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Preface

These proceedings contain the papers that were presented at the 6th International
Conference on Statistical Language and Speech Processing (SLSP 2018), held in
Mons, Belgium, during October 15–16, 2018.

The scope of SLSP deals with topics of either theoretical or applied interest dis-
cussing the employment of statistical models (including machine learning) within
language and speech processing, namely:

Anaphora and coreference resolution
Authorship identification, plagiarism and spam filtering
Computer-aided translation
Corpora and language resources
Data mining and semantic web
Information extraction
Information retrieval
Knowledge representation and ontologies
Lexicons and dictionaries
Machine translation
Multimodal technologies
Natural language understanding
Neural representation of speech and language
Opinion mining and sentiment analysis
Parsing
Part-of-speech tagging
Question-answering systems
Semantic role labelling
Speaker identification and verification
Speech and language generation
Speech recognition
Speech synthesis
Speech transcription
Spelling correction
Spoken dialogue systems
Term extraction
Text categorisation
Text summarisation
User modeling

SLSP 2018 received 40 submissions. Every paper was reviewed by 3 Programme
Committee members. There were also a few external experts consulted. After a thorough
and vivid discussion phase, the committee decided to accept 15 papers (which represents



a competitive acceptance rate of about 37%). The conference program included 3 invited
talks and some presentations of work in progress as well.

The excellent facilities provided by the EasyChair conference management system
allowed us to deal with the submissions successfully and handle the preparation
of these proceedings in time.

We would like to thank all invited speakers and authors for their contributions, the
Program Committee and the external reviewers for their diligent cooperation, and
Springer for its very professional publishing work.

August 2018 Thierry Dutoit
Carlos Martín-Vide
Gueorgui Pironkov
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Analysing Speech for Clinical
Applications

Isabel Trancoso1(B) , Joana Correia1,2 , Francisco Teixeira1 ,
Bhiksha Raj2, and Alberto Abad1

1 INESC-ID/Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
Isabel.Trancoso@inesc-id.pt

2 Carnegie Mellon University, Pittsburgh, USA

Abstract. The boost in speech technologies that we have witnessed
over the last decade has allowed us to go from a state of the art in which
correctly recognizing strings of words was a major target, to a state in
which we aim much beyond words. We aim at extracting meaning, but
we also aim at extracting all possible cues that are conveyed by the
speech signal. In fact, we can estimate bio-relevant traits such as height,
weight, gender, age, physical and mental health. We can also estimate
language, accent, emotional and personality traits, and even environmen-
tal cues. This wealth of information, that one can now extract with recent
advances in machine learning, has motivated an exponentially growing
number of speech-based applications that go much beyond the transcrip-
tion of what a speaker says. In particular, it has motivated many health
related applications, namely aiming at non-invasive diagnosis and mon-
itorization of diseases that affect speech.

Most of the recent work on speech-based diagnosis tools addresses the
extraction of features, and/or the development of sophisticated machine
learning classifiers [5,7,12–14,17]. The results have shown remarkable
progress, boosted by several joint paralinguistic challenges, but most
results are obtained from limited training data acquired in controlled
conditions.

This talk covers two emerging concerns related to this growing trend.
One is the collection of large in-the-wild datasets and the effects of this
extended uncontrolled collection in the results [4]. Another concern is
how the diagnosis may be done without compromising patient privacy
[18].

As a proof-of-concept, we will discuss these two aspects and show our
results for two target diseases, Depression and Cold, a selection moti-
vated by the availability of corresponding lab datasets distributed in
paralinguistic challenges. The availability of these lab datasets allowed
us to build a baseline system for each disease, using a simple neural net-
work trained with common features that have not been optimized for
either disease. Given the modular architecture adopted, each component

This work was supported by national funds through Fundação para a Ciência e a Tec-
nologia (FCT) with references UID/CEC/50021/2013, and SFRH/BD/103402/2014.

c© Springer Nature Switzerland AG 2018
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of the system can be individually improved at a later stage, although the
limited amount of data does not motivate us to exploit deeper networks.

Our mining effort has been focused on video blogs (vlogs), that include
a single speaker which, at some point, admits that he/she is currently
affected by a given disease. Retrieving vlogs with the target disease
involves not only a simple query (i.e. depression vlog), but also a post-
filtering stage to exclude videos that do not correspond to our target of
first person, present experiences (lectures, in particular, are relatively fre-
quent). This filtering stage combines multimodal features automatically
extracted from the video and its metadata, using mostly off-the-shelf
tools.

We collected a large dataset for each target disease from YouTube,
and manually labelled a small subset which we named the in-the-Wild
Speech Medical (WSM) corpus. Although our mining efforts made use of
relatively simple techniques using mostly existing toolkits, they proved
effective. The best performing models achieved a precision of 88% and
93%, and a recall of 97% and 72%, for the datasets of Cold and Depres-
sion, respectively, in the task of filtering videos containing these speech
affecting diseases.

We compared the performance of our baseline neural network clas-
sifiers trained with data collected in controlled conditions in tests with
corresponding in-the-wild data. For the Cold datasets, the baseline neu-
ral network achieved an Unweighted Average Recall (UAR) of 66.9% for
the controlled dataset, and 53.1% for the manually labelled subset of the
WSM corpus. For the Depression datasets, the corresponding values were
60.6%, and 54.8%, respectively (at interview level, the UAR increased to
61.9% for the vlog corpus). The performance degradation that we had
anticipated for using in-the-wild data may be due to a greater variabil-
ity in recording conditions (p.e. microphone, noise) and in the effects of
speech altering diseases in the subjects’ speech. Our current work with
vlog datasets attempts to estimate the quality of the predicted labels of
a very large set in an unsupervised way, using noisy models.

The second aspect we addressed was patient privacy. Privacy is
an emerging concern among users of voice-activated digital assistants,
sparkled by the awareness of devices that must be always in the listen-
ing mode. Despite this growing concern, the potential misuse of health
related speech based cues has not yet been fully realized. This is the
motivation for adopting secure computation frameworks, in which cryp-
tographic techniques are combined with state-of-the-art machine learn-
ing algorithms. Privacy in speech processing is an interdisciplinary topic,
which was first applied to speaker verification, using Secure Multi-Party
Computation, and Secure Modular Hashing techniques [1,15], and later
to speech emotion recognition, also using hashing techniques [6]. The
most recent efforts on privacy preserving speech processing have followed
the progress in secure machine learning, combining neural networks and
Full Homomorphic Encryption (FHE) [3,8,9].

In this work, we applied an encrypted neural network, following
the FHE paradigm, to the problem of secure detection of pathological
speech. This was done by developing an encrypted version of a neural
network, trained with unencrypted data, in order to produce encrypted
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predictions of health-related labels. As proof-of-concept, we used the
same two above mentioned target diseases, and compared the perfor-
mance of the simple neural network classifiers with their encrypted coun-
terparts on datasets collected in controlled conditions. For the Cold
dataset, the baseline neural network achieved a UAR of 66.9%, whereas
the encrypted network achieved 66.7%. For the Depression dataset, the
baseline value was 60.6%, whereas the encrypted network achieved 60.2%
(67.9% at interview level). The slight difference in results showed the
validity of our secure approach.

This approach relies on the computation of features on the client
side before encryption, with only the inference stage being computed
in an encrypted setting. Ideally, an end-to-end approach would overcome
this limitation, but combining convolutional neural networks with FHE
imposes severe limitations to their size. Likewise, the use of recurrent
layers such as LSTMs (Long Short Term Memory) also requires a num-
ber of operations too large for current FHE frameworks, making them
computationally unfeasible as well.

FHE schemes, by construction, only work with integers, whilst neu-
ral networks work with real numbers. By using encoding methods to
convert real weights to integers we are throwing away the capability
of using an FHE batching technique that would allow us to compute
several predictions, at the same time, using the same encrypted value.
Recent advances in machine learning have pushed towards the “quanti-
zation” and“discretization” of neural networks, so that models occupy
less space and operations consume less power. Some works have already
implemented these techniques using homomorphic encryption, such as
Binarized Neural Networks [10,11,16] and Discretized Neural Networks
[2]. The talk will also cover our recent efforts in applying this type of
approach to the detection of health related cues in speech signals, while
discretizing the network and maximizing the throughput of its encrypted
counterpart.

More than presenting our recent work in these two aspects of speech
analysis for medical applications, this talk intends to point to different
directions for future work in these two relatively unexplored topics that
were by no means exhausted in this summary.

Keywords: Pathological speech · Data mining · Cryptography
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DNN-Based Speech Synthesis for Arabic:
Modelling and Evaluation

Amal Houidhek1,2(B), Vincent Colotte2, Zied Mnasri1, and Denis Jouvet2

1 Electrical Engineering Department, Ecole Nationale d’Ingénieurs de Tunis,
University Tunis El Manar, Tunis, Tunisia

zied.mnasri@enit.utm.tn
2 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

{amal.houidhek,vincent.colotte,denis.jouvet}@loria.fr

Abstract. This paper investigates the use of deep neural networks
(DNN) for Arabic speech synthesis. In parametric speech synthesis,
whether HMM-based or DNN-based, each speech segment is described
with a set of contextual features. These contextual features correspond
to linguistic, phonetic and prosodic information that may affect the pro-
nunciation of the segments. Gemination and vowel quantity (short vowel
vs. long vowel) are two particular and important phenomena in Arabic
language. Hence, it is worth investigating if those phenomena must be
handled by using specific speech units, or if their specification in the con-
textual features is enough. Consequently four modelling approaches are
evaluated by considering geminated consonants (respectively long vow-
els) either as fully-fledged phoneme units or as the same phoneme as
their simple (respectively short) counterparts. Although no significant
difference has been observed in previous studies relying on HMM-based
modelling, this paper examines these modelling variants in the frame-
work of DNN-based speech synthesis. Listening tests are conducted to
evaluate the four modelling approaches, and to assess the performance
of DNN-based Arabic speech synthesis with respect to previous HMM-
based approach.

Keywords: Parametric speech synthesis · Hidden Markov Models
Decision tree · Deep neural network · Arabic language

1 Introduction

Statistical parametric speech synthesis (SPSS) approach has been widely used in
the last decade. It presents the advantages of being trainable and making possi-
ble changing voice characteristics [4]. SPSS is based on Hidden Markov Models
to model speech parameters, as in HTS toolkit (Hidden Markov Models speech
synthesis system). HTS has been applied to many languages e.g., English [18],
Japanese [24] and Arabic [1] and produces speech of rather good quality. HTS
requires the description of each speech segment with a set of contextual features

c© Springer Nature Switzerland AG 2018
T. Dutoit et al. (Eds.): SLSP 2018, LNAI 11171, pp. 9–20, 2018.
https://doi.org/10.1007/978-3-030-00810-9_2
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that comprises all factors affecting the pronunciation of the corresponding sound
(e.g., linguistic, prosodic, phonological information). A standard set of around 50
features was suggested in [18]. Part of the features are language dependent, there-
fore some modifications of the features set was suggested in [13] and [14] (either
ignoring or adding information) to be adapted to the specificities of respectively
German and French languages. Actually, the choice of contextual features is
primordial as it affects the speech quality.

Arabic speech synthesis using HTS was initiated in [1]; the conventional
system was adapted to Arabic with a modification of the excitation model and
speech parameters to enhance the speech quality. Later, STRAIGHT vocoder [11]
was used in [12] to generate a higher-quality Arabic speech. [7] focused on
phonological particularities of Modern Standard Arabic (MSA) [2]. Two phe-
nomena were highlighted, namely gemination [16] (i.e. a geminated consonant
is twice as long as its simple counterpart) and vowel quantity (short vowel vs.
long vowel) [17] (i.e. a long vowel is twice as long as its short counterpart). In [7]
subjective and objective evaluations showed that considering the geminated con-
sonants (resp long vowels) as fully-fledged phonemes or as the same phonemes
as their simple (resp short) counterparts leads to similar speech quality as long
as the information about gemination and vowel quantity are included in the set
of contextual features.

According to [4,23], the naturalness of HTS output speech has never reached
the level of unit-selection-generated speech [8]. This is due to three major rea-
sons; vocoding, inaccurate acoustic model and over-smoothing. In SPSS, acoustic
models match the contextual features to the corresponding speech parameters.
In this approach, the mapping from contextual features to speech parameters is
achieved based on decisions trees [10], which are described as shallow architec-
tures, therefore, they are judged inefficient to represent complex dependencies
between contextual features and acoustic parameters. Though temporal-domain
oversmoothing has almost no effect on quality, frequency-domain oversmoothing
is mainly due to the training algorithm accuracy, and may degrade the quality
of output speech by causing an envelope effect [25].

