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Abstract. The accurate estimation of students’ grades in prospective
courses is important as it can support the procedure of making an
informed choice concerning the selection of next semester courses. As
a consequence, the process of creating personal academic pathways is
facilitated. This paper provides a comparison of several models for future
course grade prediction based on three matrix factorization methods. We
attempt to improve the existing techniques by combining matrix factor-
ization with prior knowledge about the similarity between students and
courses calculated using the SimRank algorithm. The evaluation of the
proposed models is conducted on an internal dataset of anonymized stu-
dent record data.
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1 Introduction

With the rapid development of information technology, data-driven decision
making in higher education has become a global trend aiming to support uni-
versities to meet both external standards, as well as internal self-evaluation
and improvement requirements. The latter point includes, among other things,
improving student retention and success rates, increasing motivation and overall
satisfaction during the course of their studies. An indispensable aspect of this
process is the careful collection, organization and analysis of educational data,
which can be generated by different sources including student data, teacher data
and data gathered from the process of teaching and assessment. Higher education
is getting close to a time when personalization of study plans and career paths
will become a common practice. Rather than using the “one-size-fits-all” app-
roach when constructing a study program and requiring all students to enroll
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same or similar subjects, universities begin to turn to building systems that
would provide relevant, accurate course recommendations and corresponding
grade predictions that are specifically tailored to each individual student. The
vast amount of student and teacher-related data provides a basis for the devel-
opment of intelligent systems that model the prediction of the final grades and
systems that allow students to customize their degree plans to better match their
career goals, personal interests and predispositions.

As more and more students choose to pursue a degree in higher education,
the universities start to face the problem of having a large number of students
with a wide range of abilities, skills, interests and potential, attempting to make
an informed choice when choosing their elective courses. The level of freedom
of choice has increased significantly over the last decade, and at the moment it
amounts to 50% of the credits needed to successfully finish the undergraduate
studies [9].

The lack of official guidance within the process of semester enrollment and
course selection has led to a situation in which students rely predominantly on
the word-of-mouth of their colleagues. Such recommendations are usually biased
and do not take into account the student’s personal abilities and inclinations.
Motivated by these observations, our goal is to develop a prototype of a system
that will assist university students in making an optimal choice when it comes to
elective courses. We seek to analyze and use existing methods which have already
been proven to result in accurate recommendations and predictions and explore
possible modifications to the well-established algorithms. We aim to provide
accurate grade predictions and recommendations over a wider set of electives
best suited for the student in question.

The paper is organized as follows. Section2 contains literature review of
related work done in the past by other authors. Section 3 describes the dataset
that was used in the experiments, as well as a short clarification on the data
acquisition process. Section4 defines the problem addressed in this paper. In
Sect.5 we make a short overview of the well-known algorithms: Probabilistic
Matrix Factorization (PMF) [5], Bayesian Probabilistic Matrix Factorization
(BPMF) [10] Alternating Least Squares (ALS) [13] and SimRank [4], and propose
a novel approach for the initialization of the first three using the last one. We
shortly explain the metrics used to evaluate the performance of the algorithms,
and our approach. Section 6 compares the performance of the base versions of
PMF, BPMF and ALS with each other, and with the enhanced versions using
the SimRank initialization. Finally, Sect.7 concludes the paper.

2 Related Work

There have been extensive academic research efforts and numerous industrial
implementations of recommender systems in the past. Since predicting course
grades and recommending subjects differs significantly from recommending
music or movies, we will focus on reviewing the work most relevant to our con-
text. Several authors have taken a similar approach by identifying groups of
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similar students when predicting a grade for a course [7,14]. These implementa-
tions also rely on neighborhood-based collaborative filtering methods. The past
grades of the student’s colleagues are used to make an estimate of the grade
that might be obtained in a hypothetical enrollment of the course by using some
similarity-weighted aggregation function.

