
Using a Conceptual Model to Transform
Road Networks from OpenStreetMap to a

Graph Database

Dietrich Steinmetz1, Daniel Dyballa1, Hui Ma2, and Sven Hartmann1(B)

1 Clausthal University of Technology, Clausthal-Zellerfeld, Germany
{dietrich.steinmetz,daniel.dyballa,sven.hartmann}@tu-clausthal.de

2 Victoria University of Wellington, Wellington, New Zealand
hui.ma@vuw.ac.nz

Abstract. We present a method for extracting road network data that
has been crowdsourced in the OpenStreetMap project and transform it
into a road network that is stored as a graph database. We propose
an algorithm for the transformation, discuss opportunities for semantic
enrichment of the road network, and for restricting the transformation
to geographic regions of interest. Our approach is guided by a concep-
tual schema. To evaluate the practicability of our approach we have
implemented it in a prototype tool, and conducted experiments that
demonstrate the scalability.

Keywords: Geographic information · Data modelling
Graph database

1 Introduction

Graph databases represent data by graph structures with vertices, edges and
properties. Recently a new class of DBMS has emerged that provide effective sup-
port for native storage, retrieval and management of relationship-centric data,
such as Neo4j [14]. These systems are based on a simple property-graph model
that permits efficient, highly scalable data traversals and avoids time-consuming
joins. Meanwhile these systems also offer dedicated SQL-like query languages,
such as Cypher in Neo4j. This makes them an attractive technology for applica-
tions that want to persistently store and process relationship-centric data.

In this paper, we focus on road networks that are relation-centric by nature.
Road network data is an essential asset in many popular applications, such as
route planning, navigation, ride sharing, traffic simulations, or urban planning.
The database community has discovered road networks as a worthwhile study
object, too [1,5,6,9–11,18–21,23,24]. While these works address a variety of dif-
ferent research problems, all of them conduct experiments to empirically explore
the performance of proposed solutions. There is demand, both from industry
and research, to make road network data readily available.
c© Springer Nature Switzerland AG 2018
J. C. Trujillo et al. (Eds.): ER 2018, LNCS 11157, pp. 301–315, 2018.
https://doi.org/10.1007/978-3-030-00847-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00847-5_22&domain=pdf


302 D. Steinmetz et al.

OpenStreetMap (OSM) [16] is a community project with the goal to gen-
erate a map of the world. The amount of road network data collected in OSM
is comparable to commercial providers such as Google Maps. The advantage of
OSM data is that it is free for personal and commercial use under the Open
Data Commons Open Database License. OSM data can be downloaded in XML
format. Unfortunately the way how OSM represents road network data is not
relationship-centric. The conceptual data model of OSM can only represent geo-
metric objects such as points, polylines or polygons. For example, road inter-
sections and road segments are represented as points and polylines in OSM.
However, the meta information that would allow the efficient traversal through
these geometric objects is lacking. It is known that computing a route from a
start point to an end point is not efficient when directly using OSM data [8].

We want to make road network data available in a graph DBMS so that
it is directly accessible by applications that process such data. Our goal is to
develop a method for extracting road network data from an OSM data set,
and to transform it into a graph database which can be persistently stored and
managed in a graph DBMS such as Neo4j. The input of the transformation will
be an OSM data set in XML format. The elements of the conceptual data model
of OSM will be mapped to the entities of a property-graph model.

We propose an algorithm for the transformation that defines when and how
an element is transformed, and how its components are handled. Our main focus
is on (1) single point objects that represent points of interest (POI) such as
intersections, and (2) polylines that represent road segments, and determine
course of the road. Obviously, not everything in an OSM data set is road network
data. The input file has to be filtered to extract those elements that belong to the
road network. Furthermore, it is important to control road types and the set of
road properties that are considered during the transformation. The user should
be able to select prior to the transformation which road properties are of interest
for an application. While graph databases do not require a conceptual schema,
we found it extremely useful to specify one to guide the transformation and
show it is correct. It also provides valuable assistance in understanding the data,
communicating requirements, and formulating semantic queries. The instance
of the schema, i.e., the road network produced by the transformation, is stored
in Neo4j where it is ready-to-use for applications, i.e., no further adaptation or
conversion of the data is needed.