To cope with these issues, previous works suggested replacing decision trees
by DNN [22] or using external models for duration [21]. Results showed that
DNN outperformed HMM in terms of speech quality and naturalness of produced
speech for English language [19,23]. This paper aims at introducing DNN in
parametric speech synthesis for Arabic and investigating if DNN benefit from
the explicit differentiation of different phoneme classes unlike HMM [7]. The
paper is organised as follows. Section 2 presents various choices of speech unit
modelling for HMM-based speech synthesis in Arabic. Section 3 details DNN-
based speech synthesis. Section 4 compares and discusses the various speech unit
modelling approaches. Finally, Sect. 5 presents the evaluations of the HMM-
based and DNN-based approaches for Arabic speech synthesis.
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2 Speech Unit Modelling for Arabic

One of the Arabic speech modelling issues is how should gemination and vowel
quantity be regarded: whether is it enough to add gemination and vowel quantity
information to the features set, or is it better to consider a geminated consonant
(resp. a long vowel) as fully-fledged speech unit in the modelling?

2.1 Speech Unit Modelling

This problem has been dealt with in [7] for HMM-based Arabic speech synthesis,
where four modelling approaches are proposed; differentiating geminated conso-
nants (resp long vowels) from simple consonants (resp short vowels) or merging
them:

– C2V2 : This is the most detailed model, where a simple consonant (e.g.,
/d/) and its geminated counterpart (e.g., /dd/) are modelled by two different
units. In the same way, short vowels (e.g., /a/) and their long counterparts
(e.g., /aa/) have distinct models.

– C1V1 : It is the most compact model, where geminated and simple conso-
nants are modelled with the same unit, as well for vowels, long and short
vowels are modelled with the same unit.

– C1V2 : In this approach, a single unit models both a geminated consonant
and its simple counterpart, whereas a long vowel and its short counterpart
are modelled by two different units.

– C2V1 : This approach uses a single unit to model both a long vowel and its
short counterpart. Whereas for consonants, two units are used, one for the
simple consonant and one for its geminated counterpart.

Note that in all cases, gemination and vowel quantities characteristics are
included into the set of contextual features.

2.2 Experiments with HMM-Based Modelling

This section summarizes the experiments described in [7], which were conducted
to compare the four modelling approaches listed above in the framework of
HMM-based synthesizer. The speech data used to train the speaker-dependent
models with HTS was extracted from the corpus developed in [6]. The training
set consists of 1565 utterances recorded by a male-speaker at 48 KHz sampling
rate, whereas the test set comprises 30 utterances. Subjective evaluations showed
that the four modelling approaches lead to similar speech quality and present
almost the same degree of degradation when compared to the natural speech [7].
Moreover, a one-to-one comparison of the four models showed that listeners had
no clear preference for a particular one.

Consequently, differentiating geminated consonants (resp. long vowels) from
simple consonants (resp. short vowels) or merging them lead to a similar speech
synthesis quality. HMM-based speech synthesis did not benefit from the explicit
differentiation between the different classes of phonemes (i.e., simple vs. gemi-
nated consonants and short vs. long vowels).
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3 DNN-Based Speech Synthesis

3.1 DNN vs. Decision Trees

Decision trees used in HMM-based speech synthesis, present major shortcom-
ings [19,23]. They are inefficient to model complex functions and dependencies
between contextual features and acoustic parameters. Since the set of contex-
tual features contains around 50 features, it requires large decision trees to be
modelled. Besides, during the training, decision trees split the training data
into sub-clusters and use different parameters for each cluster [22]. This process
affects the clustering of the context-dependent distributions, thus the estimation
of the distributions for speech parameters prediction. According to [3], DNN are
able to represent complicated functions, besides, the weights of DNN are trained
from all the training data.

3.2 DNN-Based Speech Synthesis System

In DNN-based speech synthesis, the contextual features are mapped to the out-
put vector, which contains spectral and excitation parameters and their dynamic
features. Weights of the DNN are trained using pairs of input and output fea-
tures extracted from training data to minimize the error between the mapped
output predicted from the given input and the target output. Finally, a vocoder
is used to process the generated speech parameters to produce a speech signal.

3.3 Merlin Toolkit

Merlin speech synthesis toolkit for neural network-based speech synthesis was
introduced in [20]. Merlin proposes a variety of architecture e.g., a standard feed-
forward neural network, recurrent neural network (RNN) and long short-term
memory (LSTM). Moreover, Merlin supports WORLD [15] and STRAIGHT [11]
vocoder. The input vector of the neural network includes numerical values (e.g.,
the number of phonemes in the syllable, position of the syllable in the word...)
and binary answers to questions about identities of the phonemes context (e.g.,
is the current phoneme “a”...) and other characteristics.

4 Evaluation of Speech Unit Modelling

4.1 Experiment Conditions

The evaluation of the speech unit modelling approaches (C2V2, C1V1, C1V2
and C2V1) is conducted using the training and test sets described in Sect. 2.
The contextual features are the same as in [7]. The input vector consists of
816 features where 771 of them are binary answers to questions about context
of the phonemes (e.g., identity of the phoneme, identity of the vowel of the
current syllable...), whereas the remaining 45 are numeric values (e.g., position
of the phoneme in the syllable, the duration of the phoneme and of the state
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in frames, frame position within the state and the phoneme, the state position
within the phoneme forward and backward etc.). Several tests were conducted
to choose the DNN architecture that can generate the best speech quality. In
current experiments, the DNN is composed of 4 layers of 1024 units with tanh
transfer function plus one BLSTM (bidirectional LSTM) on the upper layer
with 512 units to consider the sequential aspect of the speech [5]. During the
experiment, WORLD vocoder is used to extract 60-dimensional MCCs (Mel-
Cepstral Coefficients), 5-dimensional BAPs (Band APeriodicities) and log (F0)
at a frame length of 5 ms.

4.2 Objective Evaluation of Duration

An objective evaluation is conducted with respect to duration of sounds. For
speech signals produced with each modelling approach (C2V2, C1V1, C1V2 and
C2V1) the average, over the vowels, of the ratios between the mean duration
of long vowels (LV) and the mean duration of corresponding short vowels (SV)
is calculated as well as the average ratio for geminated consonants (GC) vs.
simple consonants (SC). Only phonemes with more than 10 occurrences for each
class (simple/geminated consonants and short/long vowels) are considered. The
calculated average ratios are compared to those obtained on natural speech.

Table 1. Duration ratios.

Number of occurrence LV/SV GC/SC

262/884 104/1315

C2V2 1.7 2.1

C1V1 1.7 2.1

C1V2 1.7 2.1

C2V1 1.8 2.2

Natural 2.0 2.1

Values in Table 1, show that for the four modelling approaches, the ratios
between the predicted durations of long vowels (LV) and short vowels (SV) are
lower than those calculated for natural speech. However, the ratios between
predicted durations of geminated consonants (GC) and predicted durations of
simple consonants (SC) are similar to those calculated on natural speech.

Root mean square error (RMSE) between natural duration and predicted
durations was calculated on the different phoneme classes (simple and geminated
consonants, and short and long vowels). Values of RMSE are presented in Fig. 1.
Results show that for each class, the C2V2 model (the most detailed model)
leads to lower RMSE than the other approaches (C1V1, C1V2 and C2V1).

Normalized root mean square error (NRMSE) is calculated by considering
the mean duration values of each phoneme class (NRMSE = RMSE/M, where M
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Fig. 1. RMSE between natural and predicted durations

is the mean duration). The obtained results are presented in Fig. 2. NRMSE of
the model C2V2 presents a significant decrease. Meanwhile, for each phoneme
class, the other approaches present similar values of NRMSE.

Fig. 2. NRMSE between natural and predicted durations

4.3 Comparison of Modelling Approaches

A preference test [9] was conducted to compare the four proposed approaches. 18
Arabic native speakers participated in this evaluation. Each one evaluated a set
of 20 pairs of speech signals; each pair consists of the same utterance produced
with two different approaches. The order of presentation of the speech signals is



DNN-Based Speech Synthesis for Arabic: Modelling and Evaluation 15

randomly chosen for each trial. During the evaluation, participants were asked
to point to the preferred signal based on the global quality of produced speech
by answering the following question: “How do you judge the quality of the second
signal compared to the first one?” and giving a score from 1 to 7 ranging from
much worse to much better. Results of comparison are shown in Fig. 3. To analyse
the results, scores were grouped to get three possible rates; first preferred (scores
1 and 2 corresponding to much worse and worse), no preference (scores 3, 4 and
5 corresponding to a little worse, about the same and a little better) and second
preferred (scores 6 and 7 corresponding to better and much better):

Fig. 3. Results of preference test

The one-to-one comparison shows that listeners had no clear preference for
one particular approach. Although, C2V2 leads to a better prediction of dura-
tion, the listening tests show that differentiating geminated consonants (resp.
long vowels) from simple consonants (resp. short vowels) or merging them leads
to similar speech synthesis quality.

5 Evaluation of DNN-Based Speech Synthesis

5.1 Experiments Conditions

DNN-based speech synthesis was evaluated through a comparison to the stan-
dard HMM-based speech synthesis (based on decision trees) and to speech pro-
cessed by the WORLD vocoder. Evaluation data consists of 30 stimuli gener-
ated using context-dependent HMM and the model C2V2, 30 stimuli produced
using DNN and the model C2V2 and 30 stimuli processed by copy synthesis
i.e., natural signals were analysed using the vocoder WORLD, then they were
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reconstructed based on the extracted speech parameters using the same vocoder
WORLD. Note that participants are Arabic native speakers and they are neither
specialists in phonetics nor accustomed to speech evaluation.

5.2 Evaluation of Global Quality

MOS (Mean Opinion Score) tests [9] were conducted to assess the global quality
and naturalness of produced speech signals. The global quality refers to the
overall quality of generated signals. The naturalness is assessed based on the
intonation and the rhythm of synthesized speech signals. 15 listeners participated
in these tests. Each one evaluated a set of 20 stimuli i.e., 10 from each set (stimuli
produced by HMM and DNN-based speech synthesis systems) and judged the
corresponding overall quality and naturalness. Listeners were asked to answer
the following question: “In terms of general impression, how do you judge the
overall quality and the naturalness of what you have just heard?” and give a score
from 1 to 5 ranging from very bad to excellent. Figure 4 shows the MOS scores
and the associated 95% confidence interval. Results show that signals produced
with DNN-based speech synthesis, have higher MOS scores in terms of overall
quality and naturalness than those generated with HMM-based speech synthesis
system.

Fig. 4. Results of global quality evaluation.
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5.3 Evaluation of Degradation

DMOS (Degradation Mean Opinion Score) tests [9] were conducted to evaluate
the degree of degradation caused by the used toolkits HTS (for HMM-based
speech synthesis) and Merlin (for DNN-based speech synthesis). Speech signals
from each set are compared to the natural speech. Nine listeners participated
in these tests, each one evaluated a set of 30 pairs, where each pair consists of
the same utterance produced by DNN, HMM-based speech synthesis systems or
copy-synthesis and the corresponding natural signal.

Note that the reference (natural signal) is always presented first. Participants
evaluated the degradation of signals by answering the following question: “How
do you judge the degradation of the second signal compared to the first one?”,
based on the five-point degradation category scale ranging from very annoy-
ing degradation to inaudible degradation. The obtained results are presented in
Fig. 5 with the associated 95% confidence interval. The higher the score is, the
lower the degradation is.

Fig. 5. Results of degradation evaluation.

Results show that the degree of degradation obtained with Merlin is similar
to the one obtained by copy-synthesis, and lower than the one obtained with
HMM-based speech synthesis system.

5.4 Comparison of DNN and HMM Performance

A preference test [9] was conducted to compare the performance of HMM to
DNN-based speech synthesis approaches. Signals generated by Copy-synthesis
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using the vocoder WORLD were included in this test as well. The comparison was
established with respect to the quality of produced speech. Stimuli are compared
to each other. 18 listeners participated in this evaluation. Each one evaluated
a set of 30 pairs of speech signals; each pair consists of the same utterance
produced with two different approaches. The order of presenting the speech
signals is randomly chosen for each trial. Participants were asked to point to the
preferred signal based on the global quality of produced speech, by answering
this question “How do you judge the quality of the second signal compared to the
first one?” and giving a score from 1 to 7 ranging from much worse to much
better. Scores were grouped in the same way like for Fig. 3.

