
Mining Rules with Constants from Large
Scale Knowledge Bases

Xuan Wang, Jingjing Zhang, Jinchuan Chen(B), and Ju Fan

School of Information, Renmin University of China, Beijing, China
jcchen@ruc.edu.cn

Abstract. Rules or constraints can be used to clean a knowledge base,
or find new facts which should have been included. Recently there are
many efforts on automatically mining rules from large scale knowledge
bases. However, these rules usually contain no constants. In practice, we
often need some detailed rules, for example, rules restricted to a special
country or a special profession. One major challenge of appending con-
stants lies in that there are large amount of constants, each of which can
generate a new rule. Moreover, we have to choose appropriate granularity
in order to trade off between the applicability and precision (or support
and confidence in traditional rule mining terminology). In this paper, we
propose a Spark based solution to mine rules with constants, a taxon-
omy based approach to control the granularity, and several techniques to
improve the efficiency. We also conduct extensive experiments to evalu-
ate the efficiency and effectiveness of our solution with comparison with
the state of the art works.

Keywords: Knowledge base · Rule mining · SPARK · Big data

1 Introduction

Recent years, large-scale RDF knowledge bases have been constructed [1], such
as Freebase, YAGO and DBLP. These knowledge bases store structured informa-
tion about real-world entities and the relationships between entities, which are
formed as RDF triple (subject, predicate, object). RDF is an imporant tool for
representing conceptual models like UML. There are also many applications built
based on RDF knowledge bases, such as automated customer service, structured
search and semantic graph search etc.

However, these knowledge bases are far from complete, missing many facts
and also containing some incorrect data [2,3]. Thus recently there are lots of
research on mining rules or constraints in order to complete knowledge bases
[4–8]. These rules can be in different forms like function dependencies [9], denial
constraints [7], and first-order logic formulas [10]. The rationale is that it should
be a common rule for the whole knowledge base if it is correct for most triples.
For example, suppose we find that the nationality of one person is probably the
same as his/her birthplace, we may conclude the following rule φ:

isCitizenOf(x, y) ← wasBornIn(x, y) (1)
c© Springer Nature Switzerland AG 2018
J. C. Trujillo et al. (Eds.): ER 2018, LNCS 11157, pp. 521–535, 2018.
https://doi.org/10.1007/978-3-030-00847-5_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00847-5_38&domain=pdf

522 X. Wang et al.

Applying this rule to the knowledge base, we may find some missing facts about
the nationality information.

Since the scale of these knowledge bases are quite large1, traditional rule
mining approaches like FOIL [11] or ILP [12] have limited scalability and cannot
be applied to large-scale knowledge bases. The work in [10] proposed a Spark-
based rule-mining approach and illustrates nice scalability. However, [10] can
only obtain rules without constants. This may miss many high-quality rules.
For example, the rule φ in Eq. 1 is not good enough because in some countries
nationality does not depend on birthplaces. But apparently we can have some
qualified rules if we restrict y to some countries like USA. That is, we refine φ
to φ′:

isCitizenOf(x,′ USA′) ← wasBornIn(x,′ USA′) (2)

The rule φ′ covers fewer facts than φ, but is obviously more precise. In the tasks
of knowledge completion, we need rules with high precision. Thus it is necessary
to introduce constants into rules.

The works in [7,8] are able to obtain rules with constants. But the approach
proposed in [8] is not designed for the distributed computing environment and is
hard to scale out for large data sets. The work in [7] focuses on denial constraints
only. The denial constraints can only identify that some combinations of facts
are incorrect. They are useful for detecting errors but not able to infer new facts.

The target of this paper is to mine Horn-clause formed rules with constants.
Note that allowing constants improve the complexity greatly. Each rule (with-
out constants) may have thousands of extended sub-rules by appending different
constants. Similar to [10], we propose a Spark-based approach to obtain scalabil-
ity. We find that the performance is quite poor when directly apply the approach
of [10] to deal with rules with constants. The reason lies in that it takes too much
time for loading and exchanging the large data set in the Spark cluster when
evaluating candidate rules. We try to solve this problem by designing a novel
method, which reduces the chances of data loading as much as possible.

