El Hassan Abdelwahed
Ladjel Bellatreche - Mattéo Golfarelli
Dominique Méry - Carlos Ordonez (Eds.)

Model and
Data Engineering

8th International Conference, MEDI 2018
Marrakesh, Morocco, October 24-26, 2018
Proceedings

LNCS 11163

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology Madras, Chennai, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

11163

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

El Hassan Abdelwahed - Ladjel Bellatreche
Mattéo Golfarelli - Dominique Méry
Carlos Ordonez (Eds.)

Model and
Data Engineering

8th International Conference, MEDI 2018
Marrakesh, Morocco, October 24-26, 2018
Proceedings

@ Springer

Editors

El Hassan Abdelwahed Dominique Méry

Cadi Ayyad University University of Lorraine
Marrakesh, Morocco Vandceuvre-lés-Nancy, France
Ladjel Bellatreche Carlos Ordonez
LIAS/ISAE-ENSMA University of Houston
Futuroscope Chasseneuil Cedex Houston, TX, USA

France

Mattéo Golfarelli
University of Bologna
Cesena, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-00855-0 ISBN 978-3-030-00856-7 (eBook)

https://doi.org/10.1007/978-3-030-00856-7
Library of Congress Control Number: 2018954770
LNCS Sublibrary: SL2 — Programming and Software Engineering

© Springer Nature Switzerland AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-9968-0066
http://orcid.org/0000-0002-0437-0725
http://orcid.org/0000-0001-5231-6611

Preface

The International Conference on Model and Data Engineering (MEDI) is an interna-
tional forum for the dissemination of research accomplishments on database modeling
and data management. Specifically, MEDI provides a stimulating environment for the
presentation of research on database models, database theory, data processing, database
systems technology, and advanced database-oriented applications. This international
scientific event, initiated by researchers from Euro-Mediterranean countries, also aims
to promote the creation of North-South scientific networks, projects, as well as
faculty/student exchanges. This year, 2018, marks the 8th edition of MEDI, making it a
well-established conference. Our 8th edition, was held on Marrakesh (Morocco),
followed the success of the Obidos (Portugal, 2011), Poitiers (France, 2012),
Armantea (Italy, 2013), Larnaca (Cyprus 2014), Island of Rhodes (Greece 2015),
Almeria (Spain, 2016), and Barcelona (Spain, 2017).

MEDI 2018 received 86 submissions from 36 countries around the world. The
selection process was rigorous, where each paper received at least 4 reviews. The
Program Committee, after careful discussions, decided to accept 23 full papers and 4
short papers, yielding an acceptance rate of 27% for full papers and 32% overall.
Accepted papers covered broad research areas on both theoretical systems and practical
aspects. Some trends found in accepted papers include requirement engineering,
reverse engineering, advanced modeling for Cloud Systems, IOT applications, query
processing in emerging hardware, parallel processing, Semantic Web, graph databases,
sentiment analysis, cyber physical systems, formal methods, and NoSQL databases.

We are honored to have two distinguished guests as keynote speakers: Georg
Gottlob, Professor of Informatics at Oxford University, UK, and a Fellow of St John’s
College, giving a talk entitled “Data Science with Vadalog: Bridging Machine
Learning and Reasoning,” and Mohamed Mosbah, Professor of Computer Science at
LABRI, University of Bordeaux, France, whose talk is entitled: “Modeling Distributed
Algorithms by Local Computations with Applications.”

The EasyChair conference management system was set up for MEDI 2018, sup-
porting submission, review, and volume edition processes. We acknowledge that it is
an outstanding tool for the academic community.

We would like to thank all the authors who submitted their work to MEDI 2018. We
are grateful to the Program Committee members and external reviewers for their
high-quality reviews and discussions. Finally, we wish to thank the Organizing
Committee members for their continuous support.

Finally, MEDI 2018 has received financial support of several sponsors, among
them: Cadi Ayyad University (UCA), Mohammed VI Polytechnic University (UM6P),
Faculty of Sciences Semlalia Marrakech (FSSM), and Laboratoire d’Ingénierie des
Systémes Informatiques (LISI). Many thanks for their contribution.

For conference attendants, we hope they enjoyed the technical program, informal
meetings, and interaction with colleagues from all over the world; and of course, we are

VI Preface

confident they enjoyed the exciting city of Marrakesh, Morocco. For readers of these
proceedings, we hope these papers are interesting and they give you ideas for future
research.

July 2018 El Hassan Abdelwahed
Ladjel Bellatreche

Matteo Golfarelli

Dominique Méry

Carlos Ordonez

General Co-chairs

El-Hassan Abdelwahed
Ladjel Bellatreche

Organization

Cadi Ayyad University, Morocco
LIAS/ENSMA, France

Program Committee Co-chairs

Matteo Golfarelli
Dominique Méry
Carlos Ordonez

University of Bologna, Italy
LORIA - Université de Lorraine, France
University of Houston, USA

Organizing Committee Members

My Ahmed El Kiram
Souad Chraibi

Essaid El Bachari

Zahir Jihad

Sana Nouzri

Tarik Agouti

Issam Qaffou

My El Mehdi Bouhamidi

Program Committee

El-Hassan Abdelwahed
Alberto Abello
Yamine Ait Ameur
Idir Ait Sadoune
Sabeur Aridhi

Kamel Barkaoui
Ladjel Bellatreche
Orlando Belo

Sidi Mohamed Benslimane
Jorge Bernardino
Alexander Borusan
Drazen Brdjanin
Francesco Buccafurri
Wellington Cabrera
Antonio Corral

Alain Crolotte

Florian Daniel

Cadi Ayyad University, Morocco
Cadi Ayyad University, Morocco
Cadi Ayyad University, Morocco
Cadi Ayyad University, Morocco
Cadi Ayyad University, Morocco
Cadi Ayyad University, Morocco
Cadi Ayyad University, Morocco
Cadi Ayyad University, Morocco

Cadi Ayyad University, Morocco

Universitat Politécnica de Catalunya, Spain
IRIT/INPT-ENSEEIHT, France

LRI - CentraleSupélec, France

LORIA - Université de Lorraine, France

Cnam, France

LIAS/ENSMA, France

University of Minho, Portugal

University of Sidi Bel Abbes, Algeria

ISEC - Polytechnic Institute of Coimbra, Portugal
TU Berlin/Fraunhofer FOKUS, Germany
University of Banja Luka, Bosnia and Herzegovina
UNIRC, Italy

University of Houston, USA

University of Almeria, Spain

Teradata Corporation, USA

Politecnico di Milano, Italy

VI Organization

Alex Delis
Georgios Evangelidis
Ylies Falcone

Alfio Ferrara

Enrico Gallinucci
Javier Garcia-Garcia
Matteo Golfarelli
Anastasios Gounaris
Emmanuel Grolleau
Brahim Hamid
Slimane Hammoudi
Luis Iribarne
Mirjana Ivanovic
Petar Jovanovic

Nadjet Kamel
Selma Khouri

Adamantios Koumpis
Regine Laleau
Yves Ledru

Carson Leung
Zhiming Liu
Ivan Lukovi¢
Sofian Maabout
Yannis Manolopoulos
Patrick Marcel
Dominique Méry
Mohamed Mosbah
Chokri Mraidha
Vo Ngoc Phu
Carlos Ordonez
Yassine Ouhammou
Jose Ignacio Panach
Navarrete
Oscar Pastor Lopez
Jaroslav Pokorny
Giuseppe Polese
Elvinia Riccobene
Oscar Romero
Dimitris Sacharidis
Milos Savic
Klaus-Dieter Schewe

University of Athens, Greece

University of Macedonia, Greece

Université Grenoble Alpes, Inria, Laboratoire
d’Informatique de Grenoble, France

University of Milan, Italy

University of Bologna, Italy

IPN/UNAM, Mexico

University of Bologna, Italy

Aristotle University of Thessaloniki, Greece

LIAS, ISAE-ENSMA, France

IRIT - University of Toulouse, France

ESEO, France

University of Almeria, Spain

University of Novi Sad, Serbia

Universitat Politécnica De Catalunya - Barcelona Tech,
Spain

University of Science and Technology Houari
Boumedien, Algeria

Ecole nationale Supérieure d’Informatique (ESI),
Algeria

University of Passau, Germany

LACL - Paris Est Creteil University, France

Laboratoire d’Informatique de Grenoble - Université
Grenoble Alpes, France

University of Manitoba, Canada

Southwest University, China

University of Novi Sad, Serbia

LaBRI - University of Bordeaux, France

Aristotle University of Thessaloniki, Greece

Université Francois Rabelais Tours, France

LORIA - Université de Lorraine, France

LaBRI - University of Bordeaux, France

CEA LIST, France

Duy Tan University, Vietnam

University of Houston, USA

LIAS/ENSMA, France

University of Valencia, Spain

Universitat Politecnica de Valéncia, Spain
Charles University in Prague, Czech Republic
University of Salerno, Italy

University of Milan, Italy

Universitat Politécnica de Catalunya, Spain
Vienna University of Technology, Austria
University of Novi Sad, Serbia

Software Competence Center Hagenberg, Austria

Timos Sellis
Giovanni Simonini
Neeraj Singh

Riccardo Torlone

Ismail Toroslu

Predrag Tosic

Goce Trajcevski

Javier Tuya

Theodoros Tzouramanis
Michael Vassilakopoulos
Panos Vassiliadis
Robert Wrembel

Yiqun Zhang

Additional Reviewers

Berkani, Nabila
Boden, Christoph
Bonfanti, Silvia
Bouchez-Tichadou,

Florent
El-Hokayem, Antoine
Galicia Auyon, Jorge
Gounaris, Anastasios
Haq, Anam

Organization

Swinburne University of Technology, Australia

Universita di Modena e Reggio Emilia, Italy

INPT-ENSEEIHT/IRIT, University of Toulouse,
France

Roma Tre University, Italy

Middle East Technical University, Turkey

University of Idaho, USA

Northwestern University, USA

University of Oviedo, Spain

University of the Aegean, Greece

University of Thessaly, Greece

University of Ioannina, Greece

Poznan University of Technology, Poland

University of Houston, USA

Morshed, Ahsan
Pekergin, Nihal
Rafailidis, Dimitrios
Ristic, Sonja
Sarker, Bishnu
Sellami, Akrem
Varga, Jovan
Velentzas, Chronis
Yavari, Ali

Hewasinghage, Moditha
Ivancevi¢, Vladimir
Jaber, Mohamad
Jovanovic, Petar

Kiefer, Martin

Kunft, Andreas

Liao, Kewen

Mammar, Amel
Meiners, Jens

IX

Invited Papers

Data Science with Vadalog: Bridging Machine
Learning and Reasoning

Luigi Bellomarinil’z, Ruslan R. Fayzra.khmanovl, Georg Gottlob1’3,
Andrey Kravchenko!, Eleonora Laurenzaz, Yavor Nenov!,
Stéphane Reissfelder', Emanuel Sallinger', Evgeny Sherkhonov',
and Lianlong Wu'

! University of Oxford, Oxford, UK
ggottlob@gmail.com
2 Banca d’Italia, Rome, Italy
3 TU Wien, Vienna, Austria

Abstract. Following the recent successful examples of large technology com-
panies, many modern enterprises seek to build knowledge graphs to provide a
unified view of corporate knowledge and to draw deep insights using machine
learning and logical reasoning. There is currently a perceived disconnect
between the traditional approaches for data science, typically based on machine
learning and statistical modelling, and systems for reasoning with domain
knowledge. In this paper we present a state-of-the-art Knowledge Graph Man-
agement System, Vadalog, which delivers highly expressive and efficient logical
reasoning and provides seamless integration with modern data science toolkits,
such as the Jupyter platform. We demonstrate how to use Vadalog to perform
traditional data wrangling tasks, as well as complex logical and probabilistic
reasoning. We argue that this is a significant step forward towards combining
machine learning and reasoning in data science.

Modeling Distributed Algorithms by Local
Computations with Applications

Mohamed Mosbah

LaBRI, Bordeaux INP, Univ. Bordeaux,
CNRS, F33405 Talence, France
mosbah@u-bordeaux. fr

Abstract. We present a model based on local interactions for modeling, proving
and implementing distributed algorithms. Many examples of distributed algo-
rithms illustrate this approach, together with an integrated software environment.

Keywords: Local computations - Distributed algorithms - Formal proofs

Problems related to distributed systems are a major concern of research in computer
science. We can particularly mention the design and the development of distributed
architectures or distributed programming environments, the specification and the ver-
ification of distributed algorithms, as well as the study of (wired or wireless) com-
munication networks. All these paradigms are essential for the safety and the security
of distributed systems. However, the development of distributed systems is yet not well
understood. In particular, distributed algorithms are difficult to design and to study, and
even to represent, mainly when nodes communicating only with their neighbours must
participate to achieve a global goal.

The design, validation, verification and debugging remain a hard task for most
programmers and computer scientists. This is due to the intrinsic complexity of dis-
tributed algorithms and programs compared to serial ones. Programmers must coor-
dinate and synchronize communication between processes. This problem becomes
crucial for critical environments for which safety and security must be guaranteed. For
the success of all those undertakings it is crucial to master the mechanisms and local
phenomena at the foundations of such systems. This requires the investigation into
different models of distributed computation, the fundamental understanding of local
interactions and the ability to solve global problems only by local actions. This talk will
focus on different models that are used to represent these systems.

We detail local computations model that allows a high level encoding of distributed
algorithms by graph relabeling systems making it easy the integration of mathematical
proofs into distributed computations. In this formalism, a distributed system is repre-
sented by a labeled graph; the nodes represent the processors and the edges represent
the links between them. The labels are used to encode the internal states of processors
and/or channels. A rule in such a calculus is defined by a small context graph (used as
an ‘anchor’ for application in the host graph) together with two labeling configurations
to this context, one to describe the local state before rule application, and the other to

Modeling Distributed Algorithms by Local Computations with Applications XV

specify the local state after rule application. The transformation is strictly local; there
are no long-distance side-effects.

A general proof schema for proving distributed computation, together with a uni-
fied framework ranging from the early design until the implementation, will be pre-
sented. In fact, he high level encoding of distributed algorithms by graph relabeling
systems makes it easy the integration of mathematical proofs into distributed algo-
rithms. On the other hand, it is possible to formalize the semantics of local compu-
tations with proof assistants, such as Event-B or Coq. Many examples will be
discussed, such as leader election, spanning tree computation, coloring. An integrated
software environment, including the design, the proof and the visualization of dis-
tributed algorithms will be presented.

References

1. Abdou, W., Abdallah, N., Mosbah, M.: Visidia: a java framework for designing, simulating,
and visualizing distributed algorithms. In: Proceedings - IEEE International Symposium on
Distributed Simulation and Real-Time Applications, DS-RT, pp. 43-46 (2014)

2. Boussabbeh, M., Tounsi, M., Kacem, A.H., Mosbah, M.: Towards a general framework for
ensuring and reusing proofs of termination detection in distributed computing. In: Proceedings
- 24th Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing, PDP 2016, pp. 504-511 (2016)

3. Boussabbeh, M., Tounsi, M., Mosbah, M., Kacem, A.H.: Formal proofs of termination
detection for local computations by refinement-based compositions. In: Butler, M., Schewe,
K.D., Mashkoor, A., Biro, M. (eds.) ABZ 2016, vol. 9675, pp. 198-212. Springer, Cham
(2016)

4. DAMPAS Homepage. http://visidia.labri.fr/

5. Ktari, M., Haddar, M., Mosbah, M., Kacem, A.H.: Maintenance of a spanning tree for
dynamic graphs by mobile agents and local computations. RAIRO Theor. Inf. Appl. 51(2),
51-70 (2017)

6. Méry, D., Mosbah, M., Tounsi, M.: Refinement-based verification of local synchronization
algorithms. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 338-352.
Springer, Heidelberg (2011)

http://visidia.labri.fr/

Contents

Invited Paper

Data Science with Vadalog: Bridging Machine Learning and Reasoning 3
Luigi Bellomarini, Ruslan R. Fayzrakhmanov, Georg Gottlob,
Andrey Kravchenko, Eleonora Laurenza, Yavor Nenov,
Stéphane Reissfelder, Emanuel Sallinger, Evgeny Sherkhonov,
and Lianlong Wu

Databases

NoSQL Databases — Seek for a Design Methodology 25
Chaimae Asaad and Karim Baina

Mortadelo: A Model-Driven Framework for NoSQL Database Design. 41
Alfonso de la Vega, Diego Garcia-Saiz, Carlos Blanco,
Marta Zorrilla, and Pablo Sanchez

Towards OntoUML for Software Engineering: Experimental Evaluation
of Exclusivity Constraints in Relational Databases. 58
Zdenék Rybola and Michal Valenta

Ontology and Model Driven Engineering

Scrum and V Lifecycle Combined with Model-Based Testing and Model
Driven Architecture to Deal with Evolutionary System Issues. 77
Imane Essebaa and Salima Chantit

Adaptive Algorithms for Computing Ontologies Metrics Through
Processing of RDF Graphs. i 92
Jean Vincent Fonou-Dombeu and Yannick Kazela Kazadi

CRank: A Novel Framework for Ranking Semantic Web Ontologies. 107
Jean Vincent Fonou-Dombeu and Serestina Viriri

Data Fusion, Classification and Learning

A New Way of Handling Missing Data in Multi-source Classification
Based on Adaptive Imputation L L L L 125
lkram Abdelkhalek, Afef Ben Brahim, and Nadia Essousi

XVIIL Contents

Feedback-Oriented Assessor Model: Application: Allocation
of Submissions in Online Peer Assessment. 137
Mohamed-Amine Abrache, Khalid Megder, and Chihab Cherkaoui

Communication and Information Technologies

A Gamification and Objectivity Based Approach to Improve

Users Motivation in Mobile Crowd Sensing 153
Hasna El Alaoui El Abdallaoui, Abdelaziz El Fazziki,
Fatima Zohra Ennaji, and Mohamed Sadgal

Modeling and Evaluating Cross-layer Elasticity Strategies
in Cloud SyStemsot e 168
Khaled Khebbeb, Nabil Hameurlain, and Faiza Belala

Thing Federation as a Service: Foundations and Demonstration 184
Zakaria Maamar, Khouloud Boukadi, Emir Ugljanin, Thar Baker,
Muhammad Asim, Mohammed Al-Khafajiy, Djamal Benslimane,
and Hasna El Alaoui El Abdallaoui

Formalizing Reusable Communication Models for Distributed
Systems Architecture. 198
Quentin Rouland, Brahim Hamid, and Jason Jaskolka

Safety and Security

A Valid BPMN Extension for Supporting Security Requirements Based
on Cyber Security Ontologyot 219
Mohamed El Amine Chergui and Sidi Mohamed Benslimane

A Correct-by-Construction Model for Attribute-Based Access Control 233
Hania Gadouche, Zoubeyr Farah, and Abdelkamel Tari

Algorithmics and Text Processing

Voronoi-Diagram Based Partitioning for Distance Join Query Processing

in SpatialHadoop 251
Francisco Garcia-Garcia, Antonio Corral, Luis Iribarne,
and Michael Vassilakopoulos

Graph Pattern Matching Preserving Label-Repetition Constraints. 268
Houari Mahfoud

Standard and Dialectal Arabic Text Classification for Sentiment Analysis ... 282
Mohcine Maghfour and Abdeljalil Elouardighi

Contents XIX

A Graph-Based Model for Tag Recommendations in Clinical

Decision Support System 292
Sara Qassimi, El Hassan Abdelwahed, Meriem Hafidi,
and Rachid Lamrani

Spatial Batch-Queries Processing Using xBR T -trees in Solid-State Drives. .. 301

George Roumelis, Michael Vassilakopoulos, Antonio Corral,
Athanasios Fevgas, and Yannis Manolopoulos

Specification, Verification and Validation

Formalizing Railway Signaling System ERTMS/ETCS

Using UML/Event-B 321
Abderrahim Ait Wakrime, Rahma Ben Ayed, Simon Collart-Dutilleul,
Yves Ledru, and Akram Idani

A Dynamic Analysis for Reverse Engineering of Sequence Diagram
Using CPN. e 331
Chafik Baidada, El Mahi Bouziane, and Abdeslam Jakimi

A Formalized Procedure for Database Horizontal Fragmentation
in Isabelle/HOL Proof Assistant 346
Cheikh Salmi, Mohamed Chaabani, and Mohamed Mezghiche

Domain-Oriented Verification Management 354
Vincent Leildé, Vincent Ribaud, Ciprian Teodorov,
and Philippe Dhaussy

A Formal Model for Interaction Specification and Analysis
in IoT Applications e 371
Souad Marir, Faiza Belala, and Nabil Hameurlain

Mechanizing the Denotational Semantics of the Clock Constraint
Specification Language 385
Mathieu Montin and Marc Pantel

Ensuring the Functional Correctness of IoT through Formal Modeling
and Verification 401
Samir Ouchani

Extensions to Hybrid Event-B to Support Concurrency
in Cyber-Physical Systems 418
Klaus-Dieter Schewe

Author Index 435

Invited Paper

®

Check for
updates

Data Science with Vadalog: Bridging
Machine Learning and Reasoning

Luigi Bellomarini’?, Ruslan R. Fayzrakhmanov', Georg Gottlob'3(®2)
Andrey Kravchenko!, Eleonora Laurenza?, Yavor Nenov!,
Stéphane Reissfelder!, Emanuel Sallinger!', Evgeny Sherkhonov!,

and Lianlong Wu'

1 University of Oxford, Oxford, UK
ggottlob@gmail.com
2 Banca d’Italia, Rome, Italy
3 TU Wien, Vienna, Austria

Abstract. Following the recent successful examples of large technology
companies, many modern enterprises seek to build knowledge graphs to
provide a unified view of corporate knowledge and to draw deep insights
using machine learning and logical reasoning. There is currently a per-
ceived disconnect between the traditional approaches for data science,
typically based on machine learning and statistical modelling, and sys-
tems for reasoning with domain knowledge. In this paper we present a
state-of-the-art Knowledge Graph Management System, Vadalog, which
delivers highly expressive and efficient logical reasoning and provides
seamless integration with modern data science toolkits, such as the
Jupyter platform. We demonstrate how to use Vadalog to perform tradi-
tional data wrangling tasks, as well as complex logical and probabilistic
reasoning. We argue that this is a significant step forward towards com-
bining machine learning and reasoning in data science.

