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Sébastien Roch(B)

Department of Mathematics, University of Wisconsin–Madison,
Madison, WI 53706, USA

roch@math.wisc.edu

Abstract. We consider the problem of estimating species trees from
unrooted gene tree topologies in the presence of incomplete lineage sort-
ing, a common phenomenon that creates gene tree heterogeneity in mul-
tilocus datasets. One popular class of reconstruction methods in this
setting is based on internode distances, i.e. the average graph distance
between pairs of species across gene trees. While statistical consistency in
the limit of large numbers of loci has been established in some cases, little
is known about the sample complexity of such methods. Here we make
progress on this question by deriving a lower bound on the worst-case
variance of internode distance which depends linearly on the correspond-
ing graph distance in the species tree. We also discuss some algorithmic
implications.
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1 Introduction

Species tree estimation is increasingly based on large numbers of loci or genes
across many species. Gene tree heterogeneity, i.e. the fact that different genomic
regions may be consistent with incongruent genealogical histories, is a com-
mon phenomenon in multilocus datasets that leads to significant challenges in
this type of estimation. One important source of incongruence is incomplete
lineage sorting (ILS), a population-genetic effect (see Fig. 1 below for an illus-
tration), which is modeled mathematically using the multispecies coalescent
(MSC) process [14,19]. Many recent phylogenetic analyses of genome-scale bio-
logical datasets have indeed revealed substantial heterogeneity consistent with
ILS [3,6,27].

Standard methods for species tree estimation that do not take this hetero-
geneity into account, e.g. the concatenation of genes followed by a single-tree
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maximum likelihood analysis, have been shown to suffer serious drawbacks under
the MSC [20,23]. On the other hand, new methods have been developed for
species tree estimation that specifically address gene tree heterogeneity. One
popular class of methods, often referred to as summary methods, proceed in two
steps: first reconstruct a gene tree for each locus; then infer a species tree from
this collection of gene trees. Under the MSC, many of these methods have been
proven to converge to the true species tree when the number of loci increases,
i.e. the methods are said to be statistically consistent. Examples of summary
methods that enable statistically consistent species tree estimation include MP-
EST [12], NJst [11], ASTRID [26], ASTRAL [15,16], STEM [8], STEAC [13],
STAR [13], and GLASS [17].

Here we focus on reconstruction methods, such as NJst and ASTRID, based
on what is known as internode distances, i.e. the average of pairwise graph
distances across genes. Beyond statistical consistency [1,7,11], little is known
about the data requirement or sample complexity of such methods (unlike other
methods such as ASTRAL [24] or GLASS [17] for instance). That is, how many
genes or loci are needed to ensure that the true species tree is inferred with
high probability under the MSC? Here we make progress on this question by
deriving a lower bound on the worst-case variance of internode distance. Indeed
the sample complexity of a reconstruction method depends closely on the vari-
ance of the quantities it estimates, in this case internode distances. Our bound
depends linearly on the corresponding graph distance in the species tree which,
as we explain below, has possible implications for the choice of an accurate
reconstruction method.

The rest of the paper is structured as follows. In Sect. 2, we state our main
results formally, after defining the MSC and the internode distance. In Sect. 3,
we discuss algorithmic implications of our bound. Proofs can be found in Sect. 4.

2 Definitions and Results

In this section, we first introduce the multispecies coalescent. We also define the
internode distance and state our results formally.

Multilocus Evolution Under the Multispecies Coalescent. Our analysis is based on
the multispecies coalescent (MSC), a standard random gene tree model [14,19].
See Fig. 1 for an illustration. Consider a species tree (S, Γ ) with n leaves. Here
S = (V, E , r) is a rooted binary tree with vertex and edge sets V and E and where
each leaf is labeled by a species in {1, . . . , n}. We refer to S as the species tree
topology. The branch lengths Γ = (Γe)e∈E are expressed in so-called coalescent
time units. We do not assume that (S, Γ ) is ultrametric (see e.g. [25]). Each gene1

j = 1, . . . , m has a genealogical history represented by its gene tree Tj distributed
according to the following process: looking backwards in time, on each branch e of
1 In keeping with much of the literature on the MSC, we use the generic term gene

to refer to any genomic region experiencing low rates of internal recombination, not
necessarily a protein-coding region.
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Fig. 1. An incomplete lineage sorting event (in the rooted setting). Although 1 and 2
are more closely related in the rooted species tree (fat tree), 2 and 3 are more closely
related in the rooted gene tree (thin tree). This incongruence is caused by the failure
of the lineages originating from 1 and 2 to coalesce within the shaded branch. The
shorter this branch is, the more likely incongruence occurs.