We further find that it is necessary to finely control the granularity of the
rules. In the process of learning rules, we can split a rule φ into sub-rules
φ1, · · · , φk. Each φi(i = 1, · · · , k) covers a sub-set of facts that are covered
by φ, while the confidence2 of φi may increase. Note that when we append a
condition x =′ c′ to φ, we restrict x in the most strict way. According to our
experiments, we can only find a few rules when directly restricting variables to
constants, because these rules are too strict to cover enough number of facts.

With this observation, we propose a taxonomy based approach to trade off
between the granularity and the quality. Instead of restricting a variable x to
constants, we try to restrict x to some domains. The domains are hierarchical
and form a taxonomy tree. Hence we can control the granularity by restricting
x to an appropriate node (domain) in the tree.

1 Yago3 has more than 10 million facts, and Freebase has about 2.4 billion facts.
2 We will define this in Sect. 2.3.

Mining Rules with Constants from Large Scale Knowledge Bases 523

The contributions of this paper are listed as follows.

– We propose a scalable solution for mining rules with constants from large-
scale knowledge bases.

– We design a series of techniques for reducing the chances of data loading and
improve the efficiency.

– We conduct extensive experiments to evaluate the efficiency and effectiveness
of our approach. We also utilize our solution for completing a real data set
and report some interesting findings.

The remaining parts of this paper are organized as follows. We first explain
the learning model and propose the taxonomy based approach in Sect. 2. Then
we propose our solution in Sect. 3 and report our experimental results in Sect. 4.
Section 5 summarizes the related works and finally we conclude this paper in
Sect. 6.

2 Learning Model

In this section, we will discuss the model utilized when mining rules from knowl-
edge bases, including language bias and the quality metrics. We will also propose
a taxonomy-based model to refine rules by appending constants.

2.1 Language Bias

There are many different types of rules or constraints, which can be applied to
RDF knowledge bases. In this paper, we focus on Horn clauses, which is a special
kind of logic formulas with at most one positive atom in the head.

Horn clauses. A Horn clause consists of a head and a body, where the head is
a single atom and the body is a set of atoms.

H(X̄) ← −→
B (X̄)

where H(X̄) is an atomic formula,
−→
B (X̄) is a conjunction of atomic formulas,

and X̄ is a vector of variables.
As an example, the rule in Eq. 1 specifies that we can infer that x is a citizen

of y if x was born in y. Here, both isCitizenOf and wasBornIn are predicates
and x,y are variables. When learning rules from RDF knowledge bases, all RDF
predicates will be adopted as predicates such as livesIn, wasBornIn, isLocatedIn
and human etc. Some of them receive only one argument, meaning that the
argument variable has a property, e.g. human(x) specifies that x is a human.
The others receive two arguments, specifying that the two argument variables
have a special relationship, e.g. wasBornIn(x, y).

We will also introduce a special predicate, equals, in order to append con-
stants into rules. This predicate receives two arguments. Specifically, equals(x,′ c′)
means that a variable x equals to a constant ′c′. In this paper, we mark constants
by circling them with quotes.

524 X. Wang et al.

Furthermore, we only consider connected and closed Horn clauses to ensure
that the result rules do not contain irrelative atoms. Two atoms are connected
if they share at least one variable. A rule is connected if every two atoms in the
rule are connected directly or transitively. A rule is closed when every variable
appears more than once.

We also limit the length of all rules to be less than or equal to three. As
reported by [10], 90.3% rules with length longer than or equal to four can be
reduced to shorter rules. Hence these long rules provide little knowledge than
short ones.

Take all the circumstances of permutations into account, all the rules (with-
out constants) satisfying the above constraints can be grouped into the following
six types.

1. p(x, y) ← q(x, y)
2. p(x, y) ← q(y, x)
3. p(x, y) ← q(z, x) ∧ r(z, y)
4. p(x, y) ← q(x, z) ∧ r(z, y)
5. p(x, y) ← q(z, x) ∧ r(y, z)
6. p(x, y) ← q(x, z) ∧ r(y, z)

2.2 Refining Rules with Constants

One of the major tasks of this paper is to refine rules with constants. An intuitive
way of introducing constants is to replace some variables in rules by constants or
append an atom with the equals predicate. For example, isCitizenOf(x, y) ←
equals(y,′ USA′), wasBornIn(x, y). Note that this rule is logically the same as
isCitizenOf(x,′ USA′) ← wasBornIn(x,′ USA′). Thus we will not count in the
atoms with the predicate equals when calculating the length of a rule.