Keywords: Knowledge graphs - Data science + Machine learning
Reasoning - Probabilistic reasoning

1 Introduction

Enterprises increasingly depend on intelligent information systems that oper-
ationalise corporate knowledge as a unified source across system boundaries.
Such systems crucially rely on insights produced by data scientists, who use
advanced data and graph analytics together with machine learning and statisti-
cal models to create predictive actionable knowledge from suitably preprocessed
corporate data by means of data wrangling. To maintain their competitive edge,
companies need to incorporate multiple heterogeneous sources of information,
including streams of structured or unstructured data from internal systems (e.g.,
Enterprise Resource Planning, Workflow Management, and Supply Chain Man-
agement), external streams of unstructured data (e.g., news and social media

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 3-21, 2018.
https://doi.org/10.1007/978-3-030-00856-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_1&domain=pdf

4 L. Bellomarini et al.

feeds, and Common Crawl'), publicly available and proprietary sources of semi-
structured data (e.g., DBpedia [11], Wikidata [46], UniProt [19], data.gov.uk),
structured data extracted from web pages using web data extraction techniques
[24], as well as internal and external knowledge bases/ontologies (e.g., Research-
Cyc?, DBpedia [11], Wikidata [46], FIBO?®). The integration of such diverse
information is a non-trivial task that presents data scientists with a number of
challenges including: the extraction and handling of big data with frequently
changing content and structure; dealing with uncertainty of the extracted data;
and finding ways of unifying the information from different sources.

Following the trend of large technological companies such as Google, Ama-
zon, Facebook, and, LinkedIn, it is becoming common for enterprises to inte-
grate their internal and external sources of information into a unified knowledge
graph. A knowledge graph typically consists of graph-structured data to allow
for smooth accommodation of changes in the structure of the data, and knowl-
edge layers, which encode business logic used for the validation and enrichment
of data and the uncovering of critical insights from it. Graph-structured data
may stem from data directly exposed as graphs (e.g., RDF* used by triple stores
such as GraphDB®, Property Graphs used by graph databases like neo4j%, and
JanusGraph”) or relational or semi-structured data that exhibits graph struc-
ture. The consolidated and enriched knowledge graph is then processed using the
standard data science toolkit for graph analytics (including languages such as
Cypher®, SPARQL?, and Gremlin'?), statistical analysis (using the R statistical
framework), and machine learning (using toolkits such as Wekal®, scikit-learn'?,
and TensorFlow!?).

The creation of a coherent knowledge graph from multiple sources of unstruc-
tured, semi-structured, and structured data is a challenging task that requires
techniques from multiple disciplines. Entity resolution [18] is used to combine
multiple sources of (semi-)structured data that do not share common identifiers.
The goal is to identify pairs of entities that refer to the same real-world object
and merge them into a single entity. The matching is performed using noisy, semi-
identifying information (e.g., names, addresses) and relationships, and employs
specialised similarity functions for strings, numbers, and dates, to determine the

! http://commoncrawl.org/.
2 http://www.cyc.com/researchcyc/.
3 https://spec.edmcouncil.org/static/ontology/.
4 https://www.w3.org/RDF/.
5 http://graphdb.ontotext.com/.
5 https://neodj.com/.
7 http:/ /janusgraph.org/.
8 https://neodj.com/developer/cypher-query-language/.
9 https://www.w3.org/TR/rdf-sparql-query/.
10 https://tinkerpop.apache.org/gremlin.html.
M https: //www.cs.waikato.ac.nz/ml/weka,/ .
12 http:/ /scikit-learn.org/.
13 https://www.tensorflow.org/.

http://www.data.gov.uk
http://commoncrawl.org/
http://www.cyc.com/researchcyc/
https://spec.edmcouncil.org/static/ontology/
https://www.w3.org/RDF/
http://graphdb.ontotext.com/
https://neo4j.com/
http://janusgraph.org/
https://neo4j.com/developer/cypher-query-language/
https://www.w3.org/TR/rdf-sparql-query/
https://tinkerpop.apache.org/gremlin.html
https://www.cs.waikato.ac.nz/ml/weka/
http://scikit-learn.org/
https://www.tensorflow.org/

Data Science with Vadalog 5

overall similarity of two entities. Information extraction [43] is used for auto-
matically extracting structured data from unstructured sources (i.e., news and
social media feeds). Thus, for example, the news feed “PayPal buys Hyperwallet
for $400M” could result into the structured statement “acquire(PayPal, Hyper-
wallet)”. Information extraction is typically combined with entity resolution to
correctly incorporate the extracted information within an existing knowledge
graph.

Publicly available datasets are often equipped with ontologies which describe
relationships between entities. In such cases ontological reasoning needs to be
applied to validate whether the results of entity resolution and information
extraction violate any of the constraints imposed by the ontology as well as
to enrich the data with new information stemming from the newly produced
facts. Further note that, unsurprisingly, the use of machine learning is pervasive
throughout the stages of the data scientist’s workflow: from semantically anno-
tating web page elements during web data extraction, through deciding whether
entities should be matched during entity resolution, to predicting numerical
trends during data analytics over the knowledge graph. Finally, observe that
although wuncertainty is intrinsic to many of the tasks in the data scientist’s
workflow, it is typically resolved by the means of a threshold. For example, dur-
ing entity resolution, the similarity of the attributes of two entities is typically
converted to a probability for the two entities to be the same, and they are
matched if the probability exceeds a certain threshold. Similarly, the informa-
tion extraction stage typically associates output facts with level of uncertainty
stemming from the extraction process, but likewise to the case of entity reso-
lution, the uncertainty is converted into a probability for a fact to hold, and a
hard decision is made on whether it should be included or not. Interestingly, one
can do better than that. One may want to impose levels of uncertainty using
business rules to better inform the decision of whether and how the knowledge
graph should be updated. One such rule, for example, could be that public com-
panies are much more likely to acquire private companies than vice-versa (the
so called reverse takeover). Such rules can be produced by a domain expert or
learned from the data using rule learning [7]. Furthermore, instead of ignoring
the uncertainty, after it is being used to determine whether to accept a fact or a
match, for example, one could alternatively incorporate this uncertainty into the
knowledge graph and propagate them into the further stages of data wrangling
and data analytics workflow.

To carry out the different stages of the described workflow data scientists need
to use and coordinate a number of tools, languages, and technologies: for data
access they require tools for web data extraction, various data-base management
systems, triple stores and graph databases; during knowledge graph construction
they require tools for entity resolution, information extraction, ontological rea-
soning, and uncertainty management; and during the analysis stage they require
tools for graph analytic, machine learning and statistical modelling. The coor-
dination of all these tools can be very challenging.

6 L. Bellomarini et al.

In this paper we present the Vadalog engine: a state-of-the-art Knowledge
Graph Management System (KGMS) that provides a unified framework for inte-
grating the various tools and technologies used by data scientists. Its language
Vadalog is an extension of the rule-based language Datalog [1], and can naturally
capture SQL (through support for the SQL operators), ontological reasoning
in OWL 2 QL and SPARQL (through the use of existential quantifiers), and
graph analytics (through non-trivial support for recursion and aggregation). The
declarative nature of the language makes the code concise, manageable, and self-
explanatory. The engine is fully extensible through its bindings to different data
sources and libraries. Data extensions provide access to relational data stored
in Postgres or MySQL, for example, or to graph data stored in neo4j or Janus,
or to web data using OXPath [24]. Library extensions allow the integration of
state-of-the-art machine learning tools such as Weka, scikit-learn, or Tensor-
Flow. Additional integration with libraries for string similarities and regular
expressions allows for defining complex entity resolution workflows. The engine
also supports reasoning with probabilistic data and probabilistic rules, which
makes it ideal for handling uncertainty stemming from the different stages of
the data scientist’s workflow. Finally, the Vadalog engine seamlessly integrates
with Jupyter: a well-known platform for data analysts and scientists with a con-
venient interface for data processing and visualisation.

The paper is organised as follows. Section 2 provides an overview of the core
language. Section 3 provides a system overview of the Vadalog engine. Section 4
describes the various features of the system within a typical data scientist’s work-
flow in Jupyter. Section5 demonstrates the engine’s integration with machine
learning on typical use cases. Finally, Sect.6 describes in more detail the sup-
port of the system for probabilistic reasoning.

This paper includes, in abbreviated form, material from a number of pre-
vious papers on the topic [7-10]. The Vadalog system is Oxford’s contribution
to VADA [34], a joint project of the universities of Edinburgh, Manchester, and
Oxford. We reported first work on the overall VADA approach to data wrangling
in [25]. In this paper, we focus on the Vadalog system at its core. Currently, our
system fully implements the core language and is already in use for a number of
industrial applications.

2 Core Language

Vadalog is a Datalog-based language. It belongs to the Datalog® family of lan-
guages that extends Datalog by existential quantifiers in rule heads, as well as by
other features, and at the same time restricts its syntax in order to achieve decid-
ability and data tractability; see, e.g., [14-17]. The logical core of the Vadalog
language corresponds to Warded Datalog™ [4,29], which captures plain Datalog
as well as SPARQL queries under the entailment regime for OWL 2 QL [28]
and is able to perform ontological reasoning tasks. Reasoning with the logical
core of Vadalog is computationally efficient. Vadalog is obtained by extending

1 https://www.w3.org/TR/owl2-profiles/.

https://www.w3.org/TR/owl2-profiles/

Data Science with Vadalog 7

Warded Datalog® with additional features of practical utility. We now illustrate
the logical core of Vadalog, more details about extensions can be found in [7].

The logical core of Vadalog relies on the notion of wardedness, which applies
a restriction on how the “dangerous” variables of a set of existential rules are
used. Note that existential rules are also known as tuple-generating dependencies
(tgds), i.e., Datalog rules where existential quantification is allowed in the head.
Intuitively, a “dangerous” variable is a body-variable that can be unified with a
labelled null value when the chase algorithm is applied, and it is also propagated
to the head of the rule. For example, given the set X' consisting of the rules

P(x) —» 3z R(x,z) and R(z,y) — P(y),

the variable y in the body of the second rule is “dangerous” (w.r.t. X) since
starting, e.g., from the database D = {P(a)}, the chase will apply the first rule
and generate R(a, V), where v is a null that acts as a witness for the existentially
quantified variable z, and then the second rule will be applied with the variable
y being unified with v that is propagated to the obtained atom P(v).

Note that, throughout this paper, we will mix the “logical” notation shown
above that is often used in papers, and the “code”-like notation that is used
in systems, such as the Vadalog system. The above example would be given as
follows in Vadalog notation:

r(X,Z2) :- pX).
p(Y) - r(X,Y).

The goal of wardedness is to tame the way null values are propagated during the
construction of the chase instance by posing the following conditions: (i) all the
“dangerous” variables should coexist in a single body-atom «, called the ward;
(ii) the ward can share only “harmless” variables with the rest of the body, i.e.,
variables that are unified only with database constants during the construction
of the chase.

Warded Datalog® consists of all the (finite) sets of warded existential rules.
As an example of a warded set of rules, the following rules encode part of the
OWL 2 direct semantics entailment regime for OWL 2 QL (see [4,29]):

Type(x, y), Restriction(y, z) — Jw Triple(z, z, w)
Type(z,y), SubClass(y, z) — Type(z, 2)
Triple(z, y,), Inverse(y, w) — Triple(z, w, x)
)

Triple(z, y, z), Restriction(w, y) — Type(x, w).

It is easy to verify that the above set is warded, where the underlined atoms are
the wards. Indeed, a variable that occurs in an atom of the form Restriction(, -),
or SubClass(+,-), or Inverse(:,-), is trivially harmless. However, variables that

appear in the first position of Type, or in the first/third position of Triple can
be dangerous. Thus, the underlined atoms are indeed acting as the wards.

8 L. Bellomarini et al.

Reasoning in Warded Datalog® is PTIME-complete in data complexity [4,
29]. Although polynomial time data complexity is desirable for conventional
applications, PTIME-hardness can be prohibitive for “Big Data” applications.
One such example is towards building knowledge graphs that consider huge
elections in the area of computational social choice [20]. Yet, in fact, this is true
even for linear time data complexity. This is discussed in more detail in [7].

This core language has a number of extensions to make it practical, among
them data types, arithmetic, (monotonic) aggregation, bindings of predicates to
external data sources, binding function symbols to external functions, and more.

We will discuss monotonic aggregation here. Vadalog supports aggregation
(min, maz, sum, prod, count), by means of an extension to the notion of mono-
tonic aggregations [44], which allows adopting aggregation even in the presence
of recursion while preserving monotonicity w.r.t. set containment. Such func-
tionality is crucial for performing graph analytics, an example of which is shown
in Sect. 4.

We will discuss some of these extensions throughout this paper. One of the
extensions that are planned is more support consistency, in particular consistent
query answering [3,5] as well as view updates [13,31].

3 Core System

The functional architecture of the

28
Vadalog system, our KGMS, is 25 2 ?Z g €
depicted in Fig.1. The knowledge o,fa et S
. . . 4 APys
graph is organised as a repository, a e,

collection of Vadalog rules. The exter-
nal sources are supported by means of =~ Viua,
transducers, intelligent adapters that
integrate the sources into the reason-
ing process.

The Big Data characteristics of g
the sources and the complex func-
tional requirements of reasoning are
tackled by leveraging the underpin-
nings of the core language, which are
turned into practical execution strate-
gies. In particular, in the reasoning
algorithms devised for Warded Datalog®, after a certain number of chase steps
(which, in general, depends on the input database), the chase graph [15] (a
directed acyclic graph where facts are represented as nodes and the applied rules
as edges) exhibits specific periodicities and no new information, relevant to query
answering, is generated. The Vadalog system adopts an aggressive recursion and
termination control strategy, which detects such redundancy as early as possi-
ble by combining compile-time and runtime techniques. In combination with a
highly engineered architecture, the Vadalog system achieves high performance
and an efficient memory footprint.

Fig. 1. KGMS reference architecture [7]

Data Science with Vadalog 9

At compile time, as wardedness limits the interaction between the labelled
nulls, the engine rewrites the program in such a way that joins on specific val-
ues of labelled nulls will never occur. This exploits work on schema mapping
composition and optimisation [32,33,38,42].

The Vadalog system uses a pull stream-based approach (or pipeline app-
roach), where the facts are actively requested from the output nodes to their
predecessors and so on down to the input nodes, which eventually fetch the facts
from the data sources. The stream approach is essential to limit the memory
consumption or at least make it predictable, so that the system is effective for
large volumes of data. Our setting is made more challenging by the presence of
multiple interacting rules in a single rule set and the wide presence of recur-
sion. We address this by means of a specialised buffer management technique.
We adopt pervasive local caches in the form of wrappers to the nodes of the
access plan, where the facts produced by each node are stored. The local caches
work particularly well in combination with the pull stream-based approach, since
facts requested by a node successor can be immediately reused by all the other
successors, without triggering further backward requests. Also, this combination
realises an extreme form of multi-query optimisation, where each rule exploits
the facts produced by the others, whenever applicable. To limit memory occu-
pation, the local caches are flushed with an eager eviction strategy that detects
when a fact has been consumed by all the possible requestors and thus drops it
from the memory. Cases of actual cache overflow are managed by resorting to
standard disk swap heuristics (e.g., LRU, LFU).

More details on the Vadalog system can be found in [10]. The system includes
many other features, such as data extraction with OXPath, which is in use with
our collaborators at dblp [36].

4 Supporting the Data Science Workflow

As the importance of data science constantly increases, the Vadalog system can
support the entire spectrum of data science tasks and processes to a certain
extent. It does not however replace tools specialists like to use, but rather conveys
a universal platform to integrate various approaches and tools into a unified
framework. All integrations are realised in terms of data binding primitives and
functions.

One such key example is the use of the Ul/development platform, where
Jupyter was chosen as a platform that data scientists are familiar with. The
Vadalog system has seamless integration with JupyterLab with the use of a
Vadalog extension and kernel (see Fig.2). JupyterLab is a well-known platform
for data analysts and scientists with a convenient interface for data processing
and visualisation. It has a multi-user support, in which dedicated resources and
the environment are associated with a concrete user. The Vadalog extension and
kernel for JupyterLab give data scientists the possibility to evaluate the correct-
ness of the program, run it, and analyse the derivation process of interesting
output facts. All output is rendered in JupyterLab’s output area.

10 L. Bellomarini et al.

File Edit View Run Kemel Tabs Settings Help

).

A CompanyContn X | A CompanyExtrar X
B+ X 0O Own>n,® C Code v vadalog O

Files

Company Control

Running

Company Company1 controls company Company?2 if Company1 owns directly or indirectly (i.e. via shares in other
companies) more than 50% of Company2's shares.

I : relevant_country("Country Name").

Commands
i

ownsDirectly("A", "B", 0.5).

@input("ownsDirectlyDB").
@qbind("ownsDirectlyDB", "postgres", "public",

"select companyl, company2, share, country from owns_directly where country=${4}").
ownsDirectly(X, Y, Z) :- ownsDirectlyDB(X, Y, Z, C), relevant_country(C).

Cell Tools

@input("ownsDirectlycsv").
@bind("ownsDirectlyCSV", "csv", "dir_path", "owns_directly.csv").
@mapping("ownsDirectlyCsv",0,"companyl","string").
@mapping("ownsDirectlyCsv",1,"company2","string").
@mapping("ownsDirectlycsv",2,"share","float").
@emapping("ownsDirectlyCsv",3,"country","string").

ownsDirectly(X, Y, Z) :- ownsDirectlyCSV(X, Y, Z, C), relevant_country(C).

Tabs

controls(Companyl, Company2) :- ownsIndirectly(Companyl, Company2, Share), Share > 0.5.

ownsIndirectly(Companyl, Company2, Sharel2) :- ownsDirectly(Companyl, Company2, Share),
Sharel2 = msum(Share, <Company2>).

ownsIndirectly(Companyl, Company2, Sharel2) :- ownsIndirectly(Companyl, Company3, Sharel3),
ownsDirectly(Company3, Company2, Share32),
Sharel2 = msum(Sharel3 * Share32, <Company3>).
@output("controls").

@bind("controls", "postgres", "public", "controls").
controls
string string a
A c
B D

Fig. 2. Example of the Vadalog program for inferring a company control indicator

Data Binding Primitives. Bindings give one a possibility to connect an auto-
matic reasoning workflow with external systems for data exchange. An external
system can represent a database, framework, library or information system. Cur-
rently Vadalog supports relational databases, such as Postgres and MySQL, and
graph databases, such as neo4j. It also has seamless integration with machine
learning tools, e.g., Weka and scikit-learn (see Sect.5.1), and a web data extrac-
tion tool, OXPath [24] (see Fig.3). Other integrations are included or can be
easily integrated. Data sources and targets can be declared by adopting @input
and @output annotations. Annotations are special facts augmenting sets of exis-
tential rules with specific behaviours. @input and @output define the direction of
facts into and from the Vadalog program, respectively. Additional @bind anno-
tation defines means for interacting with an external system. A query bind anno-
tation @gbind is a special modification of @bind. It supports binding predicates
to queries against inputs and outputs in the external language (e.g., SQL-queries
for a data source or target that supports SQL). The first parameter of @bind
and @gbind specifies a predicate the external resource is bound to; the second
parameter defines a type of the target (e.g., “postgres”). In case the schema
of an external resource cannot be derived automatically, or should be overrid-
den, additional @Gmapping annotation can be used to define mapping strategy for
tuples between Vadalog and an external system.

