
A Semantic Framework for Designing
Temporal SQL Databases

Qiao Gao1(B), Mong Li Lee1, Gillian Dobbie2, and Zhong Zeng3

1 National University of Singapore, Singapore, Singapore
{gaoqiao,leeml}@comp.nus.edu.sg

2 University of Auckland, Auckland, New Zealand
g.dobbie@auckland.ac.nz

3 Data Center Technology Lab, Huawei, Hangzhou, China
zengzhong4@huawei.com

Abstract. Many real world applications need to capture a mix of tem-
poral and non-temporal entities, relationships and attributes. These con-
cepts add complexity when designing database schemas and it is difficult
to capture the temporal semantics precisely. We propose a new frame-
work for designing SQL databases that distinguishes between temporal
and non-temporal concepts while also distinguishing between entities,
relationships and attributes at every step. The framework first utilizes
an Entity-Relationship (ER) diagram to capture the real world seman-
tics. Temporal constructs in the ER diagram are then annotated. Finally
we map the temporal ER diagram to a normal form database schema that
reduces redundant data by separating current data from historical data.
We also describe how data consistency is maintained during updates.
Experiment results show that we can generate database schemas that
support efficient access to both current and historical information.

1 Introduction

Many organizations, especially in regulated industries such as finance and health-
care, need to manage and maintain data that changes over time. SQL:2011 [10]
introduces temporal tables where a relational table can be associated with an
explicit time period [Start, End) to restrict the valid times of its tuples. How-
ever, designing database schemas that capture both temporal and non-temporal
data with entity, relationship and attribute semantics is complex, and may lead
to incorrect temporal semantics and data redundancy if the semantics are not
carefully considered at every step of the design process.

A database that keeps the history of entities, relationships and their
attributes will contain both current valid and historical data. Information about
an entity/relationship and its temporal and non-temporal attributes may be
stored over several tuples in multiple temporal and/or non-temporal tables.
Temporal joins are needed to enforce constraints between the time periods of
tuples from two or more temporal tables. For queries that primarily focus on

c© Springer Nature Switzerland AG 2018
J. C. Trujillo et al. (Eds.): ER 2018, LNCS 11157, pp. 382–396, 2018.
https://doi.org/10.1007/978-3-030-00847-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00847-5_27&domain=pdf

A Semantic Framework for Designing Temporal SQL Databases 383

current valid data, the volume of historical data will hamper the query evalua-
tion process. Designing database schemas that reduce temporal joins and support
efficient access to both current and historical information is crucial.

Fig. 1. An example temporal company database with problematic design

Figure 1 shows an example company database whose data are stored using
the temporal tables in SQL:2011. The schema of the database was designed
using a standard technique of deriving tables from an ER diagram and adding
attributes Start and End to each table to indicate the validity of the data values.

Temporal Semantics. The complexity of mixing temporal and non-temporal
data may lead to difficulty in enforcing the intended temporal semantics when
updates occur. Consider the temporal table Employee which has a non-temporal
attribute Phone whose value may change over time but only the current value
is of interest and captured, and a temporal attribute Salary whose changes over
time are tracked. Suppose an employee Alice wants to update her phone number
to 90000011 on 2017-03-01. There are two possible ways to do the update, both
of which are problematic:

a. Set the valid end time of the tuple t13 to 2017-03-01, and insert a new
tuple <e01, Alice, 8000, 90000011, 2017-03-01, 9999-12-31> to the table
Employee, where the date “9999-12-31” means now. However, this violates
the user requirement to keep only the latest phone number, that is, Phone
is non-temporal, because tuples t11 and t12 still maintain the previous phone
number of Alice.

384 Q. Gao et al.

b. Set the value of attribute Phone in the tuples t11, t12, t13 to Alice’s new
phone number. In this case, the tuple t11 becomes <e01, Alice, 90000011,
5000, 2000-01-01, 2010-01-01> which does not provide the correct valid time
for Alice’s phone number.

