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Preface

This volume contains the papers presented at RECOMBCG-18: the 16th RECOMB
Comparative Genomics Satellite Workshop, held during October 9–12, 2018, in
Magog-Orford, Québec, Canada.

There were 30 submissions. Each submission was reviewed by at least 4 reviewers,
and some received up to 6 papers to review. The reviews were conducted by members
of the Program Committee (PC) as well as by additional reviewers who were sought
based on their expertise for specific papers. The PC decided to accept 18 papers. The
program also included 6 invited talks and 2 poster sessions.

We thank the members of the Program Committee as well as the additional
reviewers for their diligent work reviewing the manuscripts and conducting thorough
discussions on the manuscripts and their reviews that informed the decision process.

We also thank the members of the Steering Committee, Marlia Braga, Dannie
Durand, Jens Lagergren, Aoife McLysaght, Luay Nakhleh, and David Sankoff, for their
guidance.

Special thanks go to the members of the Local Organizing Committee at the
Université de Sherbrooke, Sarah Belhamiti, Alan Cohen, Ali Fotouhi, Jean-Michel
Garant, Pierre-Étienne Jacques, Safa Jammali, Esaie Kuitche, Manuel Lafond, Lynn
Lebrun, Jean-Pierre Perreault, Sébastien Rodrigue, Michelle Scott, Fanny Thuriot,
Yves Tremblay, Anais Vannutelli, and Shengrui Wang, the students in particular, for
all their efforts and generosity in organizing the conference.

Last but not least, we would like to thank the six keynote speakers who agreed to
speak at the conference despite their very busy schedules: Belinda Chang, Dannie
Durand, Daniel Durocher, Christian Landry, Gwenaël Piganeau, and Xavier Roucou.

The workshop would not have been possible without the generous contribution of
our sponsors, whose support is greatly appreciated:

– Faculté de médecine et des sciences de la santé - Université de Sherbrooke
– Faculté des sciences - Université de Sherbrooke
– Programme de soutien à la tenue de colloques scientifiques étudiants - Université de

Sherbrooke
– Fonds institutionnel de soutien aux activités étudiantes - Université de Sherbrooke
– Département d’informatique - Université de Sherbrooke
– Département de biochimie - Université de Sherbrooke
– Département de biologie - Université de Sherbrooke
– Calcul Québec

We used the EasyChair system for submissions, reviews, and proceedings
formatting.

August 2018 Mathieu Blanchette
Aïda Ouangraoua
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A Cubic Algorithm for the Generalized
Rank Median of Three Genomes

Leonid Chindelevitch1(B) and Joao Meidanis2

1 School of Computing Science, Simon Fraser University, Burnaby, Canada
leonid@sfu.ca

2 Institute of Computing, University of Campinas, Campinas, Brazil

Abstract. The area of genome rearrangements has given rise to a num-
ber of interesting biological, mathematical and algorithmic problems.
Among these, one of the most intractable ones has been that of finding
the median of three genomes, a special case of the ancestral reconstruc-
tion problem. In this work we re-examine our recently proposed way of
measuring genome rearrangement distance, namely, the rank distance
between the matrix representations of the corresponding genomes, and
show that the median of three genomes can be computed exactly in poly-
nomial time O(nω), where ω ≤ 3, with respect to this distance, when the
median is allowed to be an arbitrary orthogonal matrix.

We define the five fundamental subspaces depending on three input
genomes, and use their properties to show that a particular action on
each of these subspaces produces a median. In the process we introduce
the notion of M -stable subspaces. We also show that the median found
by our algorithm is always orthogonal, symmetric, and conserves any
adjacencies or telomeres present in at least 2 out of 3 input genomes.

We test our method on both simulated and real data. We find that
the majority of the realistic inputs result in genomic outputs, and for
those that do not, our two heuristics perform well in terms of recon-
structing a genomic matrix attaining a score close to the lower bound,
while running in a reasonable amount of time. We conclude that the rank
distance is not only theoretically intriguing, but also practically useful
for median-finding, and potentially ancestral genome reconstruction.

Keywords: Comparative genomics · Ancestral genome reconstruction
Phylogenetics · Rank distance

1 Introduction

The genome median problem consists of computing a genome M that minimizes
the sum d(A,M) + d(B,M) + d(C,M), where A, B, and C are three given
genomes and d(·, ·) is a distance metric that measures how far apart two genomes
are, and is commonly chosen to correlate with evolutionary time. In this paper,
we present a polynomial-time algorithm for the computation of a median for the
rank distance. We call it a generalized median because, despite attaining a lower
c© Springer Nature Switzerland AG 2018
M. Blanchette and A. Ouangraoua (Eds.): RECOMB-CG 2018, LNBI 11183, pp. 3–27, 2018.
https://doi.org/10.1007/978-3-030-00834-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00834-5_1&domain=pdf


4 L. Chindelevitch and J. Meidanis

bound on the best score with respect to the rank distance, it may not be a genome
in all cases. However, we report on experiments that show that the median is
genomic in the majority of the cases we examined, including real genomes and
artificial genomes created by simulation, and when it is not, a genome close to
the median can be found via an efficient post-processing heuristic.

This result is a significant improvement on the first algorithm for generalized
medians with respect to the rank distance, which makes it fast enough to be used
on real genomes, with thousands of genes. Our experiments deal with genomes
with up to 1000 genes, but the measured running times of the algorithm and
their extrapolation suggest that reaching tens of thousands of genes is feasible.

Our work builds upon a recent result from our group that shows the first
polynomial-time algorithm for rank medians of orthogonal matrices [1], deliver-
ing an alternative specific to genomes which avoids any floating-point conver-
gence issues, guarantees the desirable properties of symmetry and majority adja-
cency/telomere conservation, and provides a speed-up from Θ(n1+ω) to Θ(nω)
in the worst case, where ω is the exponent of matrix multiplication known to be
less than 2.38 [2], but close to 3 on practical instances. Prior to this result, there
were fast, polynomial-time median algorithms for simpler distances, such as the
breakpoint distance [3] and the SCJ distance [4]. In contrast, for more sophis-
ticated distances such as the inversion distance [5] and the DCJ distance [3],
the median problem is NP-hard, meaning that it is very unlikely that fast algo-
rithms for it exist. The rank distance is equal to twice the algebraic distance [6],
which in turn is very close to the widely used DCJ distance [7]. More specif-
ically, it assigns a weight of 1 to cuts and joins, and a weight of 2 to double
swaps; it is known that the rank distance equals the total weight of the smallest
sequence of operations transforming one genome into another under this weight-
ing scheme [8]. Therefore, it is fair to place the rank distance among the more
sophisticated distances, that take into account rearrangements such as inver-
sions, translocations, and transpositions, with weights that correlate with their
relative frequency.

A more complete distance will also take into account content-changing events,
such as duplications, gene gain and loss, etc. We hope that our contribution
provides significant insight towards studies of more complex genome distances.

1.1 Definitions

Let n ∈ N be an integer and let R
n×n be the set of n × n matrices with entries

in R. Following [6], we say that a matrix M is genomic when it is:

– binary, i.e. Mij ∈ {0, 1} ∀ i, j
– orthogonal, i.e. MT = M−1 (so the columns of M are pairwise orthogonal)
– symmetric, i.e. MT = M (so Mij = Mji ∀ i, j)

Strictly speaking, n must be even for a genomic matrix, because n is the
number of gene extremities, and each gene contributes two extremities, its head
and its tail [6]. However, most of our results apply equally well to all integers n.
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A genomic matrix M defines a permutation π via the relationship

π(i) = j ⇐⇒ Mi,j = 1.

It is easy to see that the permutation π corresponding to a genomic matrix
is a product of disjoint cycles of length 1 and 2. The cycles of length 1 corre-
spond to telomeres while the cycles of length 2 correspond to adjacencies. The
correspondence between a genome G and a genomic matrix M is defined by

Mi,j = 1 ⇐⇒ i �= j and (i, j) is an adjacency in G, or
i = j and i is a telomere in G.

1.2 Rank Distance

The rank distance d(·, ·) [9] is defined on R
n×n via

d(A,B) = r(A − B),

where r(X) is the rank of the matrix X, defined as the dimension of the image
(or column space) of X and denoted im(X). This distance is a metric and is
equivalent to the Cayley distance between the corresponding permutations when
A and B are both permutation matrices [1,6].

The relevance of the rank distance for genome comparison stems from the
fact that some of the most frequent genome rearrangements occurring in genome
evolution, such as inversions, transpositions, translocations, fissions and fusions,
correspond to a perturbation of a very low rank (between 1 and 4, depending
on the operation) of the starting genomic matrix. This suggests that the rank
distance may be a good indicator of the amount of evolution that separates two
genomic matrices. We previously reviewed its relationship to other distances [1].

1.3 The Median Problem and Invariants

Given three matrices A,B,C, the median M is defined as a global minimizer of
the score function d(M ;A,B,C) := d(A,M) + d(B,M) + d(C,M).

In previous work we identified three important invariants for the median-of-
three problem. The first invariant is defined as:

β(A,B,C) :=
1
2
[d(A,B) + d(B,C) + d(C,A)].

This invariant is known to be integral if A, B, and C are orthogonal matrices,
which include genomic matrices and permutation matrices as special cases [1].

The first invariant is also a lower bound for the score: d(M ;A,B,C) ≥
β(A,B,C), with equality if and only if

d(X,M) + d(M,Y ) = d(X,Y ) for any distinct X,Y ∈ {A,B,C}. (1)
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The second invariant is the dimension of the “triple agreement” subspace [1]:

α(A,B,C) := dim(V1), where V1 := {x ∈ R
n|Ax = Bx = Cx}. (2)

Finally, the third invariant combines the first two with the dimension n:

δ(A,B,C) := α(A,B,C) + β(A,B,C) − n. (3)

This invariant is known to be non-negative if A, B, and C are orthogo-
nal [1]. We therefore call it the deficiency of A,B and C, by analogy with the
deficiency of a chemical reaction network defined in the work of Horn, Jackson
and Feinberg [10]. We recall here our “deficiency zero theorem” for medians of
permutations [1].

Theorem 1 (Deficiency Zero Theorem). Let A,B,C be permutations with
δ(A,B,C) = 0. Then the median is unique, and can be found in O(n2) time.

1.4 The Five Subspaces and Their Dimensions

The inputs of a median-of-three problem partition R
n into five subspaces [6],

which we describe in this section.
The “triple agreement” subspace V1 = V (.A.B.C.) is defined in Eq. (2), and

is the subspace of all vectors on which all three matrices agree. Its dimension is
α(A,B,C), by definition.

The subspace V2 := V (.AB.C.) ∩ V ⊥
1 is defined via V1 and the subspace

V (.AB.C) := {x ∈ R
n|Ax = Bx}.

The dimension of V (.AB.C) is precisely c(ρ−1σ), where ρ and σ are the permu-
tations corresponding to A and B, respectively, and c(π) is the number of cycles
(including fixed points) in a permutation π. This follows from this observation:

Ax = Bx ⇐⇒ A−1Bx = x ⇐⇒ x is constant on every cycle of ρ−1σ. (4)

Since V1 ⊆ V (.AB.C), it follows that a basis of V1 can be extended to a basis
of V (.AB.C) with vectors orthogonal to those spanning V1, so that

dim(V2) = dim(V (.AB.C.) ∩ V ⊥
1 ) = dim(V (.AB.C.) − dim(V1) = c(ρ−1σ) − α.

We can apply a similar reasoning to the subspaces V3 := V (.A.BC.) ∩ V ⊥
1

and V4 := V (.AC.B) ∩ V ⊥
1 , where V (.A.BC.) := {x ∈ R

n|Bx = Cx} and
V (.AC.B) := {x ∈ R

n|Cx = Ax}, to get

dim(V2) = c(ρ−1σ) − α; dim(V3) = c(σ−1τ) − α; dim(V4) = c(τ−1ρ) − α,

where τ is the permutation corresponding to C.
It was shown by Pereira Zanetti et al. [6] that

R
n = V1 ⊕ V2 ⊕ V3 ⊕ V4 ⊕ V5, (5)
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where V5 is the subspace orthogonal to the sum of the other four subspaces, and
the ⊕ notation represents a direct sum, i.e. Vi∩Vj = {0} whenever 1 ≤ i < j ≤ 5.
For each 1 ≤ j ≤ 5, we also define the projector Pj , as the projector onto Vj

along ⊕i�=jVi. After that Eq. (5) can also be equivalently written as
∑5

j=1 Pj = I.
Since V5 is the last term in the direct sum decomposition of Rn, we get that

dim(V5) = n −
4∑

i=1

dim(Vi) = n + 2α − (c(ρ−1σ) + c(σ−1τ) + c(τ−1ρ))

= n + 2α(A,B,C) − (3n − 2β(A,B,C)) = 2(α + β − n) = 2δ(A,B,C).

1.5 A Specific Example

Let us now look at a specific example (which is one of our simulated inputs). To
save space, we write a genome as a permutation in cycle notation, with singletons
omitted, and use hexadecimal notation for numbers exceeding a single digit. Let

A = (24)(39)(68)(ab), B = (27)(38)(45)(69)(ab), C = (23)(45)(67)(89)(ab).

We use n = 12 although c is a singleton in all inputs. First note that AB =
(2745)(36)(89), BC = (286)(379), and CA = (25438769), so α(A,B,C) = 5
because the triple agreement space is spanned by the indicator vectors of the sets
{1}, {2, 3, 4, 5, 6, 7, 8, 9}, {a}, {b}, {c}. Furthermore, by counting the cycles in the
products above we get d(A,B) = 5, d(B,C) = 4, d(C,A) = 7, so β(A,B,C) = 8
and δ(A,B,C) = 1. The dimensions of the subspaces V1 through V5 are thus 5,
2, 3, 0, and 2.

We note that we can ignore the common telomeres 1 and c as well as the
common adjacency (ab) because we can assume they will be present in a median
(see Theorem 1 in [6]). Thus, we can simplify our example by adding the known
adjacencies and telomeres to the median and removing them from the input.
After renumbering the remaining extremities from 1 to 8, the input becomes

A′ = (13)(28)(57), B′ = (16)(27)(34)(58), C ′ = (12)(34)(56)(78).

Now the invariants get reduced to α(A′, B′, C ′) = 1, β(A′, B′, C ′) = 8, δ(A′, B′, C ′)
= 1 and the subspace dimensions become 1, 2, 3, 0, and 2, respectively.

1.6 Highlights for Small n

To gain insight into the median problem, we scrutinized the problem of com-
puting the median for all genomic matrices for n = 3 to n = 8. For each n,
we classified the input matrices in a number of equivalent cases. For n = 3 and
n = 4, we computed all the medians for all cases. For n = 5 and higher, we
concentrated on the cases with positive deficiency δ, given that cases with δ = 0
are easy (Theorem 1). We tested an algorithm, which we call algorithm A, that
is a modification of the algorithm in [6] where M agrees with the corresponding
input on the 4 “agreement subspaces”, but mimics the identity matrix on the
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subspace V5. More specifically, Algorithm A, given genomic matrices A, B, and
C, returns matrix MI defined as follows:

MI(v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Av if v ∈ V1

Av if v ∈ V2

Bv if v ∈ V3

Cv if v ∈ V4

v if v ∈ V5

where the subspaces V1, . . . , V5 were defined in Sect. 1.4.
We observed that in all cases we examined the result MI was an orthogonal

matrix, and algorithm A was able to find a median attaining the lower bound
β(A,B,C). In cases where the median is not unique and we computed all the
medians, we observed that all the medians M satisfy an equation of the form

(M − O)(M − O)T = R,

for suitable matrices O and R of size n × n depending only on A, B and C,
meaning that the medians lie on a “circle” in matrix space. We provide a detailed
example in the Appendix and conjecture that such relationships hold for all
triplets of genomic matrices A,B and C.

2 MI and Its Computation

Following our experiments with algorithm A, we conjectured — and proved
— that it always produces a median when the inputs are genomic matrices.
Furthermore, we proved that this median is always orthogonal, symmetric, and
has rows and columns that add up to 1. It also contains only rational entries, and
in our experiments, these entries are 0 and 1 most of the time, meaning that the
median produced by algorithm A is actually genomic. For the few cases when
this property does not hold, we introduce two heuristics in the next section.

The rest of this section is organized as follows: we begin by defining MI ,
the output of algorithm A, and provide sufficient conditions for its optimality in
Sect. 2.1. We prove its symmetry in Sect. 2.2 and its orthogonality in Sect. 2.3.
We sketch the proof of its optimality in Sect. 2.4, providing the complete version
in the Appendix. We prove a result showing that MI contains any adjacencies
and telomeres common to at least two of the three input genomes in Sect. 2.5.
Lastly, we discuss how to compute MI efficiently in Sect. 2.6.

2.1 Definition of MI and Sufficient Conditions for Optimality

We start with a general result on matrices that mimic the majority of inputs in
V1 through V4, and mimic a certain matrix Z in V5.
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Definition 1. Let A,B,C be permutation matrices of size n, and let Z be a
fixed matrix of size n. As above, let V1 through V5 be the 5 subspaces in the
direct sum decomposition of Rn induced by A,B,C, and let Pj be the projector
onto Vj for 1 ≤ j ≤ 5. We define MZ := AP1 + AP2 + BP3 + CP4 + ZP5 as
the matrix that agrees with the corresponding inputs on the “agreement spaces”
V1, V2, V3, V4 and acts by the operator Z on the“disagreement space” V5.

Definition 2. Let A,B,C be permutation matrices, and let Z be a fixed matrix,
and let V1 through V5 be the 5 subspaces in the direct sum decomposition of Rn

induced by A,B,C. We define V A
Z := {x+y|x ∈ V3, y ∈ V5, A(x+y) = Bx+Zy},

and similarly, V B
Z := {x + y|x ∈ V4, y ∈ V5, B(x + y) = Cx + Zy} and V C

Z :=
{x + y|x ∈ V2, y ∈ V5, C(x + y) = Ax + Zy}.
Lemma 1. Let MZ be the matrix in Definition 1 and let V A

Z , V B
Z , V C

Z be
the subspaces in Definition 2. Then the score of MZ with respect to A,B,C
is s(MZ) := β(A,B,C) + 3δ(A,B,C) − (dim(V A

Z ) + dim(V B
Z ) + dim(V C

Z )).

Proof. Recall Eq. (5): Rn =
⊕5

i=1 Vi. By construction, MZ agrees with A on the
subspaces V1, V2, V4 so those do not contribute to the rank of MZ −A. Therefore,
by the rank plus nullity theorem,

d(MZ , A) = dim(V3) + dim(V5) − dim{z ∈ V3 + V5|Az = MZz}.

However, the space whose dimension is subtracted can also be rewritten as

{z = x + y|x ∈ V3, y ∈ V5, A(x + y) = Bx + Zy} =: V A
Z ,

since MZ acts by B on V3 and by Z on V5, by Definition 1. We combine this
result with similar results for B and C to deduce that

d(MZ , A) = dim(V3) + dim(V5) − dim(V A
Z ); (6)

d(MZ , B) = dim(V4) + dim(V5) − dim(V B
Z ); (7)

d(MZ , C) = dim(V2) + dim(V5) − dim(V C
Z ). (8)

By adding these up and using the fact that dim(V5) = 2δ(A,B,C) and dim(V2)+
dim(V3)+dim(V4) = n−dim(V5)−α(A,B,C) we obtain the desired conclusion.

Lemma 2. The median candidate MZ from lemma 1 attains the lower bound if
and only if dim(V A

Z ) = dim(V B
Z ) = dim(V C

Z ) = δ(A,B,C).

Proof. We start by considering Eq. (6) in the proof of lemma 1, since the other
two are analogous. By the necessary conditions for optimality in Eq. (1),

d(MZ , A) = β(A,B,C) − d(B,C) = β(A,B,C) − (n − c(σ−1τ)). (9)

On the other hand, we have dim(V3) = c(σ−1τ) − α(A,B,C) and dim(V5) =
2δ(A,B,C), so by combining Eq. (6) with Eq. (9) we obtain

dim(V A
Z ) = dim(V3) + dim(V5) − d(MZ , A)

= β(A,B,C) + α(A,B,C) − n

= δ(A,B,C).
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For the sufficiency, it is enough to check that when all three spaces have this
dimension, then s(MZ) = β(A,B,C), which follows immediately from lemma 1.

2.2 Symmetry of MI

We first define a new term that we call an M -stable subspace; this is closely
related to the notion of an M -invariant subspace [11], which is a subspace V
such that MV ⊆ V , but with the additional specification that the dimensions
are preserved. More specifically, we propose the following

Definition 3. Let M be an invertible n × n matrix and let V be a subspace of
R

n. Then V is an M -stable subspace if and only if MV = V .

We have the following properties that we prove in the Appendix:

Theorem 2. Let M and N be invertible matrices. Then

a. If V,W are two M -stable subspaces, then so are V ∩ W and V + W .
b. If M is symmetric and V is an M -stable subspace, then so is V ⊥.
c. If M2 = I = N2 then the subspace {x|Mx = Nx} is M -stable and N -stable.

An easy but useful consequence of this theorem is the following

Lemma 3. Let A,B,C be involutions. Then the subspace V1 is A-stable, B-
stable and C-stable; the subspace V2 is A-stable and B-stable; the subspace V3 is
B-stable and C-stable; and the subspace V4 is A-stable and C-stable.

Proof. We begin by showing that V1 is A-stable. Indeed, V1 = {x|Ax = Bx =
Cx} = {x|Ax = Bx} ∩ {x|Ax = Cx} is the intersection of two subspaces, each
of which is A-stable by part c of Theorem 2, and therefore is itself A-stable by
part a. The fact that it is also B-stable and C-stable follows by symmetry.

Similarly, V2 = {x|Ax = Bx} ∩ V ⊥
1 is the intersection of two subspaces that

are A-stable by parts c and b of Theorem 2, respectively, and so is A-stable itself
by part a. By symmetry, V2 is also B-stable, and the same reasoning applied to
V3 and V4 shows that they are stable for the two involutions defining them.

Theorem 3. MI is always symmetric for involutions A, B and C.

Proof. To prove the symmetry of an n×n matrix M , it is sufficient to show that

xT My = yT Mx ∀ x, y ∈ R
n (10)

By linearity, it is enough to show this for a set of basis vectors of Rn. We
choose the basis of Rn to be the union of the bases for the subspaces Vi for i = 1
to i = 5. Now Lemma 3 shows that for any of these subspaces, x ∈ Vi implies
MIx ∈ Vi. Indeed, this is clear for i = 1 to i = 4, since the corresponding vector
gets projected into its own subspace Vi and then acted on by an involution that
fixes Vi. This is also clear for i = 5 since any vector in V5 is fixed by MI .

Suppose first that x, y be two vectors from different subspaces, say x ∈ Vi, y ∈
Vj , with i < j without loss of generality; then we have three cases to consider.
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Case (A) i = 1 and j ∈ {2, 3, 4, 5}; since V1 and Vj are mutually orthogonal,
we have xT MIy = 0 = yT MIx, since MIx ∈ V1 and MIy ∈ Vj by the
result above.

Case (B) i ∈ {2, 3, 4} and j = 5; since Vi and V5 are mutually orthogonal, we
have xT MIy = 0 = yT MIx, since MIx ∈ Vi and MIy ∈ V5 by the
result above.

Case (C) i ∈ {2, 3, 4} and j ∈ {2, 3, 4} − {i}; we consider the case i = 2 and
j = 3, as the others follow by symmetry. Since MI = B on both V2

as well as V3,

xT (MIy) = xT (By) = xT BT y = (Bx)T y = 〈Bx, y〉 = yT (Bx) = yT (MIx).

Now, suppose that x, y are two vectors from the same subspace, say x, y ∈ Vi.
In this case, the matrix MI acts on Vi via a symmetric matrix, and the same
argument as in the previous equation shows equality, proving the desired result.

2.3 Orthogonality of MI

Theorem 4. MI is always orthogonal for involutions A, B, and C.

The proof proceeds along very similar lines to the proof that MI is symmetric,
and is provided in the Appendix.

2.4 Optimality of MI

To show the optimality of MI , it suffices to show that dim(V C
I ) ≥ δ(A,B,C),

since symmetry implies that the same holds for dim(V A
I ) and dim(V B

I ), and
then Lemma 1 shows that MI is a median because it achieves the lower bound.

Recall that the definition of V C
I asks for vectors x + y such that x is in V2, y

is in V5, and C(x+y) = Ax+y, or (C −A)x+(C − I)y = 0. The main idea is to
show that it is enough to restrict ourselves to vectors x such that (A − I)x = 0,
meaning that the equation simply becomes (C − I)(x + y) = 0. The full details
are provided in the Appendix.

2.5 Conservation of Common Adjacencies and Telomeres

We say that an adjacency i, j is present in a matrix M if Mij = 1 = Mji,
Mkj = 0 = Mjk for any k �= i, and Mik = 0 = Mki for any k �= j. Similarly, we
say that a telomere i is present in a matrix M if Mii = 1 and Mik = 0 = Mki

for any k �= i. In other words, the association of i to j (for an adjacency) or
to i (for a telomere) is unambiguous according to M . We now show that any
adjacencies or telomeres common to 2 of 3 input genomes are present in any
orthogonal median of three genomes, including MI .

Theorem 5. Let A,B,C be three genomic matrices with median M . If Aij =
1 = Bij for some i, j, then Mij = 1 = Mji, Mkj = 0 ∀ k �= i, and Mki =
0 ∀ k �= j.
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Proof. By optimality of MI shown in the previous section, any median M of three
genomes attains the lower bound β(A,B,C) on the score. Hence, by Eq. (1) it
must satisfy d(A,M) + d(M,B) = d(A,B). By corollary 1 in [1] it follows that
for any vector x with Ax = Bx, we also have Mx = Ax. We have two cases:

Case (A) i = j; then, taking x = ei, the i-th standard basis vector, we get that
Ax = Bx = x, so Mx = x as well. It follows that the i-th column of
M is ei, so that Mij = Mii = Mji = 1 and Mkj = Mki = 0 ∀ k �= i,
as required.

Case (B) i �= j; then taking x = ei+ej and y = ei−ej , we get that Ax = Bx = x
and Ay = By = −y, so that Mx = x and My = −y as well. By
linearity, we take the half-sum and half-difference of these equations
to get Mei = ej and Mej = ei. The first of these implies that Mij = 1
and Mkj = 0 ∀ k �= i, while the second one implies that Mji = 1 and
Mki = 0 ∀ k �= j, as required.

Corollary 1. If M is an orthogonal median of genomic matrices A,B,C, and
Aij = 1 = Bij for some pair i, j, then Mjk = 0 ∀ k �= i. In particular, any
adjacency or telomere common to 2 out of 3 input genomes is present in MI .

Proof. The first statement follows immediately from Theorem 5 and orthogonal-
ity. The second statement is clear for telomeres, and follows for adjacencies since
an adjacency i, j is common to A and B if and only if Aij = Bij = 1 = Bji = Aji.

2.6 Computation of MI

In order to compute MI we need the projection matrices Pj , which require a
basis matrix Bj for each of the spaces Vj , for 1 ≤ j ≤ 5, as well as a nullspace
matrix Nj for 2 ≤ j ≤ 4 [6]. However, it turns out that we can dispense with the
nullspace matrices altogether and bypass the computation of B5, which tends to
be complicated, by using column-wise matrix concatenation [·, ·] and the follow-
ing formula:

MI = I + ([AB1, AB2, BB3, CB4] − B14)(BT
14B14)−1BT

14, (11)

where B14 := [B1, B2, B3, B4].
To verify this equation, it suffices to check that the right-hand side agrees

with MI on the basis vectors of each subspace Vj , for 1 ≤ j ≤ 5. This is clear
for V5 since BT

14x = 0 ∀ x ∈ V5, and is also true for the basis vectors of Vj for
1 ≤ j ≤ 4 since Eq. (11) implies that MIB14 = [AB1, AB2, BB3, CB4].

It is easy to compute a basis B1 for the triple agreement space V1. Indeed,
we note that, by Eq. (4),

x ∈ V1 ⇐⇒ Ax = Bx = Cx

⇐⇒ x is constant on the cycles of ρ−1σ and σ−1τ,

where ρ, σ, τ are the permutations corresponding to A,B,C, respectively. The
computation of ρ−1σ and σ−1τ takes O(n) time, and V1 is spanned by the



Polynomial-Time Algorithm for Rank Median 13

indicator vectors of the weakly connected components of the union of their graph
representations (the graph representation of a permutation π ∈ Sn has a vertex
for each i for 1 ≤ i ≤ n, and a directed edge from i to π(i) for each i). Note that
the basis vectors in B1 are orthogonal because their supports are disjoint. We
refer to this basis as the standard basis of V1.

Likewise, by Eq. (4), a basis B2 for the space V2 can be computed by deter-
mining the cycles of ρ−1σ and subtracting the orthogonal projection onto the
α(A,B,C) standard basis vectors of B1 from the indicator vector χ(C) of each
cycle C. We refer to the resulting basis as the standard basis of V2.

The same construction can be applied to B3 and B4, and the overall compu-
tation of B1 through B4 takes O(n2) time. Thus, the most time-consuming step
is inverting BT

14B14 in (11), which requires O(nω) time, or O(n3) in practice.
In our running example, with A′ = (13)(28)(57), B′ = (16)(27)(34)(58), C ′ =

(12)(34)(56)(78), using the notation ei for the ith standard basis and e for the
vector of all 1’s, we end up with the bases B1 = {e}, B2 = {e2 + e5 − e/4, e7 +
e8 − e/4}, B3 = {e1 + e5 + e7 − 3e/8, e3 − e/8, e4 − e/8}, B4 = {0}, so by (11),

MI =
1
6

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4 2 0 0 −2 2 −2 2
2 1 0 0 −1 −2 5 1
0 0 0 6 0 0 0 0
0 0 6 0 0 0 0 0

−2 −1 0 0 1 2 1 5
2 −2 0 0 2 4 2 −2

−2 5 0 0 1 2 1 −1
2 1 0 0 5 −2 −1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

MI it is both symmetric, in agreement with Theorem 3, and orthogonal, in
agreement with Theorem 4, although it is certainly not genomic. Furthermore, it
contains the adjacency (34) common to B′ and C ′, in agreement with Corollary 1.
The process of turning it into a genome is the subject of the following section.

3 From Matrices Back to Genomes

In this section we describe the two heuristics for extracting back a genome from
a symmetric median, in cases when this median is not itself a genomic matrix.
The first one is an improvement of the one proposed by Pereira Zanetti et al. [6],
while the second one is a brute-force approach only applicable in certain cases.

3.1 The First Heuristic: Maximum-Weight Matching

Let M be a symmetric median to be transformed back into a genome. Since a
genome can also be seen as a matching on the extremities of the genes involved,
we can construct a weighted graph H with a weight of |Mij |+ |Mji| = 2|Mij | on
the edge from i to j, provided this weight exceeds ε = 10−6, a bound introduced
to avoid numerically insignificant values. We modify this by also adding self-
loops to H with weight |Mii|, so that those extremities i with a high value of
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|Mii| can be encouraged to form a telomere. We then extract a maximum-weight
matching of H by using an implementation of the Blossom algorithm [12]. More
specifically, we used the NetworkX package [15] in Python [14], which in turn is
based on a detalied paper by Galil [13]. This implementation runs in O(mn log n)
time for a graph with n nodes and m edges, or in O(n3) time for dense graphs.

In our running example, the maximum-weight matching is obvious by inspec-
tion (in fact, the greedy algorithm yields the optimum matching), and is
M = (34)(27)(58). Unfortunately, its score, 10, exceeds the lower bound β = 8.

3.2 The Second Heuristic: The Closest Genome by Rank Distance

Let R be the set of rows of a symmetric, orthogonal median M that contain at
least one non-integer entry; by symmetry, this is the same as the set of columns
that contain at least one non-integer entry. Note that M cannot contain a −1
value since otherwise, we would have the rest of the row equal to 0 by ortho-
gonality, and its sum would then be -1 instead of 1 (as it must be in order to
satisfy the lower bound: A1 = B1 = 1, so M1 = 1 as well, by corollary 1 in [1]).
Hence, M must be binary outside of the rows and columns indexed by R.

We consider the matrix MR := M [R,R], i.e. the square submatrix of M with
rows and columns indexed by R. We would like to find the genomic matrix G
closest to MR in rank distance and replace MR with G to obtain a candidate
genome (since the rest of M contains only integers, and M is symmetric, the
closest genome to all of M will agreed with M there).

We create an auxiliary graph H with a node for each element of R and an
undirected edge between i and j if and only if MR

ij �= 0. Let C1, . . . , Ck denote
the connected components of H. Our heuristic consists in restricting the search
to block-diagonal genomes with blocks determined by C1, . . . , Ck. This can be
done in an exhaustive manner if each block has size at most n = 10, in which
case there are only 9, 496 genomes to check. This can be done reasonably fast,
in fact, under a second on a modern laptop running R [17]; larger sizes, such as
n = 12 with over 140, 000 genomes to check, already take substantially longer.

In our running example, we take R = [1, 2, 5, 6, 7, 8]. There is a single block.
We compute that, out of the 76 possible genomes with n = 6, only one is at
rank distance 1 from MR, namely, M = (14)(25)(36), which, after renumbering
it according to R and adding back the adjacency (34), gives us (16)(27)(34)(58),
which happens to be B′. It gets a score of 9 with the reduced inputs A′, B′, C ′.
Although this still exceeds the lower bound β = 8, an exhaustive check reveals
that M is one of the three best-scoring genomes, the other two being M ′ =
(16)(28)(34)(57) and M ′′ = (16)(25)(34)(78). Thus, in this example our second
heuristic works better than the first one and, in fact, finds a genomic median.

4 Experiments

We tested our algorithm A, as well as the two heuristics described in the previous
section, on simulated and real data. For our simulations, we started from a
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random genome with n genes, for n varying from 12 to 1000, and applied rn
random rearrangement operations to obtain the three input genomes, with r
ranging from 0.05 to 0.3, and the rearrangement operations were chosen to be
either SCJ (single cut-or-join) [4] or DCJ (double cut-and-join) [16] operations.
In both cases the operations are chosen uniformly at random among the possible
ones, as described in previous work [6]. For each combination of n and r we
generated 10 samples, for a total of 600 samples for each of SCJ and DCJ.

For the real data, we selected a dataset containing 13 plants from the Cam-
panulaceæ family, with the gene order for n = 210 gene extremities (i.e. 105
genes) each, and created all possible triples for a total of 286 inputs. We present
a summary of our results in the next subsections.

4.1 Results on the SCJ Samples

Perhaps because the SCJ rearrangements involve smaller rank distances, the
SCJ samples turned out to be particularly easy to process. It turned out that all
but 19 (or ≈ 3%) of them actually had δ = 0, and all but 5 (or ≈ 1%) of them
had a median MI that was genomic. Of these 5 cases, 4 had a submatrix MR

of size n = 4 with all the entries equal to ± 1
2 , and one had a submatrix MR of

size n = 6 with 2
3 in each diagonal entry and ± 1

3 in each off-diagonal entry.
For those 5 inputs, both the maximum matching as well as the closest genome

heuristics resulted in the same conclusion, namely, that all possible genomes had
the exact same distance from MR, equal to the size of R (i.e. the maximum
possible rank), and all matchings had the same score. Nevertheless, the solution
produced by the maximum matching heuristic (picked arbitrarily among many
possible matchings), namely, the one in which every element of R was a telomere,
always scored β + 1 with the original inputs, which was the best possible score
among all genomes in every case.

4.2 Results on the DCJ Samples

The situation was more complex with the DCJ samples, as 424 out of 600 sam-
ples, or more than 70%, had δ > 0, and for 337 out of 600, or more than 56%,
MI had some fractional entries. Unsurprisingly, there was an increasing trend
for the proportion of medians MI with fractional entries as a function of both n
and r. The matching heuristic did not produce very good results, with the score
of the resulting genome exceeding the lower bound β by a value in the range
from 1 to 173, with a mean of 19.

The submatrices MR varied in size from 4 to 354, with a mean size of 64.
Nevertheless, over 40% all the fractional cases (135 out of 337) had the largest
connected component of size at most 10, so the closest genome heuristic was
applicable to them. For those that it was applicable to, the closest genome
heuristic produced relatively good results, with the score of the resulting genome
exceeding the lower bound β by a value in the range from 0 to 21, including one
exact match, with a mean of just under 3. It appears that the closest genome
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heuristic generally exhibits a better performance than the maximum matching
heuristic, but is applicable in a smaller number of cases.

4.3 Results on the Campanulaceæ Dataset

We construct all 286 possible distinct triples of the 13 genomes on n = 210
extremities present in our dataset. Out of these, 189 (or 66%) have δ = 0 and
165 (or 58%) have a genomic median MI . For the remaining ones we apply the
two heuristics to determine the best one in terms of the score.

The matching heuristic produced reasonable results this time, with deviations
from β ranging from 1 to 12, and a mean of just over 4. The submatrices MR

varied in size from 4 to 22, with a mean size of 9. Nearly two-thirds of them
(79/121) had the largest connected component of size at most 10, so the closest
genome heuristic was applicable to them. Among those, the deviations from β
ranged from 1 to 4, with a mean of just over 2. Once again, the closest genome
heuristic performed better, but was applicable to a smaller number of cases.

4.4 Running Times

The average running time for DCJ samples with δ > 0 of size 100, 300 and 1000,
respectively was 0.04, 0.07 and 0.45 s, suggesting a slightly sub-cubic running
time; indeed, the best-fitting power law function of the form f(x) = axb had
b ≈ 2.97. Both post-processing heuristics were similarly fast to apply, taking an
average of 0.5 s for the closest genome and 0.7 s for the maximum matching per
instance of the largest size, n = 1000. The computations were even faster for
SCJ samples and real data. By extrapolating these running times, we expect
that even much larger instances, with, n ≈ 104, would still run in minutes. We
performed all our experiments in the R computing language [17] on a single Mac
laptop with a 2.8 GHz Intel Core i7 processor and 16 GB of memory.

5 Conclusions

In this work we presented the first polynomial-time exact solution of the median-
of-three problem for genomes under the rank distance. Although the result-
ing median is only guaranteed to be symmetric and orthogonal, not binary, we
observed that it frequently happens to be binary (i.e. genomic) with both sim-
ulated and real data. For the cases when it is not, we presented two effective
heuristics for trying to find the genome closest to the median, and showed that
they tend to produce good results in practice.

Despite this important step forward, the fundamental problem of finding the
genomic median of three genomic matrices, or, more generally, the permutation
median of three permutation matrices, remains open. The additional question of
discovering a faster algorithm for the generalized rank median of three genomes
(i.e. when there are no restrictions on it being binary) is also open - we conjecture
that it is possible to do it in O(n2).
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In future work, we plan to explore the relationships between the rank distance
and other well-studied genome rearrangement distances such as the breakpoint
distance, DCJ, and SCJ. In addition, we intend to test the suitability of the
rank distance for phylogenetic inference, ancestral genome reconstruction, and
orthology assignment. Lastly, it would be very interesting to establish the com-
putational complexity of finding the genomic rank median of three genomes.
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Appendix

All the Medians for a Small Example

Let n = 3 and take the only triplet of distinct genomes for which δ(A,B,C) > 0,
namely, A = (12), B = (13), C = (23), i.e. each of the genomes contains a single
adjacency as well as a telomere. Note that we identify a permutation with its
corresponding matrix in this section. It is easy to see that the identity I is a
rank median, as are the two 3-cycles K = (123) and L = (132). Using the Maple
software [18] we found that all the medians can be written as a subset of the
linear combinations of these three “basic” solutions. More precisely,

M := {aI + bK + cL|a + b + c = 1 = a2 + b2 + c2}
is the exact description of all the rank medians. It is easy to see (from the
properties of the corresponding permutations) that

I2 = IT = I, L2 = LT = K, K2 = KT = L, KL = LK = I. (12)

Now let J := 1
3 [1, 1, 1]T [1, 1, 1] be the normalized matrix of all 1’s and let

N := I − J . Note that J2 = JT = J and N2 = NT = N ; in fact, these two
matrices are complementary orthogonal projections. Then it is easy to check,
using Eq. (12), that the set of medians M is a subset of the matrices satisfying
the equation

(M − J)(M − J)T = N,

which is indeed the equation of a circle in matrix space. Note, however, that this
equation is also satisfied by non-median matrices, including all those in the set

N := {aA + bB + cC|a + b + c = 1 = a2 + b2 + c2}.

Proof of Theorem 2

Proof. Note that, because of the invertibility of M , to prove that V is M -stable
it is sufficient to show that MV ⊆ V .
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a. If V,W are two M -stable subspaces, let u ∈ V ∩ W . Then u ∈ V and u ∈ W ,
so Mu ∈ V and Mu ∈ W , and therefore Mu ∈ V ∩ W . Hence M(V ∩ W ) ⊆
V ∩ W , and V ∩ W is M -stable.
Similarly, let u ∈ V + W . Then u = v + w with v ∈ V,w ∈ W , so Mu =
Mv + Mw ∈ V + W , so M(V + W ) ⊆ V + W , and V + W is M -stable.

b. Suppose M is symmetric and V is an M -stable subspace. Let u ∈ V ⊥, so that
uT v = 0 for any v ∈ V . Let w = Mv; by hypothesis, w ∈ V , so that

(Mu)T v = uT MT v = uT Mv = uT w = 0

since w ∈ V . However, v ∈ V was chosen arbitrarily, and therefore Mu ∈
V ⊥ ∀ u ∈ V ⊥, meaning that MV ⊥ ⊆ V ⊥, and V ⊥ is indeed M -stable.

c. If M2 = I = N2, let x be such that Mx = Nx. Then

M(Mx) = Ix = x = N(Nx) = N(Mx),

so that Mx is also in the desired subspace {x|Mx = Nx}, meaning that it is
M -stable. By symmetry, it is also N -stable, completing the proof.

Proof that MI is Orthogonal for Genomes A, B, C

Proof. First, we recall that a matrix M is orthogonal if and only if

(Mx)T (My) = xT y ∀ x, y ∈ R
n. (13)

Second, it is sufficient to prove that Eq. (13) holds for any pair of vectors in
a basis B = {v1, . . . , vn} of Rn. We take B to be the union of the bases for the
subspaces Vi for i = 1 to i = 5, and consider different cases, once again using the
fact that MI maps vectors in each Vi into other vectors in Vi, which follows from
Lemma 3 and the fact that MI fixes each vector in V5. If x ∈ Vi, y ∈ Vj with
i �= j, without loss of generality i < j, then there are three cases to consider.

Case (A) i = 1 and j ∈ {2, 3, 4, 5}; since V1 and Vj are mutually orthogonal, we
have (MIx)T (MIy) = 0 = xT y, since MIx ∈ V1 and MIy ∈ Vj .

Case (B) i ∈ {2, 3, 4} and j = 5; since Vi and V5 are mutually orthogonal, we
have (MIx)T (MIy) = 0 = xT y, since MIx ∈ Vi and MIy ∈ V5.

Case (C) i ∈ {2, 3, 4} and j ∈ {2, 3, 4} − {i}; we consider the case i = 2 and
j = 3, as the others follow by symmetry. Since MI = B on both V2

as well as V3

(MIx)T (MIy) = (Bx)T (By) = xT BT By = xT Iy = xT y.

Now, suppose that x, y are two vectors from the same subspace, say x, y ∈ Vi.
In this case, the matrix MI acts on Vi via an orthogonal matrix, and the same
argument as in the previous equation shows equality, proving the desired result.
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Proof that MI is a Median for Genomes A, B, C

We begin with the following three lemmas, which will be useful in the proof.

Lemma 4. If V is a vector subspace of Rn of dimension k and M is a square
matrix of size n, then MV := {Mx|x ∈ V } is a vector subspace of Rn of dimen-
sion k − d, where d := dim(ker(M) ∩ V ). Furthermore, for any two subspaces V
and W of Rn and M a square matrix of size n, M(V + W ) = MV + MW .

Proof. The first part of the statement, the fact that MV is a vector subspace of
R

n, is true because

α1M(v1) + α2M(v2) = M(α1v1 + α2v2)

for any scalars α1 and α2 in R and vectors v1 and v2 in V .
The second part can be proven as follows. Let v1, . . . , vd be a basis of ker(M)∩

V , and let us extend it to a basis of V by adding the vectors vd+1, . . . , vk. Clearly,
Mvi = 0 for each 1 ≤ i ≤ d, since Mx = 0 for any x ∈ ker(M). Furthermore,
the Mvj for d + 1 ≤ j ≤ k are linearly independent since
∑

j>d

αjMvj = M
(∑

j>d

αjvj

)
= 0 ⇐⇒

∑

j>d

αjvj ∈ ker(M) ∩ V ⇐⇒ αj = 0 ∀ j,

where the last conclusion follows from the linear independence of the basis vec-
tors v1, . . . , vk and the fact that the first d of those form a basis of ker(M) ∩ V .
Therefore, the space MV is spanned by {Mvj}j=k

j=d+1, and its dimension is k−d.
For the last part, we note that

x ∈ M(V + W ) ⇐⇒ ∃v ∈ V,w ∈ W with x = M(v + w) ⇐⇒
⇐⇒ ∃v ∈ V,w ∈ W with x = Mv + Mw ⇐⇒ x ∈ MV + MW.

Lemma 5. A is an involution on the standard basis B1 of V1 for genomes
A,B,C.

Proof. Consider the graph G containing the union of the graph representations
of the permutations AB and CA. The standard basis B1 of V1 contains the
indicator vectors of the connected components of G. We will show that these
basis vectors are either fixed or interchanged in pairs by A.

By Lemma 3, AV1 = V1. Now let Ct be a component of G, and let χ(Ct)
be its indicator vector. since χ(Ct) ∈ V1, the same is true of χ(ACt) := Aχ(Ct)
by the A-stability of V1. However, since A is a permutation, χ(ACt) is a vector
with |Ct| entries equal to 1 and n − |Ct| entries equal to 0. It follows that ACt,
the image of the elements of Ct under A, is a disjoint union of components of G.

Now we show that this disjoint union in fact contains a single component of
G. Indeed, note that the A-stability of V1 means that

(xi = xj ∀ x ∈ V1) ⇐⇒ (xρ(i) = (Ax)i = (Ax)j = xρ(j) ∀ x ∈ V1). (14)

This shows that whenever i, j belong to the same component of G, then so do
ρ(i), ρ(j). Therefore, ACt must be a single component of G for any t, and A
permutes the set of components of G by its action, so it is an involution on B1.
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Lemma 6. A is an involution on the standard basis B2 of V2 for genomes
A,B,C.

Proof. Consider the cycles of the permutation AB. The standard basis vectors of
V2 are the indicator vectors of these cycles, from which we subtract the orthog-
onal projections onto each of the vectors in V1. We will show that these basis
vectors are either fixed or interchanged in pairs by A, meaning that A is indeed
an involution on them.

By Lemma 3, AV2 = V2. Now let Ct be a cycle of AB, and let χ(Ct) be its
indicator vector; the corresponding basis vector of B2 will be given by

v := χ(Ct) −
α∑

i=1

|Ct ∩ Ci|
|Ci| χ(Ci), (15)

where the Ci are the components of the graph G defining V1. It follows that Av
is given by

Av = χ(ACt) −
α∑

i=1

|Ct ∩ Ci|
|Ci| χ(ACi).

From the proof of Lemma 5, we have |ACi| = |Ci| ∀ i. Furthermore, we have

|ACt ∩ ACi| = |A(Ct ∩ Ci)| = |Ct ∩ Ci|,

since A is a permutation. It finally follows that

Av = χ(ACt)−
α∑

i=1

|ACt ∩ ACi|
|ACi| χ(ACi) = χ(ACt)−

α∑

j=1

|ACt ∩ Cj |
|Cj | χ(Cj) (16)

where the second equality follows from the fact, shown in the proof of Lemma 5,
that A permutes the standard basis B1 of V1. Also analogously to the proof of
Lemma 5 we can show that ACt is a single cycle of AB. Indeed, it suffices to
consider Eq. (14) with V1 replaced by V1 + V2, which is also A-stable.

By combining this fact with Eqs. (15) and (16) we see that the vector Av
is the basis vector of B2 defined by the single cycle ACt. In fact, Ct and ACt

are either both equally-sized parts of an even cycle in the graph union of the
representations of A and B, or coincide and correspond to a path in that graph.

Corollary 2. Both A and B are involutions on the standard basis B2 of V2.
Similarly, both B and C are involutions on the standard basis B3 of V3, and both
A and C are involutions on the standard basis B4 of V4. These results also hold
for the subspaces ker(A−B) = V1 +V2 with basis B1 ∪B2, ker(B −C) = V1 +V3

with basis B1 ∪ B3, and ker(C − A) = V1 + V4 with basis B1 ∪ B4.

We will need two additional definitions and three additional simple lemmas.

Definition 4. Let A be a permutation on n elements. We denote by f(A) the
number of fixed points of A.
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Lemma 7. Let A be a permutation on n elements, let f(A) be as in Definition 4,
and let c(A) be the number of cycles of A. Then

f(A) ≥ 2c(A) − n,

with equality if and only if A is an involution.

Proof. The cycles counted by c(A) can be trivial (fixed points) or non-trivial
(size at least 2). There are c(A) − f(A) non-trivial cycles, and they involve
n − f(A) elements. It follows that

2(c(A) − f(A)) ≤ n − f(A) ⇐⇒ f(A) ≥ 2c(A) − n,

with equality if and only if each non-trivial cycle has size exactly 2, i.e. A is an
involution.

Definition 5. Let A and B be two involutions. Let G(A,B) be the graph union
of the representations of A and B, which contains paths and even cycles. We
define p(AB) to be the number of paths in G(A,B).

Lemma 8. Let A and B be two involutions. Then

p(AB) =
f(A) + f(B)

2
.

Proof. Let P be an arbitrary path in G(A,B). Then the endpoints of P are two
fixed points, one at either end. Since all the fixed points of A and B form the
endpoints of some path, the result follows.

Lemma 9. Let A,B,C be three involutions, and let ker(A − B) = V1 + V2 have
the basis B1 ∪ B2. Then the number of pairs of distinct basis vectors of B1 ∪ B2

that are exchanged by A (or B) is precisely c(AB)−p(AB)
2 .

Proof. We start by showing that this number is independent of the chosen basis.
Note that each pair of vectors (v, w) that are exchanged by A yield an eigenvalue
1 for v +w and an eigenvalue of −1 for v −w, while any vector u that is fixed by
A yields an eigenvalue 1. Thus, we can diagonalize A with respect to any basis on
which it is an involution, to get a number of −1 eigenvalues equal to the number
of exchanged pairs. But the algebraic multiplicity of an eigenvalue is invariant
under similarity (similar matrices have the same characteristic equation) [11], so
this number, the number of exchanged pairs, is independent of the chosen basis.

Now consider the union graph G(A,B). Each connected component in it is
either a path or an even cycle. Each path creates a single cycle in the product
AB which is fixed by A (and B). On the other hand, each even cycle splits into
a pair of equal-sized cycles in the product AB, and those are exchanged by A
(or B). Therefore, if we use the basis of ker(A − B) consisting of the indicator
vectors of the cycles of AB, the desired number of pairs is indeed c(AB)−p(AB)

2 .

We are now ready to prove our main result. We begin by proving it for the
case α = 1, and then generalize it to arbitrary α.
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Theorem 6. The matrix MI is a median of genomes A,B,C if α(A,B,C) = 1.

Let us first define V12 to be the restriction of V1 + V2 to those vectors which
are fixed by A (equivalently, B). In other words, let V12 := (V1+V2)∩ker(A−I).

We begin with the decomposition of Rn from Zanetti et al. [6], to which we
apply (C − I):

R
n = V1 + V3 + V1 + V4 + V1 + V2 + V5 ⊇ (V1 + V3) + (V1 + V4) + (V12 + V5);

(C − I)Rn ⊇ (C − I)(V1 + V3) + (C − I)(V1 + V4) + (C − I)(V12 + V5). (17)

We will show that the sum on the right-hand side of Eq. (17) is direct. We
will then compute the dimension of each term to reach the desired conclusion.

First, we show that (C − I)(V1 + V3) and (C − I)(V1 + V4) are disjoint
subspaces, so that the sum of the first two terms is direct.

Lemma 10
(C − I)(V1 + V3) ∩ (C − I)(V1 + V4) = {0}.

Proof. We reason as follows.

x ∈ (C − I)(V1 + V3) ∩ (C − I)(V1 + V4) ⇐⇒
⇐⇒ ∃v ∈ ker(B − C), w ∈ ker(C − A) s.t. (C − I)v = x = (C − I)w ⇐⇒
⇐⇒ (B − I)v = x = (A − I)w.

Now, by Lemma 3, (B−I) ker(B−C) ⊆ B ker(B−C)−ker(B−C) ⊆ ker(B−C)
by the B-stability of ker(B −C), and similarly, (A− I) ker(C −A) ⊆ ker(C −A)
by the A-stability of ker(C − A). Since x is in their intersection, we get x ∈ V1.

However, since 1T x = 1T (B − I)v = 0T v = 0, it follows that x = 0 because
when α = 1, V1 is spanned by 1, meaning that the subspaces are indeed disjoint.

We now show that the addition of the third term in Eq. (17) keeps the sum
direct.

By the same reasoning as in the proof of Lemma 10, we see that C − I maps
both V1 + V3 = ker(B − C) and V1 + V4 = ker(C − A) into themselves.

Since V1 + V2 = ker(A − B), we get

V12 ⊆ ker(A − B) ∩ ker(A − I) = ker(A − I) ∩ ker(B − I).

We will now show that (C − I)V12 ⊆ im(C − A). Indeed, we have

y ∈ (C − I)V12 =⇒ y = (C − I)x, x ∈ ker(A − I) ∩ ker(B − I)
=⇒ Ax = x = Bx

=⇒ y = Cx − x = CAx − AAx = (C − A)Ax ∈ im(C − A).

By the same reasoning, (C − I)V12 ⊆ im(B − C).
Furthermore, we have V5 ⊆ im(B − C) ∩ im(C − A), and both im(B − C) =

ker(B − C)⊥ as well as im(C − A) = ker(C − A)⊥ are C-stable by parts b and c
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of Theorem 2, and their intersection is also C-stable by part a of this theorem.
It follows that

(C − I)V5 ⊆ CV5 − V5 ⊆ im(B − C) ∩ im(C − A).

By combining this with the previous results on (C − I)V12, we conclude that

(C − I)(V12 + V5) ⊆ (C − I)V12 + (C − I)V5 ⊆ im(B − C) ∩ im(C − A).

Since im(B − C) ∩ im(C − A) is orthogonal to the sum of V1 + V3 and V1 + V4,
which equals ker(B −C)+ker(C −A), it follows a fortiori that (C −I)(V12+V5)
is disjoint from the sum of these subspaces, so the sum in Eq. (17) is direct.

We now consider the dimension of each of the terms in Eq. (17).
Since C permutes the basis vectors of V1, V3 and V4 by Lemmas 5 and 6, the

dimension of ker(C − I) ∩ (V1 + V3) equals the number of those basis vectors
that C maps into themselves, plus the number of pairs of basis vectors that get
swapped by C. It follows by Lemmas 4 and 9 that

dim((C − I)(V1 + V3)) = dim(V1 + V3) − dim(ker(C − I) ∩ (V1 + V3))

= c(BC) − p(BC) − c(BC) − p(BC)
2

=
c(BC) − p(BC)

2
.

In the same way, we get

dim((C − I)(V1 + V4)) =
c(CA) − p(CA)

2
.

Analogously, by using Lemmas 4 and 9 once again, we have

dim(V12) = dim((V1 + V2) ∩ ker(A − I))
= dim(V1 + V2) − dim((A − I)(V1 + V2))

= n2 + α(A,B,C) − c(AB) − p(AB)
2

,

where n2 := dim(V2).
Lastly, by Lemma 4 the dimension of im(C − I) = (C − I)Rn equals

dim(Rn) − dim(ker(C − I) ∩ R
n) = n − c(C).

From the directness of the sum in the second part of Eq. (17), we have

n − c(C) ≥ dim((C − I)(V12 + V5)) + dim((C − I)(V1 + V3)) + dim((C − I)(V1 + V4))

= dim((C − I)(V12 + V5)) +
c(BC) − p(BC)

2
+

c(CA) − p(CA)

2
=⇒

=⇒ dim((C − I)(V12 + V5)) ≤ n − c(C) − c(BC) − p(BC)

2
− c(CA) − p(CA)

2
.
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By using Lemmas 7 and 8, the definition of n2, and the invariants α(A,B,C),
β(A,B,C), and δ(A,B,C) we can rewrite the right-hand side above to obtain

dim((C − I)(V12 + V5)) ≤ n − c(C) − c(BC) + c(CA)

2
+

p(BC) + p(CA)

2

= n − c(C) − c(AB) + c(BC) + c(CA)

2
+

c(AB)

2
+

f(A) + f(B)

4
+

2c(C) − n

2

=
n + c(AB)

2
− 3n − 2β(A, B, C)

2
+

f(A) + f(B)

4

= β(A, B, C) − n +
c(AB)

2
+

p(AB)

2
= c(AB) − c(AB) − p(AB)

2
+ β(A, B, C) − n

= n2 + α(A, B, C) + β(A, B, C) − n − c(AB) − p(AB)

2
= n2 + δ − c(AB) − p(AB)

2
.

And now we use Lemma 4 and the fact that dim(V5) = 2δ to obtain

dim(V C
I ) = dim({x + y|x ∈ V2, y ∈ V5, C(x + y) = Ax + y})

≥ dim({x + y|x ∈ V12, y ∈ V5, C(x + y) = Ax + y}) − 1

= dim({x + y|x ∈ V12, y ∈ V5, C(x + y) = x + y}) − 1

= dim(ker(C − I) ∩ (V12 + V5)) − 1 = dim(V12 + V5) − dim((C − I)(V12 + V5)) − 1

≥ n2 + α(A, B, C) − c(AB) − p(AB)

2
+ 2δ −

(
n2 + δ − c(AB) − p(AB)

2

)
− 1 = δ.

Therefore, all the intermediate inequalities are equalities as well. This proves
that MI is always a median for three involutions provided α(A,B,C) = 1. Note
that we subtract 1 in the first step above to account for the fact that any multiple
of the vector 1 can be added to any solution of the set of equations defining V C

I .

Proof that MI is a Median for General α
This time we use a slightly different decomposition of Rn because the intersection
of (C − I)(V1 +V3) and (C − I)(V1 +V4) may be non-trivial. Namely, we replace
Eq. (17) with

(C − I)Rn ⊇ (C − I)V1 + (C − I)V3 + (C − I)V4 + (C − I)(V12 + V5). (18)

We will show that the resulting sum is direct.
First, we note that, because of the C-stability of V1, V3, V1 + V3, and V4, we

have that (C − I)V1 ∩ (C − I)V3 ⊆ V1 ∩V3 = {0}, and furthermore, ((C − I)V1 +
(C − I)V3) ∩ (C − I)V4 = (C − I)(V1 + V3) ∩ (C − I)V4 ⊆ (V1 + V3) ∩ V4 = {0},
where we used the last part of Lemma 4 in the second step.

Second, by the last part of Lemma 4, we have that (C − I)V1 + (C − I)V3 +
(C − I)V4 = ((C − I)V1 + (C − I)V3) + ((C − I)V1 + (C − I)V4) = (C − I)(V1 +
V3) + (C − I)(V1 + V4).

We already showed in the previous section that the intersection of the sum
(C − I)(V1 + V3) + (C − I)(V1 + V4) with (C − I)(V12 + V5) is trivial. It follows
that the sum in Eq. (18) is indeed direct.
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Now we consider the dimension of each term. Let us define q as the dimension
of (C −I)V1 (it is not simple to express in terms of other basic quantities, but we
will see that it cancels out at the end). By the directness of the sum in Eq. (18),
and reasoning in the same way we did in the previous section, we have

dim((C − I)V1) + dim((C − I)V3) = dim((C − I)V1 + (C − I)V3)

= dim((C − I)(V1 + V3)) =
c(BC) − p(BC)

2
,

and similarly,

dim((C − I)V1) + dim((C − I)V4) = dim((C − I)(V1 + V4)) =
c(CA) − p(CA)

2
.

Therefore

dim((C−I)V1+(C−I)V3+(C−I)V4) =
c(BC) − p(BC)

2
+

c(CA) − p(CA)
2

−q.

By repeating the calculation in the previous subsection, but carrying the
extra q term throughout, we now obtain the upper bound

dim((C − I)(V12 + V5)) ≤ n2 + δ − c(AB) − p(AB)
2

+ q.

And now, we have to carefully estimate the number of degrees of freedom
gained by going from V C

I := {x + y|x ∈ V2, y ∈ V5, C(x + y) = Ax + y} to the
potentially larger subspace {x + y|x ∈ V12, y ∈ V5, C(x + y) = Ax + y} (this was
simple in the previous section since there was at most 1 extra dimension when
dim(V1) = α = 1).

We first restrict the space V C
I to allow only those vectors x for which Ax = x,

i.e. we replace it with

{x + y|x ∈ V2 ∩ ker(A − I), y ∈ V5, C(x + y) = Ax + y} (19)

This restriction clearly does not increase its dimension.
Second, we go from this subspace to the subspace

{x + y|x ∈ V12, y ∈ V5, C(x + y) = Ax + y}. (20)

Recall that V12 := (V1 + V2) ∩ ker(A − I). By Lemmas 5 and 6, A is an
involution on the standard bases of both V1 and V2, and these bases can be
altered so that each pair of basis vectors v and w permuted by A is replaced by
v+w and v−w, of which the first one is in ker(A−I) and the second one is not.
Together with the vectors u fixed by A, which are also in ker(A−I), the resulting
bases will contain sub-bases for the intersection of the corresponding vector space
with ker(A − I). It follows that V12 = (V1 ∩ ker(A − I)) + (V2 ∩ ker(A − I)).

We note that in general, for three finite-dimensional vector spaces U, V,W ,
we have (U ∩ W ) + (V ∩ W ) ⊆ (U + V ) ∩ W , and the inclusion can be strict;
however, we have equality here thanks to the representation of A on V1 + V2.
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It is now easy to see from the foregoing discussion that the subspace in
Eq. (20) differs from the one in Eq. (19) by the vectors in the subspace

V1 ∩ ker(A − I) = {x ∈ R
n|x = Ax = Bx = Cx} = V1 ∩ ker(C − I),

whose dimension, by Lemma 4, is given by

dim(V1 ∩ ker(C − I)) = dim(V1) − dim((C − I)V1) = α − q.

The final calculation from the previous section (with some parallel interme-
diate steps omitted) now becomes

dim(V C
I ) = dim({x + y|x ∈ V2, y ∈ V5, C(x + y) = Ax + y})

≥ dim({x + y|x ∈ V2 ∩ ker(A − I), y ∈ V5, C(x + y) = Ax + y})

≥ dim({x + y|x ∈ V12, y ∈ V5, C(x + y) = Ax + y}) − (α − q)

≥ n2 + α − c(AB) − p(AB)

2
+ 2δ −

(
n2 + δ − c(AB) − p(AB)

2
+ q

)
− (α − q) = δ,

which completes the proof.
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Abstract. The median problem is a classical problem in genome rear-
rangements. It aims to compute a gene order that minimizes the sum
of the genomic distances to k ≥ 3 given gene orders. This problem is
intractable except in the related Single-Cut-or-Join and breakpoint rear-
rangement models. Here we consider the rooted median problem, where
we assume one of the given genomes to be ancestral to the median, which
is itself ancestral to the other genomes. We show that in the Single-Cut-
or-Join model with single gene duplications, the rooted median problem
is NP-hard. We also describe an Integer Linear Program for solving this
problem, which we apply to simulated data, showing high accuracy of
the reconstructed medians.

1 Introduction

Reconstructing the evolution of genomes at the level of large-scale genome rear-
rangements is an important problem in computational biology [17,19]. There
are several computational problems related to rearrangements, ranging from
the computation of pairwise distances in a given rearrangement model to the
reconstruction of complete phylogenetic trees, often following a parsimony app-
roach [12]. Among these problems, the reconstruction of ancestral gene orders
given a species phylogeny has been considered in various frameworks, including
the so-called Small Parsimony Problem (SPP), which aims at proposing gene
orders at the internal nodes of the given species phylogeny while minimizing the
sum of the genome rearrangement distances along its branches. The simplest
instance of the SPP is the Median Problem, where the given phylogeny contains
a single ancestral node whose gene order is to be reconstructed. In the present
paper, we introduce novel results about the median problem, in a context where
gene duplications are considered.

The median problem was introduced in 1996 [21], motivated by its applica-
tion to iterative algorithms for solving the SPP [3]. Early results suggested that,
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even in the simple breakpoint distance model, computing a median gene order is
intractable [20], and heuristics based on the Traveling Salesman Problem (TSP)
were introduced to solve the breakpoint median problem [3,7]. However, in 2009,
Tannier, Zheng and Sankoff proved that computing a median gene order that is
allowed to contain an arbitrary mixture of linear and circular chromosomes was
tractable in the breakpoint distance model, by using a reduction to the prob-
lem of computing a Maximum Weight Matching (MWM) [22]. This tractability
result, the first of its kind in genome rearrangements, renewed the interest in
gene order median problems, although most of the following work presented
intractability results, even on variations of the breakpoint distance [5,9,14].
A notable exception was the Single-Cut-or-Join (SCJ) distance, introduced by
Feijão and Meidanis [11], where it was shown that both the SCJ median problem
and the SCJ SPP are tractable.

Gene duplication is another important evolutionary mechanism, ranging from
single-gene duplication to whole-genome duplications (WGD) [13,15]. The first
models of evolution by genome rearrangements considered the case of genomes
with equal gene content, thus disregarding gene duplication and gene loss. When
considered as a possible evolutionary event, gene duplication most often leads
to intractability results, even for the simple pairwise gene order distance [1,4,6].
Notable exceptions include again variants of the SCJ distance. In [23] it was
shown that in an evolutionary model including SCJ and whole-chromosome
duplications, the pairwise distance problem is tractable. More recently, we intro-
duced a variant of SCJ including single-gene duplications where the distance
between an ancestral genome and a descendant genome can be computed, when
orthology relations between the descendant and ancestral genes are provided [10].
We also showed that a directed median problem where the median is the ances-
tor of k given genomes is tractable, again by reduction to a MWM problem.
These results raised the question of tractability boundaries towards the SPP in
a rearrangement model, including gene duplication.

In the present work, we show that a different median problem, which involves
an additional given ancestral genome, is intractable. More precisely, we introduce
the rooted median problem, where we are provided with k + 1 ≥ 3 genomes,
A,D1, . . . , Dk, such that A is ancestral to D1, . . . Dk, and we are looking for a
median M , whose gene content and orthology relation to the given genomes are
provided, that minimizes the sum of the directed distances between A and M ,
and M and the Dis, in the distance model defined in [10]. In Sect. 3, we prove
that this median problem is NP-hard even when k = 2. In Sect. 4, we describe a
simple Integer Linear Program (ILP) for this problem, based on a reduction to a
colored MWM problem. We provide in Sect. 5 experimental results on simulated
data.

2 Preliminaries

Genes and Genomes. A genome consists of a set of chromosomes, each being
a linear or circular ordered set of oriented genes. Following the usual encoding
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of gene orders, we represent a genome by its gene extremity adjacencies. In this
representation, a gene g is represented using a pair of gene extremities (gt, gh),
gt denotes the tail of the gene g and gh denotes its head, and an adjacency is a
pair of gene extremities that are adjacent in a genome. If a gene gi is denoted
with a subscript, we will denote the tail of gi by gi,t and its head by gi,h. A gene
extremity is free if it does not belong to an adjacency.

We assume that a given gene g can have multiple copies in a genome, the
number of copies being called its copy number. A genome in which every gene has
copy number 1 is a trivial genome. A non-trivial genome sometimes cannot be
represented unambiguously by its adjacencies, that can form a multi-set, unless
we distinguish the copies of each gene, for example by denoting the copies of a
gene g with copy number k by g1, . . . , gk. Nevertheless, we identify a genome with
its multi-set of gene extremity adjacencies, which we call adjacencies from now.
A chromosome is a maximal contiguous sequence of genes; a chromosome with k
genes can have either k − 1 adjacencies, in which case it is a linear chromosome,
or k adjacencies, in which case it is a circular chromosome.

Evolutionary Model. In this work, following [10], we consider a model of directed
evolution in which, when comparing two genomes, we assume one, denoted by
A, is a trivial genome and an ancestor of the other genome, denoted by D.

We now describe the evolutionary events defining our evolutionary model.
Genome rearrangements are modeled by Single-Cut-or-Join (SCJ) operations,
which either delete an adjacency from a genome (a cut) or join a pair of free
gene extremities (a join), thus forming a new adjacency. For duplication events,
we consider two types of duplications, both creating an extra copy of a single
gene: Tandem Duplications (TD) and Floating Duplications (FD). A tandem
duplication of an existing gene g introduces an extra copy of g, say g′, by adding
an adjacency ghg′

t, and, if there was an adjacency ghx by replacing it by the
adjacency g′

hx. A floating duplication introduces an extra copy g′ of a gene g as
a single-gene circular chromosome by adding the adjacency g′

hg′
t.

Given A and D, we denote by gene family all copies of a given gene observed
in A and D. By definition, there is exactly one copy of the gene in A and there
might be several, paralogous, copies of the gene in D. We assume here that every
gene in A has at least one descendant gene in D and conversely, every gene in D
has exactly one ancestral gene in A, so we do not consider gene gains or losses.

Problem Statements. In [10], Feijão et al. introduced the directed SCJ-TD-
FD (d-SCJ-TD-FD) distance problem that asks to compute the minimum
number of SCJ, TD and FD operations needed to transform A into D, denoted by
dDSCJ(A,D). They showed that this problem is tractable and that the distance
can be computed using a simple set-theoretical formula, extending naturally the
distance formula for the SCJ with no duplication model.

A first median problem was also introduced in [10], the directed SCJ-TD-
FD (d-SCJ-TD-FD) median problem, defined as follows: given D1, . . . , Dk

(k ≥ 2) (possibly) non-trivial genomes, such that no gene family is absent from
any Di, compute a trivial genome A on the same set of gene families, that
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A

M

D1 D2

g1 g3g2 g4

a1 a2 a3
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D1 D2
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A(b)

Fig. 1. In part (a), each color represents a gene family from A. Notice that each gene
in D1 and D2 can be traced to a unique gene in M whereas a gene from A might
have multiple daughters in M . Part (b) displays the gene tree of the gene family in
blue (indicated by arrows in part (a)). Since the gene a2 undergoes duplication (dark
squares) to form g1 and g3 in M , M is not trivial w.r.t A. (Color figure online)

minimizes
∑k

i=1 dDSCJ(A,Di). It was shown that this median problem is also
tractable through a simple reduction to a MWM problem.

In the present work, we introduce the rooted SCJ-TD-FD (r-SCJ-TD-
FD) median problem. We are given k + 1 ≥ 3 genomes, A, D1, . . . , Dk such
that A is a trivial genome, ancestor to the Di’s. The goal of the rooted median
problem is to find a genome M which is a descendant of A and an ancestor of
D1, . . . , Dk, minimizing the sum of its distance to A and to the D′

is. Following
the approach introduced in [10], we assume we are given the gene content Γ of
M and the orthology relations between A and M , as well as between M and the
D′

is. This implies that every gene of M (resp. D1, . . . , Dk) has a unique ancestor
in A (resp. in M), so M is a trivial genome compared to the D′

is but might
not be compared to A (see Fig. 1 for an illustration). To formally handle this
difference, we assume that all copies of a gene g of A in M (i.e. the genes of M
whose ancestor in A is gene g) are distinguishable (e.g. labeled, say g1, . . . , gk)
and, for a given gene gi of M , we denote its ancestor in A by a(gi). Then for
a given genome M on Γ , we denote by Ma the genome where every gene g is
relabeled by a(g). The goal of the rooted median problem is to find a genome
M that minimizes the following function:

dDSCJ(A,Ma) +
k∑

i=1

dDSCJ(M,Di). (1)

Remark 1. If we assume there is no duplication from A to M , i.e. both have the
same gene content, then the MWM algorithm introduced in [10] for the directed
median problem applies to the rooted median problem and the problem is thus
tractable. So the difficulty in solving the rooted median problem is to account
for duplications from A to M .
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The Pairwise Distance Formula. Given a gene g ∈ Γ , we call a g-tandem array
a sequence of consecutive adjacencies ghgt; if this sequence forms a circular
chromosome, it is called a g-chromosome. Given a genome X, we call an adja-
cency ghgt an observed duplication if g has more than one copy in X. Observed
duplications are part of a g-tandem array or a g-chromosome. Let r(X) be the
genome obtained from X by successively deleting an observed duplication from
X, chosen arbitrarily, until there remains no observed duplication. Note that
this corresponds to deleting every ghgt adjacency, except that we keep one in
the special case in which all copies of g are organized in g-chromosomes, as shown
in Fig. 2. We call r(X) the reduced genome of X. We define t(X) = |X − r(X)|,
the number of adjacencies to delete to transform X into r(X). Formally, the
multi-set difference X −Y between two multi-sets X and Y of adjacencies is the
multi-set obtained as follows: it contains k copies of a given adjacency if and
only if X contains exactly k more occurrences of this adjacency than Y (with
k = 0 being possible).

at ah bt bh bt bh bt bh ct ch dt dh et eh fh ft fh ft gt gh et eh ht hh ht hh

at ah bt bh ct ch dt dh et eh fh ft gt gh ht hh

X

r(X)

Fig. 2. An example of the reduced genome r(X), of the genome X. Note that an
instance of hhht is retained so that r(X) contains at least one representative of gene
family h. All observed duplications are removed in r(X). Here, t(X) = |X −r(X)| = 5.

The directed SCJ-TD-FD distance between an ancestral genome A and a
descendant genome D is given by [10]:

dDSCJ(A,D) = |A − r(D)| + |r(D) − A| + 2δ(A, r(D)) + t(D) (2)

where δ(A, r(D)) is the difference between the number of genes of r(D) and
the number of genes of A (i.e. the number of duplications from A to r(D)). We
introduce1 now a slightly different formulation of dDSCJ that will be useful in
our hardness proof:

dDSCJ(A,D) = |A − r(D)| + |r(D) − A| + 2δ(A,D) − t(D) (3)

Remark 2. For dDSCJ(M,Di), the value of t(Di) does not depend on our choice
of M , for i = 1, . . . , k. We will therefore assume that the D′

is are reduced (hence
we may refer to r(Di) as simply Di instead). However t(Ma) has an impact on
dDSCJ(A,Ma), and so we will not assume that M is reduced.

1 The proof is given in the Appendix.
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3 The Rooted Median Problem Is NP-hard

We show that finding the optimal gene order for M is NP-hard even for k = 2,
by reduction from the 2P2N-3SAT problem [2]2. In 2P2N-3SAT, we are given n
variables x1, . . . , xn and m clauses C1, . . . , Cm, each containing exactly 3 literals.
Each xi variable appears as a positive literal in exactly 2 clauses, and as a
negative literal in exactly 2 clauses. Note that since each variable occurs in
exactly 4 clauses and each clause has 3 literals, m = 4n/3. An example of a
2P2N-3SAT instance is shown in Fig. 3.

We now describe how we transform the xi variables and Cj clauses into an
instance of the rooted median. The genes of M are

Γ = {g+1 , γ+
1 , g−

1 , γ−
1 , . . . , g+n , γ+

n , g−
n , γ−

n , c1, . . . , cm, α1, . . . , α2n−m}

The genes g+i , γ+
i , g−

i , γ−
i correspond to the xi variable, and cj to the clause Cj .

The purpose of the 2n − m = 2n/3 special αi genes will become apparent later.
To simplify matters, every adjacency in our reduction is between the tails of

two genes. Hence, the heads of each gene of A,D1 and D2 are telomeres (linear
chromosomes extremities), so that all chromosomes are linear and have at most
2 genes. From now, we will omit the t subscript from the extremities for these
adjacencies, with the understanding that every adjacency is between tails; for
instance, we may write g+i γ+

i for the adjacency g+i,tγ
+
i,t.

We can now describe A, D1 and D2. The genes of A are g′
1, γ

′
1, . . . , g

′
n, γ′

n,
c′
1, . . . , c

′
m, α′

1, . . . , α
′
2n−m. The genes g+i and g−

i (resp. γ+
i and γ−

i ) are dupli-
cates of g′

i (resp. γ′
i), and there are no other duplications in M compared to A.

Formally, for each i ∈ [n], put a(g+i ) = a(g−
i ) = g′

i, a(γ+
i ) = a(γ−

i ) = γ′
i and for

each j ∈ [m], put a(cj) = c′
j . Finally, for each i ∈ [2n − m], put a(αi) = α′

i. The
adjacencies of A are {g′

iγ
′
i : i ∈ [n]}.

The genomes D1 and D2 are identical, i.e. they contain the same set of genes
and of adjacencies. We simply describe the set of adjacencies of D1 and D2 with
the understanding that if an extremity, say x, appears in two adjacencies xy and
xz, then the two x are the tails of two distinct copies of the same gene on two
distinct chromosomes. The adjacencies of D1 and D2 are described as follows.

– For each i ∈ [n], add to D1 and D2 the adjacencies g+i γ+
i and g−

i γ−
i .

– For each i ∈ [n], let Cj1 , Cj2 be the two clauses in which xi occurs positively
and let Ck1 , Ck2 be the two clauses in which xi occurs negatively. Add to D1

and D2 the adjacencies g+i cj1 and γ+
i cj2 . Similarly, add to D1 and D2 the

adjacencies g−
i ck1 and γ−

i ck2
3.

– Finally, for each i ∈ [n] and each j ∈ [2n − m], add to D1 and D2 the
adjacencies g+i αj , g

−
i αj , γ

+
i αj and γ−

i αj .

2 This problem is sometimes called the (3,B2)-SAT problem, where B2 indicates that
the literals are balanced with two occurrences each.

3 Intuitively, these adjacencies represent using a literal to satisfy a specific clause. For
instance, the adjacency g+

i cj1 represents “setting xi to true and satisfying Cj1”.
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This completes our construction. The intuition behind our hardness proof is
that for each i ∈ [n], we need to pick one of g+i γ+

i or g−
i γ−

i in M , as we will
show. Simultaneously, we would like to include as many adjacencies which are in
both D1 and D2. It will possible to choose the positive and negative adjacencies
and match all the cj and αj if and only if the 2P2N-3SAT instance is satisfiable.

It will be useful to think of D1 (and D2) as the set of adjacencies which are
allowed to belong to M , as stated in the following.

Lemma 1. Let a be an adjacency in M , such that a /∈ D1 (equivalently, a /∈
D2). Then M − {a} achieves a smaller total distance to A, D1 and D2 than M .

Proof. By cutting a, we increase the distance to A by at most 1, but decrease
the distance to D1 and D2 by 1 each. This is because |(M − {a}) − D1| + |D1 −
(M − {a})| = |M − D1| − 1 + |D1 − M |, the value of δ(M,D1) is unchanged and
t(D1) = 0 by assumption (and the same holds for D2). Therefore removing a
from M yields a better median genome. ��

g−1 g+1 γ+
1 γ−

1 g−2 g+2 γ+
2 γ−

2 g−3 g+3 γ+
3 γ−

3

c1 c2 c3 c4

α1 α2 α3 α4Clauses

Variables x1, x2, x3

C1 = x1 ∨ x2 ∨ x3
C2 = x1 ∨ x2 ∨ x3
C3 = x1 ∨ x2 ∨ x3
C4 = x1 ∨ x2 ∨ x3

Fig. 3. An example of a 2P2N-3SAT instance, with an illustration of the genes of M
(only the gene tails are shown) and the adjacencies that are allowed by D1 and D2. The
fat edges represent pairs of adjacencies of which at least one must be present according
to Lemma 2. Among the cj extremities, only the adjacencies for c2 are shown.