the species tree, the coalescence of any two lineages is exponentially distributed
with rate 1, independently from all other pairs; whenever two branches merge
in the species tree, we also merge the lineages of the corresponding populations,
that is, the coalescent proceeds on the union of the lineages; one individual
is sampled at each leaf. The genes are assumed to be unlinked, i.e. the process
above is run independently and identically for all j = 1, . . . , m. More specifically,
the probability density of a realization of this model for m independent genes is
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where, for gene j and branch e, Ie
j is the number of lineages entering e, Oe

j is
the number of lineages exiting e, and γe,�

j is the �th coalescence time in e; for

convenience, we let γe,0
j and γ

e,Ie
j −Oe

j+1

j be respectively the divergence times
(expressed in coalescence time units) of e and of its parent population (which
depend on Γ ). We write {Tj}j ∼ Dm

s [S, Γ ] to indicate that the m gene trees
{Tj}j are independently distributed according to the MSC on species tree S, Γ .
To be specific, Tj is the unrooted gene tree topology—without branch lengths—
and we remark that, under the MSC, Tj is binary with probability 1. Throughout
we assume that the Tj ’s are known and were reconstructed without estimation
error.

Internode Distance. Assume we are given m gene trees {Tj}j over the
n species {1, . . . , n}. For any pair of species x, y and gene j, we let
dj
g(x, y) be the graph distance between x and y on Tj , i.e. the number

of edges on the unique path between x and y. The internode distance
between x and y is defined as the average graph distance across genes, i.e.
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δ̂m
int(x, y) =

1
m

m∑

j=1

dTj
g (x, y).

Under the MSC, the internode distances (δ̂m
int(x, y))x,y are correlated random

variables whose joint distribution depends in the a complex way on the species
tree (S, Γ ). Here follows a remarkable fact about internode distance [1,7,11].
Let δ̄int(x, y) be the expectation of δ̂m

int(x, y) under the MSC and let Su be the
unrooted version of the species tree S. Then (δ̄int(x, y))x,y is an additive metric
associated2 to Su (see e.g. [25]). In particular, whenever Su restricted to species
x, y, w, z has quartet topology xy|wz (i.e. the middle edge of the restriction to
x, y, w, z splits x, y from w, z), it holds that3

δ̄int(x,w) + δ̄int(y, z) = δ̄int(x, z) + δ̄int(y, w) ≥ δ̄int(x, y) + δ̄int(w, z).

This result forms the basis for many popular multilocus reconstruction meth-
ods, including NJst [11] and ASTRID [26], which apply standard distance-based
methods to the internode distances

(δ̂m
int(x, y))x,y.

Main Results. By the law of large numbers, for all pairs of species x, y

δ̂m
int(x, y) → δ̄int(x, y),

with probability 1 as m → +∞, a fact that can be used to establish the statisti-
cal consistency (i.e. the guarantee that the true specie tree is recovered as long
as m is large enough) of internode distance-based methods such as NJst [11].
However, as far as we know, nothing is known about the sample complexity
of internode distance-based methods, i.e. how many genes are needed to recon-
struct the species tree with high probability—say 99%—as a function of some
structural properties of the species tree—primarily the number of species n and
the shortest branch length f? We do not answer this important but technically
difficult question here, but we make progress towards its resolution by providing
a lower bound on the worst-case variance of internode distance. Let dSu

g (x, y)
denote the graph distance between x and y on Su.

Theorem 1 (Lower bound on the worst-case variance of internode dis-
tance). There exists a constant C > 0 such that, for any integer n ≥ 4 and real
f > 0, there is a species tree (S, Γ ) with n leaves and shortest branch length f

2 Note however that the associated branch lengths may differ from Γ .
3 Note that it is trivial that (d

Tj
g (x, y))x,y is an additive metric associated to gene tree

Tj . On the other hand it is far from trivial that averaging over the MSC leads to an
additive metric associated to the species tree.
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such that the following holds: for all pairs of species �, �′ and all integers m ≥ 1,
if {Tj}j ∼ Dm

s [S, Γ ] then

Var
[
δ̂m
int(�, �

′)
]

≥ C
dSu
g (�, �′)

m
, (1)

and, furthermore,

max
�,�′

Var
[
δ̂m
int(�, �

′)
]

≥ C
n

m
, (2)

In words, there are species trees for which the variance of internode distance
scales as the graph distance—which can be of order n—divided by m. The proof
of Theorem 1 is detailed in Sect. 4.

3 Discussion

How is Theorem 1 related to the sample complexity of species tree estimation
methods? The natural approach for deriving bounds on the number of genes
required for high-probability reconstruction in distance-based methods is to
show that the estimated distances used are sufficiently concentrated around their
expectations—provided that m is large enough as a function of n and f (e.g. [2,9];
but see [22] for a more refined analysis). In particular, one needs to control the
variance of distance estimates.