In many applications, it is essential to restrict the road network data to
certain regions of interest. In order to support users in comfortably specifying
regions of interest the course of borders such as district borders or national bor-
ders will be extracted from the OSM data and stored in the graph database, too.
The stored border data will then be available for topological or analytical queries
to be evaluated using a dedicated geographic library, such as Neo4j Spatial [15].

Organisation. This paper is organised as follows. In Sect. 2 we recall the
conceptual data model of OSM. In Sect. 3 we give a formal definition of the
problem and present the transformation for our proposed approach. In Sect. 4
we describe a prototypical implementation of our proposed approach. In Sect. 5



Using a Conceptual Model to Transform Road Networks 303

we report on experiments that we conducted to demonstrate the applicability of
our proposed approach. In Sect. 6 we discuss related work. Finally, we conclude
this paper in Sect. 7 and discuss suggestions for further research.

2 Background

The conceptual data model of OSM [16] provides three element type, see Fig. 1.
Node-elements represent primitive objects located in a specific point on the map.
A node-element may have attributes, such as latitude and longitude to specify
the position on the map. Way-elements represent linear objects (called polylines)
such as walkways, roads or boundaries. A polyline is a sequence of points. The
points of a polyline will not be stored directly in the way-element, but rather
references to the respective node-elements in an ordered list (called nd-list).
If the last reference in the list is identical to the first one, then the polyline
is actually a polygon. Relation-elements represent complex objects that often
aggregate multiple node- and/or way-elements. A relation-element has a list of
references to its member-elements (called member list). The attribute type of
a member indicates whether it is a node- or a way-element. Each node-, way-
and relation-element can have a set of tags associated to it. A tag provides a
key-value pair and gives some property of the respective object.

id: int
lat: double
lon:double
user: String
uid: int
visible: boolean
version: int
changeset: int
timestamp: String

node
id: int
user: String
uid: int
visible: boolean
version: int
changeset: int
timestamp: String

way
id: int
user: String
uid: int
visible: boolean
version: int
changeset: int
timestamp: String

relation

k: String
v: String

tag
k: String
v: String

tag
k: String
v: String

tag
ref: int

nd
k: String
v: String

tag
ref: int

nd
type: String
ref: int
role: String

member
type: String
ref: int
role: String

member

... ... ... ...

Fig. 1. Examples for the element types of the OSM data model.

Example 1. Figure 2 (left) shows a section of the OSM map for Bremen. In OSM,
the road Frederikshavner Straße is represented by a set of polylines. The polyline
that corresponds to the last road segment leading to the road intersection is
marked in red.

The marked road segment is represented by the way-element with id
“472359”, see Fig. 3. Its nd-list contains references to two node-elements. It has
13 associated tags, each of them carrying a key-value pair that specifies one road
property, such as surface or maxspeed.



304 D. Steinmetz et al.

This polyline references two node-elements. See Fig. 2 (right) for its nd-list.
Both node-elements have a set of attributes, including latitude and longitude
that give their position on the map. The road intersection is represented by the
node-element with id “349072703”. It has an associated tag carrying the key-
value pair (highway, “traffic signals”). Hence, there are traffic signals are located
in this point, which will be visualised accordingly on the map, see Fig. 2 (left).

OSM data can be exported to XML format (called OSM/XML in this paper)
and downloaded from the website of the OSM project. For our example above,
the respective XML is shown in Fig. 4.

Fig. 2. A part of the road Frederikshavner Strasse. Two node-elements represent the
ends of the marked road segment. The left-side one has traffic signals which are visu-
alised accordingly. (Color figure online)

Fig. 3. The way-element that represents the marked road segment in Fig. 2.



Using a Conceptual Model to Transform Road Networks 305

Fig. 4. The OSM/XML fragment that corresponds to our example.

3 Method Conceptualization

In this section we will present our approach for extracting road network data from
OSM and transforming them into a road network stored in a graph database.

3.1 Problem Definition

We introduce some terminology and formal notations. A road network is a
directed graph G = (V,E) where V is the set of vertices representing road
nodes, and E is the set of edges representing road segments. Road nodes can
be intersections, terminal points, bends, or similar. Each edge e = (u, v) ∈ E
connects two vertices u, v ∈ V .

