICCE-TW), pp. 1–2. IEEE (2016)

9. Chopra, A.K., Singh, M.P.: Multiagent systems (2011)
10. Marir, S., Kitouni, R., Benzadri, Z., Belala, F.: BiAgent-based model for IoT appli-

cations. In: Braubach, L., Murillo, J.M., Kaviani, N., Lama, M., Burgueño, L.,
Moha, N., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10797, pp. 111–123. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91764-1 9

11. Ray, P.P.: A survey on Internet of Things architectures. J. King Saud Univ. Com-
put. Inf. Sci. 30(3), 291–319 (2016)

https://doi.org/10.1007/978-3-319-91764-1_9


Mechanizing the Denotational Semantics
of the Clock Constraint Specification

Language

Mathieu Montin1,2 and Marc Pantel1,2(B)

1 Université de Toulouse, Toulouse INP, IRIT, Toulouse, France
{mathieu.montin,marc.pantel}@enseeiht.fr

2 CNRS, Institut de Recherche en Informatique de Toulouse (IRIT), Toulouse, France
http://montin.perso.enseeiht.fr, http://pantel.perso.enseeiht.fr

Abstract. Domain Specific Modelling Languages provide the designers
with appropriate languages for the task they must conduct. These ded-
icated languages play a key role in popular Model Driven Engineering
(MDE) approaches. Their semantics are usually written in a semi-formal
manner mixing natural language and mathematical notations. The mech-
anization of these semantics rely on formal specification languages. They
are usually conducted in order to assess the correctness of verification
and transformation tools for such languages. This contribution illustrates
such a mechanization for the Clock Constraint Specification Language
(CCSL). This language allows to model the timed concurrency concern
in the MARTE UML profile and was designed to be easier to master than
temporal logics for the system engineers. Its semantics has been defined
in the usual semi-formal manner and implemented in the TimeSquare
simulation tool. We discuss the interest of this mechanization and show
how it allowed to prove properties about this language and ease the def-
inition of a refinement relation for such models. This work relies on the
Agda proof assistant and is presented accordingly.

Keywords: DSML · Semantics mechanization · Proof assistants
CCSL

1 Introduction

As systems are getting more and more complex, a strong separation between the
various concerns in a system has become a major requirement. Specialists of each
engineering domain define their views of the system in their own language, called
a Domain Specific Modelling Language (DSML) and these views are then inte-
grated. There are two main drawbacks of this approach: first, these languages,
and especially their semantics, are usually defined in a semi-formal way, thus
complicating their common understanding; and second, many properties are not
preserved during the integration of the various parts as the same concerns are

c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 385–400, 2018.
https://doi.org/10.1007/978-3-030-00856-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_26&domain=pdf


386 M. Montin and M. Pantel

expressed in different DSMLs. Thus, if each concern in different views satis-
fies some requirements, there is no guarantee the concern of the whole system
combining these views will satisfy the same requirements.

A promising approach to tackle this problem is to abstract the common
concerns from the various parts expressed in different DSMLs in a common
DSML. It allows to reason over this single DSML instead of the different DSMLs
of the various views. Then, the whole semantics of this common DSML should
be defined in a formal manner to provide a formal semantics for the concern
in each DSML. The Clock Constraint Specification Language (CCSL) from the
UML MARTE standard, developed by the AOSTE team from INRIA, provides
such a user dedicated language for the concurrency concern. Its operational
semantics is defined as an interpreter in the TimeSquare tool-set, but it lacks
a mechanized denotational semantics to formalize its underlying concepts and
conduct proofs both on models and associated tools, which is the core purpose
of this work. An added value of this mechanization is that it allowed to detect
several issues in the semi-formal CCSL denotational semantics.

This papers starts by defining core aspects of CCSL: The instants which
represent the event occurrences, the strict partial orders binding these instants
together, the clocks which are entities linking the instants to the actual modelled
concerns and finally more advanced concepts such as relations and expressions
around clocks to reach constraints definitions.

This work has been done using the Agda proof assistant (a language and
tool-set developed by Ulf Norell). Since a semi-formal denotational semantics
of CCSL already exists, the accent will be made throughout this paper on the
choices made to fit Agda. Pieces of Agda code will be given to point out different
aspects in our mechanization. They depict either data structures, definitions or
properties. Their representation in this paper is partial and some details have
been omitted to make them more understandable. These omissions include some
levels of universe, the explicit substitution for some implicit parameters as well as
some operators used to adapt the types of some terms. This last family of hidden
details is useful in the actual development because the relations and functions
are defined on instants where clocks tick, which are represented as pairs of values
(the witness instant and the proof that the clock ticks on that instant, encoded
as ∃ types). The whole development is available on the first author’s web page.

2 Representation of Time

2.1 Instants

The main underlying concept of CCSL is the instants. Informally, an instant is
a point in a time-line where events can occur (dually a time-line is a sequence
of strictly ordered instants). It fits the common understanding of events that
occur at a specific time and can be preceded or followed by occurrences of other
events. This vision of time is usually modelled using numbers (real numbers
or integers) to represent such instants because they are totally ordered. In dis-
tributed systems however, this vision is usually unsuitable because these total



Mechanizing CCSL 387

orders, however existent, cannot be observed. Only a partial representation of
time can be specified and leads to the use of partial order to model time, which
will be briefly described later on. This means that the use of numbers to repre-
sent time is not any more relevant than any other abstract set. In operational
semantics, they will be used again because a specific linearisation of time is cho-
sen but this is not the case in our work. For this reason, instants in our work
is an unspecified Agda type - named Support, while Instant is the name of the
algebraic structure it forms when coupled with a partial order.

2.2 Strict Partial Orders

The common vision of a unique time-line on which events occur implies that
two instants are always comparable precedence-wise (like numbers with their
common order relation). However, in distributed systems, there is no global
clock, and only some events can be compared to each other. Partial orders are
thus used to represent the possible relations between the instants. In CCSL, each
pair of instants is either strictly comparable, through a precedence relation ≺,
equivalent, through a coincidence relation ≈ or neither of them.

2.3 CCSL Specification

In this work, instants are represented as a classic set with an unspecified strict
partial order relation. Every CCSL construct specified in Agda is expressed using
this set, which is passed as a parameter to the different modules. This view is
different from the CCSL creators’ one, who see the instants of a system (the
Time Structure [15]) as the union of all the instants on which the different
clocks tick. This vision, synthesizing the Support set from the clocks, is not
suitable for both denotational semantics and tools like Agda. Indeed, sets are
not axiomatic in Agda and are emulated by predicates which are not usual sets
as seen in the ZFC theory. Thus, we had to change the status of the instants and
the associated Time Structure. This vision is more abstract and more suitable
to building generic proofs. It is then possible to assess if a given operational
semantics behaves as an instance of this more formal semantics.

3 Clocks

3.1 Intuitive Definition

A clock is an entity that tracks the occurrences of a specific event in a given sys-
tem. A clock ticks whenever (i.e. at every instant) the event it represents occurs.
Such a system is represented by a set of clocks representing any possible event
that can occur during its execution. Each clock usually ticks an infinite num-
ber of times – can be both ℵ0 (countable clocks representing discrete or dense
time) or ℵ1 (uncountable clocks representing only dense time)– and is partially
represented in a time-line such as Fig. 1. Discrete time means that, between two



388 M. Montin and M. Pantel

ordered instants, there exists only a finite number of other instants. Dense time
means that, between two ordered instants, there exists always an infinite number
of other instants. In this example, the clock called c ticks three times during the
portion of time depicted in the diagram. The ticks are separated by a certain
amount of time, unspecified – there is no scale on the diagram – because such a
system is usually asynchronous. Thus, the only relevant information depicted in
this diagram is that the event tracked by c occurred at least three times through-
out the lifetime of the system. This is however a very poor information which
must be completed with the addition of other clocks and constraints between
them.

c

Fig. 1. An example of a clock c

3.2 Formal Definition

Formally, a clock is an Agda record which contains a subset of instants (the ones
on which it ticks) and the proof that these instants are totally ordered:

record Clock : Set where
constructor

[_◦_]
field

Ticks : Pred Support
TicTot : IsStrictTotalOrder {A = ∃ Ticks} (_≡_ on proj1) (_≺_ on proj1)

This clock record provides a constructor – [ ◦ ] – to build a clock and two
fields – Ticks and TicTot. The first field is a predicate (Pred) on the instants to
encode the subset on which the clock ticks, and the second is the proof that the
ticks of the clock are totally ordered (IsStrictTotalOrder). The constructor
has two underscores where its parameters will be placed – Assuming t is a subset
of instants and tot is the proof that the underlying partial order form a strict
total order on this subset of instants, then [ t ◦ tot ] is a Clock. Note that the
underlying set of this strict partial order is ∃ which can be seen as the subset of
instants on which the clock ticks. More technically, ∃ is the type of elements of
the form (x, Tx) where x is an instant and Tx the proof that the clock ticks on
x. The underlying relations of the strict partial order are the projections of the
coincidence and precedence relations – of the partial order binding the instants
– on the first element of these couples. For instance, ≡ on proj1 is defined this
way: (x, Px) ≡ (y, Py) on proj1 ⇔ x ≡ y.

4 Relations

4.1 Definition

In a complex and possibly heterogeneous system, many events – hence many
clocks – can be identified. An important aspect of CCSL is that it does not handle



Mechanizing CCSL 389

differently complex and heterogeneous systems (in a way, in CCSL, each system
is heterogeneous compared to the atomistic description of each event it pro-
vides). Each clock taken separately does not offer many interesting information
about the whole system, but bound together, they provide useful specification
about its global behaviour. This binding can be given as relations that constrain
the execution of the system and, in our framework, are described as predicates
over two clocks (mathematical relations). They enforce an order between some
instants by requiring some of them to be bound by precedence – red arrows – or
by coincidence – dashed blue lines – as depicted in Fig. 2. A relation holds, by
default, for the lifetime of the system. The global Agda type for relations is:

Relation : Set
Relation = Clock → Clock → Set

Any predicate over two clocks (any set of couples of clocks) is a clock relation.

c1

c2

Fig. 2. Some instants are bond

4.2 Main Relations

CCSL provides several relations. Some are defined on generic clocks (both dense
and discrete). Others are restricted to discrete clocks. This paper only handles
the first kind presented in this section. The other kind is the object of a future
work.

Strict Precedence. A clock c1 is said to strictly precede another clock c2 when
each consecutive ticks of c2 is strictly preceded by a distinct and consecutive ticks
of c1. Note that the “consecutive” word can only refer to discrete clocks. In dense
clocks, the equivalent is that every ticks of c1 placed between two mapped ticks
must be mapped as well. This mapping refers to the precedence function that
binds the instants of the two clocks together. This function will be described
more formally later on. Before getting to the formal definition of this relation,
let us consider some examples in Figs. 3, 4 and 5.

c1

c2

Fig. 3. A standard precedence example



390 M. Montin and M. Pantel

c1

c2

Fig. 4. A specific precedence example

c1

c2

Fig. 5. An incorrect precedence example

In Fig. 3, each instant of c2 is mapped to an instant of c1 in a way that the
precedence relation looks obvious. However, this definition does not require this
mapping to be bijective, which means c1 could have additional ticks that are
not mapped to ticks of c2. If these ticks occur after the ones mapped to c2, like
on Fig. 4, the precedence is still well-formed, as opposed to Fig. 5 where they
are placed in between mapped ticks, thus compromising the relation. One can
observe that this problem could be avoided by changing the mapped instant
such that the additional ticks are always positioned as on Fig. 3. This seems
obvious when the number of ticks is finite, yet not so much when it is not.
The current paper version of CCSL denotational semantics does make that last
distinction between a well-formed and ill-formed precedence. This was an issue
that our mechanization work has revealed. This will be tackled in future versions
of CCSL and TimeSquare.

The precedence relation requires the existence of a function h which maps
the instants of c2 with the corresponding instants of c1. It is defined as follows:

1 [_]_�_ : (_ → _) → Relation
2 [ h ] [ Tc1 ◦ _ ] � [ Tc2 ◦ _ ] = ∀ (i j : ∃ Tc2) p →
3 (h i ∈ Tc1 × h i ≺ i) ×
4 (i ≺ j → h i ≺ h j) ×
5 (p ∈i � h i - h j � → ∃ λ (k : ∃ Tc2) → h k ≈ p)

This definition is composed of three predicates, at lines 3, 4 and 5. The first
one – line 3 – ensures that all ticks of c2 are mapped with ticks that respect the
required precedence; the second one – line 4 – ensures that the binding function
preserves the precedence order; the third one – line 5 – ensures that there is no
unmapped instants between two mapped instants. The ∀ is a syntactic sugar to
introduce quantities while × can be seen as the logical “and” and the brackets
are delimiters for an interval. As a consequence of this definition, two clocks
are related by precedence if there exists a function such that they are related
through it:

_�_ : Relation
c1 � c2 = ∃ λ h → [ h ] c1 � c2



Mechanizing CCSL 391

The λ here is a syntactic element used to introduce a new variable h in the
context from an existence proof (∃). This definition is transitive, and such a
transitivity has been proven in the framework, but is not presented here.

Non-strict Precedence. The non-strict precedence allows two mapped
instants to be coincident, thus the underlying relation is � instead of ≺ .
This relation is mostly similar to the strict precedence and will not be detailed
thoroughly. A simple example is given in Fig. 6.

c1

c2

Fig. 6. An example of non-strict precedence

The Agda definition is the same as the strict precedence, except for the
substitution of the strict relation by the non-strict one. This relation has been
proven transitive as well. The two proofs are factorized through the abstraction
of the underlying relation (as well as are the definitions).

Subclocking. A clock c1 is said to be a subclock of a clock c2 when every ticks
of c1 is coincident to a tick of c2. It means that whenever c1 ticks, c2 ticks as
well. Figure 7 shows an example of subclocking.

c1

c2

Fig. 7. c1 is a subclock of c2

The Agda definition of this relation is as follows:

_�_ : Relation
[ Tc1 ◦ _ ] � [ Tc2 ◦ _ ] = ∀ (x : ∃ Tc1) → ∃ λ (y : ∃ Tc2) → x ≈ y

It states that whenever c1 ticks on an instant x1 – ∀ (x : ∃ Tc1) – there
exist an instant x2 on which c2 ticks – ∃ λ (y : ∃ Tc2) – which coincides with
x1. This relation is transitive:

trans� : ∀ {c1 c2 c3} → c1 � c2 → c2 � c3 → c1 � c3
trans� c1c2 _ x with c1c2 x
trans� _ c2c3 _ | y , _ with c2c3 y
trans� _ _ _ | _ , x≈y | z , y≈z = z , trans≈ x≈y y≈z



392 M. Montin and M. Pantel

This proof uses a with construct which allows to add new quantities to
the context – and usually case split on them. It relies on the transitivity of the
underlying coincidence relation and combines it with the two inputs representing
the subclocking proofs.

Alternation. There are some cases where precedence is not enough to fully
express the semantics or their relation. In Fig. 8, the clock c1 ticks a third time
before the clock c2 ticks a second time.

c1

c2

Fig. 8. The precedence is insufficient

There are some cases where this kind of behaviour might be unwanted and
must be forbidden accordingly, forcing the clocks to be further constrained. This
additional constraint coupled with the original precedence is called alternation.
Two clocks are said to be alternated when one precedes the other in such a way
that two ticks of a clock cannot occur in between two ticks of the other one. Note
that the underlying precedence has to be strict for the relation to be consistent.
A non-strict precedence would lead to ill formed cases of alternation. In this
case, the trace of our system is actually the one presented on Fig. 9.

c1

c2

Fig. 9. c1 alternates with c2

In our framework, this relation is defined as follow:

_�_ : Relation
c1 � c2 = ∃ λ h → [ h ] c1 � c2 × (∀ (x y : ∃ (Ticks c2)) → x ≺ y → x ≺ h y)

c1 alternates with c2 when the two following predicates hold: there exists a
function h such that c1 strictly precedes c2 through h; and h satisfies a certain
predicate through the precedence relation, hence enabling the alternation instead
of the simple precedence. It is thus trivial that alternation implies precedence.



Mechanizing CCSL 393

c1

c2

Fig. 10. c1 is equal to c2

Equality. Two clocks c1 and c2 are equal when they only tick on coincident
instant. It means that if c1 ticks on i then there exists an instant j which coincides
with i and where c2 ticks. An example is represented in Fig. 10.

This definition is exactly equivalent to a double subclocking:

_�_ : GlobalRelation
c1 � c2 = c1 � c2 × c2 � c1

This relation has been proven to be an equivalence.