Practical Implications. Bound (2) in Theorem 1 implies that to make all vari-
ances negligible the number of genes m is required to scale at least linearly
in the number of species n. In contrast, certain quartet-based methods such as
ASTRAL [15,16] have a sample complexity scaling only logarithmically in n [24].

On the other hand, Bound (2) is only relevant for those reconstruction
algorithms using all distances, for instance NJst which is based on Neighbor-
Joining [2,10]. Many so-called fast-converging reconstruction methods purposely
use only a strict subset of all distances, specifically those distances within a con-
stant factor of the “depth” of the species tree. Refer to [9] for a formal definition
of the depth, but for our purposes it will suffice to note that in the case of
graph distance the depth is at most of the order of log n. Hence Bound (1) sug-
gests it may still possible to achieve a sample complexity comparable to that of
ASTRAL—if one uses a fast-converging method (within ASTRID for instance).

The Impact of Correlation. Theorem 1 does not in fact lead to a bound on
the sample complexity of internode distance-based reconstruction methods. For
one, Theorem 1 only gives a lower bound on the variance. One may be able to
construct examples where the variance is even larger. In general, analyzing the
behavior of internode distance is quite challenging because it depends on the full
multispecies coalescent process in a rather tangled manner.

Perhaps more importantly, the variance itself is not enough to obtain tight
bounds on the sample complexity. One problem is correlation. Because δ̂m

int(x, y)
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and δ̂m
int(w, z) are obtained using the same gene trees, they are highly correlated

random variables. One should expect this correlation to produce cancellations
(e.g. in the four-point condition; see [25]) that could drastically lower the sample
complexity. The importance of this effect remains to be studied.

Gene Tree Estimation Error. We pointed out above that quartet-based meth-
ods such as ASTRAL may be less sensitive to long distances than internode
distance-based methods such as NJst. An important caveat is the assumption
that gene trees are perfectly reconstructed. In reality, gene tree estimation errors
are likely common and are also affected by long distances (see e.g. [9]). A more
satisfactory approach would account for these errors or would consider simulta-
neously sequence-length and gene-number requirements. Few such analyses have
so far been performed because of technical challenges [4,5,18,21].

4 Variance of Internode Distance

In this section, we prove Theorem 1. Our analysis of internode distance is based
on the construction of a special species tree where its variance is easier to control.
We begin with a high-level proof sketch:

– Our special example is a caterpillar tree with an alternation of short and long
branches along the backbone.

– The short branches produce “local uncertainty” in the number of lineages
that coalesce onto the path between two fixed leaves. The long branches
make these contributions to the internode distance “roughly independent”
along the backbone.

– As a result, the internode distance is, up to a small error, a sum of independent
and identically distributed contributions. Hence, its variance grows linearly
with graph distance.

Setting for Analysis. We fix the number of species n and we assume for conve-
nience that n is even.4 Recall also that f will denote the length of the shortest
branch in coalescent time units. We consider the species tree (S, Γ ) depicted in
Fig. 2. Specifically, S is a caterpillar tree: its backbone is an n − 1-edge path

(a,w1), (w1, z1), (z1, w2), (w2, z2), . . . , (wn−2
2

, zn−2
2

), (zn−2
2

, r)

connecting leaf a to root r = wn/2; each vertex wi on the backbone is incident
with an edge (wi, xi) to leaf xi; each vertex zi on the backbone is incident with
an edge (zi, yi) to leaf yi; root r is incident with an edge (r, b) to leaf b. Each
edge of the form e = (wi, zi) is a short edge of length Γe = f , while all other
edges are long edges of length g = 4 log n.

4 A straightforward modification of the argument also works for odd n.
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Fig. 2. The species tree used in the analysis.

Proof of Theorem 1. Recall that our goal is to prove that for all pairs of species
�, �′ and all integers m ≥ 1, if {Tj}j ∼ Dm

s [S, Γ ] then

Var
[
δ̂m
int(�, �

′)
]

≥ C
dSu
g (�, �′)

m
.

To simplify the analysis, we detail the argument in the case � = a and �′ = b
only. The other cases follow similarly.

We first reduce the computation to a single gene. Recall that

δ̂m
int(a, b) =

1
m

m∑

j=1

dTj
g (a, b).

Lemma 1 (Reduction to a single gene). For any m, it holds that

Var
[
δ̂m
int(�, �

′)
]

=
1
m
Var

[
dT1
g (a, b)

]
.

