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Abstract. One of the essential challenges in proteomics is the computational
function prediction. In Protein Interaction Networks (PINs) this problem is one
of proper labeling of corresponding nodes. In this paper a novel three-step
approach for supervised protein function learning in PINs is proposed. The first
step derives continuous vector representation for the PIN nodes using semi-
supervised learning. The vectors are constructed so that they maximize the
likelihood of preservation of the graph topology locally and globally. The next
step is to binarize the PIN graph nodes (proteins) i.e. for each protein function
derived from Gene Ontology (GO) determine the positive and negative set of
nodes. The challenge of determining the negative node sets is solved by random
walking the GO acyclic graph weighted by a semantic similarity metric.
A simple deep learning six-layer model is built for the protein function learning
as the final step. Experiments are performed using a highly reliable human
protein interaction network. Results indicate that the proposed approach can be
very successful in determining protein function since the Area Under the Curve
values are high (>0.79) even though the experimental setup is very simple, and
its performance is comparable with state-of-the-art competing methods.
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1 Introduction

Proteins are the building blocks of life. Protein functions are at the core of under-
standing and solving crucial questions and problems in life sciences like disease
mechanisms and proper drug development, design of new biochemicals, elucidation of
unknown life phenomena, etc. With the upsurge in high-throughput technologies big
data is taking center stage in life sciences, ranging from sequences to complex pro-
teomic data, such as gene expression data sets and protein interaction networks (PINs).
One of the main challenges is bridging the incompleteness of the data, especially in
terms of building an effective and precise system for analyzing such data and uncov-
ering their intrinsic functional meaning [5].

Protein-protein interaction (PPI) data are fundamental to biological processes [24]
and in terms of single-source computational protein function prediction this data is the
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best choice. PPI data has the nature and organization of networks, with proteins and
their interactions considered nodes and edges in the network. These networks are
referred to as Protein Interaction Networks (PINs) and protein functions associated to a
protein can be modeled as labels of the corresponding node. Taking this definition, the
problem of computational function prediction of a protein is translated to a problem of
proper labeling of its corresponding node in its PIN graph representation. The
semantics of protein functions is usually defined using notational schemes organized as
ontology, the most comprehensive one being the Gene Ontology (GO) [4]. GO defines
three semantic contexts, stored as separate subontologies within the GO: Biological
Process (BP), Molecular Function (MF), and Cellular Component (CC). Each subon-
tology consists of a set of terms (GO terms), connected in a directed acyclic graph. GO
is the most applied functional annotation scheme across a wide variety of biological
data [14] and as such is the scheme used in this research.

Existing computational function prediction methods using PINs can be character-
ized based on what and how much information is used in the method:
(1) neighborhood-based [10, 16], where the query protein “receives” its functions from
the “dominant” terms in its immediate neighborhood, (2) global optimization-based
[20, 25], where the neighboring information may be insufficient, so the functions of the
query protein are inferred from the indirectly connected proteins, sometimes the entire
network, (3) clustering-based [19, 24, 26, 32], where query protein’s functions are
chosen from “dominant” functions present in its determined network cluster,
(4) association-based [11], similar to clustering approaches, but here functional mod-
ules are hypothesized from frequently occurring sets of interactions in PINs of protein
complexes.