Data Science with Vadalog 11

@input("article").
@gbind("article", "oxpath",
"doc('http://dblp.dagstuhl.de/pers/hd/g/Gottlob:Georg")
/.:<collection>
L
I} Georg Gottlob 4 & < ®» .:<author="'Georg Gottlob'>
:<articles>

T —— //ull@class="'publ-list']/li[@class~="entry']
- /div[@class="'data']:<article>
[./span[@itemprop="'author']:<author=normalize-space(.)>]
[./span[@itemprop="'name']:<title=normalize-space(.)>]
[.//span[@itemprop="'isPartof'][1]

:<publication=normalize-space(.)>]
2017 @ @ [?./span[@itemprop="pagination']:<pages=normalize-space(.)>]

B2 B8 ® < [Cegesion Chisophked A i 1

ogic, Languages, and Rules for Web Data EXtraction]

niversity of Oxford, Department of Computer Science
7:TU Vienna, Faculty of Informatics

2010 - today @

2016

B

23 B8R

w22 EL R

: informal Pubications
w217 B8R <

refine by coauthor

Fig. 3. Integration of OXPath, a web data extraction tool

In Fig. 2, we give a synthetic example of a Vadalog program to infer a com-
pany control indicator. It can be formulated as follows: A company A “controls”
company B if A owns directly or indirectly (i.e., via shares in other companies)
more than 50% of B’s shares (lines 18-25). As we can see, various strategies
for binding external resources can be used in the Vadalog program. For exam-
ple, data tuples ownsDirectly can be propagated into the program from the
parametric @gbind (lines 6-7 for Postgres via tuples ownsDirectlyDB) or @bind
(line 11 for CSV via tuples ownsDirectlyCSV). For @gbind SQL query is instan-
tiated with the parameter from the predicate relevant_country (line 8). The
query instantiation is realised within the join, in which the parameter C from
the relevant_country predicate is propagated into the fourth term of the pred-
icate ownsDirectlyDB. In contrast, in case of @bind, all data is streamed into
the Vadalog system and filtered on-the-fly by only selecting information regard-
ing the “relevant country” (line 16). ownsDirectly tuples can also be specified
within the program in terms of facts (line 3). During the evaluation of the pro-
gram, each derived tuple controls is streamed into a Postgres database as it is
specified in lines 26-27.

In Fig. 3, we illustrate an example of binding with OXPath. OXPath [24] is
a web data extraction language, an extension of XPath 1.0 for interacting with
web applications and extracting data from them. In this example, the OXPath
binding streams all articles of Georg Gottlob from dblp website into the Vadalog
program. Extracted articles can be represented as a relation article(authors,
title, publication, pages). Integration with machine learning tools is dis-
cussed in the next section.

Functions. Besides bindings, functions provide a data scientist with a rich set
of value transformations and operations for different data types supported in
Vadalog. A user can write expressions of different complexity with the use of

12 L. Bellomarini et al.

operators and functions to perform arithmetic, manipulate strings, dates, and
compare values. Examples of supported data types are string, integer, double,
date, boolean, set, and a special identifier for unknown values, marked null. A
data scientist can also extend the set of supported functions with those written
in Python, which is enabled in the Vadalog framework. Functions can be com-
bined into libraries. For example, @library("sim:", "simmetrics"). enables
the “simmetrics” library in the Vadalog program, where methods can be invoked
with the prefix sim:, as in sim:removeDiacritics(Text) to remove diacrit-
ics from Text. We also convey libraries for building regression or classification
models on-the-fly and applying those on the data derived during the automatic
reasoning (see Sect. 5.1).

@output("controls2").
@bind("controls2", "postgres", "public", "controls").

Varlable In Ihs of expression unbound to the rule head
Rule Condition Variable

controls(Company1,Company2) :-
ownsindirectly(Company1,Company2,Share), Share2>0.5 Share2
Share2>0.5.

Dangling body predicates
Predicates
[ownsDirectlyCSV]

Dangling output annotations
Annotation

@output(“controls2)

Dangling head predicates
Predicates
[controls]

Fig. 4. A screenshot depicting code analysis for an altered Vadalog program in the
company control example

Code Analysis. The correctness of the program is assessed with the use of
the code analysis functionality (see Fig.4). It checks whether there are essential
or well-known error patterns in the program. For example, in Fig. 4, we altered
the original program illustrated in Fig. 2. The parameter Share of the condition
in the line 18 was replaced with Share2, lines 10-15 were commented, leaving
ownsDirectlyCSV without the binding, and the output controls was changed
to controls2.

Fact Derivation Analysis. The analysis of derivations can be performed with
the use of explanations (see Fig.5). It gives an explanation of how a certain fact
has been derived within the program and which rules have been triggered.

Bindings and functions make data analytics both more effective and efficient.
Vadalog directly interacts with various data sources regardless of their nature,
be it a database or the Web. Furthermore, with rich reasoning capabilities it
can lift the analysis up from basic values, tuples or relations within databases
to semantically rich structures, e.g., from property graphs such as of neo4j to
concepts of a domain ontology. This makes the code more concise and self-
explanatory.

Data Science with Vadalog 13

@output("controls").
@bind("controls", "postgres", "public", "controls").

Zoom Center @

controls(A, C) - ownslIndirectly(A. C, 0.6). 0.650.5 I

ownslndirectly(A, C, 0.6)

rectly(A. C. 0.6) - ownsDirectly(A. C. 0.4), 0. 14,<C>) | I¥(A, C, 06) - iy(A. B, 0.5), ownsDirectly(B, C. 0.4), 04 0.5%04,)

ownsDirectly(A, C, 0.4) ownsDirectly(B, C, 0.4) ownsIndirectly(A, B, 0.5)

ownsIndirectly(A, B, 0.5) - ownsDirectly(A, B, 0.5), 0.5=msum(0.5,)

ownsDirectly(A, B, 0.5)

Fig.5. A screenshot of the output depicting a “yes’-explanation for the fact
controls("A", "C") in the company control example

The Vadalog system is a universal tool which can reconcile two opposite
paradigms of data scientists and domain experts, so-called “inductive” (or
bottom-up) and “deductive” (or top-down) approaches. An inductive paradigm
goes along with a statement that “patterns emerge before reasons for them
become apparent” [21]. It certainly refers to data mining and machine learn-
ing approaches which are used for deriving new knowledge and relations from
data. As all data scientists face in practice, “all models are wrong and some are
useful” [12, p. 208], which explains problems of finding the best model given a
dataset. Furthermore, limitations related to labour intensive labelling for some
machine learning algorithms can also cause incorrect or incomplete results. Thus,
knowledge of a domain expert with a deductive approach is important to correct
potential errors propagated from generated models.

5 Integrating Machine Learning

In this section, we will discuss

how to integrate machine learning

directly. We will focus on one of l I
3

the approaches to machine learning

integration, schematically illustrated

in Fig.6. In the first subsection, we u
will concretely talk about Weka and

scikit-learn integration. The system’s

TensorFlow integration is similar in

style to the scikit-learn integration. Fig.6. Schematic view of the interaction
This will be followed in Subsect.5.2 between machine learning and reasoning

Machine
Learning

14 L. Bellomarini et al.

by a case study on feature engineering. We will conclude in Subsect. 5.3 on how
to include custom ML algorithms directly into the system.

j48(X1, X2, X3, X4, Class) :- training_data(Xl, X2, X3, X4, Class).
2 G@bind("j4 k il
enapping ("
emapping ("
5 Emapping("
@mapping (" "pe’
@mapping("j48", 4, "clas:

Fig. 7. A snippet of Vadalog code, which demonstrates training a J48 Weka model

classified_data(X1,X2,X3,X4,Class) :- data(X1,X2,X3,X4), j48Model(M), j48(M,X1,X2,X3,X4,Class).

@input("j4s").
eabind("j4s", "weka", "{'4'='Iris-setosa,Iris-versicolor, Iris-virginica’
"{nodel="${1}", tuple=" (sm ${3},8{4},${5})", class= s(s)

@mapping ("]48”, "rmode1 "string!).
"sepallengt

enapping ("]
@mapping ("]
@mapping(
16 @mapping("]
emapping ("]

48

s

") 5, “class, "string").

Fig. 8. A snippet of Vadalog code, which demonstrates the classification phase with a
trained J48 Weka model

5.1 Direct Integration

Weka. Integration with a machine learning framework, Weka, is demonstrated
in Figs. 7 and 8. Figure 7 illustrates the J48 model generation example for the Iris
dataset. Training data is propagated to the bound decision tree classifier asso-
ciated with the predicate j48. Mapping annotations specify attributes and the
class of tuples streamed into the underlying machine learning algorithm. Figure 8
depicts an example of the classification process given a model M. Attributes of
the tuple data to be classified and the generated model are streamed into the
underlying Weka framework via the predicate j48. The results of the classifica-
tion are instantiated in a relation classified_data. In the @gbind expression,
the third parameter defines nominal attributes, a class in our case, which had
index 4 in the training phase. The fourth parameter of @gbind defines parameter
propagation template from the predicate j48 into the underlying model.

SciPy Toolkits Machine Learning. An external Python library such as scikit-
learn can be utilised for machine learning tasks over predicates, through Vadalog
Library framework. One basic linear regression example is shown below. The
input consists of predicates in the form of training_set(ID,X,Y). The sk:fit
function feeds input data one by one and returns current training set size. Once
sufficient training set size is reached, sk:train function is called with a boolean
return value. The last rule takes predict inputs one by one and retrieves output
from a trained model. #T stands for boolean value true.

Data Science with Vadalog 15

@library("sk:", "sklearn").
training set("ID1", [1, 1], 2).
training set ("ID1", [2, 2], 4).
training set("ID1", [3, 3], 6).
predict("ID1", [17, 171).

training size(ID, C) :- training set(ID, In, Out), C=sk:fit(ID, In, Out).
classified(ID, R) :- training size(ID, C),C>=3,R = sk: train(ID).
result(ID, In, Out) :-

predict(ID, In), classified(ID, #T), Out = sk:predict(ID, In).

5.2 Case Study: Feature Engineering

We consider a case study of implementing a supervised machine learning frame-
work and post-classification reasoning with Vadalog. Our implementation con-
sists of three phases: (i) feature extraction with Vadalog, (ii) interaction between
Vadalog and a serialised classifier, (iii) post-classification reasoning. We assume
that the classifier has already been trained and serialised and for the reasons
of brevity omit the description of representing a training corpus and training
the classifier with Vadalog, as it can be done through a simple extension of the
framework. The schematic view of the framework we implement in this case
study is given in Fig. 6.

Feature Extraction with Vadalog. Consider the problem of identifying semantic
blocks on a web page, such as pagination bars, navigation menus, headers, foot-
ers, and sidebars [26,35]. The page is represented by the DOM tree and CSS
model. We represent all information contained both in the DOM and CSS as
DOM facts, which are Vadalog edb predicates. An example of three DOM facts
representing the (i) font size of a DOM tree element with ID 100, (ii) its back-
ground colour, (iii) and the coordinates, width, and height of the corresponding
CSS box is listed below.

dom__css_fontSize("e 100", "16px").
dom__css__backgroundColor ("e_100", "rgb(229, 237, 243)").
dom__css__boundingBox("e_100", 150, 200, 450, 400, 300, 200).

In the code snippet below we extract the feature, which computes the average
font size of the sub-tree rooted at a given DOM node N, used in the navigation
menu classifier, i.e., the average font size computed on a set unifying node N
and all of its descendant nodes (calculated through the Start and End indices of
DOM nodes).

16 L. Bellomarini et al.
@output ("feature").

descendant (N,D) :-
dom__element (N, Start, End), dom__element(D, StartD, EndD),
Start < StartD, EndD < End.

feature("averageFontSize", N, FontSize) :- dom__css__fontSize(N, FontSize).

feature("averageFontSize", N, FontSize) :-
descendant (N,D), dom__css__fontSize(D, FontSize).

@post ("feature", "avg(3)").

Note that we use the feature namespace for the predicate, which computes
this particular feature, as well as all other features used by classifiers. The feature
predicates are the output of this feature extraction phase of the framework, so
that they can be further passed on as input to a serialised classifier.

Interaction with a Serialised Classifier. All extracted features are passed on to a
serialised classifier through the @bind operator. For the case of web block classifi-
cation, we use Weka as the machine learning library and J48 decision tree as the
classifier, but the implementation of the framework in Vadalog is both library
and classifier agnostic, e.g., we can seamlessly integrate Vadalog with scikit-
learn, as demonstrated in Subsect. 5.1, and the J48 decision tree classifier can
also be seamlessly changed to any other classifier, e.g., an SVM. The classifica-
tions produced by the classifier are then passed back to Vadalog, also through the
@bind operator. These classifications are in the classification namespace, e.g.,
classification(e_200, "navigation menu") that classifies DOM node with ID
200 as a navigation menu.

Post-classification Reasoning. We can now apply post-classification reasoning
that cannot be easily represented by machine learning classifiers to the classi-
fications computed in the previous phase. For example, given serialised header
and footer classifiers and classifications computed in the previous phase, we can
impose a constraint that a header and a footer cannot overlap.

header_footer_overlap_constraint(N, M) :-
classification(N, "header"), classification(M, "footer"),
no_overlap(N, M).

5.3 Direct Use of Algorithms

In case no external support is available, or users want to adapt and tie their algo-
rithms closer to the knowledge graph, a number of Machine Learning algorithms
can be directly implemented in Vadalog. Note that this is a complementary
alternative — in case algorithms should be used out-of-the-box based on existing

Data Science with Vadalog 17

systems and approaches, and no modification or close interaction with the knowl-
edge graph is required, it is certainly a good idea to use such external systems
and algorithms as described in Sect.5.1. Taking advantage of the declarative
programming paradigm, it requires only concisely expressing the logic of the
definition, instead of explicitly describing the exact algorithm. As a result, the
program is easy for modification, verification or parallel execution. The appli-
cation areas include but are not limited to clustering, anomaly detection, and
weekly supervised learning.

We will use DBSCAN (Deunsity-based spatial clustering of applications with
noise) algorithm as a simple example [22]. Two main parameters of DBSCAN
are eps (distance threshold) and minPts (minimal number of points for a dense
region). The input is a set of points p(ID,X,Y), ID is a sequential number
representing an identifier.

eps(0.11), minPts(5),
p(1,0.697,0.460), p(2,0.774,0.376), ...

Two points are in a neighbourhood if their Euclidean distance is less than
eps. The neighbourhood number is obtained through aggregation as below.

p(A, XA, YA),p(B,XB,Y5),C =/(Xa—Xp)2+ (Ya—Y5)?

— point_pairs(A, B, C).

point_pairs(A, B,C), eps(E),C <= E — neighbourhood(A, B).
neighbourhood(A, B), J = mcount(B) — neighbourhood_count(A, J).
neighbourhood_count(A, J), K = max(J) — neighbourhood_number(A, K).

Different types of points, i.e., core, border and noise, are defined as follows.

neighbourhood_number(A, K),minPts(M), K >= M — core_point(A).
—core_point(A), core_point(B), neighbourhood(A, B) — border_point(A).
neighbourhood_number(A, K), ~core_point(A), ~border_point(A)

— noise_point(A).
Notions of density reachability and connectivity are defined below.

core_point(A), neighbourhood(A, B) — directly_reachable(A, B).
directly_reachable(A, B) — reachable(A, B).

reachable(A, C), directly_reachable(C, B) — reachable(A, B).
reachable(C, A), reachable(C, B) — connected(A, B).

The goal of density clustering process is to find point pairs that satisfy both
connectivity and mazimality properties, respectively:

connected(A, X) — cluster(A, X).
reachable(A, X) — cluster(A, X).

18 L. Bellomarini et al.

The cluster is identified by the point (from this cluster) which has the minimal
ID number. This is achieved by the post-processing instruction, @post, which
takes the minimum value for the second term (position) of the relation cluster,
grouping by the first term (position).

Qoutput ("cluster"). @post("cluster", "min(2)").
Output Example: cluster(1,1). cluster(2,1). cluster(3,3).

6 Probabilistic Reasoning

In the design of winning data science solutions, it is more and more clear that
completely neglecting domain knowledge and blindly relying only on induc-
tive models (i.e., with parameters learnt from data) easily leads to sub-optimal
results, subject to overfitting when not to wrong conclusions. Thus, data scien-
tists tend to integrate inductive reasoning with deductive approaches, comple-
menting and when it is the case overruling machine learning models with domain
knowledge.

In the Vadalog system, we introduce probabilistic knowledge graphs, a valu-
able tool to craft a new kind of data science solutions where statistical models
incorporate and are driven by the description of the domain knowledge.

Combining uncertainty and logic to describe rich uncertain relational struc-
tures is not new and has been the primary focus of Statistical Relational Learn-
ing (SRL) [27,40]. One prominent representative of this area is Markov Logic
Networks (MLN) [41], which allow to describe relational structures in terms of
first-order logic. A number of algorithms for exact and approximate reasoning
in MLNs and other SRL models [6,23] have been proposed, and systems built
such as Alchemy [41], Tuffy [37] and SlimShot [30]. MLNs have been success-
fully applied in natural language processing [39], ontology matching [2], record
linkage [45], and so on. Yet, one common limitation of SRL models is their logi-
cal reasoning side: logic in SRL is not utilised for deducing new knowledge, but
rather serves the role of a constraint language. Systems that can be built on top
of these models are hence of very limited applicability in data science tasks.

Consider the following example.

Ezxample 1. Let G be a knowledge graph, which contains the following facts
about the ownership and link relationships between companies, augmented with
a Vadalog program composed of rules (1) and (2):

Own(a,b,0.4), Own(b, ¢,0.5), Own(a, d, 0.6), Own(d, ¢,0.5),
Linked(a, b), Linked(a, d), Linked (b, ¢), Linked(d, c).
(1)Own(z,y, s),s > 0.2 — Linked(z, y).
(2)0.8 :: Own(z,y,s), Own(y, z,t), w = sum(s - t) — Own(z, z, w).
Rule (1) expresses that company z is linked to y if owns directly or indi-
rectly more than 20% of y’s shares. Rule (2) is a recursive rule with an aggregate

operator and expresses indirect shareholding: when = owns a number of com-
panies y, each holding a different share ¢, of z, then = owns zy(s - t,) of z.

Data Science with Vadalog 19

An example of a “traditional” logical reasoning task is answering the following
question over G: “which companies are linked to a?”. The result of the reasoning
task is the companies b and d, as directly specified by G, and, additionally, ¢,
which is implied by the program. Indeed, by Rule (2) we first derive the fact
Own(a,c,0.5), as 0.4 x 0.5 4 0.6 x 0.5 = 0.5, and thus, by Rule (1), we deduce
Linked(a, c).

However, here we are in an uncertain setting: Rule (2) is not definitive but
holds with a certain probability. We say that G is a probabilistic knowledge
graph. Probabilistic reasoning on G would then consist in answering queries over
such uncertain logic programs, i.e., when we can only access a distribution of
the entailed facts. The answer to the question —which companies are linked
to a— would contain companies b and d with probability one and ¢ with some
probability p depending on the “ownership distance” between a and c.

In spite of its high relevance, surprisingly, none of the exiting KGMSs allow
for uncertain reasoning, crucial in many contexts. The Vadalog system aims at
filling this gap.

The Vadalog system provides a form of hybrid logic-probabilistic reasoning,
where logical inference is driven and aided by statistical inference. We adopt
the novel notion of probabilistic knowledge graph, and propose Soft Vadalog,
an extension to Vadalog with soft, weighted rules (such as the ones used in
Example 1) for representing and supporting uncertain reasoning in the Vadalog
system. A Soft Vadalog program is a template for a reason-tailored statistical
model, namely the chase tree, the semantics of which is based on a probabilistic
version of the chase procedure, a family of algorithms used in databases to
enforce logic rules by generating the entailed facts.

In particular, the system adopts the MCMC-chase algorithm: a combina-
tion of a Markov chain Monte Carlo method with the chase. The application of
the chase is guided by the MCMC, so that logical and statistical inference are
performed in the same process. We will report about these achievements soon.

Acknowledgements. This work is supported by the EPSRC programme grant
EP/MO025268/1. The Vadalog system is IP of the University of Oxford.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Albagli, S., Ben-Eliyahu-Zohary, R., Shimony, S.E.: Markov network based ontol-
ogy matching. J. Comput. Syst. Sci. 78(1), 105-118 (2012)

3. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: PODS, pp. 68-79. ACM Press (1999)

4. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic
web. In: PODS, pp. 14-26 (2014)

5. Arming, S., Pichler, R., Sallinger, E.: Complexity of repair checking and consistent
query answering. In: ICDT, LIPIcs, SD-LZI, vol. 48 (2016)

6. Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss Markov random fields
and probabilistic soft logic. J. Mach. Learn. Res. (JMLR) 18(109), 1-67 (2017)

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

L. Bellomarini et al.

. Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data and
knowledge graphs. In: IJCAI, pp. 2-10 (2017)

. Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data
and knowledge graphs. In: Tjoa, A.M., Bellatreche, L., Biffl, S., van Leeuwen, J.,
Wiedermann, J. (eds.) SOFSEM 2018. LNCS, vol. 10706, pp. 3-16. Springer, Cham
(2018)

. Bellomarini, L., Gottlob, G., Pieris, A., Sallinger, E.: Swift logic for big data and

enterprise knowledge graphs. In: AMW, The Vadalog System (2018)

Bellomarini, L., Sallinger, E., Gottlob, G.: The Vadalog system: datalog-based

reasoning for knowledge graphs. PVLDB 11(9), 975-987 (2018)

Bizer, C., et al.: Dbpedia - a crystallization point for the web of data. J. Web Sem.