Fig. 6. Results of preference test

Comparison results in Fig. 6 show that signals produced with DNN-based
approach and copy-synthesis are preferred when compared to signals produced
by HMM-based approach. This is consistent with the results on the evaluation of
the global quality: the use of deep neural networks to map the contextual features
to the corresponding acoustic parameters is more efficient than the mapping
achieved with the decision trees as used in HMM-based speech synthesis system.

6 Conclusions

This paper studied the use of deep neural network in Arabic speech synthe-
sis. Both HMM and DNN-based speech synthesis require the qualification of
each text segments with a set of contextual features that comprise all factors
(e.g., linguistic, prosodic, phonological...) affecting the pronunciation of the cor-
responding sound. Part of the set is language dependent, therefore, for Arabic
language, two phonological phenomena are highlighted, namely gemination and
vowel quantity (short/long). Two extra features are added to the set of contex-
tual features to take into account those specificities.
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A variety of possible modelling approaches of speech segments have been
investigated such as, the use of different units for modelling long vs. short vowels,
and/or the use of different units for modelling simple vs. geminated consonants.
These combinations have been compared to another one, where a short vowel
and its long counterpart are modelled with the same unit, and a geminated
consonant and its simple counterpart are modelled with the same unit. Subjective
evaluation of the four speech unit modelling approaches (C2V2, C1V1, C1V2 and
C2V1) using Merlin showed that they lead to similar speech quality. However,
a better prediction of duration is obtained when using the C2V2 approach (the
most detailed). This model attained the lowest RMSE compared to the other
models (C1V1, C1V2 and C2V1). Thus, DNN has been more successful to take
advantage of specificities of Arabic language.

The second part of this paper focused on assessing the performance of DNN
in Arabic speech synthesis. DNN provides an efficient mapping from contextual
features to acoustic parameters. This is confirmed by the results of subjective
evaluations, which showed that the use of a deep neural architecture in speech
synthesis (more specifically in predicting the speech parameters) enhanced the
accuracy of acoustic modelling so that the quality of DNN-generated speech is
better than the one of HMM-based speech synthesis for Arabic language.

Acknowledgements. This research work was conducted under PHC-Utique Program
in the framework of CMCU (Comité Mixte de Coopération Universitaire) grant N
15G1405.

References

1. Abdel-Hamid, O., Abdou, S.M., Rashwan, M.: Improving Arabic HMM based
speech synthesis quality. In: 9th International Conference on Spoken Language
Processing, INTERSPEECH 2006, Pittsburgh, Pennsylvania (2006)

2. Al-Ani, S.H.: Arabic Phonology: An Acoustical and Physiological Investigation,
vol. 61. Walter de Gruyter, Berlin (1970)

3. Bengio, Y.: Learning deep architectures for AI. Found. Trends R© Mach. Learn.
2(1), 1–127 (2009)

4. Black, A.W., Zen, H., Tokuda, K.: Statistical parametric speech synthesis. In:
International Conference on Acoustics, Speech and Signal Processing, ICASSP
2007. vol. 4, pp. IV–1229. IEEE (2007)

5. Fan, Y., Qian, Y., Xie, F.L., Soong, F.K.: TTS synthesis with bidirectional LSTM
based recurrent neural networks. In: 15th Annual Conference of the International
Speech Communication Association, Singapore (2014)

6. Halabi, N.: Modern standard Arabic speech corpus. Ph.D. thesis, University of
Southampton (2015)

7. Houidhek, A., Colotte, V., Mnasri, Z., Jouvet, D., Zangar, I.: Statistical modelling
of speech units in HMM-based speech synthesis for Arabic. In: 8th Language &
Technology Conference, LTC 2017, Poznan, Poland (2017)

8. Hunt, A.J., Black, A.W.: Unit selection in a concatenative speech synthesis system
using a large speech database. In: International Conference on Acoustics, Speech,
and Signal Processing Conference Proceedings, ICASSP 1996, vol. 1, pp. 373–376.
IEEE, Atlanta (1996)



20 A. Houidhek et al.

9. ITU: 800, methods for subjective determination of transmission quality. Interna-
tional Telecommunication Union (1996)

10. Jurafsky, D.: Speech and language processing: an introduction to natural language
processing. In: Computational Linguistics, and Speech Recognition (2000)

11. Kawahara, H., Masuda-Katsuse, I., De Cheveigne, A.: Restructuring speech repre-
sentations using a pitch-adaptive time-frequency smoothing and an instantaneous-
frequency-based F0 extraction: possible role of a repetitive structure in sounds.
Speech Commun. 27(3), 187–207 (1999)

12. Khalil, K.M., Adnan, C.: Arabic HMM-based speech synthesis. In: International
Conference on Electrical Engineering and Software Applications, ICEESA 2013,
pp. 1–5. IEEE, Hammamet (2013)
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Abstract. Deep neural networks have become the state of the art in
speech synthesis. They have been used to directly predict signal parame-
ters or provide unsupervised speech segment descriptions through embed-
dings. In this paper, we present four models with two of them enabling
us to extract phone-level embeddings for unit selection speech synthesis.
Three of the models rely on a feed-forward DNN, the last one on an
LSTM. The resulting embeddings enable replacing usual expert-based
target costs by an euclidean distance in the embedding space. This work
is conducted on a French corpus of an 11 h audiobook. Perceptual tests
show the produced speech is preferred over a unit selection method where
the target cost is defined by an expert. They also show that the embed-
dings are general enough to be used for different speech styles without
quality loss. Furthermore, objective measures and a perceptual test on
statistical parametric speech synthesis show that our models perform
comparably to state-of-the-art models for parametric signal generation,
in spite of necessary simplifications, namely late time integration and
information compression.

Keywords: Speech synthesis · Unit selection · Embedding

1 Introduction

Unit selection speech synthesis concatenates pre-existing segments of recorded
speech, producing high-quality, natural sounding, oral renderings of sentences [2].
This process optimises a target cost function selecting the units that best match
the linguistic descriptions of the phonemes to synthesize. Quality results from
the involvement of linguistic experts who carefully design that function. These
methods, however, suffer from concatenation errors and cannot generalize outside
the pre-recorded units. Furthermore, they necessitate extremely costly human
expertise, which might not exist when targeting or adapting to other domains
or languages.
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Instead, this paper proposes an embedding-based method allowing to rely on
euclidean distances between units when optimizing their selection. Not only is
this cheap compared to human expertise, but embeddings also facilitate domain
adaptation. This paper presents four models, with two of them resulting in
phone-level embeddings for unit selection. Three of them rely on a feed-forward
Deep Neural Network (DNN) whereas the last one uses a Long Short Term Mem-
ory layer (LSTM). Experiments using a large French speech corpus show that
the use of the embeddings outperforms expert-based unit selection.

A few remarks are in order. One, temporal information can be integrated in
different ways. We compare its early or later integration in DNNs, and study the
use of temporal dependencies brought by an LSTM layer. Two, in an attempt
to understand if mitigating the effects of the curse of dimensionality on the
embeddings is beneficial, three models use varying layers sizes at their core.
Three, as far as we know, no objective metrics for assessing the quality of such
embeddings exist. As a proxy, we evaluate their ability to predict appropriate
acoustic features. Four, in contrast to state of the art contributions that work
for English, we work with French. This is the opportunity to assess how the
embedding-based approach performs on French.

The remainder of this paper is as follows. Section 2 presents related work.
Section 3 discusses the handling of time and dimensionality in the embeddings.
Finally, Sect. 4 compares our approach to an expert unit selection system.

2 Related Work

The Statistical Parametric Speech Synthesis (SPSS) approach uses vocoders
to synthesize speech from acoustic parameters predicted by a so-called acous-
tic model based on linguistic features [1]. Recent models are now based on
DNNs [13]. Beside pros and cons of this approach (good flexibility but low
quality), the resulting prediction models are interestingly independent of any
linguistic expertise.

This approach gave rise to different extensions. On the one hand, the Wavenet
model proposes to integrate vocoding in the prediction model, i.e., the raw wave-
forms are directly predicted [6]. End-to-end approaches such as [9] go further
by predicting these waveforms directly from text, that is linguistic features are
removed.

On the other hand, prediction models have also been used to transform lin-
guistic features into other representations, based on which a new target cost
for unit selection can be defined. In turn, the new representation space can be
handled more easily than the symbolic space of the linguistic features. In [12],
linguistic features are converted into acoustic ones based on hidden Markov mod-
els. The Kullback-Leibler divergence is then used as a target cost. Alternatively,
[4,8] have proposed intermediate representations extracted from hidden layers
of DNNs, also called embeddings.
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Fig. 1. Architecture of the 4 models. Layer sizes are reported. ��� denotes the vector of
linguistic features, d the phone duration, ti the time position in the phone for the i-th
frame, ai the corresponding acoustic features, and N is the total number of frames in
the phone.

In [4], each phone is divided into 4 sections for which the mean and variance
of the embedding of each frame is computed. The target cost function is the sum
of the Kullback-Leibler divergence on the mean and variance of the 4 sections.
This showed that there is no loss in the quality of speech when using embeddings
instead of acoustic features. The subdivisions, however, still involve some human
expertise.

In [8], a phone level embedding is obtained with a multi-modal model com-
posed of an acoustic encoder and a linguistic encoder. The target cost is the
euclidean distance in the embedding space. This work is very similar to ours,
and was actually conducted at the same time as [7]. Our work focuses on the
effect of various time integration and information compression schemes, rather
than those of multi-modality.

3 Handling of Time and Dimensionality

A key assumption in our work is that the quality of an embedding is correlated
to the quality of the model from which it is derived, in our case acoustic models.
In this section, different variants of acoustic models are studied, among which
those proposed for unit selection. These models are objectively and perceptu-
ally evaluated to assess the behaviour of embeddings with respect to informa-
tion compression and different strategies for time integration. This section first
presents the models under study before describing the experimental dataset,
then the objective and perceptual tests.
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3.1 Models

Four models are studied, see Fig. 1. The first model is a standard acoustic model
(DNN-S), a simple feed-forward DNN, comparable to the one proposed in [10].
For a given phoneme, the model predicts acoustic features ai of the i-th frame
based on the linguistic feature vector ���. Those linguistic features provide infor-
mation about the phoneme, e.g., its identity, the one of its close neighbours, its
position in the syllable/word/utterance it belongs to, etc. The timing informa-
tion is encoded as two numerical features: the phone duration d in seconds and
the relative position ti of the frame i inside the phone. This timing information
is useful to take into account the dynamics of acoustic features when realising a
phone. For the frame i, the output of the middle layer can be seen as the frame
embedding ei.

The second model, DNN-B, has a similar architecture as DNN-S but intro-
duces a bottleneck layer. This bottleneck is obtained by gradually decreasing
then increasing the size of the hidden layers. ei is then a compression of the
linguistic features ���. As a side effect, compressing the embedding space avoids
the curse of dimensionality and allows for tractable similarity measures.

The limitation of both models is that the resulting embeddings would only
represent the frame currently predicted, whereas phone-level embeddings are
needed for unit selection. To solve this problem, we propose to postpone making
use of the timing information (d and ti) until after the embedding layer, as in [8].
Applying this principle on DNN-B gives the model DNN-BP, P for Phone-level.
For a given linguistic feature vector ���, we obtain a phone-level embedding e.

Finally, to attempt to model the timing dependency across frames, we pro-
pose to replace the layer after the embedding layer with an LSTM in DNN-BP to
obtain the model LSTM-BP. While the previous models are trained on indepen-
dent frames, LSTM-BP is trained on the full frame sequence of the considered
phone. This method decreases the shuffling possibilities over the training set but
could lead to better predictions, and thus better embeddings.

The implementation details of the different models are as follows:

– DNN-S: 5 hidden layers of size 1024. The total number of parameters is 4,75
millions.

– DNN-B: The bottleneck scheme is symmetrically designed: 9 hidden layers
of size 1024, 512, 256, 128, 64, 128, 256, 512, 1024. The total number of
parameters is 1.95 millions.

– DNN-BP: Same as DNN-B, except timing is postponed. The total number of
parameters is 1.95 millions.

– LSTM-BP: Same as DNN-BP, except the second 128 dimensional layer is
replaced with an LSTM layer of size 128 too. The total number of parameters
is 2.04 millions.