Computational function prediction has improved significantly in recent years [14],
however there is lack of research taking into account the sparsity of GO annotations
[27]. The problem arises due to GO providing mainly “positive” associations between a
protein and a GO term (the protein has the function defined with the GO term). The
specification of “negative” terms is very rare and in the context of computational
function prediction the lack of a positive association can not be treated as a negative
association. The binary classification problem requires for explicit positive and nega-
tive samples to learn the desired discriminative model. Recent approaches define
negative examples directly or by using some heuristics. The direct approaches make
assumptions based on the lack of annotations (associations) for a given term and a
given protein, either by taking as negative proteins that lack a query annotation [8] or
proteins that lack the annotation of sibling terms of a query term [3, 18]. The authors of
[31] propose a parametrization Bayesian priors method that selects negative examples
based on an approximation of the empirical conditional probability that a term will be
annotated to a protein given that the protein is already annotated with another term.
Two additional negative examples selection algorithms, selection of negatives through
observed bias (SNOB) and negative examples from topic likelihood (NETL) are given
in [30]. NegGOA [6] takes advantage of a hierarchical semantic similarity between GO
terms and performs downward random walks with restart on the hierarchy and on the
empirical conditional probability that two terms co-annotated to a protein, to determine
the negative examples.
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Recently, a lot of research has been focused on the problem of producing network
embeddings. The DeepWalk [21] method uses short random walk sequences in the
context of sentences from a natural language and using the Skip-Gram word repre-
sentation model [17] learns a vector representation of the graph nodes. The LINE [23]
method first learns node representations produced as concatenations of first- and
second-order proximities. In a similar fashion, GraRep [2] uses various loss functions
to capture k-order proximities and combines the learned representations. The TADW
method [29] builds on the proof that DeepWalk is equivalent to matrix factorization by
incorporating node level rich text information in the network representation learning.
To capture the non-linear network structure, [28] proposes a deep learning model with
non-linear functions and produces results that preserve first- and second-order prox-
imities. The node2vec [7] method uses a biased random walk procedure with a flexible
notion of a nodes neighborhood, which efficiently explores diverse neighborhoods.
Node2vec treats the results of these walks as natural language sentences (same as
DeepWalk) and using these “sentences” produces vectors that maximize the likelihood
of preservation of the graph topology and semantics locally and globally.

In this paper a novel approach DeePin using deep learning is proposed for the
computational protein function prediction. The problem is solved as term-centric i.e.
the result of the prediction gives answer if a protein is annotated with a given term or
not. In order to build the appropriate deep learning models, the PIN is first transformed
into a continuous vector space (an instance per node) and for each term-model a set of
positive and negative examples is chosen. The aim is to show that although very simple
this approach can produce comparable results with other leading approaches.

The rest of the paper is organized as follows. Section 2 presents the steps in
acquiring and building the data for the research and the technical details on the methods
used. In the third section a detailed description of the performed experiments and the
corresponding results is given. Discussion for the results and possible improvements of
the method is also provided. Finally, the paper is concluded in the fourth section.

2 Materials and Methods

In this paper the graph representation of the PIN is used to derive a continuous vector
representation. The approach of [7] is adopted and it employs a biased random walk
procedure with a flexible notion of a nodes neighborhood, which efficiently explores
diverse neighborhoods. The problem is formulated as a maximum likelihood opti-
mization problem i.e. one that maximizes the log-probability of observing a neigh-
borhood node for a target node, conditioned on its vector representation. The advantage
of this approach over other algorithms arises in its scalability, as well as flexibility to
easily custom-fit the representation for detecting node dependencies based on com-
munities they belong to, structural equivalences based on the nodes role in the network,
or a mixture of both. The produced vectors maximize the likelihood of preservation of
the graph topology locally and globally. The next step is to binarize the PIN graph
nodes (proteins) i.e. for each protein function derived from Gene Ontology (GO) de-
termine the positive and negative set of nodes. Since positive set is predefined the only
challenge is determining the negative node sets. Based on a random walk on the GO
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acyclic graph weighted using Lin similarity metric computed from the available
annotations, probabilities of not observing a label annotated to a protein will be
associated on every pair of protein function and protein [6]. Using a threshold, the
negative set of proteins for a given protein function is determined and combined with
the positive set are used in the process of learning the protein model for the function.
A simple deep learning six-layer model is built for the protein function learning. The
following subsections present the steps in acquiring and building the data for the
research. Additionally, technical details on the methods used are also provided.