7(3), 154-165 (2009)

Box, G.E.P., Hunter, J.S., Hunter, W.G.: Statistics for Experimenters: Design,

Innovation, and Discovery, 2nd edn. Wiley, Hoboken (2005)

Buneman, P., Khanna, S., Tan, W.C.: On propagation of deletions and annotations

through views. In: PODS, pp. 150-158. ACM (2002)

Cali, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under

expressive relational constraints. J. Artif. Intell. Res. 48, 115-174 (2013)

Cali, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for

tractable query answering over ontologies. J. Web Sem. 14, 57-83 (2012)

Cali, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: a fam-

ily of logical knowledge representation and query languages for new applications.

In: LICS, pp. 228-242 (2010)

Cali, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: the

query answering problem. Artif. Intell. 193, 87-128 (2012)

Christen, P.: Data Matching - Concepts and Techniques for Record Linkage, Entity

Resolution, and Duplicate Detection. Data-Centric Systems and Applications.

Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31164-2

The UniProt Consortium: UniProt: the universal protein knowledgebase. Nucleic

Acids Res. 45(Database-Issue), D158-D169 (2017)

Csar, T., Lackner, M., Pichler, R., Sallinger, E.: Winner determination in huge

elections with MapReduce. In: AAAI, pp. 451-458. AAAI Press (2017)

Dhar, V.: Data science and prediction. Commun. ACM 56(12), 64-73 (2013)

Ester, M., Kriegel, H.-P., Sander, J., Xu, X. et al.: A density-based algorithm for

discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp.

226-231 (1996)

Fierens, D., et al.: Inference and learning in probabilistic logic programs using

weighted Boolean formulas. TPLP 15(3), 358-401 (2015)

Furche, T., Gottlob, G., Grasso, G., Schallhart, C., Sellers, A.J.: OXPath: a lan-

guage for scalable data extraction, automation, and crawling on the deep web.

VLDB J. 22(1), 47-72 (2013)

Furche, T., Gottlob, G., Neumayr, B., Sallinger, E.: Towards a lingua franca for

data wrangling. In: AMW, Data Wrangling for Big Data (2016)

Furche, T., Grasso, G., Kravchenko, A., Schallhart, C.: Turn the page: automated

traversal of paginated websites. In: ICWE, pp. 332-346 (2012)

Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive

Computation and Machine Learning). The MIT Press, Cambridge (2007)

Glimm, B., et al.: SPARQL 1.1 entailment regimes. W3C Recommendation, 21

March 2013

Gottlob, G., Pieris, A.: Beyond SPARQL under OWL 2 QL entailment regime:

rules to the rescue. In: IJCAI, pp. 2999-3007 (2015)

https://doi.org/10.1007/978-3-642-31164-2

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Data Science with Vadalog 21

Gribkoff, E., Suciu, D.: Slimshot: in-database probabilistic inference for knowledge
bases. PVLDB 9(7), 552-563 (2016)

Guagliardo, P., Pichler, R., Sallinger, E.: Enhancing the updatability of projective
views. In: AMW, CEUR Workshop Proceedings, vol. 1087. CEUR-WS.org (2013)
Kolaitis, P.G., Pichler, R., Sallinger, E., Savenkov, V.: Nested dependencies: struc-
ture and reasoning. In: PODS, pp. 176-187. ACM (2014)

Kolaitis, P.G., Pichler, R., Sallinger, E., Savenkov, V.: Limits of schema mappings.
Theory Comput. Syst. 62(4), 899-940 (2018)

Konstantinou, N., et al.: The VADA architecture for cost-effective data wrangling.
In: SIGMOD. ACM (2017)

Kravchenko, A., Fayzrakhmanov, R.R., Sallinger, E.: Web page representations
and data extraction with BERyL. In: Proceedings of MATWEP 2018, p. 8 (2018,
in Press)

Michels, C., Fayzrakhmanov, R.R., Ley, M., Sallinger, E., Schenkel, R.: Oxpath-
based data acquisition for dblp. In: JCDL, pp. 319-320. IEEE CS (2017)

Niu, F., Ré, C., Doan, A.H., Shavlik, J.W.: Tuffy: scaling up statistical inference
in markov logic networks using an RDBMS. PVLDB 4(6), 373-384 (2011)
Pichler, R., Sallinger, E., Savenkov, V.: Relaxed notions of schema mapping equiv-
alence revisited. Theory Comput. Syst. 52(3), 483-541 (2013)

Poon, H., Domingos, P.M.: Unsupervised ontology induction from text. In: ACL,
pp. 296-305 (2010)

De Raedt, L.: Logical and Relational Learning: From ILP to MRDM (Cogni-
tive Technologies). Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68856-3

Richardson, M., Domingos, P.M.: Markov logic networks. Mach. Learn. 62(1-2),
107-136 (2006)

Sallinger, E.: Reasoning about schema mappings. In: Dagstuhl Follow-Ups, Data
Exchange, Information, and Streams, vol. 5, pp. 97-127. SD-LZI (2013)
Sarawagi, S.: Information extraction. Found. Trends Databases 1(3), 261-377
(2008)

Shkapsky, A., Yang, M., Zaniolo, C.: Optimizing recursive queries with monotonic
aggregates in deals. In: ICDE, pp. 867-878 (2015)

Singla, P., Domingos, P.M.: Entity resolution with Markov logic. In: ICDM, pp.
572-582 (2006)

Vrandecic, D., Krotzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78-85 (2014)

https://doi.org/10.1007/978-3-540-68856-3
https://doi.org/10.1007/978-3-540-68856-3

Databases

®

Check for
updates

NoSQL Databases — Seek for a Design
Methodology

Chaimae Asaad®) and Karim Baina®

Alqualsadi, Rabat IT Center, ENSTAS, Mohammed V University, Rabat, Morocco
chaimaeasaad.email@gmail.com, karim.baina@umb.ac.ma

Abstract. NoSQL has emerged as a novel approach to bypass the rigid-
ity and limits that traditional Databases presented when modeling real
world features. Its heterogeneity, the variety of models it introduced and
its several technical advantages helped NoSQL conquer the industrial
and business world. NoSQL Databases are mostly conceived at physical
design level, following a set of storage and structural rules regulated by
each specific database. As NoSQL thrived, so did NoSQL data modeling.
Research into unified approaches for NoSQL Databases at all design lev-
els has been widely pursued in the last decade or so. This paper presents
a survey of the various proposals aiming to unify all or most NoSQL
Databases under a uniform design methodology. We also present the dif-
ferent data models of each NoSQL Database type, and the numerous
approaches existing in the literature to designing and modeling them, in
addition to an evaluation system for NoSQL design methodologies.

Keywords: NoSQL - Database modeling
NoSQL design methodology - Data models

1 Introduction

NoSQL has become the go-to database type for complex real-life representation
usage. It abolished the outdated concept of one-solution-for-all, and instead,
brought forward a huge number of various, powerful and efficient databases.
The growing interest in NoSQL has first been pushed by industrial powerhouses,
but, research has been catching up in the last decade or so, resulting in a
new wave of published papers presenting different proposals related to NoSQL’s
data models, applications and implementations. Although research into NoSQL
Design Methodologies is fairly new, many promising outcomes have emerged.
The literature presents a number of proposed data models to unify all or most
NoSQL databases. The heterogeneity that characterizes NoSQL is considered a
significant advantage point, however, in data modeling, it represents a major
constraint considered debatebly a direct cause behind the lack of a NoSQL
unified model. Researchers have nevertheless managed to group three of the
major NOSQL databases (Key-Value Stores, Column Family Stores, Document-
Oriented Databases) under the aggregate data model, and consequently unify

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 25-40, 2018.
https://doi.org/10.1007/978-3-030-00856-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_2&domain=pdf

26 C. Asaad and K. Baina

to some extent their design methodology. To the best of our knowledge, only
two papers so far have managed to present a unifying methodology and include
Graph Databases in their proposal for a NoSQL Design Methodology, which
leaves a huge gap in the field, and presents a goldmine of potential possibilities
for more research into NoSQL to flourish. The main contribution of this paper is
to realize a comprehensive review of NoSQL design methodologies existing in the
literature and propose a subjective evaluation method for NoSQL data models.
The remaining part of this paper is organized as follows. Section 2 presents the
various proposals aiming to unify NoSQL Databases. Section 3 includes a brief
literature review of NoSQL design methodologies relating to each specific cate-
gory of NoSQL databases. Section4 proposes an evaluation system for NoSQL
data models. Section 5 is a case study. Conclusions and perspectives are given in
Sect. 6.

2 NoSQL Design Methodologies

NoSQL Data Modeling has been approached from different perspectives. Intu-
itively, researchers try to find commonalities between the different data models
in order to conceptualize an abstraction for NoSQL databases. In [1], the authors
state that NoSQL database design can be devised into the same three levels as
Relational database design, namely: A Conceptual Level, A Logical Level and a
Physical Level. Both the first two phases are system-independent and only the
last is specifically related to the choice of database. [1] adds that in the logical
level, databases from the same type or family are modeled following the same
design methodology, whilst in the conceptual phase, only the high-level data
structure is represented. This section will present the different approaches aim-
ing to develop an abstraction through a common conceptual or logical model in
order to unify all or most NoSQL databases under a uniform design methodol-
ogy. The specific data models for target NoSQL databases are implemented on
the physical design level, which is beyond the scope of this paper. The grouping
of Key-Value (e.g. Dynamo, Redis, Scalaris), Column-Family (e.g. Hbase, Mon-
etDB) and Document (e.g. CouchDB, MongoDB, SimpleDB) databases under
the Aggregate Data Model represents a huge breakthrough in NoSQL modeling.
[2] states that the aggregate data model is formally defined as a forest of inde-
pendent aggregates. The term aggregate in the scope of NoSQL data modeling
defines a rich structure of closely related data that makes sense to be stored as
a unit, which is the case in the aforementioned NoSQL database types. In what
follows, we will present the various unifying Design Methodologies for NoSQL
databases.

2.1 Ontology-Driven NoSQL Data Model (ODNSDM)

This proposal was presented in [3] and explored further in [5] and represents
a unifying approach to NoSQL data modeling. To the best of our knowledge,
it’s one of two proposals managing to include Graph Databases in its uni-
fied approach to NoSQL data modeling, and therefore include ALL NoSQL

NoSQL Databases — Seek for a Design Methodology 27

database types. The authors state that [3] has been proposed to conceptualize
data representation facets over heterogeneous types of databases by providing
a common conceptual abstraction level based on semantically enriched formal
vocabularies. They define ontology as the explicit specification of shared con-
ceptualization in terms of concepts, relationships amongs concepts and axioms.
The authors of [3] propose an ontology driven meta-model called ODNSDM
(Ontology Driven NoSQL Data Model) which they claim capable of providing a
universal perception at conceptual level to handle different types of databases,
preserving strong semantics in knowledge exchange, representing hierarchical,
non-hierarchical, symmetric and n-array relationships, and conforming to the
CAP model. The ODNSDM is a proposed conceptualization composed of a set
of constructs and relationships along with their properties. It consists of three
inter-related layers, where each layer has their recognizable construct types mak-
ing it distinct. The three main layers and their respective constructs are Col-
lection(Col), Family(FA) and Attribute(AT). The authors of [3] have formally
specified and explained the different construct types and relationships attached
to them in their paper where further details can be found. They also included
algorithms for transformations from their proposed model to both schema-based
and schema-less databases. The (shema-less db) algorithm was applied on the
NoSQL Document-Oriented database MongoDB. This proposal represents a uni-
fied data model leveraging the commonalities of schema-based and schema-less
databases and including their differences in order to achieve a data modeling
specification based on mathematical logic to create a balance in the variations
at physical level implementations and thus facilitate and conceptualize their
design. This model was validated initially with an ontology editorial tool called
Protégé based on OWL [3].

2.2 Logical Unified Modeling for NoSQL databases (UMLtoNoSQL)

[4] is a recent article proposing a novel (Model Driven Architecture) MDA-based
process transforming a conceptual data model describing Big Data into several
physical models, with the aim of assisting developers in implementing Big Data
on NoSQL systems, and allowing them the choice of system. This approach was
illustrated using a case study in the Healthcare field. The authors of [4] propose
an approach for defining, specifying and automating a process for storing Big
Data on NoSQL systems. They named their process UMLtoNoSQL. They claim
that this process can automatically transform a conceptual model represented
as a UML class diagram into the physical model of a NoSQL system of choice.
They introduce a logical level between conceptual and physical levels in which
they develop a generic model. The novelty of this proposal is its compatibility
with Graph Databases, a challenge which many approaches have not managed to
overcome. The authors excluded Key-Value stores because “Column-Oriented,
Document-Oriented and Graph-Oriented extend the concepts of Key-Value sys-
tems” [4]. Applications of this approach were conducted successfully on Cassan-
dra, MongoDB and Neod4j [4].

28 C. Asaad and K. Baina

2.3 Query-Oriented Data Modeling Approach (QODM)

A query-oriented data modeling approach for NoSQL databases was presented in
[6]. This approach aims at designing both the data model (defining the entities
and relationships) and data schema (defining the data structure) of an appli-
cation for NoSQL databases. The authors of this paper claim that their con-
tributions consist of: defining a methodology of data query requirements rep-
resentation; designing a meta-model of the platform-independent data schema
for NoSQL DB; and proposing an approach for generating both the data model
and data schema based on particular requirements. The authors developed a
framework for their query-oriented modeling approach consisting of three phases.
Firstly, a description of the stored data structure in the problem domain and the
data query requirements of the application. Then, using the stored data struc-
ture and data query requirements as a basis for the QODM-analyzer to generate
the data model for NoSQL databases. And lastly, based on that data model, the
QODM-analyzer generates the data schema for NoSQL databases. The authors
provide an algorithm for generating the data model [6]. As for the data schema,
adapting to different NoSQL databases imposes having a platform-independent
model from which transformation to specific databases can be conducted. The
QODM approach was evaluated using ElasticInbox as a case study [6]. This app-
roach, although only viable for aggregate-oriented NoSQL databases, presents
a novel way to tackle the data modeling problem. By being query-oriented, it
manages to adapt to the heterogeneous nature of NoSQL, without locking the
user to any specific database. The authors realize the difference that Graph
databases present, and how their inclusion could prove to be inherently diffi-
cult, but believe their approach to have the potential to be revolutionary in the
NoSQL data modeling world.

2.4 The Save Our Systems Platform (SOS)

The SOS platform [7] was proposed as a common programming interface for
NoSQL systems, with the aim of supporting application development by hiding
the specific details of the various systems. This platform is based on a meta-
modeling approach, i.e., the specific interfaces of individual systems are mapped
to a common one [7]. This proposal is one of the pioneering ones aiming to
unify NoSQL data models, and has inspired many other proposals based on
its main idea. The authors’ goals and motivation behind this approach was to
“alleviate the consequences of the heterogeneity” that NoSQL systems present.
They state that SOS is a programming environment where non-relational (i.e.,
NoSQL databases) can be uniformly defined, queried and accessed by an applica-
tion program. The basis for this programming model is a generic and extensible
meta-layer representing a theoritical unifying structure to be implemented in
the specific database [7]. The paper presented a discussion around the imple-
mentation of the approach in three aggregate-oriented NoSQL databases. The
architecture of the SOS system is organized following three modules: the com-
mon interface representing the core of the system and offering the primitives

NoSQL Databases — Seek for a Design Methodology 29

to interact with NoSQL stores; the meta-layer storing the form of the involved
data; and the specific handlers generating the appropriate calls to the specific
database system. The approach was illustrated using a case study consisting
of defining a simplified version of Twitter, and generating implementations for
Redis, MongoDB and HBase [7].

2.5 The NoSQL Abstract Data Model (NoAM)

In a series of papers [8-10], Atzeni et al. present NoAM, a “logical approach
to the NoSQL database design problem, with initial activities that are inde-
pendent of the specific target system”. The approach aims to exploit the com-
monalities of various NoSQL systems, and represents an intermediate abstract
data model designed to represent application data as collections of aggregate
objects. [8] states that database design in the NoSQL world is often widely
based on best practises and guidelines, and systematically related to the specific
chosen database and thus completely relaying on physical level characteristics.
The authors of [8] proclaim that the aim of NoAM is to fill the gap in the
design methodology of NoSQL. This approach manages to unify the aggregate-
oriented NoSQL databases, and does so by defining a proposal consisting of
four main phases, namely: Aggregate Design, Aggregate Partitioning, High-level
NoSQL Database Design,Implementation [8]. The NoAM data model can be
defined as follows [9]: A NoAM Database: A set of collections, where each col-
lection has a distinct name. A Collection: A set of blocks, where each block is
identified by a unique-within-the-collection block key. A Block: A non-empty
set of entries, where each entry is a pair of (entry-key, entry-value). The app-
roach is applied on a running example of an online social game [9]. In [10],
the previously specified NoAM data model is further explored and more details
are included to illustrate the conceptual level of the proposal and its use and
experimental results are also presented. Implementation steps are also further
detailed with respect to a single elected representative of each NoSQL database,
namely: Oracle NoSQL for KV Stores; DynamoDB for Extensible Record Stores;
and MongoDB for Document-Oriented databases. Graph Databases remain, as
in the two other papers, beyond the scope of the approach, since they are not
aggregate-oriented databases and represent entirely different data models [10].

2.6 MDE-based Reverse Engineering Approach

[11] proposes an MDE-based reverse engineering approach designed to infer the
schema of aggregate-oriented NoSQL databases, and uses the obtained schemas
to build database utilities in order to tackle problems relating to the use of
implicit schemas. The authors note that although the schema-less nature of
NoSQL (or rather the lack of explicit schema specification) might be the most
“attractive” feature of NoSQL databases, it has contributed immensly in mak-
ing database design in NoSQL a particularly error-prone task. Their approach
has been designed, as mentioned previously, for NoSQL systems following an
aggregate data model. The authors of [11] state that their proposal represents a

30 C. Asaad and K. Baina

strategy aiming to infer the implicit schemas in NoSQL databases, taking into
account the different versions of entities, and call them Versioned Schemas, and
proclaim that their usefulness can be illustrated through both schema visual-
ization and automated generation of data validators. The contributions of [11]
as claimed by its authors are twofold. It is a novel approach inferring concep-
tual schemas from NoSQL databases and including all versions of entities and
relationships. And, it presents a road map to using the versioned schemas to
automatically generate different software artifacts. The authors validated their
approach for the MongoDB, CouchDB and HBase databases [11]. The authors
of [11] state that their approach, although only viable for aggregate-oriented
databases, represents a useful tool in generating specifications that describe the
data accurately, and takes into account each version of each entity, thus com-
pletely defining the structure of the data and illustrating the high-level relation-
ships. Graph databases are beyond the scope of this approach.

3 NoSQL Databases Specific Design Methodologies

The heterogeneity of NoSQL databases can be seen even within each type. The
variety and volume of databases existing contributes to the lack of a unified mod-
eling approach, as we have discussed in the previous section, most works only
manage to propose a uniform approach for aggregate-oriented NoSQL databases,
since they present an inherently similar layout, even if their characteristics differ
immensly. Although research into NoSQL data models is somewhat recent, var-
ious works have been conducted to explore the design methodologies of NoSQL
database types, as well as specific data models for target NoSQL databases.
In what follows, we present a brief survey of the various papers and proposals
discussing the modeling of each distinct NoSQL database type presented in the
literature.

3.1 Key-Value Databases

Key-Value stores (or Tuple Stores) are considered somewhat the simplest NoSQL
databases. They consist of a unique key and a “bucket” containing any data the
user wishes to store. The value content of the said bucket is schema-less and
doesn’t need to be consistent. This content usually consists of unstructured or
semi-structured data. The buckets have a huge storage ability for quite large
entries, incuding BLOBs (Basic Large OBjects). The values can be read by
knowing the key and bucket. Key Value Stores are row-based systems designed
to efficiently return data for an entire bucket (interpreted as a row or record)
in as few operations as possible. Essentially, all Key Value Stores run in batch
mode and are therefore used for analytic or caching projects as opposed to
transactional operations [12].

NoSQL Databases — Seek for a Design Methodology 31

- Dynamic Distributed Dimenstional Data Model (D4M):

The D4M data model was presented in [13] as a somewhat technical perspective
aiming to provide a mathematically rich interface to tuple stores by allowing
linear algebra to be readily applied to databases. The goal of this approach is
to combine the advantages of tuple stores to create a database and computation
system that solves the challenges associated with Big Data. Key-Value Stores
(e.g. HBase, Accumulo) are implementations leveraging the Google BigTable
model, and as such, the one-to-one mapping that the D4M associative arrays
provide onto the tables in a tuple store makes complex manipulations simple
to code. To illustrate the model, the authors use D4M for a facet search on a
Document Keyword Table, and claim that the results are consistent and deliver
near the theoritical performance level of the hardware [13].