All hidden layers rely on the hyperbolic tangent (tanh) activation function. For
all models, the output layer is with a linear activation.
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3.2 Dataset and Experimental Setup

Our models were trained on a corpus corresponding to the reading of a French
audio-book by a professional French speaker resulting in approximately 11 hours
of speech for a total of 3300 utterances (approximately 390 000 phonemes). Speech
is expressive (narration, acted dialogues), and sentences are complex (long sen-
tences, formal register) due to the style of the audiobook’s author (Marcel Proust).
105 utterances were held out for the listening test, while the rest was shuffled at
the frame level (or phone level for model LSTM-BP) and then split into three sets:
90% for the training set and 5% each for the validation set and test set.

About 110 linguistic features are considered for each phone. Categorical
attributes represent information about quinphones, syllables, articulatory fea-
tures, and part of speech for the current, previous and following words. They
are encoded in one-hot. 34 other features are numerical, such as the position
of the phone inside the word or the utterance. After encoding, the overall lin-
guistic vector is of size 341. The linguistic features and the timing information
were normalised to the range [0.01, 0.99]. Each linguistic feature was manually
extracted, without automatic annotation.

The acoustic features, extracted using the WORLD vocoder [5], consist of a
60 dimension Mel-Generalized Cepstral coefficients (MGC) vector, a 5 dimen-
sion band-aperiodicity (BAP) vector and the fundamental frequency F0. Those
features were extracted every 5 ms. The F0 coefficient was linearly interpolated
on unvoiced parts, a boolean attribute keeps track whether the frame was voiced
or not and the logarithm was applied to F0. Finally, the deltas and delta-deltas
were computed for MGC, BAP and F0. In total, the acoustic vector is of size
199. The acoustic features were centered and normalized to unit variance.

The implementation was done using Keras with TensorFlow. Training was
done on a GTX 1080 Ti, over 100 epochs using RMSPROP with the mean square
error as a loss function. The model weights with the best performance on the val-
idation set were saved. Those models were trained using the true duration values.

3.3 Objective Evaluation

The 4 models were evaluated in an acoustic modelling perspective. Table 1
reports the quality of the predicted acoustic features according to the follow-
ing measures:

– MCD: Mel-Cepstral Distortion on MGC coefficients.
– BAP: a distortion measure on BAPs.
– V/UV: Voiced/unvoiced error rate.
– RMSE (F0): Root mean squared error on F0.

Those measures are computed between the acoustic features predicted by the
DNNs and the reference acoustic features. The results from a state of the art
acoustic model are also directly reported from [11]. They were not trained on
the same data, nor even the same language. They are presented for the sake of
a sanity check.
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Table 1. Objective evaluation of the predictions of our models.

MCD (dB) BAP (dB) V/UV (%) RMSE (F0) (Hz)

DNN-S 5.22 0.48 17.2 18.3

DNN-B 5.06 0.35 12.6 17.9

DNN-BP 5.09 0.36 13.7 18.2

LSTM-BP 5.80 0.49 19.7 19.5

DNN
(reported from [11])

4.54 0.36 11.38 9.57

First, our measures are higher than those from [11], especially regarding F0

and voicing error. We believe the high error on those two aspects is due to
the high expressiveness of our speech corpus. Taking this into account, these
results can be considered as acceptable. Second, by comparing model DNN-B
and DNN-BP, we can see that the displacement of the timing information raises
the error for all measures by only a small margin. Then, while one would expect
DNN-S to lead to the best results, it appears that its performance is a bit worse
than for DNN-B and DNN-BP. Possible explanations are the larger number of
parameters for model DNN-S (more difficult to reach the global optimum for
weights) or the larger number of layers in the DNN-B and DNN-BP. At least,
the results show that the bottleneck does not hurt. On the contrary, LSTM-BP
leads to the worst results. This is surprising since adding extra information about
the previous frames should not degrade the prediction. In our opinion, these
results mainly come from the fact that training data are organised as sequences
of frames, thus reducing the diversity of observations during training, whereas
the other models are trained on shuffled frames. Despite those bad results, we
chose to keep LSTM-BP to evaluate the effect of an acoustic model quality on
its embeddings and on the resulting synthesized speech.

3.4 Perceptual Evaluation

The previous objective measures are not perfect estimators of the overall speech
quality. For example, a significant improvement in MCD does not necessarily
translate to a perceptual improvement of the synthesized speech. Thus we want
to observe the perceptual impact of embeddings on SPSS.

For each model, synthetic speech has been generated based on the predicted
acoustic features using an SPSS approach. In practice, the WORLD vocoder is
used. Long utterances were split into breath groups of 4–5 s. The timing infor-
mation (d and ti) was derived from a duration model (DNN with 6 hidden layers
and tanh activation) predicting the number of frames N of a phone based on its
linguistic feature vector ���. The mean absolute error of this model is 3.7 frames. d
is derived by multiplying N by the sampling rate, ti is simply i

N . A listening test
was conducted with 21 French native speakers. They were asked to rate between
0 and 10 the overall quality of speech utterances. Synthetic speech coming from
the 4 models was presented along with natural speech (NAT) and utterances
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Fig. 2. Results of the listening test for the models in statistic parametric mode for
in-domain utterances.

vocoded based on the reference acoustic features (VOC). Each listener was given
10 in-domain utterances and 10 out-of-domain utterances. For in-domain eval-
uation, we used the 105 sentences left-out from the dataset, while for out of
domain evaluation we used 100 phonetically balanced French sentences. Thus,
every utterance was rated by at least two different listeners.

In accordance with the objective results, the listening test shows that our
models do not perform well in SPSS mode, as can be seen on Fig. 2. While our
listeners reacted well to perfect SPSS (analysis-synthesis), giving a 7.2 mean
score to the system VOC, they gave a mean score of around 3 to our first 3
models, and agreed that system LSTM-BP’s productions were incomprehensible
with a mean score of almost 0. This is not surprising since this system had a
higher MCD than other systems, which is measured on a log-scale. There is no
real statistically significant (p-value greater than 0.05) difference between sys-
tems DNN-S, DNN-B and DNN-BP which proves that the displacement of the
timing information does not cause any perceptual loss in quality. Surprisingly,
the natural speech received a couple of marks below 7. The corresponding utter-
ances were perceived as having unnatural prosody because they were cut to be
shortened.

4 Comparison with Expert Unit Selection

In this section, the proposed unit selection method is compared to a system
where the target cost is defined based on expert knowledge.

4.1 Unit Selection Engine

Once phone-level embeddings have been extracted, we use them to guide the
unit selection process. Before synthesis, for each phone in the database, the
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Fig. 3. Results of the listening test for the models working in unit selection mode for
in-domain utterances.

corresponding embedding is computed and stored. At synthesis time, a pre-
selection reduces the set of candidate units to those corresponding to the same
phoneme as the target, in order to reduce the computation time. The number of
candidate units is reduced further by searching the 25 nearest neighbours of the
target phone in the embedding space among the pre-selected units. Finally, the
lattice of these nearest neighbours for each phone is decoded to find the sequence
of units minimizing the sum of the target and concatenation cost.

The target cost is defined as the euclidean distance in the embedding space
between the candidate and target phone. For the expert system, the target cost
was originally defined as a weighted sum of linguistic features and has since
been improved over the years. The join cost for all systems is the same as in [3],
defined as a sum of euclidean distances on acoustic features between following
candidate units.

4.2 Perceptive Evaluation

Since there is no proposed measure in the literature to evaluate the quality of
an embedding in relation to speech synthesis, we directly address the subjective
evaluation of the embeddings with listening tests. The results for in-domain and
out-of-domain utterances can be found on Figs. 3 and 4 respectively.

For in-domain utterances, the 3 proposed models were all awarded really
high grades (multiple times rated with a 10/10 score for each system) but also
really low notes (up to 0 for system DNN-BP). However, on average, the expert
system received a mean score of 5.4, system DNN-BP received 6.8 and system
LSTM-BP received 6.6. While we cannot statistically distinguish the two systems
with embeddings (p-value greater than 0.05), both are a statistically significant
improvement over the expert system. Interestingly, even if the system LSTM-BP
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Fig. 4. Results of the listening test for the models working in unit selection mode for
out-of domain utterances.

performed really poorly for SPSS, it receives good results for the unit selection
paradigm.

For out-of-context utterances, natural speech from the same voice as the one
used in the database was unavailable. The expert system received a mean score
of 5.9, system DNN-BP received 7.0 and system LSTM-BP received 6.4. This
time, the difference between the two systems using embeddings is significant.
However, they both perform without significant loss over in-domain synthesis.
Surprisingly, the expert system appears to have been better rated on out-of-
domain utterances. A probable explanation is the absence of natural speech as a
higher baseline during the MUSHRA test. Still, the embedding systems remain
significantly better than the expert one proving that the embeddings are general
enough to be used in other domains.

5 Conclusion

In this paper, we proposed two models to extract phone-level embeddings in the
context of DNN-driven unit selection. The models were compared to other DNNs
on the task of acoustic modeling. The experiments highlighted that late integra-
tion of time and information compression (bottleneck) do not impact the quality
of feature prediction, even though the use of LSTM did not seem conclusive yet.
Then, experiments on unit selection showed that quality of synthesized speech
based on embeddings resulting from our models is perceptually preferred over
an approach with an expertly defined target cost. They also demonstrated that
the proposed embeddings are general enough to be used in multiple domains.

Besides these results, our study also highlights the fact that the link between
the acoustic feature prediction and the quality of unit embeddings is not clear.
For instance, the LSTM-BP model led to good unit selection results whereas
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it was very bad for SPSS. It would thus be interesting to further study how
embeddings could be evaluated with objective measures, e.g. by analyzing the
topological properties of the embedding spaces. Then, extensions of the pro-
posed models should be tested to produce better embeddings, and to better
understand dependencies across different types of information. Multi-modality,
as in [8], is a first direction. The integration of duration into the embeddings is
another. Finally, our objective in the long term is to deal with large heteroge-
neous speech databases (different speakers, different languages, etc.). Apart from
the previously raised questions, this would require to study the compliance of
the embeddings with fast database searches, especially in regard to approximate
nearest neighbours techniques.

Acknowledgments. This study has been realized under the ANR (French National
Research Agency) project SynPaFlex ANR-15-CE23-0015.
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Abstract. This paper presents an exploratory work to automatically
insert disfluencies in text-to-speech (TTS) systems. The objective is to
make TTS more spontaneous and expressive. To achieve this, we pro-
pose to focus on the linguistic level of speech through the insertion of
pauses, repetitions and revisions. We formalize the problem as a the-
oretical process, where transformations are iteratively composed. This
is a novel contribution since most of the previous work either focus on
the detection or cleaning of linguistic disfluencies in speech transcripts,
or solely concentrate on acoustic phenomena in TTS, especially pauses.
We present a first implementation of the proposed process using condi-
tional random fields and language models. The objective and perceptual
evalation conducted on an English corpus of spontaneous speech show
that our proposition is effective to generate disfluencies, and highlights
perspectives for future improvements.

Keywords: Disfluencies · Spontaneous speech
Natural language generation

1 Introduction

Speech disfluencies can be defined as a phenomenon which interrupts the flow
of speech and does not add any propositional content [22]. Despite the lack of
propositional content, disfluencies have several communicative values. They facil-
itate synchronization between addressees in conversations [6]. They also improve
listening comprehension by creating delays in speech and signaling the upcom-
ing message complexity [14,23] (cited by [3]). Despite this, current Text-To-
Speech (TTS) systems only partially integrate disfluencies. They are thus inade-
quate to express a spontaneous style, and prevent from high user acceptability in
some human-machine interactions (e.g. personnal assistants, avatars). To tackle
the issue, this paper investigates the automatic insertion of disfluencies.
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This paper proposes a novel formalization of the disfluency generation mech-
anism. This formalization enables controlling the nature and proportion of the
disfluencies to be generated. Our proposal is supported by a proof of concept
through a first implementation trained on an English corpus. This implemen-
tation relies on conditional random fields (CRFs) and language models (LMs)
to experimentally demonstrate the ability of our approach to produce plausible
disfluent utterances. As exploratory work, no synthesis experiment is carried out
because integrating disfluencies in a TTS system requires adaptations on many
aspects (underlying speech corpus, prosody prediction, etc.). Thus, the current
work conducts the textual validation of the generated disfluent utterances.

In the remainder, Sect. 2 reviews the domain and presents our motivations.
Then, Sect. 3 introduces the formalization of the problem while its implementa-
tion is given in Sect. 4. Finally, the validation of our work is provided in Sect. 5
through objective and perceptual evaluations.