Suppose we are given an OSM data set in the form of a triple O = (N,W,R)
where N is a set of node-elements, W is a set of way-elements, and R is a set
of relation elements. Let A and K denote the sets of all attributes and keys,
respectively. Every node-element n ∈ N has a set of attributes An ⊆ A and
a set of associated tags Tn, thus defining a partial function tagn : K → dom
such that tagn(k) ∈ dom(k) for all keys k ∈ K. Every way-element w ∈ W
has a set of attributes Aw ⊆ A and a set of associated tags Tw, thus defining
a partial function tagw : K → dom such that tagw(k) ∈ dom(k) for all keys
k ∈ K. Moreover, it has a list nd− listw of references to nodes in N , and defines
a partial function nextw : N → N such that nextw(n) is the successor of n in
the list nd − listw.

Our goal is to transform an OSM data set into a road network and then store
it in a graph database. The target of our transformation is a graph database that
is based on the property-graph model, as for used e.g. in Neo4j [14]. We have
developed the conceptual schema in Fig. 5 that will guide the transformation.

In our target schema, road nodes in V are captured by node vertices. They
have at least the properties latitude and longitude. Further properties can be
added if the user considers them relevant. The road type is captured by a label



306 D. Steinmetz et al.

Fig. 5. Target schema of the transformation into a graph database

such as “motorway”. In some applications it is important to distinguish between
different road types. In taxi-ride sharing [6], for example, the pick-up and drop-
off points of passengers cannot be on interstate highways. Labels can be easily
accessed by taxi routing queries.

Road segments in E are captured by neighbour edges, each connecting two
node vertices. They have at least the property distance. This enables shortest-
path algorithms like Dijkstra or A∗ to traverse the road network efficiently.
Further properties can be added if the user considers them relevant.

Additional characteristics of road segments are captured by restriction and
feature vertices. Experience shows that in Neo4j reading properties of an edge
is much slower than reading properties of a vertex. To overcome this technical
difficulty we propose a different solution: we simply add new vertices to the
graph database to store the relevant properties of a road segment. In practical
applications, it turned out to be advantageous to distinguish two kinds of tag
keys: features that are independent of the direction in which the road is used,
and restrictions that are dependent on the direction. For example, surface is a
feature, while maxspeed is a restriction, see also Fig. 8.

3.2 Transformation of OSM Elements

To meet the requirements, we propose a transformation in two phases: first we
focus on the type and course of the roads, and then we semantically enrich
the road network. Our approach is outlined in Alg. 1. In principle, we map a
node-element in the OSM data set O to a vertex in the road network G, and a
way-element in O to one or more edges in G.

Note that not all information in an OSM data set is relevant for road
networks. We are only interested in way-elements that represent road seg-



Using a Conceptual Model to Transform Road Networks 307

ments. These have an associated tag that carries a key-value pair (highway,
road type). The value herein specifies the road type. Possible values are “motor-
way”, “trunk”, “primary”, “secondary”, “tertiary”, “unclassified”, “residential”,
“service”, etc. Further values are used to represent connections between roads
of different types. For example, fedder roads that connect a normal highway to
a motorway have the road type “motorway link”. We use the road type value to
define a label for the vertices in G, see line 8 in Algorithm 1.

Example 2. Figure 6 shows two road segments of road type “motorway” as rep-
resented in OSM. Note that the two road segments are adjacent: both have a
reference to the node-element with id “16” in their nd-list. The result of the
transformation is shown in Fig. 7.

Fig. 6. Example of two way-elements that represent adjacent road segments

Fig. 7. The result of transforming the two way-elements in Fig. 6

The transformation of a node-element n is described in lines 5–15 in Algo-
rithm1. In this paper, we use the convention that only those node-elements will
be mapped that belong to some way-element representing road segments. This
ensures, e.g., that traffic signals will only be considered during the transforma-
tion if they are located on some road. Otherwise there could be traffic signals
that are not related to any road, which is likely an error in the OSM data.

A node-element n may be referenced by multiple way-element, as in Fig. 6.
We will map n to a single unique vertex in G, denoted by image(n). In G one
would need to search for a vertex the id of n. If no such vertex exists, a new
vertex v must be generated in G. Afterwards the key-value pair of the linked tag
will be copied to the new vertex.