Several course grade prediction models are proposed in [3,6,8], that use meth-
ods based on sparse linear models and low-rank matrix factorization. When using
such an approach, the students’ success in the past courses plays a deciding role.
The factorization matrix is built so that rows represent students, columns repre-
sent the available courses and each matrix element stores the grade that the i*"
student obtained in the j** course. A missing value signals that the respective
student has not yet enrolled /passed the respective course. As will be explained
in the following sections, we will use this approach when describing the specifics
of our own data.

As the algorithm described in [13] resolves scalability and handles sparseness
of the data which is a major issue in recommender systems, and as the probabilis-
tic techniques in [5,10] considerably outperform standard matrix factorization
as well as other approaches, essentially motivated by their performances in the
context of recommending university courses in [9], we chose to work with these
methods and tried to improve them.

The rationale of using grade prediction for future course enrollments is not in
the sheer possibility to accurately predict the students’ future, but in the oppor-
tunities that open in the processes of guiding and advising students. Course rec-
ommender systems have been successfully integrated in educational dashboards
and learning analytics systems, such as the one described in [1]. The described
Virtual Student Adviser enables the students to explore different study programs
and guide them on their own personalized academic path — annotating risky
mandatory courses and paths on one hand, and recommended elective courses
among the pool of freely selectable options on the other hand.

From the conducted literature review, it can be concluded that the problems
of grade prediction and course recommendations have been tackled by various
approaches. These processes are beneficial not only for increasing the satisfaction
of the student after choosing a certain course, but also for increasing her chances
of success during her studies. Grade prediction can also be used as a tool to
perform a hypothetical (what-if) analysis on the impact of one selection from a
list of courses against another, and assessing the courses which may result in risk
of failure. This would provide the student with an indicator of where to direct
her efforts and time.

However, most of the reviewed systems suffer from the well-known problem
which often arises in constructing recommender systems — the cold start problem.
There are always students with very few grades, i.e. those who are currently in
the first year of undergraduate studies. This results in low amount of information
on the preferences and performance of the students based upon which we would
like to make predictions. Therefore, special attention must be paid in order to
remedy this issue.
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3 Dataset

The experiments were conducted on real, fully anonymized records of stu-
dent course enrollments and grades at the authors’ institution. The dataset
includes data course enrollments in the period from 2011 to 2016. The process
of anonymization was performed by administrative staff, prior to the process of
acquisition of data for research purposes. As researchers, we did not have any
access to the full official data records, but only to already anonymized replicas.
For the purpose of this research, we acquired records in the form of triplets (stu-
dent, course, grade) — whereas the student was represented by an anonymous
identifier, the course was represented by the real name of the course, and the
grade was the grade achieved by the student (5 meaning a failed course, 6 being
the lowest passing grade and 10 being the highest grade, null meaning a course
that was enrolled but was not yet graded by the respective teachers).

We ran the experiment over a 25-day interval in 5 cycles, having 6 batches of
data records. The first batch contained data from the previous academic years,
while the other subsequent batches add records that were newly input during
the respective cycles. The size of the dataset for each cycle was divided into a
training and test dataset, as shown in Table 1.

Table 1. Number of training and test records for each cycle of the dataset

Cycle 1 | Cycle 2 | Cycle 3 | Cycle 4 | Cycle 5
Training records | 58915 | 59492 | 60039 |61544 |62899
Test records 595 541 968 1261 1127

The time frame of data acquisition was chosen to be the final exams period,
immediately prior to the deadline for the process of course enrollment, the reason
being two-fold:

1. The finals are typically the last responsibility the students should pass in
order to get their grade.

2. The end of the exam period typically concurs with the opening date of the
period when the students choose the courses they would like to enroll in for
the next semester. Hence, this is the period when course recommendations
are most needed and sought for.