Appending the equals predicate looks like a matter of course for introducing
constants. However, we find that there are only a few qualified rules with the
equals predicate. When the support and confidence3 thresholds are set to 100
and 0.7 respectively, there are only 26 rules can be mined from knowledge base4.

Note that, when appending an atom with the equals predicate into a rule
φ, we exactly replace φ with a set of sub-rules, each of which is bound with a
different constant. For example, the rule isCitizenOf(x, y) ← wasBornIn(x, y)
will generate more than two hundred thousand sub-rules if we append an atom
equals(y,′ c′) because there are 281,036 possible choices for ′c′ in the knowledge
base. It seems that the rules with the equals predicate are too refined and we
need to adjust the granularity.

We observe that an argument of every predicate is bound with a specific
domain defined in the schema of a knowledge base. For example, the x in
wasBornIn(x, y) must be a person. Moreover, a domain has sub-domains and
sub-domains may also have sub-domains, which finally builds a taxonomy tree.

3 We will explain the two metrics soon.
4 In this paper, without otherwise specified, the default knowledge base is Yago3.

Mining Rules with Constants from Large Scale Knowledge Bases 525

For example, the type person can be classified into slave, worker and so on.
Therefore, instead of restricting x to some constant like ‘Donald Trump’, it looks
more meaningful to restrict x to some domains, e.g. ‘USA People’.

With this observation, we propose another way of refining rules with
constants. In order to refine a rule φ, we append an atom with predicate
rdftype(x,′ c′), where ′c′ can be the domain of x as defined by the schema or any
sub-domain of it.

According to our experiments, the taxonomy-based approach obtains many
more meaningful rules than constants-based approach, i.e. appending atoms with
equals. Another merit of the taxonomy-based approach lies in that it is easy to
control the granularity. We can trade off between the accuracy and coverage by
choosing appropriate node in the taxonomy tree.

In the following, if a rule contains atoms of equals or rdftype, we call it a rule
with constants. Otherwise, we call it a rule without constants.

2.3 Quality Metrics

We adopt the quality metrics in [8], i.e. the support (denoted by supp) and
confidence (denoted by conf).

The support of each rule is defined as the number of distinct subject and
object pairs in the head atom of all instantiations satisfying the rules in the
knowledge base.

supp(H(x, y) ← −→
B (X̄)) := #(x, y) : ∃z1, ..., zm :

−→
B (X̄) ∧ H(x, y) (3)

Here H(x,y) denotes the head atom and
−→
B (X̄) is the conjunction of a set of

atoms in the body atom, and z1, ..., zm are all the variables appearing in rule
ϕ(X̄) except x and y.

The confidence of each rule is defined to be the ratio of rule predictions in
the knowledge base. It is obtained by dividing the support value by the number
of distinct subject and object pairs in the head atom from all the instantiations
satisfying the body atom in the knowledge base.

conf(H(x, y) ← −→
B (X̄)) :=

supp(H(x, y) ← −→
B (X̄))

#(x, y) : ∃z1, ..., zm :
−→
B (X̄)

(4)

Lemma 1. Monotonity of Supp. Suppose φ′ is a rule refined from φ by
appending an atom of rdftype(x,′ c′) (x can be any variable appearing in φ),
then supp(φ′) ≤ supp(φ).

Proof. Without loss of generalization, suppose φ is H(x, y) ← −→
B (X̄), and φ′ is

H(x, y) ← −→
B (X̄) ∧ rdftype(x,′ c′). It is not hard to see that for every valuation

υ′ � φ′, there must exist a valuation υ which is a sub-set of υ′ and υ � φ. Since
the head variables {x, y} are contained by both φ and φ′, we can obtain that
υ′ �{x,y}= υ �{x,y}. Therefore, {υ �{x,y} |v � φ′} ⊆ {υ �{x,y} |v � φ}.

Here, υ � φ means that φ is satisfied by the assignment υ, and υ �x=<
a1, · · · , an >, if ai = v(x[i]) (i = 1, · · · , n).