Therefore, we may assume that every adjacency of a median M belongs to D1

and D2. Note that this implies that M contains no observed duplications (with
respect to A), as no such adjacency is in D1 and D2. Thus we will ignore the
t(Ma) = 0 term in dDSCJ(A,Ma) (Eq. (3)), and we will not make a distinction
between Ma and r(Ma), as these are equal.

Another property of M is that it must contain at least one “positive” or one
“negative” adjacency for each i ∈ [n].

Lemma 2. For i ∈ [n], M contains at least one of g+i γ+
i and g−

i γ−
i .

The proof of this lemma is provided in the Appendix.
We now formally prove the hardness of computing the SCJTDFD median.
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Theorem 1. The rooted SCJ-TD-FD median problem is NP-hard.

Proof. Let x1, . . . , xn and C1, . . . , Cm be a 2P2N-3SAT-instance, and let
A,D1,D2 and the genes Γ of M be the corresponding instance of the r-SCJ-TD-
FD median genome problem. We will show that the given 2P2N-3SAT instance
is satisfiable if and only if there exists a median genome M satisfying

dDSCJ(A,Ma) + dDSCJ(M,D1) + dDSCJ(M,D2) ≤ 2|D1| − 2n + 4δ(M,D1)

(⇒) Suppose that the 2P2N-3SAT can be satisfied by an assignment of the xi

variables to true or false. Construct a median genome using the following steps.

1. For each i ∈ [n], if xi is set to true, then add g−
i γ−

i to M , and if instead xi

is set to false, add g+i γ+
i to M .

2. Then, add to M these adjacencies in an algorithmic fashion: for each j =
1, 2, . . . ,m, consider clause Cj and let xi be any variable satisfying Cj .

– If xi is set to true, then note that g+i and γ+
i have not been matched in

Step 1. Add g+i cj to M if g+i is not part of an adjacency of M yet, or add
γ+

i cj to M otherwise.
– If instead xi is set to false, then g−

i and γ−
i have not been matched in

Step 1. Add g−
i cj if g−

i is not part of an adjacency in M yet, or add γ−
i cj

to M otherwise.
Note that since each xi can satisfy at most two clauses, it will always be
possible to find an extremity to match cj with.

3. Finally, observe that so far each of the g+i , g−
i , γ+

i and γ−
i extremities are in

an adjacency M , except 4n − 2n − m = 2n − m of them. Associate each such
extremity g with a distinct αj extremity arbitrarily, and add each gαj to M ,
noting that there are just enough αj genes to do so.

Note that M contains n+m+2n−m = 3n adjacencies in total, exactly n of
which correspond to an adjacency of A (those included in Step 1). Also, every
adjacency of M occurs in both D1 and D2. We have

dDSCJ(A,Ma) = |A − Ma| + |Ma − A| + 2δ(A,Ma) − t(Ma)
= 0 + 2n + 2n − 0 = 4n

As for D1 and D2,

dDSCJ(M,D1) = dDSCJ(M,D2) = |D1 − M | + |M − D1| + 2δ(M,D1)
= |D1| − 3n + 0 + 2δ(M,D1)

Therefore the total distance is 4n + 2(|D1| − 3n + 2δ(M,D1)) = 2|D1| − 2n +
4δ(M,D1), as we predicted.

(⇐) Suppose that there exists a median genome M of total distance at most
2|D1| − 2n + 4δ(M,D1). By Lemma 1, we may assume that every adjacency of
M is present in both D1 and D2.

With the next two claims, we will prove that M has exactly 3n adjacencies,
of which exactly n are adjacencies corresponding to those in A.
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Claim 1. |M | ≤ 3n, and |M | = 3n only if every cj and αj extremity is in some
adjacency of M .

For the rest of the proof, denote by q the number of distinct adjacencies
ab ∈ A for which there exists xy ∈ M such that a(x)a(y) = ab.

Claim 2. |M | = 3n and q = n.

The proofs of both claims will be discussed in detail in the Appendix.
Because q = n, Claim 2 implies that for each i ∈ [n], (at least) one of g+i γ+

i

and g−
i γ−

i is in M . This lets us define as assignment for our 2P2N-3SAT instance:
for each i ∈ [n], set xi to true if g−

i γ−
i is in M , and otherwise set xi to false. We

claim this this assignment satisfies every clause.
To see this, let Cj be a clause and let cj be its corresponding extremity in M .

By Claim 2, every extremity that is part of some adjacency in D1 must be part
of an adjacency in M , including cj . Thus there is some e such that cje ∈ M . By
Lemma 1, the adjacency cje must also be in D1, and by construction either (1)
e ∈ {g+i , γ+

i } for some xi that occurs positively in Cj , or (2) e ∈ {g−
i , γ−

i } for
some xi that occurs negatively in Cj . Suppose that case (1) applies. Then cjg

+
i

or cjγ
+
i being in M means that g+i γ+

i /∈ M , implying in turn that g−
i γ−

i is in
M . In this situation, we have set xi to true and we satisfy Cj . Suppose instead
that case (2) applies. Then g−

i γ−
i /∈ M , in which case we have set xi to false

and satisfy Cj . As the argument applies to any clause Cj , this concludes the
proof. ��
Remark 3. In the reduction above, none of the considered genomes contain a g-
tandem array or a g-chromosome. So our result also implies the hardness of the
rooted median problem where the distance between two genomes A and D, where
A is an ancestor of D, is computed in a simpler way as |A−D|+|D−A|+2δ(A,D),
i.e. does not contain a term related to reducing the descendant genome.

4 An Integer Linear Program

We now describe a simple Integer Linear Program (ILP) to solve the rooted
median problem. The key idea, already used in previous median problems [10,22]
is to convert the rooted median problem into an instance of a MWM problem,
albeit with certain additional constraints. More precisely, in this approach we
define a complete graph G on the extremities gh and gt of every gene g in Γ .
A pair of distinct extremities defines an edge and thus a potential adjacency in
M , which is thus defined by a matching in G. Each edge is assigned a weight
that reflects the number of descendant genomes which contain the corresponding
adjacency. Further, each edge is assigned a color that reflects its corresponding
adjacency in the ancestral genome, if any, and the number of colors of the selected
edges also contributes to the weight of the matching defining the median M .
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An Alternative Formulation for the Distance. We first introduce an alterna-
tive formula to compute the directed distance, denoted by dDSCJ(u, v), from an
ancestor u to a descendant v. For the rooted median problem, the pair (u, v) can
represent either the pair (A,Ma) or any pair (M,Di). The new formulation is
easier to handle in an ILP framework than Eq. (3). We denote by nv(g) the num-
ber of copies of gene g in v, by nv(ghgt) the number of occurrences of adjacency
ghgt in v, and by tv(g) the number of observed duplications of gene g in v. Note
that tv(g) ∈ {nv(ghgt) − 1, nv(ghgt)}, the case tv(g) = nv(ghgt) − 1 occurring
when adjacencies ghgt form only g-chromosomes. Further, let t(v) =

∑
g∈Γu

tv(g)
denote the total number of observed duplications in v, where Γu is the set of
genes of u and also the alphabet of genes of v.

To rewrite dDSCJ(u, v), we introduce an indicator variable αg,uv, where
αg,uv = 1 if ghgt is common to both u and v, but all occurrences were removed
while reducing v. Formally, αg,uv = 1 if ghgt ∈ u ∩ v and ghgt /∈ r(v); otherwise
αg,uv = 0. It is then relatively straightforward to show4 that

dDSCJ(u, v) = |u − v| + |v − u| + 2δ(u, v) − 2t(v) + 2
∑

g∈Γu

αg,uv (4)

This formulation is interesting due to the fact it does not rely on the notion
of a reduced genome. We will discuss later how variables αg,uv and tv(g) can be
handled simply in an ILP framework.

Reformulating the Objective Function. We now use Eq. (4) to reformulate the
objective function of the rooted median problem5.

Claim 3. Minimizing the function Eq. (1) defining the evolutionary cost of a
median M is equivalent to maximizing the following expression:

k∑

i=1

⎛

⎝2|M ∩ Di| − 2
∑

g∈ΓM

αg,MDi

⎞

⎠+2|A∩Ma|+2t(Ma)−2
∑

g∈ΓA

αg,AMa − (k+1)|M | (5)

where ΓA and ΓM are the set of genes of A and M , respectively, and so also the
gene alphabets for M and the Dis, and variables αg,AMa

and αg,MDi
are defined

as αg,uv above.

Such a reformulation of the objective function is inspired by [10]. This revision
enables us to translate the problem as an instance of a colored MWM problem,
as will be made clear in the subsequent paragraphs.

An Interpretation as a Colored MWM Problem. The terms αg,uv and t(Ma)
in Eq. (5) account for the presence of observed duplications. In the absence of
observed duplications however, solving the rooted median problem requires find-
ing a matching in G that maximizes the sum of the weight of the selected edges
4 A proof is provided in the Appendix.
5 The proof of this claim is discussed in the Appendix.



38 A. C. Mane et al.

and of the number of colors represented by the matching edges. The matching
edges weight is partly accounted for by the term |M ∩ Di|, while on the other
hand, |A ∩ Ma| determines the number of colors used in the matching. Using
the intersection terms in the objective function, we now interpret the notion of
weight and color of an edge in terms of decision variables of an ILP.

In order to compute |M ∩ Di|, we introduce the variable γi(e) denoting the
existence of a potential adjacency e of M in a genome Di: we put γi(e) = |e∩Di|,
i.e. γi(e) = 1 if e ∈ Di and 0, otherwise. For each adjacency e in the graph G,
the weight w(e) of e is determined using the weight function w : E(G) → N:

w(e) = 2

(
k∑

i=1

γi(e)

)

− (k + 1)

Since M is trivial w.r.t. every Di, the weights for edges e ∈ M will account
for the term

∑k
i=1 2|M ∩ Di| − (k + 1)|M | in Eq. (5). However, this principle

does not work with A. Indeed, it is possible that x1y1 ∈ M and x2y2 ∈ M such
that a(x1)a(y1) = a(x2)a(y2) ∈ A. In this situation, only one of x1y1 or x2y2
can contribute to |A ∩ Ma|, but both |x1y1 ∩ A| and |x2y2 ∩ A| equal to 1. In
other words, we cannot simply sum the adjacencies of Ma which are in A.

To address this issue, we introduce the notion of a color family. Let mA be the
number of adjacencies in A. Each number from the set {1, 2, ...,mA} represents
a distinct color. We arbitrarily assign a distinct color from this set to each
adjacency in A. If E(G) is the edge set of G, representing all possible adjacencies
in M , then every adjacency in E(G) is assigned a color from {1, 2, ...,mA}∪{0},
consistent with the orthology relations: the adjacency xy ∈ M receives color
i �= 0 if the adjacency a(x)a(y) is present in A and was assigned color i, and
color 0 if a(x)a(y) is not present in A. The set of adjacencies having the same
color i form a color family, represented by Ei. We denote by C the coloring
function E(G) → {0, 1, ...,mA} defined as described above. Notice that a color
i contributes exactly once to the term |A ∩ Ma| if there exists at least one
adjacency in M that belongs to the color family i.

Reducing the Size of the ILP. The size of the ILP we are about to describe is poly-
nomial in the sum of the considered genomes. As the total number of adjacencies
is quadratic in the number of genes in M , it can reach large values when dealing
with large genomes, thus making the ILP challenging to solve in practice. We
show that the set of decision variables can be restricted to specific adjacencies,
which we call candidate adjacencies.An adjacency xy is a candidate adjacency
for the median if at least

⌊
k+1
2

⌋
+ 1 genomes from the set {A,D1,D2, ...,Dk}

contain xy (where here A contains xy if a(x)a(y) ∈ A). Lemma 3, proved in the
Appendix, shows that the number of adjacencies to consider in an ILP is linear
in the sum of the sizes of the input genomes.

Lemma 3. There exists an optimal median consisting of only candidate adja-
cencies. Furthermore, when k is even, an adjacency which is not a candidate
adjacency can not be a part of any optimal median.
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Remark 4. The difficulty of the rooted median problem stems from the fact
that duplication from M to the Dis can create conflicting adjacencies, where a
median gene extremity belongs to several candidate adjacencies. It is interesting
to observe that this can happen only due to convergent evolution, i.e. the fact
that the same adjacency is created independently in several Dis. This suggests
that in the practical context of a limited level of convergent evolution, the rooted
median problem is easy to solve.

The ILP for the Rooted Median Problem. We can now provide the complete
ILP formulation to solve the rooted SCJ-TD-FD median problem. Let x(e) be
a binary decision variable denoting the inclusion of edge (candidate adjacency)
e ∈ E(G) in M . Also, let ci be a binary decision variable indicating if at least
one edge with color i belongs to M . From the previous paragraph, one can write
the objective function as
Maximize:

∑

e∈E(G)

w(e)x(e) + 2
mA∑

i=1

ci + 2t(Ma) − 2
∑

g∈ΓA

αg,AMa
− 2

k∑

i=1

∑

g∈ΓM

αg,MDi

We now describe the constraints of the ILP. The first set of constraints con-
cern the consistency of the set of chosen adjacencies, that ensures that each
gene extremity in M belongs to at most one adjacency, or in other words that
M is a matching for the graph G (these are the first two sets of constraints
below). Next, we use an additional set of constraints to determine the values of
ci, i = {1, 2, ...,mA}. If at least one adjacency of color i is present in the median,
ci = 1, otherwise ci = 0. The following inequalities define these color constraints:

∑

e=(yh,z)

x(e) ≤ 1 ∀y ∈ ΓM (6)

∑

e=(yt,z)

x(e) ≤ 1 ∀y ∈ ΓM (7)

ci =

⌈∑
C(e)=i x(e)

|Ei|

⌉

∀i ∈ {1, 2, ...,mA} (8)

Note that for ci above, the constraints of the type x = �y� are not linear, but
if x is restricted to be in {0, 1}, it can be replaced by the constraint y ≤ x ≤ y+ε,
where ε is very close to 1, say 0.999. A similar trick can be used for floor functions.

In order to compute αg,uv for every pair (u, v) – where either u = A, v = Ma

or u = M,v = Di for some i – and every gene g ∈ Γu, we use some additional
constraints. Let pv(e) be the binary variable denoting if the adjacency e exists
in v. We use an indicator variable λg,uv such that λg,uv = 1 if and only if all
copies of g are involved in ghgt adjacencies. Consequently, λg,uv = 1 ensures the

existence of the ghgt adjacency in r(v). Thus, λg,uv =
⌊

nv(ghgt)
nv(g)

⌋
. Further, we use

Λg,uv to indicate if at least one instance of ghgt has been observed in v. Thus, we
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can represent Λg,uv as
⌈

nv(ghgt)
nv(g)

⌉
. Since we already know the gene orders of A

and each Di, the values of pA(e) and pDi
(e) are known. Further, pM (e) = x(e).

Thus, we obtain the following constraints for every gene g and branch (u, v):

λg,uv =
⌊

nv(ghgt)
nv(g)

⌋

(9)

Λg,uv =
⌈

nv(ghgt)
nv(g)

⌉

(10)

αg,uv = min(pu(ghgt), Λg,uv − λg,uv) (11)
tv(g) = nv(ghgt) − λg,uv (12)

We use the fact that if ghgt /∈ v for some g then ghgt /∈ r(v). Thus, if ghgt /∈ v,
λg,uv = 0 thereby ensuring the correctness of constraints to find αg,uv. Again,
note that the min function is not linear, but that a constraint x = min(y, z) can
be replaced by x ≥ y and x ≥ z, assuming that x, y, z ∈ {0, 1}.

5 Experimental Results

We ran experiments on simulated data in order to evaluate the ability of the
ILP to correctly predict the gene order of the median genome. The input for the
program, including gene orders for the ancestor genome A and the descendant
genomes Di, along with the orthology relations, generated using the ZOMBI
genome simulator [8]. The ILP was solved using the Gurobi solver.

Simulations Parameters. Our input genomes consisted of one ancestor A and
two descendants D1 and D2. We started with the ancestral genome A as a single
circular chromosome consisting of 1000 genes, belonging to different gene families
(so without duplicate genes). The genome A evolved into the median genome
M using duplications, inversions and translocations. The genome M was further
evolved along two independent branches to yield the descendant genomes, D1

and D2. The total number of rearrangements (inversions + translocations) from
A to M and from M to Di was varied from 100 to 500, in steps of 100. The
parameter for duplication events was kept constant throughout the experiments.
The average number of duplicated genes, over all three branches collectively,
was found to be 362.8 with a standard deviation of 82 genes. Considering the
number of duplication events, the mean and standard deviation of segmental
duplications over the three branches was 72.6 and 15.8 respectively. The lengths
of segmental duplications, inversions and translocations were controlled using
specific extension rates. These extension rates (all between 0 and 1) are the
parameters of a geometric distribution dictating the respective lengths. Thus,
the length of the segment being acted upon would be 1 if the extension rate
parameter is set to 1 and would increase as the parameter value reduces. In our
experiments, the inversion, translocation and duplication extension rates were
0.05, 0.3 and 0.2 respectively. For each setting (number of rearrangements) we
ran 40 simulations.
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Results. For each simulation, we compared the optimal median according to the
ILP to the actual median generated by the simulator. For each group, we mea-
sured the average precision and recall statistics. The ILP predicts the median
genome in the form of its adjacency set. Thus, in this context, precision refers
to the ratio of number of correctly predicted adjacencies to the total number
of adjacencies in the computed optimal median. On the other hand, recall rep-
resents the ratio of the correctly predicted adjacencies to the total number of
adjacencies in the actual median. For each instance, we measured the number
of candidate adjacencies used in the ILP. Additionally, to evaluate the effective-
ness of our approach, we also measured the number of adjacencies in the solution
which were common to all genomes (A,D1 and D2) and those common to only
two of the three.

An overview of the results is given in Table 1. The ILP rarely predicts an
erroneous adjacency to be a part of the optimal median, with a near-perfect
precision. This property is observed throughout the experiments irrespective
of the number of rearrangement events. On the other hand, the ILP predicts
more than 90% of the median for lower rates of rearrangement and a decreasing
trend is observed as the number of rearrangement events increase. This can be
partly attributed to the decrease in the number of candidate adjacencies. In
general, the number of candidate adjacencies is lower than the true number of
adjacencies in the median, as including other adjacencies may result in a non-
optimal median. This, however, emphasizes the practicality of Lemma 3, as the
number of adjacency variables is significantly reduced. It can also be observed
that the number of adjacencies common to all genomes decreases with increase
in rearrangements. These adjacencies will be preferred by the ILP on account of
higher weight.

Table 1. Statistics of the ILP median experiment on simulated data.

Events Adj. in
true
median

Cand.
adj.

Adj. in
ILP
median

Precision Recall % Adj.
common
to all
genomes

% Adj.
common
to two
genomes

No. of
optimal
solutions

Avg. time
per run
(in sec)

100 1514 1503 1493 0.9998 0.9859 86.43 13.57 2.3 53

200 1107 1062 1044 0.9991 0.9428 69.49 30.51 15.8 29

300 1312 1192 1155 0.9985 0.8758 52.94 47.06 40.3 38

400 1151 985 961 0.9981 0.8329 49.44 50.56 393.7 51

500 1430 1174 1132 0.9972 0.7897 46.68 53.32 3682.6 84

Another notable observation is the increase in the number of optimal solu-
tions with larger rates of rearrangement. This correlates naturally with the
decrease in the number of adjacencies which are common to all genomes. For
only 100 rearrangements, the ILP outputs a unique optimal median in most
runs, with an overall average of 2.3 solutions. However, the average number of
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optimal solutions exceeded 3000 in case of 500 rearrangements. Despite a pool of
optimal solutions, the SCJ distance between the actual median and an optimal
median does not vary by much. If the SCJ distance between the actual median
and a randomly chosen optimal median is D, then the distance between the
actual median and any other optimal median was observed to stay within the
range (D − 2,D + 2). For most of our simulations, the ILP output an optimal
median in under a minute, with the exception of the case with 500 rearrangement
events.

6 Conclusion

In this chapter, we introduced the directed and rooted median problems and
studied them under the SCJ-TD-FD model. We proved that computing the
median with the most parsimonious directed distance for an ancestor A and
descendants Di, i = 1 to k is NP-hard by reduction from the 2P2N-3SAT prob-
lem. This contrasts with the directed median problem which does not involve
an ancestral genome A. An interesting feature of our hardness proof is that it
relies on two identical descendant genomes, showing a sharp tractability bound-
ary between the directed pairwise distance problem and the rooted median of
three genomes problem. Similarly to other SCJ-related median problems, our
rooted median problem aims at selecting adjacencies among candidate adja-
cencies which are seen in a majority of the given input genomes; nevertheless
the possibility of conflicting median adjacencies due to convergent evolution is
at the heart of the intractability of the problem (Remark 4). To address this
intractability, we provide a simple Integer Linear Program that computes an
optimal median. Without surprise, we observe that our ILP outputs a more reli-
able estimate of the median in case of lower rates of rearrangements. Moreover,
we observe that despite having many more optimal solutions for higher rates of
rearrangement, the distance of a random solution from the actual median does
not deviate by much.

Our work can be commented with regard to the Small Parsimony Problem
under the directed SCJ-TD-FD model. The hardness result of the rooted median
problem likely implies the corresponding SPP problem is also NP-hard. This
motivates our current work about extending the rooted median ILP toward the
SPP. It is worth noting that our median ILP can also be used to solve the SPP by
iterative application from an initial assignment of ancestral gene orders, similarly
to the early SPP solvers for genome rearrangements such as GRAPPA [18].
Considering the multiplicity of the solutions, it also remains to be investigated
if the sampling and subsequent analysis of co-optimal evolutionary scenarios, in
a similar manner as [16], is possible within this framework.
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Appendix

Proof of Eq. ( 3). We remind that the original pairwise distance formula
(Eq. (2)) is

dDSCJ(A,D) = |A − r(D)| + |r(D) − A| + 2δ(A, r(D)) + t(D)

and we want to prove it is equivalent to

dDSCJ(A,D) = |A − r(D)| + |r(D) − A| + 2δ(A,D) − t(D).

Notice that the 2δ(A, r(D)) term from the original formula was switched
for the 2δ(A,D) term. Consider the difference in the number of genes from
D to r(D). Each time we remove a ghgt observed duplication from D while
reducing it, it corresponds to removing a copy of g from D. Thus D has t(D)
more genes than r(D), so that 2δ(A,D) = 2δ(A, r(D)) + 2t(D). This implies
2δ(A,D) − t(D) = 2δ(A, r(D)) + t(D). ��
Proof of Lemma 2. Suppose that for some i, M contains none of g+i γ+

i or
g−

i γ−
i . Note that M does not contain g+i γ−

i nor g−
i γ+

i , by Lemma 1. This implies
that g′

iγ
′
i /∈ Ma, as we have excluded all the four possibilities of having this

adjacency in Ma.
Consider the median M ′ obtained from M by adding g+i γ+

i , cutting the
adjacencies that g+i and γ+

i were contained in, if needed. If g+i and γ+
i are both

telomeres in M , then it is easy to check that M ′ = M + g+i γ+
i (M augmented

by the adjacency g+i γ+
i ) attains a better distance than M since g+i γ+

i ∈ D1,D2

and a(g+i )a(γ+
i ) = g′

iγ
′
i ∈ A (this decreases the distance by 3).

Suppose that g+i x ∈ M for some x, and that γ+
i is a telomere in M . By

Lemma 1, g+i x is in both D1 and D2, which implies that x = cj or x = αj

for some j. This implies in turn that a(g+i )a(x) /∈ A. We can argue that M ′ =
M − g+i x + g+i γ+

i is better. To see this, observe that |M ′ − D1| = |M − D1| and
|D1 − M ′| = |D1 − M | (and the same with D2). On the other hand, recalling
that g′

iγ
′
i /∈ Ma, we have |M ′

a − A| = |Ma − A| − 1 (because a(g+i )a(x) /∈ A and
a(g+i )a(γ+

i ) ∈ A) and |A − M ′
a| = |A − Ma| − 1 (because a(g+i )a(γ+

i ) ∈ A). We
have thus decreased the distance by 2. The same argument applies if g+i is a
telomere but γ+

i is not.
Finally, suppose that g+i x and γ+

i y are adjacencies of M . As we argued above,
a(g+i )a(x) /∈ A and a(γ+

i )a(y) /∈ A. Letting M ′ = M − g+i x − γ+
i y + g+i γ+

i , we
find that |M ′ − D1| = |M − D1| and |D1 − M ′| = |D1 − M | + 1. As the same
holds with D2, we have increased the distance to D1 and D2 by 2. On the other
hand, |A − M ′

a| = |A − Ma| − 1 and |M ′
a − A| = |Ma − A| − 2. To sum up, the

total distance decreases by 1. ��
Proof of Claim ( 1). Call an extremity e of a gene in Γ matchable if there
exists an adjacency of D1 that contains e. By Lemma 1, the adjacencies of M only
contain matchable extremities. The g+i , g−

i , γ+
i and γ−

i extremities account for 4n
matchable extremities. The cj genes account for m matchable extremities and the
αj genes for 2n−m matchable extremities. Thus there are 4n+m+2n−m = 6n
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matchable extremities. Because an adjacency contains 2 extremities, there can
be at most 3n adjacencies in M . The second part of the claim follows from the
fact that we have to assume that every cj and αj is matched to attain this
bound. ��
Proof of Claim ( 2). By the definition of q, we have |A − Ma| = n − q and
|Ma − A| = |M | − q. It follows that

dDSCJ(A,Ma) = |A − Ma| + |Ma − A| + 2δ(A,Ma) − t(Ma)
= n − q + |M | − q + 2n − 0
= |M | + 3n − 2q

Using Lemma 1, we also have dDSCJ(M,D1) = |M−D1|+|D1−M |+2δ(M,D1) =
0 + |D1| − |M | + 2δ(M,D1). Thus the sum of the 3 distances is

|M | + 3n − 2q + 2|D1| − 2|M | + 4δ(M,D1) ≤ 2|D1| − 2n + 4δ(M,D1)

(this inequality is due to our initial assumption on the total distance of M).
After simplifying, this gives 5n ≤ |M | + 2q. By Claim 1, |M | ≤ 3n and because
A has n adjacencies, q ≤ n. Hence, this inequality is only possible if |M | = 3n
and q = n. ��
Proof of Eq. ( 4). From Eq. (3), we have dDSCJ(u, v) = |u−r(v)|+ |r(v)−u|+
2δ(u, v) − t(v). However, it is easier to express the distance without the reduced
genome terms. Hence, we eliminate the need for computing the reduced genomes
by replacing |u− r(v)| and |r(v)−u| by suitable expressions as follows. We show
that (1) |u − r(v)| = |u − v| +

∑
g∈Γu

αg, and (2) |r(v) − u| = |v − u| − t(v) +∑
g∈Γu

αg. Substituting the terms in Eq. (3) yield Eq. (4).
(1) Consider first the difference between u − r(v) and u − v. Suppose that

xy ∈ u − v but xy /∈ u − r(v). Then xy ∈ r(v) but xy /∈ v, which is not possible.
Thus the difference can only be due to some xy ∈ u− r(v) such that xy /∈ u− v.
This means that xy /∈ r(v) and xy ∈ v, which only happens when xy = ghgt

for some gene g. As we have xy = ghgt ∈ u ∩ v and ghgt /∈ r(v), we also have
αg = 1, by definition. Since only one such adjacency is possible for each gene g
(because u is trivial), u − r(v) and u − v differ only by adjacencies on genes for
which αg = 1. We have shown that |u − r(v)| = |u − v| +

∑
g∈Γu

αg.
(2) Now consider the difference between r(v) − u and v − u. Note that there

are t(v) adjacencies in v not in r(v), all observed duplications of the type ghgt. Let
g ∈ Γu. If ghgt /∈ u, then all of the t(g) observed duplications in g are counted in
v − u but not in r(v) − u. This is also true when ghgt ∈ u and ghgt ∈ r(v). In
these cases, αg = 0. However when ghgt ∈ u∩ v but ghgt /∈ r(v), there are t(g)− 1
of the ghgt adjacencies counted in v − u not counted in r(v) − u (this is because
exactly one ghgt adjacency of v can be matched with the ghgt adjacency in u, and
r(v) has no such adjacency). This case occurs precisely when αg = 1. This shows
that |r(v) − u| = |v − u| − ∑

g∈Γu
(t(g) − αg) = |v − u| − t(v) +

∑
g∈Γu

αg. ��
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Proof of Claim ( 3). By Eq. (4), we know that

dDSCJ(A,Ma) = |A − Ma| + |Ma − A| + 2δ(A,Ma) − 2t(Ma) + 2
∑

g∈ΓA

αg,AMa

dDSCJ(M,Di) = |M − Di| + |Di − M | + 2δ(M,Di) − 2t(Di) + 2
∑

g∈ΓM

αg,MDi

where ΓA and ΓM are the set of genes in the gene orders of A and M , respectively,
and so also the genes alphabets for M and the Dis. Variables αg,AMa

and αg,MDi

are defined as αg,uv above.
For any two adjacency sets X and Y , we use the identity |X −Y |+ |Y −X| =

|X| + |Y | − 2|X ∩ Y | to obtain

dDSCJ(A,Ma) = |A| + |Ma| − 2|A ∩ Ma| + 2δ(A,Ma) − 2t(Ma) + 2
∑

g∈ΓA

αg,AMa
,

dDSCJ(M,Di) = |M | + |Di| − 2|M ∩ Di| + 2δ(M,Di) − 2t(Di) + 2
∑

g∈ΓM

αg,MDi
.

This eliminates the need to count the actual number of cut and join events
along every branch. Instead, it suffices to compute the common adjacencies in
the parent and child genomes (using the terms |A ∩ Ma| and |M ∩ Di|) for each
branch (A,Ma) and (M,Di).

For a median M , let s(M) = dDSCJ(A,Ma) +
∑k

i=1 dDSCJ(M,Di) be the
score of M . It follows easily from above that

s(M) =

[

|A| + 2δ(A,Ma) +
k∑

i=1

(|Di| + 2δ(M,Di))

]

−
⎡

⎣
k∑

i=1

⎛

⎝2|M ∩ Di| + 2t(Di) − 2
∑

g∈ΓM

αg,MDi

⎞

⎠

+ 2|A ∩ Ma| + 2t(Ma) − 2
∑

g∈ΓA

αg,AMa
− (k + 1)|M |

⎤

⎦

Let N = |A|+2δ(A,Ma)+
∑k

i=1

(|Di| + 2δ(M,Di) + 2t(Di)
)
. Given that N

depends only on A and Di and not on M , it is constant (note that δ(A,Ma)
and δ(M,Di) are constant as the gene content of M is an input to the problem).
Thus in order to minimize the score s(M), we only need to maximize the term:

k∑

i=1

⎛

⎝2|M ∩ Di|−2
∑

g∈ΓM

αg,MDi

⎞

⎠ + 2|A ∩ Ma| + 2t(Ma) − 2
∑

g∈ΓA

αg,AMa − (k + 1)|M |

which is negated in s(M), as required in Eq. (5). ��
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Proof of Lemma ( 3). To prove this lemma, we start with a median containing
a non-candidate adjacency. For odd values of k, we prove that removing the
non-candidate adjacency results in another median of the same cost whereas for
even k, it is shown that the resultant median (on removing the non-candidate
adjacency) is better. We temporarily ignore the influence of reduced genomes
for this proof.

Consider an adjacency xy that is not a candidate. Recall that since xy is not
a candidate it is present in at most

⌊
k+1
2

⌋
genomes from {A,D1, ...,Dk}. Assume

that M is a median genome and xy is present in M . Further, assume that M
is optimal. Thus, the sum of the distances dDSCJ(A,Ma) +

∑k
i=1 dDSCJ(M,Di)

should be the least over all medians. Let M ′ be the genome obtained by removing
xy from M .

Let Dxy ⊆ {D1, ...,Dk} be the set of descendant genomes that contain xy,
and let Dxy be the set of those that do not. For any Di ∈ Dxy, the adjacency need
not be cut along (M,Di), however it has to be added along (M ′,Di), introducing
an extra cost of 1 to the total distance. Thus, dDSCJ(M,Di) = dDSCJ(M ′,Di)−1,
for all Di ∈ Dxy. On the other hand, if Di /∈ Dxy, then it does not contain xy.
Consequently, for all such Di, the adjacency has to be cut along (M,Di) but
not along (M ′,Di) (since M ′ does not contain it in the first place). Thus, for all
Di /∈ Dxy, dDSCJ(M,Di) = dDSCJ(M ′,Di) + 1.

Further if A contains a(x)a(y), it need not be cut along (A,Ma) but may
need to be cut along (A,M ′

a) thereby introducing a possible extra cost of 1
(note here the possibility that some x∗y∗ ∈ M distinct from xy such that
a(x∗)a(y∗) = a(x)a(y)). Thus, dDSCJ(A,Ma) ≥ dDSCJ(A,M ′

a) − 1. If instead,
A does not contain xy then it has to be joined along (A,Ma) and not along
(A,M ′

a). Unlike the previous case, the cost of the join is unavoidable. Hence,
dDSCJ(A,Ma) = dDSCJ(A,M ′

a) + 1.

Case 1: A contains xy. Then |Dxy| ≤ ⌊
k+1
2

⌋ − 1.

dDSCJ(A,Ma) ≥ dDSCJ(A,M ′
a) − 1

dDSCJ(M,Di) = dDSCJ(M ′,Di) − 1 ∀Di ∈ Dxy

dDSCJ(M,Di) = dDSCJ(M ′,Di) + 1 ∀Di /∈ Dxy

Summing over all the input genomes, we get

dDSCJ(A,Ma) +
∑

Di∈Dxy

dDSCJ(M,Di)≥ dDSCJ(A,M ′
a)+

∑

Di∈Dxy

dDSCJ(M ′,Di)

+ |Dxy| − (|Dxy| + 1)

We know that |Dxy|+1 ≤ ⌊
k+1
2

⌋
. If k is even, |Dxy| > |Dxy|+1. Hence,

dDSCJ(A,Ma)+
∑

Di∈Dxy

dDSCJ(M,Di)> dDSCJ(A,M ′
a)+

∑

Di∈Dxy

dDSCJ(M ′,Di)
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Thus, the cost of M ′ is better than that of the optimal median M and
we have a contradiction. If k is odd, then |Dxy| = |Dxy| + 1 and hence
both M and M ′ incur the same overall cost. In other words, the removal
of a non-candidate adjacency does not increase the cost of the optimal
median. Thus, iteratively removing all such adjacencies will yield an
optimal median that consists solely of candidate adjacencies.

Case 2: A does not contain xy. Then |Dxy| ≤ ⌊
k+1
2

⌋
.

dDSCJ(A,Ma) = dDSCJ(A,M ′) + 1
dDSCJ(M,Di) = dDSCJ(M ′,Di) − 1 ∀Di ∈ Dxy

dDSCJ(M,Di) = dDSCJ(M ′,Di) + 1 ∀Di /∈ Dxy

The analysis in this case is similar to Case 1. On adding all the equations
and using |Dxy| ≤ ⌊

k+1
2

⌋
, once again we reach a contradiction when k

is even. When k is odd, both M and M ′ yield the same overall distance.
Thus, we can still obtain the optimal median by iteratively removing
non-candidate adjacencies.

Thus, when k is odd, there exists at least one optimal median consisting only
of candidate adjacencies. However, when k is even, the optimal median must
consist only of candidate adjacencies. ��
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Abstract. This paper generalizes previous studies on genome rearrange-
ment under biological constraints, using double cut and join (DCJ). We
propose a model for weighted DCJ, along with a family of optimization
problems called ϕ-MCPS (Minimum Cost Parsimonious Scenario),
that are based on edge labeled graphs. After embedding known results in
our framework, we show how to compute solutions to general instances of
ϕ-MCPS, given an algorithm to compute ϕ-MCPS on a circular genome
with exactly one occurrence of each gene. These general instances can
have an arbitrary number of circular and linear chromosomes, and arbi-
trary gene content. The practicality of the framework is displayed by
generalizing the results of Bulteau, Fertin, and Tannier on the Sort-

ing by wDCJs and indels in intergenes problem, and by generaliz-
ing previous results on the Minimum Local Parsimonious Scenario

problem.

Keywords: Double Cut and Join (DCJ)
Weighted genome rearrangement · Parsimonious scenario
Breakpoint graph · Maximum alternating cycle decomposition

1 Introduction

1.1 Context

The practical study of genome rearrangement between evolutionarily distant
species has been limited by a lack of mathematical models capable of incorpo-
rating biological constraints. Without such constraints the number of parsimo-
nious (shortest length) rearrangement scenarios between two gene orders grows
exponentially with respect to the minimum number of rearrangements between
genomes [11]. A natural way to mitigate this problem is to develop models that
weight rearrangements according to their likelihood of occurring; a breakpoint
may be more likely to occur in some intergenic regions than others.

To this end, the study of length-weighted reversals was started in the late
nineties by Blanchette, Kunisawa, and Sankoff [9]. Baudet, Dias, and Dias
c© Springer Nature Switzerland AG 2018
M. Blanchette and A. Ouangraoua (Eds.): RECOMB-CG 2018, LNBI 11183, pp. 49–71, 2018.
https://doi.org/10.1007/978-3-030-00834-5_3
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present a summary of work done in this area, along with work on reversals cen-
tered around the origin of replication [2]. Recently, Tannier has published a series
of papers focused on weighting intergenic regions by their length in nucleotides.
In [7], Biller, Guéguen, Knibbe, and Tannier pointed out that, according to
the Nadeau-Taylor model of uniform random breakage [17,18], a breakpoint is
more likely to occur in a longer intergenic region. Subsequent papers by Fertin,
Jean, and Tannier [15], and Bulteau, Fertin, and Tannier [12] present algorithmic
results for models that take into account the length of intergenic regions. Using
Hi-C data [16], Veron et al. along with our own study, have pointed out the
importance of weighting pairs of breakpoints according to how close they tend
to be in physical space [19,24]. In order to use this physical constraint, we par-
titioned intergenic regions into co-localized areas, and developed algorithms for
computing distances that minimize the number of rearrangements that operate
on breakpoints between different areas [22,23].

Much of this work is based on the mathematically clean model for genome
rearrangement called Double Cut and Join, or DCJ [4,25]. Genomes are parti-
tioned into n orthologous syntenic blocks that we will simply call genes. Each
gene is represented by two extremities, and each chromosome is represented by an
ordering of these extremities. Those extremities that are adjacent in this ordering
are paired, and transformations of these pairs occur by swapping extremities of
two pairs. DCJ can naturally be interpreted as a graph edit model with the use
of the breakpoint graph, where there is an edge between gene extremities a and
b for each adjacent pair. A DCJ operation replaces an edge pair

{
{a, b}, {c, d}

}

of the graph by
{
{a, c}, {b, d}

}
or

{
{a, d}, {b, c}

}
. This edge edit operation on a

graph is called a 2-break.
This paper establishes a general framework for weighting rearrangements.

The results are based on the problem of transforming one edge-labeled graph
into another through a scenario of operations, each weighted by an arbitrary
function ϕ. The problem, called ϕ-Minimum Cost Parsimonious Scenario

(or ϕ-MCPS), asks for a scenario with a minimum number of 2-breaks, such
that the sum of the costs for the operations is minimized.

1.2 Applications of Our Framework

While our framework is general, we use it to render two previous studies more
practical. The first study is our work relating the likelihood of rearrangement
breakpoints to the physical proximity in the nucleus [23]. This work is based on
the hypothesis that two breakpoints could be confused when they are physically
close. The model in this study labels the breakpoint graph edges (corresponding
to intergenic regions) with fixed “colors”, and the cost of a DCJ has a weight of
one if the labels are different and a weight of zero if they are the same. Using
that cost function, we colored intergenic regions by grouping them according to
their physical proximity, as inferred by Hi-C data. Although this technique of
grouping proved to make biological sense [19,22], it is far from ideal since much
of the information given by the Hi-C data is lost in the labeling, and it is not
immediately clear how to best compute the grouping. Our results here bypass
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the complexity of grouping by allowing each DCJ to be weighted by the values
taken directly from the Hi-C contact maps. We give an algorithm for ϕ-MCPS

on a breakpoint graph with an arbitrary ϕ and fixed edge labels, that runs in
O(n5) time in the worst case but has better parameterized complexity in practice
(see Example 1). We give in Sect. 10.1 other reasons why the running times for
this algorithm should remain practical.

The second study that we improve is that of Bulteau, Fertin, and Tannier [12].
Their biological constraint is based on the number of nucleotides in the inter-
genic regions containing breakpoints; they compute parsimonious scenarios that
minimize the number of nucleotides inserted and deleted in intergenic regions.
Their algorithm is restricted to instances where the breakpoint graph has only
cycles (and no paths — sometimes referred to as co-tailed genomes). Using their
O(n log n) algorithm, our framework gives an O(n3) algorithm on any breakpoint
graph (see Example 3).

This is an example of how our framework simplifies algorithm design on
weighted DCJs. For a weight function adhering to our general criteria of Sect. 4,
future algorithm designers now need only to concentrate on developing an effi-
cient algorithm that works on a single cycle of a breakpoint graph. Thanks to
Theorem 4, they will get a polynomial time algorithm that works on a gen-
eral instance for free. Section 8 shows that the same is true for approximation
algorithms.

This paper is based on general results we obtain on weighted transformations
of edge-labeled multi-graphs. The permitted transformations can change the
connectivity of the graph through a 2-break, or change the edge labels, or both.
This model not only proves to be powerful enough to subsume the previously
mentioned results, but also offers other advantages. It is flexible enough so that
DCJ costs can be based on the labels of edges in the breakpoint graph, or on
the vertices, or a combination of both. Also, since single-gene insertions and
deletions can be represented as “ghost” adjacencies [20], all of this paper applies
to genomes where genes could be missing in one genome or the other. Most
results can be applied to genomes with duplicate genes (as depicted in Fig. 1).

1.3 Our Model and General Results

The foundation of this paper is a renewed understanding of scenarios of 2-breaks
on Eulerian graphs, a subject that has been studied not only in a restricted
setting for genome rearrangement [1,4], but also in the more general settings of
network design [5,6]. Although our results are about the transformation of one
arbitrary Eulerian multi-graph G into another one H having the same vertex
set, we find it convenient to reason in an equivalent but different setting. In
the alternative setting we are given an Eulerian 2-edge-colored multi-graph with
black and gray edges, the black edges being from G and the gray from H. We
transform the connectivity of the black edges into the connectivity of the gray
edges. Therefore, whenever we use the word graph, path (resp. cycle), we are
referring to an Eulerian 2-edge-colored multi-graph, a path (resp. cycle) that
alternates between black and gray edges. Naturally, a cycle decomposition of a
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Fig. 1. Eulerian 2-edge-color multi-graphs for genomes A =
(
{3t, 1t}, {1h, 2h},

{2t, 3h}
)
,

(
{4t}, {4h, 1t}, {1h}

)
, B =

(
{1h, 2h}, {2t, 1t}

)
,

(
{3t, 2h}, {2t, 1h}, {1t, 3h}

)
,

and A′ =
(
{3t, 2h}, {2t, 1t}, {1h, 2h}, {2t, 3h}

)
,

(
{4t}, {4h, 1t}, {1h}

)
. Edges adjacent

to a special vertex ◦ represent the endpoints of linear chromosomes (e.g. black edges
{1h, ◦} and {4t, ◦}). Extra edges are added for the missing genes (e.g. the black edge
{2t, 2h} and the gray edge {4h, 4t}), called ghost adjacencies in [20]. In the genomes A
and A′, gene 1 is repeated twice, and the operation transforming A into A′ is an inser-
tion of a gene 2, corresponding to the 2-break G(A, B) → G(A′, B). A DCJ scenario
transforming A′ into the linear genome B includes a deletion of a gene 4.

graph is a partition of the edges of an Eulerian 2-edge-colored multi-graph into
a set of alternating cycles. A breakpoint graph is a graph with a vertex for each
gene extremity — each incident to exactly one gray and one black vertex —
along with one chromosome endpoint vertex ◦ that could have degree as high as
2n (see Fig. 2). Section 2 introduces the breakpoint graph in detail, and defines
the Double Cut and Join (DCJ) model.

Our model for weighting operations is primarily based on a labeling L of the
edges, a set O of valid operations, and a weight function ϕ : O → R+. Roughly
speaking, a labeled input graph can be transformed through a series of operations
in O, where an operation can change the connectivity of the black edges of the
graph, and/or change the labels of the edges. Any weight function ϕ defines an
optimization problem ϕ-MCPS, which asks for a scenario that minimizes the
total weight of the operations. This model subsumes many previously studied
weighted DCJ models, as described in Sect. 4.1.

The spine of our results is built from successive theorems that speak to the
decomposability into subproblems of a ϕ-MCPS instance. Theorem 1 shows that
a parsimonious scenario of 2-breaks transforming the black edges into the gray
implies a Maximum Alternating Edge-disjoint Cycle Decomposition

(or MAECD) [13]. Theorem 2 says that an optimal solution to ϕ-MCPS can be
found using solutions to the MAECD problem, so that if ϕ-MCPS can be solved
on a simple alternating cycle, then it can be solved on any instance. Theorem 3
says that an optimal solution to ϕ-MCPS on a simple alternating cycle can be
found using a solution to the ϕ-MCPS problem on what we call a circle, that
is, an alternating cycle that does not visit the same vertex twice (see Fig. 4).

Under the common genome model, where each gene occurs exactly once in
each genome, a relationship exists between parsimonious DCJ scenarios and
solutions to MAECD on a breakpoint graph [4,10]. We exploit this link in
Sect. 7. Theorem 4 ties everything together; an amortized analysis shows that,
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given an O(rt) algorithm for computing ϕ-MCPS on a circle with r edges, ϕ-
MCPS can be calculated on a breakpoint graph in O(nt+1) time.

Under a more general genome model, that allows for changes in copy numbers
of genes (e.g. insertions, deletions, and duplications), the spine of our results still
holds due to the convenient representation of missing genes as ghost adjacencies
in an Eulerian 2-edge-colored multi-graph [20] (See Fig. 1). All of our results
hold for pairs of genomes with non-duplicated genes, but unequal gene content.
Indeed, a breakpoint graph (i.e. graph with limited degree for most nodes) can
still represent the pair of genomes in this case.

Caprara proved that MAECD is NP-Hard for Eulerian 2-edge-colored multi-
graphs where each vertex is incident to at most two gray and two black edges
(which is the case when there are two copies of each gene) [13]. We present a
simple integer linear program (or ILP) that solves ϕ-MCPS for these types of
graphs, given a method to solve ϕ-MCPS on a circle. This ILP is likely to be
unwieldy in general, since the number of variables is exponential in the number
of simple alternating cycles. In the case of breakpoint graphs on specific genomes,
this may not always be intractable, as the number of duplicate genes may be
limited. See Sect. 10.1 for a discussion of these practical matters.

2 DCJ Scenarios for Genomes and Breakpoint Graphs

A genome consists of chromosomes that are linear or circular orders of genes
separated by potential breakpoint regions. In Fig. 2 the tail of an arrow represents
the tail extremity, and the head of an arrow represents the head extremity of a
gene. We can represent a genome by a set of adjacencies between the gene
extremities. An adjacency is either internal : an unordered pair of the extremities
that are adjacent on a chromosome, or external : a single extremity adjacent to
one of the two ends of a linear chromosome. In what follows we will suppose that
two genomes A and B are partitioned into n genes each occurring exactly once
in each genome, and our goal will be to transform A into B using a sequence of
DCJs.

Fig. 2. Genomes A and B with their respective sets of adjacencies
{
{1t}, {1h, 2t},

{2h, 3h}, {3t}
}

and
{
{1t}, {1h, 2h}, {2t, 3h}, {3t}

}
. A DCJ {1h, 2t}, {2h, 3h} →

{1h, 2h}, {2t, 3h} transforms A into B. The transformation G(A, B) → G(B, B) is
a 2-break and G(B, B) is a terminal graph.
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Definition 1 (double cut and join). A DCJ cuts one or two breakpoint
regions and joins the resulting ends of the chromosomes back in one of the
four following ways: {a, b}, {c, d} → {a, c}, {b, d}; {a, b}, {c} → {a, c}, {b};
{a, b} → {a}, {b}; and {a}, {b} → {a, b}.

We represent the pairs of the genomes with a help of a breakpoint graph
[1,25].

Definition 2 (breakpoint graph). G(A,B) for genomes A and B is a 2-edge-
colored Eulerian undirected multi-graph. V consists of 2n gene extremities and
an additional vertex ◦. For every internal adjacency {a, b} ∈ A (resp. {a, b} ∈
B) there is a black (resp. gray) edge {a, b} in G(A,B) and for every external
adjacency {a} ∈ A (resp. {a} ∈ B) there is a black (resp. gray) edge {a, ◦}
in G(A,B). There is a number of black and gray loops {◦, ◦} ensuring that
db(G(A,B), ◦) = dg(G(A,B), ◦) = 2n.

3 2-break Scenarios for 2-edge-colored Graphs

In this paper a graph is an Eulerian 2-edge-colored undirected multi-graph with
edges colored black or gray as in Fig. 1. A graph with equal multi-sets of black
and gray edges is called terminal, and our goal is to transform a given graph
into a terminal one using 2-breaks.

Definition 3 (2-break scenario). A 2-break replaces two black edges {x1, x2}
and {x3, x4} by either {x1, x3} and {x2, x4} or {x1, x4} and {x2, x3}. A 2-break
scenario of length m is a sequence of m 2-breaks transforming a graph into a
terminal one.

Definition 4 (Eulerian graph and alternating cycle). G is Eulerian if
every vertex has equal black and gray degrees. A cycle is alternating if it is Eule-
rian. All use of the word cycle in this paper will be synonymous with alternating
cycle.

Define a Maximum Alternating Edge-disjoint Cycle Decomposition

(MAECD) of a graph G as a decomposition of G into a maximum number of
edge-disjoint alternating cycles. Denote the size of a MAECD of G by c(G) and
the number of its black edges by e(G). We make a distinction between simple
cycles and circles (look at Fig. 4 to see a simple cycle that is not a circle).

Definition 5 (simple cycle and circle). A graph G is a simple cycle if the
size of a MAECD, c(G) = 1. If in addition to that degb(G, v) = degg(G, v) = 1
for every vertex v, then G is called a circle.
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3.1 Parsimonious 2-break Scenarios

The problem of finding a minimum length (or parsimonious) 2-break scenario
was treated in several unrelated settings using different terminology. Lemma 1,
proven in the appendix, was treated in [6] where the authors also showed that
finding a minimum length 2-break scenario is NP-hard due to the NP-hardness
of finding a MAECD of a graph. A variant of the problem for Eulerian digraphs
where all the gray edges are loops was solved in [8].

Lemma 1 (Bienstock et al. in [6]). The minimum length of a 2-break scenario
on a graph G is d2b(G) = e(G) − c(G).

Since finding a MAECD for a breakpoint graph is easy, Lemma 1 leads
to a linear time algorithm for finding a parsimonious DCJ scenario [25]. The
algorithm is based on Lemma 2, proven in the appendix.

Lemma 2 (Yancopoulos et al. in [25]). The minimum length of a DCJ
scenario transforming genome A into B is equal to d2b(G(A,B)) = e(G(A,B))−
c(G(A,B)).

3.2 Decomposition of a 2-break Scenario

In this section we will show how a 2-break scenario ρ of length m can be parti-
tioned into subscenarios ρ1, . . . , ρk and G can be decomposed into edge-disjoint
Eulerian subgraphs H1, . . . , Hk where ρi is a scenario for Hi, and k ≥ e(G)−m.
We will use this decomposition in Sect. 5 to show that ϕ-MCPS on a graph can
be solved by solving ϕ-MCPS on its simple cycles.

For a graph G and a 2-break scenario ρ we define a directed 1-edge-colored
edge-labeled graph D(G, ρ), akin to the trajectory graph introduced by Shao,
Lin, and Moret [21]. Denote the sequence of the first l 2-breaks of ρ by ρl

and the graph obtained from G after these 2-breaks by Gl. Define D(G, ρ0)
in the following way: for each black edge e of G we have two new vertices con-
nected by a directed edge labeled by e (see Fig. 3). For the l-th 2-break of ρ,
{x1, x2}, {x3, x4} → {x1, x3}, {x2, x4}, merge the endpoints of the edges labeled
{x1, x2} and {x3, x4} in D(G, ρl−1). Proceed by adding two new vertices to
D(G, ρl−1) and two edges labeled {x1, x3} and {x2, x4} from the merged vertex
to the newly added ones to obtain D(G, ρl). Continue until D(G, ρm) is obtained,
where m is the length of ρ, and denote it by D(G, ρ).

Shao, Lin, and Moret [21] characterize the connected components of a tra-
jectory graph for a parsimonious scenario. Using similar techniques we prove the
following theorem in the appendix.

Theorem 1. IfD(G, ρ) has k connected components then ρ can be partitioned into
k subscenarios ρi and G can be partitioned into k edge-disjoint Eulerian subgraphs
Hi in such a way that ρi is a scenario for Hi for every i ∈ {1, . . . , k}. If ρ is
parsimonious, then k = c(G) and C(ρ) = {H1, . . . , Hk} is a MAECD of G.
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Fig. 3. A 2-break {a, b}, {d, c} → {a, d}, {b, c} transforming a graph G into a terminal
one is depicted on the left. A directed graph D(G, ρ) is obtained from D(G, ρ0) on the
right for this scenario ρ of length 1. The endpoints of the edges labeled {a, b} and {d, c}
are merged and two new edges labeled {a, d} and {b, c} are introduced. D(G, ρ) has 2
connected components that correspond to the 2 simple cycles of G.

4 Labeled 2-breaks and Their Costs

In this section we outline our model for assigning costs to 2-breaks on a graph
G. We associate labels to edges, and then describe a set of valid operations O
where each operation may transform the connectivity of G, the labeling of G, or
both. Our cost function is defined on O. This model is general enough to treat
the edge labeled DCJ problems of [12] and [23].

For a set of vertices V and a set of labels L a labeled edge is an unordered
pair of vertices plus a label, denoted ({a, b}, x) for a, b ∈ V and x ∈ L. A
label change ({a, b}, x) → ({a, b}, y) changes the label of an edge. A labeled 2-
break ({a, b}, x), ({c, d}, y) → ({a, c}, z), ({b, d}, t) is a 2-break that replaces two
labeled edges. Take a set O containing labeled 2-breaks and label changes, and
a graph G with a labeling of its edges λ : E → L. An O-scenario ρO for (G,λ),
is a sequence of operations in O transforming (G,λ) into (Ḡ, λ̄) such that Ḡ is
terminal, and the multi-sets of black and gray labeled edges of Ḡ are equal. The
number of 2-breaks in ρO will be called the 2-break-length of the scenario. If a
ρO exists for (G,λ), then d2bO(G,λ) denotes the minimum 2-break-length of an
O-scenario.

An O-scenario does not necessarily exist for a given (G,λ), however if it
exists, then the inequality d2bO(G,λ) ≥ d2b(G) holds, where d2b(G) is the mini-
mum length of a 2-break scenario on a graph G. In this paper we deal with the
sets O that have the necessary operations to parsimoniously transform (G,λ)
into (Ḡ, λ̄).

Definition 6 (p-sufficient O for (G,λ)). A set O is parsimonious-sufficient
or p-sufficient for (G,λ) if we have d2bO(G,λ) = d2b(G).

The cost function that we consider is ϕ : O → R+. The cost of an O-scenario
is the sum of the costs of its constituent operations. If O is p-sufficient for
(G,λ), then MCPSϕ(G,λ) is the minimum cost of an O-scenario of the 2-break-
length equal to d2b(G), otherwise MCPSϕ(G,λ) is ∞. We consider the following
problem:

Problem 1 (ϕ-Minimum Cost Parsimonious Scenario or ϕ-MCPS).

INPUT : A graph G, and a labeling of its edges λ.

OUTPUT : MCPSϕ(G,λ).
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4.1 Examples of the Weighted DCJ Problems in the Literature

Example 1 (Minimum Local Parsimonious Scenario). In [23] we suppose
the adjacencies of genome A to be partitioned into spatial regions represented
by different colors. We then develop a polynomial time algorithm for finding
a parsimonious DCJ scenario minimizing the number of rearrangements whose
breakpoints appear in different regions. The problem, as it is stated in [23], differs
slightly from ϕ-MCPS as in that study we do not have colors for the adjacencies
of genome B. However, we can bridge this gap as follows.

Take a set of labels L = Lc ∪{τ} consisting of the colors Lc representing the
different spatial regions of a genome and an additional terminal label τ . Define O
as containing the labeled 2-breaks ({a, b}, x), ({c, d}, y) → ({a, c}, x), ({b, d}, y)
for a, b, c, d ∈ V and x, y ∈ Lc, and a label change ({a, b}, x) → ({a, b}, τ) for
a, b ∈ V and x ∈ Lc. The cost ϕc of a labeled 2-break in O is 0 if the labels of
the edges being replaced are equal and 1 otherwise. The cost of a label change
is 0.

In [23] we presented an O(n4) time algorithm solving ϕc-MCPS for a labeled
breakpoint graph with the gray edges labeled by τ . In [22] we demonstrated
that finding a minimum cost O scenario for such a breakpoint graph, when the
parsimonious criteria is disregarded, is NP-hard, and proposed an algorithm that
is exponential in the number of colors but not in the number of genes.

In Sect. 9 we use the same O. We fix a symmetric function Φ : L2 → R+ and
define ϕf (({a, b}, x), ({c, d}, y) → ({a, c}, x), ({b, d}, y)) = Φ(x, y). This drasti-
cally enriches the model introduced in [23]. In Sect. 7 we provide an O(n5) time
algorithm solving ϕf -MCPS for a labeled breakpoint graph.

Example 2 (DCJ weighted by Hi-C). In [19] we weight each DCJ by the
value taken directly from the Hi-C contact map. In this model every intergenic
region of genome A gets assigned an interval corresponding to its genomic coor-
dinates on a chromosome. The weight of a DCJ acting on two intergenic regions
is then equal to the average Hi-C value for their corresponding intervals. In [19]
we provide an algorithm greedily maximizing the weight of a parsimonious sce-
nario and find that the obtained weight is significantly higher than the weight
of a random parsimonious scenario.

Take a set of labels consisting of the genomic intervals corresponding to the
intergenic regions of a genome A plus an additional terminal label. Keep the
same O as in Example 1. Define ΦHiC(x, y) on two genomic intervals to be
their average Hi-C value. The problem that maximizes Hi-C values can be easily
transformed into a minimization problem by setting the cost of a labeled 2-break
({a, b}, x), ({c, d}, y) → ({a, c}, x), ({b, d}, y) to Φmax − ΦHiC(x, y), where Φmax

is the maximum ΦHiC(x, y) over all x, y.
In [19] the optimality of the proposed greedy algorithm is not discussed, but

our work presented in Sect. 9 of this paper provides us with a polynomial time
algorithm for solving this problem exactly.

Example 3 (Sorting by wDCJs and indels in intergenes). Bulteau,
Fertin, and Tannier [12] introduce a problem where adjacencies of genomes are
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labeled with their genetic length (number of nucleotides). A wDCJ is a labeled
DCJ that preserves the sum of the genetic lengths of the adjacencies and an
indel δ is a label change that increases or decreases the genetic length of an
adjacency by δ. The cost of a wDCJ is 0 and the cost of an indel δ is |δ|. A
scenario of wDCJs and indels for (G,λ) is said to be valid if its wDCJ-length is
d2b(G). The paper presents an O(n log n) algorithm for finding a minimum cost
scenario among the valid ones, for the genomes with circular chromosomes and
n genes.

Translating this into our formalism yields the following ϕ-MCPS problem.
The labels L would be the natural numbers, while O contains labeled 2-breaks
({a, b}, w1), ({c, d}, w2) → ({a, c}, w3), ({b, d}, w4) for every a, b, c, d ∈ V , and
wi ∈ L satisfies w1 +w2 = w3 +w4. O also contains label changes ({a, b}, w1) →
({a, b}, w2) for every a, b ∈ V and wi ∈ L. O is p-sufficient for any (G,λ) since G
can be first transformed into a terminal graph using any parsimonious 2-break
scenario and then its labels can be adjusted. The cost ϕl of a labeled 2-break is
0 and the cost ϕl of a label change ({a, b}, w1) → ({a, b}, w2) is |w1 − w2|.

In [12] the authors present an O(r log r) time algorithm for solving ϕl-MCPS

on a circle with r vertices. Combining this algorithm with our results from Sect. 7
gives an algorithm solving ϕl-MCPS in O(n3) time for a labeled breakpoint
graph. The ILP defined in Sect. 5 solves ϕl-MCPS for any labeled graph.

Example 4 (wDCJ-dist). Fertin, Jean, and Tannier [15] treat a problem
wDCJ-dist where wDCJs without indels are allowed, and the sums of the
genetic lengths of the adjacencies of two genomes are equal.

In this case we keep the same L and O as in Example 3 except that the
label changes are excluded from O. A labeled graph is said to be balanced if the
sums of the labels of black and gray edges are equal. wDCJ-dist is the problem
of finding d2bO for a balanced graph whose connected components are circles.
The authors show that wDCJ-dist is strongly NP-complete. However they also
prove that d2bO(O, λ) = d2b(O) for a balanced circle and that O is p-sufficient
for a graph whose connected components are balanced circles.

Example 5. Although ignored in the previous examples, the weighting of oper-
ations based on the vertices is also possible under our framework. For exam-
ple, take L = {τ}, O containing labeled 2-breaks ({a, b}, τ), ({c, d}, τ) →
({a, c}, τ), ({b, d}, τ) and any cost function ϕv : O → R+. The costs of the
labeled 2-breaks in O could be a function of the genomic coordinates of the
participating gene extremities.

Note that the set O is implicit, rather than explicit. In Example 3, O would
be too large to represent explicitly since every pair of genetic lengths for every
pair of edges would exist.

5 ϕ-MCPS for a Graph

Theorem 2. Denote the ϕ-cost of a MAECD as the sum of the MCPSϕ on
its cycles. MCPSϕ for a graph is equal to the minimum ϕ-cost of its MAECD.
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Proof. For a cycle S of a labeled graph (G,λ), λS denotes the labeling of the
edges of S according to λ. We suppose that min(∅) = ∞ and prove the following:

MCPSϕ(G,λ) = min
{ ∑

S∈C

MCPSϕ(S, λS)
∣
∣ C is a MAECD of G

}
.

Suppose that there exists a MAECD C of G consisting of the simple
cycles for which O is p-sufficient. For every S ∈ C take an O-scenario ρS

O of
cost MCPSϕ(S, λS) and 2-break-length d2b(S). By performing these scenar-
ios one after another we obtain an O-scenario ρO for (G,λ) of 2-break-length∑

S∈C d2b(S) = d2b(G) and of cost
∑

S∈C MCPSϕ(S, λS). This yields a scenario
such that MCPSϕ(G,λ) ≤

∑
S∈C MCPSϕ(S, λS).

On the other hand, suppose that O is p-sufficient for (G,λ) and take an
O-scenario ρO for (G,λ) of length d2b(G). For ρ, a 2-break scenario obtained
from ρO when the labels of the edges are neglected, a decomposition C(ρ) cor-
responding to ρ is a MAECD of G due to Theorem 1. A subsequence ρS

O of
ρO, consisting of the operations acting on the edges of a cycle S ∈ C(ρ), is
an O-scenario for (S, λS) of 2-break-length d2b(S). A sequence of operations
ρ̂O obtained by performing the subsequences ρS

O one after another for each
S ∈ C(ρ) is an O-scenario for (G,λ). By construction the 2-break-length of
ρ̂O is equal to the 2-break-length of ρO. The costs of ρO and ρ̂O are also equal,
as they consist of exactly the same operations that are performed in different
orders, thus the cost of ρO is greater or equal to

∑
S∈C(ρ) MCPSϕ(S, λS) ≥

min
{ ∑

S∈C MCPSϕ(S, λS)
∣
∣ C is a MAECD of G

}
. 
�

Take the set S of simple labeled cycles of (G,λ). If one can solve ϕ-MCPS for
every S ∈ S, then Theorem 2 provides a straightforward way to solve ϕ-MCPS

for (G,λ) as a set packing problem. First compute c(G) by solving the ILP in the
left column. Then proceed by solving the other ILP to compute MCPSϕ(G,λ).

Maximize
∑

S∈S xS

Subject to
∑

S:e∈S xS ≤ 1 for each edge e of G

and xS ∈ {0, 1} for simple cycle S ∈ S.

Minimize
∑

S∈S xSMCPSϕ(S, λS)

Subject to
∑

S:e∈S xS ≤ 1 for each edge e of G,
∑

S∈S xS = c(G)

and xS ∈ {0, 1} for simple cycle S ∈ S.

The size of S may be exponential in the size of G, which might make these ILPs
intractable in general. For graphs representing genomes with duplicate genes, the
number of simple cycles can grow exponentially as a function of the number of
duplicate genes. For breakpoint graphs, the number grows quadratically.

6 ϕ-MCPS for a Simple Cycle

The decomposition theorem of Sect. 5 reduces the computation of ϕ-MCPS on
a graph to the computation of ϕ-MCPS on a simple alternating cycle. In this
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Fig. 4. Two simple cycles having a vertex v of degree two are depicted in the first
column. Their sets of the corresponding circles obtained by splitting v into v1 and v2
are depicted in the second column. This set is of size 1 for the upper simple cycle
containing the gray loop {v, v}, and of size 2 for the lower simple cycle. An O-scenario
for a simple cycle provides a scenario of the same cost and length transforming the
graphs in the second column to the ones that become terminal once v1 and v2 are
merged. One possible outcome of such a scenario is presented in the third column.

section we further decompose the problem into simpler versions of cycles, called
circles, which are alternating cycles that contain a vertex only once.

Denote deg2(G) for a graph G as the number of vertices with black and gray
degree equal to two. It is easy to check that degb(S, v) = degg(S, v) ≤ 2 for any
vertex v of a simple cycle S. If deg2(S) = 0, then S is a circle. See the first
column of Fig. 4 for examples of simple cycles that are not circles.

Take a simple cycle S on vertices V , a labeling of its edges λ and denote S0

as {(S, λ)}. Choose a vertex of degree two in S. If it is incident to a gray loop,
then split it into two vertices, as depicted on the top row of Fig. 4, to obtain a
set S1 consisting of a single simple cycle. Otherwise split it into two vertices, as
depicted on the bottom row of Fig. 4, to obtain a set S1 consisting of two simple
cycles. The simple cycles in S1, by construction, share the same set of vertices,
that we denote V̂ , and the same multi-set of labeled black edges. O and a cost
function ϕ defined for vertices V can be extended in a natural way to Ô and ϕ̂
defined for vertices V̂ . For example if a vertex v was split into v1 and v2, then
ϕ̂(({v1, u}, x) → ({v1, u}, y)) = ϕ(({v, u}, x) → ({v, u}, y)) for u ∈ V ∩ V̂ and
labels x, y. In the appendix we prove the following lemma.

Lemma 3. MCPSϕ(S, λ) = min{MCPSϕ̂(Ŝ, λ̂)| (Ŝ, λ̂) ∈ S1}

Simple cycles in S1 share the same set of vertices of degree two. Choose
such a vertex and split it simultaneously in all the cycles in S1 as previously to
obtain a set S2 of at most 4 simple cycles sharing the same set of vertices and
the same multi-set of labeled black edges. Continue this procedure until the set
circ(S, λ) = Sdeg2(S) of the labeled circles is obtained. We denote V as the set
of vertices of these circles. O and a cost function ϕ defined for vertices V can be
extended in a natural way to O and ϕ defined for vertices V .

Theorem 3. MCPSϕ for a simple cycle (S, λ) is equal to the minimum of the
MCPSϕ among the circles in circ(S, λ).

Proof. We prove MCPSϕ(S, λ) = min{MCPSϕ̄(O, λO)| (O, λO) ∈ circ(S, λ)},
which is clearly true for deg2(S) = 0. We suppose it to be true for deg2(S) < t
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and prove it for deg2(S) = t by induction. By Lemma 3 we get MCPSϕ(S, λ) =
min{MCPSϕ̂(Ŝ, λ̂)| (Ŝ, λ̂) ∈ S1}. Since, for a simple cycle (Ŝ, λ̂) ∈ S1 we have
deg2(Ŝ) = t − 1, we use the inductive hypothesis to obtain MCPSϕ̂(Ŝ, λ̂) =
min{MCPSϕ̄(O, λO)| (O, λO) ∈ circ(Ŝ, λ̂)}. Further, we know that circ(S, λ) =
∪(Ŝ,λ̂)∈S1

circ(Ŝ, λ̂) by construction. Combining these results we obtain that the
theorem is true for deg2(S) = t. 
�

7 ϕ-MCPS for a Breakpoint Graph

In this section we suppose that there exists an algorithm for computing MCPSϕ

on a labeled circle (e.g. the algorithm of Sect. 9). Using this algorithm as a
subroutine we will construct an algorithm for finding MCPSϕ for a labeled
breakpoint graph. This is a generalization of the work first presented in [23].

Take genomes A and B partitioned into n genes where each gene occurs
exactly once in each genome, and a labeling λ of the edges of G(A,B). For all
the vertices v 
= ◦ we have degg(G(A,B), v) = degb(G(A,B), v) = 1. Thus, if
there is a circle in G(A,B) containing an edge then this circle is the only simple
cycle containing this edge. This means that every MAECD of G(A,B) includes
all of its circles. These set aside we are left with G(A,B)′, which is a union of
alternating paths starting and ending at ◦ with end edges of the same color. If
this color is black we call the path AA, and BB otherwise.

We proceed by constructing a complete weighted bipartite graph H having
the AA and BB paths of G(A,B)′ as vertices. Every simple cycle of G(A,B)′ is a
union of an AA path and a BB path. An edge joining these paths in H will have
the weight equal to MCPSϕ for a union of these paths. A MAECD of G(A,B)′

provides us with a maximum matching of H and every such matching provides
a MAECD of G(A,B)′. Denote λ′ as the labeling of the edges of G(A,B)′

according to λ. Using Theorem 2 we obtain that MCPSϕ(G(A,B)′, λ′) is equal
to the minimum weight of a maximum matching of H. There is an equal number
p of AA and BB paths. Let P denote the total number of edges in G(A,B)′.
Using this notation we obtain the following lemma proven in the appendix.

Lemma 4. For a function f and an O(f(r)) time algorithm for ϕ-MCPS on a
labeled circle on r vertices, there exists an O(p2f(P ) + p3 + f(n)) time algorithm
for ϕ-MCPS on a labeled breakpoint graph. If f(r) = O(rt) for some constant t ≥
1, then ϕ-MCPS on a labeled breakpoint graph can be solved in O(pP t +p3 +nt)
time.

Both p and P are O(n), thus Lemma 4 leads to the following theorem.

Theorem 4. Given a constant t ≥ 2 and an O(rt) time algorithm for ϕ-MCPS

on a labeled circle on r vertices, ϕ-MCPS on a labeled breakpoint graph can be
solved in O(nt+1) time.

Corollary 1. Using the O(r4) algorithm from Sect. 9 we obtain an O(n5) algo-
rithm for solving ϕf -MCPS on a labeled breakpoint graph with fixed labels.
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Corollary 2. Using the O(r log r) algorithm from [12] for the Sorting by

wDCJs and indels in intergenes problem on a circle (see Example 3), we
obtain an O(n3) algorithm for solving the problem on a breakpoint graph.

8 α-approximation for ϕ-MCPS

Theorems 2 and 3 demonstrate how ϕ-MCPS for any labeled graph can be
solved if one is able to solve ϕ-MCPS for a labeled circle. This is exploited in
Theorem 4 to solve ϕ-MCPS for a breakpoint graph. Analogous results hold
if instead of an exact algorithm one has an α-approximation for ϕ-MCPS for
a labeled circle. This is illustrated with the following theorem proven in the
appendix.

Theorem 5. For a constant t ≥ 2 and an O(rt) time α-approximation algo-
rithm for ϕ-MCPS on a labeled circle on r vertices, there exists an O(nt+1)
time α-approximation algorithm for ϕ-MCPS on a labeled breakpoint graph.

9 ϕf -MCPS for a Circle with Fixed Labels

Here we define ϕf -MCPS, a particular instance of a ϕ-MCPS problem, and solve
it for a circle. ϕf -MCPS generalizes our previous work presented in Example
1 and 2.

For a set V of vertices and a set L ∪ {τ} of labels, define a set O consisting
of labeled 2-breaks ({a, b}, x), ({c, d}, y) → ({a, c}, x), ({b, d}, y) for a, b, c, d ∈
V and x, y ∈ L, and label changes ({a, b}, x) → ({a, b}, τ) for a, b ∈ V and
x ∈ L. Fix a symmetric function Φ : L2 → R+ and define a cost function
ϕf (({a, b}, x), ({c, d}, y) → ({a, c}, x), ({b, d}, y)) = Φ(x, y) and ϕf (({a, b}, x) →
({a, b}, τ)) = 0.

We will provide a polynomial time algorithm for ϕf -MCPS on a labeled circle
with the gray edges labeled by a terminal label τ . Without loss of generality we
can suppose that all of the black edges of a circle have different labels; if two
edges are labeled with the same label x, then we simply replace one of these
labels with a new label x̂ and set Φ̂(x̂, y) = Φ(x, y) and Φ̂(y, z) = Φ(y, z) for
y, z ∈ L.

For a labeled circle having r black edges, define a set VL of r vertices cor-
responding to their labels. For an O-scenario ρO we define a 1-edge-colored
undirected graph T (ρO) with vertices VL and an edge {x, y} for every labeled
2-break in ρO replacing the edges labeled with x and y (See Fig. 5). The cost of
an edge {x, y} is defined to be Φ(x, y) and the cost of a T (ρO) is the sum of the
costs of its edges. The costs of ρO and T (ρO) are equal by construction.

Fix a circular embedding of VL respecting the order of the black edges on
the labeled circle (See Fig. 5). A graph with vertices VL is said to be planar on
the circle if none of its edges cross in this embedding. In the appendix we prove
Lemma 5 linking planar trees and parsimonious scenarios.
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Fig. 5. On the top: 4 steps of a parsimonious O-scenario for a circle are depicted
together with each T corresponding to the scenario at that point colored in yellow.
Vertices of T are superimposed on the corresponding edges of a circle providing their
circular embedding. All of the T are planar trees. On the bottom: For a given planar
tree T (dashed yellow) we provide a scenario ρO such that T (ρO) = T .

Lemma 5. If ρO is a minimum 2-break-length O-scenario for a labeled circle
(O, λ), then T (ρO) is a planar tree on (O, λ). In addition to that, for a planar
tree T on (O, λ) there exists an O-scenario ρO such that T (ρO) = T .

Farnoud and Milenkovic in [14] pose the problem of sorting permutations
by cost-constrained mathematical transpositions and provide a dynamic pro-
gramming algorithm for finding a minimum cost planar tree on a circle. In the
appendix we provide their proof for a following lemma which, together with
Lemma 6, leads to Theorem 6.

Lemma 6 (Farnoud et al. in [14]). A minimum cost planar tree on a circle
can be found in O(r4) time, where r is the number of vertices of a tree.

Theorem 6. ϕf -MCPS for a labeled circle on r vertices can be solved in O(r4)
time.

10 Conclusions and Future Directions

10.1 Practical Matters

Our algorithm for ϕf -MCPS on a breakpoint graph with fixed labels has a run-
ning time of O(n5) in the worst case. Note that the running time is dominated,
however, by the maximum bipartite matching step in Sect. 7. The size of this
graph is determined by the number of AA paths which is bounded by the num-
ber of chromosomes, so in practice it can be treated as a constant. Thus, the
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algorithm scales like O(n4) on real data. Further, since n is the number of syn-
tenic blocks — and not literally the genes as we call them — there are few
blocks. Our analyses of Drosophila genomes yield no AA paths, and less than
100 blocks [19]. Although about 13,000 blocks between human and mouse are
reported in the files associated to Baudet et al., many of them can be merged
because they are co-linear in the two species [3]. The effective number of blocks
for this pair is closer to 600.

For graphs with higher degree nodes, like those graphs that represent genomes
with duplicated genes, the number of simple cycles can grow rapidly. Although
this relationship is not immediately evident, we expect that fixed parameter
algorithms could be developed to handle biological data in the future.

10.2 Future Direction

Our cost framework is liberal, and in our examples we have explored only a
small portion of its capacities. Edges can be labeled by complex objects such as
vectors or trees that encode the biological information of extant genomes and its
modification throughout a scenario. Costs can be a function of a combination of
the edge labels and vertices. We hope that a closer study of the graph D(G, ρ)
from Sect. 3.2 will lead to polynomial time algorithms for ϕ-MCPS on circles
for a large family of problems.

While all of our results apply to genomes with insertions or deletions of sin-
gle genes, further study is required in order to increase efficiency on genomes
with duplicate genes. Other improvements to our work could consider non-
parsimonious 2-break scenarios.
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A Proofs

A.1 Lemma 1

Lemma. The minimum length of a 2-break scenario on a graph G is d2b(G) =
e(G) − c(G).

Proof. A 2-break can increase the size of a MAECD by at most 1 and the
size of a MAECD of a terminal graph is e(G). This leads to an inequality
d2b(G) ≥ e(G) − c(G).

In this paragraph the length of a cycle will be its number of black edges. For
any cycle c of length l > 1 there is a 2-break transforming c into a union of
length 1 and length l−1 cycles. This way we obtain a scenario of length l−1 for
c, and can transform every cycle of a MAECD of G independently, obtaining a
2-break scenario of length e(G) − c(G). Thus, d2b(G) ≤ e(G) − c(G). 
�
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A.2 Lemma 2

Lemma. The minimum length of a DCJ scenario transforming genome A into
B is equal to d2b(G(A,B)) = e(G(A,B)) − c(G(A,B)).

Proof. G(A,B) is constructed in such a way that for every DCJ A → A′ the
transformation G(A,B) → G(A′, B) is a 2-break. Notably, a DCJ {a, b} →
{a}, {b} results in a transformation {a, b}, {◦, ◦} → {a, ◦}, {b, ◦}, as the construc-
tion of a breakpoint graph guarantees that there are enough black loops {◦, ◦}
to realize such a 2-break. For any 2-break G(A,B) → G′ with G′ 
= G(A,B)
there exists a DCJ A → A′ such that G(A′, B) = G′. Since G(B,B) is termi-
nal, it follows that the minimum length of a scenario transforming A into B is
d2b(G(A,B)) and we conclude using Lemma 1. 
�

A.3 Theorem 1

Theorem. If D(G, ρ) has k connected components then ρ can be partitioned into
k subscenarios ρi and G can be partitioned into k edge-disjoint Eulerian subgraphs
Hi in such a way that ρi is a scenario for Hi for every i ∈ {1, . . . , k}. If ρ is
parsimonious, then k = c(G) and C(ρ) = {H1, . . . , Hk} is a MAECD of G.

Proof. Take a connected component C of D(G, ρ). It has an equal number of
vertices of indegree 0 and vertices of outdegree 0. Its edges incident to the vertices
of indegree 0 are labeled with the black edges of G and its edges incident to the
vertices of outdegree 0 are labeled with the gray edges of G. Together these
labels define a subgraph H of G that we will prove to be Eulerian.

Define Cl to be a subgraph of D(G, ρl) consisting of its connected components
containing the vertices of indegree 0 of C. This way Cm = C. Define Hl to be a
subgraph of Gl containing the gray edges of H and the black edges of Gl labeling
the edges of Cl incident to the vertices of outdegree 0. This way H0 = H and
Hm is a terminal graph.

We prove that H is Eulerian by induction. Hm is Eulerian as it is terminal.
Suppose that Hl is Eulerian. By construction the two edges of Gl replaced by
the l-th 2-break of ρ either both belong to Hl−1 or both are outside of Hl−1. In
the first case, Hl is obtained from Hl−1 via a 2-break and as Hl is Eulerian this
means that Hl−1 is also Eulerian. In the second case, Hl = Hl−1, thus the latter
stays Eulerian. Thus H = H0 is Eulerian and we obtain a subsequence of ρ that
is a scenario for H.