Data Redundancy. Having a schema where a table has both temporal and non-
temporal attributes may lead to data redundancy when a temporal attribute in
the table is updated. For instance, if Alice (e01) has a salary raise on 2012-
01-01 from $7000 to $8000, a new tuple t13 will be inserted into the Employee
table, and the end date of the tuple t12 is set to 2012-01-01. Note that Alice’s
non-temporal attributes Ename and Phone are replicated, since we store them
together with the temporal attribute Salary in one relation. Further, the tem-
poral table EmpDep captures the temporal relationship between employees and
departments. This table also has a temporal attribute Position, and any change
in the job position of an employee will lead to replication of data.

Costly Query Evaluation. Processing a routine query involving temporal
tables can become complex and costly. If a user wants to find the department
that Alice currently works in, we need to carry out temporal joins of the tables
Employee, EmpDep and Department to retrieve the current records of Alice.
The historical records in each table participating in the temporal join will slow
down the query evaluation process.

To address the above issues, we propose a framework that utilizes a high-level
conceptual model, such as the Entity-Relationship (ER) model, to facilitate the
database design process. We first construct a normal form ER diagram without
considering the temporal aspects [12]. Then we annotate the entity types, rela-
tionship types and attributes based on the temporal aspects of the database.
Finally, we map the temporal ER diagram to a set of normal form relations. We
automatically generate two sets of normal form relations to increase the speed
of queries, one for the current database state, and another for the historical
database state. The key contributions of the mapping algorithm include:

a. Mapping each temporal and all non-temporal attributes to separate tables,
thus reducing data redundancy;

b. Associating time periods with each temporal concept such as entity, relation-
ship and attribute in the same relation instead of the tuple, further reducing
data duplication;

c. Separating the current and historical data of entities and relationships, thus
increasing the speed of queries.

With the separation of current and historical data, we examine how data consis-
tency is maintained when there are updates. Experimental results show that our
framework leads to temporal database schemas that reduce data redundancy,
and supports efficient querying of both current and historical information.

A Semantic Framework for Designing Temporal SQL Databases 385

2 Temporal ER Diagram

An ER diagram models real world entities that interact with each other via rela-
tionships, and their attributes. The works in [5,6,8] have proposed temporal ER
diagrams to capture the temporal semantics in the real world. Here, we describe a
temporal ER diagram (ERDT) that contains the essential constructs required for
our mapping algorithms. We also analyze the semantics when we have temporal
constructs, e.g., temporal entities that participate in non-temporal relationships,
or non-temporal entities that participate in temporal relationships.

Capturing both real world semantics and temporal aspects of entities and
relationships typically makes an ER diagram complicated and hard to design. As
such, we propose to first use an ER diagram to capture the entities, relationships
and attributes of a database application, and then annotate these constructs with
a superscript T to indicate that they are temporal. We have 3 types of temporal
constructs depending on the changes that an application wants to keep track of.

Temporal Entity Type. A temporal entity type indicates that all the entities
of this type are temporal. Each entity is associated with some implicit time
period values [Start, End). The entity is valid within these time periods.

Temporal Relationship Type. A temporal relationship type indicates that
all the relationships of this type are temporal. A relationship may be associated
with more than one time period values.

Temporal Attribute. A temporal attribute indicates that the value of this
attribute of an entity or relationship may change over time periods and the
database keeps track of the changes.

An ERDT can have combinations of non-temporal and temporal constructs,
e.g., a temporal entity/relationship can have non-temporal attributes, and a
non-temporal entity/relationship can have temporal attributes. Not all the par-
ticipating entity types of a temporal relationship need to be temporal, and some
participating entity types of a non-temporal relationship can be temporal. An
ERDT becomes a traditional ER diagram if all its entity types, relationship
types and attributes are non-temporal. Figure 2 shows the temporal ER diagram

ProjectTEmpProj

Supplier

SPJT

DnameDid Sid

Jid

Sname Address

Title PriceTQuantity

m Department

SP

m

m

1

Budget

m m m
Part

Pid Pname

Employee
Eid

Name SalaryT HobbyT

m

EmpDepT

Position
TPhone

Fig. 2. A temporal ER diagram for a company database

386 Q. Gao et al.

of a company database. Department is a non-temporal entity type. Employee is
a non-temporal entity type with temporal attributes Salary and Hobby. Project
is a temporal entity type. EmpDep is a temporal relationship type with a tem-
poral attribute Position. Note that the temporal relationship type SPJ has an
aggregate entity type SP.