As an illustration for the outlook of the dataset, Table 2 contains all instances
from the first cycle for the student 1773012. It is essential to note that the ID
1773012, as all the other IDs in our dataset, is not a real identifier. This ID
does not correspond to an existing student identifier and the example we give
for illustration purposes is not based on any student’s real data. The complete
dataset is an extension of Table2, so that it contains similar records for all the
students.
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Table 2. Illustrative dataset records from the first cycle

Student | Course Grade

1773012 | Business and management 10
1773012 | Introduction to Internet 9
1773012 | Introduction to Informatics
1773012 | Discrete mathematics 1
1773012 | Marketing

1773012 | Object-oriented programming | 10
1773012 | Introduction to Web design 9
1773012 | Professional skills
1773012 | Structured programming 7

4 Problem Formulation

From the student-course-grade relation, a grade matrix G can be constructed.
Suppose we represent the courses and the students with integer IDs of the inter-
vals [1, M] and [1, N], where M and N are the number of courses and students
respectively. The grade matrix G will be such that the element in the i** row
and j** column represents the grade the student i obtained in the course j.

Since the number of available courses is much larger than the number of
courses the students are required to pass in order to graduate, and some students
are in their first years of studying, G will be sparse. In this paper, we aim to
predict the missing elements of the matrix, or in other words, we predict the
performance of each student in the courses she has not already been enrolled in,
and based on such obtained performances, we recommend her university courses.

Having the entries from the train set represented with G, for evaluation
purposes, we compare the predicted grades with the real ones from the test set.
The predictions are made using commonly utilized methods, however, here we
improve them by introducing a novel approach in their initialization.

5 Methodology

5.1 Matrix Factorization Methods

Matrix factorization methods have gained popularity in recent years [12] due
to their good predictive accuracy. Techniques based on matrix factorization are
effective because they allow the discovery of the latent features underlying the
interactions between users and items. This idea can be mapped to the concept of
making course grade predictions by observing students as users and their courses
as items. The algorithm will be applied in order to predict the missing grades of
students interested in a particular course, and afterwards to make personalized
course recommendations based on the computed grade predictions.
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As the name suggests, matrix factorization and its variation intends to find
two low-dimensional matrices Sp,n and Cp, s that factor G, where G is the
aforementioned student-course-grade matrix and D is a positive integer rep-
resenting the number of latent features to be considered. In other words, the
product of ST and C should approximate G.

A convenient interpretation of the matrices S and C' is to consider that each
student and each course is mapped to a D dimensional latent feature space,
and S and C have the corresponding feature vectors of the students and courses
respectively. Having these vectors, a grade prediction for student 4 in the course
j is just a dot product of their corresponding vectors, i.e.

gij =5 ¢ (1)

where g; ; is the predicted grade and s;, c; are the it" and j** columns in S and
C respectively.

To learn the factor vectors (s;, ¢;), the algorithm strives to minimize the
regularized squared error on the set of known grades:

min Y (g5 — s ¢5)* + A(l[sil]” + 15 |?) (2)
(s,c)EK

where K is the set of student-course (s, c) pairs for which the grade is known
from the training set and A is a regularization term.

Alternating Least Squares (ALS). As described in the previous section,
our goal is to minimize the loss function. Derivatives are an obvious method for
minimizing functions in general, so several derivative-based methods have been
developed. One of the most popular approaches is the Alternating Least Squares
(ALS) algorithm [13].

ALS minimization starts with holding one set of latent vectors constant (for
example, the student vectors), then taking the derivative of the loss function
with respect to the other set of vectors (the course vectors), setting the deriva-
tive equal to zero and solving the resulting equation for the non-constant vectors.
Afterwards, these new vectors are held constant and the derivative of the loss
function with respect to the previously constant vectors is taken. The steps
are repeated until convergence is achieved. This can be formulated mathemati-

cally as:
oL

P =2 Z(gs,c - mgyc)yg + 2)\1’1'? (3)
Ts ;

0=—(gs — 2L Y)Y + \aT (4)

oy (YTY + A1) = .Y (5)

el =g Y(YTY + A I)7! (6)

Here, the course items y. are held constant and the derivative is taken with
respect to the student vectors xs. The symbol Y refers to a matrix consisting of
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all student row vectors. The row vector g, contains all course grades for student
s taken from the grades matrix and g, . is the grade obtained by student s in
course c. Finally, I represents the identity matrix.