3.2 Document-Oriented Databases

Document Oriented Databases are based on the paradigm Key-Value, where
the Value is a JSON or XML document. Consequently, one key can get access
to a structured set of information easily. In other words, Document Oriented
databases take the data and aggregate it into documents using a specific format
(e.g. JSON) [14]. Many approaches for the data modeling of this specific NoSQL
type can be found in the literature. The most pertinent might be:

— [15] presents a Workload-Driven Logical Design Approach for NoSQL Docu-
ment Databases consisting of a process aiming to convert a conceptual model
into efficient logical representations for a NoSQL Document database. This
proposed conversion process considers the expected workload of the applica-
tion. The approach was validated with an example of e-commerce application.

— [16] proposes a standard for NoSQL data modeling by using NoQSL
Document-Oriented databases to introduce modeling techniques. The con-
tribution of this paper is presented in its proposal for viewing Document
Databases, and how it is used to build a conceptual data model regulated
by a few assumptions and constraints. The proposal was evaluated on a case
study related to identifying and comparing expression levels of human kidney
and liver RNA sequenced samples [16].

— [17] proposes a NoSQL data modeling standard by introducing techniques
to be used on Document-Oriented databases and including geographical fea-
tures. The authors justify their choice of NoSQL by stating that some non-
functional aspects are common features of both NoSQL databases and spatial
data treatement. This approach uses [16] and adapts the conceptual model
to geospatical features and integrates them using MongoDB.

3.3 Column-Family Databases

A Columnar database is called as such when the smallest information unit to be
manipulated is a column. It represents a two-level data aggregation structure.
Just like in Key-Value databases, the first level is a key identifying an aggregation

32 C. Asaad and K. Baina

of interest. The difference remains in the second level containing several columns
that can hold either simple or complex values. In addition, these columns can be
accessed either all at once or one at a time. Column-Family databases somehow
neglect the conceptual design phase, making their data modeling a very difficult
one, which explains the gap in modeling proposals in the literature [18].

— [18] proposes an approach for logical design of Columnar databases as a way
to contribute to filling the void between abstract methodologies and the phys-
ical level and technological advances in the NoSQL world. The authors state
that their proposal represents a reconcilitation approach between the classi-
cal database design approach and Columnar databases, contributing with a
logical design process that considers the semantics of the application domain
in order to achieve an optimized conversion from a conceptual schema to a
logical columnar schema.

3.4 Graph Databases

As mentioned in the previous sections, Graph databases are seldom included
in attempts to conceptualize a unifying NoSQL design methodology, because of
their non-conformity to the aggregate-oriented data model, and for their very dif-
ferent nature compared to the other NoSQL families. However, Graph databases
remain debatebly the most well modeled NoSQL databases. Their mathemati-
cal background and the rich history of research into different uses of graphs in
many disciplines resulted in rich literature presence. [21] presents a survey of the
different data models for Graph databases. In this section, we will not discuss
those models, but rather the novel proposals present in the literature to map or
use this highly representative type of databases.

— [22] proposes an approach defining a test model for graph database appli-
cations, taking into account the data model of the graph database systems,
and presents a framework placing model-based testing into the model-driven
architecture context in order to automate the derivation of the test cases
and the evaluation of their adequacy. The authors proclaim that their contri-
butions consist of defining a framework that integrates model-based testing
(MBT) into the model-driven architecture (MDA) paradigm, and presenting
a formal definition of a test model for graph database applications relying on
both the underlying conceptual data model and the system specification [22].

— [23] proposes a model-driven, system-independent design methodology for
Graph databases. The proposed approach starts from a conceptual Entity-
Relationship representation of the interest domain, and proposes a strategy
to devise a graph database in which the data accesses for answering queries
is minimized. The authors state that their methodology relies a logical model
for Graph databases, and demonstrate the effectiveness of their approach with
a number of experimental results over various Graph Database Management
Systems [23].

NoSQL Databases — Seek for a Design Methodology 33

— [24] describes a mapping approach from UML(Unified Modeling Lan-
guage)/OCL(Object Constraint Language) conceptual schemas to Blueprints,
an abstraction layer built on top of a variety of Graph Databases. The authors
also present, via an intermediate Graph metamodel, Gremlin: a graph traver-
sal language. The novelty of this approach is the presentation of the UML-
toGraphDB framework to translate conceptual schemas expressed using UML
into a graph representation and generate database-level queries [24].

4 Discussion

4.1 Evaluation Process

The various NoSQL design methologies existing in the literature address the con-
ceptual and logical steps to NoSQL modeling from different angles and following
different approaches. In this paper, we presented the ones proposing a unified
design methodology for NoSQL databases and their types. In what follows, we
will present a comparison based on numerous criteria to evaluate the approaches
aforementioned in an attempt to seek the “best” design methodology for NoSQL.
To the best of our knowledge, a set of formally defined and agreed upon crite-
ria for evaluating NoSQL design methodologies has not yet been introduced in
the literature. Consequently, the following deductions were made in an ad-hoc
manner and inferred based on a methodology paradigm chosen by the authors.
In this section, we will combine a number of previous research contributions and
use evaluation criteria introduced as means to compare Relational Data Models,
and adjust them according to the NoSQL conceptualization standards.

The data modeling phase represents the pillar of the entire design system,
since its impact on the final result’s quality is undeniably great. However, it
shouldn’t be described as a deterministic process of uncovering the “right”
model. The choice of the most appropriate data model is inherently based on
common sense and experience, and there are generally no guidelines for the eval-
uation of different models [26]. [26,27] presented each a set of evaluation criteria
for design methodologies. The former introduced a framework for objective eval-
uation and improvement of data models, while the latter proposed a number of
qualifying norms for design methodologies. Evidently, these proposals weren’t
specifically tailored after the NoSQL model, however, we will be adapting their
definitions according to our models in order to form a group of only the salient,
adequate and specifically influencing criteria for NoSQL.

4.2 Evaluation Criteria

The following is a combination of different criteria proposed by [26,27], some
redefined or readjusted with respect to our best judgement.

34 C. Asaad and K. Baina

1. Simplicity: references the size of the model and the complexity of the
methodology. Simpler approaches are often better, their complexity has a direct
correlation with the complexity of the resulting system. A simpler NoSQL Design
Methodology will simplify the modeling process and therefore simplify the next
database design steps.

2. Completeness: expresses resolvability and relates to the smooth transi-
tioning from different levels of abstraction without omitting any logical steps or
having any gaps in the mapping process. The transition from the NoSQL logical
and conceptual levels to the specific NoSQL physical design level should be well
established and not lacking any crucial steps.

3. Flexibility: expresses the adaptability of the model to changes in user
requirements and to automated design tools. The NoSQL model should be flex-
ible and high-level enough to handle new additions or omissions in the physical
level without changing the original data model.

4. Consistency: describes the coherence of the entire methodology. The app-
roach’s various steps shouldn’t contradict one another. Consistency can also
include the methodology’s support of CAP/BASE aspects.

5. Understandability: defines the level of ease that the users of the data model
deal with. [26] notes that one of the major purposes of using data models is as
means of communicating between business specialists and technical specialists.
Therefore, for a NoSQL methodology to be ‘understandable’; it has to be ‘sim-
ple’ enough for users to grasp its main concepts and structures.

6. Scope of the model: specifies the level of inclusion of the methodology. For
a NoSQL design methodology to abide by this criterion, it needs to include the
different data models that NoSQL introduces, or most of them.

7. Implementability: emphasizes the feasibility of the realization of the tran-
sition to the physical design and its implementation. Although a NoSQL design
methodology carries no assumptions of physical requirement specifications, it
should contain practical guidelines to implement the model in target systems.

4.3 Synthesis

In the absence of empirical validation for the criteria, and since measuring the
complexity of models is beyond the scope of this paper, we used approximations
based on common sense and our understanding of the methodologies at hand.
The models included in this work are distinguished in their completeness since
they represent somewhat clear and logical design steps. Intuitively, they comply
with the flexibility criterion, since they are proposing a design for a highly variant
group of databases. The methodologies differ in their understandability levels,
and some of them take special knowledge of a few concepts (e.g. Ontology)
for users to fully grasp them. All methodologies have shown proof of concept
and of implementability by including different case studies. QODM presented
a data model based on query requirements but failed to mention a description
of schema-less data. NoAM proposed a common data model to specify system-
independent realization of the application data, however, dynamically inserted
data into NoSQL databases was overlooked. Most approaches are “good” design

NoSQL Databases — Seek for a Design Methodology 35

Table 1. Evaluation of NoSQL Methodologies (O =Yes, .= Average, V=All,
A = Aggregate-oriented DB)

E B

2] = =1

. 4 B =2 =

K Z & = = = 2

%% 8 g = 3 o L S

Iy, - AT = g & |5
@%y g 2 5 i 5 & &

O/ (13 =) E Q E}‘ —

% S “ E £
ODNSDM ~ O (0] O ~ v O
UMLtoNoSQL _ 0 9) 0 ~ v 0
QODM N 0 0 0) N A 0
SOS ~ @) O 0 O A 0
NoAM ~ O (0] O ~ A O
MDE-RE ~ @) O 0 ~ A 0

methodologies within their scope, but don’t provide a formalism able to deal with
the semantics of data [3]. Table1 illustrates the results of the aforementioned
methodologies with respect to the criteria specified earlier. Scope-Wise, ‘¥’ means
the approach unifies all NoSQL Databases, and ‘A’ means that it unifies only
the Aggregate-Oriented NoSQL databases.

Evidently, the “perfect” design methodology for NoSQL has not seen the light
yet, but the different proposals discussed in this paper present a steady stepping
stone and fertile ground for more research. A hybrid design methodology based
on two or more of these proposals seems like the right answer, however, due
to differences in perspectives, logical and conceptual designs, it would probably
add unecessary complexity to the design mapping. Based on the criteria, we can
identify ODNSDM [3] as the “best” design methodology for NoSQL primarily
for its wide scope, its logical model and its strenght in capturing the semantics
of the data. This approach has its limits, however, a hybridization with other
models can prove fruitful in polyglot persistence or a multimodel database.

4.4 Limitations and Perspectives

The evaluation criteria we proposed in the previous sections represents a path
to a more concise and precise framework for the evaluation of NoSQL design
methodologies. Some of the most serious deficiencies in the existing literature
relating to the quality of data models is that very few approaches are empiri-
cally validated in practise. Most are either, theoritically or experientially justi-
fied, which leaves a considerable margin of error due to subjective and biased
interpretations. Furthermore, there are relatively few guidelines for evaluating
the quality of data models, and little agreement even among experts on what
makes a ‘good’ model [28]. Our evaluation system suffers the same limitations.
It combines a number of quality factors to compare different NoSQL design

36 C. Asaad and K. Baina

methodologies, without testing or validation. As [29] notes, defining quality cri-
teria is not enough to ensure quality in practice, since different individuals will
have different interpretations of the meaning of those criteria. In this sense, we
are aware of our process’s need for empirical validation and practical testing. Our
work can be improved by introducing metrics to quantify the different criteria
aforementioned, with the purpose of improving the evaluation system. These
metrics will provide a purely objective and mathematical measure in order to
determine what a ‘good’ model is, and aid in the comparison between different
NoSQL models. However, it is worth mentioning that this might prove to be dif-
ficult given the notion of conceptual manageability (i.e., difficulty to synthesise a
large number of metrics into an overall picture of the quality of the model), and
also since subjective ratings and textual descriptions of quality issues have been
proven in such cases to provide a more holistic view of the quality of the model,
in addition to the fact that requirements analysis is more of an “art” than a
science, due to the difficulty of measuring the quality of a logical specification in
comparison to physical database design (for which quantitative measurements
exist, such as storage space, speed of access and CPU requirements) [29]. The
focus of our research was not to develop a framework of quantitative measures
to evaluate the quality of NoSQL data models, but rather to attempt to lay the
groundwork and serve a quideline for our future work into a hybrid approach
combining quantitative measures with subjective criteria to evaluate the quality
of NoSQL design methodologies and help improve them by pinpointing their
deficiencies.

5 Case Study

In this section, we present a simplified and practical study illustrating both the
mapping process of UMLtoNoSQL and the ODNSDM approach in the case of
a blood bank donation system. The purpose of this case study is to exemplify
how UMLtoNoSQL and ODNSDM can be applied for NoSQL data modeling.
The reason for choosing to apply the case study on these two models is their
compatibility with all NoSQL Databases. Figure1 represents the UML Class
Diagram of a blood donation system [30] which will be mapped into a generic
model and then used to infer a physical Cassandra model Fig. 2 to illustrate the
UMLtoNoSQL approach. Experiments on real code generation for this mapping
can be carried out using Eclipse Modeling Framework (EMF), the metamodeling
language Ecore, the XML based standard for metadata interchange (XMI) and
the OMG standard for models transformation QVT [4]. The same blood dona-
tion system will be used to illustrate ODNSDM. Figure 3 represents the resulting
Ontology Graph. It is worth mentioning that due to space issues the graph was
simplified by omitting a few Families and Attributes. In this blood donation
system, and as shown in the ontology graph in Fig. 3, blood tests are conducted
on every donor’s blood, and the results determine whether the blood will be
accepted for donation or rejected. Furthermore, these blood results along with
the donor’s medical history do not have a predefined schema (in our example)

NoSQL Databases — Seek for a Design Methodology 37

since they may differ from one case to the other. Consequently, they are to be
inserted dynamically in the database. Accordingly, [3] notes that when some fea-
tures of the data at hand are not predefined and can dynamically change, a high
irregularity and required flexibility in representation are implied, which results
in a requirement for schema-less databases rather than schema-based ones.

3 —,
Receptionist D onor
Mame Mame
Phone_Number Age
Emai Regisiers Emai Donates
Address Phone_Number
""""""" Address
Regiserdonor) | =00z fFe==s=ssscecc-a-
Donate()
\ Regster_jor_Camp{)
S —
—,
Inventory_Manager oOrganization_Admin
p——————————,
z MName
Hos pital Registers Name
:;:‘:—Nm.je' = License_Number
Neme oOrders Blood From | Addess == 0L J 00 [TTTTTTTTTETES
Fhione B .id.d.e.“. Register_Saafi()
Fax
Foundafion_Date Process_Orders()
_______ [— Accept_Blood()
Order_Blood() Reject_Blood(}
Purchase_Blood() Nurse
 S——
—
Manages Name
Phone_Number
Address
Blood Lab_Techmician | | __ . __ _____._
Barcode_Blood
Blood_Type MName - 0
Code Phone_Number
info | | | Emai
Price Tests Address
Ad Test_Blood()
Subdraci() Accept_Blood()
Reject_Blood()

Fig. 1. UML class diagram of a blood donation system [30]

In our case study and as shown in Fig.3, we can distinguish the three
ODNSDM layers: Collection (Donate), Family (Top-most level: Donor, Hospital,
Blood; Bottom-most level: Nurse, Receptionist, etc.), Attribute (Email, Phone,
etc.). Different relationships can be found in the ontology graph. For instance,
Inter Containment relationships join the collection Donate and the top-most
families Donor, Hospital and Blood. Inter Inverse Containment relationships
attach an Attribute element with a Family element (e.g. relationship between
Receptionist and Recep_pers_info), Intra Containment relationships represent
the level hierarchy between top-most families and their respectively attached
adjacent lower-level families (e.g. relationship between Hospital and Nurse or

38 C. Asaad and K. Baina

e p
Generic Model) I Physical Model)
g) g y
Database: BloodDonation KeySpace: BloodDonation
Tables: Receptionist ColumnsFamily: Recepfionist
Attribute: Name Column: Name
Attribute: Number Column: Number
Attribute: Address Column: Address
Attribute: Email Column: Email
ColumnsFamily : Donor
Tables: Donor Hospital
Hospital Inventary _Manager
Inventory_Manager Blood
Blood Lab Technician
Lab_Technician Nurse
Nurse Organization Admin
Organization_Admin
Relationships: Registers
Relationships: Registers Orders_Blood_From
Orders_Blood From Manages
Manages Tests
Tests
- J " J
. _J

Fig. 2. Generic and physical (Cassandra) model of a blood donation system

=) =) (=D

(e) (ompemre) (Loms] (e) (e) (o] _

Organiz_admin_pe Invnt_manager_p Invnt_manager_p).
[rs_inb>] [Recep_pers_info] { s info Lab_tech_pers_inf Recep_prof_info o Lab_tech prof inf

3

Cmae) (e) (o) (oom) [swee) (omamrom)

Fig. 3. ODNSDM ontology graph for blood donation case study

between Blood and Blood_info, etc.), and Intra Inverse Containment illustrates
the relationships between elements of the same layer (e.g. relationship between
two families). To denote relationships required to represent dynamically inserted
data which has no predefined schema, the Inverse Containment relationship is
used (e.g. between Blood.info and Blood_test_results). Additional details about
other types of relationships can be found in [3] along with a conversion algorithm
that can be applied to our resulting ODNSDM to convert it and implement it
in a schema-less database (e.g. MongoDB).

NoSQL Databases — Seek for a Design Methodology 39

6 Conclusion

NoSQL Databases differ in both their structural nature and their modeling. Var-
ious approaches have been proposed, thus enriching the literature of NoSQL
design methodologies. In this paper, we cited the different models unifying
all NoSQL databases, along with those unifying each NoSQL database cate-
gory. Furthermore, we introduced an evaluation system based on various criteria
inspired from evaluation frameworks of relational databases. A case study was
used to illustrate the two main NoSQL design methodologies unifying all NoSQL
databases. Future work will be directed towards classifying the approaches by
their design level and also towards developing a more precise framework for the
evaluation of the quality of NoSQL data models.

References

1. Shin, K., Hwang, C., Jung, H.: NoSQL database design using UML conceptual data
model based on Peter Chens framework. Int. J. Appl. Eng. Res. 12(5), 632-636
(2017)

2. Jovanovic, V., Benson, S.: Aggregate data modeling style. SAIS 2013, 70-75 (2013)

3. Banerjee, S., Sarkar, A.: Ontology driven meta-modeling for NoSQL databases: a
conceptual perspective. Int. J. Softw. Eng. Its Appl. 10(12), 41-64 (2016)

4. Abdelhedi, F., Brahim, A.A.; Atigui, F., Zurfluh, G.: Logical unified modeling for
NoSQL DataBases. In: 19th International Conference on Enterprise Information
Systems (ICEIS 2017) p. 249, April 2017

5. Banerjee, S., Sarkar, A.: Modeling NoSQL databases: from conceptual to logi-
cal level design. In: 3rd International Conference Applications and Innovations in
Mobile Computing (AIMoC 2016), Kolkata, India, February, pp. 10-12 (2016)

6. Li, X., Ma, Z., Chen, H.: QODM: a query-oriented data modeling approach for
NoSQL databases. In: 2014 IEEE Workshop on Advanced Research and Technology
in Industry Applications (WARTIA), pp. 338-345. IEEE, September 2014

7. Atzeni, P., Bugiotti, F., Rossi, L.: Uniform access to non-relational database sys-
tems: the SOS platform. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S.
(eds.) CAiSE 2012. LNCS, vol. 7328, pp. 160-174. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31095-9_11

8. Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R.: A logical approach to NOSQL
databases (2013). http://cabibbo.dia.uniroma3.it/pub/noam.pdf

9. Bugiotti, F., Cabibbo, L., Atzeni, P., Torlone, R.: Database design for NoSQL
systems. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS,
vol. 8824, pp. 223-231. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12206-9_18

10. Atzeni, P., Bugiotti, F., Cabibbo, L., Torlone, R.: Data modeling in the NoSQL
world. Comput. Stand. Interfaces (2016)

11. Sevilla Ruiz, D., Morales, S.F., Garcia Molina, J.: Inferring versioned schemas from
NoSQL databases and its applications. In: Johannesson, P., Lee, M.L., Liddle,
S.W., Opdahl, A.L., Lépez, O.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 467—480.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25264-3_35

12. Vorhies, B.: Lesson 5: key value stores (Aka Tuple stores) (2014). http://data-
magnum.com/lesson-5-key-value-stores-aka-tuple-stores. Accessed 14 May 2018

https://doi.org/10.1007/978-3-642-31095-9_11
http://cabibbo.dia.uniroma3.it/pub/noam.pdf
https://doi.org/10.1007/978-3-319-12206-9_18
https://doi.org/10.1007/978-3-319-12206-9_18
https://doi.org/10.1007/978-3-319-25264-3_35
http://data-magnum.com/lesson-5-key-value-stores-aka-tuple-stores
http://data-magnum.com/lesson-5-key-value-stores-aka-tuple-stores

40

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

C. Asaad and K. Baina

Kepner, J., et al.:. Dynamic distributed dimensional data model (D4M) database
and computation system. In: 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5349-5352. IEEE, March 2012

Issa, A., Schiltz, F.: Document Oriented Databases, ULB, Faculty of Sci-
ence, INFO-H415-Advanced database, October 2015. http://cs.ulb.ac.be/public/_
media/teaching/infoh415/student_projects/couchdb.pdf. Accessed 14 May 2018
de Lima, C., dos Santos Mello, R.: A workload-driven logical design approach for
NoSQL document databases. In: Proceedings of the 17th International Conference
on Information Integration and Web-based Applications & Services, p. 73. ACM,
December 2015

Vera, H., Wagner Boaventura, M. H., Guimaraes, V., Hondo, F.: Data modeling
for NoSQL document-oriented databases. In: CEUR Workshop Proceedings, vol.
1478, pp. 129-135, September 2015