526 X. Wang et al.

3 The Approaches

In this section, we will illustrate how to learn rules from knowledge bases. We
will first explain how to learn rules based on the taxonomy tree in Sect. 3.1.
Then we will analyze the bottleneck and propose two methods to improve the
efficiency in Sects. 3.2 and 3.3.

3.1 Mining and Refining (MR)

Our first approach is called mining and refining (MR in short). As implied
by the name, it contains two phases. In the first phase, we learn rules without
constants from the knowledge base. Next, we try to refine the rules by appending
the rdftype predicate.

The mining phase adopts the algorithm in [10]. The refining phase tries to
extend each candidate rule φ to a set of sub-rules with constants. For each
variable x in φ, we first load the domain c of x from the KB’s schema. Then we
traverse the taxonomy tree rooted at c. The traverse process is listed in Algorithm
1. It is basically a DFS. The lines 2–5 in Algorithm 1 specify the conditions of
splitting a domain. We split a domain c if and only if the support score of the
current rule (bound with domain c) is high enough and the confidence score is
not qualified. Note that by splitting a domain, we may obtain rules with higher
confidence scores, but the support scores cannot be improved (Lemma1).

Algorithm 1. traverse(φ, c)

1 φ′ ← rdftype(x,′ c′) ∧ φ ;
2 if supp(φ′) < α then
3 Return;

4 else if conf(φ′) > β then
5 Return;

6 else
7 for each sub-domain s of c do
8 traverse(φ, s);

In the experiments, we find that MR is quite slow. The reasons are two folds.
Firstly, MR needs to extend each candidate rule φ to a set of sub-rules with
constants by DFS, and for each sub-rule, we need to load the dataset to calculate
its support and confidence score, which is very time-consuming. Secondly, each
rule obtained in the mining phase has many candidate sub-rules, each of which
requires an independent Spark job containing many unnecessary tasks. Next we
will discuss how to improve the efficiency of MR.

Mining Rules with Constants from Large Scale Knowledge Bases 527

Algorithm 2. MR-Batch

require : facts1 = {(pred, sub, obj)},facts2 = {(pred, sub, obj)}
require : rules = {(ID, head, body)},types = {(entity, type)}

1 Join facts1, facts2 and types on facts1.pred=rules.head and
facts2.pred=rules.body and facts1.sub=facts2.obj and facts1.obj=facts2.sub
and facts1.sub=types.entity;

2 Distinct the {(rules.head, rules.body, facts1.sub, facts1.obj, types.type)};
3 GroupBy types.type, yielding a list of

{(rules.head, rules.body, facts1.sub, facts1.obj)} pairs for each type;
4 Count {(rules.head, rules.body, facts1.sub, facts1.obj)} pairs for each type,

yielding a list of {(type, supp)} pairs;
5 Join supp and denominator(the denominator is calculated similar to the way of

calculating supp), yielding a list of {(type, supp, deno)};
6 Map {(type, supp, deno)} to {(type, supp, supp/deno)};

3.2 MR-Batch

The MR algorithm needs to evaluate the quality of each refined rule, which is
very inefficient because there are millions of refined rules and each of which
requires an independent Spark job for quality evaluation. In this section, we
propose an approach named MR-Batch, which evaluates the quality scores of all
rules refined from one rule in the same Spark job.

Like MR, the MR-Batch approach also contains two phases, mining and
refining. The difference lies in that now we replace Algorithm 1 with Algorithm
2. In Algorithm 1, we need to invoke a Spark job each time when we evaluate a
rule. However, in Algorithm 2, we invoke only one Spark job if we want to refine
a rule φ.

As illustrated in Algorithm 25, in Step 1 and Step 2, we join the
tables and use the Distinct operator to deduplicate (x, y) pairs. Then, we
group all tuples with the same key (types.type) into one set and count
{(rules.head, rules.body, facts1.sub, facts1.obj)} pairs for each type, yielding
a list of {(type, supp)} pairs. The next step is to calculate the denomi-
nator of confidence and join the support and denominator scores. Finally,
map each {(type, supp, deno)} to {(type, supp, supp/deno)} to yield a list of
{(type, supp, conf)}.