Exclusion. Two clocks are in exclusion when they have no coincident ticks. An
example of exclusion is given on Fig. 11.

c1

c2

Fig. 11. c1 is in exclusion with c2

The Agda definition is the following:

_�_ : Relation
[ Tc1 ◦ _ ] � [ Tc2 ◦ _ ] = ∀ (x : ∃ Tc1) (y : ∃ Tc2) → ¬ x ≈ y

This definition consists of a predicate that for any x and y, if c1 ticks on x
and c2 ticks on y, then x and y are not coincident.

5 Expressions

5.1 Definition

CCSL allows the definition of new clocks from existing clocks, which is acceptable
from an operational point of view. Creating new clocks usually sets an arbitrary
order between the instants on which the underlying clocks are ticking, which
means that instants apparently independent are getting related because a new
clock is created out of them. The common example is the union. The union of
two clocks ticks whenever one of the two clocks ticks. Since a clock has a total



394 M. Montin and M. Pantel

order on its ticks, the ticks of the union must be totally ordered, which leads to
a total order on the ticks of the two other clocks. In our denotational framework,
everything is already existing, thus we cannot create such new clocks. We assume
they already exist and propose to relate them using predicates to state that a
clock could be the result of such operation. To better comprehend this notion, let
us take the example of the addition between natural numbers. One can say that
3 is the result of the operation 1 + 2 while another point of view could be that
the triplet (3,2,1) is a member of the addition. We take the second point of view
to better match the denotational aspect of our work. The type of expressions is
thus defined as a relation between three clocks:

Expression : Set
Expression = Clock → Clock → Clock → Set

5.2 Examples of Expressions

Intersection. A common expression on clocks is the intersection. The clocks
which results from the intersection of two clocks only ticks on each instant where
they simultaneously tick:

_≡_∩_ : Expression
[ Tc ◦ _ ] ≡ [ Tc1 ◦ _ ] ∩ [ Tc2 ◦ _ ] =

(∀ (x : ∃ Tc) → ∃ λ (y : ∃ Tc1) → ∃ λ (z : ∃ Tc2) → x ≈ y × x ≈ z) ×
(∀ (y : ∃ Tc1) (z : ∃ Tc2) → y ≈ z → ∃ λ (x : ∃ Tc) → x ≈ y)

This first part of this predicate states that whenever c ticks on an instant i,
there exists two instants j and k which are coincident to i and on which both
c1 and c2 ticks respectively. The second part states that if c1 ticks on i, c2 ticks
on j, and if these instants are coincident, then c ticks on an instant coincident
to them. Figure 12 shows an example of intersection.

c

c1

c2

Fig. 12. An example of intersection

Union. The following predicate explains what it means for a clock to be the
union of two other clocks.

_≡_∪_ : Expression
[ Tc ◦ _ ] ≡ [ Tc1 ◦ _ ] ∪ [ Tc2 ◦ _ ] =

(∀ (x : ∃ (Tc1 ∪ Tc2)) → ∃ λ (y : ∃ Tc) → x ≈ y) ×
(∀ (y : ∃ Tc) → ∃ λ (x : ∃ (Tc1 ∪ Tc2)) → x ≈ y)



Mechanizing CCSL 395

The first part of this predicate states that if either c1 or c2 ticks on an instant
x then there exists an instant y coincident to x on which c ticks. The second part
states that if c ticks on an instant y then there exists an instant x coincident to
y and on which either c1 or c2 ticks. Figure 13 is an example of union.

c

c1

c2

Fig. 13. An example of union

Note that in our framework and example, the clock c happens to be consistent
with the idea of the union of c1 and c2, but it is not the result of any operation.

Other Expressions. There exists a lot of other expressions (either fundamental
or derivative), some of them depending on the death instant, some other being
induced by a natural number. None of them will be detailed in this paper, whose
goal is not to present all CCSL constructs, but to explain the ideas behind their
mechanization.

6 Properties

One advantage of mechanizing a semi-formal semantics is that this one can be
validated by proving algebraic properties of the various operators, thus improving
confidence in the language definition.

6.1 Goal

A CCSL specification is a set of constraints applied to a set of clocks. These con-
straints can be either relations or expressions, since both of these can influence
the underlying ordering of the instants. The goal of this work is not to solve a
set of constraints (this is done by the INRIA TimeSquare tool) but to provide a
mechanized semantics for CCSL. It can be used to define and validate additions
to the language that may remain unclear or unspecified in a paper version. One
of these additions is the instant refinement, which is available at [11]. Regard-
ing a CCSL specification, one of the goals of our work is to reduce the set of
constraints it contains. For instance, if one of the constraints in the set can be
deduced from the other one, it should be removed. Another example is if one
of the clocks needs to be hidden from the specification, all constraints linked to
it must disappear without any loss of information regarding the other clocks.



396 M. Montin and M. Pantel

In both cases, we need properties relating the different constraints in order to
achieve some unifications between them.

Moreover, we also need these properties to assess the correctness of our deno-
tational semantics regarding the common behaviour one expect about clocks,
relations and expressions. This section presents some of the ones we proved in
our framework. Most of these properties are not conceptually challenging, but
the proofs are not necessarily simple, and will not always be fully detailed. For
instance, the transitivity properties have already been mentioned and will be
left out of this section. It is important to understand that these properties are
fundamental because they are the foundation on which more advanced use cases
could be built.

6.2 Examples of Properties

Subclock and Exclusion. If c1 is in exclusion with c3 and if c2 is a subclock
of c3 then c1 is in exclusion with c2 as well. This is intuitive since c2 ticks at
most each time c3 ticks. This can be expressed and proven in Agda:

excluSub : ∀ {c1 c2 c3} → c1 � c3 → c2 � c3 → c1 � c2
excluSub _ c2�c3 _ y _ with c2�c3 y
excluSub c1�c3 _ x _ x≈y | z , y≈z = c1�c3 x z (trans≈ x≈y y≈z)

The Union Is Commutative. If c can be viewed as the union of c1 and c2
then it can also be viewed as the union of c2 and c1. To prove this property, we
need to be able to swap a sum of types, which is done by the following function:

flipSum : ∀ {a b} {A : Set a} {B : Set b} → A � B → B � A
flipSum (inj1 x) = inj2 x
flipSum (inj2 y) = inj1 y

Here inj1 and inj2 are the two constructors allowing to build an element of
a sum of types (either from an element of the first or second type). This leads
to the commutativity proof:

comUnion : ∀ {c} → Symmetric (c ≡_∪_)
comUnion (prop1 , prop2) = (λ {(x , Tx) → prop1 (x , flipSum Tx)}) ,

(λ y → case prop2 y of λ {((x , Tx) , x≈’y) → (x , flipSum Tx) , x≈’y})

Union and Subclocking. We can prove that each component of a union is a
subclock of the union. This can be proved in both ways (for both clocks) using
the symmetry of the union.

subUnionl : ∀ {c c1 c2} → c ≡ c1 ∪ c2 → c1 � c
subUnionl (prop1 , _) (x , Tc1x) = prop1 (x , inj1 Tc1x)

subUnionr : ∀ {c c1 c2} → c ≡ c1 ∪ c2 → c2 � c
subUnionr p = subUnionl (symUnion p)



Mechanizing CCSL 397

Unicity of Union. We can prove the union is unique relatively to the clock
equality defined earlier. We start by proving that if two clocks correspond to the
same union, one is a subclock of the other.

uu : ∀ {c0 c c1 c2} → c0 ≡ c1 ∪ c2 → c ≡ c1 ∪ c2 → c � c0
uu (_ , _) (_ , prop4) x with prop4 x
uu (prop1 , _) (_ , _ ) _ | y , _ with prop1 y
uu (_ , _) (_ , _ ) _ | _ , x≈y | z , y≈z = z , trans≈ (sym≈ x≈y) y≈z

We conclude by applying the previous property both ways.

unicityUnion : ∀ {c0 c c1 c2} → c0 ≡ c1 ∪ c2 → c ≡ c1 ∪ c2 → c � c0
unicityUnion p q = uu p q , uu q p

Commutativity of Intersection. The intersection is also commutative:

comInter : ∀ {c} → Symmetric (c ≡_∩_)
comInter (prop1 , prop2) =

(λ x → case prop1 x of λ {(y , z , x≈y , y≈z) → z , y , y≈z , x≈y}) ,
(λ y z x → case (prop2 z y) (sym≈ x) of λ {(t , t≈z) → t , trans≈ t≈z (sym≈ x)})

Intersection and Subclocking. If c is enforced to be the intersection of c1
and c2, then c is a subclock of both of them, which can be proven.

subInterl : ∀ {c c1 c2} → c ≡ c1 ∩ c2 → c � c1
subInterl (prop1 , _) x with prop1 x
subInterl (_ , _) _ | y , _ , x≈y , _ = y , x≈y

subInterr : ∀ {c c1 c2} → c ≡ c1 ∩ c2 → c � c2
subInterr c≡c1∩c2 = subInterl (symInter c≡c1∩c2)

Unicity of Intersection. As for the union, we can prove that the intersection
is unique.

ui : ∀ {c0 c c1 c2} → c0 ≡ c1 ∩ c2 → c ≡ c1 ∩ c2 → c � c0
ui (_ , _ ) (prop3 , _) x with prop3 x
ui (_ , prop2) (_ , _) _ | y , z , x≈y , x≈z with prop2 y z (trans≈ (sym≈ x≈y) x≈z)
ui (_ , _ ) (_ , _) _ | _ , _ , x≈y , _ | t , t≈y = t , trans≈ x≈y (sym≈ t≈y)

unicityInter : ∀ {c0 c c1 c2} → c0 ≡ c1 ∩ c2 → c ≡ c1 ∩ c2 → c � c0
unicityInter p q = ui p q , ui q p

Intersection and Union. As a consequence, we can prove that the intersection
is a subclock of the union, using the transitivity of the subclocking.

subInterUnion : ∀ {c0 c c1 c2} → c0 ≡ c1 ∩ c2 → c ≡ c1 ∪ c2 → c0 � c
subInterUnion c0≡c1∩c2 c≡c1∪c2 = trans�’ (subInterl c0≡c1∩c2) (subUnionl c≡c1∪c2)



398 M. Montin and M. Pantel

7 Related Work

We provide a mechanization of the semantics of CCSL in a proof assistant. As
such, this approach could be reused for other concurrent languages. Such a work
has already been done using different kind of formal methods, for example [7]
using Higher Order Logic in Isabelle/HOL; [6,13] using the Calculus of Inductive
Constructions in Coq, whose description can be found in [2]. The use of Agda
in this development is motivated by the expressiveness of the language coupled
with its underlying unification mechanism - in other words, Agda allows, for
instance, to pattern-match on the equality proof, thus unifying its operands.
This provides an interactive proof experience that other tools that do not provide
unification lacks: Agda, as opposed to Coq, does not rely on the application of
tactics to inhabit types, but gives a well-designed framework to build them in
interaction with the type checker and unifier. More on Agda can be found in
[3,8,12]. Although they differ from these two aspects, both of these tools rely on
the same underlying intuitionist type theory, first described in [9] and clarified
in [10].

The denotational semantics of CCSL on which this work is based can be
found in [4]. TimeSquare, the tool developed to describe CCSL systems as well
as solve constraint sets has been presented in [5]. As for CCSL itself, it was
first presented in [1]. Although our semantics aims at being the same as the
paper version, it differs through the way it has been expressed, to best suit the
constraints and the possibilities offered by Agda. An example of differences is
the handling of the notion of TimeStructure - see [15] - which was translated
from a constructive mathematical set theory to a generic type to better match
the use of a type theory. Other attempts at giving semantics to languages like
CCSL have been developed, such as a promising approach to give an operational
semantics to TESL that can be found in [14].

8 Conclusion

8.1 Summary

In this work, we have proposed a mechanization of CCSL in Agda. We have
clarified some notions inherent to this language (and even detected and cor-
rected an issues in the paper version of the denotational semantics), and have
proposed ways of encoding it in a proof assistant. Details about the lifetime of a
clock, encoded as a birth instant and a death instant have been omitted. Their
presentation would not have been suitable to this article. However, they have
been encoded in the framework and will be presented in another paper. This
work stands as an example of mechanization in Agda for a concurrent language,
as well as an attempt to provide the CCSL developers with a complete mecha-
nized semantics from which different features could eventually be extracted, as
explained in the next section.

We advocate that mechanizing such semantics is mandatory when studying
complex languages and systems, as standard paper semantics suffer from a lack
of precise and complete formal and assisted verification.



Mechanizing CCSL 399

8.2 Future Work

This work brings different perspectives that would complete and extend both
CCSL and our semantics:

– We will define and prove as many properties as possible over the relations and
the expressions defined in CCSL, in order to provide a correct way to reduce
the set of constraints related to a certain specification. This will be done by
computing derived constraints and comparing them to those that have been
provided in the set.

– We are currently extending the language through the definition of instant
refinement [11] in order to ultimately encode the notions of simulation, bisim-
ulation and weak bisimulation in the framework to get a better hold over
them. It requires to consider sets of clocks and the relations that bind them.

– We will go deeper into the definition of the birth and death instants to handle
some difficulties that emerge with these notions. For instance, they induce the
loss of some algebraic properties which we would like to handle properly.

– We will handle relations and expressions specific to discrete clocks. This
requires to properly model these clocks which can be defined on infinite sets
of instants while necessarily having a finite set of ticks. This is currently being
investigated through the use of extensional equalities.

Acknowledgement. The authors would like to thank the CCSL team at INRIA for
providing them with their time and valuable expertise regarding this language.

References

1. André, C., Mallet, F.: Clock Constraints in UML/MARTE CCSL. Research Report
RR-6540, INRIA (2008)

2. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development -
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, Heidelberg (2004)

3. Bove, A., Dybjer, P.: Dependent types at work. In: Language Engineering and
Rigorous Software Development, International LerNetALFA Summer School 2008,
Piriapolis, Uruguay, February 24–March 1 2008, Revised Tutorial Lectures, pp.
57–99 (2008)

4. Deantoni, J., André, C., Gascon, R.: CCSL denotational semantics. Research
Report RR-8628, INRIA (2014)

5. Deantoni, J., Mallet, F.: TimeSquare: treat your models with logical time. In:
TOOLS - 50th International Conference on Objects, Models, Components, Pat-
terns - 2012 (2012)

6. Garnacho, M., Bodeveix, J., Filali-Amine, M.: A mechanized semantic frame-
work for real-time systems. In: Proceedings of Formal Modeling and Analysis of
Timed Systems - 11th International Conference, FORMATS 2013, Buenos Aires,
Argentina, 29–31 August 2013 (2013)

7. Hale, R., Cardell-Oliver, R., Herbert, J.: An embedding of timed transition systems
in HOL. Formal Methods Syst. Des. 3(1/2) (1993)

8. Malakhovski, J.: Brutal [meta]introduction to dependent types in agda



400 M. Montin and M. Pantel

9. Martin-Löf, P.: Intuitionistic type theory
10. Martin-Löf, P.: Intuitionistic type theory. Notes by Giovanni Sambin
11. Montin, M., Pantel, M.: Ordering strict partial orders to model behavioural refine-

ment. In: Proceedings of 18th Refinement Workshop 2018, affiliated with FM 2018
and part of FLoC 2018 (2018)

12. Norell, U.: Dependently typed programming in agda. In: Proceedings of TLDI 2009:
2009 ACM SIGPLAN International Workshop on Types in Languages Design and
Implementation, Savannah, GA, USA, 24 January 2009 (2009)

13. Paulin-Mohring, C.: Modelisation of timed automata in Coq. In: Kobayashi, N.,
Pierce, B.C. (eds.) TACS 2001. LNCS, vol. 2215, pp. 298–315. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45500-0 15

14. Nguyen Van, H., Balabonski, T., Boulanger, F., Keller, C., Valiron, B., Wolff, B.:
A symbolic operational semantics for TESL. In: Abate, A., Geeraerts, G. (eds.)
FORMATS 2017. LNCS, vol. 10419, pp. 318–334. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-65765-3 18

15. Winskel, G.: Event structures. In: Petri Nets: Central Models and Their Properties,
Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad
Honnef, 8–19 September 1986 (1986)

https://doi.org/10.1007/3-540-45500-0_15
https://doi.org/10.1007/978-3-319-65765-3_18
https://doi.org/10.1007/978-3-319-65765-3_18


Ensuring the Functional Correctness
of IoT through Formal Modeling

and Verification

Samir Ouchani(B)

LINEACT, Laboratoire d’Innovation Numérique,
École d’Ingénieur en Informatique, CESI eXia, Aix-en-Provence, France

souchani@cesi.fr

Abstract. Recent research initiatives dedicated to formal modeling,
functional correctness and security analysis of IoT systems, are gener-
ally limited to, model abstract behavioral patterns and look forward
possible attacks beneath gauging and providing feasible attacks. This
research considers the complementary problem by looking for more accu-
rate attacks in IoT by capturing richer behaviors -technical, physi-
cal, and social- including their quantitative features. We propose IoT-
SEC framework that establishes an adequate semantics to the IoT’s
components and their interactions including social actors that behave
differently than automated processes. For security analysis, we develop a
general approach based on a library of attack trees from where we gener-
ate automatically the monitor, the security policies and requirements to
harden the IoT model and to check how well the model is secure. We use
PRISM model checker to analyze the functionality and to check security
of the IoT model. Precisely this contribution ensures the functionality of
IoT systems by analyzing their functional correctness.