D(G, ρ0) has e(G) connected components. The l-th 2-break of ρ merges two
vertices of D(G, ρl−1), thus reduces the number of the connected components
by at most 1. This means that the number k of the connected components of
D(G, ρ) is greater or equal to e(G) − m.

If ρ is parsimonious, then its length m is e(G) − c(G) using Lemma 1. This
means that k ≥ c(G) and G can be partitioned into k edge-disjoint Eulerian
subgraphs. Due to the maximality of c(G), we have that k = c(G) and all of the
obtained edge-disjoint Eulerian subgraphs of G are simple cycles. 
�
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A.4 Lemma 3

Lemma. MCPSϕ(S, λ) = min{MCPSϕ̂(Ŝ, λ̂)| (Ŝ, λ̂) ∈ S1}

Proof. For a labeled graph (H,μ) on vertices V̂ we denote r(H,μ) as the labeled
graph obtained from (H,μ) by merging the two vertices that were split in S.
For (Ŝ, λ̂) ∈ S1 we have r(Ŝ, λ̂) = (S, λ) by construction. An operation in Ô
transforms (Ŝ, λ̂) into such (Ŝ′, λ̂′) that there exists unique operation in O of the
same cost transforming (S, λ) into r(Ŝ′, λ̂′). This leads to an observation that
for an Ô-scenario for (Ŝ, λ̂) there exists an O-scenario of the same cost and the
same 2-break-length for (S, λ).

On the other hand, for an operation in O transforming (S, λ) into (S′, λ′)
there exists an operation in Ô of the same cost transforming every (Ŝ, λ̂) ∈ S1

into (Ŝ′, λ̂′) such that r(Ŝ′, λ̂′
S) = (S′, λ′). This leads to an observation that

an O-scenario for (S, λ) provides us with a sequence ρ̂Ô of Ô operations of the

same cost and 2-break-length transforming every (Ŝ, λ̂) ∈ S1 into such (Ŝ, λ̂) for
which r(Ŝ, λ̂) is a terminal graph with equal multi-sets of labeled gray and black
edges. As the later graph is obtained by merging two vertices of degree one of
the former, we know that its structure is as well fairly simple. We can check all
the possible cases by hand and show that there is (Ŝ, λ̂) ∈ S1 such that (Ŝ, λ̂) is
itself a terminal graph with equal multi-sets of labeled gray and black edges.

If S1 is of size 1, then there is a single choice for (Ŝ, λ̂) such that r(Ŝ, λ̂) is
a terminal graph with equal multi-sets of labeled gray and black edges (see the
right upper corner of Fig. 4). If S1 is of size 2, then there are more cases, but
they are all easy to check and one of them is given in the right bottom corner
of Fig. 4. 
�

A.5 Lemma 4

Lemma. For a function f and an O(f(r)) time algorithm for ϕ-MCPS on a
labeled circle on r vertices, there exists an O(p2f(P ) + p3 + f(n)) time algorithm
for ϕ-MCPS on a labeled breakpoint graph. If f(r) = O(rt) for some constant t ≥
1, then ϕ-MCPS on a labeled breakpoint graph can be solved in O(pP t +p3 +nt)
time.

Proof. The p2 edges of a bipartite graph H can be weighted in O(p2f(P ))
time due to Theorem 3 and the fact that the simple cycles of G(A,B) have
at most 1 vertex of degree 2. A minimum weight maximum matching of H can
be found in O(p3) time using the Hungarian algorithm. Finally, MCPSϕ for
the labeled circles in G(A,B) can be computed in O(f(n)) time. Combining
these results we obtain an O(p2f(P ) + p3 + f(n)) time algorithm for computing
MCPSϕ(G(A,B), λ).

Now suppose that f(r) = O(rt) for some constant t ≥ 1. Let a1, . . . , ap and
b1, . . . , bp denote the number of edges in AA and BB paths with

∑p
i=0 ai = PA,∑p

j=0 bj = PB and P = PA + PB.
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MCPSϕ for a union of an AA path and a BB path having a and b edges
respectively can be obtained by computing MCPSϕ for at most two circles on
a + b vertices due to Theorem 3. This can be done in less than c(a + b)t steps
for some constant c using the O(rt) time algorithm for computing MCPSϕ for a
circle. MCPSϕ for every pair of AA and BB paths of G(A,B)′ can be computed
in a number of steps bounded by:
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B P l
A = cp(PB + PA)t = cpP t

Thus, the weighting of H can be performed in O(pP t) time. This provides us
with an O(pP t + p3 + nt) time algorithm for computing MCPSϕ(G(A,B), λ).
�

A.6 Theorem 5

Theorem. For a constant t ≥ 2 and an O(rt) time α-approximation algorithm
for ϕ-MCPS on a labeled circle on r vertices, there exists an O(nt+1) time
α-approximation algorithm for ϕ-MCPS on a labeled breakpoint graph.

Proof. In Theorem 3, MCPSϕ on a simple cycle is expressed as the minimum
of the MCPSϕ for a set of corresponding circles. In Theorem 2, MCPSϕ on a
graph is expressed as the minimum of the sums of the MCPSϕ for the simple
cycles. We prove an auxiliary lemma establishing the following:

1. An α-approximation for MCPSϕ on a simple cycle can be obtained by taking
the minimum of the α-approximations for the corresponding circles.

2. An α-approximation for MCPSϕ on a graph can be obtained by taking the
minimum of the sums of the α-approximations for MCPSϕ on the simple
cycles.

Lemma. Take k ∈ N and two sets of positive numbers {q∗
1 , . . . , q

∗
k} and

{q1, . . . , qk} with qi ≤ αq∗
i for every i. The following inequalities hold:

1. min{qi|i ∈ {1, . . . , k}} ≤ αmin{q∗
i |i ∈ {1, . . . , k}}

2.
∑k

i=0 qi ≤ α
∑k

i=0 q∗
i
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Proof. Take u and v such that q∗
u = min{q∗

i |i ∈ {1, . . . , k}} and qv = min{qi|i ∈
{1, . . . , k}}. By construction qv ≤ qu ≤ αq∗

u which proves the first inequal-
ity. For the second inequality it suffice to observe that

∑k
i=0 qi ≤

∑k
i=0 αq∗

i =
α

∑k
i=0 q∗

i 
�

A simple cycle of a breakpoint graph has at most one vertex of degree 2. This
means that it has at most two corresponding circles (see Theorem 6). Taking
the minimum of the α-approximations for MCPSϕ on these circles provides us
with an α-approximation for the simple cycle due to Theorem 6 and the first
part of the lemma above. This way we obtain an α-approximation algorithm for
ϕ-MCPS on a simple cycle of a breakpoint graph that runs in O(rt) time where
r is the number of the vertices in the simple cycle.

We can reuse the structure of a bipartite graph H presented in Sect. 7 with
the weights of the edges now being the α-approximations for the MCPSϕ on
the corresponding simple cycles. Following the same reasoning as in Sect. 7, we
know that the minimum cost maximum matching of H leads to a MAECD of a
breakpoint graph minimizing the sum of the α-approximations for the MCPSϕ

on its simple cycles. Combining Theorem 2, both parts of the lemma above, and
the proof of Lemma 4, we obtain an O(nt+1) time α-approximation algorithm
for ϕ-MCPS on a breakpoint graph. 
�

A.7 Lemma 5

Lemma. If ρO is a minimum 2-break-length O-scenario for a labeled circle
(O, λ), then T (ρO) is a planar tree on (O, λ). In addition to that, for a pla-
nar tree T on (O, λ) there exists an O-scenario ρO such that T (ρO) = T .

Proof. We prove the first statement by induction. It is trivially true if O has 2
vertices. We suppose it to be true for all the circles having less than 2l vertices
and prove it for a circle having 2l vertices. Fix a minimum 2-break-length scenario
ρO. Its length is l−1 due to Lemma 1. The first labeled 2-break of ρO transforms
(O, λ) into two vertex disjoint labeled circles (O1, λ1) and (O2, λ2) both having
less vertices than O. The rest of the scenario ρO can be partitioned into ρ1O acting
on the edges of O1 and ρ2O acting on the edges of O2. As ρO is a minimum 2-break-
length scenario, ρ1O and ρ2O must also be minimum 2-break-length scenarios. By
the inductive hypothesis, T (ρ1O) and T (ρ2O) are planar trees on (O1, λ1) and
(O2, λ2) respectively. T (ρO) can be easily obtained from T (ρ1O) and T (ρ2O) by
taking the union of their edges and adding an edge corresponding to the first
2-break of ρO. This way we obtain a planar tree T (ρO) on (O, λ) proving the
first statement of the lemma.

Now define the distance of an edge {x, y} in T as the minimum number of
vertices between x and y in the fixed circular embedding of T . For example, in
the rightmost tree on the top of Fig. 5 the distance of the edge {w, z} is one,
because t is in between w and z, while the distance of the edge {x, y} is 0. An
edge is said to be short if its distance is 0. We prove an auxiliary lemma.

Lemma. A planar tree T on (O, λ) has a short edge incident to a leaf.
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Proof. Choose a leaf x in T incident to an edge of the minimum distance d. If
d 
= 0, then in between the leaf and the vertex that it is adjacent to, there are d
other vertices. Since T is planar on (O, λ), it is easy to see that there is at least
one other leaf among these d vertices, which contradicts the minimality of x. 
�

Now take a short edge {x, y} incident to a leaf x in T . Take the black
edges {a, b} and {c, d} in (O, λ) labeled with x and y respectively and sepa-
rated by a gray edge {b, c}. Perform a labeled 2-break ({b, a}, x), ({c, d}, y) →
({b, c}, x), ({a, d}, y). This 2-break results in two labeled circles. One of them
is a terminal graph having two edges {b, c} with the black one labeled with x.
Remove the edge {x, y} from T . This way we have reduced the size of the prob-
lem. The number of the vertices in the circle was reduced by two and the number
of the edges in the tree was reduced by 1. We iterate this procedure to construct
a required scenario. See the bottom part of Fig. 5 for an example. 
�

A.8 Lemma 6

Lemma. A minimum cost planar tree on a circle can be found in O(r4) time,
where r is the number of vertices of a tree.

Proof. Farnoud and Milenkovic pose the problem of sorting permutations by
cost-constrained mathematical transpositions (a sorting scenario is called a
decomposition) [14]. They define a cost function on the set of transpositions
and treat the problem, called MIN-COST-MLD, of finding a minimum cost
decomposition among the minimum length transposition decompositions of a
permutation. They reduce this problem to finding a minimum cost planar tree
on a circle, and propose the following O(r4) time dynamic programming algo-
rithm for a tree having r vertices.

Enumerate the vertices 1 to r while respecting their order on the circle.
Define cost(i, j) as the minimum cost of a planar tree on the vertices {i, . . . , j}
for 1 ≤ i < j ≤ r and set cost(i, i) = 0 for 1 ≤ i ≤ r.

Take a planar tree T on the vertices {1, . . . , r}. If deg(1) = 1 and 1 is on the
edge {1, q}, then the cost of T is equal to Φ(1, q) plus the costs of the subgraphs
of T induced by the vertices {2, . . . , q} and {q + 1, . . . , r}. If deg(1) > 1, then
take q = max({u|{1, u} belongs to T }) and s = max({u| there is a path in T
joining 1 and u but not visiting q}). The cost of T is equal to Φ(1, q) plus the
costs of the subgraphs of T induced by the vertices {1, . . . , s}, {s+1, . . . , q} and
{q, . . . , r}. This observation provides us with the following equality:

cost(i, j) = max(cost(i, s) + cost(s + 1, q) + cost(q, j) + Φ(i, q)| i ≤ s < q ≤ j)

for 1 ≤ i < j ≤ r, that leads to an O(r4) time dynamic programming algorithm
for finding cost(1, r). 
�
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Abstract. Genome rearrangements are evolutionary events that shuffle
genomic architectures. Usually the rearrangement distance between two
genomes is estimated as the minimal number of rearrangements needed
to transform one genome into another, which is usually referred to as the
parsimony assumption.

Since in reality the parsimony assumption may or may not hold, the
question arises of estimating the true evolutionary distance (i.e., the
actual number of genome rearrangements between the genomes of two
species). While several methods for solving this problem have been devel-
oped, all of them have their own disadvantages. In the current paper we
consider a very general model and provide a flexible estimator as well as
the limits of applicability for the most popular estimation methods, such
as the maximum parsimony method.

1 Introduction

Genome rearrangements are evolutionary events that shuffle genomic architec-
tures. Most frequent genome rearrangements are reversals (that flip segments of
a chromosome), translocations (that exchange segments of two chromosomes),
fusions (that merge two chromosomes into one), and fissions (that split a sin-
gle chromosome into two). These four types of rearrangements can be modeled
by Double-Cut-and-Join (DCJ) operations [22], which break the genome at two
positions and glue the resulting fragments in a new order.

The ability to estimate the evolutionary distance between extant genomes
plays a crucial role in many phylogenomic studies. Often such estimation is based
on the parsimony assumption, implying that the distance between two genomes
can be estimated as the rearrangement distance equal to the minimal number of
genome rearrangements required to transform one genome into the other. How-
ever, in reality the parsimony assumption may not always hold, emphasizing the
need for estimation that does not rely on the (minimal) rearrangement distance.
The evolutionary distance that accounts for the actual (rather than the minimal)
number of genome rearrangements between two genomes is often referred to as
the true evolutionary distance.

The first method for estimating of the true evolutionary distance was intro-
duced in [21]. This approach takes into account only reversals and transpositions
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on unichromosomal genomes. The method that considered general DCJs and an
arbitrary number of chromosomes was introduced in [12]. This method implicitly
assumes that all intergenic regions are prone to rearrangements. This assumption
is usually referred to as the random breakage model (RBM) of chromosome evo-
lution [14,15]. Since some intergenic regions may be under selection and so can
not be involved in rearrangements, we proposed an estimation method [1] under
the so-called fragile breakage model (FBM) [16] postulating that only certain
“fragile” genomic regions are prone to rearrangements. However, the method is
based on the assumption that all fragile regions are equally likely to be involved
in rearrangements, which is not always true. Recently this model was generalized
by Biller et al. [5], who proposed the INFER model taking into account the fact
that each fragile region has its own“fragility” (the probability to be involved in
a rearrangement).

It is important to note that all the mentioned models make the so-called
unique gene content assumption, that is, they assume that two genomes contain
the same set of genes and each gene is present in each genome in one copy.
This assumption is very strong and does not usually hold for biological data.
Indeed, since insertions and deletions (indels) of genes happen in the course
of evolution, some genes could be present in one genome and not present in
another. Moreover, duplications are the reason that some genes are present in
the same genome in several copies. See [6,8–10,17–19,23] for more information.
However, rearrangements themselves explain a great deal of genome diversity,
and developing solid mathematical background for the rearrangement analysis
is necessary for investigating more complex models.

While the INFER model is much more biologically relevant than other unique
gene content based models, the computational method provided in [5] has a
number of limitations. In particular, the method does not converge for distant
genomes, and it is not very robust since it relies on just two parameters of the
model which have high variance. It is also hard to implement and its running time
is relatively high. In the current study, we propose a new method for estimating
the true evolutionary distance between two genomes under the INFER model
which does not have the limitations mentioned above. We estimated the param-
eters of the model for both the general case (when there are no assumptions
about the distribution of the regions’ fragilities) and the case when fragilities
are distributed according to the Dirichlet distribution. We obtained surprisingly
nice mathematical formulas, and showed that the estimation results are very
accurate.

2 Background

2.1 Breakpoint Graphs and DCJs

Our analysis is essentially based on the models proposed in [1,5]. Below we
remind the readers about the relevant definitions and notations.

In this paper we focus on the analysis of circular genomes (i.e., genomes
with circular chromosomes) and address linear genomes later. Our preliminary
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simulations show that circularization of the chromosomes does not affect the
estimations significantly. We represent a genome with n blocks as a genome
graph composed of n directed edges encoding blocks and their strands and n
undirected edges encoding adjacencies between blocks.

(a) (b)

(c)

Fig. 1. (a) Genome graph of unichromosomal genome P = (0, 1, 2, 3, 4, 5) with adja-
cency edges colored black. (b) Genome graph of unichromosomal genome Q =
(0,−2,−1, 3,−5,−4) with adjacency edges colored red. (c) The breakpoint graph
G(P, Q) of genomes P and Q represents a collection of black-red cycles. (Color figure
online)

Let P and Q be genomes on the same set of blocks. We assume that in their
genome graphs the adjacency edges of P are colored black (Fig. 1a) and the
adjacency edges of Q are colored red (Fig. 1b). The breakpoint graph G(P,Q) is
the superposition of the genome graphs of P and Q with the block edges removed
(Fig. 1c). The black and red edges in G(P,Q) form a collection of alternating
black-red cycles.

We say that a black-red cycle is an m-cycle if it contains m black edges
(and m red edges) and let cm(P,Q) be the number of m-cycles in G(P,Q). We
refer to 1-cycles as trivial1 and to the other cycles as non-trivial. The vertices of
non-trivial cycles are called breakpoints.

A DCJ in genome Q replaces any pair {x, y}, {u, v} of red adjacency edges
with either a pair of edges {x, u}, {y, v} or a pair of edges {u, y}, {v, x}. We
say that such a DCJ operates on the edges {x, y}, {u, v} and their endpoints
x, y, u, v. A DCJ in genome Q transforming it into a genome Q′ corresponds to
the transformation of the breakpoint graph G(P,Q) into the breakpoint graph

1 In the breakpoint graph constructed on synteny blocks of two genomes, there are no
trivial cycles since no adjacency is shared by both genomes. However, the breakpoint
graph constructed on orthologous genes or multi-genome synteny blocks may contain
trivial cycles.
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G(P,Q′) (Fig. 2). Each DCJ in the breakpoint graph can merge two black-red
cycles into one (if edges {x, y}, {u, v} belong to distinct cycles), split one cycle
into two or keep the number of cycles intact (if edges {x, y}, {u, v} belong to
the same cycle). The DCJ distance between genomes P and Q is the minimum
number of DCJs required to transform Q into P . It can be evaluated as d(P,Q) =
b(P,Q) − c(P,Q), where b(P,Q) =

∑
m≥2 m · cm(P,Q) is half the number of

breakpoints and c(P,Q) =
∑

m≥2 cm(P,Q) is the number of non-trivial cycles
in the breakpoint graph G(P,Q) [22].

p1p4

p2

p0p5

p3

G(P,Q)

DCJ−→ p1p4

p’2 p0

p’5

p3

G(P,Q′)

Fig. 2. A DCJ in genome Q replaces a pair of red edges in the breakpoint graph G(P, Q)
with another pair of red edges forming a matching on the same 4 vertices. (Color figure
online)

2.2 Evolutionary Model

To estimate the true evolutionary distance between genomes P and Q on the
same set of blocks, we view the evolution between them as a discrete Markov
process that transforms genome P into genome Q through a sequence of DCJs
which occur independently. The process starts at genome X0 = P and after k
steps ends at Xk = Q, and corresponds to the transformation of the breakpoint
graphs starting at G(P, P ) (formed by a collection of trivial cycles) and ending
at G(P,Q). We assume that P and Q are composed of a large unknown number
n of solid regions interspaced with the same number of fragile regions, some of
which remain conserved by chance.

Let Pn and Qn denote representations of P and Q as sequences of the solid
regions. It is important to mention that while we do not know the number n of
solid regions, the breakpoint graphs G(P,Q) and G(Pn, Qn) have the same cycle
structure, except for trivial cycles. That is, we have cm(Pn, Qn) = cm(P,Q) for
every m ≥ 2, implying, in particular, that b(Pn, Qn) = b(P,Q), c(Pn, Qn) =
c(P,Q), and d(Pn, Qn) = d(P,Q). Indeed, if genomes P ′ and Q′ are obtained
from P and Q by replacing a single block a with two consecutive smaller blocks
a1, a2, then G(P ′, Q′) can be obtained from G(P,Q) by adding one trivial cycle
(corresponding to the shared adjacency a1, a2). Since the genomes Pn and Qn

can be obtained from P and Q with a number of such operations, the breakpoint
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graphs G(P,Q) and G(Pn, Qn) may differ only in the number of trivial cycles.
We view genome Qn as obtained from Pn with a sequence of k DCJs, each
operating on two randomly selected fragile regions. In contrast to c1(Pn, Qn),
the value of c1(P,Q) is rather arbitrary and thus is ignored in our model. We
view genome Qn as obtained from Pn with a sequence of k DCJs each operating
on two randomly selected fragile regions.

The INFER model introduced in [5] takes into account different probabilities
to break for different fragile regions. While the original paper gave a detailed
description of only one type of genome rearrangements – inversions, – the def-
initions and the analysis can be easily generalized to arbitrary DCJs. Namely,
each fragile region (say, the i-th) has a probability pi to be involved in a DCJ
(the sum of all pi is equal to 1); and each DCJ operates on the i-th and the j-th
fragile regions with the probability pipj (for i �= j; otherwise we assume there
is no change to the genome). The fragility of a fragile region could be propor-
tional to its length (in nucleotides) or/and depend on its chromatin structure
and other parameters. We note that the fragilities pi depend on the genomes
Pn and Qn, and so they depend on n. The INFER model assumes that the
new fragilities p′

i and p′
j of the new i-th and j-th fragile regions obtained after

a DCJ are related to the old fragilities pi and pj . Namely, there are uniform
random variables r1 and r2 (r1, r2 ∈ [0, 1]) such that p′

i = r1pi + r2pj and
p′

j = (1−r1)pi +(1−r2)pj . Note that they satisfy the property p′
i +p′

j = pi +pj .
Since the fragilities are updated during the process, it is natural to assume that
they follow the equilibrium distribution of the updating process. This distribu-
tion is the flat Dirichlet distribution, i.e. the uniform distribution on a standard
simplex {(x1, x2, . . . , xn) : xi ≥ 0,

∑
xi = 1}.

In the current paper we consider two cases:

– The general case, when the only assumption on pi’s is that pi = Θ( 1
n ) for each

i. In this case we introduce random variables αi = npi, and we assume that
these variables αi are identically distributed (since there is no information
about the positions of fragile regions).

– The case when fragilities pi are distributed according to the Dirichlet distri-
bution.

We note that it is important to consider the general case, since, while the flat
Dirichlet distribution is the equilibrium distribution of pi’s under the INFER
model, their actual distribution is not known because INFER does not take
into account such factors as duplications, indels, and dispersion of transposable
elements (see [5]). Thus, as soon as new insights into the fragilities distribution
appear, one can easily modify Theorem 1 below to apply their modified method
to the data.

Our evolutionary model has the following observable parameters:

– cm = cm(Pn, Qn) = cm(P,Q) for any m ≥ 2, i.e., the number of m-cycles in
G(P,Q);

– b = b(Pn, Qn) = b(P,Q) =
∑

m≥2 m ·cm, the number of broken fragile regions
between P and Q, which is also the number of synteny blocks between P and
Q, or half of the total length of all non-trivial cycles in G(P,Q);
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– d = d(Pn, Qn) = d(P,Q) = b − ∑
m≥2 cm, the DCJ distance between P and

Q;

while the following parameters are hidden:

– c1 = c1(Pn, Qn), the number of trivial cycles in G(Pn, Qn) (under the FBM,
c1(Pn, Qn) �= c1(P,Q));

– n = n(P ) = n(Q), the number of fragile regions in each of genomes P and Q,
half the total length of all cycles in G(Pn, Qn);

– k = k(P,Q), the number of DCJs in the Markov process, the true evolutionary
distance between P and Q;

– pi = αi

n , the fragility of the i-th fragile region.

3 Methods

First, we will analytically estimate the number of m-cycles cm (m ≥ 2), consid-
ering only relatively small m and assuming that n and k are sufficiently large
(see Theorem 2). Then, based on this analysis, we propose a method to estimate
the true evolutionary distance k.

3.1 Theoretical Analysis

Theorem 1. Let genome Pn be a genome with n fragile regions and genome
Qn be obtained from Pn with k = �γn/2� random DCJs for some γ > 0, and
αi = npi are identically distributed. Then, for any fixed m, the proportion of
edges that belong to m-cycles in G(Pn, Qn) is

lim
n→∞E

mcm

n
=

γm−1

(m − 1)!
Eα1 . . . αm(α1 + . . . + αm)m−2e−γ

∑m
i=1 αi . (1)

Theorem 2. Let genome Pn be a genome with n fragile regions and genome
Qn be obtained from Pn with k = �γn/2� random DCJs for some γ > 0, and
the fragilities pi are distributed according to the Dirichlet distribution. Then, for
any fixed m, the proportion of edges that belong to m-cycles in G(Pn, Qn) is

lim
n→∞E

mcm

n
=

(3m − 3)!γm−1

(m − 1)!(2m − 1)!(γ + 1)3m−2
. (2)

Let us prove Theorem 1 first.

Proof. Let us note that the majority of m-cycles are the result of merging smaller
cycles, and the number of m-cycles obtained as a result of splitting larger cycles
is negligible. Indeed, the probability that some �-cycle (with � ≥ m) is split into
an m-cycle and an (� − m)-cycle during an individual DCJ has the order 1

n ,
and thus after k DCJs the expected number of “split” m-cycles is finite. At the
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same time, the number of“merged” m-cycles after k DCJs has the order n (See
Lemma 3 in [1] for the rigorous proof).

Consider a set of m black edges Am. Without loss of generality, we assume
that the corresponding red edges have the labels 1, 2, . . . ,m and the fragilities
p1, p2, . . . , pm. Let us find the probability that after k DCJs the black edges of
Am would form an m-cycle, obtained as a result of merging smaller cycles. Since
an m-cycle is formed within m − 1 DCJs, there are

(
k

m−1

)
ways to choose the

corresponding steps. Let us call the m − 1 steps forming an m-cycle from Am

a merging scenario (see Fig. 3 for an example). To each merging scenario S we
assign a labeled tree TS on the vertices labeled 1, 2, . . . ,m (see Fig. 4) in the
following way: there is an edge between the vertices i and j iff there is a DCJ
operating on the i-th and j-th red edges in the scenario. We note that such a
map is 2m−1(m−1)! to 1, since the tree does not reflect the order of DCJs (which
gives the factor (m− 1)!) and the way of merging the cycles in each DCJ (which
gives the factor 2m−1).

Fig. 3. An example of a merging scenario with 5 DCJs. Its probability is equal to
p1 · p2 · p′

2 · p′′
2 · p′′′

2 · p3 · p4 · p5 · p′
5 · p6. (Color figure online)

If the fragility of the i-th region was pi during the whole process, then the
probability of the scenario S is equal to

∏m
i=1 pdi

i , where di is a degree of the
vertex i in TS . By Cayley’s theorem [7], the sum of all such probabilities is
p1 . . . pm(p1 + · · · + pm)m−2. We note that this sum stays the same even if the
fragilities are updated after each DCJ as long as the sum of the fragilities of
edges in each cycle does not change. The last property holds since the INFER
model updating rule for fragilities requires p′

i + p′
j = pi + pj .
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Fig. 4. The tree corresponding to the merging scenario from Fig. 3. (Color figure online)

Thus, the probability that the edges of Am form an m-cycle is

(
k

m − 1

)

2m−1(m − 1)!p1 . . . pm(p1 + · · · + pm)m−2

(

1 −
m∑

i=1

pi

)2(k−m+1)

, (3)

where the last factor (1−∑m
i=1 pi)2(k−m+1) corresponds to the fact that the red

edges 1, 2, . . . ,m are not involved in the k − m + 1 DCJs.
There are

(
n
m

)
ways to choose the set Am. Thus, the expected normalized

number of m-cycles converges to

m

n

(
n

m

)(
k

m − 1

)

2m−1(m − 1)!p1 . . . pm

(
m∑

i=1

pi

)m−2 (

1 −
m∑

i=1

pi

)2(k−m+1)

∼

m

n

nm

m!
(2k)m−1 1

n2m−2
α1 . . . αm

(
m∑

i=1

αi

)m−2 (

1 −
∑m

i=1 αi

n

)2(k−m+1)

∼

1
(m − 1)!

2k

n

m−1

α1 . . . αm

(
m∑

i=1

αi

)m−2 (

1 −
∑m

i=1 αi

n

)2(k−m+1)

∼

γm−1

(m − 1)!
α1 . . . αm (α1 + · · · + αm)m−2 exp

(

−γ

m∑

i=1

αi

)

, (4)

which finishes the proof.

Note that Theorem 1 allows to estimate mcm
n for various assumptions. In the

case of degenerate distribution (all αi = 1) we obtain the main theorem of [1] as
a particular case (except for the fact that Theorem1 does not provide any bound
for the rate of convergence). Theorem 2 can also be considered as a particular
case of Theorem 1.

Proof. Let us recall that a vector (p1, . . . , pn) from the flat Dirichlet distribu-
tion can be generated in the following way. Let βi, (i = 1, 2, . . . , n) be expo-
nential random variables with parameter 1. Then pi = βi

β1+β2+···+βn
are dis-

tributed according to the Dirichlet distribution. Note that by the law of large
numbers β1 + β2 + · · · + βn strongly converges to n. So we can consider the
values αi = lim npi as exponential random variables, moreover, for small m all
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the dependencies between α1, α2, . . . , αm are negligible. Thus, we only need to
find the expected value of

α1 . . . αm(α1 + . . . + αm)m−2e−γ
∑m

i=1 αi (5)

with the measure e− ∑m
i=1 αidα1 . . . dαm in order to prove Theorem 2.

Let us prove that
∫

· · ·
∫

R
m
+

α1 · . . . · αm(α1 + . . . + αm)m−2e− ∑m
i=1((γ+1)αi)dα1 . . . dαm

=
(3m − 3)!

(2m − 1)!(γ + 1)3m−2
. (6)

First, change the variable ti = αi(γ + 1):
∫

· · ·
∫

R
m
+

t1
γ + 1

· . . . · tm
γ + 1

(
t1 + . . . + tm

γ + 1

)m−2

e− ∑m
i=1 ti

dt1
γ + 1

. . .
dtm
γ + 1

=

1
(γ + 1)3m−2

∫

· · ·
∫

R
m
+

t1 · . . . · tm(t1 + . . . + tm)m−2e− ∑m
i=1 tidt1 . . . dtm. (7)

Then introduce another change u = t1 + . . . + tm:

1

(γ + 1)3m−2

∞∫

0

∫

· · ·
∫

∑m−1
i=1 ti≤u

t1 . . . tn−1

(

u −
m−1∑

i=1

ti

)

um−2e−udt1 . . . dtm−1du

=
1

(γ + 1)3m−2

⎛

⎝

∞∫

0

∫

· · ·
∫

∑m−1
i=1 ti≤u

t1 · . . . · tm−1u
m−1e−udt1 . . . dtm−1du

− (m − 1)

∞∫

0

∫

· · ·
∫

∑m−1
i=1 ti≤u

t21 · t2 · . . . · tm−1u
m−2e−udt1 . . . dtm−1du

⎞

⎠

=
1

(γ + 1)3m−2

(∫ ∞

0

(∫

· · ·
∫

∑m−1
i=1 ti≤u

t1 · . . . · tm−1dt1 . . . dtm−1

)

um−1e−udu

− (m − 1)

∫ ∞

0

(∫

· · ·
∫

∑m−1
i=1 ti≤u

t21 · t2 · . . . · tm−1dt1 . . . dtm−1

)

um−2e−udu

)

.

(8)

The latter two integrals can be computed recursively:
∫

· · ·
∫

∑m−1
i=1 ti≤u

t1 · . . . · tm−1dt1 . . . dtm−1 =
u2m−2

(2m − 2)!
(9)

and
∫

· · ·
∫

∑m−1
i=1 ti≤u

t21 · . . . · tm−1dt1 . . . dtm−1 =
u2m−1

(2m − 1)!
. (10)

After simplification we obtain (6) and so prove the theorem.
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Remark 1. We note that the sequence (3m−3)!
(m−1)!(2m−1)! (1, 1, 3, 12, 55, . . . ) is well-

known as Fuss–Catalan numbers and appears in the On-Line Encyclopedia of
Integer Sequences (OEIS) [20] as the sequence A001764. This sequence appears
in combinatorics and probability theory in many different contexts, but such an
interpretation is new (to the best of our knowledge).

3.2 Estimation Method

Since Biller et al. [5] showed the biological relevance of the assumption that the
fragilities are distributed according to the Dirichlet distribution, we develop an
estimation method for this case based on our analysis. We run the simulations
under the INFER model, and they show that the estimations of the number of
m-cycles

ĉm :=
(3m − 3)!γm−1

m!(2m − 1)!(γ + 1)3m−2
n (11)

are very accurate (see Fig. 5). We performed 200 runs of the Markov process, for
each we chose the parameter n randomly from [500, 3,000] and changed k from
0 to n.

Fig. 5. The empirical and analytical values of c2/n, c3/n, and c4/n depending on
γ = 2k/n. The empirical value is averaged over 200 runs of the Markov process with
the parameters n from [500, 3,000] and k from [0, n].
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Based on this, we can estimate the normalized number of breakpoints and
the normalized minimal distance:

b̂

n
= 1 − ĉ1

n
= 1 − 1

1 + γ
=

γ

1 + γ
, (12)

d̂

n
=

∞∑

m=2

ĉm

n
(m − 1) = 1 −

(1 + γ)2(2F1

(
− 2

3 ,− 1
3 , 1

2 , 27γ
4(1+γ)3

)
− 1)

3γ
, (13)

where 2F1 stands for the hypergeometric function. These estimations are very
accurate (see Fig. 6) even for a single run (!) of the Markov process.

Fig. 6. The empirical and analytical values of b/n, d/b, and b/n depending on γ =
2k/n. The empirical value corresponds to a single run of the Markov process with the
parameter n = 1,000.

While n is not an observable parameter of our model, the value of d/b is
observable and, moreover, d̂/b̂ is a continuous and increasing function of γ. Thus,
our method allows to estimate first γe (by solving the equation d̂/b̂ = d/b), then
find ne as b 1+γe

γe
and ke as neγe

2 . This estimation method is very accurate (see
the boxplots for the relative error k−ke

k in Fig. 7).
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Fig. 7. The relative error (k − ke)/k of our method depending on γ = 2k/n.

4 Discussion

In this paper we propose a method to estimate the true evolutionary distance
under the INFER model introduced in [5]. While the original paper [5] proposed
not only the biologically relevant model, but a method to estimate the distance
as well, the method had a number of computational limitations. In particular, the
method does not converge if 2k ≥ n, and it relies on the estimations of b and c2
only, which makes it very sensitive to random outliers of these two parameters.
We simulate a dataset according to the INFER model with the parameter n
randomly chosen from [500, 3000] and the parameter k from [0, n]. We run both
methods (ours and the one from [5]) on a laptop and compare them (see Table 1).
As one can see, our method is easier to implement, its relative error (k−ke

k ) is
smaller and the method itself is faster. Despite the fact that our method relies on
asymptotic analysis and assumes that n is a large number, the method performs
well for relatively small values of n as well (see Fig. 8).

Table 1. Comparison of the methods’ performance

– The method from [5] Our method

Average running time 3.02 s 0.00017 s

Average relative error 1.99% 0.68%

Maximal relative error 8% 5%

Formula for ĉ1

∞∑

l=0

(−2k)l
∏l−1

u=0(n+ u)

n2

2k + n

Formula for ĉ2 kn2
∞∑

l=0

∞∑

m=0

(−2(k − 1))l+m(l + 1)(m+ 1)
∏l+m+1

u=0 (n+ u)

kn4

(2k + n)4

Does it work if 2k ≥ n No Yes

Search approach Modified gradient descent method in R
2 Binary search
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Fig. 8. The absolute value of the relative error (k − ke)/k for small values of n.

Moreover, our method allows to find the limits of the parsimony approach
under the INFER model. One can easily see (Fig. 9) and even prove (we will do
that in further publications) that the minimal distance d is very close to k as
long as k < n

4 (or γ < 0.5). At the same time, if k is close to n, the relative error
provided by parsimony approach reaches 30%.

Fig. 9. The values of d̂/n and k/n depending on γ = 2k/n.

We analyzed the real genomes of three subfamilies from the Rosaceae and
Vitaceae families, based on the data provided in [11], and six Mammalian species
(human, chimpanzee, macaque, mouse, rat, dog), based on the data provided
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in [13]. Since the genomes have linear chromosomes and we analyze genomes
with circular chromosomes only, we add “virtual” adjacencies in order to circu-
larize the genomes in such a way as to minimize the pairwise minimal distance
between the genomes. This operation does not introduce much noise into the
data, since the number of such virtual adjacencies is about 10, which is an order
of magnitude lower than the number of real adjacencies. For each pair of species
we build a breakpoint graph and find the values of b, d, and cm for m ≥ 2. Then
we estimate the parameters n and k of our model, and run simulations with
similar parameters. The results show that the values of cm for the real data have
similar behavior to the simulated ones (see Fig. 10). At the same time the behav-
ior of the estimated value of the number of fragile regions n is not very stable.
Namely, for three genomes P , Q1 and Q2 (say, Prunus, Fragaria, and Vitis), the
value of n1 estimated from G(P,Q1) can be different from the value of n2 esti-
mated from G(P,Q2). We will address the question of more accurate estimation
of the parameter n for several genomes simultaneously in future research.

Moreover, while the mammal species seem to be in the parsimony phase,
the results for plant species in Table 2 show that the parsimony method could
underestimate the true evolutionary distance by 10%.

Fig. 10. The values of c2/n and c3/n for pairs of mammal species (dots) and plant
species (triangles). The parameters n, k and γ = 2k/n are estimated with our method,
the curves represent the theoretical expected values of c2/n and c3/n depending on γ,
and the shaded regions represent 95% confidence intervals (based on simulations).
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Table 2. Estimations of the true distance between three plant genomes.

Genome pair Minimal distance Our method The method from [5] The method from [1]

Prunus — Fragaria 265 291 281 269

Prunus — Vitis 242 248 251 241

Fragaria — Vitis 396 437 420 401

As we mention in Introduction, the INFER model makes the unique gene
content assumption and does not take into account indels and duplication. In
future research we are going to address this issue and combine the methods
from the current paper together with the topological and ILP approaches imple-
mented in [3,4]. Moreover, we are going to take into account more complex types
of rearrangements, such as transpositions, and properly update the techniques
from [2].
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Abstract. Solutions to genome scaffolding problems can be represented
as paths and cycles in a “solution graph”. However, when working with
repetitions, such solution graph may contain branchings and they may
not be uniquely convertible into sequences. Having introduced, in a previ-
ous work, various ways of extracting the unique parts of such solutions,
we extend previously known NP-hardness results to the case that the
solution graph is planar, bipartite, and subcubic, and show the APX-
completeness in this case. We also provide some practical tests.

1 Introduction

Motivation. The process of generating proper biological genomes, from Next-
Generation Sequencing (NGS) data to a full sequence of nucleotides, is a path
strewn with pitfalls [6]. NGS data are going to evolve towards longer and longer
sequences, but most of the available sequencing data in public databases are
huge collections of billions of short reads (i.e. words of between fifteen and hun-
dreds of characters) [17] which have to be assembled into longer sequences called
contigs. Those contigs represent fragments of the final genome but they usually
do not reach the size of chromosomes and the thusly obtained draft genomes may
therefore be highly fragmented, especially due to repeats in the genomes [18].
Though some emerging methods aim to use partially assembled genomes to infer
global information on genomes [3], reducing this fragmentation is of great inter-
est when it comes to consider whole-genome rearrangements. This fragmentation
can be reduced by an additional operation, the scaffolding, that aims at provid-
ing an order and relative orientation of contigs that is consistent with most of the
original NGS data [14]. Especially when reads are paired, it is possible to con-
struct a scaffold graph summarizing the putative hypotheses concerning ordering
and orientation of contigs [4]. Herein, a scaffold graph is a weighted, undirected
graph G consisting of 1. a perfect matching M∗ that corresponds to the con-
tigs and 2. non-contig edges uv whose weights indicate the confidence that the
contig-extremity u is adjacent to the contig-extremity v in the target genome.
c© Springer Nature Switzerland AG 2018
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This paper focuses on the following problem: suppose that (a) we know for each
contig how often it occurs in the genome (its multiplicity – which can be inferred
using various possibilities), and (b) an optimal subgraph (the solution graph)
has been extracted from the input scaffold graph (see [4,20,22] for methods to
infer such solution graphs), which we consider as a given input. Then, the task
is to infer sequences from the solution graph (see Fig. 1). We consider several
score functions, examine several special cases and performed tests on a dataset
of various species.

Repeats. If each contig occurs exactly once in the target genome, then all
vertices of the solution graph will have degree at most two and the problem
becomes easy. However, in numerous organisms, a significant part of the genome
is repeated. Such repeats may be of various sizes and present variable copy
numbers, according to the species and individuals [2]. Due to the conservatism of
some assembly methods, a repeat may cover an entire contig which is separated
from the other genomic side fragments [18]. It turns out that, in presence of
repeated contigs, a solution graph implies a unique set of sequences if and only
if it does not contain so called ambiguous paths [21]. Thus, the task above can
be achieved by destroying all ambiguous paths in the solution graph. A brutal
way to do this is to cut the non-contig edges incident to both extremities of
each ambiguous path. However, this solution may erase potentially important
information. Indeed, to destroy an ambiguous path, it is sufficient to remove
the non-contig edges incident to one of its extremities. The problem of finding
a most parsimonious (with respect to some cost function ) set X of edges such
that removing X from the given solution graph destroys all ambiguous paths is
called Semi-Brutal Cut.

Definitions and Problems. We denote by E(G) and V (G) the set of edges
and vertices, respectively, of a graph G (or E and V if no ambiguity occurs). A
scaffold graph (G,M∗, ω) consists of a simple loopless multigraph G associated
with a perfect matching M∗, a weight function ω : E \ M∗ → N. The match-
ing M∗ represents the contigs and ω represents the confidence that two contigs
occur consecutively (respecting relative orientation implied by the edge) in the
target sequence. The maximum degree of a graph G is denoted by Δ(G). For a
vertex v, we define M∗(v) as the unique vertex u with uv ∈ M∗. A path (resp.
a cycle) is a sequence (u1, u2, . . . , u�) of distinct vertices (resp. distinct vertices
except the first and the last) such that, for each two consecutive vertices ui and
ui+1, we have uiui+1 ∈ E. A path (or a cycle) p is called alternating with respect
to M∗ if, for all vertices u of p, also M∗(u) is a vertex of p. The Scaffolding

problem is defined as follows:

Scaffolding (SCA)
Input: a scaffold graph (G,M∗, ω) and integers σp, σc, k ∈ N

Question: Is there some S ⊆ E \ M∗ such that S ∪ M∗ is a collection
of ≤ σp alternating paths and ≤ σc alternating cycles and the weight-
score

∑
e∈S ω(e) ≥ k?
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Fig. 1. A scaffold graph, its solution graph, and sequences that can be inferred.
Contigs are represented by bold edges, labeled by the corresponding sequence and
their multiplicity (in parentheses). Inter-contig edges are labeled by their weight.
The solution graph is obtained as a solution for the MSCA instance asking for two
walks with total weight ≥ 42. In the solution graph, the contig of multiplicity two
labeled CCT constitutes an ambiguous path, yielding two possible sets of sequences
{ATCCT..CCT..TAAAA, GAGT..CCT..CATG} and {ATCCT..CCT..CATG, GAGT..CCT..TAAAA}. Brutal
cut would provide a set of six independent sequences of total weight zero (the initial set
of contigs), whereas Semi-Brutal Cut with weight-score provides a unique set of four
sequences {ATCCT, GAGT, CCT..TAAAA, CCT..CATG}, and weight 25 (minimal weight-score
17).

Scaffolding has been studied in the framework of complexity and approxi-
mation [4,20,22]. If contigs may appear repeatedly in the genome, we add a
multiplicity function m : E → N to the scaffold graph. For contig edges, the
multiplicity equals the number of times the contig occurs in the genome and this
can be estimated from the data [9]. For each non-contig edge uv, its multiplic-
ity m(uv) equals the smaller of the multiplicities of the contig edges incident to
u and v. A walk W is a sequence (u1, u2, . . . , u�) of vertices such that, for each
two consecutive vertices ui and ui+1, we have uiui+1 ∈ E. Then, W is called
closed if u1 = u� and W is called alternating with respect to M∗ if � is even and,
for each odd i, we have uiui+1 ∈ M∗. The difference between path and walk
(resp. cycle and closed walk) is that the vertices do not need to be distinct. The
Scaffolding with Multiplicities problem is the following:

Scaffolding with Multiplicities (MSCA)
Input: a scaffold graph (G,M∗, ω,m) and σp, σc, k ∈ N

Question: Is there a multiset S of ≤ σc closed and ≤ σp non-closed
alternating walks in G such that each e ∈ M∗ occurs at most m(e)
times in across all walks of S and

∑
e∈E(S)\M∗ ω(e) ≥ k?

In this setting, a scaffold graph (G∗,M∗, ω∗,m∗) is called solution graph for
(G,M∗, ω,m) if (a) G∗ is a subgraph of G, (b) ω∗ is the restriction of ω to
G∗, (c) m∗(uv) ≤ m(uv) for all uv ∈ E, (d) G∗ can be decomposed into ≤ σc

closed and ≤ σp non-closed walks. Such a decomposition into walks is called a
linearization of the solution graph and, in general, it is not necessarily unique
(see Fig. 1).
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Table 1. Overview of results for Semi-Brutal Cut.

Topologies Score Complexity Lower bound

General All NP-hard [21]

Trees All Linear [21]

Planar, Δ ≤ 4 Cut-score NP-hard [21] Approx: 1.37
(P �= NP) [21], 2 − ε
(UGC) [21],
exact: 2o(n)(ETH) [21]

General, Δ ≤ 2 All Linear (Proposition 1)

Complete bipartite Cut-score Linear (Proposition 2)

Bip. plan., Δ ≤ 3 Cut-score NP-hard (Theorem 1) APX-Hard (Theorem2)

exact: 2o(
√

n+m)nO(1)

(ETH) (Corollary 1)

Observation 1. For each vertex u of a solution graph, the sum of multiplicities
of its incident non-matching edges is at most the multiplicity of its incident
matching edge.

In earlier work [21], we showed that a largest uniquely linearizable subgraph
can be obtained by destroying all ambiguous paths, that is, all alternating paths p
such that all edges of the path have the same multiplicity mp and both extrem-
ities of p are incident to a non-contig edge with multiplicity strictly less than
mp. Thus, the main problem considered in this work is the following.

Semi-Brutal Cut (SBC)
Input: a solution graph (G∗,M∗, ω,m) and some k ∈ N

Question: Is there a set X of non-contig edges of G such that G − X
does not contain ambiguous paths and the score of X is at most k?

We choose to separate MSCA and Semi-Brutal Cut, which is justified by
the danger of producing chimeric sequencing when combining optimisation of
weight on the scaffold graph and the linearisability constraint (see Fig. 2). More-
over, the solution graph is by itself an interesting object to study. It embeds
all possibilities, and may be a reasonable representation of a genome under our
current knowledge. We expect that additional information may disambiguate a
solution graph, such as finer study of the nature of involved repeats, dynamic
of transposed elements, etc. Thus, Semi-Brutal Cut was raised as a problem
aiming to propose a standard output (e.g. fasta files) from the solution graph.
Several cost-functions ω′ make sense in this setting.

Definition 1. A weight function ω′ : 2E → N is called

1. cut-score, if ω′ counts one per cut vertex (that is, ω′(X) is the size of a
smallest vertex cover of X),

2. path-score, if ω′ counts one per removed edge (that is, ω′(X) = |X|), and
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3. weight-score, if ω′ counts the total weight of the removed edges (that is,
ω′(X) =

∑
e∈X ω(e)).

Note that, from the perspective of computational complexity, the path-score is
a special case of the weight score, since we can just set ω(e) = 1 for all edges e.
Thus, when saying “both scores” we refer to cut- and weight-score. Further, when
talking about cut-score, we sometimes say “to cut a vertex v”, by which we mean
cutting all non-contig edges incident with v. In context of approximation, Semi-
Brutal Cut refers to its optimization variant, minimizing the score of X.

Fig. 2. (Left) Edge {c, d} has multiplicity two. Other multiplicities are equal to one.
The labels on the edges correspond to their weight. In the input scaffold graph, the
real sequences are both paths (a, b, c, d, e, f) and (c, d, g, h). (Middle) After resolving
successively MSCA (with σp = 2 and σc = 0) and SBC (dashed edges are cut),
the solution is compatible with the initial hypothesis. The only ambiguous path is the
matching edge {c, d} and the cut vertex is d. (Right) Directly searching two maximum
weighted alternating paths such that the solution graph does not contain ambiguity
yields a chimeric sequence (f, e, g, h).

Related Works. In previous work [21], we proposed the first results concern-
ing the complexity of Semi-Brutal Cut according to the scoring functions
mentioned in Definition 1. In that article, two main results are proved: the NP-
completeness for general graphs and a polynomial-time algorithm for trees based
on dynamic programming. Here, we push this hardness result to bipartite, pla-
nar, subcubic graphs and give polynomial-time algorithms for more special cases
(especially for Δ ≤ 2) marking the boundary between the NP-completeness and
the polynomiality. Table 1 summarizes the complexity results.

2 Computational Hardness

While Semi-Brutal Cut is known to be NP-hard for both cut- and weight-
score [21], we extend the cut-score hardness to planar, bipartite, subcubic graphs.
To this end, we reduce the classic NP-complete 3-SAT [7] problem to SBC.

3-Satisfiability (3-SAT)
Input: A boolean formula ϕ in conjunctive normal form where each clause

contains exactly three literals.
Question: Is there a satisfying assignment β for ϕ?
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Fig. 3. Matching edges are bold. Left: variable gadget cxi linked to the clause gadgets
q1, q3 and qm, where xi occurs positively in C1 and C3 and negatively in Cm. Right:
clause gadget corresponding to the clause C� =(x1 ∨ x2 ∨ x3).

Construction 1. Let ϕ be an instance of 3-SAT with n variables x1, . . . , xn

and m clauses C1, . . . , Cm. For each variable xi, let ψi be the list of indices �
such that C� contains xi and |ψi| is the number of occurrences of xi in ϕ. We
construct the following solution graph (G∗,M∗, ω,m) with a 2-coloring of G∗

(see Fig. 3).

– For each xi, we construct a cycle ci on the vertex set
⋃

j≤|ψi|{ui
j , u

i
j , v

i
j , v

i
j}

such that, for all j ≤ |ψi|,
• {ui

j , u
i
j}, {vi

j , v
i
j} ∈ M∗, and

• the vertices ui
j and vi

j are blue and the vertices ui
j and vi

j are red.
– For each C�, we construct an alternating 6-cycle q� on the vertex set⋃

j≤3{r�
j , b

�
j} such that, for all j ≤ 3, {r�

j , b
�
j} ∈ M∗, and r�

j is red and b�
j

is blue.
– For each clause C� and each j ≤ 3, let xi be the jth literal of C� and let t be

such that C� is the tth clause in which xi occurs. Then,
• create a single matching edge {a�

j , a
�
j}, where a�

j is blue and a�
j is red,

• if xi is a positive literal, introduce the edges {r�
j , u

i
t} and {b�

j , a
�
j}, and

• if xi is a negative literal, introduce the edges {b�
j , u

i
t} and {r�

j , a
�
j}.

– Each non matching edge has multiplicity 1 and all matching edges have multi-
plicity 2 (thus, each matching edge except the {a�

i , a
�
i} is an ambiguous path).

Clearly, Construction 1 can be carried out in polynomial time. Further, the
resulting graph G∗ is bipartite and Δ(G∗) = 3. In the following, we call a
matching edge clean if one of its endpoints has degree one. Note that a scaffold
graph whose every matching edge is clean does not contain ambiguous paths.

Theorem 1. Semi-Brutal Cut is NP-complete for the cut-score, even if the
graph is planar, bipartite, subcubic and all multiplicities are one or two.

In order to prove Theorem 1, we use the following properties of Construction 1,
yielding a “canonical” set of cuts.
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Lemma 1. Let S ⊆ V (G∗) be a set of vertex-cuts destroying all ambiguous paths
in (G∗,M∗, ω,m), let ci be a variable gadget and let q� be a clause gadget. There
is a set S′ of cuts with |S′| ≤ |S| that also destroys all ambiguous paths and

(a) |S ∩ V (ci)| = |S′ ∩ V (ci)| ≥ |ψi| and |S ∩ V (q�)| = |S′ ∩ V (q�)| ≥ 2 (S and
S′ have the same cut partition in variable gadgets and clause gadgets),

(b) if |S′ ∩ V (ci)| = |ψi|, then S′ ∩ V (ci) is either
⋃

j≤|ψi|{ui
j} or

⋃
j≤|ψi|{ui

j}
(if S′ is optimal on a variable gadget, cuts are only on positive sides or only
on negative sides),

(c) |S′ ∩ V (q�)| = 2 if and only if S′ contains a vertex adjacent to q� (only two
cuts are needed in a clause gadget iff it has been isolated by a cut in an
adjacent variable gadget, meaning that the variable satisfies the clause).

Proof. (a): Since, in a cycle with y ambiguous paths, each cut can destroy at
most two of them, we need at least 	y/2
 cuts to linearize this cycle. A clause
gadget and a variable gadget contain a cycle of three ambiguous paths and a
cycle of 2|ψi| ambiguous paths, respectively. Thus, we need at least two cuts in
a clause gadget and |ψi| cuts in a variable gadget to linearize G∗.
(b): If vi

j ∈ S for some j, then we can swap it for ui
j in S (and analogously for

vi
j). This operation does not increases the cardinality of S. Thus, we suppose

that S contains neither vi
j nor vi

j for any j, implying that S contains either ui
j

or ui
j for each j. Since |S ∩ V (ci)| = |ψi| we know that exactly one of ui

j and ui
j

is in S for each j. Now, if S contains some ui
j and some ui

j′ , then it also contains
such vertices for consecutive j and j′. Hence, we can suppose that j′ = (j + 1)
mod |ψi|, implying that {vi

j , v
i
j} is an ambiguous path.

b�
1

r�
1

b�
2 r�

2

b�
3

r�
3

Fig. 4. A cut of size 2 in q� when
1 incident edge to q� is cut. Dashed
edges and vertices are part of the
cut.

(c): Note that both r�
1 and b�

1 are incident
with a non-matching edge leaving q�. To
destroy the ambiguous path {r�

1, b
�
1}, one of

these edges has to be removed. By symmetry
the same holds for {r�

2, b
�
2} and {r�

3, b
�
3}. Since

at least three edges leaving q� have to be
removed, we need a total of three cuts inside
of q� unless a vertex adjacent to q� is cut.
Conversely, suppose by symmetry that the
edge incident to the vertex r�

2 is cut. Then,
q� can be linearized by cutting b�

1 and b�
3 (see

Fig. 4). ��
Proof of Theorem 1.
Recall that 3-SAT remains NP-complete if the input formula is planar [12]

and, in this case, since each gadget is planar and the edges between the clause
gadget and the variable gadget can be placed in any order on the gadgets, the
graph produced by Construction 1 can also be assumed to be planar. Since,
clearly, Semi-Brutal Cut ∈ NP, it remains to show that Construction 1 is
correct, that is ϕ is satisfiable if and only if the scaffold graph (G∗,M∗, ω,m)
resulting from Construction 1 can be linearized with 5m cuts.
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qp qp′ qn′qn

Fig. 5. Matching
edges are bold.
Example of vari-
able gadget rxi

linked to the clause
gadgets qp, qp′ , qn

and qn′ , where xi

occurs positively
in Cp and Cp′ and
negatively in Cn

and Cn′ .

“⇒”: Let β be a satisfying assignment for ϕ. Then, for
each variable xi and for all j ≤ |ψi|, we cut the vertices ui

j if
β(xi) = 1 and the vertices ui

j otherwise. As β is satisfying,
this removes at least one edge adjacent to each clause gadget.
Thus, according to Lemma 1(c), we can cut two vertices in
each clause gadget qj to turn every matching edge in qj clean.
Since we also cut either the vertices ui

j or the vertices ui
j for

each vertex gadget, we conclude that all matching edges of
the result are clean and we cut exactly 2m +

∑
i |ψi| = 5m

vertices.
“⇐”: Let S ⊆ V be the set of vertices such that

cutting each vertex of S destroys all ambiguous paths in
(G∗,M∗, ω,m) and |S| = 5m. According to Lemma 1(a),
each variable gadget contains |ψi| cuts and each clause gad-
get contains two cuts. Moreover, by Lemma 1(b), for each
variable gadget ci, we can suppose that S ∩ V (ci) equals⋃

j≤|ψi|{ui
j} or

⋃
j≤|ψi|{ui

j}. In the former case, we set β(xi) = 1 and, in the
latter, we set β(xi) = 0. To show that β satisfies ϕ, assume that there is a clause
C� that is not satisfied by β. Then, none of the edges incident to q� is cut which,
by Lemma 1(c), contradicts the fact that there are two cuts in q�. ��

Since Construction 1 is linear in the number of vertices and planar
3-SAT does not admit a 2o(

√
n+m)nO(1)-time algorithm [13], there is also no

2o(
√

n+m)nO(1)-time algorithm for Semi-Brutal Cut.

Corollary 1. Assuming ETH, there is no 2o(
√

n+m)nO(1)-time algorithm for
Semi-Brutal Cut in bipartite planar subcubic graphs for the cut-score.

3 Non-Approximability

In this section, we prove approximation lower bounds for Semi-Brutal Cut.
First recall the definition of L-reduction between two hard problems Π and
Π ′, described by Papadimitriou and Yannakakis [16]. This reduction consists of
polynomial-time computable functions f and g such that, for each instance x of
Π, f(x) is an instance of Π ′ and for each feasible solution y′ for f(x), g(y′) is
a feasible solution for x. Moreover, let Π ′′ ∈ {Π,Π ′}, we denote by OPTΠ′′ the
value of an optimal solution of Π ′′ and by valΠ′′(y′′) the value of a solution y′′

of an instance of Π ′′. There are constants α, β > 0 such that:

1. OPTΠ′(f(x)) ≤ αOPTΠ(x) and
2. |valΠ(g(y′)) − OPTΠ(x)| ≤ β|valΠ′(y′) − OPTΠ′(f(x))|.
In the following, we present an L-reduction from the classical problem Max

3-SAT(4) to Semi-Brutal Cut.
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Max 3-SAT(4)

Input: A boolean formula ϕ in exact 3-CNF where every variable occurs
in 4 clauses

Task: Find an assignment that satisfies a maximum number of clauses.

Construction 2. We reuse Construction 1 and change some variable gadgets.
Let xi be a variable which occurs positively in the clauses Cp and Cp′ and neg-
atively in the clauses Cn and Cn′ . We replace the variable gadget associated to
xi by the following gadget ri:

– Construct a cycle ci on the vertex set
⋃

j≤2{ui
j , u

i
j , v

i
j , v

i
j} such that, for all

j ≤ 2, {ui
j , u

i
j}, {vi

j , v
i
j} ∈ M∗, the vertices ui

j and vi
j are blue and ui

j and vi
j

are red.
– Give multiplicity 1 to all non-matching edges and multiplicity 2 to all match-

ing edges.
– Link the clause gadgets qp, qp′ , qn and qn′ to vertices ui

1, u
i
2, u

i
1 and ui

2 respec-
tively in the same way as in Construction 1.

Note that all matching edges are ambiguous paths in the variable gadget. The
clause gadgets and the other variable gadgets remain unchanged.

The resulting graph G∗ is bipartite and Δ(G∗) = 3. In the following, when
we want to differentiate the variable gadgets, we designate by rectangle variable
gadget those defined in Construction 2 and by cycle variable gadget those defined
in Construction 1. An example of a rectangle variable gadget is given in Fig. 5.
Notice that the properties (a) and (c) of Lemma 1 hold. We can add the following
property:

Lemma 2. Let S ⊆ V (G∗) be an optimal set of vertex-cuts destroying all
ambiguous paths in (G∗,M∗, ω,m), let ci be a cycle variable gadget and ri′ be
a rectangle variable gadget. There is a set S′ of cuts with |S′| = |S| that also
destroys all ambiguous paths, and

(a) S′ ∩ V (ci) is either
⋃

j≤|ψi|{ui
j} or

⋃
j≤|ψi|{ui

j}, and

(b) S′ ∩ V (ri′) is either {ui′
1 , ui′

2 } or {ui′
1 , ui′

2 }.
Proof. Recall that S covers the edges of M∗ and, by Lemma 1(a), |S ∩ V (ci)| ≥
|ψi|.
“(a)”: By symmetry, suppose that xi occurs mostly positively in ϕ. If xi occurs
four times positively, then replacing S ∩ V (ci) by

⋃
j≤|ψi|{ui

j} in S yields a
solution S′ as sought. Thus, suppose that xi occurs three times positively. Let
C� be the clause where xi occurs negatively and let z denote the neighbor of ui

j

in c�. If |S ∩ V (ci)| > |ψi|, then replacing S ∩ ci by
⋃

j≤|ψi|{ui
j} plus z yields a

solution S′ as sought. Finally, if |S ∩ V (ci)| = |ψi|, then S already corresponds
to (a) as, otherwise, some ambiguous path {vi

j , v
i
j} is not destroyed.
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“(b)”: Note that one cut in ri′ is not enough to destroy all ambiguous paths
and cutting either the vertices {ui′

1 , ui′
2 } or the vertices {ui′

1 , ui′
2 } destroys all

ambiguous paths in the rectangle variable gadget. Further if S cuts {vi′
1 , vi′

2 }
or {vi′

1 , vi′
2 }, then we can instead cut {ui′

1 , ui′
2 } or {ui′

1 , ui′
2 }, respectively, without

creating ambiguous paths. Suppose without loss of generality that {ui′
1 , ui′

2 } ⊆ S.
Suppose further that there is some u ∈ S ∩V (ri′)\{ui′

1 , ui′
2 }. Then, there is some

clause gadget qn linked to u since, otherwise, S−u is also a solution, contradicting
optimality of S. Since all matching edges of ri′ are already clean, the cut can
only remove the edge between u and qn. Thus we can replace u by its neighbor
in qn without changing the cardinality of S. By swapping the one or two cuts in
S ∩ V (ri′) \ {ui′

1 , ui′
2 }, we obtain S′ ∩ V (rj) = {ui′

1 , ui′
2 }. ��

Theorem 2. There is a constant ε′
4 > 0 (the value ε′

4 > 0 is defined in [1])
for which Semi-Brutal Cut cannot be approximated to any factor better than
(1 + 7ε′

4/41), even on bipartite graphs of maximum degree three, unless P=NP.

Proof. Recall that, unless P=NP, Max 3-SAT(4) cannot be approximated to
a factor better than ε′

4 = 1, 00052 [1] and that, in an optimal solution of Max

3-SAT(4), at least 7/8 of the clauses are satisfied [8], yielding

OPT (ϕ) ≥ 7m/8. (1)

To show that Construction 2 constitutes an L-reduction, let f be a function
transforming any instance ϕ of Max 3-SAT(4) into an instance I of Semi-

Brutal Cut as above, let S be a feasible solution for I corresponding to the
properties of Lemmas 1(a), 1(c) and 2, and let g be the function that transforms
S into an assignment β as constructed in the proof of Theorem 1: each variable
xi is set to true if S cuts ui

j for all j, and false, otherwise. By Lemma 2, for each
clause gadget q� without an adjacent vertex in S, the “extra” cut occurs in q�.
Hence, for each of the at most m/8 unsatisfied clauses in ϕ, we have to spend
another cut to linearize I. Thus,

OPT (I) ≤ 5m + m/8
(1)

≤ 41/7OPT (ϕ) (2)

An important obstacle to overcome (and reason why Construction 1 is not
enough for Theorem 2) is that an approximate solution to SBC might spend
extra cuts in variable gadgets in order to “change the assignment” of a variable
xi mid-way. However, since each variable occurs at most four times, this only
happens for variables that occur two times positively and two times negatively.
Now, with our modification to Construction 1, we can observe that each extra
cut in any of the variable gadgets allows such a misuse only for a single clause
gadget. Thus, the number of satisfied clauses of ϕ and the clause gadgets in
which we have to spend extra cuts adds up to m. Hence,

6m = val(g(S)) + val(S) = OPT (I) + OPT (ϕ) (3)
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Thus, we constructed an L-reduction with α = 41/7, β = 1 and,
since val(g(S)) < (1 − ε′

4) · OPT (ϕ), we conclude

val(S)
(3)
= OPT (I) + OPT (ϕ) − val(g(S))
> OPT (I) + ε′

4OPT (ϕ)
(2)

≥ (1 + 7ε′
4/41) · OPT (I) ��

Relaxing on planarity et or maximum degree, we obtain better lower bounds:

Theorem 3. There is a constant ε′
4 > 0 for which Semi-Brutal Cut cannot

be approximated to any factor better than 1 + ε′
4/10, even on bipartite, subcubic

graphs with multiplicities in the set {1, 2} unless P=NP.

The value ε′
4 > 0 is defined in [1].

Proof. We use a gap preserving reduction from Max 3-SAT(4) (assume w.l.o.g.
that each clause of φ has exactly three literals (this can be easily done by repeat-
ing the literals within a clause, if necessary)) to Semi-Brutal Cut even on
bipartite, subcubic graphs with multiplicities in the set {1, 2} that transforms a
Boolean formula φ to a graph using Construction 1 such that:

1. if OPT (ϕ) = m then OPT (G) = 5m (see Theorem 1), and
2. if OPT (ϕ) < (1 − ε′

4)m then OPT (G) ≥ 5m + ε′
4m/2.

First item is obtained by Theorem 1. Second item comes from the observation
that if the optimal solution of Max 3-SAT(4) does not satisfy m clauses, but
k ≤ m−1, it means that an extra cut was necessary in the transformed instance
to linearize the graph G. If this extra cut is placed in a variable gadget, it can
linearize between one and two clauses (the extra cut can not linearize more
than two clauses since otherwise changing the value of the variable increases the
number of satisfied clauses which is a contradiction). Thus, for k between m − 1
and m − 2, we know that at least one extra cut is needed. We generalize this
argument to any number of satisfied clauses in the optimal solution, to finally
get:

OPT (G) ≥ 5m +
⌈

m − OPT (ϕ)
2

⌉

.

By hypothesis we have OPT (ϕ) < (1−ε′
4)m, thus OPT (G) ≥ 5m+	ε′

4m/2
 ≥
5m + ε′

4m/2. The Theorem follows. ��
Hereafter, we consider Max 3-SAT(B) which is the restricted special case

of Max 3-SAT where every variable occurs in at most B clauses. Recall that for
Max 3-SAT(B) the best possible approximation is at least 7/8 + Ω(1/B) (as a
function of B) and at most 7/8+O(1/√

B) unless NP=RP[19]. Based on the same
arguments as given in Theorem 2, we have val(S) ≥ (335/328−O(1/√

B))OPT (ϕ),
this leads us to following result:

Theorem 4. Semi-Brutal Cut cannot be approximated to any factor better
than 335/328−O(1/√

B), even on bipartite graphs of maximum degree three, unless
RP=NP.
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4 Polynomial Cases

In this section, we consider the Semi-Brutal Cut problem in graphs with
maximum degree two and in complete bipartite graphs. We show a linear-time
algorithm for both cut-score and weight-score. Recall that Semi-Brutal Cut

can be solved in linear time in trees [21]. In the following, we suppose that
the input solution graph contains at least one ambiguous path and that G is
connected as otherwise, we can treat each connected component individually.

Proposition 1. Semi-Brutal Cut can be solved in linear time on a collection
of paths and cycles (Δ(G) = 2) for the weight function given by Definition 1 .

Proof. First, since Δ(G) = 2, the cut-score is a special case of the weight-score
with ω(e) = 1 for all non-matching edges e. Thus, suppose that the weight-score
is used. Second, since SBC can be solved in linear time on paths [21], suppose
that G is a cycle. Let p be any ambiguous path in G, let e1 and e2 be the two
unique non-matching edges incident to the extremities of p. Since G1 = G − e1
and G2 = G − e2 are trees, we can find and compare optimal solutions X1 and
X2 for G1 and G2, respectively, in linear time. Further, as p is ambiguous, all
optimal solutions delete e1 or e2 (or both) and, thus, one of X1 ∪ {e1} and
X2 ∪ {e2} is optimal for G. ��
Proposition 2. Semi-Brutal Cut can be solved in linear time for cut-score
on complete bipartite graphs.

Proof. Let Kn,n be a complete bipartite graph and note that n > 2 as, other-
wise, there is no ambiguous path in Kn,n. Also note that, by Observation 1, all
matching edges are ambiguous paths. Then, it is sufficient to cut all but one
vertex of any of the two cells of the bipartition to turn all matching edges clean.
To show that n − 1 cuts are also necessary, assume that there is a solution X
with cut-score n − 2 and let u and v be the vertices that are not cut. Then, u
and v are in the same cell of the bipartition since, otherwise, there is a matching
edge xy with ux, vy /∈ X and, thus, xy is an ambiguous path in G − X. But
then, {u,M∗(v)} and {M∗(u), v} are not in X, implying that {u,M∗(u)} is an
ambiguous path in G − X. ��

5 Approximable Cases

We propose a greedy strategy (see Algorithm 1) for the Semi-Brutal Cut

problem under the weight-score function. Let (G∗,M∗, ω,m) be a solution graph
and let X ⊆ E \M∗ be a set of non-matching edges. For a vertex x, we let ωX(x)
denote the sum of the weights of all non-matching edges incident with x that
are not in X. More formally, we define ωX(x) :=

∑
e∈E\(M∗∪X) ω(e) · χe(x),

where χe(x) := |e ∩ {x}| is the characteristic function of e. The principle of our
algorithm is to successively visit each ambiguous path and cut the edges incident
to the extremity with the lowest value of wS , where S contains all previously
cut edges.
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Algorithm 1: Greedy Algorithm
Data: A solution graph (G∗, M∗, ω, m).
Result: A set X ⊆ E \ M∗ whose removal makes G∗ uniquely linearizable.

1 X ← ∅ ;
2 A ← list of extremities of ambiguous paths;
3 while A �= ∅ do
4 u ← argminx∈A ωX(x);
5 remove the two extremities of the ambiguous path containing u from A;
6 add all non-matching edges incident with u to X;

7 end
8 return X;

x y u v

Fig. 6. Tightness of the approximation ratio. Edges are bold (∈ M∗), solid (∈ Xopt) or
dashed (∈ X) and all edges have weight one. The multiplicities of the matching edges
are equal to two and the multiplicities of the non-matching edges are equal to one.
Thus, ω(X) = 2 and ω(Xopt) = 1.

Proposition 3. In O((|V |+ |E|) log |V |) time, Algorithm 1 computes a solution
for Semi-Brutal Cut under the weight-score with an approximation ratio of 2
and this ratio is tight.

Proof. Since each time some extremities are removed from A, the ambiguous
path they belonged to has been destroyed, there are no more ambiguous paths
remaining when A = ∅. Thus, the set X that is returned is indeed a solution. Let
Xopt be an optimal solution. Let pi denote the ambiguous path of G∗ considered
in step i of Algorithm 1, let u and v be its extremities, and let Xi be the set of
edges added to X in step i. If Xopt contains all non-matching edges incident to
u, then let Qi contain them. Otherwise, Xopt contains all non-matching edges
incident to v, and we let Qi contain those. Then, ω′(Xi) ≤ ω′(Qi) for all i and,
thus, ω′(X) ≤ ∑

i ω′(Qi). Further,
⋃

i Qi = Xopt and, since each edge of G∗

occurs in at most two sets Qi, we conclude
∑

i ω′(Qi) ≤ 2ω′(Xopt). The claimed
approximation factor of two follows and, by Fig. 6, it is tight.

Concerning the running time, the list of ambiguous paths is build in O(|E|+
|V |) with a depth-first search algorithm. The sorting of this list can be done
in O(|V | log |V |). The maintain of the sorting of the list at each cut yields a
O((|V | + |E|) log |V |). ��

6 Experiments

In order to observe the behavior of our algorithm on real instances, we tested
it on datasets described below and we compare the obtained solutions of three
different algorithms.
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Table 2. Sequences selected for experiments.

Species Tax Alias Size (bp) Type Acc. number

Bacillus anthracis
str. Sterne

Bacteria Anthrax 5228663 Chrom.a NC 005945.1

Gloeobacter
violaceus PCC 7421

Bacteria Gloeobacter 4659019 Chrom.a NC 005125.1

Lactobacillus
acidophilus NCFM

Bacteria Lactobacillus 1993560 Chrom.a NC 006814.3

Pandoravirus
salinus

Virus Pandora 2473870 Comp.b NC 022098.a

Pseudomonas
aeruginosa PAO1

Bacteria Pseudomonas 6264404 Chrom.a NC 002516.2

Oryza sativa
Japonica

Plant Rice 134525 Chlor.c X15901.1

Saccharomyces
cerevisiae

Yeast Sacchr3 316613 Chrom.a 3 X59720.2

Saccharomyces
cerevisiae

Yeast Sacchr12 1078177 Chrom.a 12 NC 001144.5

achromosome
bcomplete genome
cchloroplast

Description of the datasets. They were generated in the following way:

1. A set of reference genomes in the Nucleotide NCBI database (see Table 2)
have been chosen for their diversity in genome sizes, and types of organisms.

2. Paired-end reads, have been simulated using wgsim [11]. then assembled using
the De Bruijn Graph based de novo assembly tool minia [5].

3. Reads have been mapped to the contigs, using bwa [10] and contigs on the
reference genome, using megablast [15], in order to find their multiplicities
and generate scaffold graphs. Table 3 presents some statistics about produced
scaffolding graphs. Notice that those graphs may be large, however their spar-
sity and mean degree explain why we consider very constrained classes of
graphs (degree bounded by three, planar, bipartite, etc.). They do not fit
these constraints, but they are quite close to.

4. We generated the solution graphs from the scaffold graphs using our ILP
formulation [23] for Scaffolding with Multiplicities and using the cplex
solver. Statistics on solution graphs are available on Table 4.

Results. We ran Algorithm 1 on the datasets and we compared it with two other
algorithms:

1. an exact algorithm obtained by an ILP formulation of Semi-Brutal Cut

2. a naive algorithm cutting arbitrary extremities of ambiguous path as long as
such paths exist.
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Table 3. Scaffold graphs.

Data |V | |E| Min/Max/Avg degree

Anthrax 8110 11013 1 / 7 / 2.72

Gloeobacter 9034 12402 1 / 12 / 2.75

Lactobacillus 3796 5233 1 / 12 / 2.76

Pandora 4902 6722 1 / 7 / 2.74

Pseudomonas 10496 14334 1 / 9 / 2.73

Rice 168 223 1 / 6 / 2.65

Sacchr3 592 823 1 / 7 / 2.78

Sacchr12 1778 2411 1 / 10 / 2.12

Table 4. Sequences selected for experiments.

Data #APa #NAPb Total weight Avg. deg.c Max/min deg

Anthrax 13 260 329 5.31 4 / 2

Gloeobacter 44 432 694 5.68 6 / 2

Lactobacillus 15 135 225 5.27 5 / 2

Pandora 5 183 210 5.00 4 / 2

Pseudomonas 47 413 650 5.20 5 / 2

Rice 6 9 29 4.17 3 / 2

Sacchr3 5 25 54 5.40 4 / 2

Sacchr12 23 74 190 4.87 4 / 2
aambiguous paths
bnon-ambiguous paths
caverage degree of extremities of amb. paths

The idea of implementing the naive algorithm is that it provides an upper bound
of Semi-Brutal Cut. We wanted answer to the following question: is the ratio
of Algorithm 1 closer than 1 to those provided by the naive algorithm on real-
world instances? Statistics on produced solutions are presented in Table 5. We
notice that Algorithm 1 finds an optimal solution in most of the cases, even
if the number of cuts is of the order of several dozens (i.e. gloeobacter, pseu-
domonas). The algorithm does not find an optimal solution for two instances:
rice and sacchr12 and the ratio of the computed solutions are 1.33 and 1.11,
respectively. The high ratio of the rice can be explained by the low score in the
optimal solution. Thus, the answer to our question seems to be that the ratio of
Algorithm 1 is close to 1. However, the tested instances are relatively small and
it is interesting to run tests on bigger instances.
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Table 5. Results statistics.

Data Exact Naive algorithm Algorithm 1

Score #cuts Score Ratio #cuts Score Ratio #cuts

Anthrax 17 13 20 1.17 13 17 1.00 12

Gloeobacter 68 45 80 1.17 43 68 1.00 41

Lactobacillus 19 15 21 1.10 14 19 1.00 14

Pandora 6 5 7 1.16 5 6 1.00 5

Pseudomonas 51 50 65 1.27 41 51 1.00 40

Rice 3 6 5 1.66 4 4 1.33 4

Sacchr3 6 5 6 1.00 4 6 1.00 5

Sacchr12 18 23 24 1.33 16 20 1.11 17

7 Conclusion

In this article, we develop results concerning the complexity, lower bounds
and approximability of the linearization problem for genome scaffolds sharing
repeated contigs with two possible scoring functions. We managed to strengthen
previously known NP-hardness to the very restricted class of planar bipartite
subcubic graphs with only two multiplicities for the cut-score. Natural perspec-
tives of this work are to extend this result to the weight-score, explore the possi-
bility of FPT algorithms and approximations in the difficult cases, and examine
the practical performance of the presented greedy algorithm on larger real-world
instances.

Acknowledgments. This work was supported by the Institut de Biologie Computa-
tionnelle (http://www.ibc-montpellier.fr/) (ANR Projet Investissements d’Avenir en
bioinformatique IBC).

References

1. Berman, P., Karpinski, M., Scott, A.D.: Approximation hardness and satisfiability
of bounded occurrence instances of SAT. Electronic Colloquium on Computational
Complexity (ECCC), 10(022) (2003)

2. Biscotti, M.A., Olmo, E., Heslop-Harrison, J.S.: Repetitive DNA in eukaryotic
genomes. Chromosome Res. 23(3), 415–420 (2015)

3. Cameron, D.L., et al.: GRIDSS: sensitive and specific genomic rearrangement
detection using positional de Bruijn graph assembly. Genome Res. 27(12), 2050–
2060 (2017)

4. Chateau, A., Giroudeau, R.: A complexity and approximation framework for
the maximization scaffolding problem. Theor. Comput. Sci. 595, 92–106 (2015).
https://doi.org/10.1016/j.tcs.2015.06.023

http://www.ibc-montpellier.fr/
https://doi.org/10.1016/j.tcs.2015.06.023


On the Hardness of Approximating Linearization 107

5. Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based
on a bloom filter. In: Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp.
236–248. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33122-
0 19

6. Ekblom, R., Wolf, J.B.: A field guide to whole-genome sequencing, assembly and
annotation. Evol. Appl. 7(9), 1026–1042 (2014)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

8. H̊astad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)
9. Koch, P., Platzer, M., Downie, B.R.: RepARK-de novo creation of repeat libraries

from whole-genome NGS reads. Nucleic Acids Res. 42(9), e80 (2014)
10. Li, H., Durbin, R.: Fast and accurate long-read alignment with Burrows-Wheeler

transform. Bioinformatics 26(5), 589–595 (2010)
11. Li, H., et al.: The sequence alignment/map format and samtools. Bioinformatics

25(16), 2078–2079 (2009)
12. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343

(1982)
13. Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential

time hypothesis. Bull. EATCS 105, 41–72 (2011)
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Abstract. Optical Maps (OM) provide reads that are very long, and
thus can be used to detect large indels not detectable by the shorter reads
provided by sequence-based technologies such as Illumina and PacBio.
Two existing tools for detecting large indels from OM data are Bio-
Nano Solve and OMSV. However, these two tools may miss indels with
weak signals. We propose a local-assembly based approach, OMIndel, to
detect large indels with OM data. The results of applying OMIndel to
empirical data demonstrate that it is able to detect indels with weak
signal. Furthermore, compared with the other two OM-based methods,
OMIndel has a lower false discovery rate. We also investigated the indels
that can only be detected by OM but not Illumina, PacBio or 10X, and
we found that they mostly fall into two categories: complex events or
indels on repetitive regions. This implies that adding the OM data to
sequence-based technologies can provide significant progress towards a
more complete characterization of structural variants (SVs). The algo-
rithm has been implemented in Perl and is publicly available on https://
bitbucket.org/xianfan/optmethod.

