
Dynamic Capping of Physical Register Files
in Simultaneous Multi-threading Processors

for Performance

Hasancan Güngörer(&) and Gürhan Küçük

Department of Computer Engineering, Yeditepe University, Istanbul, Turkey
hasancangungorer@gmail.com, gkucuk@cse.yeditepe.edu.tr

Abstract. Today, Simultaneous Multi-Threading (SMT) processors allow
sharing of many datapath elements among applications. This type of resource
sharing helps keeping the area requirement of a SMT processor at a very modest
size. However, a major performance problem arises due to resource conflicts
when multiple threads race for the same shared resource. In an earlier study, the
authors propose capping of a shared resource, Physical Register File (PRF), for
improving processor performance by giving less PRF entries, and, hence,
spending less power, as well. For the sake of simplicity, the authors propose a
fix PRF-capping amount, which they claim to be sufficient for all workload
combinations. However, we show that a fix PRF-capping strategy may not
always give the optimum performance, since any thread’s behavior may change
at any time during execution. In this study, we extend that earlier work with an
adaptive PRF-capping mechanism, which tracks down the behavior of all run-
ning threads and move the cap value to a near-optimal position by the help of a
hill-climbing algorithm. As a result, we show that we can achieve up to 21%
performance improvement over the fix capping method, giving 7.2% better
performance, on the average, in a 4-threaded system.

Keywords: Processor performance � Shared resource management
Simultaneous Multi-Threading

1 Introduction

Simultaneous Multi-Threading (SMT) processors are merely superscalar processors,
which allow simultaneous execution of instructions coming from multiple threads.
Compared to single-thread superscalar processors, they promise better throughput by
allowing more efficient utilization of available datapath resources. To keep the design
cost at its lowest level, many of the resources are shared among running threads. For
instance, Physical Register Files (PRFs) are not replicated but are enlarged to com-
pensate renaming requests coming from multiple threads. Here, one faulty assumption
is that threads show similar behavior and do not harm each other. However, shared
resources give SMT processors a major disadvantage over their superscalar counter-
parts: resource conflicts. These resources can be claimed by any of the running threads
at any given time, and, unfortunately, the assumption about the behavior of different
threads being similar is almost always wrong. Some of the threads are resource hungry

© Springer Nature Switzerland AG 2018
T. Czachórski et al. (Eds.): ISCIS 2018, CCIS 935, pp. 41–48, 2018.
https://doi.org/10.1007/978-3-030-00840-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00840-6_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00840-6_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00840-6_5&domain=pdf

but do not commit too many instructions. We can classify such threads as harmful,
since they can easily clog one or many shared datapath resources up, and, as a result,
they can reduce the overall system throughput, almost instantly. In contrast, some of
the threads may request just enough resources to keep their throughput at a reasonable
pace. Such threads can be classified as genuine threads, since they become the reason
for achieving high overall system throughput. These threads do not ask for any
unnecessary amount of resources. Finally, there is also a third class of threads, which
hardly asks for any type of resources. We can classify them as harmless threads, since
they have low instruction level parallelism resulting in no claim for any resources.

There is considerable amount of work involved in this research area. On reducing
the pressure on PRF, Lo et al. apply compiler and operating system extensions to
release PRF entries as soon as they are detected to be useless [1]. For instance, all PRF
entries allocated for an idle thread might be immediately released. The authors also
propose techniques to release PRF entries immediately after their last use. In another
study, Monreal et al. propose virtual physical registers that do not require any storage
bindings [2]. With the help of virtual physical registers PRF allocation time can be
delayed, again reducing the pressure on the PRF. Here, in our proposed method,
we also reduce pressure on the PRF by dynamically capping it according to runtime
behavior of threads.

There is also a variety of resource partitioning techniques that target better resource
utilization [3]. Choi et al. propose a hill-climbing based method, which runs in periods
of time called epochs. At each epoch, one of the threads is given more resources than
its actual share, and the overall performance is recorded. After testing each thread’s
performance with extra resources, a greedy-type decision algorithm selects the thread
with the best performance and increases its allocated resource size. In another study,
Wang et al. focus on a metric, which they call Committed Instructions Per Resource
Entry (CIPRE) [4]. Again, the execution time is divided into epochs, and the CIPRE
value of all running threads are calculated at the end of each epoch. The thread with the
highest CIPRE value is selected to receive a resource increase, since it proves that it can
give the best throughput per allocated resource entry. Finally, Cazorla et al. propose the
DCRA mechanism, which is an acronym for Dynamically Controlled Resource Allo-
cation [5]. Here, threads are classified as slow/fast and active/inactive, and slow threads
receive more resources than fast threads can have. Active and slow threads receive the
largest share of the resources. All these techniques require a complex hardware for
collecting hardware statistics and partitioning multiple datapath resources.