2.1 Protein Interaction Network Data

The Protein Interaction Network (PIN) is constructed on data from the HIPPIE (v2.0)
database [22], which is a highly reliable human PPI dataset, built from multiple
experimental datasets, that integrates the amount and quality of evidence for a given
interaction in a normalized scoring scheme. Data is first preprocessed to remove self-
interactions, zero-confidence interactions and duplicate interactions. Duplicates are
removed so that only the highest confidence score interaction remains. The prepro-
cessing results in an undirected weighted graph, having proteins as nodes, their
interactions as edges, and the confidence scores of interactions as weights associated to
corresponding edges. The largest connected component of this graph is the final PIN
graph used in the research and is consisted of 16,769 proteins and 277,055 protein-
protein interactions.

To model the problem of function prediction as a label prediction problem the PIN
needs to be enriched i.e. describe every protein with all its known functional annota-
tions. To that aim a Gene Ontology Annotation (GOA) file from the European
Bioinformatics Institute is used (archived date: May 3, 2013). The GOA file provides
GO annotations which associate gene products with GO terms. This file is processed so
that terms labeled as ‘obsolete’ and annotations with evidence code ‘IEA’ (Inferred
from Electronic Annotation) are excluded. Additionally, duplicate annotations are also
excluded. The remaining annotations are associated with their corresponding nodes in
the final PIN. From the initial GOA file consisting of 369,199 annotations, in the final
labeled PIN there are a total of 126,367 annotations.

2.2 Vector Representation of the PIN

To apply deep learning of the protein function one first needs to construct highly
informative, discriminating and mutually independent feature representations of the
PIN’s nodes/edges. The node2vec algorithm [7] provides a semi-supervised method for
learning continuous vector representation for nodes in a network, that map every node
to a d-dimensional feature space in a process that maximizes the likelihood of pre-
serving the network neighborhood of nodes. Formally, for a network with a graph
representation G = (V, E) let f : V ! Rd be the mapping to the feature space. For every
protein node u 2 V , a neighborhood of node u is defined with N uð Þ � V . Now the
problem is formulated as a maximum likelihood optimization problem with the fol-
lowing objective function:
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max
X
u2V

log PrðNðuÞjf ðuÞÞ ð1Þ

Equation 1 maximizes the log-probability of observing a neighborhood node for a
node u, conditioned on its vector representation, given by f. This procedure with certain
parameter settings becomes equivalent to DeepWalk [21], and by transitivity incor-
porates the key features of other previously proposed methods for network
embeddings.

Let G = (V, E) be the graph representation for the PIN. The process of learning the
representations starts by generating r random walks from every protein node u as a
source, with fixed length l. Let ci be the i-th protein in the walk and c0 ¼ u. The
generation of a sequence of proteins is done using the distribution

Pðci ¼ xjci�1 ¼ vÞ ¼
pvx
Z ðu; vÞ 2 E
0 otherwise

�
ð2Þ

The random walks are biased to provide a representation that captures the right mix
of equivalences from the graph using the parameters p and q. Suppose we are at a
protein v, and we have traversed there through edge (u, v) from protein u, the next
protein t in the walk is decided using the transition probability pvt (Fig. 1). Let wvt be
the weight and pvt the transition probability on the edge (v, t) directed from v, then the
transition probability is set to pvt ¼ apq u; tð Þ � wvt, such that

apqðu; tÞ ¼
1=p if dut ¼ 0
1 if dut ¼ 1
1=q if dut ¼ 2

8<
: ð3Þ

Using p, q we can control how far a random walk can get from a source node, thus
direct (bias) the walk and redefine the context of a node’s neighborhood. Higher values
of p(>(max(1, q)) reduce the probability of revisiting a node, and therefore forces the
walk in an “exploratory mode”, conversely, low values of p(<(min(1, q)) result in going
back to already visited nodes, hence constraining the walk close to the source node. On
the other hand, having a higher value for q(q > 1) makes the walk focused on nodes
closer to the source and results in sample proteins within a small locality, while having

Fig. 1. Random walk transition probability illustration
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lower values for q(q < 1) tend to explore interactions that lead to more distant protein
nodes from the source protein.

The whole representation learning process can be summarized in three phases:
preprocessing to compute transition probabilities, random walk simulations and opti-
mization of the vector representations using stochastic gradient descent.