Keywords: IoT · Security assessment · Attack tree
Security policies · Formal verification · Formal modeling
Model checking · Functional correctness

1 Introduction

Internet of Things (IoT) is the network of physical objects -devices, vehicles,
buildings and other items embedded with electronics, software, sensors, and net-
work connectivity- that enables to collect and exchange massively data. This
technology of intelligent device-to-device communication provides the much-
needed leverage to IoT which make it growing extensively. It promises immense
potential for improving the quality of life, health-care, manufacturing, trans-
portation, etc.From a technology perspective, the rise of IoT is not changing
widely while using the same technology, connectivity, and trimmed mobile appli-
cations. In this context, the challenging issue is checking and ensuring function-
ality, security and privacy of IoT from the existing and hidden vulnerabilities
c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 401–417, 2018.
https://doi.org/10.1007/978-3-030-00856-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_27&domain=pdf


402 S. Ouchani

of the linked objects and the expanded inefficient cyber-security. Behinds, many
attack vectors are difficult to manage and to get protected from in IoT espe-
cially against computational, memory, and energy limitations due to the large
amount of data and messages; e.g. insecure web, cloud, mobile interfaces, net-
work services, and the lack of transport encryption, etc.

For example in IoT health-care system, objects are engaged to monitor
remotely patients and in case of a substantial change in the critical data, a
notification is sent to alert emergencies. Objects such as fit-bits and pacemakers
enclosing different sensors like EEG, BP, ECG, and EMG are deployed to control
blood pressure, hearing, etc.For communication, IoT uses a wide range of proto-
cols to transport real-time data which make it critical to ensure the integrity of
data and its inaccessibility for unauthorized users. Further, in crisis situations,
patients are generally weak which make them an easy target against social engi-
neering attacks [10]. At this level of complexity, security analysis of IoT is tricky
while the components of the game are of different nature: people, physical and
digital objects, software, cloud services, and infrastructures of multiple forms.
We strengthen our analysis methodology by relying to security protocols and
formal methods [12,13] to handle different type of IoT assets, and their com-
munications that may happen via conventional and non-conventional protocols
(e.g. visual, auditory, kinesthetic). Despite the raising interest in this subject, we
target to develop sound techniques that help to automate the security analysis
of IoT and to scrutinize whether, how, at what cost, and with which probability,
IoT is secure.

Contributions. This research, firstly, develops IoT-SEC framework that initi-
ates a modeling formalism by capturing the underlying semantics of IoT which
is flexible to be extended for more elaborated features. It is rich by covering
social behaviors, physical and digital objects, communication protocols, inter-
nal and external servers, and computation and storing cloud services. The for-
malism proposes assigning a cost e.g. time, to the execution of atomic actions,
and the IoT components may behave non-deterministically, probabilistically, or
deterministically where actions can be guarded by contextual conditions. The
formalism also models a library of intruders, as particular process proper to
each IoT components, able to act maliciously according to realistic abilities and
specific conditions.

Further, this research develops a security analysis methodology for IoT. It is
a statistical analysis and model-checking based approach built-up over PRISM
tool [9]. To automate their use, we define a mapping from IoT models, expressed
in the proposed formalism, to PRISM. Further, to overcome the downside of the
expressiveness of monitors and security properties used in PRISM, we propose
a library of pre-configured attack trees and we develop instantiation mechanism
that help to generate automatically relevant monitors and security properties.
Unfortunately due to the limited space, we focus only on the modeling mecha-
nism and the correctness validation approach.

Outline. In summary, we review the related work in Sect. 2 and we describe the
main components and goals of the global framework in Sect. 3. Then in Sect. 4, we



Ensuring the Functional Correctness of IoT 403

develop a theory to model for IoT and we detail our approach focusing mainly on
the functional correctness. In Sect. 5, we develop a tool that shows the obtained
experimental results. Finally, Sect. 6 concludes the paper and sketches the future
directions.

2 Related Work

To position our contribution in literature, we compare it within the works that
deal with modeling, functional analysis, and security specification, and protocols
in IoT. Since IoT research is young, the recent initiatives survey the IoT issues
and challenges.

A. Habtamu [1] discusses guidelines to how adapt security standards, prac-
tices, and technologies in IoT. Fink et al. [3] classify the vulnerabilities that
might arise high impact in IoT. In fact, they discuss a specific class of threats
without precising its applicability on which configurations. To trustworthy a
model they propose to exploit the physical randomness in IoT to generate
keys for authentication and access control that ensure anonymity, likability, and
observability. Xu et al. [17] survey design and security challenges in IoT. They
propose the digital physical un-clonable function as solution to enable the direct
use of hardware security primitives inside an arbitrary digital logic to create
secure information flow and public key protocols that require only one clock
cycle. Zhang et al. [18] highlight the ongoing challenges in IoT,especially iden-
tification, authentication and authorization, privacy, protocols, the related sys-
tems and software vulnerabilities. We believe that our framework contributes
very well to the discussed challenges and it is a strong starting point to develop
and extend easily the discussed research directions.

Hu et al. [5] proposed a face identification and resolution based technique for
fog computing to improve processing capacity and save the bandwidth in IoT. To
check security and preserve privacy, they propose an authentication and session
key agreement protocol using data encryption and integrity checking by express-
ing CIA attributes in BAN logic. Islam et al. [6] analyzes security requirements
in the presence of threat models for a health care scenario by minimizing security
risk. They rely on the existing e-health policies and regulations to determine how
much a requirement is violated. Ould-Yahia et al. [15] apply Ant colony opti-
mization to care-off between random and uncertain behavior of sensors deployed
during medical diagnosis towards e-health measures for IoT and intelligent social
insects. The differences between intensities of measures result on the affected or
safe path of the propagation of medical information show and quantify different
e-health security vulnerabilities. Mohsin et al. [11] proposed a security analysis
approach based on SMT for IoT entities mainly device configurations, network
topologies, user policies and their related attack surfaces. Entities are formulated
as a high-order logic formula, and the policies are a set of discrete constraints.
To check the existing vulnerabilities, SMT solver outputs the possible solutions
satisfying the constraints within an attack formula. Compared to our framework,



404 S. Ouchani

this one is applicable only to a well guided configuration and scenario. The pro-
posed approach is limited to a strict IoT schemes and the analysis method is not
automated.

F. Kammüller et al. [7,8] investigate how Isabelle might help to improve
detection of attack traces in IoT e-health by combining ethical requirement elic-
itation with automated reasoning. To provide trustworthy and secure IoT for
vulnerable users in health-care scenarios, they employ high level logical modeling
using dedicated Isabelle frameworks for: infrastructures, human actors, security
policies, attack tree analysis, and security protocol. Torjusen et al. [16] present
the high level instantiation of the run-time verification in color Petri net and its
validation. They integrate runtime verification enablers in the feedback adap-
tation loop to guarantee the achievement of self-adaptive security and privacy
properties for an e-health settings. At run-time, they enable the contextual state
model, the requirements specifications, and the dynamic context monitoring and
adaptation.

With respect to the commented work, IoT-SEC covers the probability and
costs of actions, formalizes IoT, analyzes the correctness and measures their
security level. Moreover, IoT-SEC is automatic by relying on the probabilistic
model checking and it takes advantage from the algorithms built within.

3 IoT-SEC Framework

Prior deeper details, we explore first the IoT architecture adopted in IoT-
SEC framework, then we overview the global analysis approach and the proposed
security model.

3.1 Architecture

We describe the IoT architecture by presenting its components and their inter-
actions. Figure 1 illustrates the proposed IoT architecture enclosing five main
components, object devices are physical objects embedded with sensors and soft-
ware, user devices are physical objects that communicate with servers and collect
data from objects, computing services provided by internal, external, and cloud
servers; social actors are human agents that can hold and manipulate devices,
the environment is the infrastructures and spaces that envelops the IoT entities.

These components interact through communication protocols of different
ranges (Human-machine, Bluetooth, ZigBee, WiFi, Cellular, SSH, IpSec, etc.).

3.2 Methodology

The IoT methodology depicted in Fig. 2 shows the main involved steps to eval-
uate and ensure the well functionality in IoT. It takes as input the IoT model
MIoT , the intruder model AIoT , and a library of attack-trees TIoT . First, an
instantiation of AIoT ( ̂AIoT ) is generated by the function GA to contend MIoT



Ensuring the Functional Correctness of IoT 405

Fig. 1. IoT-SEC components architecture.

Fig. 2. IoT methodology.

in order to produce a composed model ˜MIoT . For security analysis the com-
posed model ˜MIoT is abstracted then mapped into a PRISM code (MP ) by the
function TP [13].

The approach also demonstrates the use of TIoT which produces relevant
attack trees T̂IoT to the composed model. To benefit from, the function GM,P

instantiates from T̂IoT a temporal logic formula that expresses the security prop-
erty and a monitor that control the mal-behaves of the intruder. Finally, the tool
(|=) checks the satisfiability of the security properties in the considered model,
and produces the verification result in terms of probability and cost.

In the current work we focus only on ensuring the functional correctness
instead of analyzing security.



406 S. Ouchani

4 Functional Correctness

To ensure the functional correctness [14] of an IoT-based system, we rely on
IoT-SEC framework presented in Sect. 3 by extracting the approach depicted in
Fig. 3 that shows the main steps to be followed in order to answer safely if the
system under test functions properly or not, and/or with which probability/cost
it can fail. We describe the steps as follows.

– IoT architecture defines the components composing an IoT-based system
including social and non-social actors, sensors, applications, web services,
physical infrastructures, etc.Further the way they communicate and interact.

– IoT model formalizes the architecture in a process algebra form by precizing
the atomic actions for each component and the composition operator between
each couple or group of components.

– IoT requirements express in PCTL formula different functional properties
that we need to ensure.

– PRISM code is the transformation of the IoT model into the PRISM input
language. This function should be an isomorphism i.e. each action defined in
the IoT model has only one comportment that differs from the others.

– PRISM checks how much a requirement is ensured on the IoT model.
– Results are the output of PRISM, and it can be qualitative (true or false), or

quantitative (a probability or a cost).

Following the above described steps we detail the modeling, the generation
of PRISM code, and the expression of the requirements.

Fig. 3. Functional correctness framework for of IoT.



Ensuring the Functional Correctness of IoT 407

4.1 IoT Formal Model

Here we develop a formal model by considering the IoT architecture previously
showed in Fig. 1 as a composition of interconnected physical objects (devices and
controllers, e.g. sensors and buildings), mobiles applications, cloud and comput-
ing online services, and people.

We describe an IoT system S by the tuple 〈Obj ,Srv ,Act ,Env ,Prot〉 that
defines formally the IoT entities: the connected objects (Obj ), the environment
(Env), the client-server applications and services (Srv), the social actors (Act),
and the communication protocols (Prot) that ensure the interaction and the
communication between the different types of IoT entities.

Objects. An object can be either physical (e.g. sensor, USB key) or digital
(e.g. data, message, information) with different specificities and abilities. An
object can be a container, lockable (by digital or physical key), movable or/and
destroyable by a program, an intelligent or human being actor. Sensor objects
send data to the apps and receive it from the environment. An object Obj is a
tuple 〈O, attrO,ActuatorO, ΣO,BehO〉, where:

– O is a finite set of tags εo, o, o
′, oi, · · · ∈ O identifying the objects, and εo is

the empty object.
– attrO : O → 2T returns the attributes of an object, where T = {p, c,m, d, r},

p stands for physical, c for container, m for movable, d for destroyable, and r
for reproducible.

– ActuatorO : O → L×2O×O×B returns the tuple 〈locO, contO, keyO, lockedO〉
that specifies the status of an object o by specifying respectively its: location,
contained objects, key, and if it is locked or not.

– ΣO is a finite set of atomic actions that can be executed by an object, where:

ΣO = {StartO, TerminateO, SendO(o, o′), ReceiveO(o, o′), UpdateO(o, o′),
LockO(o, o′), UnlockO(o, o′), MoveO(l, l′) : o, o′ ∈ O and l, l′ ∈ L}

StartO and TerminateO starts and terminates the process of an
object, SendO(o, o′) and ReceiveO(o, o′) sends and receives o to/from o′,
UpdateO(o, o′) updates o by o′, LockO(o, o′) and UnlockO(o, o′) lock and
unlock o with o′, respectively.

– BehO : O → LO returns the expression written in the language LO that
describes the behaviour of an object. The syntax of LO is given by:
BO ::= StartO · BO · TerminateO | αO · B | αO +go

α′
O | αO, where

αO ∈ ΣO\{StartO, TerminateO} and “ ·” composes sequentially the actions,
and +go

is a guarded choice decision.

Services. Srv ensures a client-server architecture including client applica-
tions, computation servers and web services. Srv is presented by the tuple
〈V , OV , srvV , ΣV ,BehV 〉, where:



408 S. Ouchani

– V is a finite set of computing and storage services v, v′, etc.
– OV is a finite set of physical objects hosting services from V .
– srvV : OV → 2V assigns for a given object a set of services.
– ΣV is a finite set of actions supported by a service V , where:

ΣV = {StartV , TerminateV , SendV (o, o′), ReceiveV (o, o′), UpdateV (o, o′),
LockV (o, o′), UnlockV (o, o′) : o, o′ ∈ O}

StartO and TerminateO starts and terminates the process of an
object, SendO(o, o′) and ReceiveO(o, o′) sends and receives o to/from o′,
UpdateO(o, o′) updates o by o′, LockO(o, o′) and UnlockO(o, o′) lock and
unlock o with o′, respectively.

– BehV : OV → LV returns the behaviour of an object hosting a service. The
syntax of LV is expressed as follows: BV ::= StartV · BV | αV +gV

α′
V | αV ,

where αV ∈ ΣV \{StartV } and “ · ” composes sequentially the actions and
+gV

selects the left action if the guard gV is true otherwise, the right action
is selected.

Actors. Actors are of different categories, they can be, patients hosting sensors,
nurses, doctors, or any other types of agents. An actor interacts with others,
manipulates objects, and accessing to resources by executing actions depends
on his status and context. The execution is constrained by the environment, the
possessed objects, the actor’s intention and knowledge, and the access policies,
etc. Formally, Act is a tuple 〈A, categA, ΣA,BevA〉 where:

– A is a finite set of actors.
– categA : A → C returns the category of an actor.
– ActuatorA : A → L × 2O returns the location (locA ∈ L) and the possessed

objects (possA ⊆ 2O) by an actor.
– The finite set of the actors actions ΣA encloses all actions that can be executed

by an agent.

ΣA ={StartA, MovingA(l, l′), LockA(o, o′), UnlockA(o, o′), SendA(o, x),
ReceiveA(o, x), UpdateA(o, o′), TerminateA :
l, l′ ∈ L and o, o′ ∈ O and a ∈ A and x ∈ L ∪ O ∪ A}

As the actions’ names mean, they express respectively the moving between
locations, locking/unlocking objects, sending/receiving objects from a loca-
tion, an object, an actor; cloning or updating the content of an object
(destroying and cloning objects are a special case of the update).

– BevA : A → LA returns the expression that describes the behaviour of an
actor. It expresses the probabilistic decision and the cost (as time) of an
execution. The syntax of LA is generated by B ::= Stop | αA.B | B+B | B+
gB | B+pB, where α is an atomic action in ΣA, +p is a probabilistic decision,
and +g is a deterministic choice.