3 Mapping Algorithms

In this section, we present our mapping algorithms to generate the schema for
a temporal database from a temporal ER diagram. The schema separates the
current and historical data to facilitate the processing of queries. Depending on
the workload of the application, the schema can be a set of normal form relations
or a set of nested relations. The latter facilitates the frequent retrieval of all the
information pertaining to some entitiy/relationship.

3.1 Current Database Schema

We can store the current state of the database in a set of normal form relations.
Since the temporal ER diagram models time period attributes (Start and End)
implicitly, these attributes will be added to the database schema. Details of the
mapping is given in [4]. The key steps of the mapping are:

a. All non-temporal or temporal single-valued attributes of a non-temporal or
temporal entity/relationship type are mapped to one relation.

b. Each non-temporal/temporal multivalued attribute together with the identi-
fier of its entity/relationship type is mapped to a separate relation.

c. For each temporal entity/relationship type in ERDT , we add an attribute
R Start to its corresponding current relation R curr. This R Start attribute
indicates the start time of the temporal entities/relationships.

d. For each temporal attribute A, we add an attribute A Start to the current
relation R curr containing this temporal attribute A to indicate the start
time of the attribute values of A.

All the single valued attributes (temporal or non-temporal) are put in one rela-
tion, and a start time for each of the temporal single valued attributes, and a
start time for the entity/relationship types is added if the entity/relationship
type is temporal. This removes the issue of data redundancy because the cur-
rent relation has only one current value for each single-valued temporal attribute.
Since our ERDT is in normal form and the current state database is a snapshot
database, the relations obtained are in 3NF or 4NF [12].

Key of a Current Relation. The identifier of a temporal/non-temporal
entity type becomes the key of the corresponding current relation for its sin-
gle valued attributes. The current relation corresponding to a temporal/non-
temporal relationship type contains the identifiers of its participating entity
types. For the current relation corresponding to a temporal/non-temporal mul-
tivalued attribute, the identifier of its entity/relationship type together with
this multivalued attribute form the key. Note that the Start time of a temporal
entity/relationship/attribute is not part of the key.

A Semantic Framework for Designing Temporal SQL Databases 387

Example 1 [Current Data]. Based on the ERDT in Fig. 2, we generate some
normal form relations for the current database schema.

1. Non-temporal entity type Employee with temporal attributes Salary and
Hobby:
Employee curr(Eid,Name, Phone, Salary, Salary Start)
EmployeeHobby curr(Eid,Hobby,Hobby Start)

2. Temporal entity type Project with non-temporal attributes Tittle and Budget:
Project curr(Jid, T itle, Budget, Project Start)

3. Non-temporal relationship type SP with temporal attribute Price:
SP curr(Sid, P id, Price, Price Start)

4. Temporal relationship type SPJ with non-temporal attribute Quantity:
SPJ curr(Sid, P id, Jid,Quantity, SPJ Start)

5. Temporal relationship type EmpDep with temporal attribute Position:
EmpDep curr(Eid,Did, Position, Position Start, EmpDep Start)

��
Note that we can have more than one start time in a relation, e.g. in relation
EmpDep curr, the start time for relation EmpDep Start records the existence
of relationship EmpDep, while attribute Position Start records the start time
of temporal attribute Position.

3.2 Historical Database Schema

Our mapping algorithm separates the current and historical data by generating
another set of relations for the historical data. Generating the normal form
relations for the historical database is similar to that for the current database.
The main differences are:

a. For each temporal entity/relationship type in ERDT , its corresponding his-
torical relation R hist contains both R Start and R End attributes indicat-
ing the start and end time of the temporal entities/relationships.

b. For each temporal single valued or multivalued attribute A, we generate a sep-
arate historical relation which contains the primary key of its original current
relation together with a time period, i.e. A Start and A End attributes.

c. Each non-temporal multivalued attribute A of a temporal entity/relationship
type is associated with R Start and R End attributes to indicate the set of
attribute values for each time period of the corresponding relationship R.

d. The non-temporal attributes of non-temporal entity/relationship type is not
stored in any historical relations.

Note that we separate temporal attributes and non-temporal attributes in the
historical relations. Further, we create one historical table for each temporal
attribute and each temporal entity/relationship type.