2.3 Negative Examples Selection

In this research the NegGOA [6] approach is adopted, and negative examples are
selected based on the available protein annotations and the term hierarchy defined in
GO. Initially, the pairwise semantic similarity of all terms is calculated using Lin’s
approach:

simH t; sð Þ ¼ 2� IC LCA t; sð Þð Þ
IC tð Þþ IC sð Þ ð4Þ

having LCA(t, s) denote the lowest common ancestor of the two terms, while IC(�) is
the information content defined with:

IC tð Þ ¼ 1� log2 desc tð Þj jð Þ
log2 Tj jð Þ

� �
ð5Þ

|T| denotes the number of terms, and desc(t) is the complete set of descendants of t.
In time, more annotations are added to proteins. New annotations often correspond

to descendants of existing annotations. This observation is modeled using random
walks with restarts on the GO hierarchy, having existing annotations as source nodes.
The transition matrix W

0
H 2 R Tj j� Tj j is modeled using the semantic similarities between

term pairs in the following way:

W
0
H t; sð Þ ¼ simH t; sð Þ � G t; sð Þ ð6Þ

where G(t, s) = 1 if s is child of t, and 0 otherwise. The transition matrix is further
normalized:

WH t; sð Þ ¼ W
0
H t; sð Þ=

X
v2T W

0
H t; vð Þ ð7Þ

Using this transition matrix, the probability to reach a term v starting from a term
t is defined as the random walk with restart probability in the 4th iteration and is
denoted with RH t; vð Þ ¼ W4

H t; vð Þ.
To utilize the existing annotation set an empirical conditional probability is defined

for terms t and s:

p sjtð Þ ¼ At \Asj j
Atj j ð8Þ
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where Ax is the set of proteins annotated with term x. The lower the value of the
conditional probability p sjtð Þ, the higher the probability for s to be chosen as a negative
example. Once again, a random walk with restart needs to be employed and the
transition matrix to be defined

WC t; sð Þ ¼ p sjtð Þ=
X

v2T p vjtð Þ ð9Þ

having, W0
C t; tð Þ ¼ 1 and W0

C t; sð Þ ¼ 0 t 6¼ sð Þ.
As in the previous case the 4th iteration of the random walk with restart probability

is the probability to reach term v starting from term t, i.e. RC t; vð Þ ¼ W4
C t; vð Þ.

The probabilities derived from the GO hierarchy and the existing annotation in the
dataset are used to calculate the following two metrics:

LH i; vð Þ ¼ 1� 1
Tij j

X
t2Ti RH t; vð Þ ð10Þ

LC i; vð Þ ¼ 1� 1
Tij j

X
t2Ti RC t; vð Þ ð11Þ

where Ti is the set of existing annotations of the i-th protein, including terms added
with transitive closure. LH i; vð Þ is the predicted likelihood of term v 62 Ti as a negative
example of the i-th protein from RH t; vð Þ. LC i; vð Þ is the predicted likelihood of negative
example from RC t; vð Þ.

The two metrics are combined in one:

L i; vð Þ ¼ bLH i; vð Þþ 1� bð ÞLC i; vð Þ ð12Þ

where b 2 0; 1½ � is a scalar used to control the influence of LH i; vð Þ and LC i; vð Þ.
Finally, the i-th protein receives as negative the annotations that correspond the

largest values of L i; �ð Þ 2 R Tj j.

2.4 Deep Learning the Protein Function

The problem of computational protein function prediction i.e. learning the correct
labels for the PIN graph nodes is modeled as a binary classification problem i.e.
whether a specific functional term should be associated with a protein node or not. In
this research a feed-forward deep neural network is used. A simple deep learning six
layer model is built for the protein function learning: the first layer consisting of 128
fully connected ReLU (Rectified Linear Units) neurons, the second layer consisting of
128 fully connected sigmoid neurons, the third is a dropout layer (with a 0.25 rate)
followed by a layer of 64 fully connected sigmoid neurons, the fifth is once again a
dropout layer (0.25 rate) and the final layer is a single fully connected sigmoid neuron.
The dropout layers are used since the number of instances used in the learning process
is modest in terms of deep learning and overfitting needs to be avoided.
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3 Results and Discussions

In the experiments performed for the proposed approach two different vector repre-
sentations are used for the PIN graph. The first representation is derived by using p = 1,
q = 1 in the vector representation method, and the resulting representations will be
close for nodes (proteins) in the same network community. The second representation
corresponds to p = 1, q = 2, and the resulting representations are close for nodes that
share similar structural roles in the graph.