2 Review of the Domain and Motivations

According to Shriberg [16], disfluencies are characterized by 3 sections playing a
specific role: the reparandum region (or RM) which is the sequence of erroneous
words; the repair region (RR), i.e. the sequence of corrected words for the RM
region; and finally the so-called interregnum section indicating the interruption
in the speech stream. In this schema, the point between the reparandum and the
interregnum is the interruption point (IP). Below is an example of disfluency:

I think

RM
︷ ︸︸ ︷

she will ↑
IP

IM
︷ ︸︸ ︷

I mean

RR
︷ ︸︸ ︷

he will not come today. (Example 1)

Several studies suggest to categorize disfluencies into three main types: pauses,
repetitions, and revisions [12,15,24]. Pauses are useful to keep the conversation
on while the speaker searches for a phrase. Pauses can be silent, filled (e.g.,
“uh” or “um”) or discourse markers (“you know”, “well”, etc.). Repetitions can
be used to gain time and recover the flow of the speech, intensify the effect
of an expression, or signal an upcoming problem in the speech [24]. Finally,
revisions occur when the speaker slightly fixes his speech after an error. False
starts are an extreme case of revisions in which the speaker completely abandons
the interrupted speech and starts a fresh one. Hence, revisions help the speaker
monitoring his speech.

Most studies on disfluencies are for automatic speech recognition [8,10,11,17,
18] where the main objective improve language modeling and produce disfluency-
free transcripts. On the contrary, disfluency generation is still poorly studied in
TTS. According to [2], this is because, most of the time, speech databases for
TTS systems do not contain any disfluencies, and linguistic processing pipelines
in the front-end still badly integrate disfluent sentences, in spite of NLP pro-
gresses in the domain [9]. Among existing work, [19,21] studied the automatic
insertion of filled pauses (especially “uh”, “um”) using finite state acceptors or
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word lattices. Other studies like [1,4,7] have formalized the problem as searching
for an IP using machine learning before selecting, among a set of possibilities, the
best words to be inserted according to probabilities given by an LM. This app-
roach is also adopted in our work. Although this approach relies on the reductive
hypothesis that disfluencies are predictable based on shallow (non-psychological)
cues (raw words, parts of speech, etc.) [7], the resulting disfluencies have shown
to feign personality traits [25]. Likewise, recent work has studied the acoustic
aspects of lengthenings and filled pauses w.r.t. the perception of uncertainty [20].

Among limitations, most of these studies concentrate on one type of disflu-
encies (mostly filled pauses). Recently, [5] proposed to model several types of
pauses. Following the same objective, we introduce a rich formalization, able
to integrate repetitions and revisions in addition to pauses. Then, Shriberg’s
schema of disfluencies is useful to determine whether an utterance is disfluent or
not, but it does not explain how to move from a fluent to a disfluent utterance,
especially when disfluencies are interwinted. To solve this problem, we propose
to decompose this schema such that it can be used to generate disfluencies in a
deterministic way. Finally, it is worth noting that disfluency generation, as usu-
ally in natural language generation, is difficult to evaluate since several outputs
are generally acceptable in these problems. This makes it particularly difficult
to compute objective measures when data, as is the case in our work, contains
only one reference to be compared with. This problem is discussed in Sect. 5.

3 Disfluency Generation Process

In this work, we propose a complete process for disfluency generation. The key
idea is to compose disfluencies of elementary types. This section presents the
whole process, each disfluency type, and the composition mechanism.

3.1 Main Principles

The proposed process considers a disfluency as the result of a transformation
function on a fluent utterance. Hence, an utterance with multiple disfluencies
results from successively composing transformation functions. In practice, one
transformation function is defined for each disfluency type. That is, given a
disfluency type T , the transformation function fT reads a sequence of n words
w ∈ V n, where V denotes the vocabulary, and returns a sequence of m words,
m > n. In practice, each function fT consists of two sub-functions: πT , which
determines the IP position, and ωT which inserts the actual disfluent words using
the result of πT . Mathematically, these two functions can be defined as below:

πT : V n → �0, n�, (1)
and ωT : V n × �0, n� → V m. (2)

Thus, fT is simply calculated as ωT (w, πT (w)). Sub-functions have been chosen
to be specific on disfluency types since IPs may not appear in the same context
according to the type, and each type has its own structure, expressible through
Shriberg’s schema and described in the following.
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3.2 Disfluency Functions

Pauses can syntactically be seen as a simple interruptions, without any RM
nor RR, solely reduced to an IM. This IM can be instantiated by different
pause tokens, in our work those present in the corpus used for the experiments:
“<silence>”, “uh”, “um”, “you know” “I mean” and “well”. This list can obvi-
ously be extended in order to make the whole process richer. The following is an
example of a pause transformation from a fluent utterance:

w : once you get to a certain degree of frustration,

fpause(w) : once you get to a certain degree of ↑
IP

IM
︷︸︸︷

uh frustration.

(Example 2)

To make the link with the sub-functions presented earlier, the IP here is deter-
mined by the πpause function and the choice of the word(s) to be inserted is
made by the ωpause function. Repetitions are duplications of one or few words,
i.e., their RM and RR regions are identical. Due to the proposed composition
mechanism, no IM is considered, as follows: Thus, all repetition are treated as
the following example:

w : and I think this happens to a lot of people,

frepetition(w) : and

RM
︷ ︸︸ ︷

I think
↑

IP

RR
︷ ︸︸ ︷

I think this happens to a lot of people.

(Example 3)

A repetition with a pause in the middle is considered as 2 disfluencies. The scope
of the repetition, i.e., length of RM and RR, is determined by the sub-function
ωrepetition. In a similar fashion, revisions do not include any IM, and ωrevision

determines the span of the RR region and generates the RM. As opposed to
repetitions, the predicted RM differs from the RR region. An example of revision
is given below:

w : that is so that if whoever would get it,

frevision(w) : that is so that

RM
︷ ︸︸ ︷

if you
↑

IP

RR
︷ ︸︸ ︷

if whoever would get it.

(Example 4)
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Fig. 1. Whole disfluency generation process.

3.3 Composition of Disfluency Functions

Composition is the only way to generate all disfluency regions and several dis-
fluencies. For instance, an utterance containing a revision and a pause can be
seen as the result of frevision ◦ fpause. However, this may be also the result of
fpause ◦ frevision. To minimize such ambiguities and make the process determin-
istic, the following precedence order is defined:

revision ≺ repetition ≺ pause. (3)

Thus, for the given example, the composition fpause ◦ frevision is forbidden. This
order is justified by the fact that knowing where revisions and repetitions are
can be useful to determine where to insert pauses. Technically, it is also eas-
ier to insert a pause in between repeated words than inserting repeated words
around one or several pause tokens. Likewise, inserting revisions after repetitions
would break repetitions, whereas repetitions applied on top of revisions may help
strengthening revisions.

Following this precedence order, the generation process is as given in Fig. 1.
Starting from a fluent utterance, and in the respect of, each type of disfluency
can be applied zero, one or several times. Below is an example of consecutive
transformations:

I have to go.

frev [I want to I have to]rev go.

◦ frep

[

I want [to to]rep I have to
]

rev
go.

◦ fpause

[

I want [to to]rep [uh]pause I have to
]

rev
go.

◦ fpause

[

I want [to to]rep [uh]pause [I mean]pause I have to
]

rev
go.

(Example 5)

These hierarchized iterative compositions can easily be formulated as an actual
algorithm and implemented, as described in the next section.
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input : OriginalUtt: a fluent utterance
output: input utterance with added disfluencies

1 data:
2 Types: list of disfluency types
3 OutputUtt: sequence of words
4 IP: integer

5 Types ← [ repetition, pause ]
6 OutputUtt ← OriginalUtt

7 for each T ∈ Types do
8 IP ← πT (OutputUtt)
9 while ¬ StoppingCriterion(T, OutputUtt, IP) do

10 OutputUtt ← ωT (OutputUtt, IP)
11 IP ← πT (OutputUtt)

12 return OutputUtt

Algorithm 1. Main algorithm for disfluency generation.

4 Implementation

This section presents one way to implement the disfluency generation process.
The objective of this implementation is to validate the approach before studying
richer and more efficient implementations in the future. For this reason, we limit
this study to pauses and repetitions, and set aside the more difficult case of
revisions. This configuration is minimal but functional since it enables testing
the composition mechanism.

For each disfluency type T , the IP prediction function πT is treated as a
labeling task achieved using a CRF, while the word insertion function ωT is
the selection of the best phrase among a set of automatically built candidates,
the selection criterion relying on an LM. In short, the whole process is built on
2 CRFs and 2 LMs. We describe the main algorithm, then these models.

4.1 Main Algorithm

Algorithm 1 presents how to transform an input utterance to a disfluent one.
Each type T is examined in a same manner, following the precedence order.
The algorithm tries to determine a potential IP (line 8). If this IP is accepted
according to a stopping criterion (l. 9), a new disfluency of type T is added
to the current version of the utterance being transformed (l. 10). Then, a next
IP proposal is computed (l. 11). As soon as an IP is rejected by the stopping
criterion, the algorithm moves to the next disfluency type (l. 7) or, if none
anymore, returns the transformed utterance (l. 12). The stopping criterion stops
insertions as soon as, for the current type T , the proportion of disfluencies of
this type in the transformed utterance reaches a maximum threshold fixed by
the user. In practice, these thresholds have been set to 1% and 12%, respectively
for repetitions and pauses, as observed on average in the training corpus.
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4.2 IP Prediction

IP prediction is carried out by a CRF on an input (fluent or disfluent) sequence
of words and potentially associated features. This CRF is trained to categorize
successive words under two labels: words that are followed by an IP, and the
others. At runtime, the CRF produces a list of IPs which are examined in turn
until finding out one which has not been exploited yet. This requirement for fresh
IPs at each iteration prevents the method from indefinitely adding disfluencies at
the sole best place deemed by the CRF. If no new IP is found, the main algorithm
moves to the next disfluency type. The examined IPs are those returned for each
labelling hypothesis in the N-best list of the CRF. They are sorted by descending
posterior probability. Falling back on N-best lists ensures a very large choice of
IPs, delegating the termination decision to the stopping criterion.

4.3 Insertion of New Words

Given a chosen IP, the word insertion step seeks to produce a disfluency that best
integrates into the utterance. The proposed implementation of ωT constructs a
set of possible word sequences, centered on the IP, and then determines the most
probable w.r.t. type T . For repetitions, candidates are RM/RR pairs of various
lengths. As for pauses, 6 candidates are proposed, one for each considered pause
tokens able to fill the IM. Candidate sequences are discriminated by compar-
ing their probability within their local contexts (±3 words around the IP). The
probability for type T is computed by an n-gram LM trained on T -specific dis-
fluent data. For an IP at position i in a sequence of words w = [w1 · · · wN ], let a
disfluent section under examination d = [d1 · · · dD], and the left/right surround-
ing words w(�) = [wi−W+1 · · · wi] and w(r) = [wi+1 · · · wi+W ] respectively. The
proper integration of d within w can be measured through either the average
probability per word or the global probability conditioned on d, respectively
defined as:

Pr(w(�)dw(r))
2W + D

(4)

and Pr(w(�)dw(r)|d) =
Pr(w(�)dw(r))

Pr(d)
(5)

Since utterances are processed independently, the first measure favors over-
insertion of the most frequent tokens from the training corpus. On the contrary,
the second disregards the prior probability of the disfluent tokens and solely
focuses on how the final word sequence flows well. As a consequence, it leads
to over-generating rare tokens. In this paper, a linear interpolation with equal
weights associated to each measure is chosen.

5 Experimental Validation

The proposed implementation has been tested on 20 h from the Buckeye cor-
pus [13], an American English conversational speech corpus made of individual
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interviews with 20 speakers. Manual transcripts (150K words) are annotated
with 2, 714 repetitions and 20, 264 pauses. For each type of disfluencies, a dedi-
cated version of the corpus is derived where utterances with no disfluency of that
type were filtered out. To be consistent with precedence order, all pauses were
removed from the repetition-specific corpus. An entirely cleaned (fluent) version
of the corpus was also built. Data is divided into 3 sets: one to train the models
(train, 60% of the utterances), another to tune hyper-parameters (development,
20%), and a set for evaluation (test, 20%). CRFs were trained using Wapiti1 and
LMs are trigrams trained with SRILM2. The remainder presents the different
evaluations conducted to validate the proposed approach.