Ensuring the Functional Correctness of IoT 409

Environment. Env can be any human body or other natural species, or even
a physical space that hosts objects to measure the needed metrics in order to be
exploited/analyzed by the IoT system. In this model, we consider human body
as an actor and the environment as a physical entity hosting all IoT entities.
From this perspective we can model the environment as a connected container
objects. Formally, Env is a tuple 〈E,L,OE ,ActuatorE〉, where:

– E is a finite set of environments denoted by e, e′, etc..
– L is a finite set of locations (l, l′, etc.).
– OE is a finite set of physical objects of type container.
– ActuatorE : OE × OE → 2O returns the set of objects linking containers by

physical objects (e.g. doors connecting two rooms).

Interaction Protocol. Prot orchestrates and symphonies the communication
and the interaction between the IoT entities. Since these entities differ in their
nature, we define different communication protocols. Formally, Prot is a tuple
〈Proth,o,Proto,o,Proto,s〉 where Proth,o ensures the communications between
social actors and the objects, Proto,o between objects, Proto,s between objects
and services on servers.

Considering an initial configuration of an IoT that defines the evaluation of
objects, actors, and services attributes; Prot defines the changes of the attributes
of each IoT entity regarding the executed actions. The IoT configuration is
the association of all states of IoT entities and the changes of a configura-
tion is ruled by transitions. An IoT’s state S = 〈SO, SV , SA, SE〉 is composed
from states of objects, services, actors, and the environment as an instance of
〈Obj ,Srv ,Act ,Env〉. The transitions between states are labeled and denoted by

S
�,c,p
↪→ S′, l names the action to be executed, c returns its cost and p is its

probability value to be run. Due to the space limitation, we selected the fol-
lowing operational rules that synthesize transitions when two physical objects o
and o′ exchange a digital object o′′ (SYN-O-O), an actor a takes an object o′

from an object o (REC-A-O), and encrypt an object o′ by an object o using o′′

(LOC-O-O).

BehO(o) = SendO(o′, [[o′′]]).Beh ′
O(o) ∧ o′′ ∈ contO(o) ∧ [[o′′]] �= εo

BehO(o′) = ReceiveO(o′′′, [[o′′]]).Beh ′
O(o′) ∧ o′′′ ∈ contO(o) ∧ p �∈ attrO(o′′)

SYN-O-O

〈〈o, −, < −, {o′′, [[o′′]]} >, −〉, 〈o′, −, < −, {o′′′, [[o′′′]]} >, −〉〉 SendO(o,o′,[[o′′]]),c,p
↪→

〈〈o,Beh′
O(o), < −, {o′′, [[o′′]]} >, −〉, 〈o′,Beh′

O(o′), < −, {o′′′, [[o′′]]} >, −〉〉

BevA(a) = ReceiveA(o, o′).Bev ′
A(a) ∧ locA(a) = locO(o)

¬lockedO(o) ∧ o′ ∈ contO(o) ∧ p ∈ attrO(o′)
REC-A-O

〈〈a,−, < −,− >,−〉, 〈o,−, < −, {o′} >,−〉〉 ReceiveA(a,o,o′),c,p
↪→

〈〈a,Bev ′
A(a), < −, {o′} >,−〉, 〈o,Beh ′

O(o), < −,− >,−〉〉



410 S. Ouchani

BehO(o) = LockO(o′, o′′).Beh ′
O(o) ∧ {o′, o′′} ⊂ contO(o) ∧ [[o′, o′′]] �= εo

LOC-O-O

〈〈o, −, < −, {o′, o′′} >, −〉, 〈o′, −, < −, − >, ¬lockedO(o′)〉〉 lockO(o,o′,o′′),c,p
↪→

〈〈o,Beh′
O(o), < −, {o′, o′′} >, −〉, 〈o′, −, < −, − >, lockedO(o′)〉〉

We define an IoT’s state and how this changes by the effect of actions as a
labelled state transition system 〈S, S0,→〉 where, S is the set of the IoT states,
S0 ∈ S is the initial state, and → ⊆ (S × L × S) the transition relation

between states labeled by L. A transition ↪→∈→ denoted by S
�,c,p
↪→ S′ defines

how IoT states change when the IoT entities behave. For example,

4.2 PRISM

PRISM is a probabilistic symbolic model checker that checks probabilistic spec-
ifications over probabilistic models. A specification can be expressed either in
the probabilistic computation tree logic (PCTL) [2] or in a continuous stochastic
logic. A model can be described using PRISM language. A PRISM program is a
set of modules, each having a countable set of boolean or integer, local, variables.
A module’s state is fully defined by the evaluation of its local variables, while
the program’s state is defined by the evaluation of all variables, local and global.

In PRISM, the behavior of a module is defined by a set of probabilistic
and/or Dirac commands that specifies textually the effect of an action in a
probabilistic transition system. A probabilistic command is expressed by [α] g →
p1 : u1+...+pm : um, where pi are probabilities (pi ∈]0, 1[ and

m
∑

i=0

pi = 1), α is

a label describing the name of an action, g is a propositional logic formula over
local and global variables (i.e. a guard), and ui are updates for variables. An
update, written as (v′

j = valj)& · · · &(v′
k = valk), assigns only values vali to

local variables vi. It means that for a given action α, if the guard g is true, an
update ui is enabled with a probability pi. The guard is an expression consisting
of the evaluation of both local and global variables, and the propositional logic
operators. The Dirac case where p = 1 is a command written simply by [a] g → u.

Syntactically, a module named M is delimited by two keywords: the module
head “module M”, and the module termination “endmodule”. Further, we can
model costs with reward module R delimited by keywords “rewards R” and
“endrewards”. It is composed from a state reward or a transition reward. A
state reward associates a cost (reward) of value r to any state satisfying g that
is expressed by g : r. A transition reward has the form [a] g : r expresses that
the transitions labeled a, from states satisfying g, are acquiring the reward of
value r.

PRISM supports also composition where modules communicate à la CSP
process algebra (e.g. see [4]). For two modules M1 and M2, the following com-
position operators are supported.

– Synchronization: the full synchronization on all shared action is written as
M1||M2,



Ensuring the Functional Correctness of IoT 411

– Interfacing: the parallel interface synchronization limited to the set of shared
actions {a, b, · · · } is given by M1|[a, b, · · · ]|M2,

– Interleaving: the interleaving is expressed by M1|||M2,
– Hiding: M/{a, b, · · · } expresses hiding the actions a, b, · · · in the module M .
– Renaming: M{a ← b, c ← d, . . .} is to rename actions a by b, c by d, . . ..

4.3 Transformation of IoT to PRISM

To generate a PRISM program P proper to the provided IoT formalism, we
define the function TP that assigns for each IoT entity behavior its proper
PRISM code fragment that is bounded by ‘module IoT entity name’ and
‘endmodule’ and the semantic rules of each action is expressed by a PRISM
command.

Due to the space limitation, we present the PRISM commands of actions
that their semantics rules are already defined in Sect. 4.1. The left side specifies
the premises of a rule whereas the right side describes the results of the rules.
For example, oo2 is an atomic proposition showing the the object o possess o2,
la and lo present the locations, and po3 precises the physicality attribute of o3.
Variables and propositions are evaluated first to describe the initial state of the
IoT entities by relying on the tuple obtained by the Actuator proper to each
entity.

TP (α) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Syno2 ]oo2 ∧ o1o3 ∧ ¬po2 ∧ ¬po3 → (o′
2 = o2); iff:

[Syno2 ]oo2 ∧ o1o3 ∧ ¬po2 ∧ ¬po3 → (o′
3 = o2); SendO(o1, o2) ∈ Σo1

O ,

ReceiveO(o3, o2) ∈ Σo2
O .

[Tako1 ]la = lo ∧ oo2 ∧ ¬locko ∧ po2 → (a′
o2

= 	);

[Tako1 ]la = lo ∧ oo2 ∧ ¬locko ∧ po2 → (o′
o2

= ⊥); ReceiveA(o, o2) ∈ Σa
A.

[loco1 ]oo1 ∧ oo2 ∧ ¬ko1 ∧ po1 = po2 → (k′
o1

= 	); LockO(o1, o2) ∈ Σo
O.

[loco1 ]oo1 ∧ oo2 ∧ ¬ko1 ∧ po1 = po2 → (o′
o1

= 	);

4.4 Functional Requirements

We comment here what properties can be of relevance and how to express them in
such a way that they can be checked by running PRISM. A formalism that is able
to express all the factors that diagrams describe, paths of actions, propositions
on state variables, probabilities of occurrence of one or a sequence of actions.

PCTL formulas φ in such a logic are generated by the following BNF
grammar:

φ ::= 
 | ap | φ ∧ φ | ¬φ | P�� p[ψ] | R�� r[Fφ]
ψ ::= Xφ | φUφ | φU≤ kφ



412 S. Ouchani

Here, k ∈ N, r ∈ R+, p ∈ [0, 1], and �	∈ {<,≤, >,≥}. A state formula can be
“ap”, an atomic proposition, or any propositional expression built from “ap”.
P�� p[ψ], called probabilistic path predicate, returns true if the probability to sat-
isfy the path formula ψ is �	 p. The cost predicate R��r[φ] returns true if the cost
to satisfy φ is �	 r. Here, F is the temporal logic operator eventually. A path
formula is built from the typical temporal operators next (X), until (U), and
bounded until (U≤ k).

As usual, other logic operators can be derived from the basic operators, such
as G refers to Generally. The semantics of these operators are given as follows.

– ⊥ ≡ ¬
, φ ∨ φ′ ≡ ¬(¬φ ∧ ¬φ′), φ → φ′ ≡ ¬φ ∨ φ′, and
– φ ↔ φ′ ≡ φ → φ′ ∧ φ′ → φ.
– Fφ ≡ 
 U φ, F≤ kφ ≡ 
 U≤ k φ, Gφ ≡ ¬(F¬φ), and
– G≤ kφ ≡ ¬(F≤ k¬φ) where k ∈ N.
– P≥p[Gφ] ≡ P≤1−p[F¬φ].

Besides, Pmin, Pmax, Rmin, and Rmax are operators that can be used within
path or state formulas to specify the minimum (resp. maximum) probability or
cost.

5 Experiments Results

Here we apply the approach presented in Sect. 4, by following the discussed steps
above, on a use case presenting a smart health care emergency room.

The IoT Architecture. Figure 4 depicts the main components of a smart
emergency composed of: one patient, two rooms, set of sensors, local server, and
a station. The goal is to ensure a collection of defined functional requirements.

The IoT Model. In the smart emergency presented in Fig. 4, two rooms l1
and l2 are accessible through the object o1 (unique door) that is initially locked
with the physical key ok

1 . The patient a1 is in l1 without possessing ok
1 but

he has the sensor object os
1 to measure his vital parameters and communicate

it to the local server via the station od
1 situated in l2 at the end of medical

services: monitoring, analysis, and cloud storage. Herein, we describe briefly the
behaviours of the patient a1, the sensor object os

1, the door o1, the physical key
ok
1 , and the station od

1, respectively.

– With a probability value of 0.3, a1 can unlock o1 before moving to l2.
BevA(a1) =StartA.(UnlockA(o1, ok

1) +0.3 MovingA(l1, l1)).MovingA(l1, l2).
TerminateA s.t. ActuatorA(a1) = 〈l1, {os

1}〉.
– ok

1 moves within its possessor, this possession is described with the guard gk
1 .

BehO(ok
1) =StartO.(MoveO(l1, l2) +gk

1
MoveO(l1, l1)).TerminateO

s.t. ActuatorO(ok
1) = 〈l1, εo, εo,⊥〉.



Ensuring the Functional Correctness of IoT 413

– os
1 moves within a1, and sends the value [[om

1 ]] received from a1 to the station
od
1.
BehO(os1) =StartO.((ReceiveO(a1, [[o

m
1 ]]).UpdateO(om1 , [[om1 ]]).SendO(od1, [[o

m
1 ]]))

+ (ReceiveO(od1, [[o
m
2 ]]).UpdateO(om2 , [[om2 ]])) + (MoveO(l1, l2)

+gs1
MoveO(l1, l1))).TerminateO s.t. ActuatorO(os1) = 〈l1, εo, εo, ⊥〉.

– od
1 synchronizes with os

1 to send [[om
2 ]]) and to receive [[om

2 ]]).
BehO(od1) =StartO.((ReceiveO(os1, [[o

m
1 ]]).UpdateO(om2 , [[om1 ]])))

+ (SendO(os1, [[o
m
2 ]]))).TerminateO s.t. ActuatorO(od1) = 〈l2, εo, εo, ⊥〉.

Fig. 4. Smart emergency room

The PRISM Model. For the performance assessment of the smart emergency,
its IoT model is encoded into PRISM presented in Listing 1.1. It shows the code
fragments of a1, os

1, ok
1 , and od

1. Here we sketch a selected commands for each
entity. The module a1 describes the behavior of a1, its location la1 is initialized to
the first room and its action MovingA(l1, l1) is expressed by the command M11.
The action Ra1(om

1 ) evaluates the body measure om
1 . The status of o1 is defined

nondeterministically with actions Uo1 and Lo1 to evaluate equally the predicate
locko1 . Actions in the module ok

1 assigns the locations of a1 when it is possessed
by him otherwise its location does not change. Further, os

1 synchronizes with
a1 in Ra1(om

1 ) and with od
1 in Sos

1 to receive aok
1

sent by a1. The module ‘cost’
assigns a cost of value 2 to the actions Ra1(om

1 ) and Sos
1. Furthermore, to add

more entities, a user should just instantiates the proper module by renaming
only its local variables.



414 S. Ouchani

mdp

module a1

la1 : [1..2] init 1;

aos1
: bool init true;

a1(om1 ): [1..5] init 1;

aok1
: bool init true;

aUok1
: bool init false;

[Uo1 ] (la1 =1)&(locko1 )⇒
0.3: (a′

Uok1
=true)+0.7 :(l′a1

=1);

[M11](la1 =1)&(locko1 )⇒(l′a1
=1);

[M12](la1 =1)&(¬locko1 )⇒(l′a1
=2);

[M21](la1 =2)&(¬locko1 )⇒(l′a1
=1);

[M22](la1 =2)⇒(l′a1
=2);

[Uo1 ](locko1 )&(aok1
)⇒(l′a=la);

[Lo1 ](¬(locko1))&(aok1
)⇒(l′a=la);

[Ra1(om1 )](a1(om1 ) < 5)⇒
(a1(om1 )′ = a1(om1 ) + 1);

[Ra1(om1 )](a1(om1 ) = 5)⇒(a1(om1 )′ = 1);
endmodule

module o1
locko1 :bool init true;

[Uo1 ](locko1 ) ⇒ (lock′
o1

= false);

[Lo1 ](¬(locko1)) ⇒ lock′
o1

= true);

endmodule

module ok1
lok1

: [1..2] init 1;

[M11](aok1
)⇒ (l′

ok1
= la1 );

[M12](aok1
)⇒ (l′

ok1
= la1 );

[M21](aok1
)⇒ (l′

ok1
= la1 );

[M22](aok1
)⇒ (l′

ok1
= la1 );

[M22](aok1
)⇒ (l′

ok1
= la1 );

[](¬(aok1
))⇒(l′

ok1
= lok1

);

endmodule

module os1
los1 :[1..2] init 1;

os1(o
m
1 ):[0..5] init 0;

[M11](aos1
)⇒(l′os1 = la1 );

[M12](aos1
)⇒(l′os1 = la1 );

[M21](aos1
)⇒(l′os1 = la1 );

[M22](aos1
)⇒(l′os1 = la1 );

[M22](aos1
)⇒(l′os1 = la1 );

[Ra1(om1 )](aos1
)⇒(os1(o

m
1 )′ = a1(om1 ));

[Sos1](o
m
1 )! = 0 ⇒ (os1(o

m
1 )′ = a1(om1 ));

endmodule

module od1
los1 :[1..2] init 1;

od1(o
m
1 ):[0..5] init 0;

[M11](aos1
)⇒(l′os1 = la1 );

[M12](aos1
)⇒(l′os1 = la1 );

[M21](aos1
)⇒(l′os1 = la1 );

[M22](aos1
)⇒(l′os1 = la1 );

[M22](aos1
)⇒(l′os1 = la1 );

[Sos1](o
m
1 ! = 0) ⇒(od1(o

m
1 )′ = os1(o

m
1 ));

endmodule

rewards cost

true :1;

[Ra1(om1 )] (la = 2) : 2;

[Sos1] (la = 2) : 2;

[](a1(om1 ) > 3): 3;

[](a1(om1 ) < 4): 2;

endrewards

Listing 1.1. The PRISM Fragment Code
of the Smart Emergency.

