
Parallel Decoding of Turbo Codes

Dejan Spasov(&)

Faculty of Computer Science and Engineering, Skopje, Macedonia
dejan.spasov@finki.ukim.mk

Abstract. Given a turbo code generated by parallelly concatenated recursive
systematic convolutional encoders, the turbo decoder comprises MAP decoders
coupled in a serial connection, where each MAP decoder decodes a recursive
systematic convolutional code. We propose a turbo decoding algorithm that, on
a logical level of abstraction, is made of several turbo decoders working in
parallel. Each turbo decoder is initialized with different recursive convolutional
code. Practical implementation of the proposed algorithm may be achieved with
a single turbo decoder, where MAP decoders are working concurrently.

Keywords: Turbo codes � MAP decoding � MAX-Log-MAP decoding
Turbo decoding � Convolutional codes

1 Introduction

Turbo Codes are a class of forward error correction codes invented by Berrou and first
published in [1]. Turbo codes were the first practical system that achieved signal-to-
noise ratio of 0.7 dB above the Shannon’s limit while providing bit error probability of
10−5 [1]. Turbo codes are special sub-type of convolutional codes. In general, a turbo
encoder is any combination of two or more identical convolutional encoders connected
via interleavers. Traditionally, a turbo code comprises two recursive systematic con-
volutional (RSC) encoders coupled in a parallel concatenation scheme (Fig. 1). Turbo
codes are systematic codes, which means that the input sequence appears unmodified at
the output as sequence x. Figure 1 shows two recursive systematic convolutional
encoders that output two coded sequences x; y1ð Þ and x; y2ð Þ, where sequences y1 and
y2 represent the parity bits. The turbo code on Fig. 1 initially has a code rate of 1/3;
however, higher code rates may be achieved by applying various puncturing patterns.
An example of puncturing pattern may be alternating between the parity bits y1 and y2.
The interleaver is a device that outputs a random permutation of the received sequence.
By providing random permutation of the input sequence, the interleaver allows iden-
tical recursive encoders to be used in the hardware design. Thus, two identical recursive
systematic convolutional codes coupled with a random interleaver behave as two
different recursive systematic convolutional codes.

Decoding of a recursive systematic convolutional code may be done with the
Viterbi algorithm [2] or with Maximum A Posteriori Probability (MAP) algorithm [3].
Decoding of the turbo codes, which are made of two parallel systematic recursive
convolutional codes, involves separate decoding of each of the systematic recursive
convolutional codes (Fig. 2).

© Springer Nature Switzerland AG 2018
S. Kalajdziski and N. Ackovska (Eds.): ICT 2018, CCIS 940, pp. 100–106, 2018.
https://doi.org/10.1007/978-3-030-00825-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00825-3_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00825-3_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00825-3_9&domain=pdf

The turbo decoder (Fig. 2) is made of two decoders DEC1 and DEC2, which are
modified MAP decoders, also known as BCJR decoders [1]. The two decoders DEC1

and DEC2 may share information several times before the turbo decoder outputs
estimates for each bit. This information sharing is known as iteration. Thus, the turbo
decoder performs several iterations before outputting decision for each bit. The turbo
decoder may be configured to perform two iterations simultaneously [4]. For example,
when DEC1 is working on the i-th iteration, DEC2 may be working on the (i−1)-th
iteration. The two decoders DEC1 and DEC2 may be Max-Log-Map decoders [6, 7],
which is a simplified variant of the MAP decoder that involves the Viterbi algorithm
[2]. More on implementation issues may be found in [5, 8]. Decoders DEC1 and DEC2

are configured to output the logarithm of likelihood ratio (LLR) for each bit xk

LLR xkð Þ ¼ log
Pr xk ¼ 1jobservationf g
Pr xk ¼ 0jobservationf g ð1Þ

where Pr xk ¼ 1 or 0jobservationf g is a posteriori probability of the bit xk. The decoder
DEC1 is activated first and it decodes the encoded sequence x; y1ð Þ and outputs LLR1

quantities for each bit xk. The LLR1 quantities are then fed to DEC2 that decodes the
encoded sequence x; y2ð Þ to produce its own estimates LLR2. The turbo decoding
process continues in iterative fashion, and in the next iteration LLR2 quantities are fed
into DEC1.

From Fig. 2, it may be observed that the turbo decoder is initialized with the first
recursive convolutional code x; y1ð Þ. In this paper we propose a turbo decoding scheme
made of two serial turbo decoders that operate in parallel. The first turbo decoder is
initialized with the first recursive convolutional code x; y1ð Þ and the second turbo
decoder is initialized with the second recursive convolutional code x; y2ð Þ. Results from

Recursive
Convolutional

Encoder

Recursive
Convolutional

Encoder

Interleaver

Output

Input x

y1

y2

Fig. 1. Turbo encoder

DEC1 for y1x
y1 DEC2 for y2x

y2

Interleaver

Deinterleaver

LLR2

LLR1

LLR2

LLR1

Fig. 2. Turbo decoder

Parallel Decoding of Turbo Codes 101

both decoders are combined to produce the logarithm of likelihood ratio (LLR) for each
bit xk.