Key of Historical Relation. The start time R Start for a temporal entity or
relationship type R and the start time A Start for a temporal attribute A are
part of the key in the corresponding historical relations.

388 Q. Gao et al.

Example 2 [Historical Data]. Consider the ERDT in Fig. 2. The relations to
store the historical information are as follows:

1. Non-temporal entity type Employee with temporal attributes:
EmployeeSalary hist(Eid, Salary Start, Salary End, Salary)
EmployeeHobby hist(Eid,Hobby,Hobby Start,Hobby End)

2. Temporal entity type Project:
Project hist(Jid, Project Start, Project End, T itle, Budget)

3. Non-temporal relationship type SP with temporal attribute Price:
SP hist(Sid, P id, Price Start, Price End, Price)

4. Temporal relationship type SPJ:
SPJ hist(Sid, P id, Jid, SPJ Start, SPJ End,Quantity)

5. Temporal relationship type EmpDep with temporal attribute Position:
EmpDep hist(Eid,EmpDep Start, EmpDep End,Did)
EmpDepPosition hist(Eid, Position Start, Position End, Did, Position)

��

3.3 Schema with Nested Relations

In order to minimize the cost of temporal joins, we propose to store all the
attributes of an entity/relationship type in one nested relation. Since the ERDT

is in normal form, we can generate a set of normal form nested relations [13] for
the ERDT including the Start and End attributes.

Current Nested Relations. The difference between the nested relations for
current data and the normal form relations lies in the mapping of multivalued
attributes to a first-level repeating group inside the relation of its corresponding
entity/relationship type. This removes the need to join the relations for the
entity/relationship and the multivalued attribute.

Example 3 [Current Data in Nested Relations]. Consider the ERDT in Fig. 2.
Nested relations generated for the current state of the database include

1. Non-temporal entity type Employee with temporal attributes Salary and
Hobby:
Employee currN(Eid,Name, Phone, Salary, Salary Start, (Hobby,
Hobby Start)∗)

2. Temporal entity type Project with non-temporal attributes Title and Budget:
Project currN(Jid, T itle, Budget, Project Start)

3. Non-temporal relationship type SP with temporal attribute Price:
SP currN(Sid, P id, Price, Price Start)

4. Temporal relationship type SPJ with non-temporal attribute Quantity:
SPJ currN(Sid, P id, Jid,Quantity, SPJ Start)

5. Temporal relationship type Join with temporal attribute Position:
EmpDep currN(Eid,Did, Position, Position Start, EmpDep Start)

��
Note that the multivalued temporal attribute Hobby is stored in a first-level
repeating group in relation Employee curr.

A Semantic Framework for Designing Temporal SQL Databases 389

Historical Nested Relations. The intuition behind historical nested relations
is to put each single-valued or multivalued temporal attribute with its start and
end time attributes into a repeating group, since a temporal attribute becomes
a multivalued attribute in historical relation.

For each temporal entity/relationship type, all its non-temporal single-valued
attributes together with attributes R Start and R End form the first-level
repeating group of a nested relation R. The time period constrains the temporal
entity/relationship as well as all its attributes. Each non-temporal multivalued
attribute forms a second-level repeating group since it is constrained by the
time period of the temporal entity/relationship. Each single-valued or multival-
ued temporal attribute A together with their time period A Start and A End
also form a second-level repeating group.

Note that if an entity/relationship type is non-temporal but has some tem-
poral attributes, we generate the nested relation that contains only the temporal
attributes as repeating groups. Details of the mapping algorithm is given in [4].

Key for Historical Nested Relation. The start time R Start for a temporal
entity or relationship type R and the start time A Start for a temporal attribute
A is a part of the key for its corresponding historical relation or repeating group.

Example 4 [Historical Data in Nested Relations]. Consider the ERDT in Fig. 2.
The nested relations to store the historical information of temporal entities,
relationships and attributes are generated as follows. “()∗” denotes a repeating
group, and underlined attributes in a repeating group form the key of this group.