The Functional Requirements. To ensure the functionality of the smart
emergency system, we specify the following functional requirements.

1. Property 1. “What is the maximum probability for the patient a1 to move
from l1 to l2 when the measure of a1(om

1 ) is greater then 2?”. The PCTL
expression of this property is: Pmax =?[(lo1 = l1) ∧ (a1(om

1 ) < 4) U ≤
step (lo1 = l2) ∧ (a1(om

1 ) > 3)].
The variable step is the number of steps (transitions) to reach the state that
satisfies: (lo1 = l2) ∧ (a1(om

1 ) > 3).



Ensuring the Functional Correctness of IoT 415

2. Property 2. “What is the maximum probability to keep both the sensor object
os
1 and the station object od

1 functioning together?”. Its PCTL expression is:
Pmax =?[G(os

1(o
m
1 ) > 0 ∧ od

1(o
m
1 ) > 0)].

3. Property 3. it looks to measure the minimum cost to read a1(om
1 ) and commu-

nicate it between os
1 and od

1. It is expressed in PCTL by Rmin =?[F (a1(om
1 ) >

0)].
4. Property 4. It measures the maximum cost for a1 to move safely and keep-

ing os
1 functioning. Its PCTL expression is: Rmax =?[F (os

1(o
m
1 ) > 0){la1 =

l1, la1 = l2}].

The Correctness Checking. The verification results of the above properties
are depicted in Fig. 5. The results of Property 1 in Fig. 5(a) show the convergence
of the probability evaluation from 0 to 0.001 after 3 steps, then it increases up to
0.00125 after 9 steps. This result shows that the risk is low for a patient to move.
Figure 5(b) shows that the probability obtained from the satisfiability of Property
2 is 1 after step 6 and it converges to 0.9 after 4 steps. It means that the smart
emergency model reliable at the most time.

The verification results depicted in Fig. 6(a) show that the minimum reward
value obtained from the satisfiability of Property 3 is 121.59 and Fig. 6(b)
presents that the cost to satisfy Property 4 is at least 14.13. It means that
the cost to keep the system always reliable is relatively high for communication
and relatively low for the reliability of the smart emergency.

Fig. 5. The correctness checking results of Property 1 and Property 2.

Fig. 6. The correctness checking results of Property 3 and Property 4.



416 S. Ouchani

6 Conclusion

This paper sets the fundamentals of a fully automatic framework for modeling
and analysis of IoT. Principally, we detail a part of it by presenting a formalism
that captures the main structure and comportment of IoT entities covering phys-
ical and information infrastructures, services, assets, social actors, and also their
activities and interactions. The execution of an action has a cost and guided by
probabilities and/or contextual conditions. Further, the formalism has a rich and
flexible semantics, which we use it to capture the IoT functional requirements
expressing the possibility, the likelihood, and the cost of actions. Further, it is
developed to be easy for other extensions and refinements. To carry our func-
tional correctness analysis automatically, we devised an algorithm that maps an
IoT model into the input language of PRISM in order to be checked against
the requirements expressed in PCTL. Finally, the effectiveness of the proposed
framework is validated on a case study.

This work sets the stage for further development. In the extended version
of this work, we provide the complete set of rules, a detailed transformation
function, and more experiments. Further, we intend to enrich our model with
more assets: refine the contextual conditions, provide the security aspect of the
IoT model, complete the other parts of the framework. Also from a solid theo-
retical point of view, we have to prove the correctness and the soundness of each
developed step in a proof assistant (e.g. Coq). Furthermore, we implement the
framework as a full standing tool and validated it on different case studies and
real systems.

References

1. Abie, H.: Adaptive Security for the Internet of Things: Research, Standards, and
Practices. 1st edn. Syngress Publishing (2017)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, New York
(2008)

3. Fink, G.A., Zarzhitsky, D.V., Carroll, T.E., Farquhar, E.D.: Security and privacy
grand challenges for the Internet of Things. In: 2015 International Conference on
Collaboration Technologies and Systems (CTS), pp. 27–34, June 2015

4. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall International
Incorporated, Upper Saddle River (1985)

5. Hu, P., Ning, H., Qiu, T., Song, H., Wang, Y., Yao, X.: Security and privacy preser-
vation scheme of face identification and resolution framework using fog computing
in Internet of Things. IEEE Int. Things J. 4(5), 1143–1155 (2017)

6. Islam, S.M.R., Kwak, D., Kabir, M.H., Hossain, M., Kwak, K.S.: The internet of
things for health care: a comprehensive survey. IEEE Access 3, 678–708 (2015)

7. Kammüller, F., Augusto, J.C., Jones, S.: Security and privacy requirements engi-
neering for human centric IoT systems using eFRIEND and isabelle. In: 2017 IEEE
15th International Conference on Software Engineering Research, Management and
Applications (SERA), pp. 401–406, June 2017

8. Kammüller, F.: Formal modeling and analysis with humans in infrastructures for
IoT health care systems. In: Tryfonas, T. (ed.) HAS 2017. LNCS, vol. 10292, pp.
339–352. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58460-7 24

https://doi.org/10.1007/978-3-319-58460-7_24


Ensuring the Functional Correctness of IoT 417

9. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

10. Lenzini, G., Mauw, S., Ouchani, S.: Security analysis of socio-technical physical
systems. Comput. Electr. Eng. 47, 258–274 (2015)

11. Mohsin, M., Anwar, Z., Husari, G., Al-Shaer, E., Rahman, M.A.: IoTSAT: a formal
framework for security analysis of the Internet of Things (IoT). In: 2016 IEEE Con-
ference on Communications and Network Security (CNS), pp. 180–188, October
2016

12. Ouchani, S., Mohamed, O.A., Debbabi, M.: A security risk assessment framework
for SysML activity diagrams. In: 2013 IEEE 7th International Conference on Soft-
ware Security and Reliability (2013)

13. Ouchani, S., Ait Mohamed, O., Debbabi, M.: Efficient probabilistic abstraction for
SysML activity diagrams. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.)
SEFM 2012. LNCS, vol. 7504, pp. 263–277. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33826-7 18

14. Ouchani, S., Mohamed, O.A., Debbabi, M., Pourzandi, M.: Verification of the
correctness in composed UML behavioural diagrams. In: Lee, R., Ormandjieva, O.,
Abran, A., Constantinides, C. (eds.) Software Engineering Research, Management
and Applications 2010. Studies in Computational Intelligence, vol. 296, pp. 163–
177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13273-5 11

15. Ould-Yahia, Y., Banerjee, S., Bouzefrane, S., Boucheneb, H.: Exploring formal
strategy framework for the security in IoT towards e-health context using compu-
tational intelligence. In: Bhatt, C., Dey, N., Ashour, A.S. (eds.) Internet of Things
and Big Data Technologies for Next Generation Healthcare. SBD, vol. 23, pp.
63–90. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49736-5 4

16. Torjusen, A.B., Abie, H., Paintsil, E., Trcek, D., Skomedal, Å.: Towards run-time
verification of adaptive security for IoT in ehealth. In: Proceedings of the 2014
European Conference on Software Architecture Workshops, ECSAW 2014, pp. 4:1–
4:8. ACM (2014)

17. Xu, T., Wendt, J.B., Potkonjak, M.: Security of IoT systems: design challenges and
opportunities. In: Proceedings of the 2014 IEEE/ACM International Conference
on Computer-Aided Design, ICCAD 2014, pp. 417–423. IEEE Press (2014)

18. Zhang, Z.K., Cho, M.C.Y., Wang, C.W., Hsu, C.W., Chen, C.K., Shieh, S.: IoT
security: ongoing challenges and research opportunities. In: 2014 IEEE 7th Interna-
tional Conference on Service-Oriented Computing and Applications, pp. 230–234,
November 2014

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-33826-7_18
https://doi.org/10.1007/978-3-642-33826-7_18
https://doi.org/10.1007/978-3-642-13273-5_11
https://doi.org/10.1007/978-3-319-49736-5_4


Extensions to Hybrid Event-B to Support
Concurrency in Cyber-Physical Systems

Klaus-Dieter Schewe(B)

Laboratory for Client-Centric Cloud Computing, Linz, Austria
kdschewe@acm.org

Abstract. Event-B is one of the most commonly used rigorous methods
that has proven its value in many applications. To support the devel-
opment of cyber-physical systems (CPS) continuous extensions to the
method have already been proposed and extensions to supporting tools
are under development. In this paper further extensions are proposed
addressing the need to support asynchronous behaviour of autonomous
components in CPS. This can be accomplished by multiple Event-B
machines with a semantics defined by concurrent runs, which preserve the
semantics of single Event-B machines. This makes only sense, if shared
locations are supported as well. A third extension covers partial updates,
by means of which conflicting updates to shared locations with bulk data
values such as sets or relations that are predominant in Event-B are
avoided.

1 Introduction

Event-B [2], B [1], Abstract State Machines (ASM) [10] and TLA+ [19] are the
most commonly used rigorous methods that have proven their value in many
complex systems applications. These methods are further supported by sophis-
ticated tools such as RODIN [30], Pro-B [22], Atelier-B [20], ASMeta [17], Core-
ASM [15] and the TLA tool suite [19].

Cyber-physical systems (CPS)1 provide a new challenge for rigorous meth-
ods, as these systems integrate continuous and discrete behaviour, the former
one usually associated with hardware, electronical and mechanical components,
the latter one usually associated with software and control components. It is
already a common insight that in order to successfully specify and refine CPS
it is necessary to deal with real numbers and continuous functions. A continu-
ous extension of Event-B leading to hybrid Event-B has been presented in [5].
Extensions to the RODIN platform are proposed in [28], while a theory plug-in
for real numbers has been made available in [3]. These extensions are exploited
in research investigating the use of Event-B and RODIN for the development of
CPS [14]. A similar extension for ASMs is described in [6].

1 See [24] for a survey on foundations of CPS.

c© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 418–433, 2018.
https://doi.org/10.1007/978-3-030-00856-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_28&domain=pdf


Extensions to Hybrid Event-B to Support Concurrency 419

These extensions are further connected to research on hybrid systems engi-
neering, for which a meromorphic conceptual model has been developed combin-
ing a structural model of components with a behaviour model that exploits ASMs
[13] or similarly Event-B [11]. The usefulness of the model has been demontrated
on case studies for a landing gear system [7] and a hemodialysis machine [23].

However, this hybrid systems engineering method and the case studies con-
ducted with it also show that the continuous extensions to the rigorous methods
alone are insufficient. In particular, there is a need to capture the asynchronous
behaviour of multiple components in CPS. Banach’s treatment of impulsive
physics in Event-B-based hybrid systems specifications in [4] contains many
events that have been declared to run asynchronously, but the impact on the
semantics of Event-B, which per se does not support asynchronous parallelism
has not been addressed. A difference between the ASM-based and the Event-
B-based formalisation of the behavioural part of the model is that for ASMs a
concurrent extension has been introduced in [8] and grounded in a behavioural
theory of concurrency. This has been further extended in [9] to capture commu-
nication via messages. A similar extension to Event-B has not yet been under-
taken, though the proposal to carry the concurrent semantics from ASMs over to
Event-B has been launched in [11]. A detailed description of the Event-B-based
conceptual model for hybrid systems engineering together with fragments of the
application to the hemodialysis machine case study was given in [12]. It exploits
extensions to Event-B that need further investigation.

In this paper we formally investigate such an extension in more detail. At
its core we simply foresee multiple Event-B machines, each of which can be
understood in the way defined in [2], i.e. the semantics is defined by sequences of
states. There is an obvious analogy to concurrent ASMs, which are just families
of (sequential) ASMs2 indexed by agents.

In the light of the Gurevich’s behavioural theory of sequential algorithms
(aka the sequential ASM thesis) [18] and the proof that sequential ASMs capture
sequential algorithms it is not overly difficult to prove also that all sequential
algorithms can be step-by-step simulated by a behaviourally equivalent Event-B
machine3. Extending sequential algorithms by unbounded choice then gives rise
to a proof that Event-B captures all algorithms that are essentially sequentially,
but support unbounded choice—the corresponding theory for ASMs with only
bounded parallelism, but unbounded choice has been developed in [26]. This
can be used as the basis for the definition of the semantics of multiple Event-B-
machines using concurrent runs.

2 In this paper we disregard extensions concerning unbounded parallelism [16] that
is supported by parallel ASMs and can be integrated with concurrency. Unbounded
parallelism is not supported by Event-B.

3 This implies further that parallel assignments are sufficient, and every sequen-
tial ASM can be normalised in a way that the bounded parallel constructor only
applies to assignments. It further gives a theoretical underpinning for the transla-
tions between Event-B machines and sequential ASMs investigated in [21].



420 K.-D. Schewe

However, as machines that do not interact with each other are not overly
interesting, it appears as a natural consequence that shared data, at least mail-
boxes, have to be supported by multiple Event-B machines. There are different
ways to introduce sharing, but they all amount to a determination, which state
variables can be accessed by which machines.

Besides multiple machines with concurrent runs and shared data we propose
partial updates [27] as a third extension. Partial updates are motivated by the
fact that the simultaneous update of a bulk value such as a set or a relation by
several machines may lead to a conflict, though in many cases (e.g. for insertions)
the intended changes can be combined into a single total update.

The remainder of this paper is organised as follows. In Sect. 2 we first give
a brief description of the semantics of Event-B, and discuss extensions have
already been used in Hybrid Event-B and hybrid systems engineering. In Sect. 3
we introduce a concurrent semantics for multiple Event-B machines as well as
the sharing of data. Section 4 is then dedicated to partial updates. The paper
concludes with a brief summary and outlook in Sect. 5.

2 Hybrid Extensions to Event-B

Though concurrent extensions to Event-B makes sense in a purely discrete con-
text we like to stress their particular importance for cyber-physical systems.
Therefore, we first discuss hybrid extensions to Event-B that have been intro-
duced together with Hybrid Event-B. The most important ones are real num-
ber, continuous functions and differentiation operators, which we complement
by terms for definite descriptions.

2.1 Event-B in a Nutshell

In a nutshell an Event-B machine4 comprises a finite set V of state variables,
an invariant I and a finite set E of events. One of the events is an initialisation
event init .

We may assume a universe U of values and several pre-defined domains Di ⊆
U such as domains of integers, Booleans, real numbers, character strings, etc.
For all these domains we may further assume pre-defined operations such as
addition, multiplication, concatenation, etc.

An Event-B machine is bound to a context, in which further sets and further
operations on them can be defined. For these the usual constructors for sets
such as comprehension, products, unions, etc. as well as λ-abstraction to define
functions can be exploited.

Using constants, operations and predicates provided by the context, the state
variables (treated as constants) plus other variables we may define terms and
first-order formulae in the usual way. The invariant I must be a closed formula
defined in this way.

4 For details and concrete syntax we refer to [2].



Extensions to Hybrid Event-B to Support Concurrency 421

A state is defined by assigning a value in U to each state variable x ∈ V. We
write valS(x) for the value assigned to x in state S.

We may interpret terms and formulae in a state S and extend the eval-
uation function val in this way. If t is a term, say t = f(t1, . . . , tn), then
valS(f(t1, . . . , tn)) = f(valS(t1), . . . , valS(tn)). Note that f on the write-hand-
side of this equation denotes the pre-defined operation f . Clearly, the evaluation
of a term that is a state variable x is given by its value in the state. If x is an
arbitrary variable, not a state variable, then its interpretation requires a variable
assignment, i.e. a function σ from the set of such variables to U , and we have
valS(x) = σ(x).

Atomic formulae are interpreted in the same way resulting in a truth value
true or false. This is then extended in the usual way for negation, conjunction,
disjunction, implication and quantified formulae. In particular, as I is a closed
formulae, valS(I) denotes a truth value. As usual, we write S |= I iff valS(I) =
true holds, in which case we say that I is satisfied in state S. A state S is a
valid state iff I is satisfied in S.

Each event e ∈ E comprises a guard grd(e) defined by a closed formula, and
a rule rule(e). The rule takes the form

ANY y1, . . . , yn WITH ϕ DO x1 := t1‖ . . . ‖xm := tm,

i.e. it is an unbounded choice with a parallel assignment. Here y1, . . . , yn

are arbitrary variables, ϕ is a formula that contains at most y1, . . . , yn as free
variables, x1, . . . , xm are the state variables, and t1, . . . , tm are terms that may
use the variables y1, . . . , yn.