2 The MAP Decoding Algorithm

A convolutional encoder with M registers is finite state machine with 2M states. Trellis
diagram is labelled n-partite graph, in which every path represents a valid codeword
(Fig. 3). Vertices of the nþ 1 disjoint sets in the trellis represent all possible 2M states
of the encoder. Vertices are labelled as decimal numbers, such that the content of the
leftmost register corresponds to the most significant bit in the decimal number. Edge
labels represent the input letters to the encoder and the appropriate output letters
produced by the encoder separated by the slash symbol.

Trellis diagram of convolutional codes gives a hint about the decoding process; if
the received sequence does not represent a valid path through the trellis diagram, then
we can conclude that errors have occurred. The decoding objective is to find the most
probable valid path though the trellis. Several decoding algorithms exist for decoding
convolutional codes. The most famous are the Viterbi algorithm [2] and the BCJR
algorithm [3]. The Viterbi algorithm is universally used and is highly parallelizable.

The BCJR algorithm can be envisioned as two stage process. In the first stage,
known as the forward a recursion, the decoder moves through the trellis in left to right
fashion and with each state s it associates a probability function ai sð Þ that is recurrently
computed. In the second stage, known as the backward b recursion, the BCJR decoder
recurrently computes additional probability function bi sð Þ and then using the stored
ai sð Þ outputs the logarithm of likelihood ratio for each bit xk.

Let ai sð Þ; s ¼ 0; 1; . . .;M � 1; be a set of state metrics on the n-partite trellis at the
time i. The computation of the forward a probabilities starts from the initial conditions

Fig. 3. Trellis diagram of a convolutional code

102 D. Spasov

a0 sð Þ ¼ 1 s ¼ 0
a0 sð Þ ¼ 0 s 6¼ 0

�
ð2Þ

and following the edges of the trellis with non-zero branch probabilities ci s; s
0ð Þ, the

decoder, at each iteration stores all ai sð Þ and computes aiþ 1 sð Þ, according to

aiþ 1 s0ð Þ ¼
XM�1

s¼0
ai sð Þci s; s0ð Þ; ð3Þ

where s0 ¼ 0; 1; . . .;M � 1. Stored ai sð Þ are used during the backward computation in
order to compute the log-likelihood-ratio (1) for the i-th information bit xi.

Let bi sð Þ; s ¼ 0; 1; . . .;M � 1; be another set of state metrics on the n-partite trellis
at the time i. The computation of the backward b probabilities starts from the initial
conditions bN�1 sð Þ ¼ 1

M and following the edges of the trellis with non-zero branch
probabilities ci s; s

0ð Þ, the decoder, at each iteration computes bi sð Þ, according to

bi s
0ð Þ ¼

XM�1

s¼0
biþ 1 sð Þci s; s0ð Þ; ð4Þ

where s0 ¼ 0; 1; . . .;M � 1. Then the logarithm of likelihood ratio (LLR) for each bit xk
is computed as

LLR xkð Þ ¼ Log

P
s ai sð ÞPs0 ci s; s

0ð Þbiþ 1 s0ð ÞP
s ai sð ÞPs0 c

�1
i s; s0ð Þbiþ 1 s0ð Þ

� �
ð5Þ

3 Design of Parallel Turbo Decoder

Figure 4 shows a block diagram of a turbo decoder. The turbo decoder is coupled to
receive channel information of a turbo code. The received turbo code is made of two
parallel recursive systematic convolutional codes RSC1 and RSC2. Principle of
operation of the turbo decoder is described on Fig. 2. The turbo decoder is configured
first to decode the first code RSC1, then the code RSC2. The decoder repeats this
sequence for predefined number of iterations.

Fig. 4. Block diagram of a turbo decoder initialized with RSC1

Parallel Decoding of Turbo Codes 103

Parallel decoding of the turbo code made of two codes RSC1 and RSC2 may be
achieved with two serial turbo decoders (as in Fig. 4) working in parallel, such that
each turbo decoder is initialized with different RSC code (Fig. 5).

The parallel turbo decoder (Fig. 5) is coupled to receive channel information for
two parallel recursive systematic convolutional codes RSC1 and RSC2. The parallel
turbo decoder is made of two serial turbo decoders Turbo Decoder1 and Turbo
Decoder2. Each of the serial turbo decoders start operation with different RSC code.
The logarithm of likelihood ratio (LLR) for each bit xk on the output of the parallel
decoder is sum of logarithm of likelihood ratio (LLR) for each bit xk on the output of
each serial decoder. In general, the parallel turbo decoder may be generalized for any
turbo code made of arbitrary number of recursive systematic convolutional codes in
parallel connection. In practice, the parallel turbo decoder (Fig. 5) may be implemented
with one serial turbo decoder (Fig. 2), where, at any moment, one MAP decoder
computes the LLR1 coefficients from the Turbo Decoder1 and the other MAP decoder
computes LLR2 coefficients from the Turbo Decoder2, simultaneously.