3.3 Loading Data only once (LDOO)

MR-Batch is much more efficient than MR. Actually, for the tasks of mining
rules from Yago3, MR cannot finish in two days, while the MR-Batch takes
only about two hours. But MR-Batch still wastes too much time on repeatedly
loading data and can be further improved.

5 For ease of illustration, both Algorithms 2 and 3 are tailored for the second rule
type.

528 X. Wang et al.

We design a new algorithm named LDOO (Loading Data Only Once). The
algorithm loads the whole data set and mines all rules through a single Spark task.

The basic idea of LDOO is simple. For a given rule type, like p(x, y) ←
q(y, x), we join facts (i.e. triples) according to the join conditions specified in
the rule type. We also make another join with the rdftype triples with the join
condition x or y. Then we divide the whole join results into groups by the
predicates and the constants in rdftype. We utilize the taxonomy information to
generate the rdftype triples. For example, if rdftype(x,′ worker′), we will also
have rdftype(x,′ person′ since ‘worker’ is a sub-type of ‘person’.

Algorithm 3. LDOO
require : facts1 = {(pred, sub, obj)},facts2 = {(pred, sub, obj)}
require : types = {(entity, type)}

1 Join facts1, facts2 and types on facts1.sub=facts2.obj and
facts1.obj=facts2.sub and facts1.sub=types.entity;

2 Distinct the {(facts1.pred, facts2.pred, facts1.sub, facts1.obj, types.type)};
3 GroupBy (facts1.pred, facts2.pred, types.type), yielding a list of {(facts1.sub,

facts1.obj)} pairs for each key;
4 Count {(facts1.sub, facts1.obj)} pairs for each key, yielding a list of {((p, q, t),

supp)} pairs;
5 Join supp and denominator(the denominator is calculated similar to the way of

calculating supp), yielding a list of {((p, q, t), supp, deno)};
6 Map {((p, q, t), supp, deno)} to {((p, q, r, t), supp, supp/deno)};

The details of the LDOO algorithm are illustrated in Algorithm 3
with Spark primitives. In Step 1 and Step 2, we join tables and dedu-
plicate the pairs. In Step 3 and Step 4, we group tuples with same key
{(facts1.pred, facts2.pred, types.type)} into one set and count the number of
pairs for each key, yielding a list of {((p, q, t), supp)} pairs. Then, calculate the
denominator of confidence. Finally, we join support and denominator scores and
map each {((p, q, t), supp, deno)} to {((p, q, r, t), supp, supp/deno)} to yield a list
of {((p, q, t), supp, conf)}.

Note that the MR and MR-Batch algorithm are based on the taxonomy struc-
ture and can only mine rules with the rdftype predicate. But LDOO can learn
rules with rdftype or equals. To do this, we just need to remove the join con-
ditions with rdftype and add a GroupBy parameter x or y. In our experiments,
we implement LDOO for both rdftype and equals.

Aggregation Pushdown. LDOO worked well for types 1 to 5, but it failed
in mining rules for the six-th rule type. By checking the logs, we found that
some workers crashed due to huge intermediate results. The six-th rule type,
i.e. p(x, y) ← q(x, z), r(y, z), requires a join on the object attribute as indicated
by the variable z. However, many object values have high appearance frequency
which results in large number of join results. In Yago, there are 10,502 objects
which appear more than 100 times, 25 objects more than 10,000 times, and 2
objects (i.e.‘female’ and ‘male’) even more than 100,000 times.

Mining Rules with Constants from Large Scale Knowledge Bases 529

Based on this observation, we try to improve the performance of LDOO by
pushing down the aggregation operator. The idea is to perform the COUNT
operator before JOIN, in order to reduce the amount of intermediate results.

Figure 1 illustrates the original query plan of the mining task for the six-th
rule type, and Fig. 2 shows the rewritten plan by pushing down the COUNT
operators. According to [19,20], the two plans are equivalent.

Fig. 1. Original plan Fig. 2. Plan after pushing down COUNT

4 Experimental Study

In this section, we first summarize the settings of the experiments in Sect. 4.1.
Then we report the efficiency and effectiveness results in Sects. 4.2 and 4.3 respec-
tively.