5.1 Objective Evaluation

IP predictions are examined through precision, recall and F1-score compared to
the reference from our corpus, i.e., a predicted IP is a true positive if it is placed
at the exact same position as an IP of the reference utterance. In the absence of
multiple references, these measurements are difficult to interpret. Thus, we also
propose to introduce the Interruption Rate Ratio (IRR) between the predictions
and the reference, i.e., the scale factor between the average number of IPs per
sentence in our hypotheses and in the reference. For example, IRR with value 1
indicates an equal proportion of IPs, 0.6 means an under-prediction of 40%,
and 2.2 an over-prediction of 120%. Word insertion is evaluated by the LM
perplexity given to the generated sequences. Since LMs are also used to select
disfluency candidates, this measure is biased but it is primary used to understand
the general behavior of the proposition. Disfluent sentences are expected to get
lower perplexities than fluent sentences.

Different CRF training settings were studied in preliminary experiments
on the development set for IP prediction. Two factors have been studied and
adjusted: the optimal set of features and the size of contextual information for
each word, i.e., the size of the observed neighborhood window. As a result, it
turns out that our best results are obtained with very few attributes, namely raw
words and part of speech (POS). As for the neighborhood, a window of a few
words (2 in the final experiments) around the word being examined is beneficial.

On the test set, the compared configurations are: the cleaned utterances
(cl.), their disfluent reference (ref.), and utterances produced by our models with
the previously exposed features. Regarding pause insertion, an extra feature is
introduced to tell the CRF whether a word under study comes from the original
fluent sentence or has been added along iterations. This intents to integrate
dependencies across transformations, as for instance desired to insert a pause in
a repetition. We remind that the reference for repetitions do not contain any
pause, whereas the cleaned version for pauses can include repetitions.

Tables 1 and 2 show the results obtained for the repetitions (R) and pau-
ses (P). First, the results are globally low, especially for repetitions. These results

1 http://wapiti.limsi.fr/.
2 http://www.speech.sri.com/projects/srilm/.

http://wapiti.limsi.fr/
http://www.speech.sri.com/projects/srilm/


40 R. Qader et al.

can be explained by the relatively small amount of learning data and the unique-
ness of our reference. IRRs show that generated utterances have always fewer
disfluencies than the reference, because of the adopted stopping criterion. To our
knowledge, no comparative work exists for repetitions, and considering a wide
range of pause tokens (not only “uh” and “um”) is rather difficult [21]. Hence,
these results are acceptable for a first implementation. In terms of perplexity,
the generated disfluencies are rather close to the reference. Moreover, perplexi-
ties and IRRs on pauses highlight, as expected, that a high proportion of pauses
brings a low perplexity. Finally, information about previous iterations of the
algorithm, i.e., knowing which words are inserted (disfluent) words, seems bene-
ficial, as shown in particular by the increase of about 2% points of the F1-score
(PB vs. PC).

Table 1. Objective evaluation of repetitions on the test set.

Features Window? Recall Prec. F1 IRR PPL
(Rcl.) Fluent (cleaned) utterance 0.0 241
(Rref.) Disfluent reference utterances 1.0 236
(RA) Words no 0.8% 3.8% 1.3 0.1 236
(RB) + POS yes 6.2% 17.1% 9.2 0.4 231

Table 2. Objective evaluation of pauses on the test set.

Features Window? Recall Prec. F1 IRR PPL
(Pcl.) Fluent (cleaned) utterances 0.0 242
(Pref.) Disfluent reference utterances 1.0 172
(PA) Words no 8.2% 29.4% 12.8 0.5 209
(PB) + POS yes 17.9% 33.6% 23.3 0.7 191
(PC) + prev. disfl. yes 19.8% 34.5% 25.1 0.7 188

5.2 Perceptual Tests

Two series of perceptual tests were conducted on 24 participants. The first series
separately studies the effects of repetitions and pauses, while the second seeks
to measure their combined effects. Based on a displayed fluent text, testers had
to imagine how it could be uttered during a spontaneous conversation, and gave
their opinion on several proposals, ranging from 0 (impossible utterance) to 10
(perfectly possible). A same set of 40 utterances from the test set is used for all
experiments (4–25 words, all selected so that their disfluent reference contains a
mixture of repetitions and pauses, not necessarily interleaved).
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Fig. 2. MOS on repetitions (left) and pauses (right). System labels are as in Table 1.

Fig. 3. MOS for mixed repetitions (R) and pauses (P). System labels are as in Table 2.

Mean opinion scores (MOSs, confidence interval α = 0.05) are reported in
Fig. 2 for the first series of tests. System labels are the same as in Tables 1 and 2.
First, these results are close from one configuration to another, and differences
are generally insignificant, even between the cleaned and reference utterances.
This seems to show that the perception of disfluencies is a difficult task, at least
when presented in a textual form. On repetitions, it appears that configurations
with no or few repetitions (Rcl. and RA) are preferred to those containing more
(Rref. and RB). This can be explained by the absence of pauses in the middle of
the presented repetitions. Then, the results on pauses seem correlated with the
proportion of pauses (see IRRs in Table 2), although significance is not proven.
On the whole, these two tests show that the automatically generated utterances
do not denote w.r.t. the reference.

The incidences of the disfluency proportions, and of combining repetitions
and pauses are studied in the second series of experiments. For each type, three
insertion levels are considered by modulating the stopping criterion threshold
(see Algorithm 1): zero means no disfluency of the considered type; medium, a
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proportion consistent with the training set; or high, 3 times more disfluencies
than in the corpus. MOSs of these tests are in Fig. 3. Again, the results are all
very similar. Nevertheless, the absence of low scores means that the disfluency
composition mechanism produces plausible utterances, which is the first motiva-
tion of these tests. Then, two trends emerge: first, the absence of pause or their
strong presence are badly perceived compared to the intermediate setting (B, E,
H), then the most disfluent utterances (I) get the lowest MOS.

As a conclusion, the perceptual tests show that the utterances produced by
our method are acceptable in comparison to clean ones and to disfluent ones as
uttered in real situations. This tends to validate the proof-of-concept implemen-
tation and the underlying proposed formalization. The small differences between
configurations however encourage one to improve this implementation and to
think about more discriminating ways to conduct perceptual tests.

6 Conclusion

In this paper, we have presented an innovative formalization for the automatic
insertion of disfluencies in texts. The ultimate goal of this work is to make
synthetic speech signals more spontaneous, and thus more acceptable in some
human-machine interactions. We have introduced a theoretical process of disflu-
ency composition and provided a first implementation based on CRFs and LMs.
The experiments conducted on this implementation show that the proposed pro-
cess is functional, although perfectible.

A first perspective is now the extension to revisions. Since the validation in
this paper, this work has been achieved. The word insertion part, which is the
difficult part, has been implemented by altering words from the RR with linguis-
tically similar ones, i.e., words with the same POS and geometrically close in a
lexical embedding space. Evaluation will be conducted in the near future. Among
other perspectives, more complex models could be tested, for instance to enable
including broader, non-lexical, considerations (phonetic confusion, speaker inten-
tion, etc.). However, collecting training data is an obstacle here. Finally, evalu-
ation is a challenge. The best improvement track on this point seems to us to
provide natural realizations of all the tested utterances. This would avoid bypass
the unsuitability of current TTS systems but it requires recording people.
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Abstract. The Phonologie du Français Contemporain project is an
international, collaborative research effort to create resources for the
study of contemporary French phonology. It has produced a large,
partially transcribed and annotated corpus of spoken French, consist-
ing of approximately 300 h of recordings, and covering 48 geographical
regions (including Metropolitan France, Belgium, Switzerland, Canada,
and French-speaking countries of Africa). Following a detailed proto-
col, speakers read aloud a word list and a short text and engage in
guided and spontaneous conversation with an interviewer. The corpus
presents several challenges: significant regional accent variation; variable
recording quality and different types of environment noise; variation in
speaker characteristics (age, sex); and interspersed segments of overlap-
ping speech. In this article, we describe the procedure followed to address
these challenges and produce an automatic forced alignment of the corpus
at the phone, syllable and token level, starting from the initial transcrip-
tions.

Keywords: Forced alignment · Speech recognition · Sociophonetics
Regional variation · French · Corpus linguistics · Language resources

1 Introduction

The Phonologie du Français Contemporain project is an international, collabo-
rative research effort to create resources for the study of contemporary French
phonology [7]. It has brought together almost a hundred researchers, who per-
formed recordings of over 600 speakers of French, covering 48 geographical
regions, in Metropolitan France, Belgium, Switzerland, Canada and several coun-
tries in Africa. The PFC Project recordings follow a strict protocol, inspired by
Labov’s work on sociolinguistics, including two reading tasks and two conversa-
tions. The project has produced hundreds of hours of recordings, and approx-
imately 300 h have been transcribed to date. As part of the transcription con-
ventions of the project, expert annotators code two important phonological phe-
nomena of French, namely the realisation of liaisons and the presence or absence
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of schwa, in positions where these phenomena are optional and reflect sociolin-
guistic factors (regional variation, speaking style variation and sociolinguistic
variation).

The corpus has been transcribed in short (5 to 20 s) segments, which contain
an orthographic transcription of one or more speakers (i.e. speaker overlaps are
only approximately indicated). Two additional coding tiers contain the informa-
tion on liaison and schwa. The PFC corpus presents several challenges to auto-
matic speech processing: there is significant regional accent variation, since this
is one of the objectives of the project; there is significant variation in recording
quality, as is often the case with sociolinguistic fieldwork; there is also variation
in speaker characteristics, as the project strives to keep a gender balance and
cover four age groups from 20 to 80 years old; and finally, the speaking style of
free conversation is always challenging to automatic speech recognition (ASR)
systems.

In this article, we present our efforts to produce a reliable automatic forced
alignment of the entire corpus, at the phoneme, syllable and token level, starting
from the source recordings and transcription data. This project is complemen-
tary to previous work to provide an automatic part-of-speech and disfluency
annotation for the PFC corpus, outlined in [6]. In the following section, we will
review relevant work on forced alignment of French speech, and the PFC cor-
pus. In Sect. 3, we present the main characteristics of the PFC corpus which
are relevant to our endeavour. In Sect. 4 we present the method used, followed
by preliminary evaluation results in Sect. 5, and finally we outline the perspec-
tives of this work, both with respect to improving the forced alignment tools for
French and with respect to new uses for an aligned PFC corpus.

2 Related Work

Several automatic forced alignment tools have been developed for French, over
the past two decades. Among these, we can cite EasyAlign [9], SPPAS [2],
Train&Align [4], the Montreal Forced Aligner [13] and SailAlign [12].

EasyAlign is based on the HTK toolkit [16] and a monophone model trained
on a relatively small corpus; it operates as a plug-in under Praat [3] but only
under Windows (due to a dependency on an external DOS-based phonetiser).
Train&Align is also based on the HTK toolkit, and can be used to produce
monophone and triphone models, but is available only for use on the web: due
to restrictions in the HTK license, it is not possible to redistribute the files
necessary for recognition, training new acoustic models or for performing speaker
adaptation as part of an open-source project. For this reason, SPPAS uses the
Julius open-source toolkit for the aligner, while its models are trained in house
using HTK; the triphone model for French is based on a corpus of approximately
10 h. MFA is the newest of the tools and is a collection of Python scripts around
the Kaldi ASR system [14]. It can generate monophone and triphone models
and perform speaker adaptation; an acoustic model is provided for French, albeit
without a pronunciation lexicon. Finally, SailAlign, which is based on Sphinx [15],
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focuses on the problem of long sound alignment (finding initial anchor points for
a transcription of a long recording).

From the short description of available tools above, it is understood that
none of them could cover the needs of our project “out of the box”. We have
therefore opted to develop a new system in C++ using the Kaldi ASR system; our
system is modular and uses the Praaline Core Library for corpus and annotation
management operations, and a Qt user interface. A phonetisation module is also
provided, and has been adapted to the particular needs of this project, as will
be explained in Sect. 4.3.

It should also be noted that the C-PROM-PFC corpus [1] comprises of 3-min
samples from the PFC corpus. The C-PROM-PFC corpus is approximately 10 h
long and its alignment to the phone, syllable and token label has been manually
verified by an expert annotator.

3 Corpus Description

3.1 Corpus Composition

The PFC corpus consists of four speaking tasks which are recorded for each
participant: reading a list of 94 words, that have been carefully chosen to study
phonetic variation; reading a short 300-word text, a fictitious newspaper arti-
cle that contains multiple points of interest where phonological variation may
appear; engage in a guided interview with the researcher; and having a more
spontaneous, open-ended conversation with the researcher. Roughly 10 min per
conversation are transcribed per speaker.