Probabilistic Matrix Factorization (PMF). Minimization of the loss func-
tion described in (2) appears as a goal if we take the probabilistic way of approx-
imating the grade matrix. One simple algorithm is the Probabilistic Matrix Fac-
torization (PMF) [5] that outperforms many others, as we will see in the results’
section. PMF assumes normal distribution for the user and item latent features
as priors, as well as for the result, such that the grade predicted in (1) is taken
as the mean for the distribution.

An important note to take from this algorithm is that it scales linearly with
the number of records, and therefore, it outperforms the other similar methods
in execution time.

Bayesian Probabilistic Matrix Factorization (BPMF). This method
takes a Bayesian approach to the problem which includes integrating out the
model parameters, i.e. it gives a fully Bayesian treatment to the already described
Probabilistic Matrix Factorization (PMF) model. What makes Bayesian Prob-
abilistic Matrix Factorization (BPMF) different is that it uses Markov chain
Monte Carlo (MCMC) methods for approximate inference [10]. As in PMF, the
prior distributions over the students and courses features are assumed to be
Gaussian. Inference is, however, achieved through the Gibbs sampling algorithm
that iterates through the latent variables and samples each from its distribution
conditional on the current values of the rest of the variables. This algorithm
is normally used when conditional distributions are easy to sample from — due
to the use of conjugate priors for the parameters and hyper-parameters in the
BPMF, the Gibbs algorithm is very well applicable. It has been demonstrated
that the BPMF model may outperform in specific cases the classical PMF app-
roach on user-rating datasets, such as the large Netflix dataset [10].

5.2 SimRank

The previous sections demonstrate three different variations of the matrix factor-
ization algorithm which use different ways to initialize the matrix. The majority
of the approaches used in literature use random initialization or initialization
based on taking the averages of the respective rows or columns. We seek to
explore the effects of adding a semantic component to matrix initialization, i.e.
to augment the algorithm by providing it with some initial similarities between
courses and students. However, in order to do this, we must first define course
similarity. Intuitively,

— Two courses are similar if similar students are enrolled in both of them, and
— Two students are similar if they are enrolled in similar courses.

These definitions are cyclic and the intuition behind them is comparable
with the one behind Google’s PageRank algorithm, which ranks websites based
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on their importance. Hence, we turn to a somewhat related algorithm for com-
puting similarities between items and users (in our case courses and students) —
SimRank [4].

In order to use the algorithm, we form a directed bipartite graph whose nodes
represent the students and the courses from the dataset described in Sect. 3.
There is an edge from student s to course ¢, if and only if s has enrolled c.

A difference exists between the similarities of the nodes in our graph — the
similarity between students s; and so, and the similarity between courses ¢; and
co can be calculated with the following recursive relations:

[O(s1)[ |O(s2)]

@ $(0:(51),0;(s2) (1)

0 (1) [10 (s2) |

s(s1,82) =
i=1  j=1

[1(c1)] [1(c2)]

s(c1,c2) = T @) HI ) Z > sl I; (c2)) (8)

=1 j=1

I (v) and O (v) are the set of in-neighbors and out-neighbors of node v, and
I; (v) and O; (v) is an individual in-neighbor and out-neighbor respectively. C
and Cy are decay factors and have values in the range (0, 1), As originally pro-
posed in [4], C; and C5 are taken to be 0.8.

5.3 Matrix Factorization with SimRank Weights Initialization

As we discussed previously, the initial features for both users and items are
chosen randomly, and then, they are tweaked with different methods, depending
on the algorithm used. Under this assumption, at the beginning, we do not
differentiate neither the students, nor the courses.

Having only the student-course-grade records, and no other additional infor-
mation, limits the possibilities for initialization. However, they are enough to
compute the SimRank results, that can be later used in the initialization of the
matrices.

We propose a method of initialization of latent features using the previously
computed SimRank similarities. For each of the above matrix factorization algo-
rithms we take the resultant student and course latent features, S and Cj, after
one run of the algorithm with the usual random initialization. Let us denote
the student-student similarity matrix with Sy;,,, and the course-course one with
Csim- In them, the (i,j) entry shows the similarity of i*" and j** student or
course. The new student and course latent features S; and C are computed as
weighted arithmetic mean of Sy and Cy with weights Sg;,, and Cg;n, or

S; = 75(”9 (9)
/ . .
Cy = M (10)

Cavg
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where Sgyg is a DzN matrix that as i*" column has the mean vector of the
similarities for the i*" student. Cavg is the analogous Dz M matrix for courses.
The fractions in (9) and (10) denote an element-wise matrix division.