4.1 Settings

We conduct all experiments on a 18-nodes cluster, consisting of one master and
17 workers. All these nodes are hosted on a cloud platform. Each node is equipped
with one 2.4 GHz processor and 500G hard disk space. The master has 8G RAM
and while each worker node has 4G RAM. All the approaches are implemented
in scala 2.11.8 and java 1.8.0. The jobs run on the Spark 2.1.0 platform, and the
OS is CentOS 6.5.

All the experiments are conducted on two real datasets, YAGO 3.0.06 and
DBPedia7. The statistics are listed in the following (Table 1).

Table 1. Statistics of the datasets

Yago DBPedia

of Triples 10,400,678 52,680,098

of Entities 4,464,016 14,592,204

of Predicates 125 59,149

of Types 569,312 385

6 https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/
research/yago-naga/yago/.

7 http://wiki.dbpedia.org/develop/datasets.

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
http://wiki.dbpedia.org/develop/datasets

530 X. Wang et al.

Compared Methods. We implement the three methods proposed in Sect. 3,
i.e. MR, MR-Batch and LDOO. We also compare our methods with the one
in [10]. Note that we also implement LDOO for mining rules with the equals
predicate. However there are only a few rules can have enough supp scores,
because the granularity of these rules are too small. When conf is set as 0.6, we
can obtain only 26 rules. Therefore, we only report the results of mining rules
with the rdftype predicate in the following. There are two parameters in the
experiments, i.e. confidence and support, whose default values are set as 0.6 and
100 respectively.

4.2 Efficiency Evaluation

First of all, we report the results of efficiency evaluation. The task is to mine
rules with constants from the knowledge base. As illustrated in Fig. 3, the x-axis
is the rule type (Sect. 2.1). Note that the y-axis is logarithmic. MR is the slowest
one. Actually MR cannot finish in ten hours for each rule type and we have
to terminate it. MR-Batch is faster than MR, which requires about five hours.
LDOO is the best, which costs about thirty minutes. As explained in Sect. 3.3,
LDOO saves the expensive cost of reloading data from disk and moving data
among the network. There is an exceptional case in Rule-Type 5, where MR-
Batch beats LDOO. The reason is there are only a few (less than 10) rules to be
refined for this type, which greatly reduces the workload of MR-Batch. Figure 4
illustrates the mining time on DBPedia. Note that we only report the result of
LDOO here because neither MR nor MR-Batch can finish the mining job on
DBPedia in 24 h.

Next we take a breakdown analysis for MR-Batch and show the results in
Fig. 5. As discussed in Sect. 3.2, MR-Batch contains two phases, mining and
refining. As illustrated in Fig. 5, the refining phase dominates the time cost. The
reason is that we need to invoke a SPARK job for each rule obtained in the
mining phase in order to evaluate the candidate sub-rules.

Fig. 3. Rule mining time (Yago) Fig. 4. Rule mining time (DBPedia)

Mining Rules with Constants from Large Scale Knowledge Bases 531

Fig. 5. Breakdown of MR-Batch (Yago) Fig. 6. Scalability (Yago & DBPedia)

We also conduct an experiment to evaluate the scalability of LDOO. As
shown in Fig. 6, when the number of worker nodes increases, the time cost of
LDOO decreases. For example, it takes 5,532 s when there are only 4 nodes and
2,149 s for 17 nodes, when mining rules from Yago.

Fig. 7. Comparison of # of rules (Yago) Fig. 8. Comparison of time (Yago)

Comparison with Ontological Pathfinding (OP). The OP approach in
[10] depends on the domains of predicates when generating candidate rules. For
example, when generating a rule p(x, y) ← q(x, y), OP requires that the sub-
ject/object domains of predicates p, q must overlap because they share the same
variables x, y. However, the schema data of Yago are not complete. Therefore,
OP misses many meaningful rules.

As illustrated in Fig. 7, LDOO obtains several times more rules than OP,
because LDOO does not have this limit of domain overlapping. Moreover, the
time cost of LDOO is similar to OP (Fig. 8). Note that here we restrict LDOO
to find rules without constants in order to make a fair comparison. Hence in the
figure, the label is LDOO(no constants).

