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Abstract. Since the Laplacian Eigenmaps (LE) algorithm suffers from a
spectral uncertainty problem for the adjacency weighted matrix construction, it
may not be adequate for the hyperspectral dimension reduction (DR), classifi-
cation or detection process. Moreover, only local neighboring data point’s
properties are conserved in the LE method. To resolve these limitations, an
improved feature extraction technique called modified Laplacian Eigenmaps
(MLE) for hyperspectral images is suggested in this paper. The proposed
approach determines the similarity between pixel and endmember for the pur-
pose of building a more precise weighted matrix. Then, based on the obtained
weighted matrix, the DR data are derived as the Laplacian eigenvectors of the
Laplacian matrix, constructed from the weighted matrix. Furthermore, the novel
proposed approach focuses on maximizing the distance between no nearby
neighboring points, which raises the separability among ground objects. Com-
pared to the original LE method, experiment results, for hyperspectral images
classification and detection tasks, have proved an enhanced accuracy.
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1 Introduction

Hyperspectral images (HSI) [1], picked up from remote sensing airborne satellites,
provide a very detailed information about the collected scenes; which results a various
level of challenge during data processing. Practically, dimension reduction is a fun-
damental issue of the HSI high dimension problem. While keeping the important data
properties, the dimension reduction concept is aimed to get a set of points
Y = fy1; y2; . . .; ylg in Rd , from the original data set X = fx1; x2; . . .; xlg 2 Rn where
d � n. Therefore, a great set of dimension reduction techniques has been proposed in
the last decade. These techniques can be categorized into two main branches: global
methods, such like Isometric Mapping (ISOMAP) and Diffusion Maps (DM), and local
methods as Locally Linear Embedding (LLE) and Laplacian Eigenmaps (LE) [2, 3].
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The global approaches seek to keep the global data properties, while local approaches
aim to preserve the local criteria of the manifold.
In this paper, our main focus is to improve the existing Laplacian Eigenmaps
(LE) technique [3]. In fact, LE is a local dimension reduction method where the
original data is constructed from a graph. The construction of the low dimensional
space is achieved by minimizing the distance between data points and its neighbors.
Consequently, the choice of the distance metric, used during adjacency graph con-
struction, is an essential element due to its direct impact on the performance of
dimensionality reduction. Euclidean distance, employed by the original LE algorithm,
is susceptible to variations in the spectrum magnitudes, which can be generated by
different factors such as illuminations, atmospheric changes, and sensor noise [11].
Subsequently, the selection of the neighbor pixels based on the Euclidean distance
generates errors during the adjacency graph construction.
In this paper, we propose spectral angle based LE method that uses the similarity
between pixels and endmembers [10] instead of the Euclidian distance, measures the
similarity between two pixels. Additionally, this attempt serves to increase the sepa-
rability between the different classes of the scene by maximizing the distance between
non-nearest neighboring points.
The rest of this paper is organized as follows: The next section presents the LE
algorithm, followed by a detailed description of the MLE method. Section 4 describes
the experiment process and results followed by conclusions and future works.

2 Laplacian Eigenmaps (LE)

LE [3] is a well-known local feature extraction technique which is based on the spectral
graph theory. Using Laplacian graph concept, the LE technique builds a dataset
neighborhood graph and computes a transformation matrix that maps data points to the
low dimension subspace. The LE algorithm includes three main steps:

1. Constructing a weighted graph G: G is built by looking for the k nearest neighbors
of each point, using the Euclidian distance metric.

2. Defining the weighted matrix: Based on the graph G, weights may be computed as
follows:

xij ¼ e�
jjXi�Xj jj2

r ; if i and j are connected
0 ; otherwise

(
ð1Þ

r is a defined spectral scale parameter.
3. Deriving the Laplacian eigenvalues and eigenvectors: LE tends to preserve the local

data properties, in the low-dimensional subspace, by optimizing the following
objective function:

argmin
X

ij
jjyi � yjjj2xij ð2Þ

Eigenvalues and eigenvectors, describing the dimension reduction data, can be
obtained from the following generalized eigenvector problem:
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YL ¼kYD ð3Þ

D is a diagonal weighted matrix where Di;i¼
P

j xi;j, L ¼ D� x represents the
Laplacian matrix and k accords to the d-smallest nonzero eigenvalues of (3).