An event e = (grd(e), rule(e)) is enabled in state S iff S |= grd(e) holds.
An enabled event may fire, which results in a successor state S′ of S. Informally,
choose a variable assignment σ such that ϕ is satisfied in S using this variable
assignment, then determine vi = valS(ti) using σ for the interpretation of the
free variables y1, . . . , yn and let valS′(xi) = vi.

For brevity it is permitted to omit some state variables from the parallel
assignment in a rule, in which case the effect of firing the rule becomes valS′(xi) =
valS(xi). Furthermore, the choice may be omitted, if there is nothing to choose.

For the initialisation event init we have grd(init) = true. An initial state is
a state that results from firing init in an arbitrary state5.

Then a run of the machine is a sequence S0, S1, S2, . . . of valid states such
that S0 is an initial state and for each i the state Si+1 is a successor state of Si

resulting from firing an event ei that is enabled in Si.

5 Usually, the resulting state should not depend on the chosen state, so we could use
a state, in which all state variables are undefined.



422 K.-D. Schewe

Note that this definition of run is highly non-deterministic, as first an event
is chosen6 among those that are enabled in a state Si and second the unbounded
choice allows us to select values for the variables y1, . . . , yn, which determine the
new values that are assigned to the state variables.

2.2 Reals, Continuous Functions and Definite Descriptions

The notion of run as defined above is standard for the definition of semantics
of discrete systems. As a matter of fact time is irrelevant in a discrete system;
in particular, it does not matter how long it takes to make a transition from a
state to a successor state. Phrased differently, as long as no successor state is
produced, the values assigned to the state variables remain unchanged.

This changes in hybrid systems, which integrate discrete and continuous
changes, the latter ones being characteristic for physical components such as
electronical, mechanical and hydraulic devices. This can be captured by states
that change continuously over time7, and discrete changes are subsumed by
piecewise constant functions. This requires the presence of the set R of real
numbers.

Furthermore, instead of continuous sequences of states over time it suffices
to permit continuous functions as values, which is accomplished by providing
a data type constructor → such that A → B denotes the set of continuous
functions from A to B. For R the common Euclidean topology can be assumed,
for all other types the discrete topology can be taken. Taking product topologies
ensures that the continuous function type constructor can be applied to arbitrary
types A and B.

As continuous functions in hybrid system are often given implicitly as solu-

tions to ordinary differential equations, we require a derivation operator Dt =
∂

∂t
that is defined for (partial) functions with domain REAL. Naturally, Dt(f) is
also a partial function with domain REAL, and Dt(f)(x) is the derivative of f
at the point x, provided this exists. Note that Dt is actually a functional.

Wenn dealing with differential equations it is common to assume a
well=posed initial value problem over a time interval [t, t′), i.e. the differential
equation takes the form Dtf(t) = φ(f(t), t) with a Lipschitz-continuous function
φ with uniformly bounded Lipschitz constants (see e.g. [5]), and in addition an

6 Note that there is a slight discrepancy between the intended reactive semantics of
Event-B and the fact that only a single enabled event is selected for execution.
One might argue that by observing the guards of events, an event should always be
executed once it becomes enabled. However, this requires to deal with synchronous
or asynchronous parallelism, which is deliberately avoided in Event-B. In this paper
we do not intend to question fundamental decisions concerning the semantics of
Event-B, but we provide extensions that will address some of the issues, while the
semantics of single Event-B machines will be preserved.

7 Mathematically speaking this requires the set of states to carry the structure of a
topological space.



Extensions to Hybrid Event-B to Support Concurrency 423

initial value f(now). This guarantees that a unique solution exists, which can be
determined by common numerical methods.

For such implicit function definitions through differential equations it appears
to be convenient to exploit definite descriptions, i.e. terms of the form Ix.ϕ with
a variable x and a formula ϕ, in which x is free, to denote the unique value x
satisfying ϕ8. In particular, ϕ may formulate the differential equation.

Example 2.1. In the landing gear case study [7] hydraulic cylinders are fore-
seen for the opening and closing of doors and the extension and retraction of
wheels, respectively. These cylinders are duplicated for the front wheel and door
and the doors and wheels on the left and right. The operation of all cylinders
is in principle identical, and the approach to hybrid systems engineering [13]
provides several such cylinder components, which may give rise to a machine
Cylinder. The machine must provide variables such as left cylinder pressure in,
right cylinder pressure out, etc. of type Pressure = R → R). In addition, there
are variables such as front cylinder extension of type Volume = R → R.

Pressurisation is controlled by an electric value, which gives rise to a variable
electric port of type Bool . With this we candefine an event Pressurize Extension
using the following deterministic event:

WHEN E Valve(iev).electric port = true
DO front cylinder pressure in := inp‖

left cylinder pressure in := inp‖
right cylinder pressure in := inp‖
front cylinder pressure out := min‖
left cylinder pressure out := min‖
right cylinder pressure out := min‖
front cylinder extension := max(If.(

∂f

∂x
(x) =

const

inp(x)2
· ∂inp

∂x
(x)

∧ f(now) = front cylinder extension(now)),maxf )‖

left cylinder extension := max(Ig.(
∂g

∂x
(x) =

const

inp(x)2
· ∂inp

∂x
(x)

∧ g(now) = left cylinder extension(now)),max�)‖

right cylinder extension := max(Ih.(
∂h

∂x
(x) =

const

inp(x)2
· ∂inp

∂x
(x)

∧ h(now) = right cylinder extension(now)),maxr)

Note that the differential equation used for the update of the variables of type
Volume express nothing more than the dependency between pressure and volume
in a closed system (assuming that there is no leakage).

8 Note that terms of the form @x.ϕ denoting an arbitrary value x satisfying ϕ are
already present in Event-B. Both kinds of terms were originally introduced by David
Hilbert—using j instead of I and ε instead of @. Our change of notation is in accor-
dance with the use of I in Fourman’s formalisation of higher-order intuitionistic logic
and the use of ANY in Event-B.



424 K.-D. Schewe

The work in [13] contains a more detailed treatment of the landing gear case
study. The work in [12] addresses the hemodialysis machine case study in more
detail.

Example 2.2. Another example from the landing gear case study concerns a
machine Handle managing the effects of the movement of the handle by the
pilot. Among others the following event Close Analogue Switch with a determin-
istic rule is defined for this machine:

WHEN analogue switch ctl state = open ∧
analogue switch handle = true

DO analogue switch ctl state := closing‖
analogue switch timing

:= max(0, If.(Dt(f)(t) = −1 ∧ f(now) = 0.8))‖
analogue switch state := open‖
analogue switch out := false‖
analogue switch handle := false

In this case we use a variable analogue switch timing to control the timing
requirement that closing the analogue switch should be completed within at
most 0.8 s. When the value of the associated continuous function becomes 0,
the value of analogue switch ctl state must already be closed, unless a different
event has occurred in the meantime.

3 Multiple Event-B Machines with Concurrent Runs

In the previous section we already provided examples of events associated with
different Event-B machines. In a hybrid system there are many changes that
occur simultaneously, and the control of the corresponding components is done
completely asynchronously. For instance, as emphasised in [13] in the landing
gear case study the handle operated by the pilot runs asynchronously to the
operation of the valves and cylinders, and any alert is activated immediately.
Similarly, the hemodialysis case study [11] involves many asynchronous events,
and the treatment of the Rugby club problem in [4] explicitly uses a keyword
async in Event-B machines to indicate asynchronous behaviour9.

Therefore, we now present an extension of Event-B using multiple machines
with shared data and asynchronous events. For this we develop terminology that
is inspired by the theory of concurrency in [8].

3.1 Update Sets and Concurrent Runs

If S0, S1, S2, . . . is a run of an Event-B machine with state variables V =
{x1, . . . , xm}, then we obtain differences between a state Si and its successor
Si+1. For this let Diffi = {x ∈ V | valSi

(x) �= valSi+1(x)} be the set of state

9 Actually, in doing so Banach extends Event-B without defining the semantics of the
extension.



Extensions to Hybrid Event-B to Support Concurrency 425

variables, on which the state Si and its successor Si+1 differ. Then define the
difference set (or update set) Δi = {(x, valSi+1(x)) | x ∈ Diffi}. This is called
update set, because the change from Si to Si+1 updates exactly the state vari-
ables in Diffi to their new value given in Δi. Correspondingly, each element of
Δi, i.e. a pair comprising a state variable and a value, is called an update.

If Δ is an arbitrary set of updates on a state S, then S +Δ denotes the state
resulting from S by applying the update set to it. For each state variable x we
have

valS+Δ(x) =

{
v if (x, v) ∈ Δ and Δ is consistent
valS(x) otherwise

An update set is called consistent iff for all x ∈ V and all v1, v2 ∈ U with
(x, v1) ∈ Δ and (x, v2) ∈ Δ we have v1 = v2. Note that the update set defined
by the difference of two states in a run is always consistent, and we have Si+1 =
Si + Δi.

Phrased differently, each run of an Event-B machine can be seen as the result
of building update sets and applying them. For a rule of an event e the possible
update sets in state S take the form {(xi, valS(ti)}. As the values resulting from
the interpretation of the terms ti depend on the variable assignment for the
variable yi and furthermore, the event must be enabled, we define

Δi = {{(xj , valSi
(tj)} | Si |= ϕ(y1, . . . , yn) ∧ grd(e)}.

Δi is the set of possible update sets of the Event-B machine in state Si. Thus
in a run S0, S1, S2, . . . we always have Si+1 = Si + Δ for some Δ ∈ Δi.

Let us now proceed from single Event-B machines to multiple machines. For
this take a finite family {Mi | i ∈ I} of Event-B machines Mi (for convenience
we use some finite index set I here). For the semantics the key idea is to separate
the building of update sets from their application, by means of which we take
care of the different pace, with which the autonomous machines Mi operate.
This reflects the essential property of asynchronously collaborating machines of
having each its own clock according to which they make steps.

Let V =
⋃

i∈I Vi be the union of the sets of state variables of the machines
Mi. A state S defined over V is called global, whereas the restricted states
resi(S) built over Vi are called local for Mi. While resi(S) is valid iff it satisfies
the local invariant Ii associated with the machine Mi, a global state S is valid
iff S |= ∧

i∈I Ii holds.
Then a concurrent run of {Mi | i ∈ I} is a sequence S0, S1, S2, . . . of valid

global states, in which Si+1 is a successor state of Si.
For this definition it remains to clarify the notion of successor state of a global

state. For this consider first finite subsets Ii ⊆ I of indices of those machines that
initiate a step in Si. For each j ∈ Ii we obtain a set Δi,j of possible update sets
of Mi in the local state resj(Si) arising by restriction from the global state Si.

For the transition from the global state Si to a successor Si+1 we take another
finite subset Îi ⊆ I of indices of those machines that finish their step in Si+1.
Then for each j ∈ Îi there exists an index k(j) ≤ i such that the step of Mj



426 K.-D. Schewe

Fig. 1. Components in the landing gear case study

was initiated in state Sk(j). So we obtain an update set Δi =
⋃

j∈Îi
Δk(j),j

selecting update sets Δk(j),j ∈ Δk(j),j , with which we can define the successor
state Si+1 = Si + Δi.

Informally phrased, in a concurrent run the sequence of global states results
from simultaneously applying update sets of several individual machines that
have been built on previous (not necessarily the last nor the same) states. Note
that the definition leaves it completely open, how big the difference between i
and k(j) is, which reflects that a machine may operate slowly or fast, but is com-
pletely oblivious to the activities of the other machines in the concurrent family.
This adds another source of non-determinism; even if the individual machines
operate deterministically, the multi-machine family will not10.

Example 3.1. Let us use the landing gear system of a plane as an example to
illustrate how to obtain multiple Event-B machines. The general architecture
and detailed description of the system requirements can be found in [7, page 4].

Figure 1 illustrates the structuring of a landing gear system into components
using the structural part of the CyPHER conceptual model in [13], which itself
is grounded in Thalheim’s higher-order entity relationship model (HERM [29]).
The landing gear system comprises the landing gear control, the pressure sys-
tem, two hydraulic systems for gears and doors, respectively, and three shock
absorbers associated with the front left and back gears, respectively. This gives
rise to labelled components control :LG Control, pressure:Pressure System,

10 It has been argued that simultaneous access to shared locations by different machines
is physically impossible. Consequently, the set Îi ⊆ I of indices of those machines
that finish their step in Si+1 should always contain only one element j.



Extensions to Hybrid Event-B to Support Concurrency 427

doors:Hydraulic System, gears:Hydraulic System, front :Shock Absorb-
er, right :Shock Absorber, left :Shock Absorber of LG System11.

The pressure system of the plane comprises the analogue switch and a
hydraulic circuit, which gives rise to Pressure System with labelled com-
ponents switch:Analogue Switch and pressure:Hydraulic Circuit. Each
hydraulic system for the doors and gears, respectively, comprises three cylinders
and two electric valves. This give rise to the definition of Hydraulic System
with labelled components front :Cylinder, left :Cylinder, right :Cylinder,
extension:E Valve, retraction:E Valve.

The remaining components in Fig. 1 are elementary, and comprise attributes.
For Shock Absorber we have a single attribute on ground with data
type BOOL. For LG Control we have attributes red light, yellow light,
green light, general valve, open door valve, close door valve, extend gear valve,
retract gear valve, pressure ok, on ground, cylinder ext, cylinder ret, and han-
dle. We may use a data type OnOff = (on:1l) 	 (off:1l)—i.e. a type with
exactly two values on and off—associated with attributes red light, yel-
low light and green light. Analogously, handle has the data type UpDown
= (up:1l) 	 (down:1l). The data type associated with each of general valve,
open door valve, close door valve, extend gear valve, retract gear valve and
pressure ok is BOOL. The data type associated with on ground is (front:BOOL,
left:BOOL, right:BOOL), and type(cylinder ext) = type(cylinder ret) = (door-
front:BOOL, doorleft:BOOL, dooright:BOOL, gearfront:BOOL, gearleft:BOOL,
gearright:BOOL).

Analogue Switch has attributes state, ctl state, in, out, timing and handle
with type(state) = (open:1l) 	 (close:1l), type(ctl state) = (open:1l) 	 (closed:1l)
	 (opening:1l) 	 (closing:1l), type(in) =type(out) = type(handle) = BOOL,
and type(timing) = R → R. Hydraulic Circuit has attributes electric port,
max pressure, min pressure, pressure and pressure ok with type(electric port)
= type(pressure ok) = BOOL, type(max pressure) = type(min pressure) = R,
and type(pressure) = R → R.

Cylinder has attributes extension, extended, retracted, pressure in, pres-
sure out, max extension, min extension and timing. The type of each of exten-
sion, pressure in, pressure out and timing is R → R, the type of each extended
and retracted is Bool , and the type of max extension and min extension is
R. Finally, E Valve has attributes electric port, min pressure, input pressure
and pressure with type(electric port) = BOOL, type(min pressure) = R, and
type(input pressure) = type(pressure) = R → R.

Each of the elementary components give rise to a separate Event-B machine,
as all these components operate asynchronously. Then all the attributes give
rise to the definition of state variables. However, some state variables in one
machine directly influence state variables in another machine. For instance, the
attribute pressure on E Valve in the extension role is linked to the attribute
pressure in on Cylinder for all three occurrences that are associated with the

11 The whole LG System and all components are formally defined by so-called block
types in the CyPHER method (see [12,13]).



428 K.-D. Schewe

same Hydraulic System, and values of these attributes must be equal. So
the corresponding state variables have to be identified and shared among the
different machines.

There are many other such dependencies that lead to shared state variables
as discussed in detail in [13].

Example 3.2. Another example showing explicitly multiple Event-B machines
with concurrent semantics is given by the hemodialysis machine case study,
which was sketched in [11] and further elaborated in [12].

Furthermore, building the update set Δi as a union of update sets Δk(j),j for
a finite set of Event-B machines Mj may lead to clashes, i.e. Δi is inconsistent
containing updates (�, v1) and (�, v2) with v1 �= v2. Naturally, this gives rise to
the obligation that such clashes cannot occur, unless a restriction to a clash-free
fragment is used (as discussed for ASMs in [25]).

As we did not change the semantics of single-machine Event-B, the updates in
the participating update sets Δk(j),j are defined by a single event e. In particular,
locations appearing in these updates are exactly the state variables x1, . . . , xm

that are used in rule(e). So clashes can only occur for events e and e′ in machines
Mj and Mj′ , respectively, if rule(e) and rule(e′) update a shared state variable.
Such clashes can only be excluded, if the access to shared state variables is
controlled12.