In an earlier study, the authors propose a PRF-capping mechanism that allocates a
small amount of PRF entries for each thread [6]. They claim that, with this simple
mechanism, they can regulate the Issue Queue (IQ), the Re-Order Buffer (ROB) and the
Load/Store Queue (LSQ). They also show that a fixed cap size is enough to satisfy any
type of workloads, and they report up to more than 44% IPC improvements for a
4-threaded SMT system.

In this study, we show that a fixed cap size does not really gives optimal perfor-
mance in all workload combinations as stated in the earlier work. As shown in Fig. 1,
there are a variety of cap sizes that give near-optimal IPC values for different work-
loads. Here, benchmarks from the SPEC CPU 2006 suite are combined to create a set
of 4-threaded workloads mixtures (see Table 2). When we examine the figure, we see

42 H. Güngörer and G. Küçük

that PRF cap size of 8 is the best for Mix 1, whereas the same cap size gives the worst
performance for Mix 2 and Mix 5. We also see that Mix 10 is almost insensitive to cap
size. In this study, our main motivation is to dynamically pinpoint a near-optimal cap
size and use it. Our results show that our proposed method tracks down the optimal cap
size for each of these workloads and achieves up to 21% better performance compared
to a fixed cap size approach as proposed in [6].

2 The Proposed Method

Physical Register Files (PRFs) are one of the most critical resources to achieve high
throughput in SMT processors. At the instruction dispatch stage, each decoded
instruction with a destination register is given a PRF entry to eliminate false data
dependencies among instructions. This is known as the register renaming process.
When the PRF becomes full, the frontend of the pipeline is stalled until some
instructions in the backend commits and releases precious PRF entries. In a single-
thread superscalar processor, PRF should be kept large enough to support multiple
names for each architectural register, and the size of the PRF might be the sole design
problem that we can face. In a SMT processor, though, there are other problems
originating from the nature of the processor. Instructions from multiple threads race on
the same datapath and allocate PRF entries. A harmful thread, which holds too many
resources but executes too few instructions, may easily render the whole system into a
thrashing state.

Fig. 1. Effect of various cap sizes on SMT performance

Dynamic Capping of Physical Register Files 43

In an earlier study, the authors propose the fixed capping of the PRF after a detailed
analysis. But, a fixed cap size becomes a problem when a genuine thread looks for extra
resources for improving its throughput or when a harmless thread does not make use of
any allocated resource to itself. We believe that such inefficiencies can be easily
avoided with a mechanism that can move the CAP size to an appropriate position when
it is needed. In our proposed design, we set the lower and the upper bound for the CAP
size to 8 and 64, respectively. In our experiments, we also selected a delta value of 8
that defines the atomic size of PRF entries a thread can receive or lose. Then, we apply
a simple hill-climbing algorithm on the IPC curve for various CAP sizes. Our main
goal is to find the CAP size that gives us the near-optimal performance. To achieve this,
we define a time period in 1 M-cycle granularity, and we check the performance trend
in terms of instructions per cycle (IPC) at the end of each period. If the IPC for the
current period becomes higher than the IPC for the previous period within a certain
threshold (0.01 in our tests), we conclude that we can apply hill-climbing and move to a
consequent CAP size. Otherwise, if the current IPC becomes smaller than the previous
one, than we wait at that CAP size for a grace period (5 periods, which is chosen
empirically, in our current design) assuming that the current CAP size and its corre-
sponding IPC reside at the top of the hill, which we are already climbing. After that
grace period, all the performance geography might be changed since all threads can
change their behavior at any instant of time, and, then, we restart the hill-climbing
algorithm assuming that there are new performance peaks around the current CAP size.