308 D. Steinmetz et al.

Algorithm 1 Transformation
Input: An OSM/XML file representing an OSM data set O = (N,W,R)
Output: A Neo4j graph database representing a road network G = (V,E)

1: for all way-elements w ∈ W do
2: for all ref ∈ nd − listw do
3: let n = id−1(ref)
4: if image(n) is undefined then
5: create a new vertex v
6: put id(v) := ref
7: % define a label for v based on the roadtype
8: add tagn(highway) as a label to v
9: copy every other user-selected attribute of n as a property to v

10: % check the semantic integrity of the tag set of n
11: if Tn is not valid then clean Tn

12: % semantically enrich v
13: copy every other user-selected tag of n as a property to v
14: insert v into V
15: put image(n) := v
16: end if
17: if next−1

w (n) is not undefined then
18: let u = image−1(next−1

w (n))
19: create a new edge e = (u, v)
20: % define the type of the edge e
21: put type(e) := neighbour
22: copy every user-selected attribute of w as a property to e
23: insert e into E
24: % check the semantic integrity of the tag set of w
25: if Tw is not valid then clean Tw

26: % semantically enrich e with features
27: create a new vertex y
28: copy every valid user-selected feature tag of w as a property to y
29: create new edges (u, y) and (y, v)
30: insert y into V and (u, y), y, v to E
31: % semantically enrich e with restrictions
32: create a new vertex z
33: copy every valid user-selected feature tag of w as a property to z
34: create new edges (u, z) and (z, v)
35: put type(u, z) := backward and type(z, v) := forward
36: insert z into V and (u, z), (z, v) to E
37: end if
38: end for
39: end for

Note that not all attributes and tag keys stored in a node-elements will be of
interest. It is up to the user to decide which ones she/he requires. We assume that
the user selects those that she/he regards relevant prior to the transformation.



Using a Conceptual Model to Transform Road Networks 309

Then these ones will be copied during the transformation, see lines 9 and 13. In
Fig. 7, e.g., the attributes latitute and longitude have been considered relevant.

The road course is determined by the nd-list of the way-element. It provides
references to the node-elements that constitute the polyline, which are handled
in lines 17–19. Often the tags associated with a way-element carry valuable
information that should be kept. We copy relevant tags of w as properties to a
new feature vertex and/or restriction vertex e, see lines 24–36. Note, however,
that OSM itself does not provide such a classification of key tags. Hence, input
from the user or a domain expert is needed.

Note that there are dependencies between the tags that have to respected
for semantic integrity. We have indicated this in lines 11 and 25. In the tags
associated with a node- or way-element, certain keys may only occur if others
occur, too. For example, speed limits can only exist on road types. In Germany
a speed limit is optional on motorways, while it is mandatory in New Zealand.

Example 3. To illustrate our approach, see Fig. 8. Tags that are relevant for the
user can be stored in the feature node or in the restriction node. The results of
the transformation are shown in Fig. 9.

Fig. 8. An example of a way-element with tags carrying features and restrictions

For our transformation we can demonstrate that adjacency is preserved:

Proposition 1. Two vertices u, v in G are adjacent (i.e., connected by a road
segment e = (u, v)) if and only if there is a way-element w in O that has
a tag with key highway and that references two node-elements m,n such that
image(m) = u and image(n) = v and next(m) = n.

3.3 Restriction to Regions

Finally, we extend our approach so that user queries against the road network can
be restricted to specific geographic regions specified by the user. Actually, OSM
provides a wealth of useful information on boundaries like national or regional
borders. Neo4j Spatial [15] is a library of utilities for Neo4j that facilitates spatial



310 D. Steinmetz et al.

Fig. 9. The result of transforming the way-element in Fig. 8

operations on data. In particular, spatial indexes can be added to already located
data, and spatial operations can be performed, e.g., searching for data within
specified regions or within a specified distance of a point of interest.

To unlock these capabilities we have extended our conceptual data model
to provide support for Neo4j Spatial. To achieve this we create a point layer in
Spatial and add all vertices in our road network to this layer. Moreover, we create
a WKT layer in Spatial to store and process polygons in WKT text format. The
polygons that we add to the WKT layer correspond to boundaries on the map.

Fig. 10. Extension of our approach to support spatial queries

Therefore, we enhance our transformation to also extract and transform
boundaries from OSM. They can be found using the key-value pair (boundary,
“administrative”), and are usually represented by relation-elements in OSM. The
points for the polygon are obtained from the member-list of the relation-element.