4 Practical Results

In our simulation of parallel turbo decoder, we use turbo code made of two recursive
systematic convolution codes (as in Fig. 1). The turbo code is with code rate 1/2, which
means that one of the two RSC codes is punctured out at any bit interval. The con-
volutional encoders are recursive with 16 states. Encoded sequence is 1025 bits long.
The Turbo code is sent over Gaussian channel. To store state and branch metric we use
IEEE 754 double precision format. Results are shown on Fig. 6.

Figure 6 compares performance of a regular turbo decoder (Fig. 2) and parallel turbo
decoder (Fig. 5). Both turbo decoders are set to perform 8 iterations before outputting the

Fig. 5. Parallel turbo decoder

104 D. Spasov

logarithm of likelihood ratio (LLR) for each bit xk. Both the parallel turbo decoder
(Fig. 5) and the regular turbo decoder (Fig. 2) are tested for bit error rate for various
signal to noise ratios. Figure 6 confirms that the parallel turbo decoder (Fig. 5) performs
better than the regular turbo decoder (Fig. 2), i.e. it shows improved bit error rate.

5 Conclusion

We have demonstrated a turbo decoding algorithm that improves bit error rate in
decoding turbo codes by using parallel turbo decoders (Fig. 5). From the perspective of
improved performance, it is obvious from Fig. 6 that the parallel turbo decoder
improves the classical decoder. From the perspective of running time, using the same
hardware, the parallel turbo decoding algorithm may be slower than the classical turbo
decoding algorithm by a factor of two. However, if we can double the hardware
resources, the parallel turbo decoding algorithm may be as fast as the classical turbo
decoding algorithm.

Two lines of research may be identified in Turbo codes, with goals to develop a
suboptimal turbo decoder that improves a certain bottleneck. One line of research is
trying to minimize memory complexity; thus, requiring less die area and less power [6,
7]. Another line of research is to improve decoding speed of turbo decoders and to
achieve the decoding speed of the LDPC codes. In this line of research, the trellis
diagram of the turbo code (Fig. 3) is divided in subtrellises, which are decoded in
parallel [9]. Advantage of the parallel turbo decoder (Fig. 5) that is introduced in this
paper is that it can be applied on any suboptimal turbo decoder.

Fig. 6. Performance comparison between (regular) turbo decoder and parallel turbo decoder.

Parallel Decoding of Turbo Codes 105

Acknowledgement. This work was partially financed by a project from the Faculty of Com-
puter Science and Engineering at the Ss. Cyril and Methodius University, Skopje, Macedonia.

References

1. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and
decoding: Turbo-codes. In: Proceedings of the ICC, Geneva, Switzerland, May 1993

2. Forney, G.D.: The viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)
3. Bahl, L.R., Cocke, J., Jelinek, F., Raviv, J.: Optimal decoding of linear codes for minimizing

symbol error rate. IEEE Trans. Inf. Theory 20(3), 284–287 (1974)
4. Hagenauer, J., Offer, E., Papke, L.: Iterative decoding of binary block and convolutional

codes. IEEE Trans. Inf. Theory 42(2), 429–445 (1996)
5. Boutillon, E., Gross, W.J., Gulak, P.G.: VLSI architectures for the MAP algorithm. IEEE

Trans. Commun. 51(2), 175–185 (2003)
6. Zhan, M., Zhou, L.: A memory reduced decoding scheme for double binary convolutional

turbo code based on forward recalculation. In: 7th International Symposium on Turbo Codes
and Iterative Information Processing (ISTC), Gothenburg, Sweden (2012)

7. Choi, H.-M., Kim, J.-H., Park, I.-C.: Low-power hybrid turbo decoding based on reverse
calculation. In: ISCAS, pp. 2053–2056 (2006)

8. Boutillon, E., Douillard, C., Montorsi, G.: Iterative decoding of concatenated convolutional
codes: implementation issues. Proc. IEEE 95(6), 1201–1227 (2007)

9. Maunder, R.G.: A fully-parallel turbo decoding algorithm. IEEE Trans. Commun. 63(8),
2762–2775 (2015)

106 D. Spasov

	Parallel Decoding of Turbo Codes
	Abstract
	1 Introduction
	2 The MAP Decoding Algorithm
	3 Design of Parallel Turbo Decoder
	4 Practical Results
	5 Conclusion
	Acknowledgement
	References