Further note that the asynchronous parallel behaviour of the machines Mi

in the family as expressed by the definition of concurrent runs does not rely
on interleaving, but permits simultaneous updates by several machines. It is
not a weakness but a strength of state-based methods that any mimicking of
collaboration in parallel13 by means of interleaving can be dispensed with.

3.2 Sharing Data Among Multiple Machines

The semantics of a family of Event-B machines has been defined by concurrent
runs in the previous section, i.e. by sequences of global states. These assign values
to all state variables in the union of the sets of state variables of the individual
machines. If these sets Vi are pairwise disjoint, this will not create any conflicts,
but otherwise the machines would be completely independent, which is not what
we expect in a concurrent system.

In general, we have to expect that the sets of state variables of the individual
machines overlap, i.e. that state variables are shared. This can be declared in
various ways:
12 However, if concurrent runs are restricted to permit only a single machine Mj to

finalise its latest step in state Si+1, then it is impossible to have clashes.
13 In fact, interleaving expresses parallelism by sequentialisation, which is not exactly

what happens in reality. For systems with a sequential implementation—this includes
all those built at the time the notion of interleaving was invented—this may be
acceptable, for truly asynchronous systems—this includes all distributed systems
with multiple processors spread over a network—this workaround is not needed, but
in contrast counter-productive.



Extensions to Hybrid Event-B to Support Concurrency 429

1. We can add a sharing specification to each Event-B machine Mi, which
assigns to each state variable x ∈ Vi a set of machines {Mj | j ∈ Ix ⊆ I}
with which the variable is shared.

2. We can use mutual sharing specifications for pairs of machines by defining
subsets Vi,j ⊆ Vi and Vj,i ⊆ Vj (for i, j ∈ I, i �= j) together with a bijection
shi,j : Vi,j → Vj,i.

3. We can simply employ a unique name assumption, i.e. a state variable appear-
ing in Vi ∩ Vj is considered to be shared between Mi and Mj .

There is no need to modify the definition of concurrent run in case of shared
state variables. However, the presence of shared variables may lead to incon-
sistent update sets, in which case no successor state can be built. This is well
in accordance with what may happen in a concurrent system, though the non-
determinism arising from the differing pace of the participating machines miti-
gates this problem. If conflicts are to be excluded a separate machine for syn-
chronisation will be required.

4 Partial Updates

Event-B is largely set-based, so state variables are often bound to set values or
relations. This increases the likeliness of conflicts in update sets. For instance, if
two machines both insert a new element into a set, then the simultaneous occur-
rence of these two updates formally defines a clash as discussed in the previous
section, though in principle it is no problem to combine the two insertions into
a single update. Partial updates mitigate this problem. If both insertions are
declared to be partial, then if possible all partial updates will first be combined
into a single total update. Partial updates were discussed in detail in [27] in the
context of ASMs, but the theory does not depend on ASMs at all.

4.1 Update Multisets

As indicated above partial updates provide a means to mitigate the problem of
possible clashes in concurrent systems. This problem is irrelevant for Event-B
with single machines, but it becomes important with the concurrent semantics
for multiple machines.

A partial update of x takes the form x ⇔ı t with a term t of type τ and a
binary operator ı over τ . Partial updates can be used in the rule part of an event
instead of assignments.

Partial updates give rise to shared updates. A shared update is a triple (x, v, ı)
consisting of a state variable x of type τ , a value v of type τ , and a binary
operator ı : τ × τ → τ , where ı is given by the partial update and v results
from the interpretation of the term t analogously to the way we defined strict
updates.

Example 4.1. Let us take a state variable counter that is to serve as a counter, i.e.
it is bound to a natural number. If the counter is increased by k ∈ N, the binary



430 K.-D. Schewe

addition function + over N will be associated with the location, i.e. + specifies
that k is added to the location content. That is, the partial update takes the
form counter ⇔+ t, where t is a term that evaluates to k. When several numbers
are added to the same location counter simultaneously, a multiset of partial
updates with the specified numbers is obtained. For instance, if in machines Mi

(i = 1, . . . , n) we have counter ⇔+ ti and the terms ti are evaluated to values
ki ∈ N, we obtain the multiset 〈(counter , ki,+) | 1 ≤ i ≤ n〉 of shared updates.

Example 4.2. Similarly to the previous example, when inserting a string into a
set of strings associated with a state variable strings, this can be expressed by
a partial update strings ⇔∪ t, where t is a term that evaluates to a string. If
in different machines Mi (i = 1, . . . , n) with shared state variable strings we
have partial updates strings ⇔cup {ti} and the terms ti are evaluated to values
stri ∈ STRING , we obtain the multiset 〈(strings, {stri},∪) | 1 ≤ i ≤ n〉 of
shared updates.

Different to strict updates arising from assignments there may be more than
one partial update to the same state variable. These may even give rise to the
same shared update. Therefore, instead of possible update sets we now obtain
possible update multisets. For concurrent runs we then build multiset unions—
i.e. the multiplicities add up—of individual update multisets.

4.2 Collapse of Update Multisets

The crucial aspect of partial updates in concurrent systems is that the built
update multiset sets are not applied directly to define a successor state. Instead,
they are collapsed to an update set, the application of which is standard. For
the collapse all shared updates affecting the same state variable are combined
into a single strict update, if the involved operators are compatible.

Compatibility of shared updates and conditions for consistent collapse of an
update multiset into an update set have been investigated intensively in [27] and
can be applied to concurrent runs of multiple Event-B machines. Here we only
discuss the simpler case of operator-compatibility.

As a convention let loc(χ) and opt(χ) denote the set of locations and the set
of operators occurring in an update multiset χ, respectively, i.e. loc(χ) = {� |
(�, a, ı) ∈ χ} and opt(χ) = {ı | (�, a, ı) ∈ χ}. Let χ� denote the submultiset of
an update multiset χ containing all shared updates that have the location �, i.e.
χ� = 〈u | u ∈ χ ∧ u = (�, a, ı)〉.
Example 4.3. Consider the set operations union ∪, intersection ∩, difference �,
symmetric difference �, etc. Then the partial updates x ⇔∪ {a1, a2} and x ⇔∪

{a2, a3, a4} produce an operator-compatible update multiset

〈(x, {a1, a2},∪), (x, {a2, a3, a4},∪)〉.
Let χ� be a multiset of shared updates on the same location �, say χ� =

〈(�, ai, ıi) | i = 1, ..., k〉. Then χ� is operator-compatible iff for all two permuta-
tions (p1, ..., pk) and (q1, ..., qk) we have for all x

ıpk
(...ıp1(x, ap1)..., apk

) = ıqk(...ıq1(x, aq1)..., aqk).



Extensions to Hybrid Event-B to Support Concurrency 431

An update multiset χ is operator-compatible iff for all locations � the sub-
multiset χ� = 〈(�, v, ι) ∈ χ〉 is operator-compatible.

This definition suggests that χ� is operator-compatible iff the shared updates
in χ� are independent from the order, in which they are applied. However, this
does not apply to the whole update multiset χ�, as locations may depend on
each other.

In the simplest case, if the operators commute and are associative, they may
be concatenated in some order. However, it is not always as simple as that. For
instances, inserting new branches into a tree can be integrated, but the first
insertion affects the location, to which the second one has to be applied.

A binary operator ı1 (over the domain D) is compatible to the binary operator
ı2 (notation: ı1 � ı2) (over D) iff ι2 is associative and commutative and for all
x ∈ D there is some ẋ ∈ D such that for all y ∈ D we have y ı1 x = y ı2 ẋ.

Obviously, each associative and commutative operator ı is compatible to
itself. More generally, if ı1 and ı2 are two binary operators over domain D such
that (D, ı2) defines a commutative group, and (x ı1 y) ı2 y = x holds for all
x, y ∈ D, then ı1 � ı2 holds.

Compatibility ı1 � ı2 permits replacing each shared update (�, v, ı1) by the
shared update (�, v̇, ı2). Then the associativity and commutativity of ı2 guar-
antees order-independence. A non-empty multiset χ� of shared updates on the
same location � is operator-compatible if either |χ�| = 1 holds, or there exists a
ı ∈ Op(χ�) such for all ı1 ∈ Op(χ�) (the set of operators appearing in χ�) ı1 � ı
holds.

Example 4.4. For χ�1 with Op(χ�1) = {+,−}, χ�2 with Op(χ�2) = {×,÷}, and
χ�3 with Op(χ�3) = {∩,�} we obtain operator-compatibility. However, χ�4 with
Op(χ�4) = {∩,∪} is not operator-compatible.

5 Conclusion

In this paper we proposed three straightforward extensions to Event-B: (1) using
multiple Event-B machines with a semantics defined by concurrent runs to enable
truly asynchronous, concurrent behaviour, (2) to permit variables to be shared
between several of these machines, and (3) to enable updates to be declared as
partial, in which case simultaneous compatible updates by several machines on
the same state variable will be enabled. We argued that in addition to the pro-
vision of real numbers and continuous functions these extensions are important
to support the rigorous development of cyber-physical systems.

These extensions preserve the semantics of single Event-B machines. In this
way Event-B and ASMs remain different approaches. In particular, we do not
propose to integrate unbounded parallelism that is characteristic for ASMs into
Event-B.



432 K.-D. Schewe

References

1. Abrial, J.-R.: The B-book - Assigning Programs to Meanings. Cambridge Univer-
sity Press, Cambridge (2005)

2. Abrial, J.-R.: Modeling in Event-B - System and Software Engineering. Cambridge
University Press, New York (2010)

3. Abrial, J.-R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., Voisin, L.: Pro-
posals for mathematical extensions for Event-B. Technical report (2010). http://
deploy-eprints.ecs.soton.ac.uk/216/

4. Banach, R.: Issues in automated urban train control: ‘Tackling’ the rugby club
problem. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018.
LNCS, vol. 10817, pp. 171–186. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-91271-4 12

5. Banach, R.: Core hybrid event-B I: single hybrid event-B machines. Sci. Comput.
Program. 105, 92–123 (2015)

6. Banach, R., Zhu, H., Su, W., Wu, X.: ASM, controller synthesis, and complete
refinement. Sci. Comp. Progr. 94, 109–129 (2014)

7. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 1

8. Börger, E., Schewe, K.-D.: Concurrent abstract state machines. Acta Informatica
53(5), 469–492 (2016)

9. Börger, E., Schewe, K.-D.: Communication in abstract state machines. J. Univ.
Comp. Sci. 23(2), 129–145 (2017)

10. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg, New York
(2003)

11. Buga, A., Mashkoor, A., Nemeş, S.T., Schewe, K.-D., Songprasop, P.: Concep-
tual modelling of hybrid systems. In: Ouhammou, Y., Ivanovic, M., Abelló, A.,
Bellatreche, L. (eds.) MEDI 2017. LNCS, vol. 10563, pp. 277–290. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66854-3 21

12. Buga, A., Mashkoor, A., Nemeş, S.T., Schewe, K.-D., Songprasop, P.: An Event-B-
based approach to hybrid systems engineering and its application to a hemodialysis
machine case study. In: Computer Languages - Systems and Structures (2018, to
appear)

13. Buga, A., Nemeş, S.T., Schewe, K.-D., Songprasop, P.: A conceptual model for
systems engineering and its formal foundation. In: Sornlertlamvanich, V., et al.
(eds.) Information Modelling and Knowledge Bases XXIX (EJC 2017). Frontiers
in Artificial Intelligence and Applications, vol. 301, pp. 1–20. IOS Press (2017)

14. Dupont, G., Aı̈t-Ameur, Y., Pantel, M., Singh, N.K.: Proof-based approach to
hybrid systems development: dynamic logic and event-B. In: Butler, M., Raschke,
A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 155–170.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4 11

15. Farahbod, R., Gervasi, V., Glässer, U.: CoreASM: an extensible ASM execution
engine. Fundamenta Informaticae 77(1–2), 71–103 (2007)

16. Ferrarotti, F., Schewe, K.-D., Tec, L., Wang, Q.: A new thesis concerning syn-
chronised parallel computing - simplified parallel ASM thesis. Theor. Comput. Sci.
649, 25–53 (2016)

17. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a
simulation engine for Abstract State Machines. J. Univ. Comp. Sci. 14(12), 1949–
1983 (2008)

http://deploy-eprints.ecs.soton.ac.uk/216/
http://deploy-eprints.ecs.soton.ac.uk/216/
https://doi.org/10.1007/978-3-319-91271-4_12
https://doi.org/10.1007/978-3-319-91271-4_12
https://doi.org/10.1007/978-3-319-07512-9_1
https://doi.org/10.1007/978-3-319-66854-3_21
https://doi.org/10.1007/978-3-319-91271-4_11


Extensions to Hybrid Event-B to Support Concurrency 433

18. Gurevich, Y.: Sequential abstract state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1(1), 77–111 (2000)

19. Lamport, L.: Specifying Systems, the TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

20. Lecomte, T., Deharbe, D., Prun, E., Mottin, E.: Applying a formal method in
industry: a 25-year trajectory. In: Cavalheiro, S., Fiadeiro, J. (eds.) SBMF 2017.
LNCS, vol. 10623, pp. 70–87. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-70848-5 6

21. Leuschel, M., Börger, E.: A compact encoding of sequential ASMs in event-B.
In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS,
vol. 9675, pp. 119–134. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33600-8 7

22. Leuschel, M., Butler, M.J.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

23. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 329–343. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33600-8 29

24. Platzer, A.: Analog and hybrid computation: dynamical systems and programming
languages. Bull. EATCS 114, 152–199 (2014)

25. Schellhorn, G., Ernst, G., Pfähler, J., Bodenmüller, S., Reif, W.: Symbolic execu-
tion for a clash-free subset of ASMs. Sci. Comput. Program. 158, 21–40 (2018)

26. Schewe, K.-D., Ferrarotti, F., Tec, L., Wang, Q.: Towards a behavioural theory for
random parallel computing. In: Beierle, C., Brewka, G., Thimm, M. (eds.) Compu-
tational Models of Rationality - Essays Dedicated to Gabriele Kern-Isberner on the
Occasion of her 60th Birthday, Tributes, vol. 29, pp. 365–373. College Publications
(2016)

27. Schewe, K.-D., Wang, Q.: Partial updates in complex-value databases. In:
Heimbürger, A., et al., (eds.) Information and Knowledge Bases XXII. Frontiers in
Artificial Intelligence and Applications, vol. 225, pp. 37–56. IOS Press (2011)

28. Su, W., Abrial, J.-R., Zhu, H.: Formalizing hybrid systems with event-B and the
Rodin platform. Sci. Comput. Program. 94, 164–202 (2014)

29. Thalheim, B.: Entity-Relationship Modeling - Foundations of Database Technol-
ogy. Springer, Heidelberg (2000)

30. Voisin, L., Abrial, J.R.: The Rodin platform has turned ten. In: Ait Ameur, Y.,
Schewe, K.D. (eds.) Abstract State Machines, Alloy, B, TLA, VDM, and Z. ABZ
2014. Lecture Notes in Computer Science, vol. 8477, pp. 1–8. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-43652-3 1

https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-319-70848-5_6
https://doi.org/10.1007/978-3-319-33600-8_7
https://doi.org/10.1007/978-3-319-33600-8_7
https://doi.org/10.1007/978-3-319-33600-8_29
https://doi.org/10.1007/978-3-662-43652-3_1


Author Index

Abdelkhalek, Ikram 125
Abdelwahed, El Hassan 292
Abrache, Mohamed-Amine 137
Ait Wakrime, Abderrahim 321
Al-Khafajiy, Mohammed 184
Asaad, Chaimae 25
Asim, Muhammad 184

Baidada, Chafik 331
Baïna, Karim 25
Baker, Thar 184
Belala, Faiza 168, 371
Bellomarini, Luigi 3
Ben Ayed, Rahma 321
Ben Brahim, Afef 125
Benslimane, Djamal 184
Benslimane, Sidi Mohamed 219
Blanco, Carlos 41
Boukadi, Khouloud 184
Bouziane, El Mahi 331

Chaabani, Mohamed 346
Chantit, Salima 77
Chergui, Mohamed El Amine 219
Cherkaoui, Chihab 137
Collart-Dutilleul, Simon 321
Corral, Antonio 251, 301

de la Vega, Alfonso 41
Dhaussy, Philippe 354

El Alaoui El Abdallaoui, Hasna 153, 184
El Fazziki, Abdelaziz 153
Elouardighi, Abdeljalil 282
Ennaji, Fatima Zohra 153
Essebaa, Imane 77
Essousi, Nadia 125