Boaventura Filho, W., Olivera, H.V., Holanda, M., Favacho, A.A.: Geographic data
modeling for NoSQL document-oriented databases. In: GEOProcessing 2015, 72
(2015)

Poffo, J.P.: A Logical Design Process for Columnar Databases. In: ICIW 2016, p.
10 (2016)

Chebotko, A., Kashlev, A., Lu, S.:. A big data modeling methodology for Apache
Cassandra. In: 2015 IEEE International Congress on Big Data (BigData Congress),
pp. 238-245. IEEE, June 2015

Wang, G., Tang, J.: The nosql principles and basic application of cassandra model.
In: 2012 International Conference on Computer Science & Service System (CSSS),
pp- 1332-1335. IEEE, August 2012

Angles, R., Gutierrez, C.: Survey of graph database models. ACM Comput. Surv.
(CSUR) 40(1), 1 (2008)

Blanco, R., Tuya, J.: A test model for graph database applications: an MDA-based
approach. In: Proceedings of the 6th International Workshop on Automating Test
Case Design, Selection and Evaluation, pp. 8-15. ACM, August 2015

De Virgilio, R., Maccioni, A., Torlone, R.: Model-driven design of graph databases.
In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 83824, pp.
172-185. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12206-9_14
Daniel, G., Sunyé, G., Cabot, J.: UMLtoGraphDB: mapping conceptual schemas
to graph databases. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S.,
Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 430-444. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46397-1_33

Braimniotis, M.: A Transformation from ORM Conceptual Models to Neo4j Graph
Database (Doctoral dissertation, Institute of Computing) (2017)

Moody, D.L., Shanks, G.G.: What makes a good data model? Evaluating the
quality of entity relationship models. In: Loucopoulos, P. (ed.) ER 1994. LNCS,
vol. 881, pp. 94-111. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58786-1_75

Buchmann, A.P., Dale, A.G.: Evaluation criteria for logical database design
methodologies. Comput. Aided Des. 11(3), 121-126 (1979)

Moody, D.L., Shanks, G.G.: Improving the quality of data models: empirical vali-
dation of a quality management framework. Inf. Syst. 28(6), 619-650 (2003)
Moody, D.L.: Measuring the quality of data models: an empirical evaluation of the
use of quality metrics in practice. In: ECIS 2003 Proceedings, p. 78 (2003)
Denzel, D.: Blood bank system Class Diagram (2012). https://creately.com/
diagram/example. Accessed 18 May 2018

http://cs.ulb.ac.be/public/_media/teaching/infoh415/student_projects/couchdb.pdf
http://cs.ulb.ac.be/public/_media/teaching/infoh415/student_projects/couchdb.pdf
https://doi.org/10.1007/978-3-319-12206-9_14
https://doi.org/10.1007/978-3-319-46397-1_33
https://doi.org/10.1007/3-540-58786-1_75
https://doi.org/10.1007/3-540-58786-1_75
https://creately.com/diagram/example
https://creately.com/diagram/example

®

Check for
updates

Mortadelo: A Model-Driven Framework
for NoSQL Database Design

Alfonso de la Vega®™), Diego Garcia-Saiz, Carlos Blanco, Marta Zorrilla,
and Pablo Sanchez

Software Engineering and Real-Time, University of Cantabria, Santander, Spain
{delavegaa, garciasad,blancobc,zorrillm,p. sanchez}@unican. es

Abstract. In big data contexts, the performance of relational databases
can get overwhelmed, usually by numerous concurrent connections over
large volumes of data. In these cases, the support of ACID transactions
is dropped in favour of NoSQL data stores, which offer quick responses
and high data availability. Although NoSQL systems solve this concrete
performance problem, they also present some issues. For instance, the
NoSQL spectrum covers a wide range of database paradigms, such as
key-value, column-oriented or document stores. These paradigms differ
too much from the relational model, provoking that it is not possible
to make use of existent, well-known practices from relational database
design. Moreover, the existence of that paradigm heterogeneity makes
difficult the definition of general design practices for NoSQL data stores.
We present Mortadelo, a framework devised for the automatic design of
NoSQL databases. Mortadelo offers a model-driven transformation pro-
cess, which starts from a technology-agnostic data model and provides
an automatically generated design and implementation for the desired
NoSQL data store. The main strength of our framework is its generality,
i.e., Mortadelo can be extended to support any kind of NoSQL database.
The validity of our approach has been checked through the implementa-
tion of a tool, which currently supports the generation of column family
data stores and offers preliminary support of document-based ones.

Keywords: NoSQL - Database design -+ Model-driven engineering

1 Introduction

In the Big Data era [25], NoSQL databases [13] have arisen as a solution for
contexts where many clients perform a massive number of requests over previ-
ously unseen quantities of data. Examples of these contexts are social network
databases like Facebook and Twitter or international online stores such as Ama-
zon. NoSQL is not just a technology, but a global term that comprises differ-
ent database paradigms, including document, key-value or column family-based
stores [6,17].

A common characteristic of NoSQL databases is that they are mainly
used when the support of ACID transactions [14] from traditional Relational

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 41-57, 2018.
https://doi.org/10.1007/978-3-030-00856-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_3&domain=pdf

42 A. de la Vega et al.

DataBase Management Systems (RDBMSs) is not vital and, for instance, some
temporal inconsistencies in data are tolerable [7]. Dropping the support of ACID
transactions allows NoSQL databases, among other things, to scale well against
large volumes of data, and to offer an adequate service for a very high number
of end users [15].

Another common and important characteristic is that the design of databases
for many NoSQL technologies is highly dependent on how the stored data is
accessed [8,21]. In these databases, the structure of the data can be denor-
malized, in order to offer low latencies and high efficiency for the workload
towards which they are prepared [24]. In contrast, this denormalization is not
usually done in RDBMSs, where performance optimizations are obtained by
other means, such as indexes or materialized views [1].

Unfortunately, the differences between NoSQL and RDBMSs shown above
come with some losses for the NoSQL part, being the biggest one the inability to
apply the well-known and heavily-tested design practises of relational databases
to the definition of NoSQL data stores. These practises are based on conceptual
models, such as the Entity-Relationship (ER) model [9] or UML relational spec-
ifications [20], from which many existing CASE tools can automatically infer the
final database implementation [2]. In addition to this lost, the differences among
NoSQL technologies provoke that the design of a NoSQL database may even
vary depending on the paradigm we wish to employ [6]. For instance, the design
decisions would not be the same if we were targeting a column family-based or
a document-based data store [3].

Numerous works about NoSQL design exist in the literature [8,11,19,21].
Nevertheless, due to the heterogeneity of NoSQL, these works usually only focus
on a concrete technology. A high-level and conceptual solution for the design
of NoSQL data stores, such as the ones available for relational systems, would
be beneficial for the centralization of existent, concrete works into a common
framework.

Based on this context, we present Mortadelo, a framework that generates
NoSQL designs for the data store of our choice. By providing a technology-
agnostic data structure model that also includes details about how data are going
to be accessed, our framework is able to automatically generate an implementa-
tion adapted to the specificities and benefits of the targeted NoSQL database.
Mortadelo defines a transformation process which, through a series of steps,
transforms first the provided conceptual model into a logical model dependant
on the used NoSQL paradigm, and then generates the implementation scripts
that would instantiate the targeted NoSQL technology from that paradigm.

The main strength of Mortadelo can be found in its model-driven, modular
architecture, which can be extended to support any new NoSQL paradigm or
technology. This architecture has been developed employing de facto modeling
standards such as the Eclipse Modeling Framework [23], with the objective of
offering an homogeneous treatment of different NoSQL paradigms sustained over
well-known technologies and foundations. With the development of Mortadelo,
we expect to cover the existent gap in NoSQL design practices and, to offer

Mortadelo: A Model-Driven Framework for NoSQL Database Design 43

analogous methodologies to the ones that can be employed for relational-based
systems.

The validity of Mortadelo has been tested through the implementation of an
homonymous tool, which currently supports the generation of specifications for
column family-based systems, with concrete transformations for Cassandra [5].
The support of column-family data stores has supposed the development of a
metamodel for the logical design of this kind of databases, and also the definition
of a set of rules to transform the data structure model to this logical model and
to the final implementation in the concrete technology. Additionally, we briefly
introduce how we are working in the support of document-based data stores,
including an example for MongoDB [10].

The remaining of the paper is structured as follows. In Sect. 2 we detail the
different phases of the transformation process followed by Mortadelo to generate
NoSQL databases. It includes the description of the different metamodels that
intervene in the process and the rules employed in the transformation. In Sect. 3,
we present the prototype tool which implements our framework. Next, in Sect. 4,
related works in NoSQL design are discussed. Finally, we expose our conclusions
and future work in Sect. 5.

2 Framework Description

We start by giving an overview of the transformation process supported by Mor-
tadelo. Then, successive sections describe Mortadelo’s components with more
detail.

2.1 Transformation Process Overview

Figure1 shows the transformation process supported by Mortadelo. In this
process, an input model is transformed in a succession of steps to obtain an
implementation of certain target NoSQL data store technology. Next paragraphs
comment on these steps.

Transformation Process Pipeline

Document
Data Model
Column Family:
Data Model

(i
Document
Database

Column Family
Database

Generic Data Model (GDM)

Structure Model{i Access Queries

[ious
S—EE:E 1. Validation

3

2. Transformation

to Logical Model 3. Code Generation

Fig. 1. Transformation process of Mortadelo.

44 A. de la Vega et al.

As introduced before, Mortadelo follows a model-driven approach. Therefore,
the input of the transformation process is a model, which conforms to a meta-
model that we have denoted as the Generic Data Model (GDM) (Fig. 1, left). An
instance of the GDM represents a conceptual definition of the database provided
by the user. The GDM is composed of two blocks: (i) the Structure Model, which
contains the information about domain entities and their relationships; and (ii)
the Access Queries, which define how data from the structure model are going
to be requested. The GDM is intentionally platform-independent, so it can be
used seamlessly as input for different NoSQL paradigms. We give more details
about the GDM components in Sect. 2.3.

The transformation process starts by validating the provided GDM instance
to assess that it contains no mistakes (Fig. 1, step 1). For instance, if an entity
present in an access query is not defined in the GDM, the validation process
would indicate an error.

In step 2, a model-to-model (M2M) transformation translates the conceptual
GDM model into a logical NoSQL specification by the application of a set of
transformation rules. Due to the heterogeneity of NoSQL, in Mortadelo a logical
metamodel and an associated M2M transformation has to be defined for each
NoSQL paradigm. In the figure, two logical metamodels are shown: a column
family data model and a document data model. These metamodels are interme-
diate representations, which contain information specific to the paradigm they
represent. For instance, the column family data model allows defining the col-
umn families that should be instantiated in the final database. However, these
specifications are still abstracted from any implementation details, i.e., the logi-
cal model of a paradigm can be employed to represent technologies that belong
to the same paradigm.

Finally, the third step of the transformation process consists in a model-to-
text (M2T) transformation. The obtained logical model from the M2M trans-
formation of step 2 is used to automatically generate an implementation script
for the targeted technology. Continuing with the column family example, a M2T
generation from a logical model could be performed to obtain a physical imple-
mentation for Cassandra, a database from this paradigm. An analogous example
could be made for a document data model and a MongoDB implementation.

This transformation process has been specifically devised to make it eas-
ily extensible. For instance, if we wish to support another column family-based
database, we would only need to define the M2T transformation from the col-
umn family logical data model to generate the implementation script of this new
database. In the same way, if we wanted to include a new NoSQL paradigm
that differs from the ones supported by Mortadelo, such as key-value stores, we
would define a new chain of elements such as the one presented with dots in
Fig. 1, starting with a logical model for that new paradigm and a M2M transfor-
mation from the GDM. This new logical model could then be employed in M2T
transformations to target concrete key-value technologies. We consider that the
modularity and extensibility offered by Mortadelo would favour cohesion and
reuse of existent components, such as logical models and transformation rules.

Mortadelo: A Model-Driven Framework for NoSQL Database Design 45

Next sections detail the GDM metamodel and describe concrete examples of
the transformation process for column family and document-based stores.

2.2 Generic Data Model (GDM)

As mentioned in the previous section, we use instances of the Generic Data
Model (GDM) as input for Mortadelo. Figure 2 shows the GDM metamodel. This
metamodel contains both the Structure Model and the Access Queries elements,
which are described below.

EModel
[0..*] entities R [0..*] queries
T — ——_——— e
HEntity ‘l EQuery | |DBoo|eanExpression|
[1..1] entity[=name : EString |[1..1] entity ‘l = name : EString ’ | ’
—_— ‘l r

| i [P [0..1] condition

[0..*] features I

H Feature
= name : EString

[1..1] from | [1..*] projections | [0..*] orderingAttributes

[\ !
[Reference || E Attribute |1:| EHFrom | | H AttributeSelection | | H Inclusion

|
|
|
[
|
‘ |
| [0..*] inclusions [
|
|
[
|
|
|

= cardinality : EString||= tyPe : Type = function : EString
= isUnique : EBoolean ||| = alias : EString
[1.%] refsT [1.1] attributeT Il | |
I
- .
. Structure Model Elements || Access Queries Elements |

Fig. 2. Fragment of the Generic Data Model metamodel.

The Structure Model (Fig.2, left) is defined in a UML-like fashion. This is
a well-known notation both in the modeling and database research areas, which
presents adequate for the specification of the structure of domain data. Moreover,
it is independent of any database technology, which is one of the requirements
of the presented process. The data structure is defined by the specification of
entities. These entities contain features of two kinds: (i) primitive attributes
which store values of a certain type, and (ii) references to other related entities.
The references of an entity can have variable cardinality, e.g., 1, 2, 4 or unlimited.

The Access Queries (Fig.2, right) represent the requests that are going to
be performed over the database. These queries are defined in the GDM over
entities from the structure model. Queries are defined through a SQL-like struc-
ture, which facilitates their later specification with a textual notation. A Query
is executed over a main entity, captured by a From element. Any reference from
that entity can be included in the query through an Inclusion element. Inclu-
sions work in the same way as a conventional join of a relational SQL query.
In addition, entities referenced by those that have been included previously can
also be included, i.e., inclusions can be recursively added as long as there are

46 A. de la Vega et al.

references available. The set of projection attributes that are retrieved by the
query is specified as a list of AttributeSelection elements. This list can contain
attributes coming from the From or the Inclusion entities. The condition of a
query is captured with a BooleanFExpression, which allows to declare any desired
restrictions. The notation for boolean expressions is not shown in this article
for the sake of simplicity and brevity, as this syntax is probably known by the
reader. Finally, ordering can be specified through a set of AttributeSelections,
again coming from the entities selected by the From and Inclusion elements.

Bill Client Category X Provider
- - [0..1] bill - - — [0..%] categories - -
billld : id P clientld : id categoryid : id < providerld : id
billDate : date name : text name : text name : text
billingData : text nationality : text description : text

T[lu*] providers

[0..*] purchases

Address Product
Purchase PurchaselLine -
street : text Py productld : id
postalCode : text purchaseld : id i quantity : number name : text
city : text [1..1] shipAddress_| purchaseDate : date | [1.-*]1ines | unitPrice : number [1..1] product | description : text
country : text < > [————>| price : number

Fig. 3. GDM’s Structure Model of the e-commerce platform example.

We now show a concrete instantiation of the GDM metamodel through an
example. We have selected a database that stores data from an e-commerce
platform. The structure model of this platform is shown in Fig. 3.

Clients of this online shop can make purchases of products. Each Purchase
has an associated shipping Address and a Bill, which is optional. A Product can
belong to different Categories, and it can be purchased from different Providers.
The PurchaseLine entity allows to include different products in the same pur-
chase.

01 query Q3 productsByCategory:

02 select prod.name, prod.description, prod.price, cat.name
03 from Product as prod

04 including prod.categories as cat

05 where cat.name = "?"

06 order by prod.price

Fig. 4. Example of a GDM access query over entities of the structure model.

Continuing with the GDM instance definition, in Fig.4 an example of how
an access query from our GDM can be textually specified is shown. This query
retrieves all products of a given category ordered by their prices. The instanti-
ation of the query in the GDM would be as follows. The From entity would be
Product (line 3), and an Inclusion is defined to add the Category entity through
the categories reference (line 4). From these entities, the retrieved attributes are
the name, description and price of the products, and the category name (line
2). The aliases prod and cat are employed to simplify the attribute selection. A

Mortadelo: A Model-Driven Framework for NoSQL Database Design 47

condition is defined in line 5 through an equality that restricts the shown prod-
ucts to those belonging to a specific category, which is indicated by its name.
Lastly, in line 6, an order by clause specifies that the products should be ordered
by their price.

In this section, we have seen how input databases can be specified by the
instantiation of the structure data model and the access queries of the Generic
Data Model. GDM specifications do not contain NoSQL details, which allows
employing them as input for any NoSQL technology. Next section shows the
logical model for column family data stores, and how Mortadelo can perform
the transformations that generate a physical implementation of a Cassandra
database from a GDM instance.

2.3 Transformations for Column Family-Based Stores

Figure 5 shows the logical metamodel for column family-based stores. Any pro-
vided GDM instance model can be automatically transformed with Mortadelo
to conform to these metamodel through a model-to-model transformation.

& DataModel
g [0..*] columnFamilies

[0..%] keys

g ColumnFamily

7 name : EString

[0..*] columns

[1..1] column B Column [1..1] type H Type [1..1] type
7 position : Elnt 7 name : EString
[|
‘Q ClusteringKey‘ ‘EI PartitionKey| | 2 Tuple | | & UserDefined Type |
‘ ‘ ‘ ’ s types : PrimitiveType’ ‘ 7 name : EString ’
| g SimpleType ‘ ‘ % Collection [0..%] fields

7 type : PrimitiveType = INT ‘

7 type : PrimitiveType = INT
yp imitive lyp B Field

— T [

| 5 Map || g Set HDList

Fig. 5. Metamodel for the logical modeling of column family-based databases.

In this kind of NoSQL databases, information is stored in structures denoted
Column Families (CFs), which are collections of rows that contain Column val-
ues. These rows are uniquely identified by a key, which is defined by a selection of
columns from the CF. For some CF databases, like Cassandra, the columns that
conform are organized in two subsets: (i) the partition key and (ii) the clustering
key. The partition key is used to distribute the data of a CF into different phys-
ical nodes or machines. Rows with the same partition key are stored together.
The clustering key allows to indicate the physical ordering of the CF rows inside
each partition.

48 A. de la Vega et al.

In this kind of column family databases, because querying rows from different
physical locations would be inefficient, only data from a CF partition can be
queried each time, this is, only a concrete value for the partition key can be
requested on each query. This provokes that the redundancy of having different
CF's storing the same data is not only recommended, but a necessary mechanism
in order to query these data with different conditions.

Columns of a CF can have an assigned type, which can be simple, a collection
of simple elements, or user defined. These last type is a composition of other types
that can help to perform data denormalizations, an operation that is common
in this kind of data stores.

Continuing with the online shop example presented in the previous section,
we could define a CF for the storage of products. In Fig.6, an instantiation
of this CF with the logical metamodel notation is shown. The CF is denoted
ProductByld. It is composed of four simple columns: productld, description, name
and price. The key is composed of a single column, the productld, which acts
as the partition key. This means that each partition would contain data of a
single product, and that each query would have to specify the productld of the
concrete product of interest.

:ColumnFamily keys :PartitionKey
name = "ProductByld" ~ position = 1
¢ column

columns‘ :Column type :SimpleType

” name = "productld" ” type : PrimitiveType::ID
columns :Column type :SimpleType

- name = "description" - type = PrimitiveType::TEXT
columns :Column typfi :SimpleType

” name = "name" - type = PrimitiveType::TEXT
columns | :Column type | :SimpleType

- name = "price" ~ type = PrimitiveType::DECIMAL

Fig. 6. Example column family from the logical model that stores products data.

Next, we show how Mortadelo can generate a database for Cassandra NoSQL
technology, traversing through the column family logical model. The input GDM
of this example is composed of the Structure Model shown in Fig. 3, while the
following queries conform the GDM’s Access Queries:

Q1 Products data, given their productld.

Q2 Products data, together with the data from their associated categories, given
the product name.

Q3 Products data, given their categories’ names, and ordered by price.

Mortadelo: A Model-Driven Framework for NoSQL Database Design 49

Q4 Purchases data, with their associated bills, given the purchase year, and
ordered by purchaseDate.
Q5 Purchase data, with their purchase lines, the client’s name and the products

data, given the nationality of the client, and ordered by purchaseDate.

<ColumnFamily>

<ColumnFamily>

<UserDefinedType>

description : TEXT
price : DECIMAL

partitionKeys : [productld]
clusteringKeys : []

ProductByld ProductByName CategoryType
productld : ID productld : ID categoryld : ID
name : TEXT name : TEXT categoryName : TEXT

description : TEXT
price : DECIMAL
categories : List<CategoryType>

cDescription : TEXT

partitionKeys : [name]
clusteringKeys : [price]

<ColumnFamily>
PurchaseUProduct

<ColumnFamily>
ProductCategories

<ColumnFamily>
PurchaseBill

prodCatld : ID
prodName : TEXT
prodDescription : TEXT
price : DECIMAL
catName : TEXT
catDescription : TEXT

purchaseBillld : ID
purYear : INT
purDate : TIMESTAMP
billDate : TIMESTAMP
bData : TEXT

spid : ID

purYear : INT
purDate : TIMESTAMP
cliName : TEXT
cliNationality : TEXT
lineNum : INT
unitPrice : DECIMAL
quantity : INT
productName : TEXT

partitionKeys : [catName]

partitionKeys : [purYear]
clusteringKeys: [purDate, billld]

partitionKeys : [cliNationality]
clusteringKeys : [purYear, spid]

clusteringKeys : [price, prodCatld]

Fig. 7. Logical model of the sample database for column family databases.