1. Non-temporal entity type Employee with two temporal attributes:
Employee histN(Eid, (Salary,Salary Start, Salary End)∗,

(Hobby,Hobby Start,Hobby End)∗)
2. Temporal entity type Project:

Project histN(Jid, (Title, Budget, Project Start, Project End)∗)
3. Non-temporal relationship type SP with temporal attribute Price:

SP histN(Sid, P id, (Price, Price Start, Price End)∗)
4. Temporal relationship type SPJ:

SPJ histN(Sid, P id, Jid,(Quantity, SPJ Start, SPJ End)∗)
5. Temporal relationship type EmpDep with temporal attribute Position:

EmpDep histN(Eid,Did,((Position, Position Start, Position End)∗,
EmpDep Start, EmpDep End)∗)

��
Note that the historical relation for the non-temporal entity type Employee does
not contain non-temporal attributes (e.g. Name), which can be obtained by join-
ing the historical relation with the corresponding current relation in Example 3.

4 Maintaining Data Consistency

Since we separate the current and historical data, we need to ensure consistency
when updates occur. Figure 3 shows the schema generated from the temporal

390 Q. Gao et al.

ER diagram in Fig. 2. We focus on updates to the current data since historical
data are typically not updated but archived for subsequent analysis. Update
operations on the current data include modifying the values of temporal and
non-temporal attributes, and inserting or deleting tuples. These tuples may cor-
respond to multivalued attributes or some entity/relationship.

Modify Attribute Values. If a non-temporal attribute such as an employee’s
phone number is modified, we simply replace the old attribute value in the
current relation with the new value since the database does not keep the old
values of non-temporal attributes. However, if a temporal attribute such as an
employee’s salary is changed, we need to insert a corresponding tuple containing
the old attribute value with a valid end time to the historical relation. The start
date for the new salary value in the current relation is changed to reflect the
valid time of the change. Figure 4 shows the changes (in italics) in the current
and historical Employee relations after updating the phone number and salary
of Alice to 90000011 on 2017-03-01 and $10,000 on 2017-06-01 respectively.

Fig. 3. Generated schema where current and historical data are separated.

Fig. 4. Updated relations after Alice (e01) changes her phone number and salary.

Insert/Delete Tuples. Inserting new tuples to the current data does not affect
the historical data, and will not lead to any inconsistency. However, deleting a

A Semantic Framework for Designing Temporal SQL Databases 391

tuple t from a current relation R curr may require the insertion of a correspond-
ing tuple to the historical relation with valid end time. We have 3 cases:

1. R curr corresponds to a multivalued attribute of some entity/relationship.
If the attribute is temporal, we insert a corresponding tuple t′ to R hist with
a valid end time, and delete t from R curr. Otherwise, we simply delete t
from R curr. For example, if we delete tuple <e01, Swimming, 2000-01-01>
from EmployeeHobby curr in Fig. 3 with a valid end time 2017-08-01, we
will insert a tuple <e01, Swimming, 2000-01-01, 2017-08-01> with valid end
time 2017-08-01 to the historical relation EmployeeHobby hist.

2. R curr corresponds to an entity type t with identifier e.
Since the information of an entity may be stored across multiple relations, its
deletion may trigger the deletion of tuples that correspond to its multivalued
attributes and the relationships the entity participates in.

– Case 2(a) Entity type is non-temporal.
We delete all tuples with identifier e from current and historical relations,
i.e., remove all information about this entity from the database.

– Case 2(b) Entity type is temporal.
We delete tuples with identifier e from the current relations, and insert
corresponding tuples with valid end times in the historical relations.

For example, Alice leaves the company and we delete tuple <e01, Alice,
90000001, 8000,2012-01-01> from Employee curr in Fig. 3. This triggers the
deletion of all tuples with eid = e01 from both current and historical rela-
tions. In contrast, suppose project j04 is completed in 2017-10-01 and we
delete it from current relation Project curr. Since this is a temporal entity,
the database will store its information in the historical relations. As such,
we delete tuples involving j04 from current relations and insert the corre-
sponding tuples with valid end times in historical relations. If employee is
a temporal entity type, then we need to create historical relations to store
the non-temporal single-valued and multivalued attributes of employees who
have left the company, i.e., they have been deleted from current relations.