1 Introduction

Structural variant (SV) detection is essential in understanding human genetic
diseases such as cancer [11,23,37]. Detecting SVs is very challenging due to
several factors, including the simple sequence context of the SV breakpoints [1],
the multiple SVs aggregated to form a complex SV [2,31,39], and the repetitive
nature of the human genome [13,34]. Advances in sequencing technology make
it possible to detect SVs through computational tools [25]. Several SV detection
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methods using Illumina paired-end reads have been devised [6,8,16,18,32,41].
However, due to their small length (typically, 300 bp read length), the focus was
mainly on small indel detection and medium-sized simple SVs such as deletion
and translocation [1,40]. Large SVs whose breakpoints fall at repetitive regions
were not fully resolved by Illumina reads. PacBio single molecule reads [7,30], on
the other hand, tackle those SVs in larger repetitive regions, and detectable SV
types naturally generalize to insertion and inversion, due primarily to PacBio’s
larger read length (typically 12 kbp for RS II) [4]. Nevertheless, the read length
is still not enough for spanning large repeats, leading to missing SVs.

Optical Maps [21,33] produce one of the longest read lengths among all. It
utilizes restriction enzymes to make fluorescent labels on the molecule wherever
there is a 6 or 7 bp sequence motif [3,17]. The molecule is then linearized and
imaged. The subsequent image processing step measures the distance of the two
neighboring fluorescent labels and outputs an array of integers, indicating the
position (in bp) of each fluorescent label on the read. When the DNA has a
structural variant with respect to the reference, the read has discordant pat-
terns of integers with that of the in silico digested reference sequence. Read
length is typically >150 kbp [24], which is one order of magnitude longer than
PacBio reads and two orders of magnitude longer than Illumina reads. With such
large length, Optical Maps data enables the detection of SVs that are missed
by other technologies, and they have been applied to both normal and cancer
patient samples [15,24]. Despite the large read length, computational methods
are required for it to be widely used for SV detection by accounting carefully
for OM data shortcomings, which include the small number of fluorescent labels
in each read, and the various errors of additional labels (17%), missing labels
(10%), and sizing difference [3].

The use of OM reads data for SV detection started from correcting [28],
assessing [14] and scaffolding de novo whole genome assembly (WGA) from
other sequencing technologies such as PacBio [30], Illumina [38], 10X [27] or
a combination of multiple technologies [36]. Recently, there have been efforts
for using OM alone for SV detection. There are two existing approaches to
SV detection using OM data alone: assembly-based and alignment-based. In
assembly-based methods, OM reads are assembled de novo into contigs, which
are then compared with the in silico digested reference sequence [3,24]. Such
de novo WGA strategy takes advantage of the randomness of errors in a cohort
of reads for obtaining accurate and long contigs. However, due to the repeti-
tive regions in the genome and the low resolution of the label coordinates, de
novo WGA requires typically 70x read coverage in a diploid healthy human
genome [12]. This makes it impossible to tackle those SVs with low coverage of
reads. BioNano Solve [12] is an assembly-based approach and its recall is lim-
ited in low-coverage loci. Alignment-based methods, on the other hand, align
the OM reads to the reference, and cluster the reads on focal regions where
discordant patterns occur. OMSV [22] is an alignment-based method which
uses the reads that can span the indels to infer insertions and deletions. It is
computationally efficient as compared with BioNano Solve (at least one order
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Fig. 1. OMView [19] illustrations of a deletion (left), as validated by parents’ signal,
and insertion (right), as validated by both parents’ signal and orthogonal sequence-
based methods (i.e., the methods that are applied to sequencing technologies other
than OM), both of which are missed by OMSV and BionanoSolve on NA12878. Shown
is the alignment of the OM reads to the reference. Reference is the top bar in red. OM
reads are the bars below. On the reference and OM reads, the vertical lines indicate
the presence of a restriction enzyme fluorescent label. On a read, we call the part
in between two neighboring restriction enzymes a fragment. Fragment length is the
distance between these two restriction enzymes. A read is composed of N fragments if
it has N +1 restriction enzymes. Whenever such distance is consistent with that of the
reference, the color of that fragment is set to yellow. When the distance on the read is
smaller than that on the reference, the fragment is in green. When the distance on the
read is larger than that on the reference, the fragment is in red. The intensity of green
and red represents the intensity of contraction and stretch, respectively. It is possible
that the two neighboring fragments are taken as one block in the alignment, in which
case their colors are the same. Left: The fragments in green in the middle of the reads
(highlighted by the black box) indicate a deletion (19:40101872-40147822). But due to
their not having the same boundary (some green fragments in green protrude to the
right and some to the left due to two or more fragments that are aligned as one block)
and the same intensity (green colors vary), the signal is weak, leading to the missing of
the call by the two existing methods. Right: The fragments in orange in the middle of
the reads (highlighted by the black box) indicate an insertion (1:236385430-236394679).
(Color figure online)

of magnitude less time and much smaller required memory) and is applicable
to loci with lower coverage of reads. However, in inferring indels, it can only
cluster the reads having the same indel boundary. The design of OMSV lim-
its the detection power only to indels in which a significant number of reads
are confidently well aligned, but cannot deal with the indels when the align-
ers render different boundaries for different reads because of data noise (illus-
trated in Fig. 1). Mak et al. [24] combined the assembly-based and alignment-
based approaches and used both WGA and an alignment-based approach for
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SV detection. However, their SV calling process involves heavy manual cura-
tion based on Illumina reads. Furthermore, no accompanying tool was released
with the paper, making it hard to compare to other methods in a performance
study.

In this paper, we propose OMIndel, an alignment-based method combined
with local assembly-like approach for indel detection. It is sensitive on calls
with weak signals, an improvement over both BioNano Solve and OMSV. A test
on NA12878, a healthy diploid genome, and the whole CEU trio demonstrate
that OMIndel is able to detect those indels not detectable by either of the two
existing methods, while simultaneously maintaining a lower or comparable false
discovery rate. Furthermore, we looked into the indels that are only detectable
by OM but not by sequencing-based technologies such as Illumina or PacBio,
and categorized them into complex events or indels falling on repetitive regions.
The method is implemented in Perl and is publicly available for download.

2 Methods

2.1 General Overview of OMIndel

For aligning the reads to the reference genome, OMIndel uses the same strategy
as OMSV, which integrates the results from two aligners RefAligner [24] and
OMBlast [20]. From the alignment, we extract all reads that do not have high
concordance with the reference (i.e., at least one of the fragment correspon-
dences between read and reference has sizing difference larger than 2,000 bp).
We detect indels > 2,000 bp as this size range is the strength of OM [22], and
smaller indels can be covered by other sequence technologies. The information
of the discordance is recorded, including the coordinates on the reference, sizing
difference, etc. The subsequent read clustering involves two steps, coarse and
fine, for achieving both fast and accurate clustering. First, the coarse clustering
builds a graph for the discordant records and a graph-based union-find algorithm
[35] is used to find all connected components of this graph. Fine clustering is
then performed on each connected component. As the coarse clustering step
may have multiple indels clustered together due to false edges, for reads in one
connected component, we further apply a hierarchical clustering algorithm for
breaking reads into groups that are truly corresponding to the same indel. The
scoring system in the hierarchical clustering is a distance ranging from 0 to 1
between each pair of the reads (0 means the two reads are exactly the same on
the focal indel region, and 1 means the two are completely different). Such dis-
tance is calculated by aligning the focal region of one read to another (a dynamic
programming algorithm for alignment is described below). The alignment score
is normalized and subsequently taken to calculate the distance. We then classify
the putative indel calls from each group into homozygous reference, homozy-
gous variant and heterozygous variant with a variant score, followed by filtering.
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Fig. 2. Illustration of the OMIndel method. (a) Deletion of a segment (in purple brack-
ets) with respect to the reference genome (in black horizontal line) is shown. The three
labels with black outer circles are deleted in individual’s DNA. Each label is shown in
a different color for visualization. Correspondence between labels on the reference and
the individual’s DNA is shown in dashed lines. Five OM reads aligned to this locus
are shown: the ones in black lines (X1 and X5) come from the reference allele, and the
ones in dark blue lines (X2, X3, and X4) come from a variant allele. Note that due
to a sizing difference error on X5, it is selected as a variant read along with X2, X3

and X4 in coarse clustering (step 1), yet to be filtered in fine clustering (step 2). (b)
Step 1, a coarse clustering is performed. X2, X3, X4, and X5 are all selected as variant
reads. They represent nodes in a graph. Since they overlap with each other, they are
all connected. A union-find algorithm is applied to the graph to cluster connected com-
ponents, and the four reads are grouped in one cluster. (c) Step 2, a fine/hierarchical
clustering is performed on individual connected components. The alignment score of
each pair of two reads is calculated by a dynamic programming algorithm (described
in (d)). The clustering starts from the two reads that have the smallest distance score,
and stops when the distance score between two groups of reads is above a threshold.
X5, due to its large distance with X2, X3, and X4, does not successfully make it into
the cluster, as expected. (d) The process of dynamic programming algorithm to calcu-
late the alignment score. A and B are two OM reads (notice that B does not have the
orange label as that in A due to a missing label error). The topmost row and leftmost
column of matrix M was initialized with zeros. The entries are filled from top left to
bottom right and the largest value is selected as the alignment score. The traceback
path (shown in red arrows) retrieves the optimal alignment. In this example, A1 and
A2 are joined as a group to be compared with B1, with a gap penalty applied. (Color
figure online)
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An outline with the cartoons is shown in Fig. 2. We now turn to describing the
various steps of OMIndel in detail.

2.2 Union-Find for Coarse Clustering

Before the first round of clustering, we align the OM reads to the reference
(GRCh38 is used in the Results section below) in the same fashion as that
of OMSV [22]. That is, the method uses integrated results from two aligners,
RefAligner [24] and OMBlast [20]. We then extract the variant reads that have
at least one abnormal sizing difference for all fragments in the read compared
with the reference. As the two end labels on the reads have a higher error rate,
sizing differences on these labels are skipped. Also, in local alignment, in case
more than 5 consecutive fragments have to be aligned as one block and cannot
be aligned separately, they are omitted as they probably contain large errors.

We then build an undirected graph, in which each read represents a node, and
an edge links two nodes if their corresponding reads have their indicated indel
coordinates overlapping with each other on the reference. A union-find algorithm
[35] is applied to find all connected components in the graph, producing the
clusters of reads. Following this step, each connected component is refined via
fine clustering as we describe in the next section.

2.3 Local Assembly-Like Approach for Fine Clustering

To overcome random errors in OM reads and achieve high accuracy in indel
calling, one more round of clustering is performed for each connected compo-
nent obtained by the previous step. Within a connected component, for a pair
of reads A and B, a distance DAB is calculated, which is used in the subsequent
hierarchical clustering step. The merging of clusters (in the hierarchical clus-
tering) stops when the two clusters have their distance larger than a threshold.
The distance between two groups of reads is calculated as the average distance
of all pairs of reads between two groups. For a pair of reads A and B, DAB is
symmetric, composed of the scores from a dynamic programming algorithm for
pairwise read alignment. Specifically,

DAB = 1 − SAB + SBA

2(max(SAA, SBB))
, (1)

where SAB is the score of aligning read A to read B using a dynamic program-
ming algorithm described next. When A and B are exactly the same, DAB equals
zero. The maximum value of D is 1.

We now describe a dynamic programming algorithm for OM reads. In
sequence-based pairwise alignment, dynamic programming algorithms such as
Smith-Waterman [9] look for best matches between subsequences of the two
sequences. A scoring system is used as a way to penalize gaps and mismatches
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but reward matches. In OM, the dynamic programming is designed in a similar
fashion except that instead of penalizing mismatches of the nucleotide bases,
we penalize the sizing difference between the two fragments. Also penalizing the
indel is turned into penalizing the additional and missing labels. To allow errors
that occur near each other, we take the matching of two merged sets of frag-
ments into consideration, with a penalty to the number of fragments that are
being merged. More formally, suppose OM read A has fragments A1, . . . , Ax and
OM read B has fragments B1, . . . , By. For example, if OM read A consists of
four coordinates (5, 10, 12, 18), then the fragments are A1 = 5 (=10−5), A2 = 2
(=12 − 10), and A3 = 6 (=18 − 12); i.e., Ai is the number of positions that sep-
arate the i-th and (i + 1)-th coordinates in read A. The following is a dynamic
programming algorithm for calculating the score of optimally aligning A1...i to
B1...j (1 ≤ i ≤ x, 1 ≤ j ≤ y), which is stored as entry M(i, j).

– Initialization: M(0, j) = 0 for 1 ≤ j ≤ y, and M(i, 0) = 0 for 1 ≤ i ≤ x.
– Recursion:

M(i, j) = θ +max

(
0,

maxa=1,...,ω;b=1,...,ω

(
M(i − a, j − b)−

∣∣∣∣∣
a−1∑
u=0

Ai−u −
b−1∑
v=0

Bj−v

∣∣∣∣∣ − G(a, b)
))

,

where G(a, b) = σ · (a + b − 2) is the gap penalty (σ is a normalizing factor
that makes sizing difference penalty and gap penalty comparable), θ is a
reward for extending the alignment to make the matrix entries positive when
there is a good alignment, and ω (≤ min(x, y)) is a user-specific threshold
on the maximum number of the fragments to be counted as one block for
alignment. In the equation, the summations are taken over u’s and v’s that
satisfy i − u ≥ 1 and j − v ≥ 1.

– Termination: i = x and j = y.

If two reads are on two different genomic loci, they are unlikely to have
overlapping coordinates (with respect to the reference genome) on their respec-
tive OM reads and, consequently, are unlikely to belong to the same connected
component as identified by the step given in Sect. 2.2 above. This is why the
formula for M(i, j) does not account for the actual coordinates, but only for the
“spacings” between coordinates (fragments). Finally,

SAB = max1≤i≤x,1≤j≤yM(i, j). (2)

2.4 Genotyping

We classify each call into homozygous reference, homozygous variant and het-
erozygous variant by a maximum likelihood approach. The likelihood of each
genotype takes both supporting read number and concordance of their indicated
indel size into account. Specifically, we model the supporting read number as a
Gaussian distribution (the number of reads aligned to a focal region varies and
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the farther that number from the mean, the smaller its frequency, hence the
choice of the Gaussian distribution). We model the sizing difference of each read
in a cluster as a Cauchy distribution (the sizing differences from noise have a
Gaussian distribution with long tails, hence the choice of the Cauchy distribu-
tion, which is also discussed in [22]; see Fig. 3 below). The likelihoods can be
expressed as follows:

L(D|g = 0) = fgaus(N ;μ, σ)
N∏

i=1

fcauchy(di;x0, γ),

L(D|g = 1) =
N−1∑

k=1

(
fgaus(k;

μ

2
,
σ

2
)

k∏

i=1

fcauchy(di; (x0 + ds), γ)fgaus(N − k;
μ

2
,
σ

2
)

N∏

i=k+1

fcauchy(di;x0, γ)

)
,

L(D|g = 2) = fgaus(N ;μ, σ)
N∏

i=1

fcauchy(di; (x0 + ds), γ).

In these expressions:

– D is the OM data (all reads aligned to the local region of interest, given in
terms of their fragment length and alignment);

– g is the number of variant allele in the site (g = 0 for homozygous reference,
g = 1 for heterozygous and g = 2 for homozygous variant);

– N is the total number of reads on the site;
– μ and σ are the parameters learned from the whole genome, representing the

mean and standard deviation of the number of reads covering a site;
– di is the inferred indel size from the ith OM read;
– x0 and γ are the location and scale parameters of the Cauchy distribution

learned from the whole genome where the assumption is there is no indel;
and,

– ds is the estimated indel size given from the previous local assembly-like step,
which is the mean of the inferred indels from the reads that cluster.

For homozygous reference, there is no indel, and the location parameter of the
sizing difference between read and reference is simply x0, the one learnt from
the whole genome. For homozygous variant, the sizing difference of every read
on the site corresponds to the same Cauchy distribution learnt from the whole
genome, except that the distribution shifts to the left by ds. For heterozygous
variant, suppose k reads support the variant and the rest of N −k reads support
the reference. The variant and reference supporting read number should both be
corresponding to a modified Gaussian distribution (i.e., the mean and variant
are half of the μ and σ), with their sizing difference to the reference and variant
Cauchy distribution, respectively.
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To improve computation time, we approximate the heterozygous variant’s
likelihood as follows:

L(D|g = 1) = fgaus(k;
μ

2
,
σ

2
)

k∏

i=1

fcauchy(di; (x0 + ds), γ)

fgaus(N − k;
μ

2
,
σ

2
)

N∏

i=k+1

fcauchy(di;x0, γ),

where k represents the number of variant-supporting reads that are clustered in
the previous step, and N − k is the number of remaining reads aligned to the
site. As the previous step assembles all the reads supporting the same allele, this
approximation is valid as the other terms in the summation (the first equation
for L(D|g = 1) above) are close to zero and thus can be omitted. When a
read supporting the variant is wrongly clustered as a reference read, as long
as its sizing difference is >1,000 bp (some weak signal exists), such omission
makes a difference of only less than 6.12e–05 (through the calculation of Cauchy
distribution by setting γ = 200). Finally, a maximum likelihood estimate of the
genotype is given by

g∗ = argmaxgL(D|g). (3)

The variant score can be calculated as

Sv = −10log
L(D|g = 0)Pv(g = 0)

∑2
l=0 L(D|g = l)Pv(g = l)

, (4)

where Pv(g) are the prior probabilities for the three genotypes, and

Pv(g = l) =
1
3

(5)

for l = 0, 1 and 2.

3 Results

3.1 Simulated Data

Our simulation process involves two steps: simulating variant alleles and simu-
lating OM reads. In simulating variant alleles, on the in silico digested human
reference chromosome 20, we simulate 50 deletions and 50 insertions. For each
indel, we uniformly sample its starting label. The indel size is sampled from a
Cauchy distribution (locality = 0, scale = 300) and is at least 2,000 bp. We use
a Cauchy distribution to simulate the real situation where medium-sized indels
outnumber large indels. Labels that are covered in the deleted area are also
deleted. For insertions, we simulate the inserted labels such that the distance
between the current and the next inserted label is drawn from a Poisson distri-
bution, where the mean is the average distance between two labels in the real
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case (10 kbp). This process of simulating the inserted label is repeated until no
more labels can be sampled from the simulated insertion size. To avoid sampling
overlapping indels, we constrain the distance between each pair of neighboring
indels to be >100 kbp.

In simulating OM reads, we learned the statistics, including read length, error
rates and sizing difference from the real data (CEU trio) and approximated with
distributions described below. We simulated three total coverages: 80x, 100x, and
120x and four variant allele fractions (VAFs): 0.2, 0.3, 0.4 and 0.5, resulting in 12
genomes, each having one variant allele and one reference allele. In simulating a
read from a given allele (reference or variant), we uniformly sample the starting
point. From the real data, we estimated the median of read’s length to be about
200 kbp. Since the minimum read length starting to contribute to SV detection is
150 kbp [3], we set the length of the read to be l0+lr, where l0 is 150 kbp and lr is
sampled from a Poisson distribution with mean at 50 kbp. Next, we learned the
error profiles from the high-confidence alignments (alignments whose reads have
≥12 labels and clipped end is ≤4 labels). The following items are the statistics
learned for the three error types.

– Missing label error rate’s median is 0.05 (similar to that reported in [22]);
– Additional label error rate is one per 200 kbp;
– Sizing difference’s distribution is Cauchy-like as it has long tails (Fig. 3). The

Cauchy distribution’s parameters are approximated to be locality = 0 and
scale = 200 (this is similar to [22]).

Sizing Error Distribution

Sizing Error (+: read > ref; −: read < ref)
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Fig. 3. Sizing difference distribution of NA12878 as approximated by a Cauchy distri-
bution (red curve). (Color figure online)
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Fig. 4. Comparison of recall on simulation data on VAF = 0.2, 0.3, 0.4, 0.5 among
OMIndel, OMSV and BioNano Solve, for deletion with coverage at (a) 80x (b) 100x
(c) 120x and insertion with coverage at (d) 80x (e) 100x and (f) 120x. Height of the bars
represents the mean; the error bars represent the range within one standard deviation
whenever it is within [0, 1].

We iterate this process until we simulate enough reads for the desired depth
at this allele for a specific VAF and total coverage.

We applied OMSV, BioNano Solve and OMIndel to the simulated data, and
measured the recall and precision of the three methods. To reduce the effect of
randomness, for each total coverage and VAF, we simulated five data sets of
OM reads, in order to obtain a set of accurate measurements. Figures 4 and 5
show the recall and precision, respectively, of all three methods. For all coverages,
OMIndel has higher recall than OMSV at all VAFs while maintaining comparable
precision. Similarly, OMIndel is advantageous over BioNano Solve on almost all
VAFs for both deletion and insertion on both recall and precision. BioNano Solve

Table 1. Comparison of computational cost on simulation data.

OMIndel OMSV BioNano solve

CPU hours 5 h 0.5 h 140 h

Memory 4G 1G 20G



Detecting Large Indels Using Optical Map Data 119

Fig. 5. Comparison of precision on simulation data on VAF = 0.2, 0.3, 0.4, 0.5 among
OMIndel, OMSV and BioNano Solve, for deletion with coverage at (a) 80x (b) 100x (c)
120x and insertion with coverage at (d) 80x (e) 100x and (f) 120x. Height of the bars
represents the mean; the error bars represent the range within one standard deviation
whenever it is within [0, 1].

has a slight advantage over OMIndel for insertion when VAF is at 0.5 for 100x,
or when VAF is at 0.2 or 0.3 for 80x, at the cost of much lower precision. We
observe that at low VAFs, with the increasing of the coverage, BioNano Solve’s
recall decreases. This shows the instability of BioNano Solve when reference reads
greatly outnumber variant reads. Overall, our algorithm has the advantages on
recall at small VAFs, with comparable precision with the other two methods for
higher VAFs.

It is important to note here that BioNano Solve does not report the indel
sizes along with the predictions, which is the reason why we cannot report the
recall and precision of the methods broken down by indel sizes (as the indel size
could often be a factor in a method’s performance).

We investigated whether the low recall of OMSV is due to false alignments.
We generated a “ground truth” alignment file given our knowledge of the indel
and read errors for one of the twelve cases (VAF = 0.5, total coverage = 120x).
We then applied OMSV to the true alignments and found that while maintaining
a high precision (1 for both deletion and insertion), the recall for deletion and
insertion are respectively 1 and 0.98, compared with 0.64 and 0.44 from the
alignment that has errors. This shows that OMSV’s recall was greatly affected
by erroneous alignments.
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Lastly, we evaluated the computational cost for the three methods (Table 1)
for one of the simulation data sets (coverage = 100x). OMSV is the fastest while
requiring the lowest amount of memory. OMIndel is the second (around 30 times
faster than BioNano Solve while requiring relatively small amount of memory).
BioNano Solve requires a large amount of CPU hours as well as memory. Here the
CPU hours are the total ones if parallelization is applied for a fair comparison,
and the same to memory.

3.2 Empirical Data

We applied OMIndel to NA12878 (VAF of 0.5 for heterozygous events, and ∼90x
coverage), and called 479 deletions and 700 insertions. Comparing the calls with
those of OMSV and BioNano Solve, OMIndel uniquely called 62 (13%) deletions
and 87 (12%) insertions (Venn diagram in Fig. 6a and b), in which 37 (60%)
deletions and 77 (89%) insertions are also called by either parents (NA12891
and NA12892) or overlap with orthogonal sequencing-based calls. We construct
the orthogonal sequence-based calls such that it is a deduplicated union set
of indels from Delly [32], PacBio calls generated in [30], 10X calls (ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878) and hybrid methods including
HySA [10], svclassify [29] and metaSV [26]. We found here that only 25 (5.2%)
deletions and 10 (1.4%) insertions can be validated neither by the parents’ calls
nor by orthogonal sequence-based calls. The estimated precision of OMIndel
is therefore 94.8% for deletion and 98.6% for insertion, compared with 93.4%
and 99.7% for OMSV and 93.0% and 95.4% for BioNano Solve. It was observed
that among those numbers, only OMSV’s insertion detection has around 1%
advantage of precision over OMIndel. However, it is at the cost of missing 127
(22.8%) validated insertions shared by both OMIndel and BioNanoSolve. In
addition, Fig. 6e and f show that OMIndel can potentially complement or even
outperform OMSV and BioNano Solve in terms of detecting novel calls validated
by sequence-based method (13 for deletion and 26 for insertion, compared with
13 and 11 for OMSV, and 53 and 62 for BioNano Solve).

We further looked into OMIndel unique and validated calls (named set A),
and compared with the number of supporting reads between those are shared
(set B). We found set A has a much smaller number of variant supporting read
number (Table 2) than that of set B. Along with the recalls from simulation,
OMIndel has been proven to be advantageous in calling indels with weak signals.

The CEU trio data provided us the opportunity to evaluate our genotype
accuracy compared with the other two methods. Table 3 listed the accuracy of
proband’s genotype given parents’ calls and corresponding genotypes according
to the mendelian inheritance rule. Except on deletion, when OMIndel’s genotype
accuracy ties with that of BioNano Solve, OMIndel outperforms the two methods
on both insertion and deletion. Particularly, we observed that OMSV’s genotype
accuracy is pretty low, as compared with its high precision in making a call.
This particularly demonstrates OMSV’s disadvantages in extracting supporting
variant and reference reads corresponding to a variant call when mis-alignments
are involved.

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878


Detecting Large Indels Using Optical Map Data 121

Fig. 6. Venn diagram comparing the indels of OMIndel, OMSV and BioNano Solve.
(a) and (b) show the numbers of deletion and insertion in the Venn diagram. (c) and
(d) show the number of calls that can be validated by the parents’ OM calls for deletion
and insertion, respectively. (e) and (f) show the number of calls that can be validated
by the orthogonal sequenced-based method for deletion and insertion, respectively. The
corresponding percentages over the total call are in parenthesis.

Table 2. Comparison of mean variant supporting read number between unique vali-
dated calls and shared calls. In the parenthesis are the total call number within the
category.

Mean variant read # (Total calls)

OMIndel unique OMIndel shared

DEL 16.48 (37) 26.72 (417)

INS 18.79 (77) 28.73 (613)
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Table 3. Comparison of genotype accuracy.

GT accuracy

DEL INS

OMIndel 0.75 0.83

OMSV 0.63 0.73

BioNano solve 0.75 0.77

3.3 Investigating Novel Calls Missed by Sequence-Based Methods

We further compared OMIndel calls with the sequence-based calls described
above for both deletions and insertions (Fig. 7). We investigated the novel calls
missed by all sequence-based methods but can be found in parents’ calls. Of
the 479 deletions, 120 (25%) are missed by sequence-based methods, of which
86 (72%) are validated by parents’ calls. Of the 700 insertions, 329 (47%) are
missed by sequence-based methods, of which 296 (90%) are validated by parents’
calls. We randomly selected 20 deletions and 20 insertions that are novel to
sequence-based calls but called in parents. We found these novel indels are missed
by sequencing-based methods mainly because they fall into repetitive regions
(Fig. 8) or they are complex events (Fig. 9). In all, these events are missed by
Illumina or PacBio based methods mainly because the variant signals are very
weak.

Fig. 7. Venn diagram comparing sequence-based indels and OMIndel calls on OM. The
numbers in parenthesis are those that are also called by parents.

4 Discussion

With the long reads provided by OM data, it is of most interest to know what
OM can deliver as compared with other technologies. While this study is focused
on answering this question, we found the existing tools on OM are limited in
handling the indels with weak signals. Our proposed OM-based targeted assem-
bly approach, OMIndel, falls in the same paradigm of that in TIGRA [5] and
HySA [10].
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(a) A deletion on 16:33505401-33605938 in GRCh37

(b) An insertion on 6:64978745-65023447 in GRCh37.

Fig. 8. IGV of complex indels that are also called by parents but missed by sequence-
based methods. In all IGVs, the upper and bottom panels show the alignment of
Illumina and PacBio reads, respectively.
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(a) A deletion on 11:134791298-134822210 in GRCh37

(b) An insertion on X:46934610-46967845 in GRCh37.

Fig. 9. IGV of indels overlapping with repetitive regions. These indels are also called
by parents but missed by sequence-based methods.
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In simulations, we found that BioNano Solve is only advantageous over OMIn-
del on high VAFs and insertions when measuring recall. This is consistent with
our prior assumption that a de novo assembly-based approach is better at detect-
ing large insertions than alignment-based or local assembly-based approach when
there are enough reads representing the variant. The recall corresponding to dif-
ferent insertion sizes is yet to be summarized for alignment-based or assembly-
based approaches.

We summarized some major categories where OM has its unique advantage of
detecting indels over sequencing-based technologies. However, further investiga-
tion is needed so that such list of categories can be comprehensive as a reference
for sequencing. We also observed that there are quite a few sequence-based calls
(47.1% for deletions and 59.6% for insertions) missed by our OM-based method.
Further investigation will facilitate exploring why OM missed the indels called
by sequence-based methods. This may further help to increase the recall of OM-
based algorithms. It is also valuable to identify OM’s limitations, i.e., which
indels are beyond OM’s detection ability. This could be done by looking into the
calls unique to sequence-based methods.

We acknowledge that the error profiles unique to OM data have not been
fully investigated in this study. As discussed by [22], missing and additional
labels are indicative of small indels, whereas sizing differences are indicative of
large indels. In this study, we focused only on large indels (indels > 2000 bp) by
modeling sizing difference distribution in our genotyping algorithm. Detecting
smaller indels requires further investigation where the missing and additional
label errors need to be modeled.

Finally, this paper’s scope is limited only to indel detection. OM’s long reads
have advantages in detecting inversions, translocations, or complex events such
as chromothripsis and chromoplexy. With all of these explored, a comprehensive
characterization of the human genome could potentially be achieved.

5 Conclusions

We proposed OMIndel, a method that utilizes OM reads to detect large indels. It
differs from the previous two methods in that it is alignment-based but follows a
local assembly-like fashion, so that it can simultaneously detect indels with weak
signal as well as maintain a low FDR. We applied OMIndel to both simulated
and real data, and found that it is advantageous over the other two OM-based
methods, OMSV and BioNano Solve, by detecting those indels that have weak
signals while maintaining a higher or comparable precision. We also manually
inspected the indels unique to OM but missed by sequence-based methods. We
found that they fall into either a category of complex events or at repetitive
regions. OMIndel is freely downloadable online, and we expect that with the
increasing availability of samples having OM data and the decreasing cost of
OM technology, this tool can be widely used for SV detection.
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Abstract. Cancer is a complex disease associated with abnormal DNA
mutations. Not all tumors are cancerous and not all cancers are the same.
Correct cancer type diagnosis can indicate the most effective drug ther-
apy and increase survival rate. At the molecular level, it has been shown
that cancer type classification can be carried out from the analysis of
somatic point mutation. However, the high dimensionality and sparsity of
genomic mutation data, coupled with its small sample size has been a hin-
drance in accurate classification of cancer. We address these problems by
introducing a novel classification method called mClass that accounts for
the sparsity of the data. mClass is a feature selection method that ranks
genes based on their similarity across samples and employs their normal-
ized mutual information to determine the set of genes that provide opti-
mal classification accuracy. Experimental results on TCGA datasets show
that mClass significantly improves testing accuracy compared to Deep-
Gene, which is the state-of-the-art in cancer-type classification based on
somatic mutation data. In addition, when compared with other cancer
gene prediction tools, the set of genes selected by mClass contains the
highest number of genes in top 100 genes listed in the Cancer Gene
Census. mClass is available at https://github.com/mdahasan/mClass.

Keywords: Cancer classification · Somatic point mutation
Genetic variation

1 Introduction

Cancer is a complex disease that results from an accumulation of DNA mutations
and epigenetic modifications in somatic cells. Remarkable scientific progress has
shed light on almost every biological aspect of this disease. Despite this progress,
cancer is still one of the most challenging disease of our time with an increasing
numbers of new cases and resulting in 14.6% of all human death each year [1].
Not all tumors are cancerous and not all cancers are the same. There is no single
test that can diagnose cancer type with perfect accuracy. The diagnosis process
requires careful examination and extensive testing to determine whether a person
has cancer and which type. Traditional cancer diagnosis method involves lab
tests, genetic tests, tumor biopsies, etc. The effective differentiation of cancers
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with similar histopathological appearance can indicate the most effective drug
treatment and increase survival rates (see, e.g., [2,6,8,9]).

Technological advancements in sequencing technologies has resulted in a dra-
matic increase in the quantity and quality of sequencing data related to cancer,
now available in databases such as The Cancer Genome Atlas [4] and the Interna-
tional Cancer Genome Consortium [3]. These vast repositories provide genomic
data from thousands of patients across different cancer subtypes [5]. The abun-
dance of this data has enabled researchers to devise new statistical approaches
for the accurate identification of cancer types and subtypes. Cancer classifica-
tion methods use gene expression data and/or somatic point mutation such as
copy number variation, translocations and small insertions and deletions. Several
methods have been proposed to accurately predict cancer types and subtypes
(see, e.g., [2,11–13]). The classification of cancer based on the somatic point
mutation data can be challenging because of the high dimensionality and spar-
sity of the data. In cancer patients only a few genes are mutated with high
frequency, while most of the genes have a low rate of mutation [10].

The literature on cancer classification methods is extensive. For instance,
in [7] the authors proposed a pan-cancer classification method based on gene
expression data. They used over nine thousand samples for 31 cancer types to
train a method in which a genetic algorithm carries out the gene selection and
a nearest neighbor method is used as a classifier.

The authors of [23] proposed to find discriminatory gene sets by measuring
the relevance of individual genes using mean and standard deviation of each
sample to the class centroid. In [24] the authors introduced new scoring functions
to design a stable gene selection method. Their method scores genes based on the
assumption that discriminatory genes have different mean values across different
classes, small intra-class variation and relatively large inter-class variation.

The authors of [14] combined the clustering gene selection with statistical
tests such as T-test and F-test and the gene selection method proposed in [23]
to deal the high dimensionality in gene expression data. Genes are assigned to
clusters if they are close to the centroids after applying k-means clustering.

In [2], the authors proposed a deep neural network for the classification of
multiple cancer types from somatic point mutation data, called DeepGene. To
the best of our knowledge, DeepGene is the state-of-the-art for multiple can-
cer classifications using somatic point mutation data. DeepGene clusters genes
based on mutation occurrence and uses a sparse representation to index non-zero
elements. The data is then fed into a fully connected deep neural network that
learns specific cancer types.

In this paper, we address the shortcomings of existing methods dealing with
the sparsity and high-dimensionality of somatic point mutation data by propos-
ing an efficient feature selection method based on information theory. A logistic
regression model demonstrates the effectiveness of our approach for cancer type
classification. Although in a medical setting the task of predicting cancer type
from somatic point mutation data might not be practical, here we investigate
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the fundamental question on whether somatic point mutation data has sufficient
discriminative power to allow for cancer type classification.

2 Methods

Given m individuals affected by cancer, the input to our feature selection method
is composed of the class labels, i.e., the cancer type for the m individuals, and
the mutation frequency of all genes for the m individuals. Selected features are
then fed into a classifier as described below.

Let n be the number of human genes for which somatic point mutation data
is available. Let C ∈ {1 . . . l}m be the vector containing the class labels where
l is the number of cancer types, and let G ∈ {0 . . . k}m×n, k ∈ N be the matrix
representing the number of mutations observed in each gene (i.e., G(i, j) = k if
gene i has k mutations in sample j).

The significance of a gene being involved in a particular type of cancer depend
on its mutation frequency. Genes with higher mutations are expected to be more
relevant for the causation of cancer [16]. In our method, we disregard genes that
contain less than t% mutations across all samples. This filtering step removes
non-significant genes from further consideration thus reduce the adverse impact
of the data sparsity. Our feature selection model has two steps. First, we cluster
genes based on their pairwise similarity. Then, we rank genes using a normalized
mutual information criterion [15].

2.1 Gene Clustering

Grouping similar genes into clusters allows our method to identify and eliminate
redundant genes within a cluster without compromising the efficiency of the fea-
ture selection. The reduction of data also reduces the complexity of downstream
steps. Since G is a sparse matrix, we use the cosine similarity because of its good
mathematical properties on sparse vectors. Given two n-dimensional vectors X
and Y the cosine similarity is defined as

s(X,Y ) =
∑n

i=1 XiYi
√∑n

i=1 X2
i

√∑n
i=1 Y 2

i

where Xi and Yi are the i-th components of vector X and Y . Gene p is assigned
to the cluster of gene q if the cosine similarity between row vectors G[:, p] and
G[:, q] is higher than a predefined threshold e. According to this procedure, it is
possible that the same gene could end up in multiple clusters. To select unique
genes out of these clusters, we rank the genes based on mutation count and
mutual information with the class label within the cluster as described next.

2.2 Normalized Mutual Information

Our gene selection method relies on an information theoretic measure that eval-
uates the predictive ability of each gene. Let X be a discrete random variable
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where each event x ∈ X occurs with probability p(x). The entropy H(X) of
variable X is the sum of the information content of each discrete event weighted
by the individual event probability, that is H(X) = −∑

x∈X p(x) log2 p(x).
Given two discrete random variables X and Y with joint prob-

ability p(x, y) and marginal probabilities p(x) and p(y), the condi-
tional entropy of variable Y conditioned on variable X is defined
as H(Y |X) =

∑
x∈X,y∈Y p(x, y) log2(p(x)/p(x, y)). Similarly, H(X|Y ) =∑

x∈X,y∈Y p(x, y) log2(p(y)/p(x, y)). We have that H(Y |X) = H(Y ) iff X and Y
are independent random variables. The mutual information I(X,Y ) is the gain
of information about random variable X due to additional information from
random variable Y , that is

I(X,Y ) = H(X) − H(X|Y ) =
∑

x∈X

∑

y∈Y

p(x, y) log2

(
p(x, y)

p(x)p(y)

)

Given a set F of features (the set of genes in G in this case) and class variables
C, the feature selection based on mutual information finds a subset S ⊂ F such
that the mutual information I(C,S) is maximized. In order to achieve that goal
we use the Normalized Mutual Information based Feature Selection (NMIFS)
technique. NMIFS is a heuristic algorithm that selects one feature at a time.
NMIFS differs from other mutual information based feature selection technique
such as MIFS [17], MIFS-U [18] and mRMR [19] in that it does not depend on
the parameter used to control the redundancy penalization. Also NMIFS does
not assume that the random variables have uniform probability distribution.

Given features fi ∈ F − S and fs ∈ S we express the mutual information as

I(fi, fs) = H(fi) − H(fi|fs) = H(fs) − H(fs|fi) (1)

where H(fi) and H(fs) are the entropies and H(fi|fs) and H(fs|fi) are condi-
tional entropies.

The mutual information I(fi, fs) is non-negative, and attains its maximum at
min{H(fi),H(fs)}. We can define the normalized mutual information between
fi and fs as

normI(fi, fs) =
I(fi, fs)

min{H(fi),H(fs)} (2)

The average normalized mutual information is a measure of redundancy
between fi and fs ∈ S for s = 1, . . . , |S| and it defined as

1
|S|

∑

fs∈S

normI(fi, fs)

where |S| is the cardinality of subset S. Our gene selection criterion selects a
gene fi ∈ F − S that maximizes

J(C, fi) = I(C, fi) − 1
|S|

∑

fs∈S

normI(fi, fs) (3)

where I(C, fi) is the mutual information between feature fi and class
variable C.
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2.3 Feature Selection

A sketch of mClass’ algorithm is shown as Algorithm 1. The algorithm first
determines the number of mutations of each gene from the input matrix G.
Then it computes the cosine similarity between all pairs of genes that have a
mutation percentage across all sample of at least t%. Genes are assigned to the
same cluster when their similarity exceeds threshold e. The process assigns each
gene to one or more clusters. The top v genes from each clusters are selected
into a representative list R′.

Next, mClass collects the unique set of genes U from the representative set
R′. It then calculates the mutual information between all features/genes fi ∈ U
and the class variable C. To calculate Eqs. (2) and (3) mClass discretizes the gene
mutation values into d equal-width bins. The gene f̂i which has the maximum
mutual information with the class variable C is selected as the first feature in S
(S is the final set of ranked genes). That gene is then removed from U . For all
the other genes in U mClass first calculates the normalized mutual information
between all pair of genes in U and S using Eq. (2). A gene fi ∈ U is selected
when it maximizes Eq. (3). The gene is then added to S and removed from U .
This process is repeated until all genes are given a rank in the ordered set S.
Instead of deciding on a predefined number of features a priori to be used in
the classifier, we select a variable number of genes in S based on their ability to
classify the data.

2.4 Cancer Type Classifier

As said, we employ a logistic regression (LG) multi-class classifier for a given
number of genes in the ranked set S. The linear model describes the probabilities
describing the possible outcome of a single trial using logistic function. Here
we use a One-vs-Rest (OvR) for the multi-class classification implementation
with L2 regularization. For the binary case, the L2-regularized logistic regression
optimizes the following cost function

minimizew
∑

x,y

log(1 + exp(−wTx.y)) + λwTw) (4)

The objective is to find the feature weights (w) that minimizes the cost
function in Eq. (4). Here x is the feature vector (genes) and y is the class label.
The hyper-parameter λ used to control the strength of regularization was left as
the default value (as defined by scikit-learn). As said, the classifier is fed the
genes in S incrementally. To determine the final set of features we select genes
based on their ability to accurately classify the dataset. The model decomposes
the optimization problem in Eq. (4) in a OvR fashion so that the binary classifier
can be trained on all classes.

3 Experimental Results

In this section, we describe the experimental setup, i.e., datasets and the param-
eters used in the feature selection and classification, as well as other implemen-
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Data: Gene mutation data G ∈ {0, k}m×n, similarity measure threshold e,
mutation count threshold t, discretization value d, v, class variable C

Result: Ordered set of genes S
set R ← ∅;
for each gene fi ∈ G do

if number of mutation of fi > t then
R ← R ∪ {fi};

end

end
set CL ← ∅;
for each gene fi ∈ R do

create a new cluster in CL for fi;
for each gene fj ∈ R, j �= i do

if cosine similarity s(fi, fj) > e then
assign fi and fj to same cluster in CL

end

end

end
set R′ ← ∅;
for each cluster cl ∈ CL do

set R′ ← R′ ∪ {top v genes in cl}
end
collect unique genes U ← set(R′);
discretize gene mutation values in d equal-width bins;

select the first feature f̂i = argmaxfi∈U{I(C; fi)} ;

set U ← U − {f̂i};

set S ← {f̂i};
for each gene fi in U do

calculate I(fi; fs) for all pairs (fi, fs) with fi ∈ U and fs ∈ S;
select feature fi ∈ U that maximizes J in Equation (3);
set U ← U − {fi};
set S ← S ∪ {fi};

end
return ordered set S;

Algorithm 1. mClass feature selection algorithm

tation details. Data preprocessing, feature selection and classification evaluation
steps were implemented in Python. All tested classifiers are available from the
Python package scikit-learn.

3.1 Datasets

We used two cancer datasets to test mClass. The first dataset is a twelve-type
cancer dataset from The Cancer Genome Atlas (TCGA) [4]. The dataset was
assembled by selecting the genes across all samples for all cancer types that con-
tain mutations. Table 1 shows the basic statistics of each cancer type. Observe
that the number of samples and the number of mutations varies significantly
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Table 1. Sample and mutation statistics for the twelve-type cancer dataset

Cancer type Number of samples Number of mutations

ACC 90 18,272

BLCA 130 37,948

BRCA 982 83,360

CESC 194 45,293

HNSC 279 49,264

KIRP 161 13,640

LGG 286 9,228

LUAD 230 68,270

PAAD 150 30,123

PRAD 332 11,802

STAD 289 130,050

UCS 57 10,129

Total 3,180 507,379

across cancer types. After removing samples that have less than five mutations
across all genes, the dataset contained 3,151 samples and 23,236 genes. The sec-
ond dataset from TCGA contains four cancer types, namely COAD, SKCM,
LAML and KIRC. It contains 1,043 samples with a total of 363,285 mutations
across 25,286 genes. Details about this dataset and the corresponding experi-
mental results are discussed in Sect. 3.5.

3.2 Parameters

mClass’ feature selection uses four parameters: the similarity measure threshold
e for the clustering step, the minimum mutation count threshold t to eliminate
non-informative genes, the number v of top genes selected from each cluster and
the number of bins d used for discretizing gene mutation values (see Algorithm 1).

In our experiments, parameter t was set to 1 which has the effect of disregard-
ing genes with less that 1% mutation across the samples. As said, the pairwise
gene similarity is calculated using the cosine similarity measure and genes are
assigned into same cluster if the similarity between them is greater than the
similarity threshold e. The algorithm then selects the top v% genes from each
cluster for gene ranking step. The values for e, t, v and d were selected experi-
mentally based on ability of the method to accurately classify the datasets using
the selected number of features. For instance, Table 2 shows the classification
accuracy of mClass+LG (mClass’s feature selection followed by logistic regres-
sion) on the twelve-type cancer dataset, for various choices of e. Based on this
analysis, we selected e = 0.55. Similarly, we tested the values of v in the range
5%–25%, and we obtained the highest classification accuracy with v = 10%.
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Table 2. Classification accuracy of mClass+LG as a function of similarity threshold e
on the twelve-type cancer dataset

Similarity threshold (e) Classification Accuracy

0.50 0.708

0.55 0.718

0.60 0.715

0.65 0.715

0.70 0.715

0.75 0.715

Table 3. Ten-fold cross validation accuracy for mClass+LG and DeepGene (three
configurations) on the twelve-type cancer dataset

Method Cross-validation Accuracy

DeepGene (CGF + ISR) 0.655

DeepGene (CGF) 0.638

DeepGene (ISR) 0.649

mClass+LG 0.675

A similar experimental analysis (not shown) indicated that d = 5 was the opti-
mal choice for these datasets. Incidentally, the same value of d was used in [22].

3.3 Evaluation Metrics and Comparison with DeepGene

We have used the evaluation metrics introduced in [2] to compare the results. All
evaluation experiments were performed by randomly selecting 90% of the input
data as training data and 10% of the input as testing data. We compared the ten-
fold cross validation accuracy of mClass+LG (mClass’s feature selection followed
by logistic regression) and testing accuracy against state-of-the-art DeepGene [2].

As said, mClass selects the optimal number of features in a forward selection
fashion. We compared mClass’ cross-validation results with DeepGene, which
employs a convolutional neural network (CNN) as the classifier. The performance
of DeepGene was calculated in three different configuration: clustered gene filter
and indexed sparsity reduction, only cluster gene filter and only indexed sparsity
reduction.

The ten-fold cross-validation results between mClass and three configuration
of DeepGene on the twelve-type cancer dataset is shown in Table 3. Observe
that the classification accuracy of mClass outperformed all three configurations
of DeepGene proposed in [2]. The classification accuracy of mClass is more than
3% higher than the best configuration of DeepGene.

We also compared the testing accuracy of mClass with (i) the best configu-
ration of DeepGene and (ii) LG on the full dataset (i.e., no feature selection).
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Fig. 1. Classification accuracies as a function of the number of feature (genes) selected

Table 4. Testing accuracies of mClass+LG, DeepGene and LG on full dataset (twelve-
type cancer dataset)

Method Classification accuracy

Full dataset (no feature selection) 0.677

DeepGene (CGF+ISR) 0.655

mClass+LG 0.718

The logistic regression classifier in mClass uses balanced weights to counter the
imbalance in the number of samples in the dataset. Using the forward feature
selection technique described in Algorithm 1, the testing accuracy of the clas-
sifier was measured by adding ranked gene one at a time. Figure 1 shows the
progression of forward feature selection. mClass obtains the best testing accu-
racy (TP + TN)/(TP + TN + FP + FN) of 0.718 using a collection of top
3,676 genes which is 9.6% higher than the accuracy obtained by the best con-
figuration of DeepGene with an average precision TP/(TP +FP ) of 0.74, recall
TP+(TP+FN) of 0.718 and F-Score (2×precision×recall)/(precision+recall)
of 0.711 as shown in Table 5. Figure 2 illustrates the confusion matrix for the
twelve-type cancer dataset. Observe that with mClass + LG, false positives rate
is highest for BRCA while BLCA has the highest rate of false negatives. Table 4
summarizes the testing accuracy of these three methods.

3.4 Testing Other Classifiers

As said, mClass+LG uses a logistic regression as the classifier for the cancer
classification datasets. We have tested the classification accuracies of other clas-
sifiers following mClass’ feature selection. We employed Support Vector Machine
(SVM) both with the linear and RBF kernel, k-nearest neighbor (KNN), Naive
Bayes and Random Forest. All the classifiers were available from the Python
package scikit-learn.
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Fig. 2. Normalized confusion matrix for the twelve-type cancer dataset

Table 5. Classification results on twelve-type cancer dataset

Cancer type Precision Recall F-Score Support

ACC 1.00 0.83 0.91 12

CESC 0.88 0.47 0.61 15

UCS 0.33 0.50 0.40 2

PAAD 0.80 0.92 0.86 13

KIRP 0.89 0.64 0.74 25

STAD 0.70 0.50 0.58 32

LGG 0.95 0.91 0.93 23

BLCA 0.67 0.38 0.48 16

HNSC 0.81 0.46 0.59 28

PRAD 0.68 0.78 0.73 50

LUAD 0.90 0.75 0.82 12

BRCA 0.62 0.88 0.71 88

Average/Total 0.74 0.72 0.71 316

To classify the data using SVM with the RBF kernel, we optimized the
parameter C and γ using 10-fold cross validation (keeping other parameters to
default). The highest accuracy was obtained with C = 2e2 and γ = 2e−5. We
have used the same parameter C for the linear kernel version of the SVM. The
classification with KNN employed Euclidean distance and Pearson correlation
coefficient. The 10-fold cross validation showed an optimal accuracy of 0.316
for Euclidean distance using a threshold of 3 and an accuracy of 0.436 with
the Pearson correlation coefficient using a neighborhood size of 4. The ensemble
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Random Forest classifier’s employed a maximum of 1,000 trees in the forest. We
set the minimum number of samples required to split an internal node to 9. All
other parameters were set to default.

The performance of the various classifier is shown in Fig. 3. The experimental
results show a significant advantage of LG over all other classifiers. mClass+LG
achieves (i) a 9.6% testing classification improvement over the best configuration
of DeepGene (ii) a 24.6% improvement over the linear kernel SVM, (iii) a 29.6%
improvement over the RBF kernel SVM, (iv) a 106.9% improvement over KNN
with Euclidean distance, (v) a 64.6% improvement over the KNN with Pearson
correlation coefficient, (vi) a 83.6% improvement over Naive Bayes and (vii) a
30.3% improvement over Random Forest.

Fig. 3. Classification accuracy of mClass+LG, DeepGene and other classifiers applied
to the features selected by mClass

3.5 Experimental Results on the Four-Type Dataset

As mentioned above, we used a second dataset consisting four type of cancers,
namely COAD, SKCM, LAML and KIRC. After removing genes with less than
1% mutations across all samples, the dimension of the dataset was reduced to
1043 × 25286. The dataset contains 154 samples for COAD, 345 samples for
SKCM, 158 samples for LAML and 386 samples for KIRC. Total number of
mutations in this dataset is 363,285. We used the same parameter values for e,
t, v and d as in the previous experiment. The 10-fold cross-validation peaked
with an accuracy score of 89.5% with 1,132 genes. For testing accuracy, the
dataset was divided into training and testing dataset of size 698 (67%) and 345
(33%), respectively. Using 1,132 features, mClass+LG achieves an accuracy of
87.5% on this dataset. Table 6 shows the average precision and f1-score for each
class in this dataset. Figure 4 shows the normalized confusion matrix for our
classifier. We could not compare the performance of mClass with DeepGene on
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Table 6. Testing accuracies on the four-type cancer dataset using mClass

Cancer Type Precision Recall F-score Support

COAD 0.93 0.75 0.83 51

SKCM 0.97 0.88 0.92 101

LAML 0.65 0.98 0.79 56

KIRC 0.94 0.88 0.91 137

Avg/Total 0.90 0.87 0.88 345

Fig. 4. Normalized confusion matrix for the four-type cancer dataset

this second dataset because, according to the authors, the data pre-processing
code necessary to feed the training model for DNN is not available anymore.

3.6 Comparisons of Predicted Genes

We compared the genes selected by mClass+LG using the 12-types dataset
with genes from Cancer Gene Census (CGC). At the time of writing the CGC
database contains 719 genes. About 90% of these genes contain somatic muta-
tions, 20% contain germline mutation and 10% contain both types of mutations.
We compared mClass’ selected genes against the selection carried out by Mut-
sig 2.0, Mutsig CV [20], MutationAccessor [21] and Muffin [16]. These latter
methods predicts cancer genes by analyzing cancer somatic mutation data from
18 types of cancer. We examined the top 100, 500 and 1000 genes produced by
these methods, and counted how many of these genes were annotated in the
CGC database.

Figure 5 shows these counts for mClass, Mutsig 2.0, Mutsig CV, MutationAc-
cessor and Muffin. Observe that for the top 100 genes, mClass identifies about
50% more CGC genes than MutSig 2.0, MutSig CV and MutationAccessor.
mClass identifies more CGC genes than Mutsig 2.0, Mutsig CV and MutationAc-
cessor for the 500 and 1000 case. However, mClass falls short by 18% and 14%
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than Muffin in identifying CGC genes in top 500 and top 1000 genes. Although
the purpose of mClass was not identifying driver genes, it is remarkable that the
top ranked genes selected by mClass contains a large proportion of cancer driver
genes.

Fig. 5. Number of CGC genes produced by mClass, Mutsig 2.0, Mutsig CV, Muta-
tionAccessor and Muffin in their top 100, 500 and 1000 selection

4 Conclusions

In this paper we proposed a gene selection method based on clustering and nor-
malized mutual information to rank genes for multiple cancer classification using
somatic point mutation data. A logistic regression classifier in an one-vs-rest con-
figuration is applied for multiple cancer classification using the selected genes.
Experimental results on two TCGA datasets shows significant improvements in
classification accuracy. We also showed that our feature selection method ranked
genes that match CGC-annotated genes. Moreover, the model can be extended
by including other genomic data that could further improve the overall classifi-
cation performance. For instance, one could use mutation signature associated
with specific cancer types to improve the overall accuracy.

Funding. This work was supported in part by the US National Science Foundation
[IOS-1543963, IIS-1526742].
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Abstract. We derive the mixture of distributions of sequence similarity
for duplicate gene pairs generated by repeated episodes of whole genome
doubling. This involves integrating sequence divergence and gene pair
loss through fractionation, using a birth-and-death process and a muta-
tional model. We account not only for the timing of these events in terms
of local modes, but also the amplitude and variance of the component
distributions. This model is then extended to orthologous gene pairs,
applied to the evolution of the Solanaceae, focusing on the genomes of
economically important crops. We assess how consistent or variable frac-
tionation is from species to species and over time.

Keywords: Birth-and death process · Whole genome doubling
Fractionation · Solanaceae

1 Introduction

A major source of data for the study of genomic evolution is the distribution
of some measure of the similarity or difference either between pairs of paralo-
gous genes, generated by a series of whole genome doubling, tripling, etc. (all
subsumed under the acronym WGD), or between pairs of orthologous genes,
generated by speciation. These distributions have been routinely analyzed in
comparative genomics by finding peaks or local modes, in order to estimate each
of the WGD or speciation times. We have previously shown how to model the
random processes of paralogous gene pair divergence, by mutation, and by gene
pair loss through fractionation–duplicate gene deletion, in terms of a birth-and-
death process integrated with a mutational model. This accounts not only for the
timing of peaks, but also their amplitude and how spread out or concentrated
they are [1–3]. In this paper, our goal is to extend this model to the study of
orthologous gene pairs, so that we can apply it to the evolution of the Solanaceae,
focusing on the genomic comparisons among tomato, potato, eggplant, pepper,
tobacco and petunia genomes. We aim to systematically elucidate the process
of fractionation, using this family as an example, to assess how consistent or
variable it is from species to species and how it changes over time.
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We first present the details of our discrete-time birth-and-death model for
generating populations of paralogs in Sect. 2.2, as summarized from [2], as well
as expected counts of present-day paralogous pairs with most recent common
ancestors at each ancestral time in Sect. 2.3. These results are then reduced to
simpler expressions (no summations, no factorials) for several important cases in
Sect. 2.4. In Sect. 2.5, we extend our model to introduce speciation and explore a
simplification that allows us to derive the expected number of orthologous pairs
with most recent common ancestors at each ancestral time.

In order to account for genomic data, we can observe all the paralogous pairs,
as well as the orthologous pairs if two species are involved, but we cannot directly
observe at which WGD or speciation time each pair originated. Here is where
the mutational model plays a role. The set of pairs generated by a single WGD
or speciation event displays a distribution of similarities, whose mean is directly
related to the time of that event and whose variance reflects the degree of ran-
domness of the process of similarity decay, as discussed in Sect. 3. The similarities
of all the pairs originating from all the events thus constitute a mixture of dis-
tributions. The means of the component distributions can be identified as local
modes in the distribution of gene pair similarities, as discussed in Sect. 3.1. Max-
imum likelihood methods can then fill out the remaining information about the
variances of each component distribution and their proportions in the mixture.

In Sect. 4.1, we apply our model and methodology to six genomes from the
Solanaceae (“nightshade”) family of flowering plants using the grapevine genome
as an outgroup. We compare all the genomes to each other (21 comparisons) and
five of the six to themselves, using the SynMap tool on the Coge platform [4,5]
to obtain the distribution of paralogous and orthologous gene pair similarities,
resulting from WGD and speciation event. The goal is to estimate rates of frac-
tionation, based on the information previously derived about the component
distributions. Results from the 27 distributions are then compared for consis-
tency and for variation between genomes.

2 Methods

2.1 The Birth-and-Death Model

We treat the generation and loss of paralogous genes due to WGD as a discrete
time birth-and-death process. At the i-th step, each gene in the population is
independently replaced by a “litter” of size ri ≥ 2, of whom a number j ≥ 1
survive, with probability u

(i)
j . The ploidy of the event at time is ri, and ri −

j ≥ 1 is the effect of fractionation on the litter. The final population size is
observed at the n-th step. In practice, what is observed is not the number of
genes, but the number of pairs of genes, as calculated in Sect. 2.3, together with
a statistic, for each pair, which helps determine at which ti the two separate
lineages, represented by the pair, originated. This statistic, and how we use it
will be discussed in Sect. 3. Before that, however, we will discuss how our model
may be extended to study orthologous gene pairs.
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2.2 The Evolution of Population Size

Denote by m1, . . . ,mn the total number of individuals (genes) in the population
at times t1 < · · · < tn. At each time ti, i = 1, . . . n− 1, each of the population of
mi genes is replaced by ri ≥ 2 progeny. Independently for each gene’s progeny,
any or all of the ri survive until time ti+1, but at least one does (“no lineage
extinction”). We denote by u

(i)
j the probability that j of the ri progeny survive

from time ti to time ti+1. This model of fractionation may be termed“sibling
rivalry”; there is no constraint on the survival of “cousins”. Motivations for
the“no lineage extinction” and “sibling rivalry” assumptions are given in [2,3].

Let a
(i)
1 , . . . , a

(i)
ri be the number of genes at time ti, of which 1, . . . , ri, respec-

tively, survive until ti+1, so that

mi =
ri∑

j=1

a
(i)
j , mi+1 =

ri∑

j=1

ja
(i)
j . (1)

The probability distribution of the evolutionary histories represented by r =
{ri}i=1...n−1 and the variable a = {a

(i)
j }i=1...n−1

j=1...ri
is

P (r;a) =
n−1∏

i=1

[(
mi

a
(i)
1 , . . . , a

(i)
ri

) ri∏

j=1

(u(i)
j )a

(i)
j

]
, (2)

as can be proved by induction on i. The expected number of genes at time tn is

E(mn) =
∑

a

P (r;a)mn. (3)

Similarly, for the events starting at time tj with mj genes, up to tk, we write

P (j,k)(r;a) =
k−1∏

i=j

[(
mi

a
(i)
1 , . . . , a

(i)
ri

) ri∏

h=1

(u(i)
h )a

(i)
h

]

E(j,k)(mk) =
∑

a

P (j,k)(r;a)mk. (4)

2.3 Paralogous Gene Pairs

Having described the origin and survival of individual genes, we now summarize
the analysis in [2] of the pairs of genes observed at time tn whose most recent
common ancestor was replaced by ri progeny at some time ti. For each of the
a
(i)
j genes with j ≥ 2 surviving copies, there are

(
j
2

)
surviving pairs of genes at

time ti+1. The total number of pairs created at time ti and surviving to time
ti+1 is thus

d(i,i+1) =
ri∑

j=2

(
j

2

)
a
(i)
j . (5)
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These are called the ti-pairs at time ti+1. The expected number of such pairs is

E(d(i,i+1)) =
∑

a

P (1,i+1)(r;a)
ri∑

j=2

(
j

2

)
a
(i)
j . (6)

At time tj , for i+1 ≤ j ≤ n, any two descendants of the two genes making up a
ti-pair with no more recent common ancestor is also called a ti-pair (at time tj).

For a given ti-pair g′ and g′′ at time ti+1, where i < n − 1, the expected
number of pairs of descendants d(i,n) having no more recent common ancestor is

E(d(i,n)) = E(d(i,i+1))
(
E(i+1,n)(mn)

)2 (7)

where mi+1 = 1 in both factors representing the descendants of a ti-pair. This
follows from the independence among the fractionation process between times ti
and ti+1 and both processes starting with g′ and g′′.

Of the mn genes in Eq. (3), the expected number of unpaired genes is

E(m∗) = m1

n−1∏

i=1

u
(i)
1 . (8)

2.4 Reductions to Simple Form

Though Eq. (7) would seem to entail an increasing complexity of formulae as n
increases, in many important cases this reduces to simple expressions.

Successive Doublings (Tetraploidizations). For example if all ri = 2 for
1 ≤ i ≤ n − 1, we have by induction that Eq. (7) reduces to

Theorem 1.

E(t1) = u
(1)
2 Πn−1

j=2 (1 + u
(j)
2 )2

E(ti) = Πi−1
j=1(1 + u

(j)
2 )u(i)

2 Πn−1
j=i+1(1 + u

(j)
2 )2 (9)

E(tn−1) = u
(n−1)
2 Πn−2

j=1 (1 + u
(j)
2 ),

Corollary 1. If all the u
(j)
2 = u, then for 1 ≤ i ≤ n − 1,

E(ti) = u(1 + u)2n−i−1. (10)

Successive Triplings (Hexaploidizations). In the case all ri = 3 for 1 ≤ i ≤
n − 1,

E(t1) = (3u(1)
3 + u

(1)
2 )Πn−1

j=2 (1 + 2u(j)
3 + u

(j)
2 )2

E(ti) = Πi−1
j=1(1 + 2u(j)

3 + u
(j)
2 )(3u

(i)
3 + u

(i)
2 )Πn−1

j=i+1(1 + 2u(j)
3 + u

(j)
2 )2 (11)

E(tn−1) = (3u(n−1)
3 + u

(n−1)
2 )Πn−2

j=1 (1 + 2u(j)
3 + u

(j)
2 ).

General r. For r ≥ 2 the same at all ti, and u
(i)
j = uj for j = 1, . . . , r and

i = 1, . . . n − 1, there will be K ≥ 0 and K ′ ≥ 0, depending on the distribution
of uj , such that

E(ti) = K ′K2n−i−1. (12)
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2.5 Introducing Speciation into the Model

When two populations of a species evolve into two daughter species, we may
assume that they initially have the same gene complement, and share identical
paralog trees. Instead of observing the state of the paralog tree at time tn, how-
ever, we observe a set of orthologous gene pairs at time tn+1. Obviously, if such a
tree has mn genes at time tn, this will create mn different tn orthologous pairs at
time tn+1, the time of observation, putting aside consideration of fractionation
between tn and tn+1 for the moment.

Under this assumption, we can also calculate the number of ti orthologous
pairs, for i = 1, . . . , n − 1. Any ti paralogous pair creates two ti orthologous
pairs, namely the first gene in the paralogous pair in one species together with
the second gene in the other species, and vice versa. For any i < n, the number
of orthologous ti pairs is twice the number of paralogous ti pairs. If, however,
we allow fractionation to continue beyond the speciation event, the modeling
problem becomes more complicated. We can extend the birth-and-death process,
treating speciation as another WGD event, though the counting of orthologs is
necessarily different than the counting of ti paralogs as illustrated in Fig. 1.

Fig. 1. A gene tree produced by two triplications at times t1 and t2, followed by a
speciation at time t3, showing the number of paralogous and orthologous t1, t2 and t3
pairs. (The time of origin of a pair is that of its most recent common ancestor.)

For this sequence of events, the same logic behind Eqs. (9-12) allows us to
write

E(t1) = 0.5(3u
(1)
3 + u

(1)
2 )(1 + 2u(2)

3 + u
(2)
2 )2(1 + u

(3)
2 )2

E(t2) = 0.5(1 + 2u(1)
3 + u

(1)
2 )(3u

(2)
3 + u

(2)
2 )(1 + u

(3)
2 )2

E(t3) = u
(3)
2 (1 + 2u(1)

3 + u
(1)
2 )(1 + 2u(2)

3 + u
(2)
2 ), (13)

and there is a lengthy associated expression for the expected number of unpaired
genes. This approach is more general than simply counting two pairs of orthologs
for every pair of paralogs required by the no fractionation assumption, since u

(3)
2

can be less than 1. However, even this is not really satisfactory, since it may
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incur a lineage extinction in one of the two genomes created at time tn. The
“correct” way of proceeding would be to allow the sibling rivalry fractionation
regime operative between tn−1 and tn to continue independently in each of the
two genomes until the time of observation tn+1. Implementing this is the subject
of ongoing research.

3 The Distribution of Similarities

The goal of this work is to understand fractionation, so that if at the time
of observation we could count the ti pairs for i ≥ 1, we could use Equations
like (9–13) as a basis for making inferences about the u

(i)
j . But although we can

observe all the paralogous pairs, as well as the orthologous pairs if two species are
involved, we cannot directly observe at which WGD or speciation time each pair
originated. Instead, what we observe at time tn (or tn+1 in the case of orthology)
is a measure p of similarity (e.g., the proportion of identical nucleotides in the
aligned coding sequences) between each pair of genes in the population. Because
of how sequence similarity decays by random substitutions of nucleotides, we
can expect an approximately exponential decline in p.

Thus if the distribution of gene pair similarities clusters around values p1 <
p2 < · · · < pn−1, we can infer that these correspond to WGD events at some
time t1 < t2 < · · · < tn−1. And assuming a large sample of gene pairs, each of
these clusters can be modeled by a normal distribution. The distribution of gene
pairs is thus a mixture of n − 1 normals.

Previous work assumed that the variance of the similarity of a gene pair was
proportional to p(1−p), but this did not provide a very good fit in practice. In the
present paper, we do not assume any such relationship. Indeed, our strategy will
be to identify the ti by a combination of techniques described in Sect. 3.1, and fix
these in a standard maximum likelihood estimate of the variance and amplitude
of each component of the mixture. This enables us to calculate the proportion of
the sample in each component. We use these proportions, or frequencies derived
by multiplying by the sample size, as the numbers of ti pairs, from which we can
estimate the survival proportions using Eqs. (9–13).

3.1 The Mode as an Estimator of ti

There are well-established methods for decomposing a mixture of normals (or
other predetermined distributions) into their component distributions [6]. Expe-
rience shows, however, that these methods, despite their built-in validation cri-
teria, are not robust against non-normality, especially with genomic data, and
tend to deliver spurious extra components, and components located in unlikely
places. We will nevertheless make use of these methods, but in a way constrained
to give appropriate results.

We will compare several genomes to each other. Our strategy is first to locate
the ti in each comparison by picking out local modes in the distribution of
similarities, guided by the knowledge that some of these ti are shared among
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several genome comparisons, since they reflect the same events. Then for each
comparison, some of these estimates are refined by maximum likelihood methods,
which also produce the amplitude and variance of the component. From these
we can directly partition all the gene pairs into sets of t1 pairs, t2 pairs, etc.
Finally, the numbers of genes in these sets can be used to produce estimates of
the u

(i)
j .

Why use the mode? Because of overlapping tails, reminiscent of the mixing
of generations, i.e., the decay of synchrony, in initially synchronized population,
studied in the antediluvian literature [7], the means of the component distribu-
tions cannot be estimated by averaging, but can be identified as local modes in
the overall distribution of gene pair similarities.

Estimating the local modes of an underlying distribution by using the modes
of the sample involves a trade-off between precision and a proliferation of mis-
leading modes. With gene pair similarities grouped into large bins, or averaged
among moving windows of large size, the empirical distribution will be relatively
smooth, and bonafide modes will be easily noticed. But a large bin size only
indicates that the mode is somewhere in a large interval. With small bin sizes,
or sliding window sizes, the position of the nodes are more precisely determined,
but more subject to a proliferation of spurious nodes due to statistical fluctua-
tion. Again, we control this problem by considering several related comparisons
at a time.

4 Results

4.1 The Evolution of the Family Solanaceae

The Solanaceae is a family of plants in the asterid order Solanales. This family
is distinguished biologically by its early whole genome tripling, as indicated in
Fig. 2, and scientifically by the fact that many of its species boast sequenced
genomes, namely all the economically most important ones (cf [8]).

4.2 The Genomes

We use the SynMap software on Coge, and thus have direct access to most of
the data, in an appropriate format, among those available on the Coge plat-
form. Those genome data gathered elsewhere (cited below) were uploaded to a
temporary private account on Coge for purposes of the present research.

The tomato (Solanum lycopersicum) genome sequence and annotation [9] are
considered the gold standard among the asterid genome projects. Although there
is a recent update to version 3, we used the more familiar (from previous work)
version 2.40.

The potato (Solanum tuberosum) genome [10] is also a high quality sequence
has now been fully assembled into pseudomolecules (version 4.03).

The pepper genome (Capiscum annuum version 1.55) [11] is drawn from a
genus closely related to Solanum.
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Fig. 2. Phylogenetic relationships among the Solanaceae, showing WGD and speciation
events. Numbers indicate millions of years from the event to the present, drawn from
Fig. 3 in [13], except for the interpolated age of eggplant speciation.

The tobacco (Nicotiana benthamiana) genome was sequenced some years ago
[12], but its sequence and annotation have been updated and made available for
comparative purposes, together with the petunia (Petunia hybrida genome [13],
both via SGN–the Sol Genomics Network https://solgenomics.net. Among the
Solanaceae genomes studied here, only tobacco has undergone a WGD since the
original Solanaceae tripling.

A draft version of the eggplant genome (Solanum melongena) has also been
available for some time [14], and this is what we use here, although a new version
is available for browsing via SGN, with restrictions against comparative use
awaiting the writing up and publication of the project.

As an outgroup, we use the grapevine (Vitis vinifera) genome [15], one of
the first flowering plant genomes to be sequenced (in 2007), and one that has
proven to be extraordinarily conservative, both with respect to mutational rate
and to rearrangement of chromosomal structure. Indeed, the structure of the 19
grape chromosomes resembles in large measure that of the 21 chromosomes of
the ancestor of the core eudicots, resulting from a tripling of a seven-chromosome
precursor [16]. This is known as the “γ” tripling. Over half of the known flowering
plants, including the Solanaceae, belong to this group.

4.3 The Comparisons

We applied SynMap to all pairs of the seven genomes and also compared
each genome with itself (with the exception of eggplant, because of technical
difficulties). We used the default parameters, which are fairly strict in ensuring
that all pairs were part of a syntenic block, and thus created at the same time.
This excluded duplicate gene pairs that may have been created individually, at
some time other than during a WGD event.

https://solgenomics.net
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The results are shown in Figs. 3 and 4. In Fig. 3, we note the relative stability
of the γ and Solanaceae tripling-based distributions, but the narrowing of the
speciation-based distributions as speciation time approaches the present.

In Fig. 4, we note the conservatism of grape, which retains higher similarities
for γ paralogs than the Solanaceae. That the γ-based orthologs in the Solanaceae
comparisons with grape all suggest equally remote speciation times, rather than
manifesting a compromise with the more recent grape-versus-grape values indi-
cates that the Solanaceae ancestor underwent a period of relatively rapid evolu-
tion.

We compiled the characteristics - p, σ, number (and overall proportion) of
pairs - for each component in each of the analyses in Figs. 3 and 4. Of those
in Fig. 3, only the results for the speciation (most recent) event are displayed
in Table 1. Figure 5 shows the relation between p and divergence time for the
speciation event pertinent to each pair of genomes, and their common earlier
WGD.

On the left of Fig. 5, the cluster of points around 120 My represents the gene
pairs generated by the γ tripling event pre-dating all core eudicots, too remote
in time to be distinguished from the speciation of the ancestor of grape and
the ancestor of the Solanaceae. Points near the centre represent the Solanaceae
tripling. Scattered points at more recent times indicate the speciation events
among the six Solanaceae species.

The trend line in the figure is p = 1.2e−0.09t, which fits well, although the
coefficient of the exponential is greater than expected (i.e., 1.0). The right of
Fig. 5 suggests that the standard deviation of the component normals are lin-
early related to their modes (and hence their means). The speciation data for
modal values unequivocally support the phylogeny in Fig. 2, e.g., as calculated
by neighbour joining (not shown).

4.4 Fractionation Rates

We calculated maximum likelihood estimates for u
(1)
2 , u

(2)
2 and u

(3)
2 , based on

component proportions like those in the bottom section of Table 1. Because there
are only two independent proportions per comparison, pertaining to t1, t2 and
t3, and an estimate of the number of unpaired genes (predicted by the model in
Eq. (8)), we could not also infer the u

(i)
3 , and simply assumed u

(1)
3 = (u(1)

2 )2

and u
(2)
3 = (u(2)

2 )2, on the premise that the small probability of two addi-
tional progeny surviving (beyond the one essential to avoid extinction) would be
approximately the product of their individual probabilities. These event-specific
and species-specific survival parameters u

(i)
j on the left of Table 2 are directly

estimable from the distribution statistics, and reveal much about the difference
between the event and the species pairs, but our ultimate interest is in fraction-
ation rates, which we denote ρ, and their consistency or variability. In general,

u(t) = e−ρt

ρ =
− ln u(t)

t
. (14)
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Table 1. Characteristics inferred for speciation event distributions.

Fig. 5. Left: Similarity of orthologs as a function of speciation time. Divergence times
taken from Fig. 3 in [13]. Right: Relation of standard deviation to component mean.

When we apply this rule to the survival rates in the table, using the time
intervals derived from [13], we derive the fractionation rates on the right of the
table. From the sections of Table 2 on survival we observe:

– the 15 estimates of survival between γ and the Solanaceae tripling are sys-
tematically much lower than the survival between the latter tripling and spe-
ciation, and after speciation.
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Table 2. Estimates of survival (left) and of fractionation rates (right).

– The early survival figures are quite variable; a major cause of this is the quality
of the genome sequencing, assembly and annotation, so that comparisons of
the draft genome sequence of eggplant, for example, apparently miss many of
the gene pairs generated by γ.

– The high rates of survival in the comparisons involving petunia or tobacco
over the time interval between the Solanaceae tripling and speciation clearly
reflect the shorter time interval before their respective speciation events.

– The speciation survival results reflect, as expected, phylogenetic relationships,
though imperfectly, due in part to sequence and annotation quality, and in
part due to the amplification of the number of pairs in the recent tobacco
WGD.

From the sections of Table 2 on fractionation rates we observe:

– A large reduction of variability (compared to survival) in the results for the
inter-tripling interval, due only to the logarithmic transform.

– A large, but not complete, reduction in the difference between the two periods
of fractionation, due to the normalization by the time span. This is compatible
with the idea that fractionation rates may be universally constrained to a
relatively narrow range of values.

– The high rates of post-speciation ortholog loss within Solanum, and the rel-
atively low rates for the comparisons involving petunia or tobacco, suggest
that the process initially proceeds more quickly than fractionation, or levels
off after a certain point, or both.
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5 Conclusions

We modeled the process of fractionation to account for the distribution of simi-
larities between paralog or ortholog gene pairs after a number of whole genome
doublings, triplings, etc., each followed by a period of duplicate gene loss. The
model is a discrete-time birth-and-death process, with synchronous birth across
the population and non-independent death probabilities constrained by two
biologically-motivated conditions: no lineage extinction and (metaphorical) sib-
ling rivalry, i.e, independence of “cousin” death.

The observations of gene pair similarities consist of a mixture of normals,
each component generated by one event, with the event time estimated by the
sequence divergence from the event to the present. Despite the overlapping dis-
tributions, we can estimate the mean (via a local mode), standard deviation and
proportion of the sample.

We then use these parameters to estimate survival probabilities for gene pairs
from one event to the next, according to the birth-and-death model. From the
survival data we can then estimate fractionation rates, the number of gene pairs
lost per unit time.

We apply our ideas to six genomes from the family Solanaceae and outlier
grape. The SynMap program on the CoGe platform produces the distribution
of similarities of syntenically validated paralogs and orthologs to feed into our
analysis. The 21 pairwise genome comparisons produce a highly consistent pic-
ture of the creation and loss of duplicate gene pairs. The survival probabilities
and fractionation rates are eminently interpretable in terms of phylogenetic con-
siderations.

Based on our methods and results, we can accurately characterize fractiona-
tion rates, something first attempted some years ago [17]. Indeed, we are now in
a position to question to what extent fractionation embodies clocklike behaviour.
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Abstract. Introgression is an important evolutionary mechanism in
insects and animals evolution. Current methods for detecting introgres-
sion rely on the analysis of phylogenetic incongruence, using either statis-
tical tests based on expected phylogenetic patterns in small phylogenies
or probabilistic modeling in a phylogenetic network context. Introgres-
sion leaves a phylogenetic signal similar to horizontal gene transfer, and it
has been suggested that its detection can also be approached through the
gene tree/species tree reconciliation framework, which accounts jointly
for other evolutionary mechanisms such as gene duplication and gene
loss. However so far the use of a reconciliation-based approach to detect
introgression has not been investigated in large datasets. In this work, we
apply this principle to a large dataset of Anopheles mosquito genomes.
Our reconciliation-based approach recovers the extensive introgression
that occurs in the gambiae complex, although with some variations com-
pared to previous reports. Our analysis also suggests a possible ancient
introgression event involving the ancestor of An. christyi.

1 Introduction

Introgression is the transfer of genetic material between sympatric species, a
donor and a receptor species, through hybridization between individuals of both
species. It is an important evolutionary mechanism, that plays a key role in
the evolution of eukaryotic genomes [15], especially toward the adaptation to a
changing environment, a phenomenon known as adaptive introgression (reviewed
in [16]). Among recent examples, the evolution of a group of African Anopheles
mosquitoes, known as the gambiae complex, is of interest. This species complex
includes most African vectors for the disease malaria, although not all species
of the complex are malaria vectors. In 2015, Fontaine et al. demonstrated that
there is extensive introgression within the gambiae complex, with possible impli-
cations related to the rapid acquisition of enhanced vectorial capacities [9]. The
extent of introgression within the gambia complex was later confirmed by another
c© Springer Nature Switzerland AG 2018
M. Blanchette and A. Ouangraoua (Eds.): RECOMB-CG 2018, LNBI 11183, pp. 163–178, 2018.
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work [29], using a different methodology, although the suggested introgression
events were not in full agreement with Fontaine et al. The present paper follows
this line of work, aiming at detecting traces of introgression within a larger group
of Anopheles mosquito genomes, covering African and Asian mosquitoes.