Proof. Because the Tj ’s are independent and identically distributed, it follows
that

Var
[
δ̂mint(�, �

′)
]
= Var

⎡
⎣ 1

m

m∑
j=1

d
Tj
g (a, b)

⎤
⎦ =

1

m2

m∑
j=1

Var
[
d

Tj
g (a, b)

]
=

1

m
Var

[
dT1
g (a, b)

]
,

as claimed.

We refer to the 2-edge path {(wi, zi), (zi, wi+1)} as the i-th block. The purpose
of the long backbone edges is to create independence between the contributions
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of the blocks. To make that explicit, let Fi be the event that, in T1, all lineages
entering the edge (zi, wi+1) have coalesced by the end of the edge (backwards in
time). And let F = ∩iFi.

Lemma 2 (Full coalescence on all blocks). It holds that

P[F ] ≥ 1 − 1/n.

Proof. By the multiplication rule and the fact that Fi only depends on the
number of lineages entering (wi, zi), we have

P[F ] =
∏

i

P[Fi | F1 ∩ · · · ∩ Fi−1] = (P[F1])
n/2−1 ≥ 1 − (n/2 − 1) (1 − P[F1]) .

It remains to upper bound P[Fc
1 ]. We have either 2 or 3 lineages entering (z1, w2).

In the former case, the failure to coalesce has probability e−g, i.e. the probability
that an exponential with rate 1 is greater than g. In the latter case, the failure to
fully coalesce has probability at most e−3(g/2) + e−g/2, i.e. the probability that
either the first coalescence (happening at rate 3) or the second one (happening
at rate 1) takes more than g/2. Either way this gives at most P[Fc

1 ] ≤ 2e−g/2.
With g = 4 log n = 2 log n2 above, we get the claim.

We now control the contribution from each block. Let Xi be the number of
lineages coalescing into the path between a and b on the i-th block. Conditioning
on F , we have Xi ∈ {1, 2} and we have further that all Xi’s are independent
and identically distributed. This leads to the following bound.

Lemma 3 (Linear variance). It holds that

Var
[
dT1
g (a, b)

]
≥ n − 2

2
Var

[
X1

∣∣F1

]
P[F ].

Proof. By the conditional variance formula, letting 1F be the indicator of F ,

Var
[
dT1
g (a, b)

]
≥ E

[
Var

[
dT1
g (a, b)

∣∣1F
]]

≥ Var
[
dT1
g (a, b)

∣∣F
]
P[F ].

On the event F , it holds that

dT1
g (a, b) =

∑

i

Xi.

Moreover, conditioning on F makes the Xi’s independent and identically dis-
tributed. Hence we have finally

Var
[
dT1
g (a, b)

]
≥ n − 2

2
Var

[
X1

∣∣F
]
P[F ] ≥ n − 2

2
Var

[
X1

∣∣F1

]
P[F ],

where we used the fact that X1 depends on F only through F1.

The final step is to bound the contribution to the variance from a single block.
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Lemma 4 (Contribution from a block). It holds that

Var
[
X1

∣∣F1

]
=

1
3
e−f

(
1 − 1

3
e−f

)
=

2
9

(1 − Θ(f)) ,

for f small, where we used the standard Big-Theta notation.

Proof. As we pointed out earlier, conditioning on F1, we have X1 ∈
{1, 2}. In particular X1 − 1 is a Bernoulli random variable whose variance
P

[
X1 − 1 = 1

∣∣F1

]
(1 − P

[
X1 − 1 = 1

∣∣F1

]
) is the same as the variance of X1

itself. So we need to compute the probability that X1 = 2, conditioned on F1.
There are four scenarios to consider (depending on whether or not there is coa-
lescence in the short branch (w1, z1) and which coalescence occurs first in the
long branch (z1, w2)), only one of which produces X1 = 1:

– No coalescence occurs in (w1, z1) and the first coalescence in (z1, w2) is
between the lineages coming from x1 and y1. This event has probability 1

3e−f

by symmetry when conditioning on F1.

Hence P
[
X1 = 2

∣∣F1

]
= 1 − 1

3e−f .

By combining Lemmas 1, 2, 3 and 4, we get that

Var
[
δ̂m
int(�, �

′)
]

≥ 1
m

× n − 2
2

× 1
3
e−f

(
1 − 1

3
e−f

)
×

(
1 − 1

n

)
.

Choosing C small enough concludes the proof of the theorem.

5 Conclusion

To summarize, we have derived a new lower bound on the worst-case variance
of internode distance under the multispecies coalescent. No such bounds were
previously known as far as we know. Our results suggest it may be preferable to
use fast-converging methods when working with internode distances for species
tree estimation. The problem of providing tight upper bounds on the sample
complexity of internode distance-based methods remains however an important
open question.
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