3. R curr corresponds to a relationship type.
If the relationship is temporal, then insert a corresponding tuple with valid
end time into the historical relation R hist. Otherwise, delete tuple t from
R curr. For example, if employee Smith (e03) no longer works in the depart-
ment d01 on 2017-09-01, then we insert tuple <e03, d01, 2012-01-01, 2017-
09-01> into the historical relation EmpDep hist and a tuple <e03, d01,
Engineer, 2005-01-01, 2017-09-01> is inserted into the historical relation
EmpDepPosition hist. The tuple <e03, d01, Engineer, 2005-01-01, 2012-
01-01> is deleted from the current relation EmpDep curr.

5 Experiments

We evaluate the performance of our approach for designing temporal databases.
We use Oracle 12c Enterprise Edition hosted on Solaris 10 with 2.60 GHz CPU

392 Q. Gao et al.

and 128 GB RAM. Oracle implements an object-relational model and supports
multi-level nested tables as objects. Three schemas are generated based on the
Employee database1 which captures employees who work for and manage depart-
ments in a company, and keeps track of the changes of the employees’ salaries,
job titles, departments worked for and managed.

S1: This is the traditional schema which mixes current and historical data.
Dept(deptno, name)

Employee(empno,Employee Start, Employee End, birthdate, name, gender)

Emptitle(empno, title Start, title End, title)

Empsalary(empno, salary Start, salary End, salary)

Workfor(empno,Workfor Start,Workfor End, deptno)

Manage(empno,Manage Start,Manage End, deptno)

S2: This is our normal form relations that separates current and historical data.
Dept curr(deptno, name)

Employee curr(empno, birthdate, name, gender,title, title Start,

salary, salary Start, Employee Start)

Workfor curr(empno, deptno,Workfor Start)

Manage curr(empno, deptno,Manage Start)

Employee hist(empno,Employee Start, Employee End, birthdate, name, gender)

Emptitle hist(empno, title Start, title End, title)

Empsalary hist(empno, salary Start, salary End, salary)

Workfor hist(empno,Workfor Start,Workfor End, deptno)

Manage hist(empno,Manage Start,Manage End, deptno)

S3: This is our normal form nested relations that stores current and historical
data separately.
Dept currN(deptno, name)

Employee currN(empno, birthdate, name, gender,title, title Start,

salary, salary Start, Employee Start)

Workfor currN(empno, deptno,Workfor Start)

Manage currN(empno, deptno,Manage Start)

Employee histN(empno, (birthdate, name, gender,(title, title Start, title End)∗,
(salary, salary Start, salary End)∗,Employee Start, Employee End)∗)

Workfor histN(empno, deptno,(Workfor Start,Workfor End)∗)
Manage histN(empno, deptno,(Manage Start,Manage End)∗)

We have 3 datasets for each schema: original Employee dataset D1, and two
synthetically generated datasets D2 and D3. Table 1 shows the statistics of
these datasets. In D2, each current entity/relationship has 10 historical enti-
ties/relationships, and each temporal relationship/attribute is associated with
one time period. This increases the size of historical data to evaluate our app-
roach that separates the current and historical states of the database. In D3, each
current entity/relationship has 1 historical entity/relationship, and each tempo-
ral relationship/attribute is associated with 10 time periods. This increases the
1 https://dev.mysql.com/doc/employee/en/.

https://dev.mysql.com/doc/employee/en/

A Semantic Framework for Designing Temporal SQL Databases 393

number of repeating groups to evaluate our approach that stores historical data
in nested relations. Table 2 gives the descriptions of our 9 test queries, and Fig. 5
shows the CPU time of SQL execution for each query on the 3 datasets.

Table 1. Statistics of Datasets

Dataset Size Ratio of historical to current
entity/relationship

of time periods per temporal
relationship/attribute

D1 136 MB ∼1 : 3.2 ∼3.6 : 1

D2 583 MB 10 : 1 1 : 1

D3 699 MB 1 : 1 10 : 1

Table 2. Queries for Employee database

Q1 For employees who are “Senior Engineer” now, find their start date

Q2 Find the current number of employees in each department

Q3 Find the maximum salary in the salary history of employees with Eid < 100000
who are currently working in the “Marketing” department

Q4 Find the job titles of female employees with Eid < 1000 who have left the
company

Q5 Find the salary history of employee “Aris Iwayama”

Q6 Find the last job title for all the employees who have left the company

Q7 Find the number of departments that resigned employees (born before
1960-01-01) had joined

Q8 Find employees who were previously “Engineer” but are now “Senior Engineer”

Q9 Find employees who had previously managed the department “Marketing”

Q1 and Q2 query the current data only. These queries run much faster on all
3 datasets with schema S2 and S3 compared to S1. The gap in their runtime
widens when the ratio of historical to current data increases (as in D2). The query
times for S2 and S3 are the same since they have the same current relations.