Algorithm 1. Pseudo Code of Hill-Climbing
Initialize: CAP 40, wait 0, delta 8
1: diffIPC currIPC – prevIPC
2: delta (wait = 0 and (CAP = 8 or CAP = 64) ? -delta : delta)
3: if wait = 0 then
4: if firstTime = true then
5: prevIPC currIPC
6: CAP CAP + delta
7: firstTime false
8: elseif diffIPC > 0.01 then
9: prevIPC currIPC

10: CAP CAP + delta
11: else
12: wait 5
13: end if
14: else
15: wait wait - 1
16: end if

Algorithm 1 given above shows the details of our hill-climber. The most important
feature of the algorithm is its bouncing delta value. It is initially, set to +8, which
enables us to search cap sizes in one direction starting from 8 up to 64. But, when the
algorithm reaches the CAP size of 64, the delta value becomes -8 to enable a hill-climb
process in the reverse direction.

44 H. Güngörer and G. Küçük

3 Experimental Methodology

In this paper, we use M-sim simulator to run SPEC CPU2006 benchmarks [7]. Con-
figuration details of the simulated processor are given in Table 1. Our hill-climbing
algorithm is run every one million cycles. We also tested other periods but one million
cycle period gives the best results. We fast-forwarded each benchmark for 100 million
cycles and run cycle-accurate simulations for 200 million cycles. The workload mix-
tures that we use in our simulations are given in Table 2.

4 Tests and Results

In our tests, we test the adaptive nature of our algorithm, first. Figure 2 shows the
percentage of time each cap size is visited across all workload mixtures in an elevation-
map form. From the figure, we learn that cap size of 32 and above are quite popular
among workloads. We also see that there is a variety of cap sizes utilized in each
workload proving the dynamic tracking ability of the algorithm.

Table 1. Configuration of the simulated processor

Parameter Configuration

Machine width 4-wide fetch/dispatch/issue/commit
L/S Queue size 48 Load/Store queue
ROB & IQ size 128 entry ROB, 32-entry IQ
L1 I-cache 64 KB, 2-way set-associative 64-byte line
L1 D-cache 64 KB, 4-way set-associative 64-byte line, write-back, 1-cycle access

latency
L2 Cache
unified

512 KB, 16-way set-associative 64-byte line, write-back, 10-cycle access
latency

BTB 512 entry, 4-way set-associative
Branch
predictor

Bimod: 2 K entry

Memory 32-bit wide, 300 cycles access latency

Table 2. 4-threaded workloads

Workloads Benchmarks

Mix 1 libquantum, dealII, gromacs, namd
Mix 2 hmmer, sjeng, gobmk, gcc
Mix 3 libquantum, dealII, gobmk, gcc
Mix 4 gromacs, dealII, lbm, cactusADM
Mix 5 hmmer, sjeng, lbm, bzip2
Mix 6 libquantum, sjeng, lbm, gcc
Mix 7 namd, dealII, hmmer, milc
Mix 8 namd, gcc, lbm, milc
Mix 9 gobmk, gromacs, cactusADM, bzip2
Mix 10 sjeng, namd, cactusADM, hmmer

Dynamic Capping of Physical Register Files 45

We also studied how well the algorithm tracks the actual peak performance of the
workloads given in Fig. 1. Figure 3 shows the percentage of time our algorithm
dynamically selects the cap sizes corresponding to within 1%, 2%, 3% and 5% tol-
erance range of the peak performance value. For instance, from the figure we see that
our hill-climber successfully locates 55% of the cap sizes within 1% tolerance range of
the peak performance, on the average. But, when the tolerance range is within 2%, the
algorithm sweeps more than 90% of the near-optimal cap sizes, and we believe that this
is a great success for pinpointing peak performance points of workloads at runtime.
Tolerance ranges of 3% and 5% have 94.2% and 95.5% coverage of performance at
peak cap sizes, respectively. From the figure, we also see that our algorithm is not
perfect for all type of workloads. For instance, when we observe Mix 3 from Fig. 1, we
see that it shows a very low performance for cap size of 8. However, our adaptive
algorithm spends its 33% of time at this cap size, and, therefore, its coverage is constant
at 67% for all tolerance ranges that we study.