The next step in creating proper experimental setup is the creation of corresponding
datasets for each deep learning model that needs to be built. These datasets need to
contain a sufficient number of positive examples as well as a corresponding number of
negative examples. To that aim the 20 most frequent GO terms for each ontology (MF,
BP, CC) present in the final GOA file are chosen as the initial target terms for the deep
learning models. The initial target terms are further filtered based on their specificity
since the aim is to be able to predict the most specific terms possible. A specificity
metric is introduced:

Ct ¼ Ftj j
Atj j ð13Þ

where Atj j is the number of nodes annotated with term t in the final GOA file, while Ftj j
is the number of nodes annotated with term t when the annotation sets for each node are
expanded using transitive closure in GO (if a node is annotated with term t then it is
also annotated with every ancestral term of t). The initial 60 target terms are filtered so
that each term that has a specificity metric Ct [ 1:3 will be discarded. Using this
filtering the final target term set is composed of 22 terms.

Positive examples are chosen based on the annotations in the final GOA file. Using
the negative example selection method, the examples with the highest likelihood are
chosen as negative by defining a lower bound on the likelihood so that the number of
negative examples that survive the cutoff is comparable to number of positive exam-
ples. This procedure of creating the complete dataset of positive and negative examples
is done for each target term separately and independently.

The neural network models are implemented using the deep learning library Keras
with Tensorflow as a backend. The binary cross entropy is used as a loss function in the
training process, and parameters are optimized using the Adaptive gradient descend
(Adagrad) algorithm.

Binary classification is performed using 10-fold cross-validation and the following
are of interest: True Positives (TP) – when the functional term is predicted for a protein
and is part of the annotation set of the protein, True Negatives (TN) – when the
functional term is not predicted for a protein and is not part of the annotation set of the
protein, False Positives (FP) – when the functional term is predicted for a protein, but it
is not part of the annotation set of the protein, False Negatives (FN) – when the
functional term is not predicted for a protein, but it is part of the annotation set of the
protein. Using these, the following classification quality measures can be defined:
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Sensitivity True Positive Rateð Þ ¼ TP
TPþFN

ð14Þ

False Positive Rate ¼ FP
FPþ TN

ð15Þ

Plotted as coordinate pairs Sensitivity and FalsePositiveRate define the Receiver
Operating Curve (ROC). The ROC curve describes the model performance over the
complete range of classification thresholds. The Area Under the Curve (AUC) for a
classifier model is equivalent to the probability that the classifier will rank a random
positive example higher than a random negative example. Figure 2 depicts the top four
ROC curves for the deep learning models with best performances.

The proposed approach DeePin is compared with existing methods like
topological-feature based prediction (TopFeat) [15], diffusion state distance (DSD) [1],
scale-aware topological measures (STM) [13], PPI information (PPIi) [12]. TopFeat
considers weighted PIN network topology features with local and global information to
characterize proteins and identify protein function. DSD uses graph-diffusion based

Fig. 2. Receiver operator characteristics for the four top performing deep learning models for
(A) GO:0003705, (B) GO:0045945, (C) GO:0016036, (D) GO:0005655
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metric to capture detailed distinctions in proximity and use them in the process of
transferring functional annotations in a PPI network. STM uses scale-invariant
description of the topology around or between proteins with a network smoothing
operation and diffusion kernels. PPIi takes into account function information in the
neighborhood of a query protein and the weights of interactions with neighbors and
infers specific function for the query protein using a so-called “inclined potential”.
Comparison is performed based on the AUC values for predicting the target GO terms
and results are given in Table 1.