Q3 to Q5 retrieve historical information of current/resigned employees. Q3

requires traditional join and an aggregation function on the temporal attribute.
Q4 finds all historical records for a large set of entities, while Q5 finds the
historical records for a few entities. All these queries need to retrieve the his-
torical record for each entity/relationship. S3 gives the best performance on all
3 datasets as it reduces the joins between temporal attributes and their enti-
ties/relationships.

Q6 to Q7 are queries on temporal relationships or constrain temporal
attributes with some values. As the queries focus on either historical or cur-
rent data, S1 is slower that S2. S3 is expensive since it is difficult to retrieve
entities or relationships whose attributes satisfy some constraints from nested
relations.

394 Q. Gao et al.

Fig. 5. CPU time of SQL execution for queries in Table 2

Q8 involves a temporal join between current data and historical data. Since
S1 combines current and historical data, we need to join two Emptitle relations
and check that the time period of “Engineer” is before that of “Senior Engineer”.
This is time consuming. Separating current and historical data avoids such tem-
poral joins. S3 does not perform as well as S2 because this query constrains the
value of the temporal attributes, which is slow for nested relations. Q9 retrieves
both current and historical data. The runtimes for this query is similar for all
three schemes since we need to scan current and historical data.

The results of our experiments demonstrate that separating the data into
current and historical relations (for both flat and nested relations) improves the
efficiency when queries are focused on either current or historical data. The nor-
mal form relations for storing historical data (S2) is a better design for temporal
join between current and historical data, and is also good for querying historical
data with some constraints on temporal attributes. The nested relations which
stores historical data (S3) shows good performance for queries that retrieve two
or more historical records for entities/relationships.

A Semantic Framework for Designing Temporal SQL Databases 395

6 Related Work

Research in conceptual modeling captures the temporal aspects of a database by
introducing new temporal constructs to the standard ER diagram [1,3,9,16–18],
or extending existing constructs to include temporal semantics [2,11]. Our ERDT

is a simplified temporal ER diagram that contains the essential constructs for our
mapping algorithm.

There are two main approaches to generate a temporal database schema from
an ER diagram. One approach is to map a traditional ER model to a database
schema, annotate it with temporal functional dependencies, and use the decom-
position approach to obtain a set of normal form relations including temporal
relations [14]. However, these relations do not capture the semantics of temporal
entity, relationship and attribute. Further, when the database schema becomes
complex, it is not easy for users to specify the temporal functional dependencies
compared to annotating an ER diagram as in our proposed approach.

Another approach is to map a temporal ER model to a temporal database
schema. The works in [16,18] map their temporal ER models to the standard
ER model first (which may include adding explicit time period attributes) before
translating the ER diagram to the database schema. However, the semantics of
temporal entity, relationship and attribute are lost during the mapping since
the time attributes, i.e., Start and End, are treated as regular attributes in the
standard ER model. The works in [7,11,15,17] map their temporal ER models
directly to a database schema. [17] generates a set of 3NF database schema that
does not capture the semantics of temporal attributes since they use a temporal
ER model which does not support temporal attribute and attributes of relation-
ship type. [7] maps a temporal ER diagram to a surrogate-based relational model
(RM/T model) which does not capture the semantics of temporal relationship
type. [11] adds an implicit valid time period for each generated relation, thus
making all the attributes in the database temporal. This may increase the data
redundancy when there are one or more temporal attributes in a relation. All
these methods do not separate the current data from historical data.