Table 1 shows the corpus composition, at its current state of transcription.
The number of samples per region and task is given, along with their duration
in minutes. For the two conversation tasks (guided and free conversation), the
percentage of single-speaker utterances in the corpus is indicated: this percentage
is calculated as the ratio of the duration of single-speaker transcription segments
over the total duration of all transcription segments (after performing the pre-
processing steps outlined in Sect. 4.2).

3.2 Available Annotations and Coding Schemes

Information on schwa and liaison realisation is coded based on a common system-
atic methodology. Schwa coding consists of four fields for each potential schwa
realisation in a token: field 1 indicates the presence or absence of the schwa,
field 2 the position of the schwa within the word, field 3 its left context and
field 4 its right context. Liaison coding consists of four fields: field 1 indicates
whether the word is mono-syllabic or poly-syllabic, field 2 indicates the presence
or absence (and the type) of liaison, and field 3 indicates the liaison consonant
and field 4 gives information about the context. For more information on the
coding schemes, refer to [8]. The schwa and liaison coding is valuable for the
phonetisation procedure outlined in Sect. 4.3.
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Table 1. PFC corpus contents. For each of the four tasks (guided conversation, free
conversation, text reading and word reading) the number of speakers is given, along
with the duration of the transcribed part of the corpus in minutes. For the two con-
versational tasks, the percentage of non-overlap utterances (calculated as the ratio of
their duration over the total transcription duration) is indicated.

Code Region Guided Conv Free Conv Text Words

Spk Dur Mono Spk Dur Mono Spk Dur Spk Dur

11a Douzens 10 255.2 91.2% 5 113.9 83.0% 10 29.3 9 25.0

12a Rodez 8 236.8 97.2% 8 161.0 87.5% 9 23.0

13a Marseille Centre Ville 9 193.0 94.0% 9 175.0 88.5% 9 21.4 9 29.1

13b Aix-Marseille 7 178.9 97.6% 8 288.7 96.0% 8 21.1 8 34.3

21a Dijon 7 73.2 84.4% 8 84.8 88.3% 8 19.2 8 25.6

31a Toulouse 14 296.3 91.6% 9 408.6 94.4% 14 53.4 14 44.5

38a Grenoble 8 116.9 96.5% 8 109.8 96.1% 7 18.8 9 26.5

42a Roanne 8 107.9 93.4% 8 148.0 91.9% 8 20.7 8 26.3

44a Nantes 11 207.1 93.8% 9 289.2 94.7% 10 25.6 11 40.3

50a Brécey 11 122.6 44.6% 6 61.9 49.6% 9 24.6 11 45.6

54b Ogéviller 11 269.3 96.2% 11 250.3 96.5% 9 22.1 10 28.0

61a Domfrontais 12 175.4 74.7% 12 150.3 70.0% 12 34.8 12 40.7

64a Biarritz 12 204.2 86.7% 4 66.8 67.5% 11 27.4 12 36.4

69a Lyon 10 232.0 96.8% 11 209.0 96.8% 10 20.6 8 17.6

75c Paris Centre Ville 12 121.2 49.2% 11 114.9 50.6% 12 27.9

75x Aveyronnais à Paris 12 308.3 92.9% 10 286.9 87.8% 8 21.7 12 36.4

80a Amiens 5 50.0 90.5% 6 60.0 86.7%

81a Lacaune 13 172.3 90.9% 11 85.4 68.2% 11 33.9 13 54.8

85a Vendée 7 71.6 84.1% 8 93.1 86.7% 8 19.0 8 25.2

91a Brunoy 1 5.2 71.6% 9 23.5 100.0%

92a Puteaux-Courbevoie 6 133.9 97.9% 5 155.9 98.0% 5 11.9 4 12.0

974 Ile de la Réunion 7 162.4 97.6% 7 170.4 97.6% 9 28.0 8 32.4

aba Béjaia 11 250.0 90.4% 10 221.1 90.3% 11 29.6 11 37.5

aca Chlef 12 213.0 97.3% 12 194.4 96.4% 11 31.7 12 37.9

bfa Burkina Faso 12 283.7 90.0% 11 282.2 88.6% 9 37.0 11 43.2

bga Gembloux 12 296.5 92.5% 12 237.3 89.8% 9 27.2 11 27.0

bla Liège 11 244.0 93.7% 11 281.4 95.7% 12 35.5 11 26.2

bta Tournai 11 264.0 95.6% 11 253.0 94.7% 12 35.3 12 29.6

caa Peace River 10 109.0 57.7% 7 22.9 100.0% 9 29.7

cia Abidjan 14 267.6 90.6% 12 321.9 92.5% 12 45.0 13 68.1

cqa Québec ville (université) 9 148.0 93.0% 7 64.2 87.2% 7 18.4 8 28.0

cqb Saguenay 11 167.3 94.4% 10 321.4 79.9% 11 32.7 10 35.6

cya Cameroun 6 52.5 91.3% 6 89.9 98.1% 6 29.1 5 20.9

maa Bamako 10 211.5 66.8% 12 235.5 65.9% 12 61.0 12 52.1

rca Bangui 11 341.6 99.7% 12 262.7 95.3% 12 51.9 12 43.8

sca Neuchâtel 12 433.8 89.3% 13 490.6 80.4% 12 33.4 12 47.1

sga Genève 8 167.8 90.4% 9 206.0 88.5% 9 23.8 9 29.5

sna Sénégal Dakar 12 235.2 94.5% 11 187.6 88.0% 11 34.0 11 44.9

sva Nyon 12 147.0 96.9% 9 117.8 76.5% 11 28.5 11 45.2
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4 Method

An outline of the method employed in order to align the corpus is shown in
Fig. 1. We used audio processing software to enhance and restore the original
audio recordings, and decrease the variation in the audio properties (e.g. levels).
The original transcriptions were checked for consistency with the annotation
protocol, and were manually corrected where necessary. The transcriptions were
then separated in sequences of segments corresponding to different speakers; over-
lapping segments were identified at this step. The segments were tokenised and a
phonetic transcription was added: the phonetisation includes pronunciation vari-
ants, but these are limited based on the PFC schwa and liaison coding. Forced
alignment of all segments was performed, and acoustic models were trained based
on the data. Special processing was performed on overlapping segments. Finally,
the results of the automatic alignments were combined into the end result.

Pre-Processing

Phonetisation

Iterations

1.1 Speaker Split
Input Transcript

1.2 Tokenisation
DisMo

1.3 POS tagging
DisMo

2.1 Phonetisation
Variants Lexicon

2.2 Additional Phon
OOV + False Starts2.3 PFC Coding

Schwa + Liaison

3.1 ASR
PocketSphinx

3.2 Overlap Detect
Diff ASR/Transcript

4.1 Adaptation
fMLLR

4.2 Forced Align
Kaldi

5. Output
Combine (3)+(4)

Fig. 1. Methodology used to align the corpus

4.1 Audio Processing and Restoration

We performed an audio enhancing and restoration procedure on all recordings
of the corpus, using the commercial iZotope RX 6 Audio Editor. The following
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filters were applied in sequence: De-clip (restore clipped samples at high quality,
new maximum level −1 dB), De-click (remove random clicks), De-hum (remove
50 Hz noise and its harmonics), De-reverb (remove reverberation, in light vocal
processing mode), Voice De-noise (adaptive noise reduction), De-plosive (light
removal of hard microphone puffs), Phase correction (if needed), Equaliser Match
(using the “full dialogue” preset) and Leveler (normalisation of audio levels,
respecting dialogue dynamics). All subsequent application of ASR models was
performed on the processed audio files.

4.2 Pre-processing and Transcription Protocol Validation

According to the PFC transcription protocol, the orthographic transcription
shall always indicate the speaker. In cases of overlaps, the overlapping speaker’s
utterance is transcribed inside angle brackets. Each recording is transcribed on
one Praat TextGrid: the first tier contains the orthographic transcription, a
second tier the schwa coding and a third tier the liaison coding (the order of
tiers was found not to be consistent). For each transcription segment, the same
number of words (separated by whitespace) shall exist on each tier. Parentheses
are used for events and comments. A peculiar pronunciation can be given in
brackets using the SAMPA phonetic alphabet.

As can be easily understood, human transcribers can easily violate this set of
rules. We have therefore written scripts for data quality assurance. The scripts
verify the number of speakers, the correspondences of tokens across the three
tiers, the use of punctuation etc. Several corrections were performed automati-
cally; based on the problems detected by the scripts, we performed approximately
2700 corrections manually. For this process, all TextGrids were imported into a
Praaline [5] database, and the scripts operated on the database. We developed
an interactive editor to accelerate the manual corrections.

Subsequently, segments were split into different timelines for each speaker. As
part of this process, single-speaker segments (utterances) and overlaps (multiple
speakers transcribed within the same segment) were identified. According to
the PFC transcription protocol only very long pauses (over 5 s in length) are
transcribed; therefore, normal reading and conversational speech pauses are not
transcribed and will have to be detected as part of the forced alignment process.

The final pre-processing step was to tokenise the entire corpus and to anno-
tate it using the DisMo part-of-speech tagger [6]. These tokens are the basis for
the next step.

4.3 Phonetisation

A dictionary of pronunciation variants for French has been constructed, based
on the lexicon distributed with Sphinx ASR (converted to the SAMPA alphabet)
and the GLÀFF [10] lexicon. The part-of-speech tags produced by DisMo were
used to limit the possible pronunciation variants. However, the PFC coding
schemes were the most important aid in improving the phonetisation.
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For each token, the corresponding tokens from the schwa and liaison tiers
were examined, and the pronunciation variants were adjusted accordingly. This
reduces the size of the graph of possible pronunciation variants that the forced
aligner will have to consider, and it also ensures that the resulting alignment
will be coherent with the PFC corpus coding.

4.4 Forced Alignment

The Kaldi automatic speech recogniser [14] was used to perform the main forced
alignment of the corpus. In each batch, we first train a monophone model on
the data to align, followed by a triphone model, and finally a speaker-adapted
triphone model. The acoustic model features consist of Mel-frequency cepstral
coefficients (MFCCs) and their deltas. Cepstral mean and variance normalization
(CMVN) is applied to all models. The speaker adaptation is performed using
Feature space Maximum Likelihood Linear Regression (fMLLR).

First, a separate model is trained for each combination of region and speaking
style (reading vs conversation). These models are used to align all data, and
perform cross-validation. Aggregate models per speaking style are then trained
and used to align the data.

A special procedure is followed for the transcription segments of overlapping
speech. A quick constrained speech recognition is performed on the overlapping
segment, using PocketSphinx [11], in an effort to detect the overlap in the record-
ing, with a better temporal precision than the one given by the transcription. In
cases of success, the utterance boundaries are adjusted (speech correctly recog-
nised as non-overlapping is concatenated with the previous or next utterance as
appropriate).

The entire process is automated in a C++ plug-in for Praaline, which calls
the appropriate external programmes.

5 Evaluation

In the absence of a gold-standard alignment, against which we could compare
the outputs of the automatic forced alignment system, we had to devise indirect
methods of evaluation. These methods essentially indicate how to improve the
process, and can help isolate these utterances in the corpus that may have been
incorrectly aligned.

Table 2 shows the preliminary results of cross-validation. The data of each
region and speaking style (e.g. 11a-reading) is aligned using the acoustic mod-
els trained on each of the other regions, for the same speaking style (e.g. 12a-
reading). The alignments are compared by checking the temporal difference
between the center of each phoneme; the table indicates the percentage of
phonemes where this difference is less than 40 ms.

As expected, read speech is less variable (in phone duration, other prosodic
characteristics) than spontaneous speech, and therefore the models achieve bet-
ter results. However, the results are overall encouraging. This procedure also iden-
tifies utterances with important differences between the boundaries of phones,
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Table 2. All samples of each region are aligned with each of the acoustic models trained
on other regions. The table shows the percentage of phonemes whose center is within
40 ms of the center of the original alignment results.

Region
to align

Text Region
to align

Conversation

11a 12a 13a 11a 12a 13a

11a 84.8% 84.8% 11a 81.7% 81.8%

12a 87.3% 89.7% 12a 83.5% 84.2%

13a 89.9% 90.1% 13a 82.8% 83.3%

suggesting a potential problem in the transcription or a particularly difficult
to align utterance. We intend to explore whether excluding these “problematic”
utterances from the training of the final aggregate models improves the overall
performance; however a small dataset of manually checked alignments will be
needed for this evaluation.