There exist several methods that have been designed specifically for detect-
ing footprints of introgression from genomic data, that can be classified into two
main groups: methods based on summary statistics and methods based on evo-
lutionary models. Among the first group, specific methods target the detection
of introgression between two closely related sister lineages, relying on popula-
tion genomics data for detecting haplotype blocks at a genetic distance lower
than the expected distance if no introgression was involved; we refer to [20] for
a recent discussion on these methods. When four species are considered, the
most common summary statistic method is the D statistics [7], also called the
ABBA BABA statistics. This method records, over several loci, the frequency
of evolutionary trees that are incongruent with a given species phylogeny, and
tests if the imbalance between the observed incongruent topologies is significant
against a null hypothesis assuming that phylogenetic incongruence is solely due
to Incomplete Lineage Sorting (ILS). There exist related methods that consider
other invariants [3] or extend it to handle more than four taxa [8,18], although
at a significant computational cost. A common feature of these methods is that
they aim at disentangling two evolutionary mechanisms that result in discor-
dant gene trees compared to a given species tree: ILS and introgression. Another
line of work is based on modeling introgression, that results from hybridization
events, using phylogenetic networks, with evolutionary models that account for
both ILS and hybridization. This model-based approach has been implemented
in combinatorial [11,31] and probabilistic frameworks [14,28,30,33]. We refer the
reader to [6] for a recent perspective on model-based approaches. These methods
are highly parameterized, and generally their computational complexity grows
exponentially with the number of reticulate edges considered in the phylogenetic
network, and they have mostly been used with data sets of relatively moderate
size so far, although recent pseudo-likelihood methods have shown promising
improvements in computation time [21,32].

An important drawback of the methods outlined above is that they rely on
the analysis of orthologous loci, thus disregarding gene duplication and gene loss.
While this can be a reasonable approach for small data sets, it does exclude many
gene families for larger data sets. Moreover, as observed in [17], introgression
through hybridization leaves a phylogenetic signal similar to Horizontal Gene
Transfer (HGT), although both are very different from a biological point of view.
HGT is an evolutionary mechanism that is well handled by several efficient gene
tree/species tree reconciliation algorithms [12,23–25] that scale well to large data
sets. This suggests that the framework of reconciling gene trees with a known
species tree could be used for detecting introgression without the need to filter
out paralogous genes.

In the present work, we explore this idea, and apply a reconciliation-based
method to detect signals of introgression in a large data set of 14 Anopheles
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genomes covering both African and Asian mosquitoes and including the gam-
biae complex. We use a combination of published methods to sample reconciled
gene trees in an evolutionary model accounting for gene duplication, gene loss
and HGT using almost the full complement of genes in our data set. In order to
disentangle ILS and introgression, we rely on the hypothesis that introgression
acts on larger genome segments, as discussed in [22], and we develop a statistical
test to detect genome segments with significantly more genes whose evolution
shows a signal of HGT than expected if such genes were located at random
along chromosomes. Our approach recovers a strong signal for several introgres-
sion events within the gambiae complex, confirming the extensive level of intro-
gression within this group of species, although with some differences related to
specific introgressed segments. We also find support for a potential ancient intro-
gression event involving the An. christyi lineage and the most common ancestor
of the clade of Asian Anopheles mosquitoes.

2 Data and Methods

2.1 Data

Our starting data are the full genome sequences of 14 Anopheles species:

– the gambiae complex composed of An. gambia (AGAMB), An. coluzzi -
(ACOLU), An. arabiensis (AARAB), An. quadriannulatus (AQUAD), An.
melas (AMELA), An. merus (AMERU);

– two outgroups to the gambiae complex, An. christyi (ACHRI, an African
mosquito) and An. epiroticus (AEPIR, an Asian mosquito);

– a clade of Asian mosquitoes, An. stephensi India (ASTEI), An. stephensi
sensu stricto (ASTES), An. maculatus (AMACU), An. culicifacies (ACULI),
An. minimus (AMINI), also including the African mosquito An. funestus
(AFUNE) related to Asian vectors [10]; from now we call this group the
Asian clade.

The species tree relating these species is given in Fig. 1; it is the so-called
X-phylogeny used in [1]. In our experiments, we consider this tree as undated,
i.e. with no given branch length. The branching pattern within the gambiae
complex, a highly debated question, follows [9,26].

The 14 genomes contain a single fully assembled genome, An. gambia, while
some others are assembled at the contig level; we refer the reader to [1] for a
precise discussion on the assembly of these genomes. The considered genomes
contain from 10, 000 to above 14, 000 genes, that have been clustered prior to
our study into homologous gene families using the OrthoDB algorithm [27] and
represent an improvement of the set of gene families used in [1]. Figure 2 below
illustrates the distribution of the number of genes per genome and the sizes of
the gene families.

An important observation is the large number of very small gene families,
likely due to errors in assembling genes or in clustering genes into homologous
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Fig. 1. Species tree of the 14 considered Anopheles species. Numbers on the internal
branches identify ancestral species.

Fig. 2. (Top) Distribution of the number of genes per species. (Bottom) Distribution
of the size (number of genes) of gene families.
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families, an expected issue with large-scale multi-species genomic data sets. For
each family, a multiple sequences alignment (MSA) of the coding sequences of
the genes belonging to the family was obtained using the method described in [1].

2.2 Methods

Our analysis of this data set contains three main steps. In a first step, we sample
reconciled gene trees for each homologous family, in a model including gene dupli-
cation, gene loss and HGT. Then we evaluate the consistency of these inferred
HGTs to verify that they do not contain a high level of noise. Last we rely on
robust HGTs to detect potential introgression events and we apply a statisti-
cal test of the co-clustering of the involved genes to detect genome segments
potentially involved in these introgression events.

Reconciled Genes Trees. For each gene family, we ran MrBayes, a software pack-
age for Bayesian phylogenetics inference [19], using the family MSA as input and
computing two independent MCMC (Markov-Chain Monte-Carlo) chains per
family. MrBayes was run using the General Time Reversible model of sequence
evolution with a proportion of invariable sites and a Γ -shaped distribution of
rates across sites. The MCMC ran for 10, 000, 000 generations and both chains
started from different random trees. Since the average standard deviation of split
frequencies (ASDSF) approaching 0 indicates convergence [13,19], we used 0.01
as the threshold of this statistic to determine if the MCMC chain has converged
or not. The ASDSF was examined every 5, 000 iterations, and, after convergence,
tree samples were saved every 500 MCMC iterations, leading to a maximum of
20, 000 sampled gene trees. Families for which at least one chain generated less
than 5, 000 samples were discarded from further analysis. We refer to these sam-
pled trees as the MrBayes trees, with two sets of MrBayes trees being generated
for each gene family.

Next, for each selected family, the MrBayes trees were provided as input to
ALE [24], a method for the exploration of the space of reconciled gene trees,
accounting for gene duplication, gene loss and HGT1. Reconciled gene trees are
gene trees augmented with a mapping of each internal node to a species of the
species tree (extant or ancestral) and an annotation of the node as either a
speciation or a duplication or a HGT; in the latter case the receptor species of
the HGT is also indicated. Given a set of MrBayes trees, ALE extracts the clades
observed in these trees and their frequencies, and explores the space of reconciled
gene trees that can be assembled from these clades (a process called gene tree
amalgamation) while maximizing the likelihood of observing the reconciled gene
tree. The result is a maximum likelihood amalgamated reconciled gene tree;
moreover, when used with its Bayesian MCMC mode, ALE determines the rates
of gene duplication, loss and HGT and can sample reconciled gene trees.

1 As mentioned previously, introgression and HGT are different evolutionary mecha-
nisms; however, for expository reasons, we refer to the transfer of genetic material
between two Anopheles species as an HGT.
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For each homologous gene family, ALE was run independently on the two
sets of MrBayes trees resulting of the two MrBayes MCMC chains, using its
Bayesian MCMC mode. For each run, an amalgamated reconciled gene tree was
computed, together with a sample of 1, 000 reconciled gene trees, sampled every
100 iterations of the MCMC chain. We call these two sets of sampled reconciled
gene trees the ALE trees. Gene families for which the two amalgamated rec-
onciled gene trees were not identical were excluded from further analysis. For a
given family, the frequency of an HGT, defined by a donor species d and a recep-
tor species r and denoted by the ordered pair (d, r), is obtained by averaging,
over the two independent runs of ALE, the frequency of observing this HGT in
the ALE trees; note that d and r can both be either an extant or an ancestral
species. The final output of this step is a list of quadruples (donor d, receptor
r, family g, frequency f): each such quadruple records that, for the given family
g, an HGT from species d to species r was observed in the sampled reconciled
gene trees with frequency f . In the rest of this work, we analyze the observed
HGT to detect traces of introgression.

Consistency of HGTs. It is well known that the accurate detection of HGT is
challenging, especially when using an undated species tree. It is then important
to evaluate the noise due to likely erroneous HGTs. To do so, we rely on the
recent method MaxTiC [5]. MaxTiC aims at ranking the internal nodes of a
species tree provided with weighted ranking constraints derived from a set of
HGTs, in order to maximize the total weight of the satisfied constraints. In our
case, constraints are obtained from HGTs as described in [5]: a given HGT from
a donor species d to a receptor species r defines a ranking constrain that the
ancestor a of d should be older than r. Note that, by definition, an HGT whose
donor is an extant species does not create a constraint that can conflict with a
ranking of the internal nodes; as a consequence, we excluded such constraints
from the input of MaxTiC. The weight of a ranking constraint is the sum of
the frequencies of the HGTs defining it that are observed across all selected
gene families. We applied MaxTiC with inputs composed of ranking constraints
derived from several sets of HGTs, obtained by filtering out inferred HGTs whose
frequency is below a threshold t, ranging from 0.20 to 0.95 by steps of 0.05.

The result of MaxTiC, for a given value of the threshold t, is composed of
two sets of ranking constraints, the constraints consistent with the computed
ranking of the internal nodes of the species tree, and the constraints in conflict
with this ranking. We define the consistency ratio as the ratio between the weight
of the consistent constraints divided by the weight of all considered constraints
at frequency threshold t. Intuitively, a high consistency ratio points at a low
proportion of erroneous HGTs.

Detecting Potentially Introgressed Segments. Gene duplication and HGT are
two mechanisms that can cause incongruence between a gene tree and a species
tree, that are accounted for in ALE. However, ILS is a third common cause of
phylogenetic incongruence, that is not considered in the ALE model. A crucial
question toward detecting introgression is to distinguish inferred HGTs likely
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due to introgression to HGTs that could be due to ILS. To do so we rely on
the hypothesis that, unlike ILS, introgression is more likely to impact blocks of
contiguous genes [22]. Based on this hypothesis, for a given pair of species (d, r),
we aim at detecting genome regions where the concentration of genes belong-
ing to families whose evolutionary history as given by sampled reconciled trees
involves HGT from d to r is significantly higher compared to a null hypothesis
that such families are scattered randomly along chromosomes. As An. gambia
is the only fully assembled genome in our data set, we perform all tests using
An. gambia chromosomes; we discuss the impact of this approximation in the
Discussion section.

We designed our analysis as follows. Consider an An. gambiae genome seg-
ment (called window from now) containing n genes. Let p denote the probabil-
ity of observing, within a given window, a gene from a family whose evolution
involves a (d, r) HGT, and p0 be the average of the (d, r) HGT frequencies for all
the genes on the whole genome, where HGTs are the ones inferred from the ALE
results. A statistical hypothesis testing is conducted to test the null hypothe-
sis, p = p0, versus the alternative hypothesis, p > p0. Note that prior to this
test, tandem arrays, i.e. segments of consecutive genes from the same family,
were reduced to a single gene. Let Xi be the number of observed HGTs from d
to r in the s ALE sampled reconciled gene trees for the i-th gene in the win-
dow, where i = 1, . . . , n. We assume the distribution of Xi to be Binomial(s, p).
An unbiased estimator for p is p̂ =

∑n
i=1 Xi

sn . Under the assumption that Xi’s
are independent for simplicity, we have var(p̂) = p(1−p)

sn . Consequently, the test
statistics Z = p̂−p0√

p0(1−p0)/(sn)
is approximately distributed as a standard Normal

distribution. Let z be the observed value of Z given the ALE results. The p-value
of the hypothesis testing can then be obtained by computing P (Z ≥ z).

For the multiple tests over all the windows on each chromosome, we used the
Benjamini-Yekutieli (BY) [2] method to control the False Discovery Rate (FDR)
in a multiple testing setting with dependencies between the tests, which is the
case in our experiment as adjacent windows are not independent.

The result of this analysis is a list of windows for which we detected a signif-
icantly higher density of genes supporting an HGT from d to r, under an FDR
of 1%; we selected a window size of n = 20 genes, although results were similar
with n = 10 or n = 30.

3 Results

Reconciled Gene Trees. After running MrBayes and ALE, and filtering out gene
families for which both MrBayes chains did not generate at least 5, 000 sampled
gene trees and gene families for which the two amalgamated gene trees generated
by ALE were not identical, there are 11, 589 gene families containing a total
of 137, 180 genes left, with each species “losing” roughly 2, 000 genes. Figure 3
illustrates the impact of this filtering on homologous families sizes.

Comparing with Fig. 2, we observe a significant decrease in the number of
gene families with 12 or more genes, indicating that many of these families do
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Fig. 3. Distribution of the number of genes per homologous family after filtering out
families for consistency of the two runs of the MrBayes+ALE pipeline.

not generate consistent amalgamated gene trees under our relatively stringent
filtering criteria. We can also observe that the majority of the gene families
passing our filtering step are not composed of one-to-one orthologous genes,
motivating an approach based on an evolutionary model accounting for gene
duplication and gene loss.

Horizontal Gene Transfers. Next we consider the inferred HGTs that can sug-
gest potential introgression events. After filtering out, for each gene family, all
HGT that do not appear in at least 20% of both sets of ALE trees, the total
number of conserved HGTs is 16, 210, leading to an average number of inferred
HGT per gene family slightly above 1. Figure 4 shows that low-frequency HGTs
dominate the landscape, although there are 4, 771 (resp. 1, 778) HGTs observed
with frequency at least 50% (resp. 80%).

Next, the MaxTiC results suggest that the inferred HGTs do not show an
apparent high level of noise, measured in terms of conflicting HGTs. The con-
sistency ratio increases steadily from 0.908 at t = 0.2 to 0.938 at t = 0.5 and
0.973 at t = 0.8, indicating a low level of conflict among HGTs with frequency
at least 0.2. The most interesting finding is that, at threshold t = 0.7, only
two constraints with a significant weight are discarded, constraints (18, 15) and
(14, 15) – where (x, y) means that node x should be ranked before node y –
while the reversed constraints (15, 18) and (15, 14) are among the conserved con-
straints, although with a weight an order of magnitude higher. The constraints
(15, 14) and (14, 15) originate respectively from HGTs from An. arabiensis and
An. quadriannulatus to ancestral species 15 and from An. gambia and An. coluzzi
to ancestral species 14. This observed time inconsistent HGTs between these two
groups of species is discussed in Sect. 4.

Potential Introgression Events. In order to classify inferred HGTs as potential
introgression events from a donor species d to a receptor species r, we used
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Fig. 4. Distribution of the frequency of observed HGTs appearing with frequency at
least 20% in ALE trees.

the following stringent criteria: the HGT must be observed in at least 50 gene
families, at frequency at least 50%, with an accumulated frequency over all such
gene families at least 50. These criteria are based on the results of the MaxTiC
analysis. Figure 5 shows the potential introgression events detected using these
criteria.

Fig. 5. Potential introgression events based on sets of at least 50 inferred HGTs of
frequency 0.5 or above and accumulated frequency at least 50.

As expected, most potential introgression events are recent and concern the
gambiae complex, in agreement with the extensive amount of introgression seen
in this group [9]; in particular, we retrieve the major introgression from An.
arabiensis to the common ancestor of An. gambiae and An. coluzzi (ancestral
species 15) that was found in [9,29]. We can also observe that almost all poten-
tial introgression between the two groups of An. gambia, An. coluzzi and their
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common ancestor on one side and An. arabiensis, An. quadriannulatus and
species 14 on the other side seem to be bidirectional, although at various levels
of support. The only other potential event within the gambiae complex found
by our analysis is the event (A. quadriannulatus,An. merus), agreeing with the
direction proposed in [29] as opposed to [9], although with a limited support.

As mentioned above, we do not find a strong support for any introgression
between species of the Asian clade. In order to find such an event, one needs to
relax significantly our criteria by considering HGTs observed with frequency as
low as 20%; the only event found is then from An. maculatus to An. culicifaces.

However, the most striking observation is the hypothesis of a potential intro-
gression event from the lineage of An. christyi to ancestral species 24, the last
common ancestor of the Asian clade. To the best of our knowledge, such an
ancient, potential, introgression event has not been discussed in the literature
so far. This potential introgression is supported by 195 HGTs with an average
frequency of 0.65, comparable to likely introgression events, such as the one
from An. quadriannulatus to An. gambia (193 HGT, average frequency 0.70),
discussed in [29].

In order to assess further the level of support for these various potential
introgression events, we considered, for each such event, the taxon coverage of
the gene families whose evolution involves an HGT supporting the event. The
rationale is that for HGTs supported by gene families with low taxon coverage,
the identification of the donor and receptor species could lack precision. Overall,
we find that all potential introgression events are supported by gene families
covering a large number of species, from an average of 12.51 for (An. arabiensis,
An. gambiae) to 13.89 for (An. christyi, species 24). The same analysis repeated
after lowering the HGT frequency threshold to 0.2 lead to similar results, with a
slight decrease of the average taxon coverage by gene families; in this context the
event from An. maculatus to An. culicifaces is supported by families covering
on average 6.12 species, thus lowering further its support and confirming the
absence of signal for introgression events within the Asian clade.

Spatial Distribution of Gene Families Involved in HGTs. Our analysis of the
clustering of gene families involved in HGTs along the chromosomes of An. gam-
bia showed that for all the potential introgression events shown on Fig. 5, some
genome regions contain significant clusters of gene families supporting the event.
We provide all the corresponding chromoplots images at https://github.com/
cchauve/Anopheles introgression RECOMBCG 2018 and discuss below some
interesting observations.

First, considering the three events with An. arabiensis as donor species and
the chromosome arm 2L, one of the 4 autosomal arms of all Anopheles species,
the pattern of potentially introgressed genes is very different, as shown in Fig. 6.
It is interesting to observe that there seems to be close to no introgression signal
toward An. gambia on this arm, while the introgression to An. coluzzi is centered
around the region of the so-called 2La polymorphic inversion. A similar pattern
showing very specific regions of the X chromosome being introgressed can be
observed, illustrated on Fig. 7.

https://github.com/cchauve/Anopheles_introgression_RECOMBCG_2018
https://github.com/cchauve/Anopheles_introgression_RECOMBCG_2018
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Fig. 6. Chromoplots for chromosome arms 2L and 3L for introgression from An. arabi-
ensis to species 15 (Top), An. gambia (Middle) and An. coluzzi (Bottom). Blue vertical
bars indicate genes with their HGT frequency, the red dotted line the FDR of 1% and
green dots the BY corrected p-value. (Color figure online)

Fig. 7. Similar to Fig. 6 for chromosome X

Within the gambiae complex, we retrieve patterns observed in other works.
We see for example that the introgression from An. quadriannulatus to An.
gambia involves mostly the 2La inversion again, as was discussed in [29]. We can
also see that the signal for an introgression event from An. quadriannulatus to
An. merus involves limited regions of chromosomal arms 3R and 3L.

Last, looking at the chromoplots obtained from the HGTs observed between
the lineage of An. christyi and species 24 (Fig. 8), we can see a level of support
similar to the potential events located within the gambiae complex, although
with a much stronger signal for introgression located on the X chromosome.
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Fig. 8. Chromoplots for the potential introgression event from An. christyi to species
24.

4 Discussion

Our work builds upon the fact that reconciling gene trees with a given species
tree, in an evolutionary model that accounts for HGTs, offers a natural frame-
work to detect traces of introgression events. This approach benefits from the
recent development of reconciliation algorithms that sample reconciled gene trees
in evolutionary models accounting for HGT, both using parsimony [12] and prob-
abilistic [24,25] methods.

Using established phylogenetic and phylogenomics methods and stringent
filtering criteria, this approach recovers the well accepted extensive introgres-
sion within the gambiae complex and leads to the hypothesis of an ancient
introgression event from the lineage of An. christyi to the common ancestor of
Asian Anopheles mosquitoes, involving predominantly the X chromosome. This
hypothesis is interesting as the phylogenetic placement of An. christyi was ques-
tioned in [3] – that uses the same species tree as in the present work – where it was
suggested that the significant level of phylogenetic incongruence is indeed due
to biological causes (ILS or hybridization); nevertheless, the branching pattern
of the gambiae complex, the Asian mosquitoes, An. christyi and An. epiroticus,
deserves further investigation related to ILS and introgression.

Compared to methods based on summary statistics of gene trees, such as
the D-statistics, the approach we suggest has several advantages, that are well
illustrated by our work. First, the reconciliation framework can handle gene
families with gene duplication and gene loss events. Therefore, we can use almost
the full complement of genes in larger data sets, unlike methods based on the
analysis of one-to-one orthologous loci. Moreover, for all considered gene families,
evolutionary trees are computed using a more comprehensive evolutionary model
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that actually accounts for hybridization events; this contrasts with summary
statistics methods that rely on the analysis of gene or loci trees computed without
accounting for such evolutionary events. Finally, sampling reconciled gene trees
is important toward providing a more nuanced view of evolutionary processes at
play within a group of species; the impact of filtering out HGTs sampled with
low frequency in our work illustrates this important feature of our approach.
Finally, summary statistics methods are limited to data sets with few species,
that are in general assumed to be closely related, unlike our approach, a feature
which is a crucial toward raising the hypothesis of an ancient introgression along
the lineage of An. christyi.

Despite the promising results we obtain on a well studied data set, the idea
of using a reconciliation-based approach for detecting footprints of introgression
requires to be evaluated very carefully. Indeed, our work can certainly not be
considered sufficient to claim that HGTs inferred from reconciliations can cap-
ture accurately introgression events. Such an evaluation would require to assess
its accuracy on simulated datasets, especially toward measuring the impact of
using homologous gene families instead of orthologous gene families. The impact
of errors in gene families, gene trees and the considered species tree, among
other factors, should also be assessed in these simulations. It would also allow to
evaluate different reconciliation algorithms, including recently developed algo-
rithms that account for ILS [4,23]. Regarding these two algorithms, it would
be interesting to see if they could be extended to sample reconciled gene trees;
also, both consider a parsimony framework and the ability of ALE to sample
reconciled gene trees in a probabilistic framework was key in our decision to use
it for our study.

Regarding the question of the species tree, it is very natural to argue that,
given the level of introgression observed in the gambiae complex for example,
an approach based on a starting species tree is questionable and phylogenetic
networks could provide a better principled framework. However, current phylo-
genetic networks methods do not scale well to the number of species we con-
sider in this work and the number of potential introgression events. Moreover,
to maintain a reasonable computational complexity, they often require either
prior potential reticulate edges or an upper bound on the number of reticula-
tions to be given. It would be interesting to test more efficient pseudo-likelihood
methods [21,32] and methods jointly computing a species networks and gene
trees [28,33]. We nevertheless believe that an interesting feature of our app-
roach is the ability to propose introgression events, that could be tested in a
network framework. Last, the consistency analysis using MaxTiC also suggests
that current models of phylogenetic networks might need further developments to
account for extensive bidirectional and repeated hybridizations events that take
place within a short amount of time, as is the case in the gambiae complex. For
example, considering the significant level of introgression observed between the
clades of An. arabiensis and An. quadriannulatus of An. gambia and An. coluzzi
suggests that the speciations leading to these four species could have taken place
over an extended period of time – which conflicts with the MaxTiC principle of
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ranking speciation events – during which extensive bidirectional introgression
occurred.

The main issue with our approach concerns disentangling introgression from
ILS. We followed an indirect approach based on synteny. This approach is further
weakened by the fact that we use only the chromosomes of An. gambia for all
potential introgression events, as it is the only fully assembled genome. This
is especially questionable for the potential introgression involving An. christyi ;
but in this precise case, within the clade of Asian mosquitoes the best available
assembled genome is An. minimus, which is fragmented in around one hundred
scaffolds [1], which likely reduces its effectiveness as a support for a synteny
analysis. Our synteny-based approach would then naturally benefit from better
assembled genomes, including ancestral genomes [1].

Along the lines of making the most out of the reconciliation framework, the
ability to model missing species, either because they are extinct or unsampled
(called ghost species), is an intriguing avenue; the hypothesis that an ancient
introgression event along the lineage of An. christyi would involve a ghost species
is reasonable we believe. Two reconciliation methods, ALE and ecceTERA [12]
can handle ghost species, although they require a dated species tree; this is
another interesting future avenue to explore.

To conclude, we believe that our work demonstrates that a reconciliation-
based approach to study introgression in larger data sets is worth exploring
and several interesting methodological questions require further work such as
integrating better ILS, networks and unresolved species phylogenies. From an
applied point of view, the hypothesis of an introgression event between An.
christyi and the Asian mosquitoes clade is an interesting case to study further.
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25. Szöllosi, G.J., Dav́ın, A.A., Tannier, E., Daubin, V., Boussau, B.: Genome-scale
phylogenetic analysis finds extensive gene transfer among fungi. Philos. Trans.
Royal Soc. B Biol. Sci. 370(1678), 20140335 (2015)

26. Wang, Y., Zhou, X., Yang, D., Rokas, A.: A genome-scale investigation of incon-
gruence in culicidae mosquitoes. Genome Biol. Evol. 7(12), 3463–3471 (2015)

27. Waterhouse, R.M., Tegenfeldt, F., Li, J.: OrthoDB: a hierarchical catalog of animal,
fungal and bacterial orthologs. Nucleic Acids Res. 41(D1), D358–D365 (2012)

28. Wen, D., Nakhleh, L.: Coestimating reticulate phylogenies and gene trees from
multilocus sequence data. Syst. Biol. 67(3), 439–457 (2018)

29. Wen, D., Yu, Y., Hahn, M.W., Nakhleh, L.: Reticulate evolutionary history and
extensive introgression in mosquito species revealed by phylogenetic network anal-
ysis. Mol. Ecol. 25(11), 2361–2372 (2016)

30. Wen, D., Yu, Y., Zhu, J., Nakhleh, L.: Inferring phylogenetic networks using Phy-
loNet. Syst. Biol. 67(4), 35–40 (2018)

31. Yu, Y., Barnett, R.M., Nakhleh, L.: Parsimonious inference of hybridization in the
presence of incomplete lineage sorting. Syst. Biol. 62(5), 738–751 (2013)

32. Yu, Y., Nakhleh, L.: A maximum pseudo-likelihood approach for phylogenetic net-
works. BMC Genomics 16(10), S10 (2015)

33. Zhang, C., Ogilvie, H.A., Drummond, A.J., Stadler, T.: Bayesian inference of
species networks from multilocus sequence data. Mol. Biol. Evol. 35(2), 504–517
(2018)



Reconstructing the History of Syntenies
Through Super-Reconciliation
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Abstract. Classical gene and species tree reconciliation, used to infer
the history of gene gain and loss explaining the evolution of gene families,
assumes an independent evolution for each family. While this assump-
tion is reasonable for genes that are far apart in the genome, it is
clearly not suited for genes grouped in syntenic blocks, which are more
plausibly the result of a concerted evolution. Here, we introduce the
Super-Reconciliation model, that extends the traditional Duplication-
Loss model to the reconciliation of a set of trees, accounting for segmen-
tal duplications and losses. From a complexity point of view, we show
that the associated decision problem is NP-hard. We then give an exact
exponential-time algorithm for this problem, assess its time efficiency on
simulated datasets, and give a proof of concept on the opioid receptor
genes.

Keywords: Gene tree · Reconciliation · Duplication · Loss · Synteny

1 Introduction

Gene gain and loss is known as a major force driving evolution. Assuming the
gene and species trees are known and correspond to the true evolution, incon-
gruence between the two trees can be explained by gene gain and loss events,
and “reconciling” the two trees allows recovering these events.

Tree reconciliation can be performed through different biological models of
evolution, the most common being the Duplication-Loss (DL) [15,32,33] or
Duplication-Loss and Transfer [5,10,30] models. While most reconciliation meth-
ods are based on the parsimony principle of minimizing the number or cost of
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operations, probabilistic models seeking for a reconciliation with maximum like-
lihood or maximum posterior probability have also been developed [4,26,29].

Regardless of the model, current algorithms for reconciliation take each gene
family individually, assuming an independent evolution through single duplica-
tions and losses. Although this hypothesis holds for genes that are far apart in
the genome, it is clearly too restrictive for those organized in syntenic blocks or
paralogons, i.e. sets of homologous chromosomal regions, among one or many
genomes, sharing the same genes (e.g. neuropeptide Y-family receptors [21], the
Homeobox gene clusters [1,13,14], the FGFR fibroblast growth factor recep-
tors [3,16] or the genes of the opioid system [11,27,28]). These genes are more
plausibly the result of an evolution from a common ancestral region, rather than
from a set of independent gene duplications that would have converged to the
same organization in different genomic regions.

The purpose of this paper is to generalize the DL reconciliation model from a
unique gene tree to a set of gene trees, accounting for segmental duplications and
losses. As far as we know, this problem has never been considered before. The
closest algorithms are DeCo [6] and DeCoStar [31] which, given a set of gene
families, a set of adjacencies between genes, a set of gene trees and a species
tree, compute an adjacency forest reflecting the evolution of each adjacency.
However, adjacencies are taken independently, and only single duplications and
losses are considered. A correction strategy that adjusts the computation of
the evolutionary cost to favour co-evolution events, hence grouping seemingly
individual events into single segmental ones was latter proposed in [12]. Another
related problem asks for the reconciliation of a set of gene trees leading to a
minimum number of duplication episodes, referring to possible whole genome
duplication events, defined as sets of single duplications mapped to the same
node in the species tree [9,23]. However the considered model does not account
for gene orders and duplications involving a set of neighboring genes.

Here, we consider the Super-Reconciliation problem in which, given a set of
gene families, a set of syntenies, a gene tree for each gene family and a species
tree, we seek an evolutionary history of the set of syntenies that is in agree-
ment with the individual gene trees whilst minimizing the number of segmental
duplications and losses. Our proposed model is a direct generalization of the
reconciliation of a single gene tree. As such, it ignores tandem duplications,
rearrangements and assumes that the input set of gene trees is consistent.

After defining the new Super-Reconciliation model in the next section,
we begin, in Sect. 3, by characterizing the conditions under which a Super-
Reconciliation exists for a set of syntenies and a set of gene trees. We prove,
in Sect. 4, that the associated decision problem is NP-hard and gave a dynamic
programming algorithm in Sect. 5. An application on simulated datasets and a
proof of concept on the genes of the opioid system are then presented in Sect. 6.
We conclude with a discussion on future work in Sect. 7.
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2 Trees, Reconciliation and Problem Statement

A string or a sequence is an ordered set of characters. Given a string X =
x1 · · · xn, a substring of X is a consecutive set of characters from X in the same
order as in X, and a subsequence is a set of characters of X in the same order,
but not necessarily consecutive in X (X is a substring and a subsequence of X).

All trees are considered rooted. Given a tree T , we denote by r(T ) its root,
by V (T ) its set of nodes and by L(T ) ⊂ V (T ) its leafset. We say that T is a
tree for L = L(T ). A node v is an ancestor of v′ if v is on the path from r(T ) to
v′; v is the father of v′ if it directly precedes v′ on this path. In this latter case,
v′ is called the child of v. We denote by E(T ) the set of edges of T , where an
edge is represented by its two terminal nodes (v, v′), with v being the father of
v′. Two nodes v and v′ are separated in T iff neither one is an ancestor of the
other. A node is said to be unary if it has a single child and binary if it has two
children. Given a node v of T , the subtree of T rooted at v is denoted T [v].

A binary tree is a tree with all internal (i.e. non-leaf) nodes being binary. If
internal nodes have one or two children, then the tree is said partially binary .

Creating a unary root consists in creating a new node v, a new edge (v, r(T ))
and assigning v as the new root of T . Grafting a leaf w consists of subdividing an
edge (v, v′) of T , thereby creating a new node v′′ between v and v′, then adding
a leaf w with parent v′′. If W is a rooted tree, grafting W to T corresponds to
grafting a leaf w, then replacing w by the root of W .

The lowest common ancestor (LCA) in T of a subset L′ of L(T ), denoted
lcaT (L′), is the ancestor common to all nodes in L′ that is the most distant from
the root. The restriction T |L′ of T to L′ is the tree with leafset L′ obtained from
the subtree of T rooted at lcaT (L′) by removing all leaves that are not in L′ and
all unary nodes. Let T ′ be a tree such that L(T ′) = L′ ⊆ L(T ). We say that T
displays T ′ iff T |L′ is label-isomorphic to T ′ (i.e., isomorphic with preservation
of leaf labels). We also say that T is an extension of T ′.

Species, Gene and Synteny Trees: (See Fig. 1) The species tree S for a set Σ of
species represents an ordered set of speciation events that have led to Σ.

A gene family is a set Γ of genes where each gene g belongs to a given species
s(g) of Σ. If Γ ′ ⊆ Γ is a subset of genes, we denote s(Γ ′) = {s(g) : g ∈ Γ ′}.

A synteny is an ordered sequence of genes. We consider that genes of a
synteny all belong to different gene families (tandem duplications are ignored).
More precisely, let F = {Γ1, Γ2, ..., Γt} be a set of gene families, and λF =
{(g, Γ ) : g ∈ Γ ∧ Γ ∈ F} be a function. We say that an ordered sequence of
genes X = g1g2...gk is a synteny on F iff λF is well-defined for all genes of X,
λF is injective, and all genes in X belong to the same species. If X is a synteny,
then s(X) simply denotes the genome containing X.

A synteny family is a set X of syntenies. We say that a set F of gene families
are organized into a set X of syntenies iff there is a bijection between the genes
of F and the genes in X (each gene of F belongs to exactly one synteny of X ).

A tree T is a gene tree for a gene family Γ (respec. a synteny tree for a
synteny family X ) if its leafset is in bijection with Γ (respec. X ).
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Fig. 1. (i) Two genomes A and B; three gene families (red, green and blue) grouped
into two syntenies A1, A2 in A and two syntenies B1, B2 in B. (ii) Ignoring node labels
and dotted lines, T , T ′ and T ′′ are the corresponding gene trees and T̃ , T̃ ′ and T̃ ′′

are the corresponding synteny trees. The reconciled gene trees R, R′ and R′′ are the
same trees but including node labels and dotted lines. Nodes identified by circles are
speciations, those represented by rectangles are duplications, and dotted lines represent
lost branches. (iii) The reconciled trees embedded in the species tree S. (iv) A Super-
Reconciliation R, representing a more realistic evolutionary history from a common
ancestral synteny. Each ancestral node is identified by the synteny, the event and the
segment of the synteny affected by the event. Square nodes represent Dup events, round
nodes Spe events, brackets pLoss events and dotted lines fLoss (see text). (Color figure
online)

Given a gene tree T , the corresponding synteny tree is the tree T̃ obtained
from T by replacing each leaf of T by the synteny containing the considered
genes.

Given a tree T (either gene tree or synteny tree), we extend the mapping s
to internal nodes v of T by defining s(v) = lcaS({s(l) : l ∈ L(T [v])}).

An evolutionary history is represented by a labeled tree, where the label of a
node is its corresponding event. In the case of gene families, an event is entirely
determined by its type, either a duplication, a speciation or a loss. The labels of
a gene tree are obtained through reconciliation, as described below.

2.1 Reconciliation

Definition 1 (Reconciled gene tree). Let T be a binary gene tree and S be
a binary species tree. A DL reconciliation (or simply reconciliation) R(T, S) of
T with S is a labeled extension of T obtained by grafting new leaves satisfying:
for each internal node v of R(T, S) with two children vl and vr, either s(vl) =
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s(vr) = s(v), or s(vl) and s(vr) are the two children of s(v). The node v is
a duplication in s(v) in the former case and a speciation in the latter case. A
grafted leaf on a newly created node v corresponds to a loss in s(v). All other
leaves are labeled by the default event “extant”.

The cost of a reconciliation R(T, S) is the number of induced duplications
and losses.

Given a gene tree T and a species tree S, a minimum reconciliation, i.e.
a reconciliation of minimum cost, is obtained from the LCA-mapping which
consists in setting s(v) = lcaS(s(L(T [v]))) for each v ∈ V (T ), and labeling each
internal node v of T as a speciation if and only if s(vl) and s(vr) are separated
in S, and as a duplication otherwise. Observe that in any case, if s(vl) and s(vr)
are not separated, then it is impossible for v to be a speciation. We denote by
LCA-reconciliation the reconciliation labeled by means of the LCA-mapping.

Before extending the reconciliation concept to a set of gene trees, we need to
specify an evolutionary model for syntenies. In this paper, syntenies are consid-
ered to have evolved from a single ancestral synteny through speciation (defined
as for single genes), segmental duplication and segmental loss, where:

– a speciation Spe(X, [1, l]) acting on a synteny X = g1 · · · gl belonging to a
genome s(X) has the effect of reproducing X in the two genomes sl and sr

children of s(X) in S.
– a (segmental) duplication Dup(X, [i, j]) acting on a synteny X belonging to

a genome s(X) is an operation that copies a substring gi · · · gj of size j − i+1
of X = g1g2 · · · gi · · · gj · · · gl somewhere else into the genome s(X), creating
a new copied synteny X ′ = g′

i · · · g′
j where each g′

k, for i ≤ k ≤ j belongs to
the same gene family as gk;

– a (segmental) loss Loss(X, [i, j]) acting on a synteny X = g1 · · · gi · · · gj · · · gl

is an operation that removes a substring gi · · · gj of size j − i+1 of X, leading
to the truncated synteny X ′ = g1 · · · gi−1gj+1 · · · gl. A loss is called full if X ′

is the empty string (i.e. all genes of X are removed) and partial otherwise.
We may denote full loss events as fLoss and partial loss events as pLoss.

An evolutionary history of a set of syntenies can thus be represented as
a partially binary tree where leaves correspond to extant syntenies and lost
syntenies (resulting from full losses), and each internal node v corresponds to an
event E(X, [i, j]) with E ∈ {Spe,Dup, pLoss} (and leaves correspond to either
extant genes or fLoss events). Thus, in contrast to a single gene family, a tree
representing the evolution of a set of syntenies is not only labeled by the type
of event corresponding to each internal node, but also by the segment of the
synteny affected by the event (see the bottom-right tree in Fig. 1). If E is:

1. Spe, then v is a binary node with two children corresponding to syntenies Y
and Z such that X = Y = Z and s(Y ) and s(Z) being the two children of
s(X) in S.

2. Dup, then v is a binary node with two children corresponding to syntenies X
and X ′ = X[i, j], where s(X) = s(X ′).
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3. pLoss, then v is a unary node with a child corresponding to the truncated
synteny X ′ = X[1, i − 1]X[j + 1, l], and s(X) = s(X ′).

The topology of a tree representing the evolution of a set of syntenies differs
from that of a single gene family since the former may contain unary nodes,
resulting from partial losses, while the latter only contains binary nodes.

Our goal is to infer an evolutionary history of a set of syntenies which is a
reconciliation of a set of individual gene trees, formally defined below.

Definition 2 (Super-Reconciliation). Let G = {T1, T2, · · · , Tn} be a set of
binary gene trees for the gene families F = {Γ1, Γ2, · · · , Γt} organized into a set
X of syntenies belonging to a set Σ of taxa, and let S be a binary species tree
for Σ. For each i, 1 ≤ i ≤ n, let T̃i be the synteny tree corresponding to Ti.

A Super-Reconciliation R(G, S) of G with S is a labeled synteny tree which
is an extension of the trees T̃i, for 1 ≤ i ≤ n, representing a valid history for X .

The cost of a Super-Reconciliation R(G, S) is the number of induced Dup,
fLoss and pLoss events.

For example, the cost of the Super-Reconciliation in Fig. 1 is 6. Notice that,
although this cost is higher than that obtained by considering each gene family
independently (cost of 3), the induced history is much more realistic as it is
unlikely that independent gene duplications would have led to the same gene
organization in different genomic regions.

We are now ready to state the optimization problem considered in this paper.

Super-Reconciliation problem:
Input: A set Σ of species and a species tree S for Σ; a set of gene families
F = {Γ1, Γ2, · · · , Γt} organized into a set of syntenies X ; a set of gene trees
G = {T1, T2 · · · , Tt} one for each family of F .
Output: A Super-Reconciliation R(G, S) of minimum cost.

3 Existence Conditions

As a synteny is represented by a gene order and can only be modified through
losses (duplications create new syntenies but do not modify existing syntenies),
an evolutionary history does not always exist for a set of syntenies X , regard-
less of the trees linking them. If this holds, the syntenies are said to be order
consistent . Due to space constraints, we leave the details on order consistency
constraints in the supplementary material.

In addition, in contrast to the reconciliation of a single gene tree which always
exists, this is not the case for a Super-Reconciliation as different gene trees may
exhibit inconsistent speciation histories for the same syntenies. A set of trees on
subsets of X is said consistent iff, for any triplet Trp = {X1,X2,X3} of disjoint
elements of X , all trees containing Trp as a sub-leafset exhibit the same topology
for Trp.
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Lemma 1 (Tree consistency condition). Let G = {T1, T2, · · · , Tt} be a set
of gene trees for a set of gene families organized into a set X of syntenies, and
let S be the species tree. If a Super-Reconciliation R(G, S) exists, then the set of
corresponding synteny trees {T̃1, T̃2, · · · T̃t} is consistent.

Proof. By definition, a Super-Reconciliation R(G, S) displays T̃i, for all 1 ≤ i ≤ t,
as R(G, S) is an extension of each tree. Thus, for any triplet Trp = {X1,X2,X3}
of X , if T̃i and T̃j contain the triplet Trp as a sub-leafset, then R(G, S) displays
both T̃i|Trp and T̃j |Trp. In other words, T̃i|Trp and T̃j |Trp are label-isomorphic. ��

The consistency problem of rooted trees has been widely studied. The BUILD
algorithm [2] can be used to test, in polynomial-time, whether a collection of
rooted trees is consistent, and if so, construct a compatible, not necessarily
fully resolved, supertree, i.e. a tree displaying them all. This algorithm has been
generalized to output all compatible minimally resolved supertrees [8,22,25],
which may be exponential in the number of genes.

The following theorem makes the link between a supertree and a
reconciliation.

Theorem 1. Let G = {T1, T2 · · · , Tt} be a set of trees for a set of families
organized in an order consistent set of syntenies X , and S be the species tree.
Let G̃ = {T̃1, T̃2 · · · , T̃t} be the set of synteny trees corresponding to those in G.
If G̃ is a consistent set of trees then:

1. A Super-Reconciliation R(G, S) is an extension of a supertree for G̃;
2. Any supertree is the “backbone” of a Super-Reconciliation. Namely, for any

supertree T̃ for G̃, there is a Super-Reconciliation R(G, S) which is an exten-
sion of T̃ .

The first statement of Theorem 1 follows from Lemma 1. As for the second
statement, we will prove it implicitly in Sect. 5 by providing an algorithm that
yields a minimum cost reconciliation on any supertree.

Following Theorem 1, the problem reduces to finding a supertree for the set
of synteny trees minimizing the number of segmental duplications and losses. A
natural algorithm for the Super-Reconciliation problem follows:

1. Explore the space of all order consistent ancestral syntenies A for X ;
2. Explore the space of all supertrees T̃ for G̃;
3. Find a Super-Reconciliation of minimum cost which is an extension of T̃ with

A as an ancestral synteny;
4. Select the Super-Reconciliations leading to the minimum cost.

Step 1 is discussed in Supplementary material and Step 2 has been discussed
in this section. Before developing an algorithm for Step 3, which is the pur-
pose of Sect. 5, we begin by analyzing the theoretical complexity of the Super-
Reconciliation problem.
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4 Complexity of the Super-Reconciliation Problem

We have recently considered the problem of finding a supertree of a set of gene
trees minimizing the classical single gene duplication and single gene duplication
and loss distances. The problem has been shown NP-hard for the duplication dis-
tance, and exponential-time algorithms have been developed for both distances.
For segmental duplications only, the hardness of Super-Reconciliation is
almost immediate from the results of [20]. For both duplications and losses,
the problem remains NP-hard, although the proof is far more technical. Here we
give the simpler proof of hardness for minimizing duplications only, and refer the
reader to the Supplementary material for the NP-hardness proof for minimizing
segmental duplications and losses.

Theorem 2. The Super-Reconciliation problem is NP-hard for the duplica-
tion cost. Furthermore, the minimum number of duplications is hard to approxi-
mate within a factor n1−ε for any 0 < ε < 1, where n is the number of syntenies
in the input.

Proof. The hardness follows from that of the MinDup-Supertree problem,
defined as follows. Given a species tree S and a set of gene trees T1, . . . , Tk,
possibly with overlapping leafsets, MinDup-Supertree asks for a supertree T
that displays T1, . . . , Tk such that the LCA-reconciliation of T and S yields a
minimum number d of duplications. It was shown in [20] that it is NP-hard to
approximate d within a factor n1−ε for any 0 < ε < 1, where here n is the
number of genes in Γ =

⋃k
i=1 L(Ti).

To reduce MinDup-Supertree to the Super-Reconciliation problem, it
essentially suffices to exchange the roles of genes and syntenies. More precisely,
given an instance of MinDup-Supertree consisting of a species tree S and gene
trees T1, . . . , Tk, we compute an instance of Super-Reconciliation as follows.
The species tree is the same as S, and for each gene g ∈ Γ , we have a synteny Xg

with s(Xg) = s(g). Moreover for each gene tree Ti, we create an identical gene
tree T ′

i , but in which each gene g ∈ L(Ti) is replaced by a unique gene gTi
that

belongs to synteny Xg (and hence s(g) = s(gTi
) = s(Xg)). Thus the synteny tree

T̃i for T ′
i is obtained by replacing each leaf g of Ti by Xg. In particular, there

are n syntenies. The order of the genes on the syntenies is arbitrary (since we
are not counting segmental losses).

It only remains to show the correspondence between the solutions for the
two problem instances. Suppose that the MinDup-Supertree instance admits
a supertree T with d duplications when reconciled. Let T̃ be the synteny tree
obtained from T by replacing each gene g ∈ L(T ) by Xg. Because s(g) = s(Xg),
both T and T̃ have the same duplications under the LCA reconciliation, which
is d. Conversely, if our Super-Reconciliation instance admits a synteny tree
T̃ with d duplications, replacing each leaf Xg by g yields a supertree for the
MinDup-Supertree instance with d duplications. Because the value of the
solutions are preserved and n = |Γ | corresponds to the number of syntenies, this
reduction is approximation-preserving and the hardness result follows. ��
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We state our second hardness result formally here.

Theorem 3. The Super-Reconciliation problem is NP-hard for the Dup,
fLoss and pLoss cost.

5 A Super-Reconciliation for a Supertree

In this section, we are given a set G = {T1, T2, · · · , Tt} of consistent gene trees
for a set of families F = {Γ1, Γ2, · · · , Γt} organized in an order consistent set of
syntenies X , and a species tree S for the set Σ of taxa containing the genes. In
addition, we are given a supertree T̃ for the synteny trees G̃ = {T̃1, T̃2, · · · , T̃t}
corresponding to those in G, and an order consistent ancestral synteny A for X .

Given a Super-Reconciliation R(G, S) (R for short), because R is obtained
from T̃ by grafting leaves, each node of T̃ is present in R. Hence we say that
v ∈ V (T̃ ) has a corresponding node v′ in R. More precisely, if l ∈ L(T̃ ), then
l ∈ L(R) also and the correspondence is immediate. If v is an internal node of
V (T̃ ), the node v′ of R corresponding to v is lcaR({l : l ∈ L(T̃ [v])}). We show
that, as in the traditional reconciliation setting, the nodes of R that are also in
T̃ should be mapped to the lowest species possible. To simplify the argument,
we will call an internal node a full loss if it is the parent of a fLoss event.

Lemma 2. Let R(G, S) be a Super-Reconciliation of minimum cost which is
an extension of T̃ . Let v ∈ V (T̃ ) and let v′ be the node corresponding to v in
R(G, S). Then s(v′) = lcaS(s(L(T̃ [v])).

Proof. First, observe that the statement is clearly true for the leaves. Assume
that the statement is false. Now, let v be a node of T̃ such that its corre-
sponding node v′ does not satisfy the statement - moreover, choose v to be a
minimal node with this property (meaning that for the children vl and vr of v,
the corresponding nodes v′

l and v′
r in R(G, S) satisfy s(v′

l) = lcaS(s(L(T̃ [vl]))
and s(v′

r) = lcaS(s(L(T̃ [vr]))). Note that v must exist, since the statement is
true for the leaves.

Now, we may assume that s(v′) 	= lcaS(s(v′
l), s(v

′
r)), as otherwise v′ satisfies

the lemma. Thus in S, there are at least k edges on the path from s(v′) to
lcaS(s(v′

l), s(v
′
r)), where here k > 0. It is not hard to verify that in this case, v′

must be a duplication node, according to the definition of a reconciliation. This
implies that there are at least k full losses on the path from v′ to v′

l and at least
k full losses on the path from v′ to v′

r. Consider the Super-Reconciliation R′

that is identical to R(G, S), with the exception that s(v′) = lcaS(s(v′
l), s(v

′
r)).

Then the 2k losses on the paths between v′ and v′
l and between v′ and v′

r are
not needed anymore, although if v′ is not the root, k losses become necessary on
the path between v′ and w′, where w′ is the node corresponding to the parent
w of v in T̃ . Remapping v′ cannot increase the number of duplications, and so
we have saved k losses.

It remains to argue that the number of partial losses remains the same. But
this is easy to see. We keep the same synteny assignment at nodes v′, v′

l and v′
r
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(and w′ if v′ is not the root) as in R(G, S). If v′ was a segmental duplication in
R(G, S), we set v′ to be a segmental duplication in R′ as well. The number of
partial losses on the paths between v′ and v′

l, v
′
r (and w′) therefore remains the

same as in R(G, S). ��
We now show that speciation and duplication nodes are easy to identify.

Essentially, we may set the events of internal nodes as in the classical LCA-
mapping reconciliation. In what follows, assume that T̃ is reconciled under the
LCA-mapping, and put s(v) = lcaS(L(s(T̃ [v]))) for every v ∈ V (T̃ ).

Lemma 3. Let R(G, S) be a Super-Reconciliation of minimum cost which is
an extension of T̃ . Let v ∈ V (T̃ ) be an internal node of T̃ and let v′ be its
corresponding node in R(G, S). Moreover let vl and vr be the children of v. If
s(vl) and s(vr) are separated in S, then v′ is a speciation, and otherwise v′ is a
duplication.

Proof. Let v′
l and v′

r be the nodes corresponding to vl and vr, respectively, in
R(G, S). First, if s(vl) and s(vr) are not separated, then by Lemma 2, s(v′

l)
and s(v′

r) are not separated, hence it is not possible for v′ to be a speciation.
Therefore v′ must be a duplication.

Suppose instead that s(vl) and s(vr) are separated in S, but that v′ is labeled
by a duplication event Dup(X, [i, j]), where X is the synteny assigned at v′. On
the path from v′ to v′

l, there may be some pLoss events and some nodes that were
grafted owing to full losses. We may assume that all full loss events, if any, have
occurred before the pLoss events on this path (i.e., nodes grafted from full losses
are closer to v′). This is without loss of generality, as this does not change the
resulting synteny in v′

l. We shall make the same assumption with the path from v′

to v′
r. Now, by Lemma 2, s(v′) = lcaS(s(vl), s(vr)). Because v′ is a duplication,

the two children wl, wr of v′ in R(G, S) must satisfy s(w′
l) = s(w′

r) = s(v′).
Since s(v′

l) 	= s(v′) 	= s(v′
r), we have that {wl, wr} ∩ {v′

l, v
′
r} = ∅, and therefore

wl and wr were grafted on T̃ due to full losses. If we label v′ as a speciation
Spe(X, [1, |X|]), these two full losses are not needed anymore, and by doing so
we have one duplication less and two full losses less. Let Yl and Yr be the two
syntenies that were assigned at wl and wr in R(G, S), respectively. Then Yl = X
and Yr = X[i, j] or vice-versa (assume the former, without loss of generality).
Suppose that wr was an ancestor of v′

r in R(G, S), again without loss of generality.
The substring X[i, j] can be obtained from X by adding at most two partial losses
on the path from v′ to v′

r. The rest of the reconciliation can remain the same.
To sum up, we have removed one duplication and two full losses, and inserted
at most two partial losses to reproduce the effect of the segmental duplication.
This contradicts that R(G, S) is a reconciliation of minimum cost. ��

From Lemma 3, it follows that we know the event-type (Dup or Spe) of each
internal node of the supertree T̃ . It then remains to extend the tree with losses
and infer the actual event at each node (i.e., the corresponding synteny and
segment being duplicated or lost). It is easy to see that losses and segments
affected by the events are fully determined by gene orders assigned to internal
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nodes. Therefore, the problem reduces to the classical “small phylogeny problem”
generally defined as follows: Given an alphabet Σ (nucleotides or amino-acids or
genes), a distance on the set of words of Σ (edit distance for gene sequences or
rearrangement distances for gene orders) and a tree T with leaves being words
on Σ (extant gene sequences or gene orders), find the labeling of ancestral nodes
(ancestral sequences or orders) minimizing the total cost of the tree. This cost
is the sum of costs of each branch, which is the distance between the two words
connected by the branch.

Here, we are given a synteny tree T̃ for a set X of syntenies on a set of gene
families F , and an ancestral synteny A which is an order of F . We want to find
a synteny assignment attributing a partial order on F to each node of V (T̃ ).
We assume that the root r of T̃ is assigned the synteny A. It follows from the
considered evolutionary model that, for two nodes u and v of T̃ with u being
an ancestor of v, the synteny Xv assigned to v should be a subsequence of the
string Xu assigned to u. A synteny assignment verifying this condition is called
a valid synteny assignment for T̃ .

For v ∈ V (T̃ ), define d(v,X) as the minimum number of segmental dupli-
cations and losses induced by a synteny assignment on T̃ [v] with X being the
assignment at v. The problem Small-Phylogeny for Syntenies is to find
an optimal assignment, i.e. an assignment leading to d(T̃ ) = minX d(r(T̃ ),X)
for X belonging to the set of syntenies that are order consistent with X .

Solving this problem can be done by dynamic programming by computing
d(v,X), for each v ∈ V (T̃ ) and each possible synteny X.

Let v be an internal node of T̃ and vl, vr be its two children. Let X, Xl, Xr be
valid assignments for respectively v, vl and vr. Then Xl and Xr are subsequences
of X. If v is a speciation, then all missing genes in Xl and Xr are the result of
losses. Otherwise, if v is a duplication, then for at most one of Xl and Xr, the
missing prefix or suffix can be due to the partial duplication of a segment of X,
and all other missing genes should be the result of losses. This motivates the
following two variants of the loss distance between two syntenies.

Let X and Y be two syntenies with Y being a subsequence of X. We let
DT (X,Y ) denote the minimum number of segmental losses required to transform
X to Y and DP (X,Y ) the minimum number of segmental losses required to
transform a substring of X to Y .

Theorem 4. Let v be a node of T̃ , X be a synteny and S(X) be the set of
subsequences of X.

– If v is a leaf, then d(v,X) = 0 if X is the extant synteny corresponding to
leaf v, and +∞ otherwise;

– If v is a speciation with children vl and vr, then,

d(v,X) =min(Xl∈S(X))(DT (X,Xl) + d(vl,Xl))+

min(Xr∈S(X))(DT (X,Xr) + d(vr,Xr));
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– If v is a duplication node with children vl and vr, then

d(v,X) = 1+

min

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min(Xl∈S(X))(DT (X,Xl) + d(vl,Xl))+
min(Xr∈S(X))(DT (X,Xr) + d(vr,Xr)),

min(Xl∈S(X))(DT (X,Xl) + d(vl,Xl))+
min(Xr∈S(X))(DP (X,Xr) + d(vr,Xr)),

min(Xl∈S(X))(DP (X,Xl) + d(vl,Xl))+
min(Xr∈S(X))(DT (X,Xr) + d(vr,Xr))

The above can be used to solve the Small-Phylogeny for Syntenies
problem with dynamic programming. To do this, one can simply traverse T̃
in post-order, and apply the recurrences of Theorem 4 at each node encoun-
tered. We finish this section by analyzing the complexity of this algorithm. Let
n = |V (T̃ )| and let t be the number of gene families involved in the Small-
Phylogeny for Syntenies problem instance. For a node v ∈ V (T̃ ) and a
synteny X, there are O(2t) possible subsequences of X. The value of d(v,X)
thus depends on the O(2t) values for its left child vl and the O(2t) values for its
right child vr. If these are known, then d(v,X) can be computed in time O(t2t)
(it is straightforward to check that DT and DP can be computed in time O(t)).

Let us now consider the number of possible entries in our dynamic program-
ming table. The possible syntenies for X correspond to the subsequences of a
topological sorting of an acyclic directed graph with t nodes (see supplementary
material). In the worst case, there are O(2t · t!) = O(2t log t+t) such syntenies. It
follows that there are at most O(n2t log t+t) entries in the dynamic programming
table, and each entry takes time O(t2t). It is known that if there are k possible
topological sortings in a directed acyclic graph, then they can be enumerated
in time O(k) [24] (it is worth noting however that counting the number of such
topological sortings in #P-complete [7]). Therefore, if t is not too large, then the
above recurrences can solve the small phylogeny problem relatively quickly, even
if n is large. Put differently, the Small-Phylogeny for Syntenies problem
is fixed-parameter tractable with respect to parameter t.

Corollary 1. The Small-Phylogeny for Syntenies problem can be solved
in time O(t2t log t+2tn), where t is the number of gene families present in the
input and n is the number of syntenies.

6 Application

6.1 Simulated Datasets

The dynamic programming algorithm has been implemented in C++ 1 and
tested on balanced trees obtained from simulated evolutionary histories. Simu-
lations have been performed according to five parameters: t, the number of gene
1 The program and simulations are available at:

https://github.com/UdeM-LBIT/SuperReconciliation.

https://github.com/UdeM-LBIT/SuperReconciliation
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families in the ancestral synteny; d, the maximum depth of the balanced tree;
pdupl, the probability for any given node to be a segmental duplication; ploss,
the probability for a loss to occur under any given node; and plength, the proba-
bility to remove one gene in a segmental loss, defining the probability for a loss
to remove k genes (for k ∈ {1, 2, 3, ..}): P (X = k) = (1 − plength)k−1plength,
following a shifted geometric distribution.

Simulations yield Super-Reconciliations leading to fully labelled trees. The
input of the Super-Reconciliation algorithm is then obtained from those trees by
removing loss nodes and synteny information on the internal, non-root nodes.

From an accuracy point of view (results not shown), as expected the larger
the density of duplication and loss events, the further is the simulated history
from a most parsimonious history, and thus from the inferred tree.

As for time-efficiency, values for inferring the Super-Reconciliation of a single
tree, aggregated over 500 simulations per value of t, the size of the ancestral
synteny (number of gene families), are given in Fig. 2. Computations have been
done on the “Cedar” cluster of Compute Canada with 32 Intel 8160 CPUs
operating at 2.10 GHz. As expected, running time exponentially increases with
respect to parameter t. This prevented us from extending the simulations beyond
an ancestral synteny of size 14, for which the Super-Reconciliation of a single
tree of depth 5 required around 15 min. However, if the synteny size remains
fixed, running times increase polynomially with the size of the trees. As shown
by the right diagram of Fig. 2, for an ancestral synteny of size 5, simulations
exhibit a running time of no more than few seconds for trees with depth up to
15, representing balanced trees with up to 215 leaves.

With real biological datasets, we are more likely to have to deal with large
gene families rather than large sets of gene families evolving in concert. Thus, the
increase in running time according to the size of the ancestral synteny is unlikely
to be a bottleneck towards applying our Super-Reconciliation algorithm.

Fig. 2. Time-efficiency of the algorithm with respect to the size of the ancestral synteny
(for d = 5) and the depth of the input tree (for t = 5), for pdupl = ploss = plength = 0.5.
Note that the leftmost graph uses a logarithmic scale.
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6.2 The Opioid System

The opioid receptors, important regulators of neurotransmission and reward
mechanisms in mammals, offer an interesting proof of concept, as these genes are
present in clusters with conserved synteny in vertebrate genomes. Three genes for
the opioid receptors (OPR) were identified and named OPRD1 (delta), OPRK1
(kappa) and OPRM1 (mu). A fourth gene was later found (OPRL1) in rodents
and human. In human, they are located on the chromosomes 1, 6, 8 and 20.

Previous studies have considered the duplication scenario explaining the evo-
lution of the opioid receptor genes [11,27,28]. The main question was whether
observed paralogons arose from the two whole genome duplication events, often
called 1R and 2R, known to have occurred early in vertebrate evolution. By
exploring regions surrounding the OPR genes in human, four syntenic regions,
containing genes from three other families (NKAIN, SRC-B and STMN) appar-
ently sharing a common history, were identified. From the analysis of individual
gene trees (Neighbor-joining and quartet-puzzling maximum likelihood trees),
conclusions associating the evolution of the opioid system related genes to the
1R and 2R events were drawn.

Here, we consider the same four gene families OPR, NKAIN, STMN, and
SRC-B, and further extend the OPR family with two neuropeptide NPBWR
receptors, known to be closely related to the opioid receptors (Fig. 3.(i)). Protein
sequences and gene orders were downloaded from the Ensembl database (Release

Fig. 3. (i) The four considered gene families. (ii) The considered species tree with the
corresponding clusters: 19 in total involving 24 genes from the OPR family (genes
named ‘a’), 17 from the NKAIN family (named ‘n’), 7 from the STMN family (named
‘s’) and 13 from the SRC-B family (named ‘h’). (iii) The Super-Reconciliation obtained
form individual gene trees (not shown), and the induced duplication and loss history.
Losses are indicated by red bars on the considered edges and duplications by rectangles.
Yellow stars indicate the location of the 1R and 2R whole genome duplication events.
Gene orders after removing duplicates (see text) are indicated on leaves, and chosen
gene orders for internal nodes are shown.
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92)2 for the following five species: Homo sapiens, Mus musculus, Gallus gallus,
Lepisosteus oculatus (spotted gar) and Drosophila melanogaster . Gene orders
are given in Fig. 3.(ii).

For each gene family, we built a multiple sequence alignment with ClustalW
[18] (Gonnet weight matrix and gap opening and extension penalties respectively
set to 10 and 0.2). Maximum likelihood gene trees were subsequently constructed
for each family using MEGA7 [19] (Jones-Taylor-Thornton substitution matrix
and uniform rates among sites). As some syntenies contained paralogs (multiple
copies from the same gene family, for example synteny H3 contains two ‘a’),
duplicates were removed in a way maximizing gene tree consistency. Although
gene trees were still inconsistent, the overall clustering of gene copies was pre-
served among gene trees, and consistency could be attained after some local
adjustments, using the species tree as reference.

The obtained Super-Reconciliation is given in Fig. 3.(iii). Notice however
that gene orders are far from being consistent. In fact, all considered genomes
are separated by a considerable evolutionary distance, and therefore, local rear-
rangements could have occurred along each lineage-specific branch. Choosing the
(h, s, a, n) order on every node of the tree and assuming rearrangements to occur
at terminal edges, i.e. after duplication and loss events, leads to a history of three
duplications and two losses before the speciation of bony fish and tetrapods, with
two duplications correlating with the 1R and 2R tetraploidization events. This
result is in agreement with previous studies on the opioid receptor genes [11].

Further analysis, using more genes and species, is required to provide a more
detailed scenario for the evolution of the opioid receptor genes. Our objective
here however, was not to verify a given hypothesis, but rather to provide a
proof of concept and explore the applicability and limitations of the proposed
reconciliation model on real data.

7 Conclusion

We have presented a natural extension of the DL reconciliation model, which
is the first effort towards the development of a unifying automated method for
reconciling a set of gene trees. It leads to a variety of problems requiring to be
analysed from a complexity and algorithmic point of view.

In contrast with the inference of tandem duplications, where gene orders is a
key information as created gene copies should be adjacent to the original ones,
order is not a central information for the Super-Reconciliation problem. In fact,
as chromosomal segments resulting from transposed duplications can be placed
anywhere in the genome, gene order in syntenies is not a required information
for the reconstruction of the supertree. However, labeling the supertree in a way
minimizing the number of segmental duplications and losses still requires the
knowledge of an ancestral gene order.

If, as we have considered in this paper, rearrangements are forbidden, then
a duplication and loss history does not always exist for a set of syntenies, as
the corresponding gene orders may be inconsistent. One solution would be to
2 https://useast.ensembl.org/index.html.

https://useast.ensembl.org/index.html
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minimally correct gene orders to ensure consistency, before applying the DL
Super-Reconciliation model. Alternatively, an ancestral gene order can be
inferred first, and all deviations from this order would be assumed to have
occurred at terminal edges. As it clearly appears from the opioid receptor genes
example, rearrangements could hardly be ignored.

A future extension of this work will be to minimize the segmental duplication
and loss events explaining the evolution of a set of syntenies evolving through
speciation and segmental duplication, loss, and rearrangements. In other words,
we will infer gene orders leading to a most parsimonious history in terms of
duplications and losses. The disagreement between the observed gene order at
leaves and inferred orders can then simply be explained from rearrangements
occurring after DL events. This is the approach we took to explain the supertree
in Fig. 3. Other natural extensions of this work would be to account for the pos-
sibility of paralogous genes inside synteny blocks and expand the reconciliation
model to horizontal gene transfers.
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Abstract. We consider the problem of estimating species trees from
unrooted gene tree topologies in the presence of incomplete lineage sort-
ing, a common phenomenon that creates gene tree heterogeneity in mul-
tilocus datasets. One popular class of reconstruction methods in this
setting is based on internode distances, i.e. the average graph distance
between pairs of species across gene trees. While statistical consistency in
the limit of large numbers of loci has been established in some cases, little
is known about the sample complexity of such methods. Here we make
progress on this question by deriving a lower bound on the worst-case
variance of internode distance which depends linearly on the correspond-
ing graph distance in the species tree. We also discuss some algorithmic
implications.

Keywords: Species tree estimation · Incomplete lineage sorting
Internode distance · Sample complexity · ASTRID · NJst

1 Introduction

Species tree estimation is increasingly based on large numbers of loci or genes
across many species. Gene tree heterogeneity, i.e. the fact that different genomic
regions may be consistent with incongruent genealogical histories, is a com-
mon phenomenon in multilocus datasets that leads to significant challenges in
this type of estimation. One important source of incongruence is incomplete
lineage sorting (ILS), a population-genetic effect (see Fig. 1 below for an illus-
tration), which is modeled mathematically using the multispecies coalescent
(MSC) process [14,19]. Many recent phylogenetic analyses of genome-scale bio-
logical datasets have indeed revealed substantial heterogeneity consistent with
ILS [3,6,27].

Standard methods for species tree estimation that do not take this hetero-
geneity into account, e.g. the concatenation of genes followed by a single-tree
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maximum likelihood analysis, have been shown to suffer serious drawbacks under
the MSC [20,23]. On the other hand, new methods have been developed for
species tree estimation that specifically address gene tree heterogeneity. One
popular class of methods, often referred to as summary methods, proceed in two
steps: first reconstruct a gene tree for each locus; then infer a species tree from
this collection of gene trees. Under the MSC, many of these methods have been
proven to converge to the true species tree when the number of loci increases,
i.e. the methods are said to be statistically consistent. Examples of summary
methods that enable statistically consistent species tree estimation include MP-
EST [12], NJst [11], ASTRID [26], ASTRAL [15,16], STEM [8], STEAC [13],
STAR [13], and GLASS [17].

Here we focus on reconstruction methods, such as NJst and ASTRID, based
on what is known as internode distances, i.e. the average of pairwise graph
distances across genes. Beyond statistical consistency [1,7,11], little is known
about the data requirement or sample complexity of such methods (unlike other
methods such as ASTRAL [24] or GLASS [17] for instance). That is, how many
genes or loci are needed to ensure that the true species tree is inferred with
high probability under the MSC? Here we make progress on this question by
deriving a lower bound on the worst-case variance of internode distance. Indeed
the sample complexity of a reconstruction method depends closely on the vari-
ance of the quantities it estimates, in this case internode distances. Our bound
depends linearly on the corresponding graph distance in the species tree which,
as we explain below, has possible implications for the choice of an accurate
reconstruction method.

The rest of the paper is structured as follows. In Sect. 2, we state our main
results formally, after defining the MSC and the internode distance. In Sect. 3,
we discuss algorithmic implications of our bound. Proofs can be found in Sect. 4.

2 Definitions and Results

In this section, we first introduce the multispecies coalescent. We also define the
internode distance and state our results formally.

Multilocus Evolution Under the Multispecies Coalescent. Our analysis is based on
the multispecies coalescent (MSC), a standard random gene tree model [14,19].
See Fig. 1 for an illustration. Consider a species tree (S, Γ ) with n leaves. Here
S = (V, E , r) is a rooted binary tree with vertex and edge sets V and E and where
each leaf is labeled by a species in {1, . . . , n}. We refer to S as the species tree
topology. The branch lengths Γ = (Γe)e∈E are expressed in so-called coalescent
time units. We do not assume that (S, Γ ) is ultrametric (see e.g. [25]). Each gene1

j = 1, . . . , m has a genealogical history represented by its gene tree Tj distributed
according to the following process: looking backwards in time, on each branch e of
1 In keeping with much of the literature on the MSC, we use the generic term gene

to refer to any genomic region experiencing low rates of internal recombination, not
necessarily a protein-coding region.



198 S. Roch

Fig. 1. An incomplete lineage sorting event (in the rooted setting). Although 1 and 2
are more closely related in the rooted species tree (fat tree), 2 and 3 are more closely
related in the rooted gene tree (thin tree). This incongruence is caused by the failure
of the lineages originating from 1 and 2 to coalesce within the shaded branch. The
shorter this branch is, the more likely incongruence occurs.

the species tree, the coalescence of any two lineages is exponentially distributed
with rate 1, independently from all other pairs; whenever two branches merge
in the species tree, we also merge the lineages of the corresponding populations,
that is, the coalescent proceeds on the union of the lineages; one individual
is sampled at each leaf. The genes are assumed to be unlinked, i.e. the process
above is run independently and identically for all j = 1, . . . , m. More specifically,
the probability density of a realization of this model for m independent genes is
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j is the �th coalescence time in e; for

convenience, we let γe,0
j and γ

e,Ie
j −Oe

j+1

j be respectively the divergence times
(expressed in coalescence time units) of e and of its parent population (which
depend on Γ ). We write {Tj}j ∼ Dm

s [S, Γ ] to indicate that the m gene trees
{Tj}j are independently distributed according to the MSC on species tree S, Γ .
To be specific, Tj is the unrooted gene tree topology—without branch lengths—
and we remark that, under the MSC, Tj is binary with probability 1. Throughout
we assume that the Tj ’s are known and were reconstructed without estimation
error.

Internode Distance. Assume we are given m gene trees {Tj}j over the
n species {1, . . . , n}. For any pair of species x, y and gene j, we let
dj
g(x, y) be the graph distance between x and y on Tj , i.e. the number

of edges on the unique path between x and y. The internode distance
between x and y is defined as the average graph distance across genes, i.e.
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δ̂m
int(x, y) =

1
m

m∑

j=1

dTj
g (x, y).

Under the MSC, the internode distances (δ̂m
int(x, y))x,y are correlated random

variables whose joint distribution depends in the a complex way on the species
tree (S, Γ ). Here follows a remarkable fact about internode distance [1,7,11].
Let δ̄int(x, y) be the expectation of δ̂m

int(x, y) under the MSC and let Su be the
unrooted version of the species tree S. Then (δ̄int(x, y))x,y is an additive metric
associated2 to Su (see e.g. [25]). In particular, whenever Su restricted to species
x, y, w, z has quartet topology xy|wz (i.e. the middle edge of the restriction to
x, y, w, z splits x, y from w, z), it holds that3

δ̄int(x,w) + δ̄int(y, z) = δ̄int(x, z) + δ̄int(y, w) ≥ δ̄int(x, y) + δ̄int(w, z).

This result forms the basis for many popular multilocus reconstruction meth-
ods, including NJst [11] and ASTRID [26], which apply standard distance-based
methods to the internode distances

(δ̂m
int(x, y))x,y.

Main Results. By the law of large numbers, for all pairs of species x, y

δ̂m
int(x, y) → δ̄int(x, y),

with probability 1 as m → +∞, a fact that can be used to establish the statisti-
cal consistency (i.e. the guarantee that the true specie tree is recovered as long
as m is large enough) of internode distance-based methods such as NJst [11].
However, as far as we know, nothing is known about the sample complexity
of internode distance-based methods, i.e. how many genes are needed to recon-
struct the species tree with high probability—say 99%—as a function of some
structural properties of the species tree—primarily the number of species n and
the shortest branch length f? We do not answer this important but technically
difficult question here, but we make progress towards its resolution by providing
a lower bound on the worst-case variance of internode distance. Let dSu

g (x, y)
denote the graph distance between x and y on Su.

Theorem 1 (Lower bound on the worst-case variance of internode dis-
tance). There exists a constant C > 0 such that, for any integer n ≥ 4 and real
f > 0, there is a species tree (S, Γ ) with n leaves and shortest branch length f

2 Note however that the associated branch lengths may differ from Γ .
3 Note that it is trivial that (d

Tj
g (x, y))x,y is an additive metric associated to gene tree

Tj . On the other hand it is far from trivial that averaging over the MSC leads to an
additive metric associated to the species tree.
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such that the following holds: for all pairs of species �, �′ and all integers m ≥ 1,
if {Tj}j ∼ Dm

s [S, Γ ] then

Var
[
δ̂m
int(�, �

′)
]

≥ C
dSu
g (�, �′)

m
, (1)

and, furthermore,

max
�,�′

Var
[
δ̂m
int(�, �

′)
]

≥ C
n

m
, (2)

In words, there are species trees for which the variance of internode distance
scales as the graph distance—which can be of order n—divided by m. The proof
of Theorem 1 is detailed in Sect. 4.

3 Discussion

How is Theorem 1 related to the sample complexity of species tree estimation
methods? The natural approach for deriving bounds on the number of genes
required for high-probability reconstruction in distance-based methods is to
show that the estimated distances used are sufficiently concentrated around their
expectations—provided that m is large enough as a function of n and f (e.g. [2,9];
but see [22] for a more refined analysis). In particular, one needs to control the
variance of distance estimates.

Practical Implications. Bound (2) in Theorem 1 implies that to make all vari-
ances negligible the number of genes m is required to scale at least linearly
in the number of species n. In contrast, certain quartet-based methods such as
ASTRAL [15,16] have a sample complexity scaling only logarithmically in n [24].

On the other hand, Bound (2) is only relevant for those reconstruction
algorithms using all distances, for instance NJst which is based on Neighbor-
Joining [2,10]. Many so-called fast-converging reconstruction methods purposely
use only a strict subset of all distances, specifically those distances within a con-
stant factor of the “depth” of the species tree. Refer to [9] for a formal definition
of the depth, but for our purposes it will suffice to note that in the case of
graph distance the depth is at most of the order of log n. Hence Bound (1) sug-
gests it may still possible to achieve a sample complexity comparable to that of
ASTRAL—if one uses a fast-converging method (within ASTRID for instance).

The Impact of Correlation. Theorem 1 does not in fact lead to a bound on
the sample complexity of internode distance-based reconstruction methods. For
one, Theorem 1 only gives a lower bound on the variance. One may be able to
construct examples where the variance is even larger. In general, analyzing the
behavior of internode distance is quite challenging because it depends on the full
multispecies coalescent process in a rather tangled manner.

Perhaps more importantly, the variance itself is not enough to obtain tight
bounds on the sample complexity. One problem is correlation. Because δ̂m

int(x, y)
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and δ̂m
int(w, z) are obtained using the same gene trees, they are highly correlated

random variables. One should expect this correlation to produce cancellations
(e.g. in the four-point condition; see [25]) that could drastically lower the sample
complexity. The importance of this effect remains to be studied.

Gene Tree Estimation Error. We pointed out above that quartet-based meth-
ods such as ASTRAL may be less sensitive to long distances than internode
distance-based methods such as NJst. An important caveat is the assumption
that gene trees are perfectly reconstructed. In reality, gene tree estimation errors
are likely common and are also affected by long distances (see e.g. [9]). A more
satisfactory approach would account for these errors or would consider simulta-
neously sequence-length and gene-number requirements. Few such analyses have
so far been performed because of technical challenges [4,5,18,21].

4 Variance of Internode Distance

In this section, we prove Theorem 1. Our analysis of internode distance is based
on the construction of a special species tree where its variance is easier to control.
We begin with a high-level proof sketch:

– Our special example is a caterpillar tree with an alternation of short and long
branches along the backbone.

– The short branches produce “local uncertainty” in the number of lineages
that coalesce onto the path between two fixed leaves. The long branches
make these contributions to the internode distance “roughly independent”
along the backbone.

– As a result, the internode distance is, up to a small error, a sum of independent
and identically distributed contributions. Hence, its variance grows linearly
with graph distance.

Setting for Analysis. We fix the number of species n and we assume for conve-
nience that n is even.4 Recall also that f will denote the length of the shortest
branch in coalescent time units. We consider the species tree (S, Γ ) depicted in
Fig. 2. Specifically, S is a caterpillar tree: its backbone is an n − 1-edge path

(a,w1), (w1, z1), (z1, w2), (w2, z2), . . . , (wn−2
2

, zn−2
2

), (zn−2
2

, r)

connecting leaf a to root r = wn/2; each vertex wi on the backbone is incident
with an edge (wi, xi) to leaf xi; each vertex zi on the backbone is incident with
an edge (zi, yi) to leaf yi; root r is incident with an edge (r, b) to leaf b. Each
edge of the form e = (wi, zi) is a short edge of length Γe = f , while all other
edges are long edges of length g = 4 log n.

4 A straightforward modification of the argument also works for odd n.
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Fig. 2. The species tree used in the analysis.

Proof of Theorem 1. Recall that our goal is to prove that for all pairs of species
�, �′ and all integers m ≥ 1, if {Tj}j ∼ Dm

s [S, Γ ] then

Var
[
δ̂m
int(�, �

′)
]

≥ C
dSu
g (�, �′)

m
.

To simplify the analysis, we detail the argument in the case � = a and �′ = b
only. The other cases follow similarly.

We first reduce the computation to a single gene. Recall that

δ̂m
int(a, b) =

1
m

m∑

j=1

dTj
g (a, b).

Lemma 1 (Reduction to a single gene). For any m, it holds that

Var
[
δ̂m
int(�, �

′)
]

=
1
m
Var

[
dT1
g (a, b)

]
.

Proof. Because the Tj ’s are independent and identically distributed, it follows
that

Var
[
δ̂mint(�, �

′)
]
= Var

⎡
⎣ 1

m

m∑
j=1

d
Tj
g (a, b)

⎤
⎦ =

1
m2

m∑
j=1

Var
[
d

Tj
g (a, b)

]
=

1
m

Var
[
dT1
g (a, b)

]
,

as claimed.

We refer to the 2-edge path {(wi, zi), (zi, wi+1)} as the i-th block. The purpose
of the long backbone edges is to create independence between the contributions
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of the blocks. To make that explicit, let Fi be the event that, in T1, all lineages
entering the edge (zi, wi+1) have coalesced by the end of the edge (backwards in
time). And let F = ∩iFi.

Lemma 2 (Full coalescence on all blocks). It holds that

P[F ] ≥ 1 − 1/n.

Proof. By the multiplication rule and the fact that Fi only depends on the
number of lineages entering (wi, zi), we have

P[F ] =
∏

i

P[Fi | F1 ∩ · · · ∩ Fi−1] = (P[F1])
n/2−1 ≥ 1 − (n/2 − 1) (1 − P[F1]) .

It remains to upper bound P[Fc
1 ]. We have either 2 or 3 lineages entering (z1, w2).