816243240485664

0%

10%

20%

30%

40%

50%

60%

70%

80%

Mix1
Mix2

Mix3
Mix4

Mix5
Mix6

Mix7
Mix8

Mix9
Mix10

%
 o

f o
cc

ur
re

nc
e

Workloads

0%-10% 10%-20% 20%-30% 30%-40%
40%-50% 50%-60% 60%-70% 70%-80%

CAP

Fig. 2. 3D Histogram showing number of visits of each cap size across simulated workload
mixtures

46 H. Güngörer and G. Küçük

In Fig. 4, we report the speedup of our hill-climber compared to the fix cap size
algorithm suggested in [6]. Here, we see that Mix 7 shows a worse performance
compared to the original algorithm. When we observe Fig. 1, we see that Mix 7 has a
low sensitivity to PRF cap size. But, it still shows slightly better performance values for
cap sizes less than 32. Unfortunately, as we examine Fig. 2, we find that our algorithm
spends most of its time on the opposite range (i.e. cap sizes 32 to and up) assuming that
it is already close to the peak of the performance curve. Therefore, its coverage per-
centage becomes quite high (90%) even with a tolerance range of 2%. However, the
coverage result (10%) with the tolerance range of 1% tells us the real story. Mix 7 fools
our algorithm and its performance becomes worse than the original fixed cap size
approach. But, the good news is we successfully track the actual peak performance
points in the rest of the workloads, and achieve 7.2% better performance, on
the average. Our best results are observed with Mix 2 (18%) and Mix 6 (21%), which
are two genuine class workloads always hungry for resources.

Fig. 3. Coverage percentage of cap sizes with peak performance points for various tolerance
ranges

Fig. 4. Speedup of our proposed algorithm compared to the original algorithm proposed in [6].

Dynamic Capping of Physical Register Files 47

5 Conclusion

We show that various workload mixtures have changing needs on physical register file
use, and application of a fixed cap size on this precious resource has performance
problems. In this study, we propose a hill-climbing algorithm, which climbs the per-
formance curve and locates the near-optimal cap size at runtime. The performance
geography dynamically changes with the behavior changes of each running thread, and
this makes our strategy a challenging task. Our test results show that we can suc-
cessfully track down the moving peak performance in the performance curve, and
achieve up to 21% speedup relative to a fixed capping scheme proposed in an earlier
study. We also show that our proposed algorithm is not perfect. We plan to work on
individual cap sizes that are tailored to the needs of each running thread, in a future
study. We believe that this new strategy may solve the problems that we encountered
and left unsolved in this study.

Acknowledgments. This work is supported by the Scientific and Technical Research Council of
Turkey (TUBITAK) under Grant No:117E866.

References

1. Lo, J.L., Parekh, S.S., Eggers, S.J., Levy, H.M., Tullsen, D.M.: Software-directed register
deallocation for simultaneous multithreaded processors. IEEE Trans. Parallel Distrib. Syst. 10
(9), 922–933 (1999)

2. Monreal, T., González, A., Valero, M., González, J., Viñals, V.: Dynamic register renaming
through virtual-physical registers. J. Instr. Level Parallelism 2, 1–20 (2000)

3. Choi, S., Yeung, D.: Learning-based SMT processor resource distribution via hill-climbing.
In: ACM SIGARCH Computer Architecture News, vol. 34, no. 2, pp. 239–251. IEEE
Computer Society (2006)

4. Wang, H., Koren, I., Krishna, C.M.: An adaptive resource partitioning algorithm for SMT
processors. In: Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques, pp. 230–239. ACM, Oct 2008

5. Cazorla, F.J., Ramirez, A., Valero, M., Fernandez, E.: Dynamically controlled resource
allocation in SMT processors. In: Proceedings of the 37th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 171–182. IEEE Computer Society (2004)

6. Zhang, Y., Lin, W.M.: Efficient resource sharing algorithm for physical register file in
simultaneous multi-threading processors. Microprocess. Microsyst. 45, 270–282 (2016)

7. Sharkey, J., Ponomarev, D., Ghose, K.: M-Sim: a flexible, multithreaded architectural
simulation environment. Technical Report CS-TR-05-DP01, Department of CS, SUNY-
Binghamton (2005)

48 H. Güngörer and G. Küçük

	Dynamic Capping of Physical Register Files in Simultaneous Multi-threading Processors for Performance
	Abstract
	1 Introduction
	2 The Proposed Method
	3 Experimental Methodology
	4 Tests and Results
	5 Conclusion
	Acknowledgments
	References