Using a Conceptual Model to Transform Road Networks 311

The polygons which we store in the WKT layer can be readily used as parameters
for spatial queries against the road network in the graph database, see Fig. 10.
Similarly, spatial queries that restrict query results to circles or bounding boxes
are supported, too.

4 Proof of Concept

To demonstrate the practicability of our approach we have implemented a pro-
totype system (called OSM2RN transformer) using Java. An OSM/XML file is
used as input. It is imported, the OSM elements are filtered and transformed,
and the results are stored into a graph database. For storing and managing the
graph database we use the graph database management system Neo4j.

Fig. 11. Outline of the architecture of our OSM2RN transformer

The architecture of our tool, see Fig. 11, is based on the Pipes & Filter
architectural pattern. It consists of four modules. The module Import takes an
OSM/XML file as input and processes it using the SAX parser. Unfortunately,
the ordering of the OSM elements in the OSM/XML file is not ideal for our
purposes, as it starts with all node-elements followed by all way-elements followed
by all relation-elements. For our transformation, the elements are needed in
reverse order. Therefore we have to pass through the input file three times. The
module Filter inspects each OSM element and its components whether they
are needed, considering the general requirements and the user-specified rules.
The module Transform executes the transformation. We obtain an instance of
the target schema shown in Fig. 5. The module Store assembles the results of
the transformation in Cypher operations and writes them into the Neo4j. When
using Neo4j Spatial, then the extracted boundaries will be stored, too.

5 Case Study and Evaluation

In this section we will describe the test cases that we have used to evaluate our
approach. In our experiments we have measured the execution time needed to
transform an OSM data set and to store the results in the graph database. Every
experiment has been repeated 30 times to eliminate measuring errors.



312 D. Steinmetz et al.

Testcases. We conducted experiments with two test cases to investigate the
scalability of our approach. To explore the impact of using Neo4j Spatial, we con-
ducted all our experiments with the library enabled and disabled. In Testcase A,
we investigated how the size of the resulting road network impacts the run time.
We used the OSM data set for Lower Saxony, see Fig. 12. The size of the result-
ing road network varied when different road types were considered during the
transformation: in Test A1 we only considered motorway, motorway link, in Test
A2 also primary, primary link, and in Test A3 also secondary, secondary link.

Fig. 12. OSM data sets used for Testcases A and B

In Testcase B, we explored how the semantic enrichment impacts the run
time. We kept the size of the road network constant, but varied the amount of fea-
tures and restrictions that were considered during the transformation. We used
an OSM data set for Berlin, see Fig. 12 and considered the following road types:
motorway, motorway link, primary, primary link,secondary, secondary link. In
Test B1 we did not consider any features and restrictions, and then increased
the amount stepwise in Tests B2 and B3 (in B1 features tunnel, bridge, lanes,
name and restrictions maxpseed, in B2 additionally features crossing, surface
and restrictions motorcar, bicycle).

Fig. 13. Run times observed for Testcases A and B

Results. The run times are shown in Fig. 13, and the sizes of the resulting
road networks in Fig. 14. In Testcase A, the size of the road network has at least
doubled in each experiment. Without Neo4j Spatial, the run time increased from
248 s to 308 s for Test A1 to A3. When using Neo4j Spatial, Test A1 needed 748 s,



Using a Conceptual Model to Transform Road Networks 313

Fig. 14. Sizes of the resulting road networks for Testcases A and B

while Test A3 had to be aborted after 2 h. In Testcase B, the amount of semantic
enrichment increased in each experiment. Without Neo4j Spatial, the run time
increased from 58 s to 133 s for Test B1 to B3. When using Neo4j Spatial the
run time increased from 731 s to 804 s for Test B1 to B3.

Our tests show that the use of Neo4j Spatial causes a performance loss.
The insertion of geometry nodes into a layer in Spatial seems to be a time-
consuming database operation. A possible explanation for this might be the
build-in search index of the layer, which might require expensive reorganization
after each insertion.

6 Related Work

The Neo4j Spatial library [15] also offers an importer for OSM data into Neo4j
that can read OSM/XML files. In principle, it mimics the hierarchical organi-
zation of OSM/XML using node-elements, way-elements, and relation-elements.
Different from our approach, it does not reflect the topology of the road net-
work. Rather, the importer organizes the imported data such that it supports
the spatial capabilities of Neo4j Spatial well. In particular, the importer does
not generate a road network in form of a relationship-centric graph as defined
in Sect. 3.1 which would simplify data traversal and speed-up computationally
intensive applications such as navigation, ride sharing, traffic simulations or
nearest neighbour queries. For that, further expensive transformations would
be necessary to derive a suitable representation of the road network.