3 Proposed Approach

The LE algorithm attempts to minimize the distance between data points and its
neighbors, adopting the Euclidian distance. However, for hyperspectral images, LE
often fails. This is caused by changes in spectrum magnitudes, particularly for a data
points from small size classes [11]. To address this issue, we proposed a new approach,
called modified LE (MLE), to construct an adjacency graph in which, for a given data
point xi, its nearest neighbors appertained to the same ground object of xi while others
do not. In the MLE, a spectral-based distance, derived from the similarity between pixel
and endmember [10], is used to define the neighbors of each data point. Furthermore,
the proposed MLE interested more in widening the distances among the non-closest
neighbors. The MLE algorithm can be summarized as follows:

1. Extract endmember spectra from hyperspectral image using the vertex component
analysis (VCA) method [8]; then, based on the spectral angle distance, the similarity
between pixel spectra and the endmember spectra can be computed. Extracted
endmembers can be represented as a matrix M = (m1;m2; . . .;mEÞ, where
miði = 1, 2,. . .;EÞ is a n� 1 vector that represents the ith endmember, n is the
spectral bands’ number and E is the endmembers’ number.

2. Build the adjacency graph: Adopting the spectral angle distance metric can more
indeed reduce the error produced by the spectral amplitude variations. The spectral
angle distance, between each pixel and endmember, can be computed as bellow:

Di
j ¼ d mi; xj

� � ¼ arc cos
Xn

k¼1

mik � xjk

ðPn
k¼1 m

2
ikÞ1=2ð

Pn
k¼1 x

2
jkÞ1=2

" #
ð4Þ

The k nearest neighbors of each pixel can be selected, referred to (5):

d
0 ðxi; xjÞ ¼

X
k
j Dk

i � Dk
min

Dk
max � Dk

min

� �
� Dk

j � Dk
min

Dk
max � Dk

min

 !
j ð5Þ

Hence, we can construct an adjacency graph G0 and calculate the adjacency
weighted matrix x0 based on (6) and (7).

G
0
ij ¼

1 ; if xi and xj are nearest neighbors
0 ; otherwise

�
ð6Þ
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x
0
ij ¼ e�d

0 ðxi;xjÞr2 ; if xj 2 N xið Þ
0 ; otherwise

�
ð7Þ

While Di
j represents the spectral angle distance between the jth pixel and ith end-

member, Dk
min and Dk

max show the minimum and maximum distances between all
pixels and the kth endmember, respectively, and NðxiÞ determines the k nearest
neighbor set of xið Þ.

3. Solve the optimization problem: The novel Laplacian Eigenmaps (MLE) technique
tends to project data point from the original space to the low-dimensional space in
such a way that, the distances between nearest neighbors is reserved, i.e., local
properties and the distances between non-neighboring points is maximized. This is
reflected to optimize the following objective function:

argmax
X

ij
jjyi � yjjj2x

0
ij ð8Þ

Maximum eigenvalues and eigenvectors are calculated from the next eigende-
composition problem:

YL
0¼kYD

0 ð9Þ

D0 represents the diagonal weighted matrix, defined by D
0
ii ¼

P
j x

0
ij, L

0¼ D
0�x0

corresponds to the Laplacian matrix and fkigdi¼1 conforms to the d-smallest
eigenvalues of (9).

4 Experiment Process and Results

This section is dedicated to examine the suggested method efficiency. The modified LE
approach was assessed during hyperspectral images classification and detection tasks;
then compared according to the original LE accuracy results. The architecture of the
suggested technique is shown in Fig. 1.

Fig. 1. The flowchart of the proposed approach.
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4.1 Classification Tasks