One can easily notice that new initial latent features So and Cs can be
constructed in a similar way using (9) and (10), i.e. Sy = Sissim and Cy =
Ct-Caim o

Cavg
converged. In fact, the above discussion can be generalized for any non-negative

integer t in the following manner

, using the matrices S7 and C] that are resultant features after algorithm

S/ .S

Siiq = Zt Zsvm (11)
* S(wg
C - C..

Crpp = 1 (12)
o Cavg

We terminate with such initializations once the latest is outperformed by a
former one.

5.4 FEvaluation Metrics

As a method for testing the performance of our models, we use the Root Mean
Square Error (RMSE) and the Mean Absolute Error (MSE) measures. These
metrics can be defined mathematically as:

1 .
RMSE = |+ z;T(gm‘ —Gij)? (13)
9i,j

qu‘,,jET ‘gl,j - g;,jl
F

MAFE =

(14)

H
1 R
MAE; = Vi j§=1 9.5 — 9i.jl (15)

Here, F' is the number of total available grades, H is the number of grades the
current student has obtained until the point of computation, T is the set of the
test records, g; ; refers to the actual grade, whereas g; ; to the predicted grade.

6 Results and Discussion

In this section we present the results of the performance evaluation conducted
on the dataset described in Sect. 3. First, we begin by analyzing the results of
the three matrix factorization techniques in reference to the previously explained
performance metrics RMSE and MAE.

Table 3 summarizes the obtained RMSE and MAE scores on the dataset from
the first cycle for ALS, BPMF and PMF with 7 different values for the parameter
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D, i.e. number of latent features (see Sect.5.1). The comparative performances
of the algorithms are similar to those on the data from the other cycles. The app-
roach taken to obtain these results involves initializing the respective algorithms
using their proposed random initialization - this provides us with initial insights
on the performance of the different techniques and represents a reference point
for our own SimRank-based initialization.

Table 3. Performance comparison of the three matrix factorization techniques

D=20D=30 D=40D=50D=60 D=70 D =380
ALS RMSE 1.637 | 1.509 |1.476 |1.438 |1.447 |1.430 |1.430
MAE [1.270 |1.147 |1.102 |1.075 1.072 [1.069 |1.064
BMPF | RMSE | 1.647 |1.417 |1.389 | 1.417 |1.487 |1.416 |1.318
MAE [1.236 |1.081 1.040 |1.088 1.126 |1.086 |1.007
PMF |RMSE|1.196 |1.168 |1.151 1.115 | 1.085 |1.054 |1.068
MAE 10.837 0.808 |0.796 |0.768 |0.736 |0.721 |0.737

For each algorithm, we take the value for D for which the smallest RMSE
is observed, and take the student and course latent features for that D. Using
them, we iteratively apply (11) and (12) as explained in Sect.5.3. On the data
from the first cycle, this initialization surpasses the simple random initialization
of the algorithms. In particular, ALS notes RMSE of 1.014 in the first, and 1.011
in the second iteration, which is a significant improvement over the best value
of 1.43 for the best case of D = 80. The RMSE for BPMF lowers to 1.17 after
only 1 iteration.

15 N === Cycle1
’ ~ !0 00| s=essss o-- Cycle 2
N N ———=——Cycle 3

1.4- N ——Cycle 4
... N e *=-Cycle 5

RMSE
/

Iterations

Fig. 1. Improvements of the RMSE of PMF over all dataset cycles for the corresponding
best value for D. Termination is done when an iteration yields worse results than the
previous one.
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Table 4. Confusion matrix of PMF for the first cycle, with D = 140

Predicted grades

516 | 7 |8]9]|10

5131 2| 00100

7| 2| 471 94111 1|0

Real grades

100 0| 0| 5| 5|13]| 4

PMF does not only outperform the others in the basic case, but also notices
improvements for every cycle, and it continues yielding the best results after
the SimRank initialization. Fig. 1 shows how RMSE drops in every iteration for
PMF over all dataset cycles. Although in the first cycle, an improvement for
all three algorithms is noted, BPMF and ALS algorithms have insignificant or
even no benefit from this initialization in the other cycles. Therefore, we keep
the focus on PMF’s results.