In the former case, the failure to coalesce has probability e−g, i.e. the probability
that an exponential with rate 1 is greater than g. In the latter case, the failure to
fully coalesce has probability at most e−3(g/2) + e−g/2, i.e. the probability that
either the first coalescence (happening at rate 3) or the second one (happening
at rate 1) takes more than g/2. Either way this gives at most P[Fc

1 ] ≤ 2e−g/2.
With g = 4 log n = 2 log n2 above, we get the claim.

We now control the contribution from each block. Let Xi be the number of
lineages coalescing into the path between a and b on the i-th block. Conditioning
on F , we have Xi ∈ {1, 2} and we have further that all Xi’s are independent
and identically distributed. This leads to the following bound.

Lemma 3 (Linear variance). It holds that

Var
[
dT1
g (a, b)

]
≥ n − 2

2
Var

[
X1

∣∣F1

]
P[F ].

Proof. By the conditional variance formula, letting 1F be the indicator of F ,

Var
[
dT1
g (a, b)

]
≥ E

[
Var

[
dT1
g (a, b)

∣∣1F
]]

≥ Var
[
dT1
g (a, b)

∣∣F
]
P[F ].

On the event F , it holds that

dT1
g (a, b) =

∑

i

Xi.

Moreover, conditioning on F makes the Xi’s independent and identically dis-
tributed. Hence we have finally

Var
[
dT1
g (a, b)

]
≥ n − 2

2
Var

[
X1

∣∣F
]
P[F ] ≥ n − 2

2
Var

[
X1

∣∣F1

]
P[F ],

where we used the fact that X1 depends on F only through F1.

The final step is to bound the contribution to the variance from a single block.
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Lemma 4 (Contribution from a block). It holds that

Var
[
X1

∣∣F1

]
=

1
3
e−f

(
1 − 1

3
e−f

)
=

2
9

(1 − Θ(f)) ,

for f small, where we used the standard Big-Theta notation.

Proof. As we pointed out earlier, conditioning on F1, we have X1 ∈
{1, 2}. In particular X1 − 1 is a Bernoulli random variable whose variance
P

[
X1 − 1 = 1

∣∣F1

]
(1 − P

[
X1 − 1 = 1

∣∣F1

]
) is the same as the variance of X1

itself. So we need to compute the probability that X1 = 2, conditioned on F1.
There are four scenarios to consider (depending on whether or not there is coa-
lescence in the short branch (w1, z1) and which coalescence occurs first in the
long branch (z1, w2)), only one of which produces X1 = 1:

– No coalescence occurs in (w1, z1) and the first coalescence in (z1, w2) is
between the lineages coming from x1 and y1. This event has probability 1

3e−f

by symmetry when conditioning on F1.

Hence P
[
X1 = 2

∣∣F1

]
= 1 − 1

3e−f .

By combining Lemmas 1, 2, 3 and 4, we get that

Var
[
δ̂m
int(�, �

′)
]

≥ 1
m

× n − 2
2

× 1
3
e−f

(
1 − 1

3
e−f

)
×

(
1 − 1

n

)
.

Choosing C small enough concludes the proof of the theorem.

5 Conclusion

To summarize, we have derived a new lower bound on the worst-case variance
of internode distance under the multispecies coalescent. No such bounds were
previously known as far as we know. Our results suggest it may be preferable to
use fast-converging methods when working with internode distances for species
tree estimation. The problem of providing tight upper bounds on the sample
complexity of internode distance-based methods remains however an important
open question.
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Abstract. We consider two fundamental computational problems that
arise when comparing phylogenetic trees, rooted or unrooted, with non-
identical leaf sets. The first problem arises when comparing two trees
where the leaf set of one tree is a proper subset of the other. The second
problem arises when the two trees to be compared have only partially
overlapping leaf sets. The traditional approach to handling these prob-
lems is to first restrict the two trees to their common leaf set. An alter-
native approach that has shown promise is to first complete the trees by
adding missing leaves, so that the resulting trees have identical leaf sets.
This requires the computation of an optimal completion that minimizes
the distance between the two resulting trees over all possible comple-
tions.

We provide optimal linear-time algorithms for both completion prob-
lems under the widely-used Robinson-Foulds (RF) distance measure. Our
algorithm for the first problem improves the time complexity of the cur-
rent fastest algorithm from quadratic (in the size of the two trees) to
linear. No algorithms have yet been proposed for the more general sec-
ond problem where both trees have missing leaves. We advance the study
of this general problem by proposing a biologically meaningful restricted
version of the general problem and providing optimal linear-time algo-
rithms for the restricted version. Our experimental results on biological
data sets suggest that using completion-based RF distances can result in
different evolutionary inferences compared to traditional RF distances.

1 Introduction

A phylogenetic tree, or phylogeny, is a leaf-labeled tree that shows the evolution-
ary relationships between different biological entities, generally either species
or genes. Phylogenies may be either rooted or unrooted. The leaf nodes of a
phylogeny represent the extant set of entities on which the phylogeny is built,
while internal nodes represent hypothetical ancestors. The comparison of dif-
ferent phylogenetic trees is one of the most fundamental tasks in evolutionary
biology and computational phylogenetics. Many biologically relevant distance
or similarity measures have been defined in the literature for the case when
c© Springer Nature Switzerland AG 2018
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the two phylogenies to be compared have the same leaf set. These include
the widely used Robinson-Foulds distance [27], triplet and quartet distances
[13,19], nearest neighbor interchange (NNI) and subtree prune and regraft
(SPR) distances [20,30,33], maximum agreement subtrees [2,14,21], nodal dis-
tance [7], geodesic distance [23] and several others. Often, however, this compar-
ison involves two trees that have non-identical leaf sets. The need to compare
trees that do not have identical leaf sets arises naturally in several situations: For
instance, algorithms for computing phylogenetic supertrees are typically based
on comparing input trees on partial leaf sets with candidate supertrees on the
complete leaf set [1,3,9,24,31]. Likewise, searching for phylogenies similar to a
query tree in a phylogenetic database [10,25,26,29], and clustering of phylo-
genetic trees [34] often involve comparisons between trees with only partially
overlapping leaf sets.

Fig. 1. RF(-) and RF(+) distances. This figure illustrates the difference between
the traditional (RF(-)) and RF(+) distance measures when applied to trees with par-
tially overlapping leaf sets. In this example, the leaf sets of T1 and T2 are a subset
of the leaf set of S. To compute the RF(-) distance between T1 and S, we must first
restrict S to the leaf set of T1, resulting in tree S1. The RF(-) distance between S and
T1 is thus RF (S1, T1), which is 2. Likewise, to compute the RF(-) distance between T2

and S, we must first restrict S to the leaf set of T2, resulting in tree S2. The RF(-)
distance between S and T2 is thus RF (S2, T2), which is also 2. In contrast, to compute
the RF(+) distance between T1 and S, we must first compute an optimal completion
of T1 on the leaf set of S (denoted by the dashed red lines), resulting in tree T ′

1. The
RF(+) distance between S and T1 is thus RF (S, T ′

1), which is 2. Likewise, to compute
the RF(+) distance between T2 and S, we must first compute an optimal completion
of T2 on the leaf set of S, resulting in tree T ′

2. The RF(+) distance between S and T2

is thus RF (S, T ′
2), which is 4. Observe that while both T1 and T2 are equidistant from

S under RF(-), computing the RF(+) distances reveals that T1 is more similar to S
than is T2.
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The traditional approach to comparing two phylogenies on non-identical leaf
sets is to first restrict the two phylogenies to their common leaf set and then
apply one of the distance or similarity measures that compare two trees on the
same leaf set. However, an alternative, and perhaps more useful, approach to
comparing trees with non-identical taxa is to fill-in or complete the two trees
to be compared with the leaves missing from each, resulting in two trees on the
same leaf set, and then apply the distance or similarity measure. This completion
based approach is especially desirable when used with the Robinson-Foulds (RF)
distance measure [27], the most commonly used distance measure in evolutionary
biology. Indeed, several important biological applications would directly bene-
fit from the use of this completion-based RF distance, such as the construction
of majority-rule(+) supertrees [12,17,18,22], construction of Robinson-Foulds
supertrees [3,9,28], phylogenetic database search [10,25,26,29], and clustering
of phylogenetic trees [34]. To distinguish between the two methods for com-
puting RF distance between two trees with non-identical leaf sets, we refer to
the completion-based RF distance as RF(+) distance and to the traditional
pruning-based RF distance as RF(–). Figure 1 shows an example of two trees
with partially overlapping leaf sets and these two ways of computing the RF
distance between them.

Previous Work. The idea of a completion-based RF(+) distance was proposed
at least a decade ago. Cotton and Wilkinson were among the first to propose such a
distance measure in their seminal paper describing majority-rule supertrees [12].
Specifically, they defined two types of majority-rule supertrees: majority-rule(–
) and majority-rule(+) supertrees. The majority-rule(-) supertrees were based on
traditional RF(–) distances between trees, while majority-rule(+) supertrees were
based on completion-based RF(+) distances. Majority-rule(+) supertrees and its
variants have been shown to have many desirable properties [16] and there have
been efforts to develop exact (ILP based) and heuristic methods for computing
majority-rule(+) supertrees [17,22]. Though these methods only work for small
datasets, they have been shown to result in biologically meaningful supertrees [17].
The paper by Kupczok [22] characterizes the RF(+) distance in the case when the
leaf set of one tree is a subset of the leaf set of the other in terms of incompatible
splits between the two trees, but does not provide an efficient algorithm for
computing this distance or for computing an actual completion. More recently,
Christensen et al. [11] provided an O(n2) time algorithm for the case when
the leaf set of one tree is a subset of the leaf set of the other and applied the
algorithm to compute optimal completions for gene trees with respect to a species
tree. To the best of our knowledge, no algorithms (polynomial time or otherwise)
currently exist for the general problem where the two trees have only partially
overlapping leaf sets, or for any of its variants.

Our Contribution. In this work, we address an important gap in the algorith-
mics of phylogenetic tree comparison. Specifically, we provide the first optimal,
linear-time algorithms for two fundamental computational problems that arise
when comparing phylogenetic trees with non-identical leaf sets. For the first
problem, which arises when computing the RF(+) distance between two binary
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trees where the leaf set of one tree is a proper subset of the other, we improve
upon the time complexity of the previous fastest algorithm for this problem by
a factor of n, where n is the number of leaves in the larger of the two trees.
For the second problem, which is a generalization of the first and arises when
computing the RF(+) distance between two binary trees that have only partially
overlapping leaf sets, we show that the default problem formulation can result in
biologically meaningless results, propose a modification of the problem formula-
tion that corrects this deficiency, and provide optimal linear-time algorithms for
the modified problem. Crucially, no polynomial time algorithms currently exist
for the default formulation of the second problem, and our modified problem
formulation can be viewed as a biologically meaningful restricted version of the
general problem. Our algorithms are easy to understand and implement, work for
both rooted and unrooted trees, and are scalable to the entire tree of life. These
algorithms can be applied wherever phylogenetic distances must be computed
between trees with non-identical leaf sets and enable new kinds of phylogenetic
and comparative analyses that have been computationally infeasible.

We implemented our algorithm for the first problem and applied it to three
published biological supertree data sets to study how RF(+) distances differ
from RF(-) distances in practice. For each data set, we ordered the input trees
according to their RF(+) and RF(-) distances to a precomputed supertree and
measured how often the relative pairwise ranking between any pair of input trees
differs between the two rankings. We found a large number of such pairs for each
data set, demonstrating, for the first time, that using the RF(+) distance could
result in different evolutionary inferences compared to inferences using the RF(-)
distance.

RF(+) distances have several desirable properties compared to RF(-) dis-
tances. For instance, the range of possible values RF(+) distance can take ranges
from 0 to about twice the size of the union of the leaf sets of the two trees,
while for RF(-) distance this range is only from 0 to about twice the size of
the intersection of the two leaf sets. Thus, RF(+) distances have significantly
more discriminatory power than RF(-) distances. In applications such as median
supertree construction, RF(+) distance has the distinct advantage that each
input tree gets an equal “vote” in the supertree construction since all input trees
contribute an RF distance within the same range. With RF(-) distances, larger
trees can contribute much more to the total distance than smaller trees. Finally,
in computing RF(-) distances we ignore the additional topological information
provided by leaves that are present in only one tree, while RF(+) distance makes
complete use of the information in the topologies of the two trees. RF(+) dis-
tances thus make more efficient use of the available information. Despite these
advantages, RF(+) distances have not been applied in practice due to unavail-
ability of efficient algorithms. In contrast, RF(-) distances can be computed
in time linear in the sizes of the input trees. Our new algorithms address this
discrepancy by making it equally computationally efficient to compute RF(+)
distances.
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The remainder of this manuscript is organized as follows. The next section
includes basic definitions, notation, and problem formulations. Sections 3, 4, and
5 describe our algorithms for the problems considered in this work. Experimental
results appear in Sect. 6 and concluding remarks appear in Sect. 7. For brevity,
some proofs and certain details are deferred to the full version of this manuscript.

2 Preliminaries and Problem Definitions

Given a tree T , we denote its node set, edge set, and leaf set by V (T ), E(T ), and
Le(T ), respectively. The set of all non-leaf (i.e., internal) nodes of T is denoted
by I(T ).

If T is rooted, the root node of T is denoted by rt(T ), the parent of a node
v ∈ V (T ) by paT (v), its set of children by ChT (v), and the (maximal) subtree
of T rooted at v by T (v). If two nodes in T have the same parent, they are
called siblings of each other. The least common ancestor, denoted lcaT (L), of a
set L ⊆ Le(T ) in T is defined to be the node v ∈ V (T ) such that L ⊆ Le(T (v))
and L �⊆ Le(T (u)) for any child u of v. A rooted tree is binary if all of its internal
nodes have exactly two children, while an unrooted tree is binary if all its nodes
have degree either 1 or 3. Throughout this work, the term tree refers to binary
trees with uniquely labeled leaves.

Let T be a rooted or unrooted tree. Given a set L ⊆ Le(T ), let T ′ be the
subtree of T with leaf set L. We define the leaf induced subtree T [L] of T on leaf
set L to be the tree obtained from T ′ by successively removing each non-root
node of degree two and adjoining its two neighbors.

Definition 1 (Completion of a tree). Given a tree T and a set L′ such that
Le(T ) ⊆ L′, a completion of T on L′ is a tree T ′ such that Le(T ′) = L′ and
T ′[Le(T )] = T .

If T is a rooted tree, for each node v ∈ V (T ), the clade CT (v) is defined
to be the set of all leaf nodes in T (v); i.e. CT (v) = Le(T (v)). We denote the
set of all clades of a rooted tree T by Clade(T ). This concept can be extended
to unrooted trees as follows. If T is an unrooted tree, each edge (u, v) ∈ E(T )
defines a partition of the leaf set of T into two disjoint subsets Le(Tu) and Le(Tv),
where Tu is the subtree containing node u and Tv is the subtree containing node
v, obtained when edge (u, v) is removed from T . The partition induced by any
edge (u, v) ∈ E(T ) is called a split and is represented by the set {Le(Tu),Le(Tv)}.
The set of all splits in an unrooted tree T is denoted by Split(T ).

The symmetric difference of two sets A and B, denoted by AΔB, is the set
(A \ B) ∪ (B \ A).

Definition 2 (Robinson-Foulds distance). The Robinson-Foulds (RF) dis-
tance, RF (S, T ), between two trees S and T is defined to be |Clade(S)ΔClade(T )|
if S and T are rooted trees, and |Split(S)ΔSplit(T )| if S and T are unrooted trees.
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Let S and T be two trees. Without loss of generality, we will assume that
|Le(T )| ≤ |Le(S)|. When Le(S) �= Le(T ), there are two possible scenarios: (1)
Le(T ) � Le(S), i.e., the leaf set of T is a proper subset of the leaf set of S, and
(2) Le(S)∩Le(T ) � Le(T ), i.e., each of S and T contains leaves not found in the
other. Based on these two scenarios, and depending on whether the two trees
are rooted or unrooted, we define the following four problems.

Problem 1 (Rooted One-Tree RF(+) (ROT-RF(+))). Given two rooted
trees S and T , such that Le(T ) ⊆ Le(S), compute a completion T ′ of T on Le(S)
such that RF (S, T ′) is minimized.

Problem 2 (Unrooted One-Tree RF(+) (UOT-RF(+))). Given two
unrooted trees S and T , such that Le(T ) ⊆ Le(S), compute a completion T ′

of T on Le(S) such that RF (S, T ′) is minimized.

Problem 3 (Rooted RF(+) (R-RF(+))). Given two rooted trees S and T ,
compute a completion S′ of S on Le(S) ∪ Le(T ) and a completion T ′ of T on
Le(S) ∪ Le(T ) such that RF (S′, T ′) is minimized.

Problem 4 (Unrooted RF(+) (U-RF(+))). Given two unrooted trees S
and T , compute a completion S′ of S on Le(S) ∪ Le(T ) and a completion T ′ of
T on Le(S) ∪ Le(T ) such that RF (S′, T ′) is minimized.

We show how to solve Problems 1 and 2 in O(|V (S)|) time. As we will see
later, Problems 3 and 4 can actually lead to biologically meaningless completions.
We will therefore define biologically meaningful variants of Problems 3 and 4
(requiring only a slight variation on the original problems) and show how to
solve them in O(|V (S)| + |V (T )|) time. Throughout this work, we assume that
the leaves of S and T are labeled by integers from the set {1, . . . , |Le(S)∪Le(T )|}.
However, our algorithms work even if the leaf labels are arbitrary, and universal
hashing [8] or perfect hashing [15] can be used to guarantee expected O(|V (S)|+
|V (T )|) time complexity.

3 A Linear-Time Algorithm for ROT-RF(+)

To solve the ROT-RF(+) problem, our algorithm starts with the trees S and
T and modifies T by adding to it, according to a particular scheme, the leaves
from Le(S) \ Le(T ). The completed tree thus produced, denoted by T ′, will be
such that RF (S, T ′) is minimized.

We define Tree-Add(T, v,X) to be the tree obtained from T by attaching to
it a tree X, where Le(X) ∩ Le(T ) = ∅, as follows: If v is not the root of T , then
attach X onto the edge (pa(v), v) (by subdividing (pa(v), v) into two edges) such
that rt(X) becomes the sibling of the node v ∈ V (T ). If v is the root of T , then
Tree-Add(T, v,X) is the tree obtained by creating a new root node and setting
v and rt(X) as its two children.

The main idea behind our algorithm can be illustrated by the following simple
example. Suppose the given trees S and T are such that Le(S) = Le(T ) ∪ {l}.
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The goal is to add to T this leaf l, so as to minimize the RF distance. Let v
denote the sibling of l in S. Let u denote the node lcaT (Le(S(v))). As we will
prove later, T ′ = Tree-Add(T, u, l) must be an optimal completion for T . Our
algorithm extends this idea to the case when T has multiple missing leaves. A
description of the algorithm follows:

Algorithm OneTreeCompletion(S, T )
1: for each v ∈ V (S) in post-order do
2: Initialize the mapping MS(v) to be NULL.
3: if v ∈ Le(S) then
4: if leaf v is also present in tree T then
5: Color v green.
6: else
7: Color v red.
8: else
9: if v has two green children then

10: Color v green.
11: else if v has two red children then
12: Color v red.
13: else if v has exactly one red child then
14: Color v blue and label v as “marked”.
15: else
16: Color v blue.
17: for each green or blue node v from V (S) in post-order do
18: Assign MS(v) = lcaT (X), where X = {g|g ∈ Le(S(v)) and g is green}.
19: for each marked node v ∈ V (S) in pre-order do
20: Tree-Add(T,MS(v), R), where R is the subtree rooted at the red child

of v.
21: Return the completed tree T .

Figure 2 illustrates the algorithm through an example. Next, we prove the
correctness and analyze the time complexity of this algorithm. We need the
following additional definitions:

Definition 3 (Matched clade). Given any two rooted trees A and B on the
same leaf set, and v ∈ V (A), we say that clade CA(v) has a match in B if
Clade(B) contains CA(v).

Definition 4 (Matchable clade of S). Given any v ∈ I(S), we call the clade
CS(v) matchable if there exists some completion of T on Le(S) that contains the
clade CS(v).

The correctness of Algorithm OneTreeCompletion follows from the following
lemma.

Lemma 1. Let T ′ denote the completion of T returned by Algorithm One-
TreeCompletion on trees S and T . Let T ∗ denote an optimal completion of T on
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Fig. 2. Algorithm for ROT-RF(+). Given S and T as shown in the left column
of the figure, Algorithm OneTreeCompletion first colors each node of S either green
(circles), red (stars), or blue (squares) as shown in the middle column of the figure. A
node is colored green if all leaves in the subtree rooted at that node are present in both
S and T , red if all leaves in that subtree are present only in S, and blue if that subtree
has both green and red descendants. If a blue node v has exactly one red child, then it is
“marked”. In this example, s1 and s4 are marked nodes. The algorithm then computes
the LCA mapping, defined to be lcaT (Le(S(v)) ∩Le(T )), for each green or blue node v
of S. These LCA mappings appear in the square boxes on S in the middle column. The
algorithm then performs a pre-order traversal of S, grafting copies of the red subtrees
at each marked node onto the appropriate edges of T . The grafted subtrees are shown
using dashed red lines on T ′ in the right column. Tree T ′ is an optimal completion of
T on Le(S).

Le(S) that minimizes RF (S, T ∗). Then, RF (S, T ′) = RF (S, T ∗), implying that
T ′ is a solution for the ROT-RF(+) problem.

Proof. It suffices to show that T ′ maximizes the number of matched clades CS(v),
for v ∈ V (S).

Observe that Algorithm OneTreeCompletion partitions V (S) into three sets
according to the color assigned to each node: red, green, or blue. We will consider
these three sets of nodes separately.
Case 1: Red nodes. All maximal subtrees in S that contain only red nodes are
included as-is in the completed tree T ′. Thus, if v is a red node then CS(v) has
a match in T ′. Thus, T ′ maximizes the number of matched clades CS(v) over all
red v.
Case 2: Green nodes. We claim that if v is green and CS(v) does not have a match
in T ′ then it must be unmatchable. Suppose CS(v) has a match in T , and let
u ∈ V (T ) be such that CS(v) = CT (u). Observe that the clade CT (u) must also
appear in T ′ since no blue node x ∈ V (S) will be such that MS(x) ∈ V (T (u)).
This implies that if CS(v) has a match in T then CS(v) must also have a match
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in T ′. In other words, if CS(v) does not have a match in T ′ then CS(v) can
not have a match in T . Now, since CS(v) only contains leaves that are already
present in T , no completion of T on Le(S) can create clade CS(v) if CS(v) is not
already present in Clade(T ). Thus, if CS(v) has no match in T , then CS(v) must
be unmatchable. This proves our claim, and so T ′ must maximize the number
of matched clades CS(v) for green v.
Case 3: Blue nodes. We claim that if v is blue and CS(v) does not have a match
in T ′ then it must be unmatchable. Let C ′

S(v) denote the set containing only
the green nodes from CS(v). We will say that clade CS(v) has a partial-match
in T if and only if C ′

S(v) ∈ Clade(T ). Suppose CS(v) has a partial-match in
T , and let u be the node from T for which CT (u) = C ′

S(v) (note that, in fact,
u = MS(v)). Observe that any marked node x ∈ V (S(v)) must be such that
MS(x) ∈ V (T (u)). This implies that Algorithm OneTreeCompletion adds all
the maximal red subtrees within S(v) (i.e., subtrees rooted at a red child of
a marked node in S(v)) to one or more of the edges in the set {(pa(t), t)|t ∈
T (u)}. Moreover, since CT (u) = C ′

S(v), none of the other marked nodes y ∈
V (S)\V (S(v)) can be such that MS(y) ∈ V (T (u)). Thus, there must be a node
u′ ∈ T ′ for which CT ′(u′) = CT (u) ∪ {r|ris a red leaf fromS(v)}, and so CS(v)
must have a match in T ′. Consequently, if CS(v) has a partial-match in T then
CS(v) must have match in T ′. In other words, if CS(v) does not have a match
in T ′ then CS(v) can not have a partial-match in T .

Now, suppose v ∈ V (S) is such that CS(v) has no partial-match in T . Since,
C ′

S(v) only contains leaves that are already present in T , and there exists no
node u ∈ V (T ) for which CT (u) = C ′

S(v), no completion of T on Le(S) can
create clade CS(v). Thus, if CS(v) has no partial-match in T , then CS(v) must
be unmatchable. This proves our claim, and so T ′ must maximize the number
of matched clades CS(v) for blue v.

In summary, the tree T ′ maximizes the number of matched clades for each of
the three sets into which V (S) is partitioned, thereby maximizing the number
of matched clades over all of V (S). Hence, T ′ must be a solution for the ROT-
RF(+) problem. 	

Theorem 1. Algorithm OneTreeCompletion solves the ROT-RF(+) problem in
O(|V (S)|) time.

Proof. Lemma 1 establishes that Algorithm OneTreeCompletion solves the ROT-
RF(+) problem. It therefore suffices to show that this algorithm can be imple-
mented in O(|V (S)|) time. We consider the complexity of each of the three ‘for’
loops separately.

The ‘for’ loop of Step 1 executes a single post-order traversal of the tree
S, and so Steps 2 through 16 are executed a total of O(|V (S)|) times. Each of
the Steps 2 through 16, except for Step 16, clearly requires only O(1) time per
iteration. Step 16 can also be executed in O(1) time after an O(|S|) preprocessing
step to construct a lookup table that enables O(1) time lookup of whether a
given leaf label from S occurs in tree T as well. This lookup table can be easily
implemented using an array since the leaves of S (and T ) are uniquely labeled
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by integers from the set {1, . . . , |Le(S)|}. The indices of the array correspond
to the leaf labels, and the entries correspond to whether the corresponding leaf
appears only in S or in both T and S. Such an array can be constructed using a
single traversal through the leaf sets of S and T . Even if the leaves have arbitrary
labels, O(|S|) preprocessing time and expected O(1) lookup time can be achieved
through hashing [8].

Step 18 is executed a total of O(|V (S)|) times through the ‘for’ loop of Step
17. After an O(|V (T )|) preprocessing step on T , the least common ancestor of
any pair of nodes from V (T ) can be computed in constant time [5]. For any node
v considered in the ‘for’ loop of Step 17, computing the least common ancestor
mapping for that node (in Step 18) is equivalent to computing the least common
ancestor of the mappings of its (up to two) blue or green children. Thus, after
an O(|Le(T )|) preprocessing step on T to enable fast least common ancestor
computation [5], each execution of Step 18 requires only O(1) time. This gives
a total time complexity of O(|V (S)|) for Steps 17 and 18.

The ‘for’ loop of Step 19 executes Step 20 a total of O(|V (S)|) times. For a
marked node v, Step 20 requires O(|V (R)|) time, where R is the subtree rooted
at the red child of v, to copy over the subtree R to T . Since each such R is
disjoint from the others, over all possible marked nodes v, the total number of
nodes in all the corresponding Rs is bounded by O(|V (S)|). Thus, the total time
complexity of Steps 19 and 20 is O(|V (S)|).

Finally, Step 21 requires O(|V (S)|) time to write the completed version of T .
The total time complexity is thus O(|V (S)|). 	


Note that Algorithm OneTreeCompletion computes a single optimal comple-
tion, and that optimal completions need not be unique.

4 The R-RF(+) Problem

Observe how an optimal completion of T in the ROT-RF(+) problem maxi-
mizes the number of clades that have a match in S. This ensures a biologically
meaningful completion of T . However, in the R-RF(+) problem, where both
trees may have missing leaves, it is possible that optimal completions of the two
trees contain “extraneous” clades that contain leaves from both S and T but
do not contain any leaves common to S and T . Extraneous clades are created
by pairing a subtree containing only missing leaves from one tree with a sub-
tree containing only missing leaves from the other tree. Such clades can help to
lower the RF distance between the two completed trees, but are not biologically
meaningful since they are completely unsupported by the topologies of S and
T . This phenomenon is illustrated through an example in Fig. 3. We therefore
define a biologically meaningful variant of the R-RF(+) problem that only allows
completions that do not result in extraneous clades. Crucially, this restriction to
only non-extraneous clades also makes the underlying completion problem easier
to solve.
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Fig. 3. Extraneous clades and R-RF(+) and EF-R-RF(+) completions. This
figure shows two trees S and T with partial leaf set overlap whose optimal completions
under the R-RF(+) problem result in extraneous clades. The tree S contains two leaves
c and d that are absent from T , and the tree T contains two leaves i and j absent from
S. The lower-right part of the figure shows optimal completions of S and T , labeled S′′

and T ′′, respectively, that minimize the RF distance over all possible completions. The
nodes marked in red denote (non-leaf) clades common to both S′′ and T ′′. Observe that
of the three nodes that S′′ and T ′′ have in common, the lower two, i.e., {c, i} and {d, j}
are extraneous clades that have no support in either S or T and do not contain any of
the leaves shared by both S and T . Optimal completions under EF-R-RF(+) disallow
such extraneous clades. The upper-right part of the figure shows optimal completions
of S and T that minimize the RF distance over all completions without any extraneous
clades. The completions S′ and T ′ are more biologically meaningful since they only
contain clades that have at least one leaf shared by both trees.

Definition 5 (Extraneous clade). Suppose S and T are rooted trees. Given
completions S′ and T ′ of S and T , respectively, on Le(S) ∪ Le(T ), we define a
clade of S′ or T ′ to be an extraneous clade if it contains leaves from both S and
T but no leaves from Le(S) ∩ Le(T ).

Problem 5 (Extraneous-Clade-Free R-RF(+) (EF-R-RF(+))). Given
two rooted trees S and T , compute a completion S′ of S on Le(S) ∪ Le(T ) and
a completion T ′ of T on Le(S) ∪ Le(T ) such that S′ and T ′ do not contain any
extraneous clades and RF (S′, T ′) is minimized.

An example of an optimal EF-R-RF(+) completion appears in Fig. 3. Next,
we show how to solve the EF-R-RF(+) problem in linear time.

4.1 A Linear-Time Algorithm for EF-R-RF(+)

For the EF-R-RF(+) problem, Le(S) and Le(T ) are both proper subsets of
Le(S)∪Le(T ), i.e., both S and T must be completed on the leaf set Le(S)∪Le(T ).
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Our algorithm for this problem builds upon the algorithm for the ROT-RF(+)
problem. Specifically, we first complete T on Le(S) ∪ Le(T ) with respect to S,
then complete S on Le(S)∪Le(T ) with respect to the previous completion of T .
Formally, the algorithm is as follows:

Algorithm TwoTreeCompletion(S, T )
1: T ′ = OneTreeCompletion(S, T ).
2: S′ = OneTreeCompletion(T ′, S).
3: return S′ and T ′.

In the following, we will show that when Algorithm TwoTreeCompletion ter-
minates, the trees S′ and T ′ returned by the algorithm must be such that they
do not contain any extraneous clades, and that RF (S′, T ′) is the smallest pos-
sible for any completion of S and T that does not have extraneous clades. We
will assume, without any loss of generality, that S and T have at least one
leaf in common; if there are no leaves in common between S and T then the
EF-R-RF(+) problem has no solution since any completion of S and T would
necessarily contain extraneous clades.

For brevity, in the remainder of this section, we will implicitly assume that
all completions of S and T are on the leaf set Le(S)∪Le(T ). Next, we define the
notions of original nodes, grafted nodes, and grafted subtrees in tree completions.

Definition 6 (Original nodes). Let S′ and T ′ denote any completions of S
and T . Observe that completing a tree creates new internal nodes in the tree but
preserves all original internal nodes (though not necessarily the clades rooted at
those nodes). Thus, we have I(S) ⊂ I(S′) and I(T ) ⊂ I(T ′). The set of nodes
in I(S′) that are also present in I(S) are called the original nodes of S′, denoted
O(S′). Analogously, the set of nodes in I(T ′) that are also present in I(T ) are
called the original nodes of T ′, denoted O(T ′).

Definition 7 (Grafted nodes). Let S′ and T ′ denote any completions of S
and T . Observe that any node u ∈ I(S′)\O(S′) is either a node that was already
present in a subtree from T (consisting of leaves missing from S) as that subtree
was grafted into S, or a new node that was created as a subtree from T (consisting
of leaves missing from S) was grafted into S. We refer to the new nodes created
by the grafting of a subtree from T into S′ as the grafted nodes of S′, denoted
G(S′). Analogously, the set of nodes in I(T ′) \ O(T ′) that were newly created
through the process of grafting a subtree from S into T are called the grafted
nodes of T ′, denoted G(T ′).

Definition 8 (Grafted subtrees). If S′ denotes any completion of S and u ∈
G(S′), then u is created by the grafting of a subtree of T (consisting of leaves
missing from S) at that node u in S′. We denote the grafted subtree of T at u
by graft(u). Similarly, if T ′ denotes any completion of T and v ∈ G(T ′), then v
is created by the grafting of a subtree of S at that node v in T ′. We denote the
grafted subtree of S at v by graft(v).
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Node Colorings. For convenience, we will color the nodes of S and T according
to the coloring scheme used in Algorithm OneTreeCompletion. Thus, each node
of S and T is colored either red, or green, or blue. We will assume that these
colored nodes maintain their original colors in the completed trees S′ and T ′,
and thus both S′ and T ′ contain nodes that are red, green, and blue, as well as
nodes that are uncolored.

We now show that the completed trees S′ and T ′ returned by Algorithm
TwoTreeCompletion must be free of extraneous clades.

Lemma 2. The trees S′ and T ′ returned by Algorithm TwoTreeCompletion do
not have any extraneous clades.

Proof. Let us first consider the tree T ′. Any non-original node in T ′ is either a
node from a maximal red subtree of S or is a grafted node created by grafting
a maximal red subtree of S into T ′ using the Tree-Add operation. Based on
Algorithm OneTreeCompletion, each grafted node created through the Tree-Add
operation has at least one green descendant, and so it cannot be extraneous.
Moreover, any node inside a maximal red subtree of S only has descendants
from S, not from T . Thus, since T did not contain any extraneous clades to
begin with, neither can T ′. An analogous argument applies to S′. 	


The next lemma identifies an important property of optimal completions.

Lemma 3. Let S∗ and T ∗ be any optimal completions of S and T , respectively,
under the EF-R-RF(+) problem. Then, for any u ∈ G(S∗), graft(u) must be a
maximal red subtree of T and, for any v ∈ G(T ∗), graft(v) must be a maximal
red subtree of S.

Proof. Observe that any maximal red subtree of T must appear as-is in the tree
T ∗, since grafting a red leaf or subtree from S into any of the red subtrees of
T would result in an extraneous clade. We will show that if there exists a node
u ∈ G(S∗) for which graft(u) is not a maximal red subtree of T , it is possible to
modify the tree S∗ so that the modified tree has more matched clades than S∗, a
contradiction. An analogous argument applies to T ∗. Suppose there exists such
a node u. Then, there must exist a red internal node r of T such that the two
subtrees, denoted R′ and R′′, rooted at the two children of r appear as-is in the
tree S∗ but not as siblings of each other (i.e., their roots do not have the same
parent in S∗). Let r′ and r′′ denote the root nodes of R′ and R′′, respectively,
and s′ and s′′ denote the parents of r′ and r′′ in S∗. Thus, R′ = graft(s′) and
R′′ = graft(s′′). Now, observe that all clades of S∗ rooted either at a node on
the path from lcaS∗(s′, s′′) to s′ or on the path from lcaS∗(s′, s′′) to s′′, except
for the node lcaS∗(s′, s′′) itself, must be mismatched clades (since all maximal
red subtrees of T appear as-is in the tree T ∗). Also, note that if S∗ is modified
by pruning out the subtree R′ and regrafting it on the edge (s′′, r′′), then the
only matched clades that can become mismatched are the ones whose roots lie
on the path from lcaS∗(s′, s′′) to s′ or from lcaS∗(s′, s′′) to s′′, except for node
lcaS∗(s′, s′′). Thus, modifying the tree S∗ in this fashion does not result in any
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additional mismatched clades, but results in a new matched clade rooted at
the node where R′ is regrafted. Thus, the modified tree has a larger number of
matched clades than S∗, which is a contradiction. 	


We also have the following simple observation about optimal completions.

Observation 1. Let S∗ and T ∗ be optimal completions of S and T , respectively,
that satisfy the property described in Lemma 3. Then any u ∈ G(S∗) and any
v ∈ G(T ∗) must have at least one green leaf as a descendant.

Proof. This follows immediately from the fact that, under EF-R-RF(+), each
clade must contain at least one green leaf (otherwise it would be an extraneous
clade). 	


Finally, the following lemmaproves the correctness ofAlgorithmTwoTreeCom-
pletion. For brevity, its proof is deferred to the full version of this paper.

Lemma 4. Let S′ and T ′ denote the completions of S and T , respectively,
returned by Algorithm TwoTreeCompletion. Let S∗ and T ∗ denote optimal
completions of S and T , respectively, under the EF-R-RF(+) problem. Then,
RF (S′, T ′) = RF (S∗, T ∗).

The next theorem now follows immediately based on Algorithm TwoTreeCom-
pletion, Theorem 1, and Lemma 4.

Theorem 2. Algorithm TwoTreeCompletion solves the EF-R-RF(+) problem
in O(|V (S)| + |V (T )|) time.

5 Extension to Unrooted Trees

The linear-time algorithms for the ROT-RF(+) and EF-R-RF(+) problems
described in the previous two sections can be easily extended to unrooted trees
without any increase in time complexity. The idea is to first root the two unrooted
trees at any leaf-edge that is common to both trees, and then apply the algo-
rithm for ROT-RF(+) or EF-R-RF(+) on the resulting rooted trees. It can be
shown that this is guaranteed to result in optimal solutions for UOT-RF(+) and
EF-U-RF(+). Further details and proofs are deferred to the full version of this
paper.

6 Experimental Evaluation

We implemented our algorithm for the ROT-RF(+) problem and applied it to
three large biological supertree data sets with the goal of assessing the impact
of using RF(+) distance instead of the traditional RF(-) distance in prac-
tice. Specifically, we computed a supertree (using a standard supertree method;
RFS [3] in this case) for each of the supertree data sets, and computed the RF(+)
and RF(-) distances between the supertree and the input trees for each data set.
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Let the RF(+) distance between a supertree S and an input tree I be denoted by
RF+(S, I), and the RF(-) distance those two trees by RF−(S, I). For each data
set, we ordered the input trees according to their RF(+) and RF(-) distances to
the supertree and measured how often the relative ranking between any pair of
input trees differs between the two rankings. More precisely, given a supertree
S and its set of input trees I, we computed RF−(S, I) and RF+(S, I) for each
I ∈ I, and counted the number of Type-1, Type-2, and Type-3 pairs {I ′, I ′′},
where I ′, I ′′ ∈ I, as follows:
Type-1 pairs. Pair {I ′, I ′′} is Type-1 if either RF−(S, I ′) < RF−(S, I ′′) but
RF+(S, I ′) > RF+(S, I ′′), or RF−(S, I ′) > RF−(S, I ′′) but RF+(S, I ′) <
RF+(S, I ′′). These are pairs for which the RF(+) and RF(-) distances impose
completely opposite orderings relative to the supertree.
Type-2 pairs. Pair {I ′, I ′′} is Type-2 if RF−(S, I ′) = RF−(S, I ′′) but
RF+(S, I ′) �= RF+(S, I ′′). For these pairs, RF(-) distances are identical but
RF(+) distances are not.
Type-3 pairs. Pair {I ′, I ′′} is Type-3 if RF−(S, I ′) �= RF−(S, I ′′) but
RF+(S, I ′) = RF+(S, I ′′). For these pairs, RF(+) distances are identical but
RF(-) distances are not.

The three data sets, marsupials [6], placental mammals [4], and legumes [32],
contain 272, 116, and 571 species, and 158, 726, and 22 input trees, respectively.
We observed that for the 158 input trees of the marsupial data set, there were
521 Type-1 pairs, 619 Type-2 pairs, and 376 Type-3 pairs. For the 726 input
trees of the placental mammals data set, there were 5, 816 Type-1 pairs, 14, 344
Type-2 pairs, and 6, 238 Type-3 pairs. Likewise, for the 22 input trees in the
legumes data set, we observed 8 Type-1 pairs, 3 Type-2 pairs, and no Type-
3 pairs. These results show that there can be substantial difference between
RF(-) and RF(+) distances and suggest that using RF(+) distances can result
in different evolutionary inferences compared to inferences using RF(-).

Our current implementation is available from the author upon request. An
improved open-source version, currently under development, will be released
with the full version of this paper.

7 Conclusion

In this work, we provide the first optimal, linear-time algorithms for two funda-
mental computational problems that arise when comparing phylogenetic trees
with non-identical leaf sets. For the first problem, which arises when computing
the RF(+) distance between two trees where the leaf set of one tree is a proper
subset of the other, we improved upon the time complexity of the previous fastest
algorithm by a factor of n, where n is the size of the larger of the two trees. For
the second problem, which arises when computing the RF(+) distance between
two trees that have only partially overlapping leaf sets, and for which there are
no existing algorithms, we defined a biologically meaningful restriction of the
problem and provided an optimal linear-time algorithm for it. Our algorithms
are easy to implement and should be scalable even to trees with millions of taxa.
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The algorithms work for both rooted and unrooted trees, and can be directly
applied wherever phylogenetic distances must be computed between trees with
non-identical leaf sets. Furthermore, our experiments with three large biological
supertree data sets suggest that using the RF(+) distance can result in different
evolutionary inferences compared to using the RF(-) distance.

The algorithms presented here have several important, well-established appli-
cations, including construction of majority-rule(+) supertrees and supertree con-
struction in general, phylogenetic database search, and clustering of phylogenetic
trees, and these applications should be studied and developed further. A more
detailed experimental study is needed to properly assess the impact of using
RF(+) distances and to systematically study the effect of factors such as frac-
tion of leaf set overlap and degree of discordance between trees. This work also
motivates several theoretical questions for future investigation. For instance, our
algorithms for the EF-R-RF(+) and EF-U-RF(+) problems cannot be easily
extended to solve the R-RF(+) and U-RF(+) problems. In particular, if optimal
completions are allowed to contain extraneous clades, then inferring the number
and composition of these extraneous clades (to attain overall optimality) appears
to be computationally challenging. It would be interesting to determine if linear
or near-linear time algorithms exist for R-RF(+) and U-RF(+).

Funding. This work was supported in part by NSF awards IIS 1553421 and MCB
1616514 to MSB.
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Abstract. Word-based or ‘alignment-free’ methods for phylogeny
reconstruction are much faster than traditional, alignment-based
approaches, but they are generally less accurate. Most alignment-free
methods calculate pairwise distances for a set of input sequences, for
example from word frequencies, from so-called spaced-word matches or
from the average length of common substrings. In this paper, we pro-
pose the first word-based phylogeny approach that is based on multiple
sequence comparison and Maximum Likelihood. Our algorithm first sam-
ples small, gap-free alignments involving four taxa each. For each of these
alignments, it then calculates a quartet tree and, finally, the program
Quartet MaxCut is used to infer a super tree for the full set of input taxa
from the calculated quartet trees. Experimental results show that trees
calculated with our approach are of high quality.

Keywords: Alignment-free · Phylogeny · Likelihood · Spaced words

1 Introduction

Sequence-based phylogeny reconstruction is a fundamental task in computational
biology. Standard phylogeny methods rely on sequence alignments of either entire
genomes or of sets of orthologous genes or proteins. Character based methods
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such as Maximum Parsimony [14,17] or Maximum Likelihood [15] infer trees
based on evolutionary substitution events that may have happened since the
species evolved from their last common ancestor. These methods are generally
considered to be accurate as long as the underlying alignment is of high quality
and as long as suitable substitution models are used. However, for the task of
multiple alignment no exact polynomial-time algorithm exists, and even heuristic
approaches are relatively time consuming [45]. Moreover, exact algorithms for
character-based approaches are themselves NP hard [10,18].

Distance methods, by contrast, infer phylogenies by estimating evolution-
ary distances for all pairs of input taxa. Here, pairwise alignments are sufficient
which can be faster calculated than multiple alignments, but still require runtime
proportional to the product of the lengths of the aligned sequences. However,
there is a loss in accuracy compared to character-based approaches, as all of the
information about evolutionary events is reduced to a single number for each
pair of taxa, and not more than two sequences are considered simultaneously,
as opposed to character-based approaches, where all sequences are examined
simultaneously. The final trees are obtained by clustering based on the distance
matrices, most commonly with Neighbor Joining [44]. Since both pairwise and
multiple sequence alignments are computationally expensive, they are ill-suited
for the increasingly large datasets that are available today due to the next gen-
eration sequencing techniques.

In recent years, alignment free approaches to genome-based phylogeny recon-
struction have been published which are very fast in comparison to alignment-
based methods [5,7,39,41,48,57]. Some of these approaches – despite being called
‘alignment-free’ – are using pairwise gap-free ‘mini-alignments’; recently, meth-
ods have been proposed that estimate phylogenetic distances based on the rela-
tive frequency of mismatches in such ‘mini-alignments’. Another advantage of the
so-called ‘alignment-free’ methods for genome comparison is that they can cir-
cumvent common problems of alignment-based approaches such as genome rear-
rangements and duplications. Moreover, alignment-free methods can be applied
not only to entire genomes, but also to partially sequenced genomes or even to
unassembled reads [11,43,49,56]. A disadvantage of these methods is that they
are considerably less accurate than slower, alignment-based methods.

A recently proposed ‘alignment-free’ method is co-phylog [56]. This app-
roach finds short, gap-free alignments of a fixed length, consisting of matching
nucleotide pairs only, except for the middle position in each alignment, where
mismatches are allowed. Phylogenetic distances are estimated from the fraction
of such alignments for which the middle position is a mismatch. As a general-
ization of this approach, andi [23] uses pairs of maximal exact word matches
that have the same distance to each other in both sequences and uses the fre-
quency of mismatches in the segments between those matches to estimate the
number of substitutions per position between two input sequences. Since co-
phylog and andi require a minimum length of the flanking word matches in order
to reduce the number of matches that are mere random background matches,
they tend not to perform well on distantly related sequences where long exact
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matches are less frequent. Moreover, the number of random segment matches
grows quadratically with the length of the input sequences while the expected
number of homologous matches grows only linearly. Thus, longer exact matches
are necessary in these approaches to limit the number of background matches if
longer sequences are compared. This, in turn, reduces the number of homologies
that are found, and therefore the amount of information that can be used to
calculate accurate distances. Other alignment-free approaches are based on the
length of maximal common substrings between sequences that can be rapidly
found using suffix trees or related data structures [24,55]. As a generalization
of this approach, some methods use longest common substrings with a certain
number of mismatches [3,29,32,53,54].

In previous publications, we proposed to use words with wildcard charac-
ters – so-called spaced words – for alignment-free sequence comparison [25,28].
Here, a binary pattern of match and don’t-care positions specifies the positions
of the wildcard characters, see also [20,35,37]. In Filtered Spaced-Word Matches
(FSWM) [31] and Proteome-based Spaced-Word Matches (Prot-SpaM) [30], align-
ments of such spaced words are used where sequence positions must match at
the match positions while mismatches are allowed at the don’t care positions. A
score is calculated for every such spaced-word match in order to remove – or filter
out – background spaced-word matches; the mismatch frequency of the remaining
homologous spaced-word matches is then used to estimate the number of substi-
tutions per position that happened since two sequences evolved from their last
common ancestor. The filtering step allows us to use patterns with fewer match
positions in comparison to above mentioned methods co-phylog and andi, since
the vast majority of the background noise can be eliminated reliably. Thus, the
phylogenetic distances calculated by FSWM or Prot-SpaM are generally rather
accurate, even for large and distantly related sequences.

In this paper, we introduce a novel approach to phylogeny reconstruction
called Multiple Spaced-Word Matches (Multi-SpaM) that combines the speed
of the so-called ‘alignment free’ methods with the accuracy of the Maximum-
Likelihood approach. While other alignment free methods are limited to pair-
wise sequence comparison, we generalize the spaced-word approach to multiple
sequence comparison. For a binary pattern of match and don’t care positions,
Multi-SpaM identifies quartet blocks of four matching spaced words each, i.e. gap-
free four-way alignments with matching nucleotides at the match positions of the
underlying binary pattern and possible mismatches at the don’t care positions
(see Fig. 2 for an example). For each such quartet block, an optimal Maximum-
Likelihood tree topology is calculated with the software RAxML [50]. We then
use the Quartet MaxCut algorithm [47] to combine the calculated quartet tree
topologies into a super tree. We show that on both simulated and real data,
Multi-SpaM produces phylogenetic trees of high quality and often outperforms
other alignment-free methods. An earlier version of the present paper has been
uploaded to the preprint server arXiv [13].
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2 Method

2.1 Spaced Words and P -blocks

To describe our method, we first need to introduce some formal definitions. We
want to compare sequences over an alphabet A; since our approach is dealing
with DNA sequences, our alphabet is A = {A,C,G, T}. For a given binary
pattern P ∈ {0, 1}�, a spaced word with respect to P is a word W of length �
over A ∪ {∗}, such that W (i) = ∗ if and only if P (i) = 0. A spaced word W
can be considered as a regular expression where ‘∗’ is a wildcard character. A
position i ∈ {1, . . . , �} is called a match position if P (i) = 1 and a don’t care
position otherwise. The number of match positions in P is called the weight of
the P . For a DNA Sequence S of length n and a position 1 ≤ i ≤ n − � + 1, we
say that a spaced word W with respect to P occurs in S at position i, or that
[S, i] is an occurrence of W – if S(i + j − 1) = W (j) for all match positions j.
This corresponds to the definition previously used in [28,33].

A pair ([S, i], [S′, i′]) of occurrences of the same spaced word W is called
a spaced-word match. For a substitution matrix assigning a score s(X,Y ) to
X,Y ∈ A, we define the score of a spaced word match ([S, i], [S′, i′]) of length � as

∑

1≤k≤�

s(S(i + k − 1), S′(i′ + k − 1))

That is, if we align the two occurrences of W to each other, the score of the
spaced-word match is the sum of the scores of the nucleotides aligned to each
other. In Multi-SpaM, we are using the following nucleotide substitution matrix
that has been proposed in [9]:

A C G T
A 91 −114 −31 −123
C 100 −125 −31
G 100 −114
T 91

(1)

Multi-SpaM starts with generating a binary pattern P with user-defined length �
and weight w; by default, we use values � = 110 and w = 10, i.e. by default the
pattern has 10 match positions and 100 don’t-care positions. We are using a low
weight to obtain a large number of spaced-word matches when comparing two
sequences. This includes necessarily a high proportion of random spaced-word
matches. The high number of don’t-care positions, on the other hand, allows
us to accurately distinguish between homologous and background spaced-word
matches.

Given these parameters, a pattern P is calculated by running our previously
developed software tool rasbhari [21] minimizing the overlap complexity [26,27].
As a basis for phylogeny reconstruction, we are using four-way alignments con-
sisting of occurrences of the same spaced word with respect to P in four different
sequences or their reverse complements. We call such an alignment a quartet P -
block or a P -block, for short. A P -block is thus a gap-free alignment of length �



Multi-SpaM 231

where in the k-th column identical nucleotides are aligned if k is a match posi-
tion in P , while mismatches are possible if k is a don’t-care position (see Fig. 2).
Note that a P -block can involve spaced words from both strands of the input
sequences. The number of such P -blocks can be very large: if there are n occur-
rences of a spaced-word W in n different sequences, then this gives rise to

(
n
4

)

different P -blocks. Thus, instead of using all possible P -blocks, Multi-SpaM ran-
domly samples a limited number of P -blocks to keep the program run time under
control (Fig. 1).

Fig. 1. Spaced-word match with respect to a pattern P = 1101001.

Moreover, for phylogeny reconstruction, we want to use P -blocks that are
likely to represent true homologies. Therefore, we introduce the following defi-
nition: a P -block – i.e. a set of four occurrences of the same spaced word W –
is called a homologous P -block if it contains at least one occurrence [Si, p] of W
such that all remaining three occurrences of W have positive scores when com-
pared to [Si, p]. To sample a list of homologous P -blocks, we randomly select
spaced-word occurrences with respect to P from the input sequences and their
reverse complements. For each selected [Si, p], we then randomly select occur-
rences of the same spaced word from sequences Sj �= Si, until we have found
three occurrences of W from three different sequences that all have positive
scores with [Si, p].

Fig. 2. P -block for a pattern P = 11001: the spaced word W = CC ∗ ∗G occurs at
[S1, 2], [S4, 1], [S5, 7] and [S6, 3].

To find spaced-word matches efficiently, we first sort the list of all occurrences
of spaced words with respect to P in lexicographic order. This way, we obtain a
list of spaced-word occurrences where all occurrences of the same spaced word
W are appearing as a contiguous block. Once we have sampled a homologous
P -block as described, we remove the four occurrences of W from our list of
spaced-word occurrences, so no two of the sampled P -blocks can contain the
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same occurrence of a spaced word. The algorithm continues to sample P -blocks
until no further P -blocks can be found, or until a maximal number of M P -blocks
is reached. By default, Multi-SpaM uses a maximal number of M = 1, 000, 000
P -blocks, but this parameter can be adjusted by the user.

2.2 Quartet Trees

For each of the sampled quartet P -blocks, we infer an unrooted tree topology.
This most basic unrooted phylogenetic unit is called a quartet topology; there
are three possible different quartet topologies for a set of four taxa. To iden-
tify the best of these three topologies, we use the Maximum-Likelihood program
RAxML [50]. We integrated parts of the RAxML code into our software and used
the program with the GTR model [52]. This corresponds to using the command-
line version of RAxML with the option "-m GTRGAMMA -f q -p 12345". We
note that RAxML is a general Maximum-Likelihood software, its use in our con-
text is fairly degenerated, as we only use it to infer optimal quartet topologies.

After having the optimal tree topology for each of the sampled quartet P-
blocks, we need to amalgamate them into a single tree spanning the entire taxa
set. This task is denoted the Supertree Task [6] and is known to be NP hard, even
for the special case where the input is limited to quartets topologies, as in our
case [51]. Nevertheless there are several heuristics for this task, with MRP [4,40]
the most popular. Here we chose to use Quartet MaxCut [46,47] that proved to
be faster and more accurate for this kind of input [2]. In brief, Quartet MaxCut
partitions recursively the taxa set where each such partition corresponds to a
split in the final tree. In each such recursive step, a graph over the taxa set is
built where the set of quartets induces the edge set in that graph. The idea is to
partition the vertex set (the taxa) such that the minimum quartets are violated.
This is achieved by a semidefinite-programming-like algorithm that embeds the
graph on the unit sphere and applies a random hyperplane through the sphere.

2.3 Implementation

To keep the runtime of our software manageable, we integrated the RAxML code
directly into our program code. We parallelized our program with openmp [36].

3 Test Results

To evaluate Multi-SpaM and to compare it to other fast, alignment-free meth-
ods, we applied these approaches to both simulated and real sequence data and
compared the resulting trees to reference trees. In phylogeny reconstruction,
artificial benchmark data are often used since here, ‘correct’ reference trees are
known. For the real-world sequence data that we used in our study, we had
to rely on reference trees that are believed to reflect the true evolutionary his-
tory, or on trees calculated using traditional, alignment-based methods that can
be considered to be reasonably accurate. In our test runs, we used standard
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parameters for all methods, if such parameters were suggested by the respective
program authors. The program kmacs [29] that was one of the programs that we
evaluated, has no default value for its only parameter, the number k of allowed
mismatches in common substrings. Here, we chose a value of k = 4. While Multi-
SpaM produces tree topologies without branch lengths, all other methods that
we compared produce distance matrices. To generate trees with these methods,
we applied Neighbor-joining [44] to the distances produced by these methods.

Fig. 3. Average Robinson-Foulds (RF) distances between trees calculated with
alignment-free methods and reference trees for three datasets of simulated bacterial
genomes. FSWM and Multi-SpaM were run 10 times, with different patterns P gener-
ated (see main text). Error bars indicate the lowest and highest RF distances, respec-
tively.

To compare the trees produced by the different alignment-free methods to
the respective benchmark trees, we used the Robinson-Foulds (RF) metric [42],
a standard measure to compare how different two tree topologies are. Thus, the
smaller the RF distances between reconstructed trees and the corresponding ref-
erence trees are, the better a method is. To calculate Neighbor-joining trees and
to calculate RF distances between the obtained trees and the respective refer-
ence trees, we used the PHYLIP package [16]. As explained above, both FSWM
and Multi-SpaM rely on binary patterns of match and don’t care positions; the
results of these programs therefore depend on the underlying patterns. Both
programs use the software rasbhari [21] to calculate binary patterns. rasbhari
uses a probabilistic algorithm, so different program runs usually return different
patterns and, as a result, different program runs with FSWM and Multi-SpaM
may produce slightly different distance estimates, even if the same parameter
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Fig. 4. RF distances for three sets of simulated mammalian genomes. If no bar is
shown, the RF distance is zero for the respective method and data set. E.g. the RF
distance between the tree generated by kmacs for data set m1 and the reference tree
is zero, i.e. here the reference tree topology was precisely reconstructed. Error bars for
FSWM and Multi-SpaM are as in Fig. 3.

values are used. To see how FSWM and Multi-SpaM depend on the underlying
binary patterns, we ran both programs ten times on each data set. The figures
in the Results section report the average RF-distance for each data set over
the ten program runs. Error bars indicate the highest and lowest RF-distances,
respectively, for the 10 program runs.

3.1 Simulated Sequences

At first, we evaluated Multi-SpaM on datasets generated with the Artificial Life
Framework (ALF) [12]. ALF starts by simulating an ancestral genome that
includes a number of genes. According to a guide tree which is either provided by
the user or randomly generated, ALF simulates speciation events and other evo-
lutionary events such as substitutions, insertions and deletions for nucleotides,
as well as duplications, deletions and horizontal transfer of entire genes. A large
number of parameters can be specified by the user for these events. We used
parameter files that were used in a study by the authors of ALF [12]. This
way, we generated six datasets, three with simulated γ-proteobacterial genomes
(b1, b2, b3), and three with simulated mammalian genomes (m1,m2,m3). We
used the base parameter sets for each dataset and only slightly modified them
to generate DNA sequences for roughly 1,000 genes per taxon which we then
concatenated to full genomes. As in [12], we used parameter values 7.2057 and
401.4189 for the length distribution of the simulated bacterial sequences and
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1.7781 and 274.1061, respectively, for the length distribution of the simulated
mammalian sequences. Within each data set, we used the same rate for gene
duplication, gene loss and horizontal gene transfer, but we used different rates
for different data sets. For the six data sets, the corresponding rates were set
to 0.0025 (b1), 0.0018 (b2), 0.0017 (b3), 0.0058 (m1), 0.0068 (m2), 0.011 (m3),
respectively.

Each data generated in this way set contains 30 genomes (taxa) and has a size
of around 10 mb. As shown in Fig. 3, none of the tools that we evaluated were able
to exactly reconstruct the reference tree topologies for the simulated bacterial
genomes. In contrast, reference topologies for the simulated mammalian genomes
could be reconstructed by some tools, although no method could reconstruct all
three reference topologies exactly, see Fig. 4.

3.2 Real Genomes

We also applied the programs that we evaluated to real genomes to see if the
results are similar to our results on simulated genomes. Here, our first dataset
were 29 E. coli and Shigella genomes which are commonly used as a bench-
mark dataset to evaluate alignment-free methods [23]. As a reference, we used
a tree calculated with Maximum Likelihood, based on a mugsy alignment [1].
The dataset is 144 mb large and the average distance between two sequences
in this set is about 0.0166 substitutions per sequence position. Next, we used a
set of 32 Roseobacter genomes of 132 mb with a reference tree published by [34];
here the distance between sequence pairs was 0.233 substitutions per position
on average. As a third benchmark set, we used 19 Wolbachia genomes that have
been analyzed by [19]; we used the phylogeny published in their paper as a ref-
erence. The total size of this sequence set is 25 mb, the average pairwise distance
is 0.06 substitutions per position. The results of these three series of test runs
are summarized in Fig. 5.

Finally, we applied our dataset to a much larger dataset of eukaryotic
genomes. It consists of 14 plant genomes totalling 4.8 gb. Figure 6 shows the
resulting trees. For this data set, we used a pattern with a weight of w = 12
instead of the default value w = 10, to keep the number of background spaced-
word matches manageable. For a dataset of this size, the number of additional
score calculations would increase the runtime unnecessarily if one would use the
default weight of w = 10. As can be seen in Fig. 6, Multi-SpaM and FSWM pro-
duced fairly accurate trees for this data set, with only minor differences to the
reference tree: Multi-SpaM misclassified Carica papaya, whereas FSWM failed to
classify Brassica rapa correctly. None of the other alignment-free tools that we
evaluated could produce a reasonable tree for this data set: andi returned a tree
that is rather different to the reference tree, while kmacs and co-phylog could
not finish the program runs in a reasonable timeframe.

As explained in the Method section, Multi-SpaM calculates an optimal tree
topology for each of the sampled quartet P -blocks. Here, it can happen that no
single best topology is found. In particular for closely related sequences, this hap-
pens for a large fraction of the sampled quartet P -blocks. For the E. coli/Shigella
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Fig. 5. RF distances for three sets of benchmark genomes: 29 E. coli/Shigella genomes,
32 Roseobacter genomes and 19 Wolbachia genomes. Error bars for FSWM and Multi-
SpaM as in Fig. 3.

Fig. 6. Reference tree (A) from [22] and trees reconstructed by andi (B), FSWM (C)
and Multi-SpaM (D) for a set of 14 plant genomes.

data set, for example, around 50% of the quartet blocks were inconclusive, i.e.
RAxML could find no single best tree topology. We observed a similar result for
a dataset of 13 Brucella genomes where the pairwise phylogenetic distances are
even smaller than for the E. coli/Shigella data set, namely 0.0019 substitutions
per site, on average. Here, roughly 80% of the blocks were inconclusive. For all
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other datasets, the fraction of inconclusive quartet P -blocks was negligible. For
example, for the set of 14 plant genomes, only ∼250 out of the 1,000,000 sampled
P -blocks were inconclusive.

3.3 Program Runtime and Memory Usage

Table 1 shows the program run time for Multi-SpaM, FSWM, kmacs, andi and
co-phylog on the three real-world data sets in our program comparison. The test
runs were done on a 5 x Intel(R) Xeon(R) CPU E7-4850 with 2.00 GHz, a total
of 40 threads (20 cores). For the largest data set in our study, the set of 14
plant genomes, the peak RAM usage was 76 GB for FSWM, 110 GB for andi
and 142 GB for Multi-SpaM. In memory saving mode, the peak RAM usage of
Mult-SpaM could be reduced to 10.5 GB, but this roughly doubles the program
run time.

Table 1. Runtime in seconds for different alignment-free approaches on the four sets
of real-world genomes that we used in this study. On the largest data set, the 14 plant
genomes, kmacs and co-phylog did not terminate the program run. On this data set,
we increased the pattern weight for Multi-SpaM from the default value of w = 10 to
w = 12, in order to reduce the run time. Note that Multi-SpaM, FSWM and andi are
parallelized, so we could run them on multiple processors, while kmacs and co-phylog
had to be run on single processors. The reported run times are wall-clock times.

M.-SpaM FSWM kmacs andi co-phylog

E. coli/Shig. 683 906 41,336 11 443

Roseobac. 7,991 746 13,163 17 615

Wolbachia 382 70 17,581 2.6 58

Plants 27,072 1,107,720 - 1,808 -

4 Discussion

While standard methods for phylogeny reconstruction are time consuming
because they rely on multiple sequence alignments and on time-consuming proba-
bilistic calculations, recent so-called ‘alignment-free’ methods are orders of mag-
nitudes faster. Existing alignment-free phylogeny methods are distance based
approaches which are generally regarded to be less accurate than character-
based approaches. In this paper, we introduced a novel approach to phylogeny
reconstruction called Multi-SpaM to combine the speed of alignment-free meth-
ods with the accuracy of Maximum Likelihood. To our knowledge, this is the first
alignment-free approach that uses multiple sequence comparison and Likelihood.

Our test runs show that Multi-SpaM produces phylogenetic trees of high qual-
ity. It outperforms other alignment-free methods, in particular on sequences with
large evolutionary distances. For closely related input sequences, such as differ-
ent strains of the same bacterial species, however, our approach was sometimes
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outperformed by other alignment-free methods. As shown in Fig. 5, the programs
andi, co-phylog and FSWM produce better results on a set of E. coli/Shigella
genomes than Multi-SpaM. This may be due to our above mentioned observation
that for many quartet P -blocks no single best tree topology can be found if the
compared sequences are very similar to each other.

Calculating optimal tree topologies for the sampled quartet P -blocks is a
relatively time-consuming step in Multi-SpaM. In fact, we observed that the
program run time is roughly proportional to the number of quartet blocks for
which topologies are calculated. However, the maximal number of quartet blocks
that are sampled is a user-defined parameter. By default we sample up to M =
1, 000, 000 quartet blocks; in our test runs, the quality of the resulting trees could
not be significantly improved by further increasing M . Consequently, our method
is relatively fast on large data sets, where only a small fraction of the possible
quartet-blocks is sampled. By contrast, on small data sets, Multi-SpaM is slower
than other alignment-free methods. We have parallelized our software to run on
multiple cores; the run times in Table 1 are wall-clock run times. It should be
straight-forward to adapt our software to be run on distributed systems, as has
been done for other alignment-free approaches [8,38].

Apart from the maximum number of sampled quartet blocks, the only rel-
evant parameters of our approach are the length and the weight – i.e. number
of match positions – of the underlying binary pattern. For Multi-SpaM, we used
similar default parameter values as in Filtered Spaced Word Matches (FSWM)
[31], namely a weight of w = 10 and a pattern length of � = 110, i.e. our default
patterns have 10 match positions and 100 don’t-care positions. As mentioned
in Sect. 2.1, a large number of don’t care positions is important in FSWM and
Multi-SpaM as this makes it easier to distinguish homologous from random back-
ground spaced-word matches. Also, with a large number of don’t-care positions,
the number of inconclusive quartet P -blocks is reduced for sequences with a
high degree of similarity. On the other hand, we found that the number of match
positions has less impact on the performance of Multi-SpaM. On large data sets
it is advisable to increase the weight of P since this reduces the fraction of
background spaced-word matches, and therefore the number of spaced words for
which their scores need to be calculated by the program. A higher weight, thus,
reduces the program run time. For the largest data set our study, the set of plant
genomes, we increased the pattern weight from the default value of 10 to a value
of 12 to keep the run time of Multi-SpaM low.

Our current implementation uses the previously developed software Quar-
tet MaxCut by [46,47] to calculate supertrees from quartet tree topologies. We
are using this program since it is faster than other supertree approaches. As a
result, the current version of Multi-SpaM generates tree topologies only, i.e. trees
without branch lengths. We will investigate in the future, if our approach can
be extended to calculate full phylogenetic trees with branch lengths, based on
the same quartet P -blocks that we have used in the present study.
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acknowledge support by the Open Access Publication Funds of Göttingen University.
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Abstract. An emerging discovery in phylogenomics is that interspecific
gene flow has played a major role in the evolution of many different organ-
isms. To what extent is the Tree of Life not truly a tree reflecting strict
“vertical” divergence, but rather a more general graph structure known as
a phylogenetic network which also captures “horizontal” gene flow? The
answer to this fundamental question not only depends upon densely sam-
pled and divergent genomic sequence data, but also computational meth-
ods which are capable of accurately and efficiently inferring phylogenetic
networks from large-scale genomic sequence datasets. Recent methodolog-
ical advances have attempted to address this gap. However, in the 2016
performance study of Hejase and Liu, state-of-the-art methods fell well
short of the scalability requirements of existing phylogenomic studies.

The methodological gap remains: how can phylogenetic networks be
accurately and efficiently inferred using genomic sequence data involv-
ing many dozens or hundreds of taxa? In this study, we address this
gap by proposing a new phylogenetic divide-and-conquer method which
we call FastNet. We conduct a performance study involving a range of
evolutionary scenarios, and we demonstrate that FastNet outperforms
state-of-the-art methods in terms of computational efficiency and topo-
logical accuracy.

1 Introduction

Recent advances in biomolecular sequencing [30] and evolutionary modeling and
inference [10,34] set the stage for a new era of phylogenomics. One major out-
come is the discovery that interspecific gene flow has played a major role in the
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evolution of many different organisms across the Tree of Life [1,23,29], including
humans and ancient hominins [15,39], butterflies [44], mice [28], and fungi [14].
These findings point to new directions for phylogenetics and phylogenomics: to
what extent is the Tree of Life not truly a tree reflecting strict vertical diver-
gence, but rather a more general graph structure known as a phylogenetic net-
work where reticulation edges and nodes capture gene flow? And what is the
evolutionary role of gene flow? In addition to densely sampled and divergent
genomic sequence data, one additional ingredient is needed to make progress on
these questions: computational methods which are capable of accurately and effi-
ciently inferring phylogenetic networks on large-scale genomic sequence datasets.

Recent methodological advances have attempted to address this gap. Soĺıs-
Lemus and Ané proposed SNaQ [42], a new statistical method which seeks to
address the computational efficiency of species network inference using a pseudo-
likelihood approximation. The method of Yu and Nakhleh [45] (referred to
here as MPL, which stands for maximum pseudo-likelihood) substitutes pseudo-
likelihoods in place of the full model likelihoods used by the methods of Yu et
al. [48] (referred to here as MLE, which stands for maximum likelihood esti-
mation, and MLE-length, which differ based upon whether or not gene tree
branch lengths contribute to model likelihood). Two of us recently conducted
a performance study which demonstrated the scalability limits of SNaQ, MPL,
MLE, MLE-length, and other state-of-the-art phylogenetic methods in the con-
text of phylogenetic network inference [17]. The scalability of the state of the
art falls well short of that required by current phylogenetic studies, where many
dozens or hundreds of divergent genomic sequences are common [34]. The most
accurate phylogenetic network inference methods performed statistical inference
under phylogenomic models [42,47,48] that extended the multi-species coales-
cent model [16,24]. MPL and SNaQ were among the fastest of these methods
while MLE and MLE-length were the most accurate. None of the statistical
phylogenomic inference methods completed analyses of datasets with 30 taxa or
more after many weeks of CPU runtime – not even the pseudo-likelihood-based
methods which were devised to address the scalability limitations of other sta-
tistical approaches. The remaining methods fell into two categories: split-based
methods [4,7] and the parsimony-based inference method of Yu et al. [46] (which
we refer to as MP in this study). Both categories of methods were faster than
the statistical phylogenomic inference methods but less accurate.

The methodological gap remains: how can species networks be accurately and
efficiently inferred using large-scale genomic sequence datasets? In this study, we
address this question and propose a new method for this problem. We investigate
this question in the context of two constraints. We focus on dataset size in
terms of the number of taxa and the number of reticulations in the species
phylogeny. We note that scalability issues arise due to other dataset features as
well, including population-scale allele sampling for each taxon in a study.
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2 Methods

One path forward is through the use of divide-and-conquer. The general idea
behind divide-and-conquer is to split the full problem into smaller and more
closely related subproblems, analyze the subproblems using state-of-the-art phy-
logenetic network inference methods, and then merge solutions on the subprob-
lems into a solution on the full problem. Viewed this way, divide-and-conquer can
be seen as a computational framework that “boosts” the scalability of existing
methods (and which is distinct from boosting in the context of machine learn-
ing). The advantages of analyzing smaller and more closely related subproblems
are two-fold. First, smaller subproblems present more reasonable computational
requirements compared to the full problem. Second, the evolutionary divergence
of taxa in a subproblem is reduced compared to the full set of taxa, which has
been shown to improve accuracy for phylogenetic tree inference [11,19,26]. We
and others have successfully applied divide-and-conquer approaches to enable
scalable inference in the context of species tree estimation [26,27,33].

Here, we consider the more general problem of inferring species phylogenies
that are directed phylogenetic networks. A directed phylogenetic network N =
(V,E) consists of a set of nodes V and a set of directed edges E. The set of
nodes V consists of a root node r(N) with in-degree 0 and out-degree 2, leaves
L(N) with in-degree 1 and out-degree 0, tree nodes with in-degree 1 and out-
degree 2, and reticulation nodes with in-degree 2 and out-degree 1. A directed
edge (u, v) ∈ E is a tree edge if and only if v is a tree node, and is otherwise a
reticulation edge. Following the instantaneous admixture model used by Durand
et al. [9], each reticulation node contributes a parameter γ, where one incoming
edge has admixture frequency γ and the other has admixture frequency 1−γ. The
edges in a network N can be labeled by a set of branch lengths �. A directed
phylogenetic tree is a special case of a directed phylogenetic network which
contains no reticulation nodes (and edges). An unrooted tree can be obtained
from a directed tree by ignoring edge directionality.

The phylogenetic network inference problem consists of the following. One
input is a partitioned multiple sequence alignment A containing data partitions
ai for 1 ≤ i ≤ k, where each partition corresponds to the sequence data for
one of k genomic loci. Each of the n rows in the alignment A is a sample
representing taxon x ∈ X, and each taxon is represented by one or more samples.
Similar to other approaches [42,48], we also require an input parameter Cr which
specifies a hypothesized number of reticulations. We note that increasing Cr

for a given input alignment A results in a solution with either better or equal
likelihood under the evolutionary models used in our study and others [42,48].
As is common practice for this and many other statistical inference/learning
problems, inference can be coupled with standard model selection techniques
(e.g., information criteria [2,3,20,41], cross-validation, etc.) to balance model fit
to the observed data against model complexity, thereby determining a suitable
choice for parameter Cr in an automated manner. The output consists of a
directed phylogenetic network N where each leaf in L(N) corresponds to a taxon
x ∈ X.
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2.1 The FastNet Algorithm

We now describe our new divide-and-conquer algorithm, which we refer to as
FastNet. A flowchart of the algorithm is shown in Fig. 1. (Detailed pseudocode
can be found in the Appendix’s Supplementary Methods section.)

Fig. 1. A high-level illustration of the FastNet algorithm. First, a guide phy-
logeny N (0) is inferred on the full set of taxa X. Next, the guide phylogeny N (0) is
used to decompose X into subproblems {D0, D1, D2, . . . , Dq−1, Dq} = D. Then, the
subproblem decomposition D is used to construct a bipartite graph GD = (VD, ED),
which is referred to as the subproblem decomposition graph. The set of vertices
VD consist of two partitions: source vertices V src

D = {Csrc
0 , Csrc

1 , . . . , Csrc
q } where

each subproblem Di has a corresponding source vertex Csrc
i , and destination ver-

tices V dst
D = {Cdst

0 , Cdst
1 , . . . , Cdst

q } similarly. The subproblem decomposition graph
GD is optimized to infer subproblem phylogenies and reticulations, where the latter
are inferred based on the placement of weighted edges e ∈ ED. Finally, the subproblem
phylogenies are merged using the phylogeny inferred on D0 as the “top-level” structure.

Step Zero: Obtaining Local Gene Trees. FastNet is a summary-based
method for inferring phylogenetic networks. Subsequent steps of the FastNet
algorithm (i.e., steps one and three) therefore utilize a list of gene trees G as
input, where the ith gene tree gi in list G represents the evolutionary history of
data partition ai. The experiments in our study utilized either true or inferred
gene trees as input to summary-based inference methods, including FastNet (see
below for details). We used FastTree [37] to perform maximum likelihood esti-
mation of local gene trees. Our study made use of an outgroup, and the unrooted
gene trees inferred by FastTree were rooted on the leaf edge corresponding to
the outgroup.

Step One: Obtaining a Guide Phylogeny. The subsequent subproblem
decomposition step requires a rooted guide phylogeny N (0). The phylogenetic
relationships need not be completely accurate. Rather, the guide phylogeny
needs to be sufficiently accurate to inform subsequent divide-and-conquer steps.
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Another requirement is that the method used for inferring the guide phylogeny
must have reasonable computational requirements.

A range of different methods for obtaining guide phylogenies can satisfy these
criteria. One option is the parsimony-based algorithm proposed by Yu et al. [46]
to infer a rooted species network. The algorithm is implemented in the PhyloNet
software package [43]. We refer to this method as MP. In a previous simulation
study [17], we found that MP offers a significant runtime advantage relative
to other state-of-the-art species network inference methods, but had relatively
lower topological accuracy. Another option is using ASTRAL [31,32], a state-of-
the-art phylogenomic inference method that infers species trees, to infer a guide
phylogeny that is a tree rather than a network. A primary reason for the use of
species tree inference methods is their computational efficiency relative to state-
of-the-art phylogenetic network inference methods. ASTRAL effectively infers an
unrooted and undirected species tree. We rooted the species tree using outgroup
rooting. Another consideration is that, while ASTRAL accurately infers species
trees for evolutionary scenarios lacking gene flow, the assumption of tree-like
evolution is generally invalid for the computational problem that we consider.
As we show in our performance study, our divide-and-conquer approach can still
be applied despite this limitation, suggesting that FastNet is robust to guide phy-
logeny error. For this reason, the FastNet experiments in our study exclusively
use ASTRAL to infer guide phylogenies.

Step Two: Subproblem Decomposition. The rooted and directed guide phy-
logeny N (0) is then used to produce a subproblem decomposition D. The decom-
position D consists of a “bottom-level” component and a “top-level” component,
which refers to the subproblem decomposition technique. The bottom-level com-
ponent is comprised of disjoint subsets Di for 1 ≤ i ≤ q which partition the set
of taxa X such that

⋃

1≤i≤q

Di = X. We refer to each subset Di as a bottom-

level subproblem. The top-level component consists of a top-level subproblem
D0 which overlaps each bottom-level subproblem Di where 1 ≤ i ≤ q.

The bottom-level component of the subproblem decomposition is obtained
using the following steps. First, for each reticulation node in N (0), we delete the
incoming edge with lower admixture frequency. Let T (0) be the resulting phy-
logeny, which contains no reticulation edges and is therefore a tree. Removal of
any single edge in T (0) disconnects the tree into two subtrees; the leaves of the
two subtrees will form two subproblems. We extend this observation to obtain
decompositions with two or more subproblems. The decomposition is defined by
S, a set of nodes in T (0). Each node s ∈ S induces a corresponding subproblem
Di for 1 ≤ i ≤ q which consists of the taxa corresponding to the leaves that are
reachable from s in T (0). Of course, not all decompositions are created equal. In
this study, decompositions are constrained by the maximum subproblem size cm;
we also required a minimum of two subproblems in a decomposition. We obtained
a decomposition using a greedy algorithm which is similar to the Center-Tree-i
decomposition used by Liu et al. [26] in the context of species tree inference.
The two methods differ primarily due to their decomposition criteria. Initially
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the set S consists of the root node r(T (0)). The set S is iteratively updated as
follows: each iteration greedily selects a node s ∈ S with maximal correspond-
ing subproblem size, the node s is removed from the set S and replaced by its
children. Iteration terminates when both decomposition criteria (the maximum
subproblem size criterion and the minimum number of subproblems) are satis-
fied. If no decomposition satisfies the criteria, then the search is restarted using
a maximum subproblem size of cm − 1. In practice, the parameter cm is set to
an empirically determined value which is based upon the largest datasets that
state-of-the-art methods can analyze accurately within a reasonable timeframe
[17]. The output of the search algorithm is effectively a search tree T

(0)
top with a

root corresponding to r(T (0)), leaves corresponding to s ∈ S, and the subset of
edges in T (0) which connect the root r(T (0)) to the nodes s ∈ S in T (0). The
decomposition is obtained by deleting T

(0)
top’s corresponding structure in T (0),

resulting in q sub-trees which induce bottom-level subproblems as before.
The top-level component augments the subproblem decomposition with a

single top-level subproblem D0 which overlaps each bottom-level subproblem.
Phylogenetic structure inferred on D0 represents ancestral evolutionary rela-
tionships among bottom-level subproblems. Furthermore, overlap between the
top-level subproblem D0 and bottom-level subproblems is necessary for the sub-
sequent merge procedure (see “Step four” below). The top-level subproblem D0

contains representative taxa taken from each bottom-level subproblem Di for
1 ≤ i ≤ q: for each bottom-level subproblem Di, we choose the leaf in T (0) that
is closest to the corresponding node s ∈ S to represent Di, and the corresponding
taxon is included in the top-level subproblem D0.