Figure 7 shows the logical model generated by our framework when applying
a M2M transformation to the provided GDM instance. As instances of logical
models can become too verbose if displayed graphically (e.g. all the elements of
Fig. 6 only represent a column family), we show the column families definition
in a more compact format, where CFs are specified with the <ColumnFam-
ily> stereotype, and <UserDefinedType> does the same for user defined types.
The complete logical model, which follows the format shown in Fig.6, can be
visualized in the GitHub repository of our tool, Mortadelo®.

The first query (Q1) only requests data from one entity, so a simple trans-
formation rule is applied to generate the ProductByld column family from Fig. 6
described above. For the query @2, which involves Product and Category enti-
ties, the column family ProductByName is created, which contains product and
category columns. Given that none of the Category columns belongs to the CF
key, a user defined type denoted categoryType is created, which holds data about
categories. Then, the ProductByName CF stores the categories of a product as
a list of type categoryType.

Although query Q3 involves the same entities than Q2, i.e. Product and Cat-
egory, in this case the categories’ names are part of the partition key. Moreover,
the products’ price belong to the clustering key, in order to introduce ordering.

! https://github.com/alfonsodelavega/mortadelo.

https://github.com/alfonsodelavega/mortadelo

50 A. de la Vega et al.

Requiring different keys provokes that a new CF must be created, and this time
no user-defined type can be employed. The generated CF is ProductCategories,
which contains as columns the attributes from both entities, as shown in Fig. 7.
Also, given that the two columns used in the query, i.e. category name and prod-
uct price, do not guarantee row uniqueness, an extra field denoted idprodcat has
been added at the end of the clustering key.

Similar rules are applied to generate, from the rest of the sample queries, the
other column families shown. For details about the complete transformations
rules, we remit again to our tool’s repository.

We show in Fig.8 the resulting database implementation for Cassandra,
which is obtained by our framework in a code generation step from the logical
model. Cassandra offers a SQL-like language for database query and definition,
called Cassandra Query Language (CQL). In this language, column families are
treated and denoted as tables. The primary key, which includes the columns
that uniquely identifies the rows, is divided in two sets of columns: the first set
corresponds to the partition key and the second one to the clustering key.

The current logical metamodel for column families shown in Fig.5 is also
valid, in its current form, for generating code for other databases, like ScyllaDB,
which works similarly to Cassandra. However, this metamodel may contain cer-
tain concepts that are specific of the Cassandra technology, e.g., the CF keys
structure. We plan to abstract these concepts in future iterations, in order to
ease the support of other column family data stores.

CREATE TABLE ProductById(CREATE TYPE categoryType(
productId uuid, name text, categoryId uuid,
price decimal, description text, categoryName text,
PRIMARY KEY(productid)) cdescription text)
CREATE TABLE ProductByName(CREATE TABLE PurchaseUProduct(
productId uuid, spid uuid, purYear int,
name text, purDate timestamp, cliName text,
price decimal, cliNationality text, lineNum int,
description text, unitPrice decimal, quantity int,
categories productName text,

List<frozen <categoryType>>, PRIMARY KEY((cliNationality),
PRIMARY KEY((name), price)) purYear, spid))
CREATE TABLE PurchaseBill(CREATE TABLE ProductCategories(
purchaseBillId uuid, prodCatId uuid, prodName text,

purYear int, purDate timestamp, price decimal, prodDescription text,
billDate timestamp, bData text, catName text, catDescription text,
PRIMARY KEY((purYear), PRIMARY KEY((catName),

purDate, salebillid)) price, prodcatid))

Fig. 8. Cassandra CQL implementation of the sample database.

Mortadelo: A Model-Driven Framework for NoSQL Database Design 51

2.4 Towards Transformations for Document-Based Stores

In this section, we show the current state of our work for the generation of
document-based data stores. These stores are generally schema-less. However,
as the purpose of Mortadelo is the provision of NoSQL designs based on the
storage and data access requirements of the end users, this framework gener-
ates a set of collections, whose objective is to store documents, along with a
proposed structure to which these documents should conform in order to better
support the end user needs. The set of collections and their suggested structure
for the documents is defined in a logical document data model. Figure9 shows
an example of this model.

As introduced, a document data model is composed of Collections, which have
a name that identifies them. Each collection will be used to store documents. The
structure of these documents is captured in a DocumentType element. At the
moment, collections in Mortadelo are only used to store one kind of document,
i.e., they only have one associated instance of DocumentType. However, if we
later find out that, for some use cases, it is beneficial to store several types
of documents in the same collection, the model will be updated accordingly.
A DocumentType element defines the structure of documents as a collection of
Fields. These fields can be Primitive elements, Arrays of elements, or even nested
DocumentTypes inside the main one. In addition, as some document databases
allow defining indexes over these fields to improve performance, we have included
this functionality in the metamodel (Fig. 10).

& DataModel Bl
% name : EString

[1.%] fields [0..%] types

% name : EString
[0..%] fields T
[0..*] collections [‘ ‘
B Collection

[D DocumentType} [B PrimitiveField] [D ArrayFieId]
[1..1] document J [Ttype : PrimitiveType J []

Fig. 9. Metamodel for the logical modeling of document-based stores.

productid: 103,

name: "LCD-IPS Monitor",

price: 129.99,

description: "Monitor for PC",

categories:

[{name: "Electronics", description: "Electrical Appliances"},
{name: "Computers", description: "Computer Devices"}]

Fig. 10. Example of a denormalized collection in MongoDB that answers query Q2.

For this kind of databases, the Access queries of the GDM can be used to
determine whether the logical model must follow a more normalized design,

52 A. de la Vega et al.

with each collection representing a different entity of the Structural Model; or
a more de-normalized one, by embedding some entities into another. Figure9
shows an example of a document that represents a product in MongoDB. Each
product contains an embedded array to store the data of the categories to which
it belongs. When following this structure, categories are repeated several times,
one for each product belonging to them, which introduces data redundancy in
the system. On the other hand, this de-normalization could be useful to make the
sample query 2 more efficient, since all the required information is contained
in a single collection, instead of being necessary to consult several of them (e.g.
consulting the categories referenced by a product). We are working in more
mechanisms to adapt the provided GDM and transformations to the specificities
of document databases.

3 Implementation

We have implemented a prototype of Mortadelo to assess the transformation
process presented in the previous section. This implementation has been made
available under a free licence in an external repository?. Next paragraphs sum-
marize the main components of this repository.

The metamodels presented in Sect.2 can be found in the corresponding
projects of the repository in Ecore [23] format. Precisely, the GDM, column fam-
ily, and document metamodels are included. In addition, the projects also contain
the model-to-model and model-to-text specifications that conform the trans-
formation process. Conventionally, M2M transformations are specified through
model-to-model languages such as ETL or ATL. These languages are useful when
each input element of a certain type is transformed into one or more output ele-
ments. However, this strict mapping could not be appropriate when generating
NoSQL designs. For instance, it could be the case that two queries of the GDM’s
Access Queries can be answered through the same column family of a Cassandra
data store, instead of generating one column family for each query. Therefore, the
data structure and access queries have to be treated all at once in the transfor-
mation, instead of in a one-by-one basis. For this reason, we decided to employ an
imperative language for the M2M transformation process. We selected Xtend?,
which is a Java-based language that offers advanced model manipulation capa-
bilities. In the case of M2T transformations, they have been specified with EGL
(Epsilon Generation Language) [22].

For the GDM metamodel, a textual Domain-Specific Language (DSL) [18] for
the manipulation of GDM instances is also provided. This DSL has been imple-
mented with Xtext [12], which provides a full-featured and easily configurable
editor. Figure 11 shows a screenshot, where the online shop case study is manip-
ulated through the DSL editor. The left window shows the syntax of the DSL,
which allows to define and validate entities and queries over these entities. On
the top right window, the corresponding GDM instance model of the processed

2 https://github.com/alfonsodelavega,/mortadelo.
3 https://www.eclipse.org/xtend /.

https://github.com/alfonsodelavega/mortadelo
https://www.eclipse.org/xtend/

Mortadelo: A Model-Driven Framework for NoSQL Database Design 53

ang - ican.istr.mortadelo.gdm.L i del - Eclipse Platform o oo
File Edit Navigate Search Project Exeed Run Window Help
(nd @ i Ui (R Quick Acce: =
% | [onlineShop.gdm 52 | hotel.gdm) onlineShop.model 52 | B= Outline =
o
=entity Purchaseline { v Epl e/es.uni tr.mortadelo.gdm.L
number lineNumber v 4 Model
numger quantity » 4 Entity Client
number unitPrice
» 4 Entity Sell
ref Product[1] product ntky Seller
» 4 Entity Address
» 4 Entity Category
centity Bill {
48 » 4 Entity Product
id billld “
date billDate » 4 Entity Purchase
text billingData » 4 Entity PurchaseLine
» 4 Entity Bill
T T ——— v 4 Query Q1_productByld
/* Queries definition */ # Attribute Selection
JARAAASAA KA A R A + Attribute Selection
=query Q1 productById:] Properties 53 2l EX=l
select prod.productId, prod.name, prod.description, prod.price Property Value
from Product as prod ~
where prod.productId = "?" Alias o
Attribute + Attribute productid
query Q2_productByNameAndCategory: Function =

select prod.name, prod.description, prod.price, cat.name
from Product as prod

including prod.categories as cat

where prod.name = "?"

Ref Alias + Alias prod

Selected Object: Attribute Selection

Fig. 11. Editor of the provided GDM textual DSL.

“onlineShop.gdm?” file is shown. This instance would be the input of Mortadelo’s
transformation process. Below, in the Properties view, individual details of con-
crete elements from the model can be consulted, such as the AttributeSelection
object selected in the figure.

Finally, an examples project is included, which contains the specifications and
resulting NoSQL schemas for the online shop running example of this paper.

4 Related Work

As we mentioned in the introduction, well-known practises of the design pro-
cess of relational databases are not suitable for NoSQL systems because of the
differences between them and RDBMSs [3,21].

There are works in the literature that face the challenge of NoSQL database
design. However, because of the heterogeneity present in NoSQL technologies,
most of these works limit their efforts to a concrete paradigm, such as col-
umn families [8,21], key-value [19] or graph-based [11] stores. For instance, Mior
et al. [21] present NoSE (NoSQL Schema Evaluator), an initially generic tool
for obtaining NoSQL schemas. However, this work focuses on column family
databases and, as the authors state in their conclusions, “NoSE may require
significant changes to fully exploit the capabilities of different data models”.

Nonetheless, the lack of generality of these works does not make them unus-
able for our purposes. As mentioned in Sect. 2.2, one of the steps performed by
our framework is the transformation of a generic conceptual model to the logical
model of a concrete NoSQL paradigm. So, it is possible to include the described
process of individual works for a specific paradigm into Mortadelo, therefore con-
tributing to the homogenisation of these works under the same framework. As

54 A. de la Vega et al.

an example, for column family databases, we have taken as base transformation
rules the ones included in NoSE. Also, we have improved them by overcoming
some of their limitations, such as for example the lack of support for User Defined
Types and Collections that are useful for the design of certain column families.

Instead of by abstracting the design stage, other approaches bring the gener-
ality to the application level by presenting high-level interfaces to access under-
lying data stores. Authors of [4] present one of these interfaces, denoted as SOS
(Save Our Systems), which offers a common data access layer for the intercon-
nection with different NoSQL physical storage systems.

There are two works that require special comments, as their objectives relate
to the ones of Mortadelo. In the first one, Herrero et al. [16] present a NoSQL
design process for analytical workloads. This process, as the one defined by
Mortadelo, is divided in three phases, where a conceptual model is first used
as input to obtain a logical model, which later gets instantiated in a physical
implementation. One of the main differences with respect to our proposal is
that, rather than performing manual steps, we seek to automatically generate
the NoSQL schemas from the provided generic data model. However, authors
of the mentioned work take into account important factors for the analytical
workloads they support, such as data variability. These factors could be included
in a future to improve Mortadelo’s transformation process.

The second of these works, authored by Atzeni et al. [3], presents NoAM
(NoSQL Abstract Metamodel), a design metamodel that does not focus on any
particular NoSQL technology but on giving support to all of them. An instance of
this metamodel represents a technology-agnostic NoSQL schema through high-
level concepts, which have been generalized from the characteristics of existent
NoSQL paradigms.

When we started working on Mortadelo, we studied the possibility of using
NoAM as the intermediate logical model that is employed in the transformation
process, prior to the code-generation step into a concrete NoSQL solution. Nev-
ertheless, we detected that more information than the one contained in NoAM
models was necessary to perform the final transformations for some of the NoSQL
databases. For instance, in the case of column family data stores like Cassandra,
an extra differentiation between partition and clustering keys is necessary for the
final instantiation. We compared the overhead of using a combination of NoAM
plus this extra information against the definition of logical metamodels for each
NoSQL paradigm, and decided than the latter option was simpler in our case.
This is why we employ a column family metamodel and a document metamodel
in Sect. 2, instead of a single intermediate model such as NoAM. The use of a
logical model for each paradigm or family of NoSQL data stores allows Mor-
tadelo to remain agnostic of concrete details of technologies such as Cassandra
or MongoDB until it is necessary (i.e. when the code generation templates for
concrete systems are executed). Moreover, these logical models can be reused
between technologies of the same paradigm, such as MongoDB and CouchDB
for document stores.

Mortadelo: A Model-Driven Framework for NoSQL Database Design 55

5 Conclusions and Future Work

This paper has presented Mortadelo, a framework for the generation of NoSQL
databases. The main contribution of Mortadelo is that, following a model-driven
approach, it can be used to automatically obtain the implementation of a tar-
geted NoSQL database, by using as input a technology-agnostic data structure
model that also includes the description of how data are usually accessed. An
advantage offered by this framework is its modular structure, which eases the
inclusion of support for new database paradigms or technologies.

We have shown how Mortadelo can be used to generate databases for col-
umn family data stores, with a full example for the Cassandra database. We
have detailed all the steps of the proposed framework for this example: (i) the
implementation of a conceptual data model to specify the data structure in a
technology-agnostic way; (i) the development of an intermediate logical meta-
model that captures details of column family databases; and (iii) the implemen-
tation of a set of rules to automatically transform the data structure model to
the logical model, and this logical model to the implementation code in Cassan-
dra. Also, we have established the first steps to extend our framework for the
support of document-based databases, like MongoDB or CouchDB.

As an additional contribution, we have implemented an homonymous proto-
type tool of Mortadelo. The development of this tool is active, and the meta-
models and transformations explained throughout the paper are available in the
tool’s repository.

We are currently working towards offering full support for document-based
data stores. As future work, we will study the expansion of the framework to sup-
port other kind of NoSQL paradigms, like key-value stores or graph databases.
This will also involve researching how to extend the technology-agnostic data
structure model in order to take into account other components in the trans-
formation process. After the functionality of Mortadelo has been tested, it is
also important to consider the non-functional requirements that usually affect
the design of NoSQL data stores. Issues such as scalability, security, consistency,
technology /storage restrictions, or workload frequency will be taken into account
for future improvements.

Acknowledgements. This work has been partially funded by the Government
of Cantabria (Spain) under the doctoral studentship program from the University
of Cantabria, and by the Spanish Government under grant TIN2014-56158-C4-2-P
(M2C2) and TIN2017-86520-C3-3_R.

References

1. Agrawal, S., Chaudhuri, S., Narasayya, V.: Automated selection of materialized
views and indexes in SQL databases. In: 26th Conference on Very Large Data
Bases, pp. 496-505 (2000)

2. Alur, N.: IBM Infosphere Datastage Data Flow and Job Design. Vervante (2008)

56

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

A. de la Vega et al.

Atzeni, P., Bugiotti, F., et al.: Data Modeling in the NoSQL World. Comput.
Stand. Interfaces (2016)

Atzeni, P., Bugiotti, F., Rossi, L.: Uniform access to NoSQL systems. Inf. Syst.
43, 117-133 (2014)

Carpenter, J., Hewitt, E.: Cassandra: The Definitive Guide: Distributed Data at
Web Scale. O’Reilly, Modesto (2016)

Cattell, R.: Scalable SQL and NoSQL Data Stores. SIGMOD Records 39(4), 12-27
(2011)

Chandra, D.G.: BASE analysis of NoSQL database. Futur. Gener. Comput. Syst.
52, 13-21 (2015)

Chebotko, A., Kashlev, A., Lu, S.: A big data modeling methodology for apache
Cassandra. In: International Congress on Big Data, pp. 238-245. IEEE (2015)

. Chen, P.P.S.: The entity relationship model — toward a unified view of data. ACM

Trans. Database Syst. 1(1), 9-36 (1976)

Chodorow, K.: MongoDB: The Definitive Guide: Powerful and Scalable Data Stor-
age. O’Reilly Media, Sebastopol (2013)

Daniel, G., Sunyé, G., Cabot, J.: UMLtoGraphDB: mapping conceptual schemas
to graph databases. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S.,
Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 430-444. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46397-1_33

Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: 25th Annual Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pp. 307-309 (2010)

Gessert, F.: NoSQL database systems: a survey and decision guidance. Comput.
Sci. Res. Dev. 32(3), 353-365 (2017)

Haerder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM
Comput. Surv. 15, 287-317 (1983)

Hecht, R., Jablonski, S.: NoSQL evaluation: a use case oriented survey. In: Inter-
national Conference on Cloud and Service Computing (CSC), pp. 336-341. IEEE
(2011)

Herrero, V., Abellé, A., Romero, O.: NOSQL design for analytical workloads: vari-
ability matters. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S.,
Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 50-64. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46397-1_4

Hills, T.: NoSQL and SQL Data Modeling: Bringing Together Data, Semantics,
and Software. Technics Publications, Basking Ridge (2016)

Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Addison-Wesley Professional, Upper Saddle River (2008)

Li, C.: Transforming relational database into HBase: a case study. In: IEEE Inter-
national Conference on Software Engineering and Service Sciences. pp. 683—-687,
July 2010

Li, L., Zhao, X.: UML specification and relational database. J. Object Technol.
2(5), 87-100 (2003)

Mior, M.J., Salem, K.: NoSE: schema design for NoSQL applications. IEEE Trans.
Knowl. Data Eng. 29(10), 2275-2289 (2017)

Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The epsilon generation
language. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol.
5095, pp. 1-16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
69100-6_1

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley Professional, Reading (2009)

https://doi.org/10.1007/978-3-319-46397-1_33
https://doi.org/10.1007/978-3-319-46397-1_4
https://doi.org/10.1007/978-3-540-69100-6_1
https://doi.org/10.1007/978-3-540-69100-6_1

Mortadelo: A Model-Driven Framework for NoSQL Database Design 57

24. Vajk, T., Fehr, P.; et al.: Denormalizing data into schema-free databases. In: 4th
International Conference on Cognitive Infocommunications, pp. 747-752. IEEE
(2013)

25. Walker, S.J.: Big data: a revolution that will transform how we live, work, and
think. Int. J. Advert. 33(1), 181-183 (2014)

)

Check for
updates

Towards OntoUML for Software
Engineering: Experimental Evaluation
of Exclusivity Constraints in Relational

Databases

Zdenek Rybola®) and Michal Valenta

Faculty of Information Technology, Czech Technical University in Prague,
Prague, Czech Republic
{zdenek.rybola,michal.valenta}@fit.cvut.cz
http://ccmi.fit.cvut.cz

Abstract. Model-driven development approach to software engineer-
ing requires precise models defining as much of the system as possi-
ble. OntoUML is a conceptual modelling language based on Unified
Foundational Ontology, which provides constructs to create ontologically
well-founded and precise conceptual models. In the approach we utilize,
OntoUML is used for making conceptual models of software application
data and this model is then transformed into its proper realization in a rela-
tional database. In these transformations, the implicit constraints defined
by various OntoUML universal types and relations are realized by database
views and triggers. In this paper, we specifically discuss the realization of
phase partitions of Phase types from the OntoUML model by exclusive
associations and provide an experimental evaluation of this approach.

Keywords: MDD - Transformation - OntoUML
Relational database - Exclusivity constraints + Evaluation

1 Introduction

Software engineering is a demanding discipline that deals with complex sys-
tems [6]. The goal of software engineering is to ensure high-quality software
implementation of these complex systems. To achieve this, various software
development approaches have been formulated. One of these approaches is the
Model-Driven Development (MDD), which is based on elaborating models and
transformations between them [12].