[22] studies the density and diversity of road networks in China based on
OSM data for China, and finds that different parts of China observe different
spatial patterns, and that road density reflects the intensity of traffic in the real
world. This work could directly benefit from our tool as it unlocks the capabilities
of Neo4j Spatial for analysing road network data and exploring spatial patterns.

[4,17] present frameworks of methods for assessing OSM data quality solely
based on the data’s history. They propose quality indicators such as attribute
completeness and average number of tags for points-of-interest (POI), or over-
all road length for road network completeness. When applying our approach to
transform road networks into a graph database, such indicators can be efficiently
evaluated by means of the data analytics capabilities of the Neo4j DBMS. Fur-
thermore, the feature and restriction vertices that we have introduced in our
conceptual database schema make the handling of historic data comfortable, as
they can be versioned when data changes over time.

[3] explores the retrieval of geographic objects that are explicitly stored in
OSM data, such as hospitals or lakes. [13] observes that there is a lack of meth-
ods for retrieving POI that are not explicitly stored, as this requires more detail



314 D. Steinmetz et al.

on geometries, topology and semantics. They propose rule-based spatial rea-
soning on OSM data using OWL and SQWRL, and discuss two applications
for detecting entry points of footways and entrances of buildings. Similarly to
our approach, it would be possible to design a conceptual model to extract the
respective data for these applications from OSM, and store them in a graph
database where they can be further analysed.

Conceptual modelling support for modelling and processing spatial data has
been studied, e.g., in [7,12], but without focus on OSM, graph databases nor road
networks. [2] proposes a rule-guided approach to resolve conceptual overlapping
classes due to non-precise definition of geographic objects in OSM. [8] uses OSM
data for personalized route planning, but without considering conceptual models
nor graph databases. None of these works uses conceptual modelling to inform
the transformation of road network data from OSM to graph databases.

7 Conclusions and Outlook

In this paper we have proposed a novel method for extracting road network data
from OSM and transforming it into a road network in a graph database. To
guide the transformation we have proposed a conceptual database schema for
road networks that is based on the graph-property model and reflects the topol-
ogy of the road network. We have discussed possible extentions and alternatives
for the schema, described opportunities for semantic enrichment by user-selected
relevant features and restrictions, and addressed the correctness of the transfor-
mation. We have further extended our approach by extracting and transforming
boundaries from OSM that can then be used in the graph database to restrict
user queries against the road network to geographic regions. We have imple-
mented our approach in a prototype tool. Using this tool we have conducted
experiments with several OSM data sets of different size. The results are very
promising, and indicate that our approach is practical. Our tests have shown that
our approach is more efficient without integrating the Neo4j Spatial library, but
then the support for spatial queries is missing. It is up to the user to decide
whether this extention is required for a particular application.

In future we plan to extend our approach to other information collected in
the OSM project, such as railway network data.

References

1. Abeywickrama, T., Cheema, M.A., Taniar, D.: k-nearest neighbors on road net-
works: a journey in experimentation and in-memory implementation. PVLDB 9(6),
492–503 (2016)

2. Ali, A.L., Sirilertworakul, N., Zipf, A., Mobasheri, A.: Guided classification system
for conceptual overlapping classes in OSM. Int. J. GeoInf. 5(6), 87 (2016)

3. Ballatore, A., Bertolotto, M., Wilson, D.C.: Geographic knowledge extraction and
semantic similarity in OpenStreetMap. Knowl. Inf. Syst. 37(1), 61–81 (2013)

4. Barron, C., Neis, P., Zipf, A.: A comprehensive framework for intrinsic Open-
StreetMap quality analysis. Trans. GIS 18(6), 877–895 (2014)



Using a Conceptual Model to Transform Road Networks 315

5. Chen, Z., Liu, Y., Wong, R.C., Xiong, J., Long, C.: Efficient algorithms for optimal
location queries in road networks. In: ACM SIGMOD, pp. 123–134 (2014)