Step Three: Subproblem Decomposition Graph Optimization. Tree-
based divide-and-conquer approaches reduce evolutionary divergence within sub-
problems by effectively partitioning the inference problem based on phylogenetic
relationships. Within each part of the true phylogeny corresponding to a sub-
problem, the space of possible unrooted sub-tree topologies contributes a smaller
set of distinct bipartitions (each corresponding to a possible tree edge) that need
to be evaluated during search as compared to the full inference problem. The
same insight can be applied to reticulation edges as well, except that a given
reticulation is not necessarily restricted to a single subproblem.

We address the issue of “inter-subproblem” reticulations through the use
of an abstraction which we refer to as a subproblem decomposition graph. A
subproblem decomposition graph GD = (VD, ED) is a bipartite graph where the
vertices VD can be partitioned into two sets: a set of source vertices V src

D and a set
of destination vertices V dst

D . There is a source vertex Csrc
i ∈ V src

D for each distinct
subproblem Di ∈ D where 0 ≤ i ≤ q, and similarly for destination vertices
Cdst

i ∈ V dst
D . An undirected edge eij ∈ ED connects a source vertex Csrc

i to a
destination vertex Cdst

j where i ≤ j and has a weight w(eij) ∈ N+. If an edge eii
connects nodes Csrc

i and Cdst
i that correspond to the same subproblem Di ∈ D,

then the edge weight w(eii) > 0 specifies the number of reticulations in the
phylogenetic network to be inferred on subproblem Di; otherwise, a phylogenetic
tree is to be inferred on subproblem Di. If an edge eij connects nodes Csrc

i and
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Cdst
j where i < j, then the edge weight w(eij) > 0 specifies the number of “inter-

subproblem” reticulations between the subproblems Di and Dj (where an inter-
subproblem reticulation is a reticulation with one incoming edge which is incident
from the phylogeny to be inferred on subproblem Di and the other incoming
edge which is incident from the phylogeny to be inferred on Dj); otherwise, no
reticulations are to be inferred between the two subproblems. A subproblem
decomposition graph is constrained to have a total number of reticulations such
that

∑

e∈ED

w(e) = Cr.

Given a subproblem decomposition D, FastNet’s search routines make use
of the correspondence between a subproblem decomposition graph GD and a
multiset with cardinality Cr that is chosen from

(
q+1
2

)
+ (q + 1) elements, where

q is the number of bottom-level subproblems and there are (q + 1) subproblems
in D. Enumeration over corresponding multisets is feasible when the number of
subproblems and Cr are sufficiently small; otherwise, perturbations of a corre-
sponding multiset can be used as part of a local search heuristic. See Algorithm
1 in the Appendix’s Supplementary Methods section for detailed pseudocode.

A subproblem decomposition graph GD facilitates phylogenetic inference
given a subproblem decomposition D. The resulting inference is evaluated
with respect to a pseudo-likelihood-based criterion. Pseudocode for the pseudo-
likelihood calculation is shown in Algorithm 2 in the Appendix’s Supplementary
Methods section.

The first step is to analyze each individual subproblem Di ∈ D where 0 ≤
i ≤ q. If an edge eii exists, then a phylogenetic network with w(eii) reticulations
is inferred on the corresponding subproblem Di; otherwise, a phylogenetic tree
is inferred. We used one of three different summary-based methods to perform
phylogenetic inference on subproblems, which we refer to as a base method: two
likelihood-based methods – MLE and MLE-length – as well as MPL, a pseudo-
likelihood-based method. Due to the modular design of FastNet’s divide-and-
conquer algorithm, topological constraints on a base method’s inference will
also apply to FastNet. To simplify discussion, the remainder of the algorithm
description will assume the use of MLE as a base method.

Next, reticulations are inferred “between” pairs of subproblems as follows.
Let Ni and Nj where i �= j be the networks inferred on subproblems Di and
Dj , respectively, using the above procedure. Construct the cherry given by the
Newick-formatted [12] string “(Ni : bi, Nj : bj)ANC;”, which consists of a new
root node ANC with children r(Ni) and r(Nj) where Ni and Nj are respectively
retained as sub-phylogenies. Then, infer branch lengths bi and bj and add w(eij)
reticulations under the maximum likelihood criterion used by the base method.
For pairs of subproblems not involving the top-level subproblem D0, we used
the base method to perform constrained optimization. For pairs of subproblems
involving the top-level subproblem D0, we used a greedy heuristic: initial place-
ments were chosen arbitrarily for each reticulation, the source node for each
reticulation edge was exhaustively optimized, and then the destination node for
each reticulation edge was exhaustively optimized.
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Inferred phylogenies and likelihoods were cached to ensure consistency among
individual and pairwise subproblem analyses, which is necessary for the subse-
quent merge procedure. Caching also aids computational efficiency.

Finally, the subproblem decomposition graph and associated phylogenetic
inferences are evaluated using a pseudo-likelihood criterion:

∏

0≤i≤q

δ[i, w(GD, i, i)]
∏

0≤i≤q
i<j≤q

ψ[i, j, w(GD, i, j), w(GD, i, i), w(GD, j, j)] (1)

where w(GD, i, j) is the weight of edge eij if it exists in E(GD) or 0 otherwise,
δ[i, w(GD, i, i)] is the cached likelihood for an individual subproblem Di, and
ψ[i, j, w(GD, i, j), w(GD, i, i), w(GD, j, j)] is the cached likelihood for a pair of
subproblems Di and Dj where i < j. The pseudo-likelihood calculation effec-
tively assumes that subproblems are independent, although they are correlated
through connecting edges in the model phylogeny. The choice of optimization cri-
terion in this context represents a tradeoff between efficiency and accuracy, and
several other state-of-the-art phylogenetic inference methods also use pseudo-
likelihoods to analyze subsets of taxa (e.g., MPL and SNaQ). Other choices are
possible. For example, an alternative would be to merge subproblem inferences
into a single network hypothesis and calculate its likelihood under the multi-
species network coalescent (MSNC) model.

We optimize subproblem decomposition graphs under the pseudo-likelihood
criterion. Exhaustive enumeration of subproblem decomposition graphs is pos-
sible for the datasets in our study. Pseudocode to obtain a global optimum is
shown in Algorithm 3 in the Appendix’s Supplementary Methods section. For
larger datasets with more reticulations, heuristic search techniques can be used
to obtain local optima as a more efficient alternative.

Step Four: Merge Subproblem Phylogenies into a Phylogeny on the
Full Set of Taxa. Given an optimal subproblem decomposition graph G′

D

returned by the previous step, the final step of the FastNet algorithm merges the
“top-level” phylogenetic structure inferred on D0 and “bottom-level” subprob-
lem phylogenies Di for 1 ≤ i ≤ q (Algorithm 4 in the Appendix’s Supplementary
Methods section). First, the phylogeny inferred on the top-level subproblem D0

serves as the top-level of the output phylogeny N ′. Next, the ith taxon in N ′ is
replaced with the phylogeny inferred on bottom-level subproblem Di, which was
cached during the evaluation of G′

D. Finally, each “inter-subproblem” reticula-
tion that was inferred for a pair of subproblems Di and Dj where i < j is added
to the output phylogeny N ′, which is compatible by construction of the decom-
position D and the optimal subproblem decomposition graph G′

D. The result of
the merge procedure is an output phylogeny N ′ on the full set of taxa X.

2.2 Performance Study

We conducted a simulation study to evaluate the performance of FastNet and
existing state-of-the-art methods for phylogenetic network inference. The perfor-
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mance study utilized the following procedures. Detailed commands and software
options are given in the Supplementary Material.

We also conducted an empirical study to evaluate FastNet’s performance.
Details about the empirical study are provided in the Appendix.

Simulation of Model Networks. For each model condition, random model
networks were generated using the following procedure. First, r8s version 1.7
[40] was used to simulate random birth-death trees with n taxa where n ∈
{15, 20, 25, 30}, which served as in-group taxa during subsequent analysis. The
height of each tree was scaled to 5.0 coalescent units. Next, a time-consistent
level-r rooted tree-based network [13,21,49] was obtained by adding r reticu-
lations to each tree, where r ∈ [1, 4]. The procedure for adding a reticulation
consists of the following steps: based on a consistent timing of events in the tree,

(1) choose a time tM uniformly at random between 0 and the tree height, (2)
randomly select two tree edges for which corresponding ancestral populations
existed during time interval [tA, tB ] such that tM ∈ [tA, tB ], and (3) add a
reticulation to connect the pair of tree edges. Finally, an outgroup was added to
the resulting network at time 15.0.

Reticulations in our study have the same interpretation as in the study of
Leaché et al. [25]. Gene flow is modeled using an isolation-with-migration model,
where each reticulation is modeled as a unidirectional migration event with rate
5.0 during the time interval [tA, tB ]. We focus on paraphyletic gene flow as
described by Leaché et al.; their study also investigated two other classes of gene
flow – both of which involve gene flow between two sister species after divergence.
Our simulation study omits these two classes since several existing methods (i.e.,
MLE and MPL) have issues with identifiability in this context; thus, the model
networks in our study are a proper subset of the class of level-r rooted tree-based
networks. We note that FastNet makes no assumptions about the type of gene
flow to be inferred, and identifiability depends on the model used for inference
by FastNet’s base method.

As in the study of Leaché et al., we further classify simulation conditions
based on whether gene flow is “non-deep” or “deep” based on topological con-
straints. Non-deep reticulations involve leaf edges only, and all other reticulations
are considered to be deep. Similarly, model conditions with non-deep gene flow
have model networks with non-deep reticulations only; all other model conditions
include deep reticulations and are referred to as deep.

Simulation of Local Genealogies and DNA Sequences. We used ms [18]
to simulate local gene trees for independent and identically distributed (i.i.d.)
loci under an extended multi-species coalescent model, where reticulations corre-
spond to migration events as described above. Each coalescent simulation sam-
pled one allele per taxon. The primary experiments in our study simulated 1000
gene trees for each random model network. Our study also investigated data
requirements of different methods by including additional datasets where either
200 or 100 gene trees were simulated for each random model network.

Sequence evolution was simulated using seq-gen [38], which takes the local
genealogies generated by ms as input and simulates sequence evolution along
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each genealogy under a finite-sites substitution model. Our simulations utilized
the Jukes-Cantor substitution model [22]. We simulated 1000 bp per locus, and
the resulting multi-locus sequence alignment had a total length of 1000 kb.

Replicate Datasets. A model condition in our study consisted of fixed values
for each of the above model parameters. For each model condition, the simulation
procedure was repeated twenty times to generate twenty replicate datasets.

Species Network Inference Methods. Our simulation study compared the
performance of FastNet against existing methods which were among the fastest
and most accurate in our previous performance study of state-of-the-art species
network inference methods [17]. Like FastNet, these methods perform summary-
based inference – i.e., the input consists of gene trees inferred from sequence
alignments for multiple loci, rather than the sequence alignments themselves.
The methods are broadly characterized by their statistical optimization crite-
ria: either maximum likelihood or maximum pseudo-likelihood under the multi-
species network coalescent (MSNC) model [47]. The maximum likelihood esti-
mation methods consisted of two methods proposed by Yu et al. [48] which
are implemented in PhyloNet [43]. One method utilizes gene trees with branch
lengths as input observations, whereas the other method considers gene tree
topologies only; we refer to the methods as MLE-length and MLE, respectively.
Our study also included the pseudo-likelihood-based method of [46], which we
refer to as MPL. For each analysis in our study, all species network inference
methods – MLE, MLE-length, MPL, and FastNet – were provided with identical
inputs.

Our study included two categories of experiments. The “boosting” experi-
ments in our simulation study compared the performance of FastNet against its
base method; we refer to all other experiments in our study as “non-boosting”.
To make boosting comparisons explicit, each boosting experiment will refer
to “FastNet(BaseMethod)” which is FastNet run with a specific base method
“BaseMethod” – either MLE-length, MLE, or MPL. The input for each boost-
ing experiment consisted of either true or inferred gene trees for all loci. The
inferred gene trees were obtained using FastTree [37] with default settings to
perform maximum likelihood estimation under the Jukes-Cantor substitution
model [22]. The inferred gene trees were rooted using the outgroup. The non-
boosting experiments focused on the performance of FastNet using MLE as a
base method and inferred gene trees as input, where gene trees were inferred
using the same procedure as in the boosting experiments.

Performance Measures. The species network inference methods in our study
were evaluated using two different criteria.

The first criterion was topological accuracy. For each method, we compared
the inferred species phylogeny to the model phylogeny using the tripartition
fraction [35], which counts the proportion of tripartitions that are not shared
between the inferred and model network. It has been shown that the tripartition
fraction is not a metric on rooted phylogenetic networks in general [8]. How-
ever, the model networks in our study satisfy the tree-child condition (i.e., every
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internal node has at least one child that is a tree node) since the simulation pro-
cedure stipulates that reticulation placements can only connect tree edges; the
reticulation placement procedure also naturally gives a temporal representation
[5] and ensures that the parents of a reticulation node cannot be connected by a
path. Cardona et al. [8] showed that the tripartition fraction is a metric for the
subset of rooted phylogenetic networks that satisfy these constraints.

The second criterion was computational runtime. All computational analy-
ses were run on computing facilities in Michigan State University’s High Perfor-
mance Computing Center. We used compute nodes in the intel16 cluster, each
of which had a 2.5 GHz Intel Xeon E5-2670v2 processor with 64 GiB of main
memory. All replicates completed with memory usage less than 32 GiB.

3 Results

FastNet’s use of phylogenetic divide-and-conquer is compatible with a range of
different methods for inferring rooted species networks on subproblems, which
we refer to as “base” methods. From a computational perspective, FastNet can
be seen as a general-purpose framework for boosting the performance of base
methods. We began by assessing the relative performance boost provided by
FastNet when used with two different state-of-the-art network inference meth-
ods. We evaluated two different aspects of performance: topological error as
measured by the tripartition fraction [35] between an inferred species network
and the model network, and computational runtime. The initial set of boosting
experiments focused on species network inference in isolation of upstream infer-
ence accuracy by providing true gene trees as input to all of the summary-based
inference methods.

In the performance study of Hejase and Liu [17], the probabilistic network
inference methods were found to be the most accurate among state-of-the-art
methods, and MPL was among the fastest methods in this class. MPL utilized
a pseudo-likelihood-based approximation for increased computational efficiency
compared with full likelihood methods [45]. However, the tradeoff netted effi-
ciency that was well short of current phylogenomic dataset sizes [17].

Table 1 shows the performance of FastNet(MPL) relative to MPL on model
conditions with increasing numbers of taxa and non-deep reticulations. On model
conditions with dataset sizes ranging from 15 to 30 taxa and from 1 to 4 retic-
ulations, FastNet(MPL)’s improvement in topological error relative to its base
method was statistically significant (one-sided pairwise t-test with Benjamini-
Hochberg correction for multiple tests [6]; α = 0.05 and n = 20) and substantial
in magnitude – an absolute improvement that amounted to as much as 41%.
Furthermore, the improvement in topological error grew as datasets became
larger and involved more reticulations: the largest improvements were seen on
the 30-taxon 4-reticulation model condition. Runtime improvements were also
statistically significant and represented speedups which amounted to as much as
a day and a half of runtime.

Next, we evaluated FastNet’s performance when boosting MLE-length,
the most accurate state-of-the-art method from the performance study of
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Table 1. FastNet(MPL) “boosts” MPL’s runtime and topological accuracy,
where a greater performance boost occurs as dataset sizes increase. The
relative performance of FastNet(MPL) and MPL is compared on model conditions
with 15–30 taxa and 1–4 non-deep reticulations. The performance measures consisted
of topological error as measured by the tripartition fraction between an inferred species
network and the model network and computational runtime in hours. Average (“Avg”)
and standard error (“SE”) of FastNet(MPL)’s performance improvement over MPL is
reported (n = 20). All methods were provided with true gene trees as input. The
statistical significance of FastNet(MPL)’s performance improvement over MPL was
assessed using a one-sided t-test. Corrected q-values are reported where multiple test
correction was performed using the Benjamini-Hochberg method [6].

Number of taxa Number of

reticulations

Improvement in

topological error

Improvement in

runtime (h)

Avg SE Corrected q-value Avg SE Corrected q-value

15 1 0.087 0.036 3.3 × 10−2 2.8 0.3 7.2 × 10−5

20 2 0.346 0.036 1.1 × 10−5 9.6 0.1 1.1 × 10−2

25 3 0.281 0.024 7.9 × 10−5 35.6 5.6 8.5 × 10−4

30 4 0.413 0.001 8.8 × 10−12 30.3 6.5 2.8 × 10−2

Hejase and Liu [17]. On model conditions with non-deep reticulations, Fast-
Net (MLE-length) had a similar boosting effect as compared to FastNet (MPL)
(Table 2). On the 15-taxon single-reticulation model condition, FastNet’s aver-
age improvement in topological error was greater when MLE-length was used
as a base method rather than MPL. An even greater improvement in compu-
tational runtime was seen: FastNet(MLE-length)’s runtime improvement over
MLE-length was over an order of magnitude greater than FastNet(MPL)’s
improvement over MPL. As the number of taxa increased from 15 to 20 (but
the number of reticulations was fixed to one), FastNet(MLE-length)’s advantage
in topological error and runtime relative to its base method nearly doubled. In
all cases, FastNet(MLE-length)’s performance improvements were statistically
significant (Benjamini-Hochberg-corrected one-sided pairwise t-test; α = 0.05
and n = 20). Although FastNet(MLE-length) successfully completed analysis
of larger datasets (i.e., model conditions with more than 20 taxa and/or more
than one reticulation), we were unable to quantify FastNet(MLE-length)’s per-
formance relative to its base method due to MLE-length’s scalability limitations.

We further evaluated FastNet’s performance in the context of additional
experimental and methodological considerations. On model conditions with deep
gene flow (Table 3), FastNet returned significant improvements in topological
accuracy and runtime relative to its base method – either MPL or MLE-length –
with one exception: on the 15-taxon single-reticulation model condition, Fast-
Net(MPL) returned a small and statistically insignificant improvement in topo-
logical error over MPL. Otherwise, FastNet’s performance boost was robust to
the choice of base method. As dataset sizes increased, the average performance
boost increased when MPL was the base method; a similar finding applied
to runtime improvements when MLE-length was the base method, whereas
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Table 2. FastNet(MLE-length) “boosts” MLE-length’s runtime and topo-
logical accuracy, where a greater performance boost occurs as dataset sizes
increase. The relative performance of FastNet(MLE-length) and MLE-length is com-
pared on model conditions with 15–20 taxa and 1–2 non-deep reticulations. Note that,
for the model condition with 20 taxa and 2 reticulations, MLE-length did not finish
analysis of any replicates after a week of runtime. Otherwise, table layout and descrip-
tion are identical to Table 1.

Number of taxa Number of

reticulations

Improvement in

topological error

Improvement in

runtime (h)

Avg SE Corrected q-value Avg SE Corrected q-value

15 1 0.103 0.021 8.8 × 10−4 49.4 6.9 9.1 × 10−7

20 1 0.195 0.024 6.1 × 10−5 114.3 14.7 3.3 × 10−7

20 2 Base method DNF

topological error improvements were largely unchanged. We note that Fast-
Net’s performance boost was somewhat smaller on model conditions involving
deep gene flow as opposed to non-deep gene flow. When maximum-likelihood-
estimated gene trees were used as input to summary-based inference in lieu of
true gene trees (Table 4), FastNet boosted the topological accuracy and runtime
of its base method in all cases and the improvements were statistically signifi-
cant. As dataset sizes increased, FastNet’s improvement in topological accuracy
and runtime grew when MPL was its base method; runtime improvements grew
and topological error improvements were largely unchanged when MLE-length
was the base method. Finally, we conducted an additional experiment to evalu-
ate FastNet’s statistical efficiency when given a finite number of observations in
terms of the number of loci (Table 5). As the number of loci ranged from genome-
scale (i.e., on the order of 1000 loci) to sizes that were smaller by up to an order
of magnitude, FastNet’s average topological error increased by less than 0.02.

Table 3. Boosting experiments on model conditions with deep gene flow. The
performance improvement of FastNet over its base method (either MPL or MLE-length)
is reported for two different performance measures: topological error as measured by
tripartition fraction and computational runtime in hours. The simulation conditions
involved either 15 or 20 taxa and a single deep reticulation. Otherwise, table layout
and description are identical to Table 1.

Number of
taxa

Boosted
method

Improvement in
topological error

Improvement in
runtime (h)

Avg SE q-value Avg SE q-value

15 MPL 0.015 0.017 3.8× 10−1 2.3 0.2 5.1× 10−4

20 MPL 0.166 0.035 3.2× 10−3 8.0 1.5 3.2× 10−3

15 MLE-length 0.066 0.001 1.5× 10−2 35.0 4.1 1.3× 10−7

20 MLE-length 0.070 0.014 1.1× 10−2 71.1 7.7 8.7× 10−8
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Table 4. Boosting experiments using inferred gene trees. The performance
improvement of FastNet over its base method (either MPL or MLE-length) is reported
for two different performance measures: topological error as measured by tripartition
fraction and computational runtime in hours. For each replicate dataset, all summary-
based methods were provided with the same input: a set of rooted gene trees that was
inferred using FastTree and outgroup rooting (see Methods section for more details).
The simulation conditions involved either 15 or 20 taxa and 1–2 non-deep reticulations.
Otherwise, table layout and description are identical to Table 1.

Number
of taxa

Number of
reticulations

Boosted
method

Improvement in
topological error

Improvement in
runtime (h)

Avg SE q-value Avg SE q-value

15 1 MPL 0.071 0.021 1.2× 10−2 3.8 0.5 7.7× 10−5

20 2 MPL 0.134 0.017 1.4× 10−2 15.1 1.7 6.9× 10−6

15 1 MLE-length 0.231 0.002 1.3× 10−4 15.4 2.0 6.7× 10−7

20 1 MLE-length 0.195 0.005 5.8× 10−5 43.2 7.3 1.7× 10−5

Table 5. The impact of the number of observed loci on FastNet(MLE)’s
topological error. The inputs to FastNet(MLE) consisted of gene trees that were
inferred using FastTree and outgroup rooting (see Methods section for more details).
The simulations sampled between 100 and 1000 loci for a single 20-taxon 1-reticulation
model condition involving non-deep gene flow. Topological error was evaluated based
upon the tripartition fraction between the model phylogeny and the species phylogeny
inferred by FastNet(MLE); average (“Avg”) and standard error (“SE”) are shown
(n = 20).

Number of loci Topological error

Avg SE

100 0.094 0.028

200 0.078 0.024

1000 0.075 0.027

4 Discussion

Relative to the state-of-the-art methods that served as base methods, FastNet
consistently returned sizeable and statistically significant improvements in topo-
logical error and computational runtime across a range of dataset scales and gene
flow scenarios. There was only a single experimental condition where compara-
ble error without statistically significant improvements was seen. This exception
occurred when FastNet was used to boost a relatively inaccurate base method
(MPL) on the smallest dataset sizes in our study and with deep gene flow; even
still, large and statistically significant runtime improvements were seen in this
case. In contrast, with a more accurate base method (i.e., MLE-length), large
and statistically significant performance improvements were seen throughout our
simulation study.
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FastNet’s boosting effect on topological error and runtime were robust to
several different experimental and design factors. The boosting performance
obtained using different base methods – one with lower computational require-
ments but higher topological error relative to a more computationally inten-
sive alternative – suggests that, while accuracy improvements can be obtained
even using less accurate subproblem inference, even greater accuracy improve-
ments can be obtained when reasonably accurate subproblem phylogenies can
be inferred. We note that the base methods were run in default mode. More
intensive search settings for each base method’s optimization procedures may
allow a tradeoff between topological accuracy and computational runtime. We
stress that our goal was not to make specific recommendations about the nuances
of running the base methods. Rather, FastNet’s divide-and-conquer framework
can be viewed as orthogonal to the specific algorithmic approaches utilized by
a base method. In this sense, improvements to the latter accrue to the former
in a straightforward and modular manner. Furthermore, FastNet’s performance
effect was robust to gene tree error and varying numbers of observed loci.

The biggest performance gains were observed on the largest, most challenging
datasets. The findings in our earlier performance study [17] suggest that, given
weeks of computational runtime, even the fastest statistical methods (including
MPL) would not complete analysis of datasets with more than 50 taxa or so and
several reticulations. In comparison to MPL, FastNet(MPL) was faster by more
than an order of magnitude on the largest datasets in our study, and we predict
that FastNet(MPL) would readily scale to datasets with many dozens of taxa
and multiple reticulations.

5 Conclusions

In this study, we introduced FastNet, a new computational method for infer-
ring phylogenetic networks from large-scale genomic sequence datasets. Fast-
Net utilizes a divide-and-conquer algorithm to constrain two different aspects of
scale: the number of taxa and evolutionary divergence. We evaluated the perfor-
mance of FastNet in comparison to state-of-the-art phylogenetic network infer-
ence methods. We found that FastNet improves upon existing methods in terms
of computational efficiency and topological accuracy. On the largest datasets
explored in our study, the use of the FastNet algorithm as a boosting frame-
work enabled runtime speedups that were over an order of magnitude faster
than standalone analysis using a state-of-the-art method. Furthermore, FastNet
returned comparable or typically improved topological accuracy compared to
the state-of-the-art-methods that were used as its base method.
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Abstract. Divide-and-conquer methods, which divide the species set
into overlapping subsets, construct trees on the subsets, and then com-
bine the trees using a supertree method, provide a key algorithmic frame-
work for boosting the scalability of phylogeny estimation methods to
large datasets. Yet the use of supertree methods, which typically attempt
to solve NP-hard optimization problems, limits the scalability of these
approaches. In this paper, we present a new divide-and-conquer app-
roach that does not require supertree estimation: we divide the species
set into disjoint subsets, construct trees on the subsets, and then com-
bine the trees using a distance matrix computed on the full species
set. For this merger step, we present a new method, called NJMerge,
which is a polynomial-time extension of the Neighbor Joining algorithm.
We report on the results of an extensive simulation study evaluating
NJMerge’s utility in scaling three popular species tree estimation meth-
ods: ASTRAL, SVDquartets, and concatenation analysis using RAxML.
We find that NJMerge provides substantial improvements in running
time without sacrificing accuracy and sometimes even improves accuracy.
Furthermore, although NJMerge can sometimes fail to return a tree, the
failure rate in our experiments is less than 1%. Together, these results
suggest that NJMerge is a valuable technique for scaling computation-
ally intensive methods to larger datasets, especially when computational
resources are limited. NJMerge is freely available on Github: https://
github.com/ekmolloy/njmerge. All datasets, scripts, and supplementary
materials are freely available through the Illinois Data Bank: https://
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1 Introduction

Species trees provide a useful model for many biological analyses, including the
estimation of how life evolved on earth, adaptation, the impact of geological
events on speciation, and so on. Yet species tree estimation is challenged by mul-
tiple biological processes, such as incomplete lineage sorting, gene duplication
and loss, and horizontal gene transfer, that create heterogeneous evolutionary
histories across genomes [16], i.e., “gene tree discordance”. As a result, species
tree estimation is also performed using multiple loci and depends on methods
designed to address discordance between species trees and gene trees due to var-
ious causes. Different approaches have been developed to estimate species trees
in the presence of gene tree discord resulting from incomplete lineage sorting
(ILS). However, many species tree methods rely on estimated gene trees, and
gene tree estimation error is a problem in many phylogenomic datasets (see dis-
cussion in [21]). Site-based methods (e.g., [5,6,8,37]), which do not estimate gene
trees, provide an alternative approach to species tree estimation. For example,
SVDquartets [6] and SVDquest [37] use the input sequence alignments to esti-
mate quartet trees (using statistical properties of the multi-species coalescent or
MSC model [24,26]) and then combine the quartet trees into a tree on the full
set of species. This approach is Ω(n4) time if all possible quartet trees are eval-
uated (which is best for accuracy [33]), and hence SVDquartets and SVDquest
are computationally intensive on datasets with large numbers of species.

In general, constructing any large species tree presents both statistical chal-
lenges (in terms of addressing heterogeneity across the genome) and compu-
tational challenges (in terms of scaling to large numbers of species and loci).
The divide-and-conquer approaches to species tree estimation that have been
proposed operate by dividing the species set into overlapping subsets, con-
structing trees on the subsets, and then merging the subset trees into a tree
on the entire species set; an example is the family of Disk Covering Methods
[4,10,13,22,38,40]. The last step of this process, called “supertree estimation”,
can provide good accuracy (i.e., retain much of the accuracy in the subset trees)
if good supertree methods are used. However, the better supertree methods
are attempts to solve NP-hard optimization problems, and none of the current
supertree methods provide both accuracy and scalability to large datasets (see
[39] for discussion).

In this paper, we present a new divide-and-conquer approach to scaling
species tree estimation methods to large datasets: we divide the dataset into
disjoint subsets, construct trees on the subsets, and then assemble the subset
trees into a species tree on the entire species set. Because the subsets we create
are disjoint, we cannot use supertree methods (as these require that the subset
trees be overlapping) to combine the subset trees. Instead, we construct a “dis-
similarity matrix” (i.e., a matrix that is symmetric and zero on the diagonal)
on the species set, and we use this matrix to combine the subset trees into a
species tree on the full species set (the use of a dissimilarity matrix rather than
a distance matrix follows because estimated distances between species may not
satisfy the triangle inequality, a requirement for distance matrices).
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We present a new polynomial-time method, NJMerge, designed to assemble a
tree given a set of disjoint subset trees that operate as constraints on the output
tree. We evaluate the impact of using NJMerge with three approaches for species
tree estimation. Two of these methods (ASTRAL-III [42] and SVDQuartets [6])
are explicitly designed for species tree estimation in the presence of incomplete
lineage sorting, and the third method, commonly referred to as “concatenation”,
is the popular (and traditional) approach in which the alignments for the differ-
ent loci are concatenated and then a maximum likelihood tree is estimated on
the concatenated data matrix. We show, using an extensive simulation study,
that NJMerge provides substantial improvements in running time without sac-
rificing accuracy and sometimes even improves accuracy. NJMerge also enables
SVDquartets and RAxML to run on large datasets (e.g., 1000 taxa and 1000
genes), on which SVDquartets and RAxML would otherwise fail to run when
limited to 64 GB of physical memory. Finally, while NJMerge is not guaranteed
to return a tree (i.e., it can fail under some circumstances); the failure rate in
our experiments is extremely low – less than 1%. Hence, NJMerge provides a
useful tool for large-scale species tree estimation on multi-locus datasets.

2 NJMerge, and Its Use in Species Tree Estimation

2.1 NJMerge

The input to NJMerge is a dissimilarity matrix D on leafset S = {s1, . . . , sn} as
well as a set T = {Ti}ki=1 of k unrooted binary trees on pairwise disjoint subsets
of the leaf set S. The objective is to output a tree T on the species set S that
agrees with every tree in T (i.e., T must be a compatibility supertree), and to
do so in polynomial time. Thus, when T is restricted to the leaves of Ti, after
suppressing the internal nodes of degree two, it induces a binary tree that is
isomorphic to Ti.

Because the trees in T are disjoint, a compatibility supertree always exists
(e.g., consider the tree formed by adding a single node v and making it adjacent
to an internal node in each of the trees in T , and then adding the remaining
species arbitrarily). Thus, the objective is to find a tree that is close to the
true (but unknown) species tree from the set of compatibility supertrees, and
NJMerge tries to do this through the use of the dissimilarity matrix D. Note
that the trees in T are not required to form clades in T . For example, the
caterpillar tree on {a, b, c, d, e, f, g, h} (i.e., the tree obtained by making a path
with the leaves hanging off it in the order a, b, . . . , h) is a compatibility supertree
for T = {ac|eg, bd|fh}, and yet the trees in T do not form clades within the
caterpillar tree. Of course, there are also other compatibility supertrees, and
in some of these, the input trees will form clades. NJMerge is a heuristic for
constructing a compatibility supertree (for the set T ) on large datasets that can
sometimes fail to return a tree. That is, given T and an associated dissimilarity
matrix D, NJMerge will either return a binary tree T on the leaf set S such that
T is a compatibility supertree for T or else NJMerge will fail.
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NJMerge is a polynomial-time modification of Neighbor Joining [29], a
method that computes a tree given a dissimilarity matrix. Neighbor Joining (NJ)
is perhaps the most widely used polynomial-time method for phylogeny estima-
tion and has been proven to be statistically consistent [3] under standard models
of sequence evolution (e.g., the Generalized Time Reversible (GTR) Model [35],
which contains other sequence evolution models, including Jukes-Cantor [12]).
Hence, NJ can be used to estimate gene trees when distances between species are
corrected under the appropriate model. NJ can also be used to estimate species
trees in a multi-locus setting using a set of gene trees. For example, NJst [15]
estimates a species tree by running NJ on an internode distance matrix (i.e., a
distance matrix calculated by averaging topological distances between pairs of
species in the input set of gene trees). As shown in [2], the internode distance
matrix converges to an additive matrix for the species tree, and so NJst and some
other methods (e.g., ASTRID [36]) that estimate species trees from internode
distance matrices are statistically consistent under the MSC model.

NJ has an iterative design that builds the tree from the bottom up, produc-
ing a rooted tree that is then unrooted. Initially, all n species are in separate
components. When a pair of species is selected to be siblings, the pair of species
is effectively replaced by a rooted tree on two leaves, and the number of compo-
nents is reduced by one. This process repeats until there is only one component:
a tree on the full leaf set. At each iteration, NJ derives a new matrix Q from
D and uses it to determine which pair of the remaining nodes to join; specif-
ically, nodes ni, nj such that Q[i, j] is minimized are made siblings. Updating
the distances in Q at each iteration can be varied to some extent without loss
of statistical consistency; see [3] for details.

NJMerge is a modification of NJ to ensure that the constraints implied by
the input set T are upheld in the output tree T . When two leaves are made
siblings, they are replaced by a new leaf, and the constraint trees are then rela-
beled. Thus, siblinghood decisions change the set of leaves in the constraint trees
and can result in the constraint trees no longer being disjoint. As a result, sib-
linghood decisions have the potential to make the constraint trees incompatible.
Since determining if a set of unrooted phylogenetic trees is compatible is NP-
complete [31,41], NJMerge uses a polynomial-time heuristic: it checks every pair
of constraint trees to see if they are compatible after being modified based on
the proposed siblinghood.

In each iteration, NJMerge sorts the entries of the Q from least to greatest and
accepts the first join x, y (i.e., the proposal to make x, y siblings) that satisfies
the following properties: (1) if x and y are both in some constraint tree Ti, then
they are siblings in Ti and (2) the join does not cause any pair of constraint trees
to become incompatible (i.e., a compatibility supertree exists for every pair of
constraint trees). Note that to determine if some pair of constraint trees becomes
incompatible after making x and y siblings, it suffices to check only those pairs
of constraint trees that contain at least one of x and y; all other pairs of trees
are unchanged by the join and are pairwise compatible by induction. Then, the
leaves in the two trees labeled x or y are relabeled by the new leaf (x, y). Since the
two trees have a leaf in common, they can be treated as rooted trees by rooting
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them at the common leaf (x, y); testing the compatibility of rooted trees is easily
accomplished in polynomial time using [1]. However, pairwise compatibility of
unrooted trees does not guarantee that the set of trees is compatible, and hence
it is possible for NJMerge to accept a siblinghood decision that will eventually
cause the algorithm to fail when none of the remaining leaves can be joined
without violating the constraint trees. Although this heuristic can fail, it is easy
to see that any tree returned by NJMerge is a compatibility supertree for the
input set T of constraint trees.

2.2 Using NJMerge for Multi-locus Species Tree Estimation

Given an input multi-locus dataset and a selected species tree method M :

1. We compute gene trees on each locus using a preferred phylogeny estimation
method (e.g., FastTree [25] or RAxML [30]).

2. We compute the internode distance matrix D (i.e., the matrix of average
topological distances, see [2,15,36]).

3. We decompose the taxon set into disjoint subsets, as follows. We compute
a “starting species tree” for the multi-locus dataset (e.g., using NJst on the
estimated gene trees). We then use the centroid tree decomposition (described
in PASTA [18]) to create disjoint subsets of taxa from the starting species
tree of the desired maximum size.

4. We apply the selected species tree method M to each such subset, thus pro-
ducing the set T of disjoint constraint trees. Subtrees can be estimated in
serial or in parallel, depending on the computational resources available.

5. Finally, we apply NJMerge to the input pair (T , D).

Note that there are several algorithmic parameters that can be selected by the
user, for example, the method for computing subset trees, the method for com-
puting the starting tree used to define the subset decomposition, and the maxi-
mum subset size. The choice of method for computing subset trees can vary from
faster methods (such as ASTRAL) to slower methods (such as SVDquartets) and
will impact the choice of the maximum subset size.

3 Performance Study

Our study evaluated the effectiveness of using NJMerge to estimate species
trees on large datasets. All species tree methods were evaluated in terms of
their species tree estimation error, computed using normalized Robinson-Foulds
(RF) distances [27], and their running time. We used datasets simulated under
a variety of model conditions, described by two numbers of taxa (100 and
1000), two levels of ILS (moderate and very high), each with 20 replicate
datasets. Datasets included exon-like sequences and intron-like sequences. Exon-
like sequences (“exons”) were characterized by slower rates of evolution across
sites (less phylogenetic signal), resulting in higher levels of gene tree estimation
error, whereas intron-like sequences (“introns”) were characterized by faster rates
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of evolution across sites (greater phylogenetic signal), resulting in lower levels of
gene tree estimation error. The 100-taxon datasets were analyzed using 25, 100,
and 1000 genes, and the 1000-taxon datasets were analyzed using 1000 genes;
note that exons and introns were analyzed separately. For each of these 320
datasets, we constructed constraint trees using true species trees as well as three
different species tree methods: ASTRAL, SVDquartets, and RAxML (on the
concatenated alignment). This provided 1280 different tests in which to evaluate
the impact of using NJMerge. NJMerge failed only twice on these 1280 tests,
indicating a failure rate of 0.2%.

3.1 Simulated Datasets

Datasets were simulated for this study using the protocol presented in [20] and
described below.

True species and true gene trees. Datasets, each with a true species tree and
2000 true gene trees, were simulated using SimPhy Version 1.0.2 [17]; see Sup-
plementary Materials (https://doi.org/10.13012/B2IDB-1424746 V1) for com-
mand. All model conditions had deep speciation (towards the root) and 20 repli-
cate datasets. By holding the effective population size constant (200 K) and
varying the species tree height (in generations), model conditions with different
levels of ILS were generated. For species tree heights of 10 M and 500 K genera-
tions, the average distance between the true species tree and the true gene trees
(as measured by the normalized RF distance) was 8–10% and 68–69% respec-
tively. Thus, we referred to these levels of ILS as “moderate” and “very high”
respectively.

True sequence alignments. Sequence alignments were simulated for each gene
tree using INDELible Version 1.03 [9] under the GTR+Γ model of evolution
without insertions or deletions. For each gene, the parameters for the GTR+Γ
model of evolution (base frequencies, substitution rates, and alpha) were drawn
from distributions based on estimates of these parameters from the Avian Phy-
logenomics Dataset [11]; see Supplementary Materials for details. Distributions
were fitted for exons and introns, separately (Table S2). For each dataset (with
2000 genes), 1000 gene sequences were simulated with parameters drawn from
the exon distributions, and 1000 gene sequences were simulated with parameters
drawn from the intron distributions. Note that exons and introns were analyzed
separately. The sequence lengths were also drawn from a distribution and varied
from 300 to 1500.

Estimated Gene Trees. For all gene sequences, a maximum likelihood gene tree
was estimated using FastTree-2 [25] under the GTR+CAT model of evolution;
see Supplementary Materials for command. The average gene tree estimation
error (computed using normalized RF distances between true and estimated
gene trees) across all replicates ranged from 26% to 51% for introns and 38% to
64% for exons; thus gene tree estimation error was higher for the exon datasets
(Table S1).

https://doi.org/10.13012/B2IDB-1424746_V1
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3.2 Estimated Species Trees

For each model condition (described by number of taxa and level of ILS), species
trees estimation methods were run on the exons and the introns genes, sepa-
rately. Species trees were estimated on 25, 100, or 1000 genes for the 100-taxon
datasets and 1000 genes for the 1000-taxon datasets; see Supplementary Mate-
rials for commands. Specifically, we ran ASTRAL [19,20,42] Version 5.6.1 (the
most recent version of the ASTRAL method, called ASTRAL-III, but henceforth
referred to as “ASTRAL”), SVDquartets [6] (as implemented in PAUP* Version
4a161 [34]), and concatenation using unpartitioned maximum likelihood under
the GTR+Γ model of evolution (as implemented in RAxML [30] Version 8.2.12
with pthreads and SSE3), as the multi-locus species tree estimation methods.
ASTRAL is provably statistically consistent under the MSC model and uses
estimated gene trees as input. SVDquartets and RAxML both use concatenated
multiple sequence alignments (one alignment per gene) as input. SVDquartets
is expected to be statistically consistent under the MSC model [7], but unparti-
tioned maximum likelihood on concatenated alignments is not [28].

Running NJMerge. In our experiments, we set the algorithmic parameters as
follows. For the distance matrix, we computed the internode distance matrix from
the estimated gene trees using ASTRID [36] Version 1.4. For the decomposition
of the taxon set into subsets, we built an NJst starting tree by running NJ
(as implemented within FastME [14] Version 2.1.5) on the internode distance
matrix. The centroid tree decomposition (described in PASTA [18]) was then
used to create disjoint subsets of taxa from the NJst tree. The 100-taxon datasets
were decomposed into 4–6 subsets with a maximum subset size of 30 taxa, and
the 1000-taxon datasets were decomposed into 10–15 subsets with a maximum
subset size of 120 taxa.

We ran NJMerge using estimated subset trees and true subset trees as the
constraints. Thus, we explored the following uses of NJMerge:

– NJMerge+True: NJMerge with the true species tree on each subset
– NJMerge+ASTRAL: NJMerge with subset trees estimated using ASTRAL
– NJMerge+SVDquartets: NJMerge with subset trees estimated using

SVDquartets
– NJMerge+RAxML: NJMerge with subset trees estimated using RAxML

Finally, note that running NJst is the same as running NJMerge without any
constraint trees.

3.3 Evaluation

Species Tree Estimation Error. Species tree estimation error was measured as
the RF error rate, i.e., the normalized RF distance between the true and the
estimated species trees both on the full species set (Table S3). Since both trees
were fully resolved or binary, the RF error rate is the proportion of edges in the
true tree that are missing in the estimated tree. RF error rates were computed
using Dendropy [32]; see Supplementary Materials for command.
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Running Time. All computational experiments were run on the Blue Waters
supercomputer, specifically, the XE6 dual-socket nodes with 64 GB of phys-
ical memory and two AMD Interlagos model 6276 CPU processors (i.e., one
per socket each with 8 floating point cores). All methods were given access to
16 threads with 1 thread per bulldozer (floating-point) core. SVDquartets and
RAxML were explicitly run with 16 threads; however, ASTRAL and NJMerge
currently are not implemented with multi-threading. All methods were restricted
to a maximum wall-clock time of 48 h.

Running time was measured as the wall-clock time and recorded in seconds
for all methods (Table S4). For ASTRAL, SVDquartets, and RAxML, the timing
data was recorded for running the method on the full dataset as well as running
the method on subsets of the dataset (to produce constraint trees for NJMerge).
RAxML did not complete (within the maximum wall-clock time of 48 h) on
datasets with 1000 taxa; however, we used the last checkpoint in evaluating
species tree estimation error and running time. Specifically, running time was
measured as the time between the info file being written and the last checkpoint
file being written.

Because NJMerge was run as a pipeline, we approximated total running time
by combining the timing data from several different stages of the pipeline. If a
study only had access to one compute node, then subset trees would need to
be estimated in serial. In this case, the running time of NJMerge would be
approximated as

Tserial =
N∑

i=1

TMethod
i + TNJMerge (1)

where N is the number of subsets, TMethod
i is the running time of using the given

method (i.e., ASTRAL, SVDquartets or RAxML) to compute a species tree on
subset i, and TNJMerge is the running time of using NJMerge to combine the
subset trees into a single tree on the full taxon set. However, if a study had access
to multiple compute nodes (specifically at least 6 for the 100-taxon datasets and
at least 15 for the 1000-taxon datasets), then the subset trees could be estimated
in parallel. In this case, the running time of NJMerge would be approximated as

Tparallel = max
1≤i≤N

TMethod
i + TNJMerge (2)

where N is the number of subsets, TMethod
i is the running time of using the given

method (i.e., ASTRAL, SVDquartets or RAxML) to compute a tree on subset
i, and TNJMerge is the running time of using NJMerge to combine the subset
trees into a single tree on the full taxon set.

The approximate running time for the NJMerge pipeline could have included
other timing data; for example, the running time to estimate gene trees or the
running time to build the NJst tree. We did not include the running time for
estimating gene trees, because it is becoming common for phylogenomic studies
to include one or more summary methods when estimating species trees. We did
not include the running time for building the NJst tree, because this step is very
fast (see [36]), and distance-based methods are typically faster than ASTRAL,
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SVDquartets, and RAxML on large datasets. For example, we built the NJst
tree in less than two minutes even on datasets with 1000 taxa and 1000 genes;
in contrast, running ASTRAL, SVDquartets, or RAxML on these same datasets
took hundreds to thousands of minutes.

4 Results and Discussion

Results on intron datasets are shown in the main text, and results on exon
datasets are shown in the Supplementary Materials. Unless otherwise noted,
results were similar for both sequence types; however, species trees estimated on
the exon datasets had slightly higher error rates than those estimated on the
intron datasets. This is as expected, since exons had slower rates of evolution
(and so had less phylogenetic signal) than the introns, which increased gene tree
estimation error and subsequent species tree error.
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Fig. 1. Comparison of NJst (i.e., NJMerge without any subset trees) and
NJMerge+True (i.e., NJMerge given subset trees defined by the true species tree as
input) on intron datasets. Species tree estimation error is defined as the normalized
RF distance between the true and the estimated species tree; bars show medians and
red dots show means across replicate datasets. Both NJst and NJMerge were run on
the internode distance matrix computed using estimated gene trees. NJMerge failed
to return a tree on one replicate dataset with 100 taxa, 25 genes, very high ILS, and
intron-like sequences.

Impact of Constraint Tree Error on NJMerge. NJMerge is intended to scale
highly accurate (yet computationally intensive) species tree estimation meth-
ods to larger datasets. Ideally, a highly accurate method would return the true
species tree on subsets of taxa, and then NJMerge would be used to combine
these subset trees into a tree on the full taxon set using an estimated distance
matrix. The error in an NJMerge tree is thus impacted by the error in the
estimated constraint trees and the deviation from additivity in the input dis-
similarity matrix. To determine the relative contributions of these two factors,
we explored the accuracy of NJMerge given true subset trees (i.e., subset trees
built from true species trees) but an estimated distance matrix (i.e., an intern-
ode distance matrix computed from estimated gene trees) as the input. This



NJMerge 269

100 taxa, 25 introns 100 taxa, 100 introns 100 taxa, 1000 introns 1000 taxa, 1000 introns

Moderate Very High Moderate Very High Moderate Very High Moderate Very High
0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0.3

Level of ILS

Sp
ec

ie
s 

Tr
ee

 E
rro

r

ASTRAL−III NJMerge+ASTRAL−III

(a)

100 taxa, 25 introns 100 taxa, 100 introns 100 taxa, 1000 introns 1000 taxa, 1000 introns

Moderate Very High Moderate Very High Moderate Very High Moderate Very High
0

500
1000
1500
2000
2500

0

5

10

15

20

0.0

0.5

1.0

0.0

0.5

Level of ILS

R
un

ni
ng

 T
im

e 
(m

)

ASTRAL−III NJMerge+ASTRAL−III (in serial)  NJMerge+ASTRAL−III (in parallel)

(b)

Fig. 2. Comparison of ASTRAL and NJMerge+ASTRAL (i.e., NJMerge given the
ASTRAL subset trees as input) on intron datasets. Subplot (a) shows species tree
estimation error (defined as the normalized RF distance between true and estimated
species trees); bars represent medians and red dots represent means, across replicate
datasets. Subplot (b) shows running time (in minutes); bars represent means and error
bars represent standard deviations, across replicate datasets. For NJMerge+ASTRAL,
“in serial” or “in parallel” refers to whether subset trees could be estimated in serial
or in parallel; see Eqs. (1) and (2) for more information. ASTRAL did not complete
within the maximum wall-clock time of 48 h on four out of the 20 replicate datasets
with 1000 taxa and very high ILS.

process produced highly accurate species trees for both introns and exons; for
example, the mean species tree error was always less than 5% (regardless of
the level of ILS) when given 1000 genes (Figs. 1 and S1). Importantly, the error
rate for NJMerge+True (i.e., NJMerge given true constraint trees) was substan-
tially lower than the error rate for NJst (i.e., the equivalent of running NJMerge
without constraint trees). We then examined the accuracy of NJMerge given
estimated constraint trees (Table S3). Note that the accuracy of the final tree
was also very close to the accuracy of the estimated subset trees (often within
1–2%), especially when the subset trees were highly accurate (Table S3). Over-
all, this study shows that NJMerge loses only a small amount of accuracy when
used to combine highly accurate subset trees with an estimated distance matrix.

NJMerge+ASTRAL. ASTRAL and NJMerge+ASTRAL had very similar accu-
racy: the average species tree error across all replicates was often the same and
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always within 2% for both intron and exon datasets (Figs. 2a and S2a, Table S3).
Importantly, NJMerge provided a running time advantage over ASTRAL under
some conditions. ASTRAL failed to complete within the maximum wall-clock
time of 48 h on 23 datasets with 1000 taxa, 1000 genes, and very high ILS. On
the remaining 17 replicates, ASTRAL ran for more than 40 h (Figs. 2b and S2b).
In comparison, NJMerge+ASTRAL completed in under 250 min (∼4 h) on aver-
age – even when ASTRAL was run on each subset in serial. Furthermore, when
ASTRAL was run on the subsets in parallel, NJMerge+ASTRAL completed in
under an hour.

On the other hand, ASTRAL did complete on all the moderate ILS datasets
with 1000 taxa and 1000 genes, and the average running time on these datasets
was, on average, under 9 h. The explanation for why ASTRAL was much faster
on the moderate ILS datasets than on the very high ILS datasets is interesting.
ASTRAL operates by searching for an optimal solution to its search problem
within a constrained search space that is defined by the set X of bipartitions in
the estimated gene trees, and ASTRAL’s running time scales with |X |1.726 [42].
As ILS increases, the set of gene trees will become more heterogeneous, and the
constraint set X of bipartitions will increase, as every gene tree could be differ-
ent when the level of ILS is very high. In addition, gene tree estimation error
also increases the search space, explaining why ASTRAL failed to complete on
the exon datasets more often than on the intron datasets (Table S4). In sum-
mary, NJMerge+ASTRAL provided a substantial running time advantage over
ASTRAL when datasets were large and had high amounts of gene tree hetero-
geneity; furthermore, NJMerge+ASTRAL produced species trees of comparable
accuracy.

NJMerge+SVDquartets. On datasets with 100 taxa, SVDquartets was run using
all

(
n
4

)
possible quartets for optimal accuracy. In these experiments, SVDquar-

tets and NJMerge+SVDquartets produced species trees with similar amounts
of error, and in some cases, running NJMerge+SVDquartets was even more
accurate than running SVDquartets on the full dataset. For example, SVDquar-
tets had, on average, 50% error on intron datasets with 100 taxa, 25 genes,
and very high ILS, whereas NJMerge+SVDquartets had, on average, 39% error
(Figs. 3a and S3a). NJMerge+SVDquartets also provided running time improve-
ments even on datasets with 100 taxa and 1000 genes; for example, SVDquartets
used, on average, 22–64 min, whereas NJMerge+SVDquartets completed in less
than 5 min (Figs. 3b and S3b). However, this running time comparison does not
take into account the time needed to compute gene trees, so that a fair com-
parison of running times depends on whether the gene trees would have been
computed anyway.

On datasets with 1000 taxa, SVDquartets was run using a random subset of
quartets, because the maximum number of quartets allowed by the most recent
implementation of SVDquartets inside PAUP* was 4.15833 × 1010. However,
this resulted in a segmentation fault for all 1000-taxon datasets. In contrast,
NJMerge+SVDquartets was able to analyze these datasets, achieving an average
error of 5–6% for datasets with moderate ILS and 10–11% for datasets with very
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Fig. 3. Comparison of SVDquartets and NJMerge+SVDquartets (i.e., NJMerge given
the SVDquartets subset trees as input) on intron datasets. Subplot (a) shows species
tree estimation error (defined as the normalized RF distance between true and esti-
mated species trees); bars represent medians and red dots represent means, across
replicate datasets. Subplot (b) shows running time (in minutes); bars represent
means and error bars represent standard deviations, across replicate datasets. For
NJMerge+SVDquartets, “in serial” or “in parallel” refers to whether subset trees could
be estimated in serial or in parallel; see Eqs. 1 and 2 for more information. SVDquartets
did not run any datasets with 1000 taxa due to segmentation faults.

high ILS (Table S3). Hence, NJMerge enabled SVDquartets to be run on large
datasets and improved the accuracy of SVDquartets on the smaller datasets.

NJMerge+RAxML. Our analyses using RAxML on the 100-taxon datasets
were without problems; however, the analyses using RAxML on the 1000-taxon
datasets presented some challenges. The first problem was that RAxML required
more memory than the 64 GB available (indicated by an “Out of Memory”, or
OOM, error) on approximately half the datasets (see discussion below). The
other problem was that RAxML never converged to a good local optimum
within the maximum allowed wall-clock time of 48 h. Therefore, we modified
the RAxML command to use checkpointing and used the last checkpoint file
written before the job was killed at 48 h.

RAxML and NJMerge+RAxML produced species trees with similar levels
of error (within 1–3% on average) on datasets with moderate ILS. On datasets
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Fig. 4. Comparison of RAxML and NJMerge+RAxML (i.e., NJMerge given the
RAxML subset trees as input) on intron datasets. Subplot (a) shows species tree estima-
tion error (defined as the normalized RF distance between true and estimated species
trees); bars represent medians and red dots represent means, across replicate datasets.
Subplot (b) shows running time (in minutes); bars represent means and error bars
represent standard deviations, across replicate datasets. For NJMerge+RAxML, “in
serial” or “in parallel” refers to whether subset trees could be estimated in serial or in
parallel; see Eqs. 1 and 2 for more information. RAxML was only able to run on one
replicate dataset with 1000 taxa due to “Out of Memory” errors.

with very high ILS, NJMerge+RAxML produced better species trees (i.e., lower
error) than RAxML (Figs. 4a and S4a, Table S3). This trend was observed for
all numbers of taxa and all numbers of genes.

NJMerge+RAxML failed to run on 1 out of the 320 datasets tested; the
model condition was challenging with 100 taxa, 25 genes, very high ILS, and
exon-like sequences. RAxML failed to run on 42 of the 320 datasets tested due
to “Out of Memory” errors. Of these 42 failures, 39 were on the intron datasets
and 3 were on the exon datasets, both with 1000 taxa. The explanation for this
distinction between introns and exons is interesting. RAxML uses redundancy in
site patterns to store the input alignment compactly, so that the memory scales
with the number of unique site patterns. We noted that the intron datasets had
a substantially larger number of unique site patterns than the exon datasets,
which explains why RAxML required more memory when analyzing introns.
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Hence, NJMerge enabled RAxML to analyze large data matrices, even when the
alignment patterns could not be compressed effectively.

For both the 100-taxon and 1000-taxon datasets, NJMerge+RAxML reduced
the running time by more than half (Figs. 4b and S4b) – even when RAxML was
run on the subset trees in serial. For the 1000-taxon datasets, the final checkpoint
was written by RAxML after more than 2250 min (∼37.5 h), on average. In
comparison, when RAxML was run on subsets in parallel and NJMerge was
used to combine the subset trees, NJMerge+RAxML completed in less than
250 min (∼4 h), on average. Even when RAxML was run on subsets in serial,
the average running time of NJMerge+RAxML was less than 1500 min (∼25 h).
Thus, NJMerge+RAxML substantially reduced the running time of RAxML on
large datasets (by tens of hours) and enabled RAxML to run on large intron
datasets using a single 64 GB node.

5 Conclusions

Our divide-and-conquer approach using NJMerge provided several benefits to
large-scale species tree estimation. First, this divide-and-conquer technique
ranged from neutral to beneficial with respect to species tree accuracy and
even produced substantial gains in accuracy for some methods under some
model conditions. Second, the technique often dramatically reduced the run-
ning time required for species tree estimation, even when subset trees were esti-
mated in serial. Third, the technique enabled some methods to run on datasets
that were too large and/or too heterogeneous for methods to analyze efficiently
(e.g., SVDQuartets on 1000-species datasets, ASTRAL on some very high ILS
datasets, RAxML on some intron datasets). Fourth, NJMerge had a very low
failure rate in these experiments. Hence, this divide-and-conquer technique using
NJMerge is an effective approach for scaling species tree estimation methods.

This study suggests several different directions for future research. Since
NJMerge uses a heuristic (which can fail) to test for tree compatibility (in decid-
ing whether to accept a siblinghood proposal), a modification to NJMerge to
use an exact method for this problem would reduce the failure rate and – if
sufficiently fast – would still enable scalability to large datasets. In addition,
all aspects of the divide-and-conquer strategy could be modified. The robust-
ness of NJMerge to the starting tree and initial subset decomposition should
be explicitly tested, and the potential for improved accuracy through iteration
should be evaluated. Other agglomerative techniques for merging disjoint subset
trees should be developed, and NJMerge should be compared to such techniques
when they are available (e.g., the agglomerative technique described in [43] for
gene tree estimation has good theoretical properties but has not yet been imple-
mented).

NJMerge could be further tested using different species tree estimation meth-
ods designed for ILS (e.g., STARBEAST2 [23] and SVDquest [37]) as well as
using methods that estimate species trees from multi-locus datasets in the pres-
ence of duplication/loss. NJMerge could also be used to potentially scale meth-
ods that construct trees based on genome rearrangements, fissions, and fusions.
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Finally, although we studied NJMerge in the context of species tree estimation,
NJMerge could also be tested in the context of gene tree estimation, including
cases where the input is a set of unaligned sequences.
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Abstract. Tumors exhibit extensive intra-tumor heterogeneity, the
presence of groups of cellular populations with distinct sets of somatic
mutations. This heterogeneity is the result of an evolutionary process,
described by a phylogenetic tree. The problem of reconstructing a phylo-
genetic tree T given bulk sequencing data from a tumor is more compli-
cated than the classic phylogeny inference problem. Rather than observ-
ing the leaves of T directly, we are given mutation frequencies that are
the result of mixtures of the leaves of T . The majority of current tumor
phylogeny inference methods employ the perfect phylogeny evolutionary
model. In this work, we show that the underlying Perfect Phylogeny
Mixture combinatorial problem typically has multiple solutions. We
provide a polynomial-time computable upper bound on the number of
solutions. We use simulations to identify factors that contribute to and
counteract non-uniqueness of solutions. In addition, we study the sam-
pling performance of current methods, identifying significant biases.

1 Introduction

Cancer is characterized by somatic mutations that accumulate in a population
of cells, leading to the formation of genetically distinct clones within the same
tumor [19]. This intra-tumor heterogeneity is the main cause of relapse and
resistance to treatment [24]. The evolutionary process that led to the formation of
a tumor can be described by a phylogenetic tree whose leaves correspond to tumor
cells at the present time and whose edges are labeled by somatic mutations. To
elucidate the mechanisms behind tumorigenesis [22,24] and identify treatment
strategies [6,28], we require algorithms that accurately infer a phylogenetic tree
from DNA sequencing data of a tumor.

Most cancer sequencing studies, including those from The Cancer Genome
Atlas [12] and the International Cancer Genome Consortium [8], use bulk DNA
sequencing technology, where samples are a mixture of millions of cells. While
in classic phylogenetics, one is asked to infer a phylogenetic tree given its leaves,
with bulk sequencing data we are asked to infer a phylogenetic tree given mix-
tures of its leaves in the form of mutation frequencies. More specifically, one
c© Springer Nature Switzerland AG 2018
M. Blanchette and A. Ouangraoua (Eds.): RECOMB-CG 2018, LNBI 11183, pp. 277–293, 2018.
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Fig. 1. Overview of the Perfect Phylogeny Mixture (PPM) problem.
By comparing the aligned reads obtained from bulk DNA sequencing data of a matched
normal sample and m tumor samples, we identify n somatic mutations and their fre-
quencies F = [fp,c]. In the PPM problem, we are asked to factorize F into a mixture
matrix U and a complete perfect phylogeny matrix B, explaining the composition of
the m tumor samples and the evolutionary history of the n mutations present in the
tumor, respectively. Typically, an input frequency matrix admits multiple distinct solu-
tions. Here, matrix F has three solutions: (U, B), (U ′, B′) and (U ′′, B′′), where only
(U, B) is the correct solution.

first identifies a set of loci containing somatic mutations present in the tumor by
sequencing and comparing the aligned reads of a matched normal sample and
one or more tumor samples. Based on the number reads of each mutation locus
in a sample, we obtain mutation frequencies indicating the fraction of cells in
the tumor sample that contain each mutation. From these frequencies, the task
is to infer the phylogenetic tree under an appropriate evolutionary model that
generated the data.

The most commonly used evolutionary model in cancer phylogenetics is the
two-state perfect phylogeny model, where mutations adhere to the infinite sites
assumption [2,3,10,11,16,17,20,23,29]. That is, for each mutation locus the
actual mutation occurred exactly once in the evolutionary history of the tumor
and was subsequently never lost. The underlying combinatorial problem of the
majority of current methods is the Perfect Phylogeny Mixture (PPM)
problem. Given an m × n frequency matrix F , we are asked to explain the com-
position of the m tumor samples and the evolutionary history of the n mutations.
More specifically, we wish to factorize F into a mixture matrix U and a perfect
phylogeny matrix B. Not only is this problem NP-complete [3], but multiple
perfect phylogeny trees may be inferred from the same input matrix F (Fig. 1).
Tumor phylogenies have been used to identify mutations that drive cancer pro-
gression [9,18], to assess the interplay between the immune system and the clonal
architecture of a tumor [15,30] and to identify common evolutionary patterns
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in tumorigenesis and metastasis [25,26]. To avoid any bias in such downstream
analyses, all possible solutions must be considered. While non-uniqueness of solu-
tions to PPM has been recognized in the field [4,17], a rigorous analysis of its
extent and consequences on sampling by current methods has been missing.

In this paper, we study the non-uniqueness of solutions to the PPM problem.
We give a upper bound on the number of solutions that can be computed in poly-
nomial time. Using simulations, we identify the factors that contribute to non-
uniqueness. In addition, we empirically study how, in addition to bulk sequenc-
ing, incorporating single-cell and long-read sequencing technologies affects non-
uniqueness. Upon finding that current Markov chain Monte Carlo methods fail
to sample uniformly from the solution space, we describe a simple rejection
sampling algorithm that is able to sample uniformly for modest numbers n of
mutations.

2 Preliminaries

In this section, we review the Perfect Phylogeny Mixture problem, as
introduced in [3] (where it was the called the Variant Allele Frequency
Factorization Problem or VAFFP). As input, we are given a frequency
matrix F = [fp,c] composed of allele frequencies of n single-nucleotide variants
(SNVs) measured in m bulk DNA sequencing samples. In the following, we refer
to SNVs as mutations.

Definition 1. An m × n matrix F = [fp,c] is a frequency matrix provided
fp,c ∈ [0, 1] for all samples p ∈ [m] and mutations c ∈ [n].

Each frequency fp,c indicates the proportion of cells in sample p that have
mutation c. The evolutionary history of all n mutations is described by a phylo-
genetic tree. We assume the absence of homoplasy and define a complete perfect
phylogeny tree T as follows.

Definition 2. A rooted tree T on n vertices is a complete perfect phylogeny
tree provided each edge of T is labeled with exactly one mutation from [n] and
no mutation appears more than once in T .

We call the unique mutation r ∈ [n] that does not label any edge of a complete
perfect phylogeny tree T the founder mutation. Equivalently, we may represent
a complete perfect phylogeny tree by an n × n binary matrix B subject to the
following constraints.

Definition 3. An n × n binary matrix B = [bc,d] is an n-complete perfect
phylogeny matrix provided:

1. There exists exactly one r ∈ [n] such that
∑n

c=1 br,c = 1.
2. For each d ∈ [n] \ {r} there exists exactly one c ∈ [n] such that

∑n
e=1 bd,e −∑n

e=1 bc,e = 1, and bd,e ≥ bc,e for all e ∈ [n].
3. bc,c = 1 for all c ∈ [n].
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While the rows of a perfect phylogeny matrix B correspond to the leaves of
a perfect phylogeny tree T (as per Definition 1), a complete perfect phylogeny
matrix B includes all vertices of T . The final ingredient is an m × n mixture
matrix U defined as follows.

Definition 4. An m × n matrix U = [up,c] is a mixture matrix provided
up,c ∈ [0, 1] for all samples p ∈ [m] and mutations c ∈ [n], and

∑n
c=1 up,c ≤ 1

for all samples p ∈ [m].

The forward problem of obtaining a frequency matrix F from a complete
perfect phylogeny matrix B and mixture matrix U is trivial. That is, F = UB.
We are interested in the inverse problem, which is defined as follows.

Problem 1 (Perfect Phylogeny Mixture (PPM)). Given a frequency
matrix F , find a complete perfect phylogeny matrix B and mixture matrix U
such that F = UB.

Fig. 2. Example PPM instance F has three solutions. Frequency matrix F
corresponds to a simulated n = 5 instance (#9) and has m = 2 samples. The ancestry
graph GF has six spanning arborescences. Among these, only trees T1, T2 and T3 satisfy
the sum condition (SC), whereas trees T4, T5 and T6 violate (SC) leading to negative
entries in U4, U5 and U6. Tree T1 is the simulated tree of this instance. Trees T2 and
T3 differ from T1 by only one edge, and thus each have an edge recall of 3/4 = 0.75.
(Color figure online)
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El-Kebir et al. [3] showed that a solution to PPM corresponds to a con-
strained spanning arborescence of a directed graph GF obtained from F . This
directed graph GF is called the ancestry graph and is defined as follows.

Definition 5. The ancestry graph GF obtained from frequency matrix F =
[fp,c] has n vertices V (GF ) = {1, . . . , n} and there is a directed edge (c, d) ∈
E(GF ) if and only if fp,c ≥ fp,d for all samples p ∈ [m].

As shown in [3], the square matrix B is invertible and thus matrix U is
determined by F and B. We denote the set of children of the vertex corresponding
to a mutation c ∈ [n] \ {r} by δ(c), and we define δ(r) = {r(T )}.

Proposition 1 (Ref. [3]). Given frequency matrix F = [fp,c] and complete
perfect phylogeny matrix B = [bc,d], matrix U = [up,c] where up,c = fp,c −∑

d∈δ(c) fp,d is the unique matrix U such that F = UB.

For matrix U to be a mixture matrix, it is necessary and sufficient to enforce
non-negativity as follows.

Theorem 1 (Ref. [3]). Let F = [fp,c] be a frequency matrix and GF be the
corresponding ancestry graph. Then, complete perfect phylogeny matrix B and
associated matrix U are a solution to PPM instance F if and only if B encodes
a spanning arborescence T of GF satisfying

fp,c ≥
∑

d∈δout(c)

fp,d ∀p ∈ [m], c ∈ [n]. (SC)

The above equation is known as the sum condition (SC), which requires that
any mutation with multiple children have a greater frequency than the sum of
the frequencies of its children in all samples. In this equation, δout(c) denotes
the set of children of vertex c in rooted tree T . A spanning arborescence T of a
directed graph GF is defined as a subset of edges that induce a rooted tree that
spans all vertices of GF .

While finding a spanning arborescence in a directed graph can be done in
linear time (e.g., using a depth-first or breadth-first search), the problem of find-
ing a spanning arborescence in GF adhering to (SC) is NP-hard [3,4]. Moreover,
the same input frequency matrix F may admit more than one solution (Fig. 2).

3 Methods

3.1 Characterization of the Solution Space

Let F be a frequency matrix and let GF be the corresponding ancestry graph.
By Theorem 1, we have that solutions to the PPM instance F are spanning
arborescences T in the ancestry graph GF that satisfy (SC). In this section, we
describe additional properties that further characterize the solution space. We
start with the ancestry graph GF .
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Fact 1. If there exists a path from vertex c to vertex d then (c, d) ∈ E(GF ).

A pair of mutations that are not connected by a path in GF correspond to
two mutations that must occur on distinct branches in any solution. Such pairs
of incomparable mutations are characterized as follows.

Fact 2. Ancestry graph GF does not contain the edge (c, d) nor the edge (d, c) if
and only if there exist two samples p, q ∈ [m] such that fp,c > fp,d and fq,c < fq,d.

We define the branching coefficient as follows.

Definition 6. The branching coefficient γ(GF ) is the fraction of unordered
pairs (c, d) of distinct mutations such that (c, d) �∈ E(GF ) and (d, c) �∈ E(GF ).

In the single-sample case, where frequency matrix F has m = 1 sample, we
have that γ(GF ) = 0. This is because either f1,c ≥ f1,d or f1,d ≥ f1,c for any
ordered pair (c, d) of distinct mutations. Since an arborescence is a rooted tree,
we have the following fact.

Fact 3. For GF to contain a spanning arborescence there must exist a vertex in
GF from which all other vertices are reachable.

Note that GF may contain multiple source vertices from which all other
vertices are reachable. Such source vertices correspond to repeated columns in F
whose entries are greater than or equal to every other entry in the same row. In
most cases the ancestry graph GF does not contain any directed cycles because
of the following property.

Fact 4. Ancestry graph GF is a directed acyclic graph (DAG) if and only if F
has no repeated columns.

In the case where GF is a DAG and contains at least one spanning arbores-
cence, we know that all spanning arborescence T of GF share the same root
vertex. This root vertex r is the unique vertex of GF with in-degree 0.

Fact 5. If GF is a DAG and contains a spanning arborescence then there exists
exactly one vertex r in GF from which all other vertices are reachable.

Figure 2 shows the solutions to a PPM instance F with m = 2 tumor samples
and n = 5 mutations. Since F has no repeated columns, the corresponding
ancestry graph GF is a DAG. Vertex r = 1 is the unique vertex of GF without any
incoming edges. There are three solutions to F , i.e. T1, T2 and T3 are spanning
arborescences of GF , each rooted at vertex r = 1 and each satisfying (SC). How
do we know that F has three solutions in total? This leads to the following
problem.

Problem 2 (#-Perfect Phylogeny Mixture (#PPM)). Given a frequency
matrix F , count the number of pairs (U,B) such that B is a complete perfect
phylogeny matrix, U is a mixture matrix and F = UB.
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Since deciding whether a frequency matrix F can be factorized into a com-
plete perfect phylogeny matrix B and a mixture matrix U is NP-complete [3,4],
the corresponding counting problem is NP-hard.1 Since solutions to F corre-
spond to a subset of spanning arboscences of GF that satisfy (SC), we have the
following fact.

Fact 6. The number of solutions to a PPM instance F is at most the number
of spanning arborescences in the ancestry graph GF .

Kirchhoff’s elegant matrix tree theorem [13] uses linear algebra to count the
number of spanning trees in a simple graph. Tutte extended this theorem to
count spanning arborescences in a directed graph G = (V,E) [27]. Briefly, the
idea is to construct the n × n Laplacian matrix L = [�i,j ] of G, where

�i,j =

⎧
⎪⎨

⎪⎩

degin(j), if i = j,
−1, if i �= j and (i, j) ∈ E

0, otherwise.
(1)

Then, the number of spanning arborescences Ni rooted at vertex i is det(L̂i),
where L̂i is the matrix obtained from L by removing the i-th row and column.
Thus, the total number of spanning arborescences in G is

∑n
i=1 det(L̂i).

By Fact 4, we have that GF is a DAG if F has no repeated columns. In
addition, by Fact 5, we know that GF must have a unique vertex r with no
incoming edges. We have the following technical lemma.

Lemma 1. Let GF be a DAG and let r(GF ) be its unique source vertex. Let
π be a topological ordering of the vertices of GF . Let L′ = [�′

i,j ] be the matrix
obtained from L = [�i,j ] by permuting its rows and columns according to π, i.e.
�′
i,j = �π(i),π(j). Then, L′ is an upper triangular matrix and π(1) = r(GF ).

Proof. Assume for a contradiction that L′ is not upper triangular. Thus, there
must exist vertices i, j ∈ [n] such that j > i and �′

j,i �= 0. By definition of
L and L′, we have that �′

j,i = −1. Thus (π(j), π(i)) ∈ E(GF ), which yields
a contradiction with π being a topological ordering of GF . Hence, L′ is upper
triangular. From Fact 5 it follows that π(1) = r(GF ). ��

Since the determinant of an upper triangular matrix is the product of its
diagonal entries, it follows from the previous lemma that det(L̂′

1) =
∏n−1

i=1 �̂′
i,i.

Combining this fact with Tutte’s directed matrix-tree theorem, yields the fol-
lowing result.

Theorem 2. Let F be a frequency matrix without any repeated columns and let
r be the unique mutation such that fp,r ≥ fp,c for all mutations c and samples p.
Then the number of solutions to F is at most the product of the in-degrees of all
vertices c �= r in GF .
1 We expect the counting problem #PPM to be #P-complete, as to date no NP-

complete problem has been found whose counting version is not NP-complete [14].
To prove that #PPM is #P-complete, we need to give a parsimonious reduction
from a known #P-complete problem to #PPM.
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In Fig. 2, the number of spanning arborescences in GF is degin(2) · degin(3) ·
degin(4) · degin(5) = 1 · 2 · 1 · 3 = 6. To compute the number of spanning
arborescences of GF that satisfy (SC), we can simply enumerate all spanning
arborescences using, for instance, the Gabow-Myers algorithm [7] and only out-
put those that satisfy (SC). El-Kebir et al. [4] extended this algorithm such that
it maintains (SC) as an invariant while growing arborescences. Applying both
algorithms on the instance in Fig. 2 reveals that trees T1, T2 and T3 comprise
all solutions to F . We note that the enumeration algorithm in [4] has not been
shown to be an output-sensitive algorithm.

3.2 Additional Constraints on the Solution Space

Long-read sequencing. Most cancer sequencing studies are performed using next-
generation sequencing technology, producing short reads containing between 100
and 1000 basepairs. Due to the small size of short reads, it is highly unlikely
to observe two mutations that occur on the same read (or read pair). With
(synthetic) long read sequencing technology, including 10X Genomics, Pacbio
and Oxford Nanopore, one is able to obtain reads with millions of basepairs.
Thus, it becomes possible to observe long reads that contain more than one
mutation.

As described in [1], the key insight is that a pair (c, d) of mutations that occur
on the same read orginate from a single DNA molecule of a single cell, and thus c
and d must occur on the same path in the phylogenetic tree. Such mutation pairs
provide very strong constraints to the PPM problem. For example in Fig. 2, in
addition to frequency matrix F , we may be given that mutations 2 and 5 have
been observed on a single read. Thus, in T1 and T2 the pair is highlighted in green
because it is correctly placed on the same path from the root on the inferred
trees. However, the two mutations occur on distinct branches on T3, which is
therefore ruled out as a possible solution.

Single-cell Sequencing. With single-cell sequencing, we are able to identify the
mutations that are present in a single tumor cell. If in addition to bulk DNA
sequencing samples, we are given single cell DNA sequencing data from the same
tumor, we can constrain the solution space to PPM considerably. In particular,
each single cell imposes that its comprising mutations must correspond to a
connected path in the phylogenetic tree. These constraints have been described
recently in [16].

For an example of these constraints, consider frequency matrix F described
in Fig. 2. In addition to frequency matrix F , we may observe a single cell with
mutations {1, 2, 3, 5}. T1 is the only potential solution as this is the only tree
which places all four mutations on a single path, highlighted in blue. Trees T2

and T3 would be ruled out because the mutation set {1, 2, 3, 5} does not induce
a connected path in these two trees.

We note that the constraints described above for single-cell sequencing and
long-read sequencing assume error-free data. In practice, one must incorporate
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an error model and adjust the constraints accordingly. However, the underlying
principles will remain the same.

3.3 Uniform Sampling of Solutions

For practical PPM problem instances, the number n of mutations ranges from 10
to 1000. In particular, for solid tumors in adults we typically observe thousands
of point mutations in the genome. As such, exhaustive enumeration of solutions is
infeasible in practice. To account for non-uniqueness of solutions and to identify
common features shared among different solutions, it would be desirable to have
an algorithm that samples uniformly from the solution space. However, as the
underlying decision problem is NP-complete, the problem of sampling uniformly
from the solution space for arbitrary frequency matrices F is NP-hard. Thus,
one must resort to heuristic approaches.

One class of such approaches employs Markov chain Monte Carlo (MCMC)
for sampling from the solution space [2,10,11]. Here, we describe an alterna-
tive method based on rejection sampling. This method is guaranteed to sample
uniformly from the solution space. Briefly, the idea is to generate a spanning
arborescence T from GF uniformly at random and then test whether T satisfies
(SC). In the case where T satisfies (SC), we report T as a solution and otherwise
reject T .

For the general case where GF may have a directed cycle, we use the cycle-
popping algorithm of Propp and Wilson [21]. This algorithm generates a uniform
spanning arborescence in time O(τ(G̃F )) where τ(G̃F ) is the expected hitting
time of G̃F . More precisely, G̃F is the multi-graph obtained from GF by including
self-loops such that the out-degrees of all its vertices are identical.

For the case where GF is a DAG with a unique source vertex r, there is
a much simpler sampling algorithm. We simply assign each vertex c �= r to a
parent π(c) ∈ δin(c) uniformly at random. It is easy to verify that the resulting
function π encodes a spanning arborescence of GF . Thus, the running time of
this procedure is O(E(GF )). In both cases, the probability of success equals the
fraction of spanning arborescences of GF that satisfy (SC) among all spanning
arborescences of GF .

An implementation of the rejection sampling for the case where GF is a DAG
is available on https://github.com/elkebir-group/OncoLib.

4 Results

Figures 1 and 2 show anecdotal examples of non-uniqueness of solutions to the
Perfect Phylogeny Mixture problem. The following questions arise: Is non-
uniqueness a widespread phenomenon in PPM instances? Which factors con-
tribute to non-uniqueness and how does information from long-read sequencing
and single-cell sequencing reduce non-uniqueness? Finally, are current MCMC
methods able to sample uniformly from the space of solutions?

https://github.com/elkebir-group/OncoLib


286 D. Pradhan and M. El-Kebir

3 5 7 9 11 13
number n of mutations

100

102

104

106

108

1010

nu
m

be
r

of
so

lu
tio

ns
samples (m)

1
2
5
10

(A)

3 5 7 9 11 13
number n of mutations

100

102

104

106

108

1010

nu
m

be
r

of
sp

an
ni

ng
tr

ee
s

in
G

F samples (m)
1
2
5
10

(B)

3 5 7 9 11 13
number n of mutations

0.0

0.2

0.4

0.6

0.8

1.0

br
an

ch
in

g
co

effi
ci

en
t
γ
(G

F
) samples (m)

1
2
5
10

(C)

3 5 7 9 11 13
number n of mutations

0.0

0.2

0.4

0.6

0.8

1.0

m
ed

ia
n

ed
ge

re
ca

ll

samples (m)
1 2 5 10

(D)

Fig. 3. Factors that contribute to non-uniqueness. (A) The number of solutions
increased with increasing number n of mutations, but decreased with increasing number
m of bulk samples. (B) Every solution of an PPM instance F is a spanning arborescence
in the ancestry graph GF . The number of spanning arborescences in GF also increased
with increasing n and decreased with increasing m. (C) The decrease in the number of
solutions and spanning arborescences with increasing m is explained by the branching
coefficient of γ(GF ), which is the fraction of distinct pairs of mutations that occur on
distinct branches in GF . The fraction of such pairs increased with increasing m. (D)
The median edge recall of the inferred trees T increased with increasing m.