532 X. Wang et al.

4.3 Effectiveness Evaluation

Number of Rules. Firstly, we conduct an experiment about how the number
of rules varies with the confidence parameter. The results are shown in Fig. 9. We
can find that LDOO always outperforms MR-Batch. Therefore, LDOO always
obtains more rules than MR-Batch in spite of the confidence threshold.

Fig. 9. # of rules (Yago) Fig. 10. # of new facts (Yago)

Knowledge Base Completion. In this task, we apply the mined rules to
automatically replenish knowledge base, which is basically to infer new facts
based on the qualified rules. For example, suppose we have the following rule:

hasChild(x, y) ←isMarriedTo(x, z), hasChild(z, y),
rdftype(x,Russian grand dukes)

The rule above means: suppose we have three triples, isMarriedTo(x, z),
hasChild(z, y) and rdftype(x,Russian grand dukes), we can then infer that
the triple hasChild(x, y) must be correct and put it into the knowledge base if
it is missing.

First of all, we did several experiments to find an appropriate value for the
conf parameter. We randomly select 50 new facts for each conf setting and
manually check the correctness. The results are 0.92, 0.92, 0.96, 1.0 for conf =
0.5, 0.6, 0.7, 0.8 respectively.

Figure 10 illustrates how the number of new facts varies with the confidence
parameter. We can find that LDOO outperforms LDOO(no constants). When
the confidence is set as 0.7, we can obtain more than 200,000 new facts by the
rules with constants (about 96% of these new facts are correct). However, if
there are no constants in the rules, we can only obtain about 3,000 new facts
for the same confidence. This result confirms the effectiveness of our solution for
completing knowledge bases.

Mining Rules with Constants from Large Scale Knowledge Bases 533

Table 2 shows several example rules mined by LDOO. The third column
of Table 2 compares the confidence values of the rule and its parent rule (i.e.
the corresponding rule without constants). Clearly the refined rules have higher
confidence values than their parent rules. We also list several inferred new facts
in Table 3.

Table 2. Example rules

Rule rdftype of x Conf.

playsFor(x, y) ← isAffiliatedTo(x, y) football player 0.78(0.59)

isLocatedIn(x, y) ← wasBornIn(z, x), isCitizenOf(z, y) Cities in California 0.87(0.56)

hasFamilyName(x, y) ← hasChild(z, x), hasFamilyName(z, y) lawyer 0.72(0.51)

Table 3. New facts inferred by rules

New facts

playsFor(Oleksiy Antonov,Ukraine national football team)

hasFamilyName(Sam Houston,“Kaufman”@eng)

isLocatedIn(Moscow,Russian Federation)

We put the whole set of rules and inferred new facts in a public web site.
Interested readers can find them at the following url:

https://pan.baidu.com/s/1oAqprqa (pass: 8m8d)

5 Related Works

Rule learning is a classical AI task which aims at learning first-order logic for-
mulas from given data sets [13]. Classical rule learning methods [11,12,14] rely
on some traverse strategies to search and evaluate all candidate rules, which are
hard to deal with large data sets. Some recent works [8,15] improve the efficiency
by running mining tasks in parallel, but it is not a distributed method and hard
to scale out.

Chen et al. [4,10] proposed an ontology-based routing algorithm OP [16].
The whole task is divided into many sub-tasks, which run in parallel on a Spark
platform. The limitation of OP lies in that it excludes constants and misses many
valuable rules.

The works [7,17] admit constants, but both have limitations. [7]’s language
model is quite limited and not able to find new facts which should be included
in knowledge bases, while [17]’s implementation is for single machine and hard
to be applied in large data sets.

In this paper, we design and implement our approaches based on the Spark
platform [18]. Spark can provide an efficient and general data processing plat-
form. Its core consists of a set of powerful and high-level libraries for large-scale
parallel and distributed data processing.

https://pan.baidu.com/s/1oAqprqa

534 X. Wang et al.

6 Conclusion

Mining rules with constants is important for knowledge base construction. This
paper proposes a scalable solution based on the Spark platform, including a series
of approaches to improve both the efficiency and quality. In the future work, we
will study how to generalize the learning model, e.g. introducing negative atoms.
We will also study how to further improve the efficiency by optimizing the mining
process.