For the classification tasks, the Indian Pines hyperspectral data set, collected in the
north of Indiana (United States of America) in 1992 by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor system, was adopted. The used scene covers
204 spectral bands of size 145 � 145 pixels, in the spectral range 0.4–2.5 lm; it
includes 16 classes as shown in Fig. 2. The Indian Pines image and its reference map
were downloaded from [4]. As the SVM (Support Vector Machine) classifier [5] was
performed to classify test data set, only 10% of each class pixels, picked randomly,
were implemented as the input training samples. Each classification script was iterated
ten times and the mean of the classification accuracies was used to judge classification
performance. Overall accuracy (OA), average accuracy (AA) and kappa coefficient [9]
were used to assess the proposed technique yield. We took k ¼ 20; n ¼ 20 and r¼ 1
for the LE technique and the proposed feature extraction method. Table 1 summarizes
classification results of the proposed MLE and the original LE technique, and Fig. 3
gives their classification maps. The best overall accuracy (OA) was obtained from the
MLE approach as it provided 79,60%, while the kappa coefficient was 77,20%.
The OA of original LE was 68,92% and the kappa coefficient was 65,17%. The
proposed technique is characterized by its capability of improving the classification
accuracies of the original LE technique by about 11% of overall accuracy. To more
understand the novel suggested approach, we selected samples from the four first
classes, C1, C2, C3 and C4. Figure 4 represents spectral curves of the four exploited
classes, in which each spectrum represents one ground object. We selected 100 samples
for each class and the reduced dimensionality of the MLE was two bands (band 21
and 50).
Figure 5 displays the projected data obtained by LE and the proposed approach. The
results obtained by LE showed that this method is incapable of preserving the global
structure of data properties. In fact, LE has a weak effect in terms of classes’ separation;
i.e. not all of the nearest neighbors come from the same ground object. The proposed
MLE algorithm can separate widely the four selected classes.

Fig. 2. Pseudo-color image, ground truth map and labels of the used hyperspectral scene.

Fig. 3. Classification maps obtained by (a) the original LE and (b) the proposed approach.
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Table 1. Classification results obtained by the LE and the MLE techniques.

Classes No. of samples LE MLE

C1 46 99,98 99,99
C2 1428 89,00 93,51
C3 830 94,03 95,49
C4 237 98,44 99,25
C5 483 98,83 99,47
C6 730 96,48 97,92
C7 28 99,92 99,89
C8 478 99,21 99,92
C9 20 99,48 99,79
C10 972 95,27 96,89
C11 2455 84,09 92,27
C12 593 94,82 96,40
C13 205 99,38 99,54
C14 1265 96,28 99,14
C15 386 96,39 99,14
C16 93 99,89 99,89
OA (%) 68,92 79,60
AA (%) 96,37 97,95
Kappa (%) 65,17 77,20

Fig. 4. Spectral curves of the first four classes in the Indian Pines data set.

Fig. 5. Projected data produced by (a) LE and (b) MLE.
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4.2 Detection Tasks

Urban-1 hyperspectral scene, selected from the Airport-Beach-Urban (ABU) hyper-
spectral data set, was used for target detection tasks. The adopted image contains 204
bands, each band is of size 100 � 100 pixels and a spatial resolution of 17,2 m per
pixel. The Urban-1 scene, captured in Texas Coast in August of 2010, was collected by
the AVIRIS sensor system and downloaded from [6]. Figure 6 shows the Urban-1
image and its detection map. The Adaptive Cosine/Coherence Estimator (ACE) de-
tector [7] and the Receiver Operating Characteristic (ROC) curve metric were adopted
to evaluate the qualitative results. The ROC curve is computed from probability of
detection PDð Þ versus false alarm rate FARð Þ, at different values of threshold.
Experimentally, k ¼ 200; n ¼ 15 and r¼ 1; were chosen as optimal parameters for the
MLE technique. The threshold was fixed from 0 to 255, and the ROC curves of LE and
MLE techniques are presented in Fig. 7. When the false alarm rate varies from 0 to 1,
the proposed method permits higher detection accuracy. In comparison with the
original LE method, the proposed technique enhanced the true positive detection rate.
The detection maps of the original LE and the suggested approach are shown in Fig. 8.
By visualizing the two maps, we find that our proposed approach tends to be less
attracted by false detection. Moreover, the MLE can detect the target objects clearly,
especially the small ones.

Fig. 6. Color composites of the Urban-1 hyperspectral scene and its detection map.

Fig. 8. Detection maps of (a) LE and
(b) MLE techniques.

Fig. 7. ROC curves of LE and modified LE
methods.
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5 Conclusions and Future Works

This study is aimed to resolve the spectral uncertainty problem for the adjacency
weighted matrix construction, for the Laplacian Eigenmaps (LE) approach. In this light,
we proposed a modified version of LE, titled modified LE, for hyperspectral image
classification and target detection. In a different way to the original LE, a spectral based
distance derives from the similarity between pixel and endmember is used to define the
neighbors of each data point. Besides to preserving local properties, the proposed
approach tends to keep the global structure of original data. Experiments, during
classification and detection tasks, demonstrated that MLE is characterized by a superior
outstanding capacity compared to the original LE. In addition to spectral elements,
spatial components are paramount to improve the MLE yield, which is seen very
encouraging for future works.
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