To answer these questions, we used simulated data generated by a previ-
ously published tumor simulator [5]. For each number n ∈ {3, 5, 7, 9, 11, 13}
of mutations, we generated 10 complete perfect phylogeny trees T ∗. The sim-
ulator assigned each vertex v ∈ V (T ∗) a frequency f(v) ≥ 0 such that∑

v∈V (T ∗) f(v) = 1. For each simulated complete perfect phylogeny tree T ∗,
we generated m ∈ {1, 2, 5, 10} bulk samples by partitioning the vertex set V (T ∗)
into m disjoint parts followed by normalizing the frequencies in each sample.
This yielded a frequency matrix F for each combination of n and m. In total,
we generated 10 · 6 · 4 = 240 instances. The raw data and scripts to generate the
results are available on https://github.com/elkebir-group/PPM-NonUniq.

4.1 What Contributes to Non-uniqueness?

The two main factors that influence non-uniqueness are the number n of muta-
tions and the number m of samples taken from the tumor. The former contributes
to non-uniqueness while the latter reduces it. As we increased the number n of

https://github.com/elkebir-group/PPM-NonUniq
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mutations from 3 to 13, we observed that the number of solutions increased
exponentially (Fig. 3A). On the other hand, the number m of samples had an
opposing effect: with increasing m the number of solutions decreased.

To understand why we observed these two counteracting effects, we computed
the number of spanning arborescences in each ancestry graph GF . Figure 3B
shows that the number of spanning arborescences exhibited an exponential
increase with increasing number n of mutations, whereas increased number m
of samples decreased the number of spanning arborescences. The latter can be
explained by studying the effect of the number m of samples on the branching
coefficient γ(GF ). Figure 3C shows that the branching coefficient increased with
increasing m, with branching coefficient γ(GF ) = 0 for all m = 1 instances F .
This finding illustrates that additional samples reveal branching of mutations.
That is, in the case where m = 1 one does not observe branching in GF , whereas
as m → ∞ each sample will be composed of a single cell with binary frequencies
and the ancestry graph GF will be a rooted tree.

Adding mutations increases the complexity of the problem, as reflected by the
number of solutions. To quantify how distinct each solution T is to the simulated
tree T ∗, we computed the edge recall of T defined as |E(T ) ∩ E(T ∗)|/|E(T ∗)|
(note that |E(T ∗)| = n − 1 by definition). A recall value of 1 indicates that the
inferred tree T is identical to the true tree T ∗. Figure 3D shows that the median
recall decreased with increasing number n of mutations. However, as additional
samples provide more information, the recall increased with increasing number m
of samples.
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Fig. 4. Long-read sequencing reduces the size of the solution space. (A) The
number of solutions decreased with increasing pairs of mutations that occurred on the
same read. (B) The median edge recall increased with increasing pairs of mutations
that co-occur on a read.

4.2 How to Reduce Non-uniqueness?

As discussed in Sect. 3.2, the non-uniqueness of solutions can be reduced through
various sequencing techniques such as single-cell sequencing and long-read
sequencing. We considered the effect of both technologies on the n = 9 instances.



288 D. Pradhan and M. El-Kebir

By taking longer reads of the genome, long-read sequencing can identify
mutations which coexist in a clone if they appear near one another on the
genome. If two mutations are observed together on a long read, then one muta-
tion is ancestral to the other. That is, on the true phylogenetic tree T ∗ there
must exist a path from the root to a leaf containing both mutations. We varied
the number of mutation pairs observed together from 0 to 5 and observed that
increasing this number reduced the size of the solution space (Fig. 4A). In addi-
tion, incorporating more simulated long-read information resulted in increased
recall of the inferred trees (Fig. 4B).
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Fig. 5. Joint bulk and single-cell sequencing reduces the size of the solution
space. (A) The number of solutions decreased with increasing number of single cells.
(B) The median edge recall increased with increasing number of single cells.

Single-cell sequencing illuminates all of the mutations present in a single
clone in a tumor. This reveals a path from the root of the true phylogenetic
tree T ∗ down to a leaf. Figure 5A shows the effect that single-cell sequencing has
on the size of the solution space. We found that, as we increased the number of
known paths (sequenced single cells) in the tree from 0 to 5, the solution space
decreased exponentially. Additionally, the inferred trees were more accurate with
more sequenced cells, as shown in Fig. 5B by the increase in median edge recall.
These effects are more pronounced when fewer samples are available.

In summary, while both single-cell and long-read sequencing reduce the extent
of non-uniqueness in the solution space, single-cell sequencing achieves a larger
reduction than long-read sequencing.

4.3 How Does Non-uniqueness Affect Current Methods?

To study the effect of non-uniqueness, we considered two current methods, Phy-
loWGS [2] and Canopy [10], both of which use Markov chain Monte Carlo to
sample solutions from the posterior distribution. Rather than operating from
frequencies F = [fp,c], these two methods take as input two integers ap,c and
dp,c for each mutation c and sample p. These two integers are, respectively, the
number of reads with mutation c and the total number of reads. Given A = [ap,c]
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Fig. 6. PhyloWGS and Canopy do not sample uniformly from the solution
space. We consider an n = 7 instance (#81) with varying number m ∈ {1, 2, 5, 10}
of bulk samples (columns), from which we sample solutions using different methods
(rows). Each plot shows the relative frequency (y-axis) of identical trees (x-axis) output
by each method, with the simulated tree indicated by ‘�’. While blue bars are correct
solutions (satisfying (SC)), red bars correspond to incorrect solutions (violating (SC)).
Dashed line indicates the expected relative frequency in the case of uniformity. The
title of each plot lists the number of incorrect solutions, the number of recovered correct
solutions, the total number of correct solutions and the p-value of the chi-squared test
of uniformity (null hypothesis is that the samples come from a uniform distribution).
(Color figure online)

and D = [dp,c], PhyloWGS and Canopy aim to infer a frequency matrix F̂ and
phylogenetic tree T with maximum data likelihood Pr(D,A | F̂ ) such that T
satisfies (SC) for matrix F̂ . In addition, the two methods cluster mutations that
are inferred to have similar frequencies across all samples. To use these methods
in our error-free setting, where we are given matrix F = [fp,c], we set the total
number of reads for each mutation c in each sample p to a large number, i.e.
dp,c = 1, 000, 000. The number of variant reads is simply set as ap,c = fp,c · dp,c.
Since both PhyloWGS and Canopy model variant reads ap,c as draws from a
binomial distribution parameterized by dp,c and f̂p,c, the data likelihood is max-
imized when F̂ = F . We also discard generated solutions where mutations are
clustered. Hence, we can use these methods in the error-free case.

We ran PhyloWGS, Canopy, and our rejection sampling method (Sect. 3.3)
on all n = 7 instances. We used the default settings for PhyloWGS (2500 MCMC
samples, burnin of 1000) and Canopy (burnin of 100 and 1 out of 5 thinning),
with 20 chains per instance for PhyloWGS and 15 chains per instance for Canopy.
For each instance, we ran the rejection sampling algorithm until it generated
10,000 solutions that satisfy (SC).
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Figure 6 shows one n = 7 instance (#81) with varying number m ∈
{1, 2, 5, 10} of samples. For this instance, all the trees output by PhyloWGS
satisfied the sum condition. However, the set of solutions was not sampled uni-
formly, with only 67 out 297 trees generated for m = 1 samples. For m = 5, this
instance had six unique solutions, with PhyloWGS only outputting trees that
corresponded to a single solution among these six solutions. Similarly, Canopy
failed to sample solutions uniformly at random. In addition, Canopy failed to
recover any of the two m = 10 solutions and recovered incorrect solutions for
m = 5. The rejection sampling method recovered all solutions for each value
of m. In addition, the sampled solutions uniformly at random. We find similar
patterns for the other n = 7 instances (data not shown due to space constraints).

Given a frequency matrix F , the success probability of the rejection sampling
approach equals the fraction between the number of solutions and the number
of spanning arborescences in GF . As such, this approach does not scale with
increasing n. Indeed, Fig. 7A shows that the fraction of spanning trees which
also fulfill the sum condition is initially high when the number of mutations is
low. With n = 11 mutations, the fraction is approximately 10−2 and rejection
sampling can be considered to be feasible. However, as the number of mutations
is increased further, rejection sampling become infeasible as the fraction can drop
to 10−10 for n = 21 mutations (Fig. 7B). Therefore, a better sampling approach
is required.

5 Discussion

In this work, we studied the problem of non-uniqueness of solutions to the Per-
fect Phylogeny Mixture (PPM) problem. In this problem, we are given
a frequency matrix F that determines a directed graph GF called the ancestry
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Fig. 7. Although rejection sampling achieves uniformity, it becomes imprac-
tical with increasing number n of mutations. (A) Plot shows the ratio of the
number of solutions to spanning arborescences. Observe that the number of spanning
trees increased with the number n of mutations far more rapidly than the number of
solutions. (B) With further increases in n, the ratio rapidly decreased and the odds
of randomly sampling a solution from the space of spanning arborescences becomes
infeasible.
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graph. The task is to identify a spanning arborescence T of GF whose inter-
nal vertices satisfy a linear inequality whose terms are entries of matrix F .
We formulated the #PPM problem of counting the number of solutions to an
PPM instance. We showed that the number of solutions is at most the number
of spanning arborescences in GF , a number that can be computed in polyno-
mial time. For the case where GF is a directed acyclic graph, we gave a simple
algorithm for counting the number of spanning arborescences. This algorithm
formed the basis of a rejection sampling scheme that samples solutions to a
PPM instance uniformly at random.

Using simulations, we showed that the number of solutions increases with
increasing number n of mutations but decreases with increasing number m of
samples. In addition, we showed that the median recall of all solutions increases
with increasing m but decreases with increasing n. We showed how constraints
from single-cell and long-read sequencing reduce the number of solutions. Finally,
we showed that current MCMC methods fail to sample uniformly from the solu-
tion space. This is problematic as it leads to biases that propagate to downstream
analyses.

There are a couple of avenues for future research. First, it remains to show
that #PPM is #P-complete. Second, while the rejection sampling algorithm
achieves uniformity, it does not scale to practical problem instance sizes. Further
research is needed to develop sampling algorithms that achieve near-uniformity
and have reasonable running time for practical problem instances. Third, in
terms of practical applications, the problem of sampling solutions uniformly at
random in the case of noisy frequencies must be studied. Fourth, just as single-cell
sequencing and long-read sequencing impose constraints on the solution space
of PPM, it will be worthwhile to include additional prior knowledge to further
constrain the solution space. Finally, the PPM problem and the simulations
in this paper assumed error-free data. Further research is needed to study the
effect of sequencing, sampling and mapping errors. It is to be expected that
the problem of non-uniqueness is further exacerbated with additional sources
uncertainty.
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Abstract. Non-parametric and semi-parametric resampling procedures
are widely used to perform support estimation in computational biology
and bioinformatics. Among the most widely used methods in this class
is the standard bootstrap method, which consists of random sampling
with replacement. While not requiring assumptions about any particu-
lar parametric model for resampling purposes, the bootstrap and related
techniques assume that sites are independent and identically distributed
(i.i.d.). The i.i.d. assumption can be an over-simplification for many prob-
lems in computational biology and bioinformatics. In particular, sequen-
tial dependence within biomolecular sequences is often an essential bio-
logical feature due to biochemical function, evolutionary processes such
as recombination, and other factors.

To relax the simplifying i.i.d. assumption, we propose a new non-
parametric/semi-parametric sequential resampling technique that gener-
alizes “Heads-or-Tails” mirrored inputs, a simple but clever technique
due to Landan and Graur. The generalized procedure takes the form of
random walks along either aligned or unaligned biomolecular sequences.
We refer to our new method as the SERES (or “SEquential RESam-
pling”) method.

To demonstrate the performance of the new technique, we apply
SERES to estimate support for the multiple sequence alignment problem.
Using simulated and empirical data, we show that SERES-based support
estimation yields comparable or typically better performance compared
to state-of-the-art methods.
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1 Introduction

Resampling methods are widely used throughout computational biology and
bioinformatics as a means for assessing statistical support. At a high level,
resampling-based support estimation procedures consist of a methodological
pipeline: resampled replicates are generated, inference/analysis is performed
on each replicate, and results are then compared across replicates. Among the
most widely used resampling methods are non-parametric approaches includ-
ing the standard bootstrap method [5], which consists of random sampling with
replacement. We will refer to the standard bootstrap method as the bootstrap
method for brevity. Unlike parametric methods, non-parametric approaches need
not assume that a particular parametric model is applicable to a problem at
hand. However, the bootstrap and other widely used non-parametric approaches
assume that observations are independent and identically distributed (i.i.d.).

In the context of biomolecular sequence analysis, there are a variety of bio-
logical factors that conflict with this assumption. These include evolutionary
processes that cause intra-sequence dependence (e.g., recombination) and func-
tional dependence among biomolecular sequence elements and motifs. Felsenstein
presciently noted these limitations when he proposed the application of the boot-
strap to phylogenetic inference: “A more serious difficulty is lack of independence
of the evolutionary processes in different characters. . . . For the purposes of this
paper, we will ignore these correlations and assume that they cause no prob-
lems; in practice, they pose the most serious challenge to the use of bootstrap
methods.” (reproduced from p. 785 of [6]).

To relax the simplifying assumption of i.i.d. observations, Landan and Graur
[10] introduced the Heads-or-Tails (HoT) technique for the specific problem of
multiple sequence alignment (MSA) support estimation. The idea behind HoT
is simple but quite powerful: inference/analysis should be repeatable whether an
MSA is read either from left-to-right or from right-to-left – i.e., in either heads
or tails direction, respectively. While HoT resampling preserves intra-sequence
dependence, it is limited to two replicates, which is far fewer than typically
needed for reasonable support estimation; often, hundreds of resampled repli-
cates or more are used in practice. Subsequently developed support estimation
procedures increased the number of possible replicates by augmenting HoT with
bootstrapping, parametric resampling, and domain-specific techniques (e.g., pro-
gressive MSA estimation) [11,15,17]. The combined procedures were shown to
yield comparable or improved support estimates relative to the original HoT pro-
cedure [17] as well as other state-of-the-art parametric and domain-specific meth-
ods [9,13], at the cost of some of the generalizability inherent to non-parametric
approaches. In this study, we revisit the central question that HoT partially
addressed: how can we resample many non-parametric replicates that account
for dependence within a sequence of observations, and how can such tech-
niques be used to derive improved support estimates for biomolecular sequence
analysis?
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2 Methods

In our view, a more general statement of HoT’s main insight is the following,
which we refer to as the “neighbor preservation property”: a neighboring obser-
vation is still a neighbor, whether reading an observation sequence from the left
or the right. In other words, the key property needed for non-parametric resam-
pling is preservation of neighboring bases within the original sequences, where
any pair of bases that appear as neighbors in a resampled sequence must also
be neighbors in the corresponding original sequence. To obtain many resam-
pled replicates that account for intra-sequence dependence while retaining the
neighbor preservation property, we propose a random walk procedure which gen-
eralizes a combination of the bootstrap method and the HoT method. We refer
to the new resampling procedure as SERES (“SEquential RESampling”). Note
that the neighbor preservation property is necessary but not sufficient for sta-
tistical support estimation. Other important properties include computational
efficiency of the resampling procedure and unbiased sampling of observations
within the original observation sequence.

SERES walks can be performed on both aligned and unaligned sequence
inputs. We discuss the case of aligned inputs first, since it is simpler than the
case of unaligned inputs.

2.1 SERES Walks on Aligned Sequences

Detailed pseudocode for a non-parametric SERES walk on a fixed MSA is shown
in the Appendix’s Supplementary Methods section: Algorithm 1.

The random walk is performed on the sequence of aligned characters (i.e.,
MSA sites). The starting point for the walk is chosen uniformly at random from
the alignment sites, and the starting direction is also chosen uniformly at random.
The random walk then proceeds in the chosen direction with non-deterministic
reversals, or direction changes, that occur with probability γ; furthermore, rever-
sals occur with certainty at the start and end of the fixed MSA. Aligned charac-
ters are sampled during each step of the walk. The random walk ends once the
number of sampled characters is equal to the fixed MSA length.

The long-term behavior of an infinitely long SERES random walk can be
described by a second-order Markov chain. Certain special cases (e.g., γ = 0.5)
can be described using a first-order Markov chain.

In theory, a finite-length SERES random walk can exhibit biased sampling of
sites since reversal occurs with certainty at the start and end of the observation
sequence, whereas reversal occurs with probability γ elsewhere. However, for
practical choices of walk length and reversal probability γ, sampling bias is
expected to be minimal.

2.2 SERES Walks on Unaligned Sequences

Detailed pseudocode for SERES resampling of unaligned sequences is shown in
the Appendix’s Supplementary Methods section: Algorithm 2. Figure 1 provides
an illustrated example.



SERES 297

The procedure begins with estimating a set of anchors – sequence regions
that exhibit high sequence similarity – which enable resampling synchroniza-
tion across unaligned sequences. A conservative approach for identifying anchors
would be to use highly similar regions that appear in the strict consensus of mul-
tiple MSA estimation methods. In practice, we found that highly similar regions
within a single guide MSA produced reasonable anchors. We used the average
normalized Hamming distance (ANHD) as our similarity measure, where indels
are treated as mismatches.

Unaligned sequence indices corresponding to the start and end of each anchor
serve as “barriers” in much the same sense as in parallel computing: asyn-
chronous sequence reads occur between barrier pairs along a current direction
(left or right), and a random walk is conducted on barrier space in a manner
similar to a SERES walk on a sequence of aligned characters. The set of barriers
also includes trivial barriers at the start and end of the unaligned sequences. The
random walk concludes once the unaligned sequences in the resampled replicate
have sufficient length; our criterion requires that the longest resampled sequence
has minimum length that is a multiple maxReplicateLengthFactor of the longest
input sequence length.

Technically, the anchors in our study make use of parametric MSA estimation
and the rest of the SERES walk is non-parametric. The overall procedure is
therefore semi-parametric (although see Conclusions for an alternative).

2.3 Performance Study

Our study evaluated the performance of SERES-based support estimation in
the context of MSA support estimation. Of course, there are many other appli-
cations for non-parametric/semi-parametric support estimation – too many to
investigate in one study. We focus on this application since it is considered to be
a classical problem in computational biology and bioinformatics and its outputs
are useful for studying a range of topics (e.g., phylogenetics and phylogenomics,
proteomics, comparative genomics, etc.).

Computational Methods. We examined the problem of evaluating support in
the context of MSA estimation. The problem input consists of an estimated MSA
A which has a corresponding set of unaligned sequences S. The problem output
consists of support estimates for each nucleotide-nucleotide homology in A, where
each support estimate is on the unit interval. Note that this computational
problem is distinct from the full MSA estimation problem.

There are a variety of existing methods for MSA support estimation. The cre-
ators of HoT and their collaborators subsequently developed alignment-specific
parametric resampling techniques [11] and then combined the two to obtain two
new semi-parametric approaches: GUIDANCE [15] (which we will refer to as
GUIDANCE1) and GUIDANCE2 [17]. Other parametric MSA support estima-
tion methods include PSAR [9] and T-Coffee [13].

We focus on GUIDANCE1 and GUIDANCE2, which subsume HoT and have
been demonstrated to have comparable or better performance relative to other
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state-of-the-art methods [17]. We used MAFFT for re-estimation on resampled
replicates, since it has been shown to be among the most accurate progressive
MSA methods to date [8,12].

We then used SERES to perform resampling in place of the standard boot-
strap that is used in the first step of GUIDANCE1/GUIDANCE2. Re-estimation
was performed on 100 SERES replicates – each consisting of a set of unaligned
sequences – using MAFFT with default settings, which corresponds to the FFT-
NS-2 algorithm for progressive alignment. The SERES resampling procedure
used a reversal probability γ = 0.5, which is equivalent to selecting a direction
uniformly at random (UAR) at each step of the random walk; each SERES repli-
cate utilized a total of � k

20� anchors with anchor size of 5 bp and a minimum
distance between neighboring anchors of 25 bp, where k is the length of the
input alignment A. All downstream steps of GUIDANCE1/GUIDANCE2 were
then performed using the re-estimated alignments as input.

Fig. 1. Illustrated example of SERES resampling random walk on unaligned
sequences. Detailed pseudocode is provided in the Appendix’s Supplementary Meth-
ods section (Algorithm 2 in Appendix). (a) The resampling procedure begins with the
estimation of a consensus alignment on the input set of unaligned sequences. (b) A set
of conservative anchors is then obtained using the consensus alignment, and anchor
boundaries define a set of barriers (including two trivial barriers – one at the start of
the sequences and one at the end of the sequences). (c) The SERES random walk is
conducted on the set of barriers. The walk begins at a random barrier and proceeds
in a random direction to the neighboring barrier. The walk reverses with certainty
when the trivial start/end barriers are encountered; furthermore, the walk direction
can randomly reverse with probability γ. As the walk proceeds from barrier to barrier,
unaligned sequences are sampled between neighboring barrier pairs. (d) The resam-
pling procedure terminates when the resampled sequences meet a specified sequence
length threshold.
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Fig. 1. (continued)

Simulated Datasets. Model trees and sequences were simulated using INDELi-
ble [7]. First, non-ultrametric model trees with either 10 or 50 taxa were sampled
using the following procedure. Model trees were generated under a birth-death
process [18], branch lengths were chosen UAR from the interval (0, 1), and the
model tree height was re-scaled from its original height h0 to a desired height
h by multiplying all branch lengths by the factor h/h0. Next, sequences were
evolved down each model tree under the General Time-Reversible (GTR) model
of substitution [16] and the indel model of Fletcher and Yang [7], where the root
sequence had length of 1 kb. We used the substitution rates and base frequencies
from the study of Liu et al. [12], which were based upon empirical analysis of
the nematode Tree of Life. Sequence insertions/deletions occurred at rate ri, and
we used the medium gap length distribution from the study of Liu et al. [12].
The model parameter values used for simulation are shown in Table 1, and each
combination of model parameter values constitutes a model condition. Model
conditions are enumerated in order of generally increasing sequence divergence,
as reflected by average pairwise ANHD. For each model condition, the simu-
lation procedure was repeated to generate twenty replicate datasets. Summary
statistics for simulated datasets are shown in Table 1.

We evaluated performance based upon receiver operating characteristic
(ROC) curves, precision-recall curves (PR), and area under ROC and PR curves
(ROC-AUC and PR-AUC, respectively). Consistent with other studies of MSA
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Table 1. Model condition parameter values and summary statistics. The
simulation study parameters consist of the number of taxa, model tree height, and
insertion/deletion probability. Each model condition corresponds to a distinct set of
model parameter values. The 10-taxon model conditions are named 10.A through 10.E
in order of generally increasing sequence divergence; the 50-taxon model conditions are
named 50.A through 50.E similarly. The following table columns list average summary
statistics for each model condition (n = 20). “NHD” is the average normalized Ham-
ming distance of a pair of aligned sequences in the true alignment. “Gappiness” is the
percentage of true alignment cells which consists of indels. “True align length” is the
length of the true alignment. “Est align length” is the length of the MAFFT-estimated
alignment [8] which was provided as input to the support estimation methods. “SP-
FN” and “SP-FP” are the proportion of homologies that appear in the true alignment
but not in the estimated alignment and vice versa, respectively.

Model

condition

Number

of taxa

Tree

height

Insertion/deletion

probability

NHD Gappiness True align

length

Est align

length

SP-FN SP-FP

10.A 10 0.4 0.13 0.297 0.474 1965.3 1552.3 0.294 0.341

10.B 10 0.7 0.1 0.394 0.512 2165.1 1563.5 0.483 0.533

10.C 10 1 0.06 0.514 0.526 2162.8 1554.0 0.657 0.684

10.D 10 1.6 0.031 0.599 0.485 1874.4 1507.5 0.747 0.752

10.E 10 4.3 0.013 0.693 0.465 1849.3 1612.8 0.945 0.943

50.A 50 0.45 0.06 0.281 0.516 2043.5 1785.7 0.086 0.088

50.B 50 0.7 0.03 0.398 0.475 1935.5 1714.2 0.105 0.102

50.C 50 1 0.02 0.514 0.498 2047.6 1703.1 0.245 0.230

50.D 50 1.8 0.012 0.594 0.471 1945.0 1712.2 0.455 0.419

50.E 50 4.3 0.004 0.688 0.459 1890.2 2319.2 0.963 0.948

support estimation techniques [15,17], the MSA support estimation problem
in our study entails annotation of nucleotide-nucleotide homologies in the esti-
mated alignment; thus, homologies that appear in the true alignment but not the
estimated alignment are not considered. For this reason, the confusion matrix
quantities used for ROC and PR calculations are defined as follows. True pos-
itives (TP) are the set of nucleotide-nucleotide homologies that appear in the
true alignment and the estimated alignment with support value greater than or
equal to a given threshold, false positives (FP) are the set of nucleotide-nucleotide
homologies that appear in the estimated alignment with support value greater
than or equal to a given threshold but do not appear in the true alignment, false
negatives (FN) are the set of nucleotide-nucleotide homologies that appear in the
true alignment but appear in the estimated alignment with support value below
a given threshold, and true negatives (TN) are the set of nucleotide-nucleotide
homologies that do not appear in the true alignment and appear in the esti-
mated alignment with support value below a given threshold. The ROC curve
plots the true positive rate (|TP|/(|TP| + |FN|)) versus the false positive rate
(|FP|/(|FP| + |TN|)). The PR curve plots the true positive rate versus preci-
sion (|TP|/(|TP| + |FP|)). Varying the support threshold yields different points
along these curves. Custom scripts were used to perform confusion matrix calcu-
lations. ROC curve, PR curve, and AUROC calculations were performed using
the scikit-learn Python library [14].



SERES 301

Table 2. Empirical dataset summary statistics. The empirical study made use
of reference alignments (“Ref align”) from the CRW database [2]. The reference align-
ments were curated using heterogeneous data including secondary structure informa-
tion. The column description is identical to Table 1, where the empirical study made
use of reference alignments in lieu of the simulation study’s true alignments.

Dataset Number
of taxa

NHD Gappiness Ref align
length

Est align
length

SP-FP SP-FN

IGIA 110 0.606 0.915 10368 6675 0.734 0.784

IGIB 202 0.579 0.910 10633 7379 0.825 0.864

IGIC2 32 0.533 0.700 4243 3514 0.689 0.715

IGID 21 0.719 0.782 5061 3023 0.874 0.904

IGIE 249 0.451 0.838 2751 2775 0.393 0.376

IGIIA 174 0.668 0.814 6406 7005 0.816 0.800

PA23 142 0.293 0.267 3991 3552 0.078 0.077

PE23 117 0.300 0.612 9436 10083 0.202 0.213

PM23 102 0.361 0.797 10999 8803 0.262 0.288

SA16 132 0.212 0.205 1866 1673 0.031 0.028

SA23 144 0.304 0.460 4048 3678 0.077 0.081

Empirical Datasets. We downloaded empirical benchmarks from the Compar-
ative RNA Web (CRW) Site database, which can be found at www.rna.icmb.
utexas.edu [2]. In brief, the CRW database includes ribosomal RNA sequence
datasets than span a range of dataset sizes and evolutionary divergence. We
focused on datasets where high-quality reference alignments are available; the
reference alignments were produced using intensive manual curation and analysis
of heterogeneous data, including secondary structure information. We selected
primary 16 S rRNA, primary 23 S rRNA, primary intron, and seed alignments
with at most 250 sequences. Aligned sequences with 99% or more missing data
and/or indels were omitted from analysis. Summary statistics for the empirical
benchmarks are shown in Table 2.

2.4 Computational Resources Used and Software/Data Availability

All computational analyses were run on computing facilities in Michigan State
University’s High Performance Computing Center. We used compute nodes in
the intel16-k80 cluster, each of which had a 2.4 GHz 14-core Intel Xeon E5-
2680v4 processor. All replicates completed with memory usage less than 10 GiB.
Open-source software and open data can be found at https://gitlab.msu.edu/
liulab/SERES-Scripts-Data.

www.rna.icmb.utexas.edu
www.rna.icmb.utexas.edu
https://gitlab.msu.edu/liulab/SERES-Scripts-Data
https://gitlab.msu.edu/liulab/SERES-Scripts-Data
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Table 3. Simulation study results. Results are shown for five 10-taxon model
conditions (named 10.A through 10.E in order of generally increasing sequence diver-
gence) and five 50-taxon model conditions (similarly named 50.A through 50.E). We
evaluated the performance of two state-of-the-art methods for MSA support estima-
tion – GUIDANCE1 [15] and GUIDANCE2 [17] – versus re-estimation on SERES and
parametrically resampled replicates (using parametric techniques from either GUID-
ANCE1 or GUIDANCE2). (See Methods section for details.) We calculated each
method’s precision-recall (PR) and receiver operating characteristic (ROC) curves.
Performance is evaluated based upon aggregate area under curve (AUC) across all
replicates for a model condition (n = 20). The top rows show AUC comparisons of
GUIDANCE1 (“GUIDANCE1”) vs. SERES combined with parametric techniques from
GUIDANCE1 (“SERES+GUIDANCE1”), and the bottom rows show AUC compar-
isons of GUIDANCE2 (“GUIDANCE2”) vs. SERES combined with parametric tech-
niques from GUIDANCE2 (“SERES+GUIDANCE2”); for each model condition and
pairwise comparison, the best AUC is shown in bold. Statistical significance of PR-AUC
or AUC-ROC differences was assessed using a one-tailed pairwise t-test or DeLong et
al. [4] test, respectively, and multiple test correction was performed using the method
of Benjamini and Hochberg [1]. Corrected q-values are reported (n = 20) and all were
significant (α = 0.05).

Model

condition

PR-AUC (%) Pairwise t-test

corrected

q-value

ROC-AUC (%) DeLong et al.

test corrected

q-value

GUID-

ANCE1

SERES+

GUID-

ANCE1

GUID-

ANCE1

SERES+

GUID-

ANCE1

10.A 88.74 91.17 5.4 × 10−7 80.22 85.57 < 10−10

10.B 82.21 86.26 1.5 × 10−6 84.83 88.66 < 10−10

10.C 76.23 83.49 1.9 × 10−4 86.98 91.23 < 10−10

10.D 74.65 85.81 1.9 × 10−4 88.55 93.72 < 10−10

10.E 42.61 59.20 3.1 × 10−4 82.24 87.40 < 10−10

50.A 98.22 98.92 5.3 × 10−10 83.09 90.64 < 10−10

50.B 97.84 98.69 2.8 × 10−9 82.85 90.39 < 10−10

50.C 95.08 96.80 5.6 × 10−8 85.54 90.64 < 10−10

50.D 90.79 95.75 5.3 × 10−6 88.89 94.56 < 10−10

50.E 62.47 79.14 8.0 × 10−10 91.02 93.23 < 10−10

Model

condition

PR-AUC (%) Pairwise t-test

corrected

q-value

ROC-AOC (%) DeLong et al.

test corrected

q-value

GUID-

ANCE2

SERES+

GUID-

ANCE2

GUID-

ANCE2

SERES+

GUID-

ANCE2

10.A 92.55 93.33 7.4 × 10−6 87.17 88.34 < 10−10

10.B 88.08 89.31 8.4 × 10−4 89.45 90.56 < 10−10

10.C 84.28 86.86 3.1 × 10−4 91.36 92.88 < 10−10

10.D 86.03 88.75 1.9 × 10−4 93.34 94.69 < 10−10

10.E 51.17 62.30 1.3 × 10−3 86.00 88.28 < 10−10

50.A 98.98 99.14 5.3 × 10−6 91.17 92.50 < 10−10

50.B 98.79 98.96 1.5 × 10−6 91.24 92.44 < 10−10

50.C 96.86 97.45 3.2 × 10−7 90.81 92.31 < 10−10

50.D 94.04 96.23 1.5 × 10−5 92.67 95.09 < 10−10

50.E 72.61 81.47 1.5 × 10−8 92.94 94.22 < 10−10
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3 Results

3.1 Simulation Study

For all model conditions, SERES-based resampling and re-estimation yielded
improved MSA support estimates compared to GUIDANCE1 and GUIDANCE2,
two state-of-the-art methods, where performance was measured by PR-AUC or
ROC-AUC (Table 3). In all cases, PR-AUC or ROC-AUC improvements were
statistically significant (corrected pairwise t-test or DeLong et al. [4] test, respec-
tively; n = 20 and α = 0.05). The observed performance improvement was robust
to several experimental factors: dataset size, increasing sequence divergence due
to increasing numbers of substitutions, insertions, and deletions, and the choice
of alignment-specific parametric support estimation techniques (i.e., the para-
metric approaches used by either GUIDANCE1 or GUIDANCE2) that were used
in combination with SERES-based support estimation.

Compared to dataset size, sequence divergence had a relatively greater quan-
titative impact on each method’s performance. For each dataset size (10 or 50
taxa), PR-AUC differed by at most 3% on the least divergent model condition.
The SERES-based method’s performance advantage grew as sequence diver-
gence increased – to as much as 28% – and the largest performance advantages
were seen on the most divergent datasets in our study. The most divergent
datasets were also the most challenging. For each method, PR-AUC generally
degraded as sequence divergence increased; however, the SERES-based method’s
PR-AUC degraded more slowly compared to the non-SERES-based method.
Consistent with the study of Sela et al. [17], GUIDANCE2 consistently outper-
formed GUIDANCE1 on each model conditions and using either AUC measure.
The performance improvement of SERES+GUIDANCE1 over GUIDANCE1 was
generally greater than that seen when comparing SERES+GUIDANCE2 and
GUIDANCE2; furthermore, the PR-AUC-based corrected q-values were more
significant for the former compared to the latter in all cases except for the 10.D
model condition, where the corrected q-values were comparable. Finally, while
the SERES-based method consistently yielded performance improvements over
the corresponding non-SERES-based method regardless of the choice of perfor-
mance measure (either PR-AUC or ROC-AUC), the PR-AUC difference was
generally larger than the ROC-AUC difference, especially on more divergent
model conditions. On average across all replicates of all model conditions with a
given dataset size, the runtime overhead contributed by SERES was minimal –
amounting to just a few minutes per replicate dataset – and all methods in the
simulation study completed analysis of each replicate dataset in less than half
an hour (Supplementary Table S1 in Appendix).

3.2 Empirical Study

Relative to GUIDANCE1 or GUIDANCE2, SERES-based support estimates
consistently returned higher AUC on all datasets – primary, seed, and intronic
– with a single exception: the comparison of SERES+GUIDANCE2 and
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Table 4. Empirical study results. The empirical study made use of benchmark
RNA datasets and curated reference alignments from the CRW database [2]. Results
are shown for intronic (“IG” prefix) and non-intronic datasets (“P” prefix and “S”
prefix, following “primary” and “seed” nomenclature from the CRW database). For
each dataset, we report each method’s PR-AUC and ROC-AUC. For each dataset and
pairwise method comparison, the best AUC is shown in bold. Methods, performance
measures, table layout, and table description are otherwise identical to Table 3.

Dataset PR-AUC (%) ROC-AUC (%)

GUIDANCE1 SERES+
GUIDANCE1

GUIDANCE1 SERES+
GUIDANCE1

IGIA 62.67 69.28 89.50 91.62

IGIB 73.60 87.47 94.49 97.39

IGIC2 72.67 75.36 82.25 83.87

IGID 63.74 76.30 95.10 96.73

IGIE 93.56 95.42 90.08 93.30

IGIIA 73.03 83.06 86.49 96.45

PA23 98.54 99.41 82.59 93.63

PE23 98.44 99.27 94.75 97.41

PM23 97.53 98.48 94.20 96.44

SA16 99.72 99.86 91.07 95.57

SA23 98.35 99.24 81.76 92.18

Dataset PR-AUC (%) ROC-AUC (%)

GUIDANCE2 SERES+
GUIDANCE2

GUIDANCE2 SERES+
GUIDANCE2

IGIA 67.4 68.49 91.38 91.94

IGIB 80.66 86.72 96.47 97.38

IGIC2 74.44 73.27 84.63 82.51

IGID 75.15 78.38 96.44 97.09

IGIE 94.6 95.44 91.84 93.49

IGIIA 78.16 85.09 94.50 96.82

PA23 99.24 99.53 91.48 94.88

PE23 99.07 99.34 96.72 97.63

PM23 98.68 98.85 96.93 97.28

SA16 99.88 99.91 96.22 97.22

SA23 99.04 99.33 89.93 93.18

GUIDANCE2 on the intronic IGIC2 dataset, where the PR-AUC and ROC-
AUC differences were 1.17% and 2.12%, respectively. For each pairwise
comparison of methods (i.e., SERES+GUIDANCE1 vs. GUIDANCE1 or
SERES+GUIDANCE2 vs. GUIDANCE2), the SERES-based method returned
relatively larger PR-AUC improvements on datasets with greater sequence
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divergence, as measured by ANHD and gappiness. In particular, PR-AUC
improvements were less than 1% on seed and primary non-intronic datasets.
Intronic datasets yielded PR-AUC improvements of as much as 13.87%. Observed
AUC improvements of SERES+GUIDANCE1 over GUIDANCE1 were relatively
greater than those seen for SERES+GUIDANCE2 in comparison to GUID-
ANCE2. Finally, GUIDANCE2 consistently returned higher AUC relative to
GUIDANCE1, regardless of whether PR or ROC curves were the basis for AUC
comparison.

4 Discussion

Re-estimation using SERES resampling resulted in comparable or typically
improved support estimates for the applications in our study. We believe that
this performance advantage is due to the ability to generate many distinct repli-
cates while enforcing the neighbor preservation principle. The latter is critical
for retaining sequence dependence which is inherent to the application in our
study.

On all model conditions, SERES+GUIDANCE1 support estimation
resulted in significant improvements in AUC-PR and AUC-ROC com-
pared to GUIDANCE1. A similar outcome was observed when comparing
SERES+GUIDANCE2 and GUIDANCE2. The main difference in each com-
parison is the resampling technique – either SERES or standard bootstrap. Our
findings clearly demonstrate the performance advantage of the former over the
latter. SERES accounts for intra-sequence dependence due to insertion and dele-
tion processes, while the bootstrap method assumes that sites are independent
and identically distributed. Regarding comparisons involving GUIDANCE2 ver-
sus GUIDANCE1, a contributing factor may have been the greater AUC of
GUIDANCE2 over GUIDANCE1. We used SERES to perform semi-parametric
support estimation in conjunction with the parametric support techniques of
GUIDANCE1 or GUIDANCE2. The latter method’s relatively greater AUC may
be more challenging to improve upon (Table 4).

The performance comparisons on empirical benchmarks were consistent with
the simulation study. In terms of ANHD and gappiness, the non-intronic datasets
in our empirical study were more like the low divergence model conditions in
our simulation study, and the intronic datasets were more like the higher diver-
gence model conditions. Across all empirical datasets, SERES-based support
estimation consistently yielded comparable or better AUC versus GUIDANCE1
or GUIDANCE2 alone. The SERES-based method’s AUC advantage generally
increased as datasets became more divergent and challenging to align – partic-
ularly when comparing performance on non-intronic versus intronic datasets.
We found that the support estimation methods returned comparable AUC
(within a few percentage points) on datasets with 1–2 dozen sequences and
low sequence divergence relative to other datasets. In particular, IGIC2 was the
only dataset where SERES+GUIDANCE2 did not return an improved AUC rel-
ative to GUIDANCE2. IGIC2 was the second-smallest dataset – about an order
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of magnitude smaller than all other datasets except the IGID dataset – and
IGIC2 also had the second-lowest ANHD and lowest gappiness among intronic
datasets. IGID was the smallest dataset, but had higher ANHD and gappi-
ness compared to the IGIC2 dataset. Compared to the other empirical datasets,
SERES+GUIDANCE2 returned a small AUC improvement over GUIDANCE2
on the IGID dataset – at most 3.2%.

On simulated and empirical datasets, greater sequence divergence generally
resulted in increased inference error for all methods. However, the SERES-based
method’s performance tended to degrade more slowly than the corresponding
non-SERES-based method as sequence divergence increased, and the greatest
performance advantage was seen on the most divergent model conditions and
empirical datasets.

Finally, we note that non-parametric/semi-parametric resampling techniques
are orthogonal to parametric alternatives. Consistent with previous studies [15,
17], we found that combining two different classes of methods yielded better
performance than either by itself.

5 Conclusions

This study introduced SERES, which consists of new non-parametric and semi-
parametric techniques for resampling biomolecular sequence data. Using simu-
lated and empirical data, we explored the use of SERES resampling for support
estimation involving a classical problem in computational biology and bioinfor-
matics. We found that SERES-based support estimation yields comparable or
typically better performance compared to state-of-the-art approaches.

We conclude with possible directions for future work. First, the SERES
algorithm in our study made use of a semi-parametric resampling procedure
on unaligned inputs, since anchors were constructed using progressive multiple
sequence alignment. While this approach worked well in our experiments, non-
parametric alternatives could be substituted (e.g., unsupervised k-mer clustering
using alignment-free distances [3]) to obtain a purely non-parametric resam-
pling procedure. Second, the unaligned input application focused on nucleotide-
nucleotide homologies to enable direct comparison against existing MSA sup-
port estimation procedures (i.e., GUIDANCE1 and GUIDANCE2). The SERES
framework can be extended in a straightforward manner to estimate support
for nucleotide-indel pairs. Third, SERES resampling can be used to perform full
MSA inference. One approach would be to analyze homologies that appeared
in re-estimated inferences across resampled replicates, without regard to any
input alignment. Fourth, in the case where biomolecular sequences evolved under
insertion/deletion processes, we consider the distinction between aligned and
unaligned inputs to be an unnecessary dichotomy. In theory, the latter sub-
sumes the former. We can apply this insight using a two-phase approach: (1)
perform SERES-based re-estimation on unaligned sequences to estimate sup-
port for aligned homologies (from either an input MSA or the de novo procedure
proposed above), and (2) perform support-weighted SERES walks on the anno-
tated MSA from the previous stage to obtain support estimates on downstream
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inference. Alternatively, we can simultaneously address both problems using co-
estimation. Finally, we envision many other SERES applications. Examples in
computational biology and bioinformatics include protein structure prediction,
detecting genomic patterns of natural selection, and read mapping and assem-
bly. Non-parametric resampling for support estimation is widely used throughout
science and engineering, and SERES resampling may similarly prove useful in
research areas outside of computational biology and bioinformatics.
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Abstract. We consider the NP-hard Tree Containment problem that
has important applications in phylogenetics. The problem asks if a given
single-rooted leaf-labeled network (“phylogenetic network”) N “con-
tains” a given leaf-labeled tree (“phylogenetic tree”) T . We develop a fast
algorithm for the case that N is a phylogenetic tree in which multiple
leaves might share a label. Generalizing a previously known decompo-
sition scheme lets us leverage this algorithm, yielding linear-time algo-
rithms for so-called “reticulation visible” networks and“nearly stable”
networks. While these are special classes of networks, they rank among
the most general of the previously considered cases. We also present
a dynamic programming algorithm that solves the general problem in
O(3t∗ · |N | · |T |) time, where the parameter t∗ is the maximum number
of “tree components with unstable roots” in any block of the input net-
work. Notably, t∗ is stronger (that is, smaller on all networks) than the
previously considered parameter “number of reticulations” and even the
popular parameter “level” of the input network.

1 Introduction

The quest to find the famous “tree of life” has been popular in life sciences since
the widespread adoption of evolution as the source of biodiversity on earth. With
the discovery of DNA, the task of constructing a history of the evolution of a
set of species has become both a blessing and a curse. A blessing because we no
longer rely on phenotypical characteristics to distinguish between species and a
curse because we are being overwhelmed with data that has to be cleaned, inter-
preted and visualized in order to draw conclusions. The use of DNA also gave
strong support to the realization that trees are not always suited to display ances-
tral relations, as they fail to model recombination events such as hybridization
(occurring frequently in plants) and horizontal gene transfer (a dominating fac-
tor in bacterial evolution) [8,25]. Thus, researchers are more and more interested
in evolutionary networks and algorithms dealing with them (see the monographs
by Gusfield [20] and Huson et al. [22]).

The particular task that we consider in this work is to tell whether a given
evolutionary network N “displays” an evolutionary tree T , that is, whether the
tree-like information that we might have come to believe in the past is consis-
tent with a proposed recombinant evolution. This problem is known as Tree

c© Springer Nature Switzerland AG 2018
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Containment and it has been studied extensively. As it is NP-hard for general
binary N and T [23,26], research focuses on moderately exponential time algo-
rithms [18] and biologically relevant special cases of networks [6,14,15,17,23,26].
Prominent among these special classes are the following:

– nearly-stable networks for which a linear-time algorithm is known [15]
– reticulation-visible networks for which cubic-time [6], quadratic-time [17] and

linear-time [16] algorithms are known.

The related task of finding a “cluster” instead of a tree [17,19,26] has also been
considered. Allowing high-degree nodes (“polytomies”) splits the problem into
two variants. In the “soft” variant, loosely speaking, polytomies are compatible
with any binary subnetwork (see Bentert et al. [4]). In this work, we consider
the “hard” version, where polytomies in T must correspond to polytomies in
N . Using the decomposition of Gunawan et al. [17] for general networks, we
show that Tree Containment can be solved in O(|N | · ←−

Δ
2
N · −→

Δ
2
T ) time1 if

each tree vertex with a reticulation parent is stable2 on some leaf. This run-
ning time degenerates to linear time for binary N in which the length of a
longest “reticulation chain” (directed path consisting only of reticulations) is
constant. This class of networks properly includes both reticulation visible and
nearly stable networks and, therefore, subsumes previous work mentioned above.
We culminate the ideas that lead to the linear-time algorithms to develop an
O((−→

ΔT + 1)t∗ ·(−→
ΔN + −→

Δ
2.5
T ) · |V (N)| · |V (T )|)-time algorithm, where t∗ is the max-

imum number of unstable tree components (see Definition 1) in any biconnected
component3 of N . For bifurcating N , this degenerates to O(3t∗ · |V (N)| · |V (T )|)
time.

Preliminaries. Let N be a weakly connected, directed acyclic graph (DAG) with
a single source ρ (N) called the root and each of the sinks L(N) (called leaves)
carries a label (its “taxon”). Then, we call N an evolutionary (or phylogenetic)
network (or “network” for short). We call the vertices of in-degree at least two
in N reticulations and all other vertices tree vertices and we demand that all
reticulations have out-degree one (if any vertex has in- and out-degree more than
one, it can be “split” into a tree vertex with a reticulation parent without impact
on the computational problem). If N has no reticulations, then it is called a tree.
We denote the number of arcs in N by |N |.

We denote the maximum in- and out-degree in N by ←−
ΔN and −→

ΔN , respectively.
Then, we call N forward-binary (or bifurcating) if −→

ΔN ≤ 2 and binary if also
←−
ΔN ≤ 2. If each label occurs ≤ k times in N , we call N k-labeled or, if k is

1 Herein, −→
ΔT is the maximum out-degree in T and ←−

ΔN is the maximum in-degree in
the result of contracting all arcs between reticulations in N .

2 u is stable on � if all root-�-paths contain u. The notion of stability is equivalent to
the notion of “dominators” in directed graphs [1,24].

3 A biconnected component (or “block”) of a network is a subdigraph induced by the
vertices of a biconnected component of its underlying undirected graph, that is, a
connected component in the result of removing all bridges.
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unknown or inconsequential, multi-labeled. We define the relation ≤N such that
u ≤N v ⇐⇒ u is a descendant of v (that is, v is an ancestor of u) in N .
Note that u ≤N ρ (N) for all u ∈ V (N). For each vertex v of N , we define Nv

to be the subnetwork rooted at v, that is, the subnetwork of N that contains
exactly the vertices u with u ≤N v and all arcs of N between those vertices.
The subnetwork N |U of N restricted to a set U of vertices is the result of first
removing all vertices v with ∀u∈Uu �N v and then contracting all arcs that are
outgoing of vertices w with in-degree and out-degree at most one, unless w ∈ U .
Note that the least common ancestor (LCA) of any two vertices of U is also
in N |U .

We call any vertex v of N stable on
another vertex u if all ρ (N)-u-paths con-
tain v and we call v stable if v is stable on
a leaf of N . Then, N is called reticulation
visible if each reticulation r is stable. Further, N is called nearly stable if, for
each vertex v, either v or its direct predecessors (called parents) are stable. For
all k, a k-labeled network N is said to contain a tree T if T is a subgraph of
N (respecting the leaf-labeling). Further, N is said to display T if N contains a
subdivision of T (that is, the result of a series of arc-subdivisions in T ). In this
work, we consider the Tree Containment problem defined on the right. We
assume that each arc between two reticulations in N is initially contracted. Since
T has no reticulations, this has no influence on whether or not N displays T .

Assumption 1. The children and parents of all reticulations are tree vertices.

2 Multi-labeled Tree Containment

The following is a simple dynamic programming deciding if a k-labeled tree T̂
displays a tree T . To this end, we define a table with entries [u, v] where u ∈ V (T̂ )
and v ∈ V (T ) such that, for all computed entries [u, v], we have

[u, v] = 1 ⇐⇒ u ∈ min
≤T̂

{w | T̂w displays Tv}. (1)

While the table [u, v] might have |T | · |T̂ | cells, we will not compute all of them,
but only those with [u, v] = 1 which we show to be at most |T̂ | · k. We represent
the table as a sparse set, allowing efficient enumeration, setting, and querying [7].

Observation 1. Given v, we can get U := {u | [u, v] = 1} in O(|U |) time.

Note that, if Tv is displayed by subtrees T̂u and T̂w of T̂ and u and w are
incomparable wrt. ≤T̂ , then for each leaf-label λ in Tv, each of T̂u and T̂w

contains a different leaf labeled λ. Thus, there cannot be more than k such
subtrees.

Observation 2. For all v, we have |{u | [u, v] = 1}| ≤ k.
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We compute the table in a bottom-up manner. If v is a leaf, then we find the
≤ k leaves of T̂ with the same label as v and set [u, v] = 1 for them. If v has
children v1, v2, . . . , vd, then we first compute U :=

⋃
i{w | [w, vi] = 1} and then

compute the subtree T̂ |U of T̂ that is restricted to U . Finally, we find the lowest
vertices u of T̂ |U such that there is a matching M between the children of v in
T and the children of u in T̂ |U such that each M(vi) has a descendant zi in T̂ |U
with [zi, vi] = 1. For all these u, we set [u, v] = 1.

Lemma 1. The computation is correct, that is, (1) holds for all entries [u, v].

Proof. The proof is by induction on the height of v in T . If v is a leaf, then
(1) clearly holds. Otherwise, let v1, v2, . . . , vd be the children of v in T and
let U :=

⋃{w | [w, vi] = 1}.
“⇐”: Let u be a lowest vertex in T̂ such that T̂u contains a subdivision S of

Tv. Then, T̂u contains lowest z1, z2, . . . , zd such that Szi
displays Tvi

. Suppose
that S is chosen such as to maximize the sum of the distances between u and zi.
By minimality of u, we know that u is the LCA of the zi in T̂ . Then, by induction
hypothesis, [zi, vi] = 1 for all i, implying that zi ∈ U and, thus, zi ∈ V (T̂ |U ).
Since u is the LCA of the zi in T̂ , we also have u ∈ V (T̂ |U ). Moreover, u has
children w1, w2, . . . , wd in T̂ such that zi ≤T̂ wi for all i and, thus, u also has
children w′

1, w
′
2, . . . , w

′
d in T̂ |U with zi ≤T̂ |U w′

i for all i. Hence, mapping vi to
w′

i for each i constitutes a matching M as demanded by the above construction,
implying [u, v] = 1.

“⇒”: Suppose that [u, v] = 1. By construction, u is a lowest vertex of T̂ |U for
which there is a matching M between the children of v in T and the children of
u in T̂ |U such that each M(vi) has a descendant zi in T̂ |U with [zi, vi] = 1. By
induction hypothesis, each zi is a minimum wrt. ≤T̂ of {w | T̂w displays Tvi

}.
Thus, each Tvi

has a subdivision Si in T̂zi
and, since M is a matching, each

zi descends from a different child ui of u in T̂ . Thus, the Si together with the
unique u-zi-paths in T̂ can be merged to form a subdivision of Tv contained in
T̂u. Towards a contradiction, assume that u is not minimal wrt. ≤T̂ among such
vertices, that is, there is a different lowest u′ <T̂ u such that T̂u′ contains a
subdivision S′ of Tv. By the argument in the “⇐”-direction, there is a matching
M ′ between the children of v in T and the children of u′ in T̂ |U such that each
M ′(vi) has a descendant z′

i in T̂ |U with [z′
i, vi] = 1. But then, u is not minimal

among such vertices in T̂ |U , and we would not have constructed [u, v] = 1. 	

To show the running time, we assume that T̂ is preprocessed to allow translating
labels into leaves and leaves of T̂ into leaves of T .

Assumption 2. Given a label λ, we can get the list L of all leaves of T̂ with
label λ in O(|L|) time. Given a leaf � of T̂ , we can get the leaf of T with the
same label in O(1) time.

We also assume that we can compute the LCA of two vertices in T or in T̂
in constant time (see, for example [3]). This helps us compute the restriction
of T and T̂ to any preordered list U ⊆ V (T ) in O(|U |) time (see, for example
[10, Section 8]).
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Assumption 3. Given vertices x and y in T or in T̂ , we can find LCAT (xy)
and LCAT̂ (xy) in O(1) time. Given a preordered list U , we can find T |U and
T̂ |U in O(|U |) time.

Lemma 2. Let T̂ be k-labeled. Then, we can find the maximal (wrt. ≤T ) ver-
tices v such that T̂ displays Tv in O(|T̂ | · k2−→

Δ
2
T ) time.

Proof. First, we get the set Y of leaves of T whose label occurs in T̂ by scanning
all leaves of T̂ and translating these leaves to T using Assumption 2. This allows
us to set [u, v] for all leaves v of T in O(|T̂ |) time. Furthermore, we can compute
T |Y in O(|Y |) time using Assumption 3.

Scanning T |Y in a bottom-up manner, we compute [u, v] for each u and each
v with children v1, v2, . . . , vd as described. To this end, we construct Ui := {w |
[w, vi] = 1} in O(k) time by Observation 1 and Observation 2 and U :=

⋃
i Ui in

O(kd) time since i ≤ d. Then, we construct T̂ |U in O(|U |) time using Assumption
3. For each x ∈ V (T̂ |U ), we then compute the set Lx of indices i such that there
is some w <T̂ |U x with [w, vi] = 1. With a bottom-up dynamic programming in

T̂ |U , this can be done in O(|T̂ |U | · d) time since |Lx| ≤ d for each x. Then, we
compute a list C of all vertices x ∈ V (T̂ |U ) with Lx = {1, 2, . . . , d}. Since the
subtrees of T̂ rooted at each minimum wrt. ≤T̂ |U of C are leaf-disjoint, we know
that each such minimum has its own private descendant w with [w, v1] = 1 and,
thus, there are at most k such minima, implying |C| ≤ 2k − 1.

For each vertex u ∈ C, we then construct a bipartite graph B whose two
partitions are the children of u in T̂ |U and the children of v in T , respectively,
and B contains an edge {x, vi} if and only if i ∈ Lx (that is, x has a descendant
w in T̂ |U with [w, vi] = 1). If B has a size-d matching, we set [u, v] = 1. This
can be done in O(

√
d ·min{d2, kd}) ⊆ O(kd1.5) time [9] for each u. Note that no

vertex u /∈ C can have such a matching and, thus, we set [u, v] = 1 correctly for
all u and v.

Summing up the total time spent and noting that |Y | ≤ |T̂ |, and |U | ≤ kd,
and |T̂ |U | ≤ 2|U | − 1, and |C| ≤ 2k − 1, we arrive at a total running time of
O(|T̂ | · (k−→

Δ
2
T + k2−→

Δ
1.5
T )). Since our algorithm runs bottom-up in T |Y , we can

retain the highest v for which there is some w in T̂ with [w, v] = 1 as claimed in
the lemma. 	

If we are only interested in whether or not T̂ displays T , then we can prepend a
size check and refuse the instance if |T | > |T̂ |. Thus, we can bound all prepro-
cessing in O(|T̂ |) time and Lemma 2 implies the following theorem.

Theorem 1. Let T̂ be a k-labeled tree and let T be a tree with maximum out-
degree −→

ΔT . Then, we can decide if T̂ displays T in O(|T̂ | ·k2−→
Δ
2
T ) time (O(|T̂ | ·k2)

time if T is binary).

3 Tree Containment in Special Networks

In this section, we move from multi-labeled trees to single-labeled networks, that
is, in what follows, each label occurs exactly once (the leaf-labelling function is
bijective).
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γ = ρ (P )

�4

�1 �2 �3

ρ (P ′)

�4

�1

Foundation

Base

Tip

�2 �2 �1 �2 �3

Fig. 1. Left: A leaf γ of the component DAG Q of N implies a layering of the pyramid
P = Nγ into its tip P Δ (tree nodes ), its base P B (reticulations ), and its founda-
tion P F (leaves below reticulations). Note that leaves may also be in the tip of P .
Right: The multi-labeled tree P ′ computed from the pyramid on the left in the proof
of Lemma 3.

Network Decomposition. Gunawan et al. [17] introduced a decomposition for
reticulation-visible networks which we apply to arbitrary networks. To this end,
we have to do some initial cleanup using the following reduction.

Rule 1. Let ab be a cherry (that is, a pair of leaves sharing a common parent)
in N . If ab is not a cherry in T , then reject (N,T ) and, otherwise, delete a in
both N and T and contract the arc incoming to b in both N and T .

Definition 1 (See [17]). Let (N,T ) be reduced wrt. Rule 1 and let F be the
forest that results from removing all reticulations from N . Then, each tree of
F is called tree component of N . A tree component of N is called trivial if
it contains only a leaf of N and stable if its root is stable. Let Γ be the set
of roots of the non-trivial tree components of N . The restriction of “≤N” to
Γ forms a DAG Q and we call it the component DAG of N . More formally,
Q := (Γ, (≤N ) ∩ (Γ × Γ )).

The goal will be to repeatedly find a leaf γ of Q and the best possible v of T such
that Nγ displays Tv. Then, we shrink both Nγ and Tv to a single leaf and remove
γ from Q. We make use of the special structure of Nγ , implied by the fact that
all tree nodes with a reticulation ancestor in Nγ are leaves of N (otherwise, they
are in a tree component below γ, contradicting γ being a leaf).

Definition 2. Let γ be a leaf of Q. Then, P := Nγ consists of a tree with root
ρ (P ) := γ, some reticulations and some leaves of N . Further, P can be divided
into “layers” (see Fig. 1) and we call P a pyramid with a tip PΔ (layer of
tree vertices), a base PB (layer of reticulations) and a foundation PF (layer of
leaves below reticulations).
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Algorithm. In this section, we show how Lemma 2 can be applied to pyramids.
Given a pyramid P in N , our goal is to display as much of T as possible in P
and reduce N and T using this information. To this end, we consider only the
tip PΔ of P and replace each arc xy from the tip to the base by an arc to a
copy of the child � of y. By Definition 2, � is a leaf of N . Recall that ←−

ΔP is the
maximum in-degree in P and −→

ΔT is the maximum out-degree in T .

Lemma 3. In O(|P | · ←−
Δ
2
P · −→

Δ
2
T ) time, we can find all maximal v (wrt. ≤T ) s.t.

P displays Tv.

Proof. Let P ′ denote the multi-labeled tree that results from PΔ by, for each arc
xy ∈ V (PΔ) × V (PB), hanging a leaf onto x that is labeled with the same label
as the unique child � of y in P (see Fig. 1). Note that P ′ is indeed ←−

ΔP -labeled, its
size is at most |P |, and it can be constructed in O(|P |) time. Having constructed
P ′, we compute the maximal (wrt. ≤T ) vertices v such that P ′ displays Tv. By
Lemma 2, this can be done in O(|P ′| · ←−

Δ
2
P · −→

Δ
2
T ) time. It remains to show for all

v of T that P displays Tv if and only if P ′ does (see also [17]).
“⇒”: Let P contain a subdivision S of Tv. Let S′ result from S by contracting

all arcs that are incoming to a vertex of the base PB of P . Since S is a tree, all
vertices of PB have indegree one and outdegree one in S and, thus, S′ is also
a subdivision of Tv. To show that P ′ contains S′, assume that S′ contains an
arc xy that is not in P ′. If xy is in S, then neither x nor y is a reticulation in
N , implying that xy is in PΔ and, thus, in P ′. Otherwise, S contains a path
(x, r, y), where r ∈ PB and y is a (copy of a) leaf in the foundation of P . Then,
xr is an arc in V (PΔ) × V (PB), implying that P ′ contains a copy of y hanging
from x.

“⇐”: Let P ′ contain a subdivision S′ of Tv. Let x� be an arc of S′ that is
not in P . Then, � is a leaf of P and its parent r is in PB . Let S result from S′

by replacing each such arc x� by the path (x, r, �). Clearly, S is a subdivision of
S′ and, thus, of Tv. To show that P contains S, it suffices to show that none of
the new paths p introduces vertices that were already in S′ or in any previously
added path. For the first claim, note that all newly added vertices are in PB

and, thus, not in P ′. For the second claim, note that each label of P ′ occurs at
most once in S′ and each vertex of PB is parent of a unique leaf in P . Thus, P
contains S and, therefore, P displays Tv. 	


It is noteworthy that Lemma 3 might return many vertices v such that Tv

is displayed by P and, without any more assumptions regarding N , the number
of possible combinations grows exponentially. Thus, we restrict the class of net-
works that we are considering by demanding that each tree vertex of N that has
a reticulation parent is stable. Hence, ρ (P ) is stable for all tree components PΔ

which form the tips of the pyramids P that we are seeing in the algorithm. In
the following, let c be a leaf that ρ (P ) is stable on and observe that the set of all
vertices v such that P displays Tv and c ≤T v has a unique maximum wrt. ≤T .
Thus, at most one of the maxima obtained by Lemma 3 is an ancestor of c in T
and we can find it in O(|P |) time. We then apply the following reduction that
places Tv into P and removes all arcs that disagree (see Fig. 2).
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�4

�1 �2 �3

λ

�3

Fig. 2. An example of an application of Rule 2 to the network N of Fig. 1 with a
subdivision of Tv shown in dark gray on the left.

Rule 2. Let ρ (P ) be stable on a leaf c and let v be the unique maximum wrt. ≤T

such that c ≤T v and P displays Tv. Then, remove all leaves of N whose label
occurs in Tv, remove all vertices (with their incident arcs) in the tip of P except
ρ (P ), remove all arcs outgoing of ρ (P ), remove all vertices of Tv except v, and
label v and ρ (P ) with the same new label λ.

For correctness of Rule 2, see [17, Proposition 5] or our proof in the appendix.
To apply Rule 2 in O(|P |) time, we have to find a leaf c that ρ (P ) is stable on,
in O(|P |) time. This is easy if PΔ contains a leaf of N . Otherwise, we mark all
arcs between the tip and the base of P and check if any vertex in the base has
all its incoming arcs marked. For a vertex r with m incoming marked arcs, this
check can be done in O(m) time. Thus, we can find c in O(|P |) time.

Observation 3. We can find a leaf c that ρ (P ) is stable on in O(|P |) time.

Further, note that Rule 2 might leave former reticulations as isolated vertices or
pending leaves without label. Clearly, such a vertex is created by the deletion of
an incoming or outgoing arc. To remove them, we mark such vertices as garbage
upon removal of this incident arc in O(1) time per removed arc. Then, we run a
cleanup phase after Rule 2 that removes garbage in constant time per removed
vertex, that is O(|N |) overall. Thus, we can assume that N does not contain
isolated vertices or unlabeled leaves.

Each time Rule 2 is applied to a leaf γ of the component DAG Q, it will
replace the tip of Nγ by a single leaf in N . To keep Q up to date we just need
to delete γ from Q at that point (since the tree component of γ is no longer
non-trivial), but none of the other tree component roots are affected.

Observation 4. We can find a leaf of Q in constant time.

The algorithm terminates when Rule 2 has been applied to the last pyramid
of N and we return yes if and only if ρ (T ) is a leaf whose label occurs in N .
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By Lemma 3, the overall running time can be bounded by O(
∑

i |Pi| · ←−
Δ
2
N · −→

Δ
2
T ),

where the summation is over all applications of Rule 2. Since no arc outgoing of
PΔ survives an application of Rule 2 to P , we conclude

∑
i |Pi| ≤ |N |.

Theorem 2. Let T be a tree with maximum out-degree −→
ΔT , let N be a network

with maximum in-degree ←−
ΔN (after contraction of arcs between reticulations) and

let each tree vertex of N that has a reticulation parent be stable. Then, we can
determine if N displays T in O(|N | · ←−

Δ
2
N · −→

Δ
2
T ) time.

Consider the special case that T and N are binary. If N is reticulation-visible,
it already verifies Assumption 1, implying ←−

ΔN ≤ 2 and, as each reticulation is
stable, each tree vertex with a reticulation parent is also stable. If N is nearly-
stable, it cannot have three consecutive reticulations, implying ←−

ΔN ≤ 4 after the
contraction operation of Assumption 1 and, as each node is either stable or has
a stable parent, each tree vertex with a reticulation parent is stable.

Corollary 1. Let T be a binary tree and let N be forward-binary and
reticulation-visible or nearly stable. Then, we can decide if N displays T in
O(|N |) time.

See also Fig. 3 for an estimation of the probability to encounter the three dis-
cussed types of networks when simulating recombinant evolution.

4 Tree Containment in General Networks

In this section, we present an algorithm, based on the ideas of the previous
section, that solves Tree Containment in O((−→

ΔT + 1)t · (−→
ΔN + −→

Δ
2.5
T ) · |V (N)| ·

|V (T )|), where −→
ΔN and −→

ΔT are the respective maximal out-degrees of N and T
and t is the number of unstable tree components of N (see Definition 1). For
bifurcating N and T , this simplifies to O(3t · |V (N)| · |V (T )|) time. Remarkably,
as each root of a tree component (except ρ (N)) has its own, distinct reticulation
parent, we know that t is always smaller than the number of reticulations in N
(plus 1) which has been considered as parameter [18]. Indeed, we prove that
we can check all biconnected components of N independently, so the parameter
can be improved to the maximum number t∗ of unstable tree components in
any biconnected component of N . For large classes of networks, t∗ is arbitrarily
small compared to the number of reticulations or even the level4 of N . Figure 3
shows a preliminary comparison of these parameters in networks generated by
simulating recombinant evolution.

The main difficulty of applying the presented algorithm to general networks
is that the roots of the tree components are not necessarily stable on any leaf in
N . Upon finding such a root γ, we thus have to keep track of all the (maximal)
vertices v of T such that Nγ displays Tv. This brings further difficulties: picture
two roots γ1 and γ2 of tree components of N with γ <N γ1, γ2. When computing
4 The level of a phylogenetic network is the largest number of reticulations in any

biconnected component (of its underlying undirected graph).
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Fig. 3. Comparison of 250 networks generated under the coalescent with recombination
model (10 taxa, recombination rate 4, see [2]). Left: Percentages of network types. Here
“Stable Component” refers to the condition that every tree component is stable. Right:
Comparison of the parameter t to the number r of reticulations. For data points in the
gray area, our algorithm has smaller exponential dependance of the asymptotic running
time when compared to the one proposed by Gunawan et al. [18] (that is, 1.618r > 3t).
The refined parameter t∗ relates similarly to the level.

the possible vertices v1 and v2 in T whose subtrees are displayed by Nγ1 and Nγ2 ,
respectively, we have to make sure that we are not using Nγ to display subtrees
in both Nγ1 and Nγ2 . In the previous algorithm this was not necessary because,
if γ is stable, then Nγ cannot display a subtree of Tv1 as well as a subtree of Tv2 .

Recall that Γ is the set of roots of non-trivial tree components in N and let
Γ ∗ be the set of roots of unstable tree components in N . For any u ∈ V (N),
we call a subnetwork S of Nu nice for Nu if u ∈ V (S) and, for each v ∈ V (S)
and each leaf � that v is stable on in N , � ∈ V (S). Note that, if S is nice for
Nu, then Sv is nice for Nv for all v ∈ V (S). For technical reasons, we use a
slightly extended notion of subdivisions that allow adding an arc incoming to
the root before subdividing arcs. Then, all subdivisions of T in N containing the
root of N are nice. The dynamic programming table has an entry for each triple
(u, v,R) ∈ V (N) × V (T ) × 2Γ ∗

with the following semantics:

[u, v,R] := 1 ⇐⇒ Nu contains a nice subdivision S of Tv with V (S)∩Γ ∗ = R
(2)

Note that N displays T if and only if [ρ (N) , ρ (T ) , R] = 1 for some R ⊆ Γ ∗.
We give some special cases of [u, v,R] for which (2) can be easily verified:

Case 1. If u ∈ Γ ∗ \ R, then we set [u, v,R] = 0 since all nice subdivisions of T
in Nu contain u, and, thus, u ∈ V (S) ∩ Γ ∗ but u /∈ R.

Case 2. If u is a reticulation with child w, then we set [u, v,R] = [w, v,R] for
all v ∈ V (T ) and R ⊆ Γ ∗, since Nu cannot display any more of T than Nw.

Case 3. If u is stable on a leaf � /∈ L(Tv), then we set [u, v,R] = 0 for all R ⊆ Γ ∗.
Case 4. If u and v are leaves, then we set [u, v,R] = 1 if and only if u and v

have the same label and R = ∅.
Case 5. If u is a leaf and v is not a leaf, then we set [u, v,R] = 0 for all R ⊆ Γ ∗.
Case 6. If u is a tree vertex of N and [w, v,R \ {u}] = 1 for any child w of u in

N and Case 3 does not apply, then we set [u, v,R] = 1.
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We call an entry [u, v,R] trivial if it corresponds to any of the above cases.
Otherwise, we set [u, v,R] = 1 if and only if there is a size-d matching M between
the children v1, v2, . . . , vd of v in T to the children of u in N and pairwise disjoint
sets R1, R2, . . . , Rd such that ∀i [M(vi), vi, Ri] = 1 and

⋃
i Ri = R \ {u}.

Lemma 4. For [u, v,R] computed as above, (2) holds.

Proof. We prove the lemma by induction on the index of u in any fixed DAG-
ordering of N . We suppose that [u, v,R] is non-trivial, as the other cases are
evident. This also implies the induction base (where u is a leaf of N).

“⇐”: Suppose that there is a nice subdivision S of Tv in Nu with V (S)∩Γ ∗ =
R. First, u is not a leaf of S, since all leaves of S are labeled. Second, u does
not have degree two in S since, otherwise, [w, v,R] = 1 for the child w of u in S,
contradicting the non-triviality of [u, v,R]. Hence, there is a matching M between
the children v1, v2, . . . , vd of v in T and the children of u in S such that, for each
child vi of v, Si := SM(vi) is a subdivision of Tvi

and, by the above observation,
niceness of S implies niceness of Si. Also note that M has size d. Then, by
induction hypothesis, [M(vi), vi, Ri] = 1 for all i, where Ri := V (Si) ∩ Γ ∗.
Since the Si are pairwise disjoint, the sets Ri are pairwise disjoint and, since⋃

i V (Si) = V (S) \ {u}, we have
⋃

i Ri =
⋃

i V (Si) ∩ Γ ∗ = V (S) ∩ Γ ∗ \ {u} =
R \ {u}. Thus, by construction, [u, v,R] = 1.

“⇒”: Suppose [u, v,R] = 1. Then, by construction, there are M and Ri such
that Ri are pairwise disjoint, ∀i [M(vi), vi, Ri] = 1, and

⋃
i Ri = R \ {u}. By

induction hypothesis, Lemma 4 holds for each [M(vi), vi, Ri], implying that, for
each i, there is a nice subdivision Si of Tvi

in NM(vi) and V (Si) ∩ Γ ∗ = Ri. To
show that these subdivisions are pairwise vertex-disjoint, assume that Si and Sj

intersect for some i �= j. Let w be the minimum with respect to ≤N among the
vertices in V (Si) ∩ V (Sj). Then, w is neither a reticulation (otherwise its child
is smaller wrt. ≤N ) nor a leaf (since Tvi

and Tvj
cannot share leaves). Hence, w

is in a tree-component of N and it has a root r. Then, both Si and Sj contain r
as well, as otherwise, M(vi) = M(vj) contradicting M being a matching. If r is
stable on some leaf � then, by niceness of Si and Sj , both contain �, contradicting
again that Tvi

and Tvj
are leaf-disjoint. If r is not stable, then r ∈ V (Si) ∩ Ri

and r ∈ V (Sj) ∩ Rj , contradicting that Ri and Rj are disjoint. 	

To compute all [u, v,R] for fixed u and v where d is the out-degree of v,

we enumerate all partitions of Γ ∗ into d + 1 cells, one for each child vi of v,
corresponding to the Ri, plus one cell corresponding to “/∈ R”. Then, we con-
struct the bipartite graph B whose vertices are the children of u in N and
v in T , respectively, and the edge set is {ujvi | [uj , vi, Ri] = 1}. Finally, we
set [u, v,R] = 1 if B has a size-d matching for any of the partitions of Γ ∗.
Since one cell of the bipartition has size d, such a matching can be computed
in O(d2.5) time [9]. Thus, the implied bottom-up dynamic programming runs in
O((−→

ΔT +1)|Γ ∗| ·(−→
ΔN + −→

Δ
2.5
T )·|V (N)|·|V (T )|) time. If N and T are forward-binary,

this simplifies to O(3|Γ ∗| · |V (N)| · |V (T )|). We can, however, further refine the
algorithm by splitting off biconnected components of N . To this end, we use the
following lemma.
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Lemma 5 (See also [17]). Let u ∈ Γ such that N − u is disconnected, let
v := LCAT (L(Nu)), and let (N ′, T ′) be the result of contracting Nu and Tv,
respectively, into a single vertex and giving a new label λ to both of them. Then,
N displays T if and only if Nu displays Tv and N ′ displays T ′.

Proof. First, note that u is stable on all leaves of L(Nu).
“⇒”: Let S be a subdivision of T in N . Since u is stable on all leaves of L(Nu),

we know that Nu displays Tv and cannot display Tw for any w >T v. Thus, the
result S′ of contracting Su into a single vertex and labeling it λ displays T ′ and
it is clearly a subdivision of N ′.

“⇐”: Since V (N ′) ∩ V (Nu) = {u}, the result of gluing a subdivision of T ′ in
N ′ (which has to contain u as leaf) and a subdivision of Tv in Nu together at u
is contained in N and it is clearly a subdivision of T . 	

With Lemma 5, we can check tree containment in all biconnected components
of N independently.

Theorem 3. Let T be a tree, let N be a network, and let −→
ΔN and −→

ΔT be their
respective maximum out-degrees. Let t∗ be the maximum number of unstable tree
components of any biconnected component of N (see Definition 1). Then, we can
decide whether N displays T in O((−→

ΔT + 1)t∗ ·(−→
ΔN + −→

Δ
2.5
T ) ·|V (N)|·|V (T )|) time.

If N and T are forward-binary, this is O(3t∗ · |V (N)| · |V (T )|) time.

Albeit inconsequential for the algorithm itself, note that t∗ can be computed
in linear time as biconnected components and tree components can be found in
linear time [17,21] and the stability of the roots can be checked in linear time [1].

We finish this section with a note on polynomial-time preprocessing concern-
ing the number t∗ of unstable tree components in any biconnected component.
Indeed, to show that Tree Containment does not admit a polynomial-size
kernel (see [11,12] for more details on “kernelization”) it suffices to show that
instances (Ni, Ti) of Tree Containment can be combined to a single instance
(N,T ) such that 1. the number t∗ of unstable tree components in any bicon-
nected component of N is in O(maxi |Ni|) and 2. N displays T if and only if
Ni displays Ti for each i (see [5,13] or [11, Section 15.1.3] for details on “AND
compositions”).

Let Ck be a caterpillar tree with k leaves labeled with {1, 2, . . . , k}. Given k
instances (Ni, Ti) of Tree Containment with disjoint label-sets, let N denote
the result of, for each i, replacing the leaf labeled i in Ck by Ni. Likewise, let
T be the result of, for each i, replacing the leaf labeled i in Ck by Ti. It is then
straightforward to verify that N displays T if and only if, for each i, Ni displays
Ti. Note that the argument above is independent of the actual parameter that
we take per block. For example, it holds as well for the “level” of N .

Observation 5. Let ϕ∗ map networks to integers such that, for all networks N
and all cut-vertices u in N , we have ϕ∗(N) = max{ϕ∗(Nu), ϕ∗(Nu)} where Nu

results from N by contracting Nu into a single vertex (with new label). Then,
Tree Containment does not admit a polynomial-size kernel with respect to
ϕ∗, unless NP ⊆ coNP/poly.
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5 Conclusion

We developed efficient algorithms for the Tree Containment problem in var-
ious settings, continuing existing efforts to speed up the process of solving the
problem in special types of networks, as well as developing first parameterized
algorithms and preliminary results concerning efficient and effective preprocess-
ing. We showed that, if each label occurs at most k times in N , the problem
can be solved in O(|N | · −→

ΔT · k2) time (where −→
ΔT is the maximum out-degree in

T ). Together with the powerful network decomposition of Gunawan et al. [17],
this implies an O(|N |)-time algorithm for binary reticulation visible networks
and nearly stable networks. We further developed an algorithm that solves the
general case in O((−→

ΔT + 1)t∗ · (−→
ΔN + −→

Δ
2.5
T ) · |N | · |T |) time where t∗ is the maxi-

mum number of unstable tree components in any biconnected component of N .
For binary N and T , this simplifies to O(3t∗ · |N | · |T |). The discovery of the
parameter t (and t∗) is interesting in its own regard, as previous algorithms used
to study phylogenetic networks focus on the “number r of reticulations” or the
“maximum number of reticulations in a biconnected component” (the“level”),
but the parameter t∗ can be arbitrarily small when compared to these parame-
ters. As there is an implementation of an O(1.618r · |N | · |T |)-time algorithm for
Tree Containment [18], I am eager to compare our algorithm to it on practi-
cal data sets. Preliminary comparisons show its potential on data-sets generated
from simulating evolutionary processes (see Fig. 3). Finally, I am highly moti-
vated to research more parameters of phylogenetic networks as we presume that
practical networks are likely to be highly structured (since evolution is not a
totally random process). The distance of the input network to being reticulation
visible or nearly stable seems to be the canonical starting point.

Acknowledgement. Thanks to Celine Scornavacca for her thorough proof-reading.

Appendix

Proof. (Proof of correctness of Rule 2). Let Sv be a subdivision of Tv in P and
let (N ′, T ′) be the result of applying Rule 2 to (N,T ).

“⇐”: Let N ′ contain a subdivision S′ of T ′. It suffices to show that the
result S of replacing ρ (P ) with Sv in S′ is contained in N since S is clearly a
subdivision of T . Since Sv is contained in P , it suffices to show that S′ and Sv

are vertex disjoint (except for ρ (P )). Towards a contradiction, assume that S′

and Sv both contain a vertex u �= ρ (P ) of P . Since L(S′) and L(Sv) are disjoint,
u is ancestor to at least two different leaves in N . Thus, u is in the tip of P ,
contradicting that u is in N ′.

“⇒”: Let N contain a subdivision S of T and let u := LCAS(L(Tv)). Since
ρ (P ) is stable on c and c ∈ L(Tv), we have u ≤N ρ (P ), implying L(Sρ(P )) ⊇
L(Tv). Further, maximality of v implies L(Sρ(P )) ⊆ L(Tv). Let S′ result from
S by contracting Sρ(P ) into a single vertex and labeling this vertex λ. Since
L(Sρ(P )) = L(Tv), we know that S′ is a subdivision of T ′ and it suffices to show
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that N ′ contains S′. To do this, we show that all vertices of S′ are in N ′. Assume
towards a contradiction that S′ contains a vertex w that is not in N ′. Then, w
is in the tip of P , implying L(Sw) ⊆ L(Sρ(P )). Thus, w is a vertex of Sρ(P )

contradicting w being in S′.
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