When considering an accurately predicted grade to be one that falls within
deviation of +1 of the real one, using the SimRank initialization for PMF, we
increase the accuracy of predicting grades from 70.1% to 77.5% for cycle 3. The
best result we obtain is accuracy of 88.4% for predicting grades belonging to
cycle 1, and the confusion matrix of this case is shown in Table4. It presents
the number of records correctly predicted as belonging to the actual grade and
the number of records that were predicted as not belonging to the actual grade.
The x-axis presents the actual (real) grades, ranging from 5 to 10 and 6 being
the lowest passing grade, whereas the y-axis contains the grades predicted by
the SimRank-initialized version of PMF.

It is interesting to compare the proposed approach with other similar research
agendas so as to perceive the benefits that may come with our decisions. The
research presented in [2] employs techniques from collaborative filtering such
as singular value decomposition (SVD) to predict grades and uses the Pearson
correlation coefficient as a measure for the similarity between students. Several
SVD initialization methods are evaluated and the effect of the size of the student-
neighborhood taken into consideration is explored. This approach results in a
MAE value of minimum 1.5, with some of the parameter configurations yielding
an even higher value of up to 2.2. As can be seen from Table 3 and the discussion
following it, the SimRank-initialized matrix factorization methods demonstrate
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superior performance. Another sophisticated approach is described in [9], where
the authors evaluate several matrix factorization techniques for grade prediction
based on a historical dataset of over 10 years of student record data. The pre-
sented results show that around 80% of the predicted records fall in a deviation
of +1 of the actual grade. The modification of the PMF algorithm presented in
this research achieves an increase in accuracy of more than 8%.

It is important to note, however that the aforementioned comparisons have
been done in different settings and tested on institution-specific datasets which
might have less or more strict course programs and assessment procedures.

7 Conclusion and Future Work

In this paper, we presented a novel hybrid approach of initializing matrix fac-
torization methods with student-course similarities obtained using the SimRank
algorithm. We employ this approach in extending three well-known matrix fac-
torization techniques (Alternating Least Squares, Probabilistic Matrix Factoriza-
tion and Bayesian Probabilistic Matrix Factorization). The evaluation performed
on a dataset of past student records showed that the Probabilistic Matrix Factor-
ization (PMF) gives better results in all performance measures compared to ALS
and BPMF. Furthermore, an overview of the algorithms’ performance depending
on the hyper-parameters was illustrated and discussed. We also demonstrate very
promising results in accuracy achieved by the SimRank initialization method for
PMF.

Our current research agenda includes re-evaluating the proposed method
on an extended internal dataset that best reflects the current study programs
offered at the authors’ institution. This will be basis for the integration of the
recommendation engine prototype in a user-friendly web application, whose pur-
pose will be to allow the students to browse through course information, track
their current study progress and display recommendations for prospective elec-
tive courses. Since the similarity matrices containing the SimRank scores are
pre-computed and the matrix factorization methods are fast, the estimation of
the most suitable courses for a particular student can be made almost real-time,
i.e. on average for a single student the estimation lasts about 0.3 ms on a machine
configuration with Inte1®CoreTMi7—4720HQ CPU @ 2.6 GHz, 8GB RAM on a
64-bit Ubuntu 16.04 LTS.

Incorporating user feedback into the system, i.e. letting the user evaluate the
quality of the recommended course with respect to their interests and predispo-
sitions will further improve future predictions. We would also like to explore the
effect of adding additional sources of data to our models, for example records
about the respective course instructors, as well as some background information
of the students’ past education.

Acknowledgments. This work is a result within the project SISng (Study Informa-
tion Systems of the Next Generation) [11], which is currently ongoing at the Faculty
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