6. Cheng, P., Xin, H., Chen, L.: Utility-aware ridesharing on road networks. In: ACM
SIGMOD, pp. 1197–1210 (2017)

7. Currim, F., Ram, S.: Modeling spatial and temporal set-based constraints during
conceptual database design. Inf. Syst. Res. 23(1), 109–128 (2012)

8. Graf, F., Kriegel, H.-P., Renz, M., Schubert, M.: MARiO: multi-attribute routing
in open street map. In: Pfoser, D. (ed.) SSTD 2011. LNCS, vol. 6849, pp. 486–490.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22922-0 36

9. Han, B., Liu, L., Omiecinski, E.: A systematic approach to clustering whole tra-
jectories of mobile objects in road networks. IEEE TKDE 29(5), 936–949 (2017)

10. Han, Y., Sun, W., Zheng, B.: COMPRESS: a comprehensive framework of trajec-
tory compression in road networks. ACM ToDS 42(2), 11:1–11:49 (2017)

11. Luo, S., Kao, B., Li, G., Hu, J., Cheng, R., Zheng, Y.: TOAIN: a throughput
optimizing adaptive index for answering dynamic kNN queries on road networks.
PVLDB 11(5), 594–606 (2018)

12. Ma, H., Schewe, K.-D., Thalheim, B.: Geometrically enhanced conceptual mod-
elling. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., de Oliveira, J.P.M.
(eds.) ER 2009. LNCS, vol. 5829, pp. 219–233. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04840-1 18

13. Mobasheri, A.: A rule-based spatial reasoning approach for OpenStreetMap data
quality enrichment; case study of routing and navigation. Sensors 17(11), 2498
(2017)

14. Neo4j: Neo4j. https://neo4j.com/
15. Neo4j: Neo4j Spatial. http://neo4j-contrib.github.io/spatial/
16. OpenStreetMap: OpenStreetMap. https://wiki.openstreetmap.org/wiki
17. Singh Sehra, S., Singh, J., Singh Rai, H.: Assessing OpenStreetMap data using

intrinsic quality indicators. Future Internet 9(15), 1–22 (2017)
18. Steinmetz, D., Burmester, G., Hartmann, S.: A fast heuristic for finding near-

optimal groups for vehicle platooning in road networks. In: Benslimane, D., Dami-
ani, E., Grosky, W.I., Hameurlain, A., Sheth, A., Wagner, R.R. (eds.) DEXA 2017.
LNCS, vol. 10439, pp. 395–405. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-64471-4 32

19. Wang, S., Xiao, X., Yang, Y., Lin, W.: Effective indexing for approximate con-
strained shortest path queries on large road networks. PVLDB 10(2), 61–72 (2016)

20. Yan, D., Zhao, Z., Ng, W.: Efficient algorithms for finding optimal meeting point
on road networks. PVLDB 4(11), 968–979 (2011)

21. Zhang, D., Yang, D., Wang, Y., Tan, K., Cao, J., Shen, H.T.: Distributed shortest
path query processing on dynamic road networks. VLDB J. 26(3), 399–419 (2017)

22. Zhang, Y., Li, X., Wang, A., Bao, T., Tian, S.: Density and diversity of Open-
StreetMap road networks in China. J. Urban Manag. 4(2), 135–146 (2015)

23. Zhao, J., Gao, Y., Chen, G., Jensen, C.S., Chen, R., Cai, D.: Reverse top-k geo-
social keyword queries in road networks. In: IEEE ICDE, pp. 387–398 (2017)

24. Zheng, B., Su, H., Hua, W., Zheng, K., Zhou, X., Li, G.: Efficient clue-based route
search on road networks. IEEE TKDE 29(9), 1846–1859 (2017)

https://doi.org/10.1007/978-3-642-22922-0_36
https://doi.org/10.1007/978-3-642-04840-1_18
https://neo4j.com/
http://neo4j-contrib.github.io/spatial/
https://wiki.openstreetmap.org/wiki
https://doi.org/10.1007/978-3-319-64471-4_32
https://doi.org/10.1007/978-3-319-64471-4_32

	Using a Conceptual Model to Transform Road Networks from OpenStreetMap to a Graph Database
	1 Introduction
	2 Background
	3 Method Conceptualization
	3.1 Problem Definition
	3.2 Transformation of OSM Elements
	3.3 Restriction to Regions

	4 Proof of Concept
	5 Case Study and Evaluation
	6 Related Work
	7 Conclusions and Outlook
	References