Although commercial databases such as Microsoft SQL server and IBM DB2
10 implemented the feature of historical and current tables, a historical table is
a mirror of its current table, and the purpose is to track modifications in the cur-
rent table. Further, these tables are only available to data involving transaction
time, and not data involving valid time. Moreover, SQL Server and DB2 cannot
distinguish between temporal attributes and temporal entities, which needs to
be handled differently when updates occur. In contrast, our proposed framework
provides a principled approach to generate database schema that captures these
temporal semantics and supports efficient access of data involving valid time.

7 Conclusion

The requirement to capture a mix of temporal and non-temporal entities, rela-
tionships and attributes adds complexity to the design of database schemas.

396 Q. Gao et al.

We proposed a semantic framework that precisely captures temporal semantics.
Each step in the framework distinguishes temporal and non-temporal entities,
relationships and attributes. Our mapping algorithm generates current and his-
torical schemas from a temporal ER diagram. This accelerates querying of cur-
rent data, and provides the flexibility of mapping to a set of nested relations.
We discussed how consistency between current and historical data is maintained
during updates. Experiments showed that the schemas obtained provide efficient
access to both current and historical information. Future work includes studying
the physical design over our temporal database schema, e.g., temporal indexing.

References

1. Elmasri, R., El-Assal, I., Kouramajian, V.: Semantics of temporal data in an
extended ER model. In: ER (1990)

2. Elmasri, R., Wuu, G.T.J.: A temporal model and query language for ER databases.
In: IEEE ICDE (1990)

3. Ferg, S.: Modelling the time dimension in an entity-relationship diagram. In: ER
(1985)

4. Gao, Q., Lee, M.L., Ling, T.W., Dobbie, G., Zeng, Z.: A semantic framework for
designing temporal SQL databases. Technical report, TRB3/18, NUS (2018)

5. Gregersen, H., Jensen, C.: Conceptual modeling of time-varying information. Tech-
nical report, TimeCenter TR-35 (1998)

6. Gregersen, H., Jensen, C.S.: Temporal entity-relationship models - a survey. IEEE
TKDE 11, 464–497 (1999)

7. Gregersen, H., Mark, L., Jensen, C.S.: Mapping temporal ER diagrams to relational
schemas. Technical report, TimeCenter TR-39 (1998)

8. Khatri, V., Ram, S., Snodgrass, R.T., et al.: Capturing telic/atelic temporal data
semantics: Generalizing conventional conceptual models. IEEE TKDE 26, 528–548
(2014)

9. Klopprogge, M.R.: TERM: an approach to include time dimension in the entity-
relationship model. In: ER (1981)

10. Kulkarni, K., Michels, J.E.: Temporal features in SQL: 2011. Sigmod Rec. 41,
34–43 (2012)

11. Lai, V.S., Kuilboer, J.P., Guynes, J.L.: Temporal databases: model design and
commercialization prospects. ACM SIGMIS Database 25, 6–18 (1994)

12. Ling, T.W.: A normal form for entity-relationship diagrams. In: ER (1985)
13. Ling, T.W., Yan, L.: NF-NR: a practical normal form for nested relations. J. Syst.

Integr. 4, 309–340 (1994)
14. Papazoglou, M., Spaccapietra, S., Tari, Z.: Advances in Object-Oriented Data Mod-

eling. MIT Press, Cambridge (2000). Chap. 7
15. Snodgrass, R.T.: Developing Time-Oriented Database Applications in SQL. Mor-

gan Kaufmann Publishers, San Francisco (2000). Chap. 11
16. Tauzovich, B.: Towards temporal extensions to the entity-relationship model. In:

ER (1991)
17. Theodoulidis, C., Loucopoulos, P., Wangler, B.: A conceptual modelling formalism

for temporal database applications. Inf. Syst. 16, 401–416 (1991)
18. Zimanyi, E., Parent, C., Spaccapietra, S., Pirotte, A.: TERC+: a temporal concep-

tual model. In: International Symposium Digital Media Information Base (1997)

	A Semantic Framework for Designing Temporal SQL Databases
	1 Introduction
	2 Temporal ER Diagram
	3 Mapping Algorithms
	3.1 Current Database Schema
	3.2 Historical Database Schema
	3.3 Schema with Nested Relations

	4 Maintaining Data Consistency
	5 Experiments
	6 Related Work
	7 Conclusion
	References