Acknowledgments. This work was supported by the National Key Research &
Develop Plan (No. 2016YFB1000702), National Science Foundation of China (No.
61602488), and Talent Training Fund at RUC.

References

1. Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from mul-
tilingual wikipedias. In: Seventh Biennial Conference on Innovative Data Systems
Research, CIDR 2015, Asilomar, CA, USA, 4–7 January 2015, Online Proceedings
(2015)

2. Niu, F., Zhang, C., Ré, C., Shavlik, J.W.: DeepDive: web-scale knowledge-base
construction using statistical learning and inference. In: Proceedings of the Second
International Workshop on Searching and Integrating New Web Data Sources,
Istanbul, Turkey, 31 August 2012, pp. 25–28 (2012)

3. Shin, J., Wu, S., Wang, F., De Sa, C., Zhang, C., Ré, C.: Incremental knowledge
base construction using DeepDive. PVLDB 8, 1310–1321 (2015)

4. Chen, Y., Wang, D.Z., Goldberg, S.: ScaLeKB: scalable learning and inference over
large knowledge bases. VLDB J. 25, 893–918 (2016)

5. Lao, N., Mitchell, T., Cohen, W.W.: Random walk inference and learning in a large
scale knowledge base. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pp. 529–539 (2011)

6. Chen, Y., Wang, D.Z.: Knowledge expansion over probabilistic knowledge bases. In:
Proceedings of the 2014 ACM SIGMOD International Conference on Management
of Data, pp. 649–660 (2014)

7. Chu, X., Ilyas, I.F., Papotti, P.: Discovering denial constraints. Proc. VLDB
Endow. 6, 1498–1509 (2013)

8. Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: association rule
mining under incomplete evidence in ontological knowledge bases. In: Proceedings
of the 22nd International Conference on World Wide Web, pp. 413–422 (2013)

9. Fan, W., Geerts, F., Li, J., Xiong, M.: Discovering conditional functional depen-
dencies. IEEE Trans. Knowl. Data Eng. 23, 683–698 (2011)

10. Chen, Y., Goldberg, S., Wang, D.Z., Johri, S.S.: Ontological pathfinding: min-
ing first-order knowledge from large knowledge bases. In: Proceedings of the 2016
International Conference on Management of Data, pp. 835–846 (2016)

11. Quinlan, J.R.: Learning logical definitions from relations. Mach. Learn. 5, 239–266
(1990)

12. Muggleton, S., De Raedt, L.: Inductive logic programming: theory and methods.
J. Log. Program. 19, 629–679 (1994)

13. Frnkranz, J., Gamberger, D., Lavrac, N.: Foundations of Rule Learning. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-540-75197-7

https://doi.org/10.1007/978-3-540-75197-7

Mining Rules with Constants from Large Scale Knowledge Bases 535

14. Savasere, A., Omiecinski, E., Navathe, S.B.: An efficient algorithm for mining asso-
ciation rules in large databases. In: Proceedings of the 21st International Confer-
ence on Very Large Data Bases, pp. 432–444 (1995)

15. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE . VLDB J. 24, 707–730 (2015)

16. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: VLDB 1994, Proceedings of 20th International Conference on Very
Large Data Bases, 12–15 September 1994, Santiago de Chile, Chile, pp. 487–499
(1994)

17. Zeng, Q., Patel, J.M., Page, D.: QuickFOIL: scalable inductive logic programming.
Proc. VLDB Endow. 8, 197–208 (2014)

18. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51, 107–113 (2008)

19. Yan, W.P., Larson, P.: Eager aggregation and lazy aggregation. VLDB 31(12),
345–357 (1995)

20. Harinarayan, V., Gupta, A.: Generalized projections: a powerful query-
optimization technique (1995)

	Mining Rules with Constants from Large Scale Knowledge Bases
	1 Introduction
	2 Learning Model
	2.1 Language Bias
	2.2 Refining Rules with Constants
	2.3 Quality Metrics

	3 The Approaches
	3.1 Mining and Refining (MR)
	3.2 MR-Batch
	3.3 Loading Data only once (LDOO)

	4 Experimental Study
	4.1 Settings
	4.2 Efficiency Evaluation
	4.3 Effectiveness Evaluation

	5 Related Works
	6 Conclusion
	References