As can be seen from the results in Table 1 the proposed approach DeePin gives
similar performance to TopFeat, which is the top performing existing method, when
targeting BP GO terms. The DeePin performance is slightly better than TopFeat when
the target terms are from the CC category. TopFeat significantly outperforms the
proposed approach in the MF category. This is mainly due to the fact that very few MF
targets are present in the final target term set. One drawback of the proposed approach
lies in its need for higher number of positive and negative examples to train the deep
learning models. As seen from the filtering of the data performed in this research this is

Table 1. Comparison of AUC values for the proposed approach and existing methods

GO term GO category DeePin (q = 1) DeePin (q = 2) TopFeat DSD STM PPIi

GO:0045945 BP 0.92 0.93 0.92 0.74 0.65 0.76
GO:0016036 BP 0.89 0.9 0.9 0.78 0.71 0.78
GO:0000128 BP 0.84 0.84 0.85 0.73 0.67 0.73
GO:0007269 BP 0.84 0.84 0.86 0.73 0.67 0.72
GO:0045088 BP 0.83 0.83 0.84 0.73 0.66 0.83
GO:0043067 BP 0.8 0.81 0.81 0.69 0.62 0.69
GO:0055086 BP 0.82 0.81 0.8 0.68 0.62 0.67
GO:0007597 BP 0.79 0.79 0.77 0.66 0.61 0.64
GO:0044282 BP 0.78 0.78 0.77 0.71 0.66 0.69
GO:0005655 CC 0.89 0.89 0.87 0.78 0.72 0.75
GO:0005889 CC 0.86 0.86 0.85 0.75 0.69 0.74
GO:0005635 CC 0.85 0.85 0.84 0.7 0.65 0.69
GO:0005616 CC 0.85 0.84 0.84 0.76 0.71 0.73
GO:0005790 CC 0.84 0.84 0.84 0.74 0.68 0.75
GO:0005831 CC 0.82 0.82 0.8 0.74 0.7 0.74
GO:0005887 CC 0.82 0.82 0.81 0.73 0.68 0.71
GO:0005814 CC 0.79 0.79 0.77 0.67 0.61 0.69
GO:0005731 CC 0.76 0.76 0.73 0.61 0.57 0.63
GO:0003705 MF 0.94 0.94 0.99 0.92 0.83 0.91
GO:0003714 MF 0.88 0.88 0.95 0.88 0.78 0.88
GO:0005525 MF 0.75 0.76 0.85 0.76 0.72 0.73
GO:0042805 MF 0.72 0.71 0.8 0.72 0.65 0.7
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not always the case when it comes to more specific GO terms, which are much more
significant in terms of computational function prediction. This is due to the incom-
pleteness of the knowledge for all possible protein interactions and all possible func-
tions a protein performs. However, with the rise in protein data generation in the future
this problem will diminish. The current incompleteness of data can explain the “poor”
performance the proposed approach has on MF terms, since the MF ontology is by far
the “easiest” to predict [14]. With the data increase the proposed approach can only
improve in performance since all steps are inherently sensitive to the amount of
information presented.

4 Conclusion

In this paper a novel approach for computational function prediction using deep
learning in protein interaction networks (PINs) i.e. DeePin is proposed. The approach is
very simple since it requires a single algorithm/computation at each step of its pipeline.
The PIN graph is translated in a vector space that is able to capture the
topological/structural properties of the PIN and their dependencies in a single opti-
mization problem, as opposed to extracting these features independently like in other
competing methods. The quality of the prediction is enhanced by making an informed
choice on the negative examples used in building the deep learning models. Finally, the
deep models are very simple consisting of only six layers with total number of neurons
of less than 1000. Experiments are performed using a highly reliable human protein
interaction network. Results indicate that the proposed methodology can be very
successful in determining protein function and its performance is comparable with
state-of-the-art competing methods. The drawback of the proposed approach is its
inherent sensitivity to the amount of data available. However, this may become an asset
in the future, since big data is generated for proteins daily and the knowledge base for
proteins, their interactions and functions, deepens.
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