To ensure high quality of a software system, high-quality expressive con-
ceptual models are necessary to define all requirements and constraints for the
system [6]. As OntoUML is based on Unified Foundational Ontology (UFO), it is
domain-agnostic and it provides mechanisms to create ontologically well-founded
conceptual models [7], it qualifies for creating precise conceptual models of appli-
cation data. However, it should hold for the MDD transformations that more

© Springer Nature Switzerland AG 2018
E. H. Abdelwahed et al. (Eds.): MEDI 2018, LNCS 11163, pp. 58-73, 2018.
https://doi.org/10.1007/978-3-030-00856-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00856-7_4&domain=pdf

OntoUML2RDB: Evaluation of Exclusivity Constraints 59

specific models preserve the constraints defined in the more abstract models [7].
Therefore, it is necessary to transform such OntoUML model into its realization
properly, without losing the implicit constraints OntoUML introduces.

This paper is part of a series, where the usage of OntoUML for Software
Engineering is investigated. As conceptual data modelling is the most popular
part of the MDD approach and the relational database management systems
(RDBMSs) are still the most popular type of data storage!, we focus primar-
ily on the proper realization of the OntoUML conceptual models in relational
databases (see, e.g., [17] for the introduction to our approach, or [18,19] for the
transformation of anti-rigid and rigid Sortals, respectively). In this paper, we
discuss explicitely the transformation of the phase partitions from an OntoUML
model into its proper realization in the RDBMS by means of exclusive asso-
ciations as proposed in [18] and we justify the approach by an experimental
evaluation.

The structure of the paper is as follows: in Sect. 2, the background to our app-
roach is presented; in Sect. 3, the gradual transformation of the phase partitions
is presented; in Sect. 4, the experiments justifying our approach are presented;
and finally, in Sect. 5, the conclusion of the paper results is provided.

2 Background

In this section, we outline the background and related work to our paper.

2.1 OntoUML

OntoUML is a conceptual modelling language focused on building ontologically
well-founded models. It was formulated in Guizzardi’s PhD Thesis [7] as a light-
weight extension of UML based on UML profiles. The language is based on
Unified Foundational Ontology (UFO) [9], which is in turn based on cognitive
science and modal logic. Thanks to this fact, it provides expressive and precise
constructs for modellers to capture the domain of interest.

UFO and OntoUML address many problems in conceptual modelling, such
as the distinction between universals and individuals, the identity principle and
the rigidity of properties [7], the concept of roles [10] or part-whole relations [8].

2.2 Our Approach

As OntoUML is based on UFO and supports creation of ontologically well-
founded models, it seems to be well-suited for creating precise conceptual models.
Such model can be also used for modelling conceptual data models of the devel-
oped application, defining various constraints and restrictions for the domain
objects simply by specifying the appropriate universal and relation types (Kinds,

! According to the ranking published on https://db-engines.com/en/ranking in Febru-
ary 2018, 7 of 10 most popular DBMSs are relational.

https://db-engines.com/en/ranking

60 Z. Rybola and M. Valenta

Subkinds, Roles, Phases, etc.). The principles of OntoUML also guide the mod-
eller to think about many important aspects of the domain objects like their
identity, rigidity and dependencies (both existential and relational). However, in
order to use such conceptual models in the MDD approach, these models must be
transformed into their realizations in such a way, that the implicit constraints
defined by the individual universal and relation types used in the OntoUML
model are not lost.

In [17], an approach to the transformation of such conceptual data models in
OntoUML into their proper realization in a relational database was introduced.
In this approach, the transformation is divided into three consecutive steps:

1. transformation of the initial OntoUML conceptual model (OntoUML PIM)
into a UML platform-independent model (UML PIM),

2. transformation of the resulting UML PIM into a relational platform-specific
model (RDB PSM),

3. and finally the transformation of the resulting RDB PSM into an
implementation-specific model consisting of SQL DDL scripts (SQL ISM).

In the first step, the initial OntoUML PIM with various universal and relation
types is transformed into a pure UML PIM consisting of standard UML classes
and relations. Since OntoUML applies certain constraints to the types based on
the kind of universal represented by each particular type, these constraints are
carried over to the other consecutive models by utilizing OCL constraints, where
it is not possible to express them by the means of the well-known UML Class
diagram notation.

In the second step, the resulting UML PIM with the constraints derived
from the initial OntoUML PIM is transformed into an RDB PSM consisting of
the definitions of tables, references and FOREIGN KEY constraints. Additional
OCL constraints are derived to define the constraints that cannot be defined by
the standard means of a relational schema.

In the final step, the resulting RDB PSM from the previous step is trans-
formed into an SQL ISM, which consists of the SQL DDL scripts. We also deal
with the proper realization of the OCL constraints derived in the previous steps
to preserve the semantics of the model in the database and prevent creating and
querying data violating the constraints.

Although the transformation could be done in a single step, i.e., by generating
the SQL DDL scripts directly from the OntoUML model, our approach brings
several advantages. First, the existing know-how for the transformation of UML
models into relational databases may be utilized (see, e.g., [11,20]), as well as the
existing tools supporting this transformation (e.g., Enterprise Architect?, which
we use for the diagrams in this paper). Second, the first step of the transformation
may be used as a part of the transformation into any other platform, such as
a pure object model of Smalltalk, an object-oriented data model of EJB3, etc.

2 Enterprise Architect is a popular commercial CASE tool used for creating models,
http://www.sparxsystems.com.au/products/ea/index.html.

3 Enterprise Java Beans, http://www.oracle.com/technetwork /java/javaee/ejb/index.
html.

http://www.sparxsystems.com.au/products/ea/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html
http://www.oracle.com/technetwork/java/javaee/ejb/index.html

OntoUML2RDB: Evaluation of Exclusivity Constraints 61

And, finally, after each of the transformation steps, the resulting model may be
analysed and refactored, in order to optimize the model, simplify it and remove
redundancies and duplicities.

2.3 Related Work

In the past, various approaches like the OO-Method [15], Model-Driven Archi-
tecture [13] or Model-Driven Development in general [12] have been developed
to overcome the distinction between the conceptual and solution models by pre-
cisely defined transformations.

In our approach, we utilize OntoUML for the conceptual modelling. The idea
of similar approach was introduced already in [3], where the author proposes a
transformation of an OntoUML conceptual model into an object-oriented imple-
mentation model in UML. Similar approach is also presented in [16]. There are
also other works dealing with the transformation of OntoUML into other lan-
guages, such as Alloy [2] and OWL [23].

Regarding the transformation of the UML PIM into a relational database,
it is a well-known process documented for instance in [11]. However, in order to
realize the original OntoUML PIM properly, it is necessary to properly trans-
form and realize also the OCL constraints derived from the universal and relation
types used in the OntoUML conceptual model, as well as other constraints such
as special multiplicities of associations or meta-properties isDisjoint and isCov-
ering of the generalization sets, which are usually ignored by the documented
transformations. In our approach, we focus on the proper realization of these
constraints.

In [20], an approach for the realization of special multiplicity constraints in
a relational database was proposed. The approach was inspired by DresdenOCL
Toolkit*, where OCL constraints are transformed into database views querying
data violating the constraints. It was also inspired by the realization of inverse
referential integrity constraints used in IIS*Case tool [1]. In our approach, we
build up on these approaches and use the views and triggers for the realization
of the OntoUML constraints.

There are also several other approaches for the realization of OCL constraints
in a relational database. In [14], the authors present their approach to checking
constraints by incremental SQL queries that select the violating data. In [22], the
author describes an extension plugin for Enterprise Architect that generates the
SQL code realizing OCL constraints. His approach is based on translating OCL
expressions into SQL queries and realizing the constraints by database functions
used to detect the constraint violation. Another related work can be found in [5],
where the authors transform OCL constraints into stored procedures. In contrast
to them, we focus on enforcing the constraints directly for any DML operations
by using triggers to minimize the special handling by the application using the
database.

4 https://github.com/dresden-ocl/dresdenocl.

https://github.com/dresden-ocl/dresdenocl

62 Z. Rybola and M. Valenta

3 Transformation of Phase Partitions

In this section, the transformation of the Phase univerals and their partitions
defined in the OntoUML PIM as proposed in [18] is explained in detail. For
creating the illustrating diagrams, we use the mentioned Enterprise Architect
case tool.

3.1 OntoUML PIM

As discussed in [7], the backbone of the whole OntoUML model is formed by the
Kind universals and their specializing Subkind universals, which define the types
of individuals with unique identity principles. While Kinds define a new unique
identity principles and provide it to their instances, the Subkinds inherit the
basic identity principle from their rigid ancestor (another Kind or Subkind) and
extend it, providing this extended identity principle to their instances. Therefore,
being an instance of a Subkind type automatically means the individual is also
an instance of the supertype with all its properties. Moreover, as both Kinds
and Subkinds are rigid, the identity of an individual provided by one of them
cannot, change in the individual’s lifetime.

In contrast to Kinds and Subkinds, Phase universals are anti-rigid [7], and
thus the individuals can change the fact of being its instance. Still, all instances
of a Phase type must follow the same identity principle. This means, that each
instance of a Phase type must also be an instance of a rigid sortal type defin-
ing the identity principle (called identity bearer in this paper) - for instance,
an available copy is a copy, which is in the state of being available. This fact
is modelled by the generalization relation between the Phase types and the
identity bearer type. Moreover, the Phase types always form phase partitions —
{disjoint,complete} generalization sets of the identity bearer type. Thanks
to the completeness and disjointness, each instance of the identity bearer type
must always be an instance of exactly one of the Phase types, but thanks to
the anti-rigidity, the instance of the Phase type can change in time. Because
of these properties of Phases, they are used to model all the possible states or
stages of instances of certain type, defining the properties and relations of such
an instance in each particular phase.

In Fig. 1, an example of a PIM of the book copies in a library organization is
shown using the OntoUML notation. The information about the availability of
the particular book copy is represented by the Phase types Available, Borrowed
and Discarded, which define the only possible states of each copy.

3.2 Transformation of OntoUML PIM into UML PIM

Both Kind and Subkind universals are rigid. Therefore, when transforming an
OntoUML PIM into the UML PIM, each Kind and Subkind type can be simply
transformed into a standard UML class in the UML PIM. Also, the generalization
sets of the Subkind types can be realized by standard UML generalization sets
with the same meta-properties isDisjoint and isCovering [19].

OntoUML2RDB: Evaluation of Exclusivity Constraints 63

«Kind»
Book «Kind»
- of Copy

- title: String «Formal» .
- ISBN: String 1 0.* |- copy ID: String

- publish year: int

(d'\sjo'mt,lcomplete)

«Phase» «Phase» «Phase»
Available Borrowed Discarded

- bookcase: String - deadline: date - discarding date: date
- shelf:int

Fig. 1. PIM of the availability of book copies in a library modelled using the OntoUML
notation

Similar to the Kind and Subkind types, the Phase types from the OntoUML
PIM can also be transformed into standard UML classes in the UML PIM.
However, as the Phases are anti-rigid, the generalization relation between the
Phase types and their identity bearer type cannot be transformed into standard
UML generalization, which is always rigid. Instead, this relation must be trans-
formed into an association to allow the changes of related Phase instances to
any identity bearer instance [18]. Moreover, as the Phase types form the phase
partitions, they must be treated together to correctly preserve the disjointness
and completeness of the partition.

According to the approach presented in [18], there are two general ways to real-
ize a phase partition in the UML PIM: abstract phase and ezclusive associations.

Abstract Phase. A new artificial abstract phase class is generated. This class
is related by mandatory one-to-one association with the transformed iden-
tity bearer class. Additionally, the abstract phase class is specialized by the
{disjoint,complete} generalization set of the transformed phase classes.
Together, the mandatory association enforces the mandatory variable relation
between the identity bearer and its phase, while the generalization set speci-
fies the possible states [18]. The resulting UML PIM created by applying this
approach to the OntoUML PIM shown in Fig. 1 is shown in Fig. 2.

This approach is in accordance to the Open-Closed Principle (OCP) [4],
however, it introduces an additional concept not existing in the original domain.
Moreover, as discussed in [18], the realization of the abstract phase class and
its generalization set leads into more complicated model of referencing tables
(also, the generalization set meta-properties should be properly realized!). After
certain optimizations discussed for instance in [21], the transformation results
in almost the same model as in the case of the approach based on ezclusive
associations. As this paper focuses on the realization by exclusive associations,
the reader is kindly referred to [18] for more details about this realization.

64 Z. Rybola and M. Valenta

Book
- Copy

- title: String . Availability

ISBN: String 1 0.*[- copyID: String |1

publish year: int

(disjoinl,clomplete)
[I |
Available Borrowed Discarded

bookcase: String - deadline: date - discarding date: date

- shelf:int

Fig. 2. Resulting UML PIM with an abstract phase

Available

- bookcase: String
0.1|- shelf:int

Book

- of Copy Borrowed

- title: String
- ISBN: String
- publish year: int

[
54

*[- copyiD:string |1 0.1|- deadline: date

0.1
Discarded

- discarding date: date

Fig. 3. Resulting UML PIM with exclusive phases

Ezxclusive Associations. Following this approach, the phase partition is trans-
formed into a set of one-to-one associations between the identity bearer’s class
and the individual transformed phase classes. The associations are mandatory
on the side of the identity bearer class, but they are optional on the side of the
related phase classes. Additionally, to maintain the exclusivity defined by the
{complete, disjoint} phase partition, a special exclusivity constraint must be
defined for this set of relations, checking that exactly one of the relations exists
between the instances [18]. In our approach, we use OCL invariants for defin-
ing such constraints that cannot be defined directly in the UML diagrams. The
resulting UML PIM created by applying this approach to the OntoUML PIM
shown in Fig. 1 is shown in Fig. 3 and the required exclusivity constraint is shown
in Constraint 1.

With this realization, there is no abstract concept with no reflection in the
reality as it is in the case of the abstract phase approach. Also, although not
following the OCP, it is absolutely viable model on the conceptual level, which
the UML PIM in our approach is. Moreover, the realization is much simpler on

Constraint 1 OCL invariant for the exclusivity constraint in UML PIM

context c:Copy inv Copy_Availability:
c.available <>OclVoid XOR c.borrowed<>OclVoid XOR c.discarded <>OclVoid

OntoUML2RDB: Evaluation of Exclusivity Constraints 65

the PSM level as discussed below. The remaining of the paper further discusses
only the transformation based on the exclusive associations approach.

3.3 Transformation of UML PIM into RDB PSM

In the second step of the transformation, the resulting UML PIM is transformed
into the RDB PSM. During this transformation, the classes with attributes are
transformed into tables with columns (in the examples in this paper, we use
Oracle as the target DBMS, therefore we use the Oracle data types) and the
associations between the classes are transformed into the references restricted
by the FOREIGN KEY constraints [17].

According to this approach, the phase partition realized by the exclusive asso-
ciations can be transformed very easily into exclusive references. According to
the multiplicities of the associations, the references are created in the tables rep-
resenting the individual phase classes, referencing records in the identity bearer
table [20]. The example of the transformed UML PIM shown in Fig. 3 is shown
in Fig. 4.

BOOK coPY
«column» «column»
*PK BOOK_ID: NUMBER(S) *PK COPY_ID: VARCHAR2(10)
* TITLE: VARCHAR2(100) (BOOK_ID = BOOK_ID) *FK BOOK_ID: NUMBER(8)
* ISBN: VARCHAR2(15) 1 «FK» 0.%

«FK»

PUBLISH_YEAR: NUMBER(4)
+ FK_COPY_BOOK(BOOK_ID)

«PK» «PK»

+ PK_BOOK(BOOK_ID)) + PK_COPY(COPY_ID)

1 1

(COPY_ID = COPY_ID) (COPY_ID = COPY_ID)

«FK» «FK»,

(COPY_ID = COPY_ID)

«FK»

0.1 ox
AVAILABLE BORROWED 0.1 DISCARDED
*;(;OL:'/?E:BLE o NUMBER(E «column» «column»
FK COPY ID'ViAR;:HARZ 10‘) *PK BORROWED_ID: NUMBER(8) *PK DISCARDED_ID: NUMBER(8)
. W\W *FK COPY_ID: VARCHAR2(10) *FK COPY_ID: VARCHAR2(10)
N M * DEADLINE: DATE * DISCARDING_DATE: DATE
* SHELF: NUMBER(1)
K «FK» «FK»
«e + FK_BORROWED_COPY(COPY_ID) + FK_DISCARDED_COPY(COPY_ID)
+ FK_AVAILABLE_COPY(COPY_ID)
K «PK» «PK»
P + PK_BORROWED(BORROWED_ID) + PK_DISCARDED(DISCARDED_ID)
+ PK_AVAILABLE(AVAILABLE_ID)
_ «unique» «unique»
«unique» + UQ_BORROWED_COPY_ID(COPY_ID) + UQ_DISCARDED_COPY_ID(COPY_ID)
+ UQUAVAILABLE_COPY_ID(COPY_ID)

Fig. 4. Resulting RDB PSM with exclusive references

The only complication lies in the realization of the ezclusivity constraint for
the associations between the individual Phase classes and their identity bearer
class. The OCL constraint defined in context of the identity bearer class is trans-
formed into an equivalent OCL constraint defined in the context of the identity
bearer table and the references from the other Phase tables. An example of the
transformed OCL constraint shown in Constraint 1 is shown in Constraint 2.

66 Z. Rybola and M. Valenta

Constraint 2 OCL invariant for the exclusivity constraint in RDB PSM

context COPY inv Copy-Availability:
def Available_Instance: Boolean =

AVAILABLE. alllnstances()—>exists (a|a.COPYID = self.COPY.D)
def Borrowed_Instance: Boolean =

BORROWED. alllnstances()—>exists (b|b.COPY.ID = self.COPY._D)
def Discarded-Instance: Boolean =

DISCARDED. alllnstances()—>exists (d|d.COPY.ID = self.COPY.D)

Available_Instance XOR Borrowed_Instance XOR Discarded_Instance

3.4 Transformation of RDB PSM into SQL ISM

The last step of the transformation consists of generating SQL DDL scripts for
creating all the elements defined in the RDB PSM. For each table, a CREATE
TABLE statement is generated, including all its columns, UNIQUE, PRIMARY
KEY and FOREIGN KEY constraints. However, the additional OCL constraints
defining the exclusivity of the references realizing the original phase partition
requires special transformation. As already mentioned, we use Oracle as the
target DMBS, therefore we use the Oracle PL/SQL notation of the triggers and
other constructs.

In most common situations, such constraint is usually not realized in the
database and it is enforced by the application using the database. However, such
approach brings several risks: (a) there can be multiple applications using the
same database, all of them having to realize the constraint; (b) the application
may not fully understand the data constraints; (c) the constraint may not be
correctly realized, allowing to store invalid data. Therefore, we focus on the
realization of the constraint directly in the database, preventing creation and
usage of the invalid data in the tables.

According to [18], the exclusivity constraint can be realized in the relational
database by the following constructs:

Database views. A database view can be generated for querying only the valid
data in the table restricted by the exclusivity constraint. This view does not
prevent creating invalid data in the database, but hides them from the queries
used by the application using the database. Moreover, the view can also be
joined when selecting the data from the related tables representing the indi-
vidual phases. Additionally, according to [19], the view is also updatable and
can be defined with the WITH CHECK OPTION clause. Such a view can
be then used for DML operations on the table while checking the updated
data to meet the condition of the view. The example of such a view for the
constraint shown in Constraint 2 is shown in SQL 1.

Still, the exclusivity constraint can be violated by DML operations on the
Phase tables, and thus the view can reliable be used only for the queries.
Moreover, the views are not mandatory and the original tables can still be
used in the queries to access even the invalid data. Therefore the application
must use them explicitly.

OntoUML2RDB: Evaluation of Exclusivity Constraints 67

Even when using the view just for querying the data, it results in slowing
down the query operations, as the constraint condition is checked to filter
out all invalid records. Therefore, we present the experiments evaluating the
efficiency of the queries with and without such a view in Section 4.

CHECK constraint. According to the specification of SQL:1999, a CHECK
constraint might be used to restrict the possible PK values in the identity
bearer table to values correctly referenced from exactly one Phase table. How-
ever, as the body of the CHECK constraint would be based on selecting data
from multiple tables, it cannot be really used in practice, because the contem-
porary database engines do not support subqueries in CHECK constraints.

Triggers. Triggers can be used to perform complex data validations and manip-
ulations when various DML operations are performed on a table. Thanks to
that, a set of triggers can be generated to check all the operations that can
cause violation of the exclusivity constraint. In total, the following situations
can cause the violation:

S1 Inserting a new record into the identity bearer table without referencing
records in exactly one of the exclusively related phase tables.

S2 Updating a record in the identity bearer table and changing its PRIMARY
KEY value to a value, which is not referenced from exactly one of the
exclusively related phase tables. However, as changing the PRIMARY
KEY value constitutes the change of the identity of the instance, such
operation should not be allowed at all and we do not check it in regards
with the exclusivity constraint.

S3 Inserting a new record into some of the exclusively related phase tables,
referencing a record referenced from another of the exclusively related
tables (thus making it referenced by records in multiple tables).

S4 Updating a record in one of the exclusively related phase tables and
changing its reference value referencing a record in the constrained iden-
tity bearer table. However, as the referenced identity bearer instance
defines the identity of the phase instance and the