Farah, Zoubeyr 233
Fayzrakhmanov, Ruslan R. 3
Fevgas, Athanasios 301
Fonou-Dombeu, Jean Vincent 92, 107

Gadouche, Hania 233
García-García, Francisco 251

García-Saiz, Diego 41
Gottlob, Georg 3

Hafidi, Meriem 292
Hameurlain, Nabil 168, 371
Hamid, Brahim 198

Idani, Akram 321
Iribarne, Luis 251

Jakimi, Abdeslam 331
Jaskolka, Jason 198

Kazadi, Yannick Kazela 92
Khebbeb, Khaled 168
Kravchenko, Andrey 3

Lamrani, Rachid 292
Laurenza, Eleonora 3
Ledru, Yves 321
Leildé, Vincent 354

Maamar, Zakaria 184
Maghfour, Mohcine 282
Mahfoud, Houari 268
Manolopoulos, Yannis 301
Marir, Souad 371
Megder, Khalid 137
Mezghiche, Mohamed 346
Montin, Mathieu 385

Nenov, Yavor 3

Ouchani, Samir 401

Pantel, Marc 385

Qassimi, Sara 292

Reissfelder, Stéphane 3
Ribaud, Vincent 354
Rouland, Quentin 198
Roumelis, George 301
Rybola, Zdeněk 58

Sadgal, Mohamed 153
Sallinger, Emanuel 3



Salmi, Cheikh 346
Sánchez, Pablo 41
Schewe, Klaus-Dieter 418
Sherkhonov, Evgeny 3

Tari, Abdelkamel 233
Teodorov, Ciprian 354

Ugljanin, Emir 184

Valenta, Michal 58
Vassilakopoulos, Michael 251, 301
Viriri, Serestina 107

Wu, Lianlong 3

Zorrilla, Marta 41

436 Author Index


	Preface
	Organization
	Invited Papers
	Data Science with Vadalog: Bridging Machine Learning and Reasoning
	Modeling Distributed Algorithms by Local Computations with Applications 
	Contents
	Invited Paper
	Data Science with Vadalog: Bridging Machine Learning and Reasoning
	1 Introduction
	2 Core Language
	3 Core System
	4 Supporting the Data Science Workflow
	5 Integrating Machine Learning
	5.1 Direct Integration
	5.2 Case Study: Feature Engineering
	5.3 Direct Use of Algorithms

	6 Probabilistic Reasoning
	References

	Databases
	NoSQL Databases – Seek for a Design Methodology
	1 Introduction
	2 NoSQL Design Methodologies
	2.1 Ontology-Driven NoSQL Data Model (ODNSDM)
	2.2 Logical Unified Modeling for NoSQL databases (UMLtoNoSQL)
	2.3 Query-Oriented Data Modeling Approach (QODM)
	2.4 The Save Our Systems Platform (SOS)
	2.5 The NoSQL Abstract Data Model (NoAM)
	2.6 MDE-based Reverse Engineering Approach

	3 NoSQL Databases Specific Design Methodologies
	3.1 Key-Value Databases
	3.2 Document-Oriented Databases
	3.3 Column-Family Databases
	3.4 Graph Databases

	4 Discussion
	4.1 Evaluation Process
	4.2 Evaluation Criteria
	4.3 Synthesis
	4.4 Limitations and Perspectives

	5 Case Study
	6 Conclusion
	References

	Mortadelo: A Model-Driven Framework for NoSQL Database Design
	1 Introduction
	2 Framework Description
	2.1 Transformation Process Overview
	2.2 Generic Data Model (GDM)
	2.3 Transformations for Column Family-Based Stores
	2.4 Towards Transformations for Document-Based Stores

	3 Implementation
	4 Related Work
	5 Conclusions and Future Work
	References

	Towards OntoUML for Software Engineering: Experimental Evaluation of Exclusivity Constraints in Relational Databases
	1 Introduction
	2 Background
	2.1 OntoUML
	2.2 Our Approach
	2.3 Related Work

	3 Transformation of Phase Partitions
	3.1 OntoUML PIM
	3.2 Transformation of OntoUML PIM into UML PIM
	3.3 Transformation of UML PIM into RDB PSM
	3.4 Transformation of RDB PSM into SQL ISM

	4 Experiments
	4.1 Generating Data Sets for the Measurements
	4.2 SELECT Measurement
	4.3 INSERT Measurement
	4.4 Results of the Experiments

	5 Conclusions
	References

	Ontology and Model Driven Engineering
	Scrum and V Lifecycle Combined with Model-Based Testing and Model Driven Architecture to Deal with Evolutionary System Issues
	Abstract
	1 Introduction
	2 Overview of Context
	2.1 Model Driven Architecture
	2.2 Model Transformations
	2.3 Model-Based Testing
	2.4 V Life Cycle
	2.5 Scrum

	3 Related Works
	4 Proposed Approach
	4.1 Transformations Automatization Between MDA Levels
	4.2 Approach of Integration Model-Based Testing in V Life Cycle Based on Model Driven Architecture
	4.3 Modelling System Requirements in V Lifecycle Using MDA Approach
	4.4 Combining MDA, MBT and V Process in Scrum

	5 Case Study
	6 Conclusion
	References

	Adaptive Algorithms for Computing Ontologies Metrics Through Processing of RDF Graphs
	1 Introduction
	2 Related Work
	3 Materials and Methods
	3.1 Definition
	3.2 Complexity Metrics of Ontologies
	3.3 Data Structures and Design

	4 Proposed Algorithms
	4.1 Path-Related Algorithms
	4.2 Entropy Algorithms
	4.3 Class and Relation Richness Algorithm

	5 Experiments and Evaluation
	5.1 Dataset
	5.2 Computer and Software Environments
	5.3 Performance Analysis

	6 Conclusion
	References

	CRank: A Novel Framework for Ranking Semantic Web Ontologies
	1 Introduction
	2 Related Work
	3 Design of the CRank Framework
	3.1 Architecture of the CRank Framework
	3.2 Complexity Metrics of Ontologies
	3.3 Decision Making Process
	3.4 Weighted Linear Combination Ranking Technique
	3.5 Ontology Parser

	4 Experiments
	4.1 Dataset
	4.2 Computer and Software Environments
	4.3 Experimental Results

	5 Conclusion
	References

	Data Fusion, Classification and Learning
	A New Way of Handling Missing Data in Multi-source Classification Based on Adaptive Imputation
	1 Introduction
	2 Related Work
	3 Our Proposed Approach
	3.1 Learning Phase
	3.2 Prediction Phase
	3.3 Fusion Phase

	4 Experimental Study
	4.1 Datasets
	4.2 Experimental Results

	5 Conclusion
	References

	Feedback-Oriented Assessor Model
	Abstract
	1 Introduction
	2 Peer Feedback
	3 Feedback-Oriented Assessor Model
	4 Application Within an Algorithm for the Allocation of Submissions in Online Peer Assessment
	5 Conclusion
	References

	Communication and Information Technologies
	A Gamification and Objectivity Based Approach to Improve Users Motivation in Mobile Crowd Sensing
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Crowdsourcing and Suspect Tracking
	2.2 Objectivity Analysis in a CS Initiative
	2.3 Crowd Motivation Techniques: Gamification

	3 The Proposed Approach
	3.1 A General Overview
	3.2 The Suspect Investigation Process
	3.3 The Framework Structuring

	4 The Framework Implementation Methods
	4.1 The Objectivity Analysis
	4.2 Crowd Motivation: Gamification in Crowdsourcing

	5 Case Study
	5.1 Experimental Results
	5.2 Results

	6 Discussion
	7 Conclusion
	References

	Modeling and Evaluating Cross-layer Elasticity Strategies in Cloud Systems
	Abstract
	1 Introduction
	2 Cloud Systems and Elasticity
	3 BRS Based Specification of Elastic Cloud Systems
	3.1 Bigraphical Modeling of Cloud Systems
	3.2 The Elasticity Controller as a Behavioral Entity

	4 Principles of Maude Encoding and Property Verification
	4.1 Motivating the Use of Maude
	4.2 Setting up Elastic Cloud Systems

	5 A Queuing Approach for Quantitative Evaluation
	6 Related Work
	7 Conclusion
	References

	Thing Federation as a Service: Foundations and Demonstration
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Case Study

	3 Concepts and Operations of Thing Federations
	3.1 Definitions
	3.2 Architecture
	3.3 Federation Formation
	3.4 Quality-of-Things Model
	3.5 Testbed Setup and Experiment Scenarios

	4 Conclusion
	References

	Formalizing Reusable Communication Models for Distributed Systems Architecture
	1 Introduction
	2 Related Work
	3 Software Architecture Metamodel
	4 Modeling
	4.1 Message Passing
	4.2 Message Passing with FIFO Ordering
	4.3 Remote Procedure Call

	5 Formalization and Verification
	5.1 Software Architecture Metamodel in Alloy
	5.2 Formal Specification of the Connectors
	5.3 Formal Specification of the Communication Primitives
	5.4 Formal Verification and Results

	6 Use Case
	6.1 Expressing the Architecture of a Web Application Example
	6.2 Expressing and Verifying Functional Requirements

	7 Concluding Remarks and Future Works
	References

	Safety and Security
	A Valid BPMN Extension for Supporting Security Requirements Based on Cyber Security Ontology
	Abstract
	1 Introduction
	2 Literature Review
	3 Fundamentals
	4 Cyber Security Ontology-Based BPMN Extension
	4.1 Domain Analysis
	4.2 BPMN Extension Model (BPMN+X)
	4.3 BPMN Transformation of the BPMN+X Model into an XML Schema Extension Definition Model
	4.4 Transformation of the XML Schema Extension Definition Model into an XML Schema Document
	4.5 BPMN Notation Extension

	5 Case Study
	6 Experimental Evaluation
	6.1 Design and Measures
	6.2 Materials and Participants
	6.3 Procedures
	6.4 Results

	7 Conclusions and Perspectives
	References

	A Correct-by-Construction Model for Attribute-Based Access Control 
	1 Introduction
	2 ABAC
	3 Event-B Method
	4 Event-B Specification of ABAC
	5 Proofs of the Model
	6 Related Works
	7 Conclusion
	References

	Algorithmics and Text Processing
	Voronoi-Diagram Based Partitioning for Distance Join Query Processing in SpatialHadoop
	1 Introduction 
	2 Related Work and Motivation 
	3 Preliminaries and Background 
	3.1 Distance Join Queries 
	3.2 SpatialHadoop 
	3.3 Partitioning Technique Based on Voronoi Diagrams 

	4 Voronoi-Diagram Based Partitioning Technique in SpatialHadoop 
	5 DJQ MapReduce Algorithms in SpatialHadoop 
	5.1 kNNJQ MapReduce Algorithm in SpatialHadoop
	5.2 kCPQ MapReduce Algorithm in SpatialHadoop 

	6 Experimentation
	7 Conclusions and Future Work 
	References

	Graph Pattern Matching Preserving Label-Repetition Constraints
	1 Introduction
	2 Background
	3 Triple Simulation
	4 Satisfy LR Constraints
	5 An Algorithm for Triple Simulation
	5.1 Description and Complexity
	5.2 TSim with Locality

	6 Deal with Simple Counting Quantifiers
	7 Conclusion
	References

	Standard and Dialectal Arabic Text Classification for Sentiment Analysis
	1 Introduction
	2 Related Work
	3  Two-Step Arabic Text Classification for Sentiment Analysis
	3.1 Dataset Description
	3.2 The Proposed Approach
	3.3 Supervised Classification

	4 Results and Discussion
	5 Conclusion
	References

	A Graph-Based Model for Tag Recommendations in Clinical Decision Support System 
	1 Introduction
	2 Background and Related Work
	3 Proposed Approach
	4 Experimental Results and Evaluation
	5 Conclusion and Perspectives
	References

	Spatial Batch-Queries Processing Using xBR+-trees in Solid-State Drives
	1 Introduction 
	2 Related Work and Motivation 
	2.1 The xBR-tree Family 
	2.2 Spatial Indexes for Flash SSDs 

	3 The xBR+-tree Structure
	4 Algorithms for Batch-Queries Processing 
	4.1 Algorithm for Processing of Batch Point-Location Queries 
	4.2 Algorithm for Processing of Batch Window Queries
	4.3 Algorithm for Processing of Batch Distance-Range Queries

	5 Experimental Results 
	5.1 PLQ Experiments
	5.2 WQ Experiments
	5.3 DRQ Experiments

	6 Conclusions and Future Work 
	References

	Specification, Verification and Validation
	Formalizing Railway Signaling System ERTMS/ETCS Using UML/Event-B
	1 Introduction
	2 UML Modeling of Hybrid ERTMS/ETCS Level 3
	3 Formalizing Hybrid ERTMS/ETCS Level 3
	3.1 Proposed Approach
	3.2 Hybrid ERTMS/ETCS Level 3 Event-B Model
	3.3 Verification and Validation

	4 Conclusion and Future Works
	References

	A Dynamic Analysis for Reverse Engineering of Sequence Diagram Using CPN
	Abstract
	1 Introduction
	2 Related Work
	3 UML Sequence Diagram and CPN
	3.1 UML2 Sequence Diagrams
	3.2 Execution Traces
	3.3 Colored Petri Nets (CPN)

	4 Overview of Approach
	4.1 Trace Generation and Collection
	4.2 Trace Merging Using CPN
	4.3 HLSD Extraction

	5 Case Study
	5.1 Trace Collection
	5.2 Trace Merging
	5.3 HLSD Extraction

	6 Conclusion
	Acknowledgements
	References

	A Formalized Procedure for Database Horizontal Fragmentation in Isabelle/HOL Proof Assistant
	1 Introduction
	2 Abstract Horizontal Fragmentation 
	2.1 Syntax
	2.2 Semantics

	3 Abstract Tableau Calculus for HF
	3.1 Properties of Tableau Rules

	4 Conclusion
	References

	Domain-Oriented Verification Management
	1 Introduction
	2 Background and Related Work
	3 Method
	3.1 Problem Formalization
	3.2 Illustration
	3.3 Method Steps

	4 Application: Alice and Bob Share a Yard
	4.1 Domain Description
	4.2 First Solution
	4.3 Second Solution - Turn
	4.4 Turn Problem Formalization
	4.5 Using Flags
	4.6 Flag Problem Formulation
	4.7 Taking Turn and Raising Flags

	5 Tool Support
	5.1 A Verification Organizing System
	5.2 Knowledge and Inference

	6 Conclusion
	References

	A Formal Model for Interaction Specification and Analysis in IoT Applications
	1 Introduction
	2 Related Work
	3 A Multi-levels Architecture for IoT
	3.1 Physical Part
	3.2 Logical Part
	3.3 Interaction Part

	4 Basic Concepts
	4.1 Bigraphical Reactive Systems
	4.2 The Tree Query Logic

	5 BCAM4IoT Model
	5.1 Example

	6 Formal Analysis
	7 Conclusion
	References

	Mechanizing the Denotational Semantics of the Clock Constraint Specification Language
	1 Introduction
	2 Representation of Time
	2.1 Instants
	2.2 Strict Partial Orders
	2.3 CCSL Specification

	3 Clocks
	3.1 Intuitive Definition
	3.2 Formal Definition

	4 Relations
	4.1 Definition
	4.2 Main Relations

	5 Expressions
	5.1 Definition
	5.2 Examples of Expressions

	6 Properties
	6.1 Goal
	6.2 Examples of Properties

	7 Related Work
	8 Conclusion
	8.1 Summary
	8.2 Future Work

	References

	Ensuring the Functional Correctness of IoT through Formal Modeling and Verification
	1 Introduction
	2 Related Work
	3 IoT-SEC Framework
	3.1 Architecture
	3.2 Methodology

	4 Functional Correctness
	4.1 IoT  Formal Model
	4.2 PRISM
	4.3 Transformation of IoT to PRISM
	4.4 Functional Requirements

	5 Experiments Results
	6 Conclusion
	References

	Extensions to Hybrid Event-B to Support Concurrency in Cyber-Physical Systems
	1 Introduction
	2 Hybrid Extensions to Event-B
	2.1 Event-B in a Nutshell
	2.2 Reals, Continuous Functions and Definite Descriptions

	3 Multiple Event-B Machines with Concurrent Runs
	3.1 Update Sets and Concurrent Runs
	3.2 Sharing Data Among Multiple Machines

	4 Partial Updates
	4.1 Update Multisets
	4.2 Collapse of Update Multisets

	5 Conclusion
	References

	Author Index