6 Conclusion and Perspectives

We have presented a procedure for producing an automatic forced alignment of
the Phonologie du Français Contemporain Corpus at the phone, syllable and
token level, starting from the initial transcriptions. As part of this effort, the
audio recordings were enhanced and restored, the transcriptions were checked
for consistency, the data already coded in the corpus were used to improve the
input to the ASR system, and multiple iterations of forced alignment using the
Kaldi recogniser were performed.

The PFC corpus has been a valuable resource for studies in French phonology.
We hope that this work will allow researchers to use the corpus in new ways and
in investigating new research questions. For example, as part of the alignment
process, speech pauses were detected with an improved precision: the corpus
could be used for studying the dialogue dynamics in socio-linguistic interviews,
or in similar studies in prosody. Concordances (text along with the corresponding
sound segment) can now be extracted for downstream processing.

We plan to distribute the aligned version of the corpus to the community.
To this end we plan to use institutional repositories (such as Ortolang) and also
create a custom website using PraalineWeb (a tool generating Django websites
for presenting speech corpora).

Finally, this project resulted in the development of a new tool for speech-
to-text alignment of French spoken corpora, that we plan to release in the near
future, along with the acoustic models trained on the PFC corpus.



Forced Alignment of the PFC Corpus 55

References

1. Avanzi, M.: A corpus-based approach to French regional prosodic variation. Nou-
veaux Cahiers de Linguistique Française 31, 309–332 (2014). (Proceedings of the
3rd SWIP)

2. Bigi, B., Hirst, D.: Speech phonetization alignment and syllabification (SPPAS):
a tool for the automatic analysis of speech prosody. In: Proceedings of the 6th
Speech Prosody Conference, 22–25 May, Shanghai, China (2012)

3. Boersma, P., Weenink, D.: Praat: doing phonetics by computer, ver. 6.0.37 (2018).
http://www.praat.org

4. Brognaux, S., Roekhaut, S., Drugman, T., Beaufort, R.: Train & Align: a new
online tool for automatic phonetic alignment. In: 2012 IEEE Spoken Language
Technology Workshop (SLT), pp. 416–421, December 2012

5. Christodoulides, G.: Praaline: integrating tools for speech corpus research. In:
LREC 2014—Proceedings of the 9th International Conference on Language
Resources and Evaluation, 26–31 May, Reykjavik, Iceland, pp. 31–34 (2014).
http://www.praaline.org

6. Christodoulides, G., Barreca, G.: Expériences sur l’analyse morphosyntaxique
des corpus oraux avec l’annotateur multi-niveaux DisMo. Corela: Cognition,
Représentation, Langage HS-21 (2017). https://journals.openedition.org/corela/
4867

7. Durand, J., Laks, B., Lyche, C.: Phonologie, variation et accents du français. Her-
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Abstract. Spoken language recognition is the task of automatically
determining the identity of the language spoken in a speech clip. Prior
approaches to spoken language recognition have been able to accurately
determine the language within an audio clip. However, they usually
require long training time and large datasets since most of the existing
approaches heavily rely on phonotactic, acoustic-phonetic and prosodic
information. Moreover, the features extracted may not be linguistic fea-
tures, but speaker features instead. This paper presents a novel approach
based on a linguistics perspective, particularly that of syllable structure.
Based on human listening experiments, there has been strong evidence
that syllable structure is a significant knowledge source in human spo-
ken language recognition. The approach includes a block for labelling
common syllable structures (CV, CVC, VC, etc.). Then, a long short-
term memory (LSTM) network is used to transform the Mel-frequency
cepstral coefficients (MFCC) of an audio clip to its syllable structure,
thereby diminishing the influence of speakers on extracted features and
reducing the number of dimensions for the final language predictor. The
array of syllables is then passed through the second LSTM network to
predict the language. The proposed method creates a generalized and
scalable framework with acceptable accuracy for spoken language recog-
nition. Our experiments with 10 different languages demonstrate the fea-
sibility of the proposed approach, which achieves a comparable accuracy
of 70.40% with a computing time of 37 ms for every second of speech,
outperforming most of the existing methods based on acoustic-phonetic
and phonotactic features by efficiency.

Keywords: Speech recognition · Spoken language recognition
Syllable structure · Deep convolutional neural network
Long short-term memory (LSTM)

1 Introduction
Spoken language recognition refers to automatically determining the identity of
the language spoken in a speech slip. Most approaches to spoken language recog-
nition has relied on phonotactic and acoustic-phonetic features [2,13]. Recent
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efforts, however, has been directed to the extraction of prosodic features and
modelling techniques. This emphasis on phonotactic and acoustic-phonetic fea-
tures has been achieved by transferring written language recognition knowledge
to spoken language recognition, as written language can be interpreted as a
series of characters, so can spoken language be interpreted as a time sequence
of phonemes.

Under this paradigm, previous spoken language recognition approaches has
been focusing on identifying phone features and recognizing the resulting phone
sequence, such as through N-gram language models that has achieved significant
success in the past [18]. However, spoken language encompasses more than mere
time sequences of phoneme units. Spoken language involves more characteristics
that adds additional information to the speech. These characteristics, referred
to as prosody, may often go beyond a phone unit, but instead are feature of
an entire syllable and even of a word, sentence or entire speech. These prosodic
features include variations of pitch and emphasis on certain words or syllables.
Research with foci on prosodic features has yielded successful results [6,11].

Another perspective towards the discovery of new features for spoken lan-
guage recognition is based upon an investigation into the underlying organi-
zation and structure of a language. While previous phonotactic and acoustic-
phonetic features relied on phoneme-based structure or word-based structure in
certain models that translate phonemes to words through a dictionary, natural
languages are typically built upon syllables, rather than words or phonemes. Syl-
lable structure has been investigated in several human listening experiments, yet
has received little attention from the community of spoken language recognition.
The patterns of different syllable structures, and the presence of different types
of syllable structure, can be collectively referred to as syllable structure features.

Syllable structure features have several advantages over traditional features
for spoken language recognition, namely phoneme features. As syllable structure
features do not require exact phoneme identification, extracting syllable features
may be more accurate and time efficient when compared to extracting phoneme
units. Moreover, as syllable feature extraction reduces the audio signal directly
into non-phoneme-specific syllable structures, it is less likely to be affected by
channel noise or other non-language related information, such as variations in
speakers or recording devices. Syllable structure also avoids issues of accents
or speaker characteristics, as while phonemes may be mispronounced, syllable
structures are far less likely to be misread or misspoken. Finally, the reduced
number of dimensions in syllable features as opposed to phoneme units, improves
training time and reduce the possibility of overfitting.

This paper proposes a two-phase framework for spoken language recognition,
based on a LSTM model for syllable feature extraction, and another LSTM
model for language recognition based on the extracted syllable features. For the
second LSTM model, different architectures are tested to verify the validity of
syllable structure as a feature and how the use of the feature can effectively
reduce the number of neural network nodes for a comparable accuracy.
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2 Syllable Structure as a Feature

Syllable structure had been used within a human listening experiment context
before, for the investigation of speech recognition, accent identification, word
recognition and infant language acquisition [1,3,9,17]. From these experiments,
it has been found that syllable structure can act as useful knowledge sources
in human language recognition. It is thus possible to extract these features for
spoken language recognition. As we can see in Fig. 1, syllable structures can hold
significant correlation to languages.

Fig. 1. Bar chart showing the frequencies of the top 10 most common syllable struc-
ture in English and Chinese. As can be seen here, different languages have different
distributions of syllable structures.

The most basic syllable structure consists of three parts, the onset, the
nucleus and the coda. The onset is typically composed of the consonant sound
that begins the syllable, the nucleus, the vowel sound in the middle of the syl-
lable, and the coda, the consonant sound that follows the nucleus and ends the
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syllable. In more complex syllable structures, the onset or coda may be omitted,
and additional phonemes may be added to the onset, nucleus or coda. Syllable
structures also give rise to another type of speech feature, that is, phonotac-
tic features. However, while syllable structure can be considered to be similar
to phonotactics, they hold several distinctions. Phonotactics refers to the exact
composition of these syllable structure. Hence, the exact composition of con-
sonant clusters and vowel sequences are a component of phonotactic features.
Conversely, include the composition of each syllable (onset and rhyme) and pat-
tern of syllable structure sequences.

2.1 Feature Extraction Based on Syllable Structure

In order to use these syllable structure features for spoken language recognition,
we devised a syllable feature extraction model. It was first trained on data from
Tatoeba [12], where we have access to the text of each audio clip. These texts
are used to create the ground truth part for training the neural network. The
text is first translated to International Phonetic Alphabet (IPA) (with epitran
[10]) and segmented (with Pyphen [7]) separately. A levenshtein distance algo-
rithm is then used between the IPA transcription and Pyphen segmentation to
determine the segmentation of the IPA transcription. In order to avoid investi-
gating phonotactic features instead of syllable structure features, the separated
IPA transcriptions are then altered again by converting the distinct consonants
and vowels into markers of consonants (C), nasal consonants (N), and vowels
(V). After being reduced to C, N and V markers, all possible combinations of C,
V and N are identified, such as CV being the representation for the syllable in
the word “the (ð@)” or a consonant followed by a vowel. Each of these possible
combinations are then assigned an ID number, so as to transform the syllable
structure sequence into a numerical sequential representation for training the
second LSTM network (Table 1).

Table 1. Common syllable IDs

Syllable structure ID Example
CV 0 the (ð@)
V 3 a.pple (æ.p@l)
CVN 6 song (s6ŋ)
VN 16 an (æn)
VC 23 it (@t)
CVC 29 talk (tOk)

The input to the first LSTM are 13 MFCCs computed from each frame
from an audio clip. All signals under 40 dB to the maximum signal at the front
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and back are first trimmed before the MFCC is extracted. The MFCC is com-
puted from a window of 92.9 ms (2048/22050) separated by a hop size of 23.2 ms
(512/22050). For a maximum length of 5 s for the input audio, this results in
(�(5 × 22050)/512� × 13) = 2808 coefficients as the input for the first LSTM.

2.2 Neural Network Architecture

The configuration for the first syllable feature extraction neural network is a
simple 3-layer neural network. 216 element-sequences of 13 dimensional vectors
are inputted into the 216 LSTM cells. A hidden LSTM layer with 256 cells is
used, as a single syllable may encompass several MFCC cascades of variable
total length. The final dense layer output have a softmax activation function
and 40 output nodes that each outputs a 225 length array that are the one hot
encodings of all possible syllable arrangements. 40 is the maximum number of
syllables that can be spoken within 5 s as derived from the data and is thus the
dimensions of the vectors.

Fig. 2. Diagram of the syllable structure language recognition system

3 Language Recognition Model Architecture

After the extraction of the syllable feature data, another neural network is then
used to recognize the language of the syllable feature sequences. The neural
network consists of 3 hidden layers and 5 layers in total. The input layer consists
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of 40 input nodes, each taking a 225 length array (directly following the feature
extraction network). The three hidden layers all employ an LSTM structure
and have a tanh activation function. The output layer has ten nodes that are
a one hot encoding of the 10 languages. The combined model of both syllable
extraction and language recognition is shown in Fig. 2.

4 Experiment Set-Up

4.1 LID Training and Evaluation Corpora

We used data from Tatoeba [12], Voxforge [14] and Wide Language Index [8] for
evaluation and training. To train our models, we used data sets selected from
the databases Tatoeba, Voxforge and the Wide Language Index. Audio files were
downloaded, cut into a maximum of 5s and categorized into different languages.
Four sets of datasets were defined for training. The first contains 200 utterances
for each of the 10 languages (200), the second of 400 utterances for each of the
10 languages (400), the third of 800 utterances (800) and the fourth of 1132
utterances (1132). For evaluation, 100 utterances are selected from each of the
10 languages.

4.2 LID System Description

We based our experiments on LSTM networks [5]. LSTM provides an effec-
tive method for processing sequential and temporal information of both MFCC
frames and syllables within a neural network system.

Feature Extraction. For syllable structure feature extraction, please refer to
Sect. 2 for details. Training corpora was taken from 900 utterances in 7 languages
(Chinese, French, German, Spanish, Portuguese, Russian, Dutch) (900-7), which
covered all identified syllable structures from parsing textual data. Only 7 lan-
guages were selected, because we were unable to conduct IPA transcription of the
other 3 languages. The neural network is denoted as SSEM (Syllable Structure
Extraction Model) for the rest of the paper. By verifying the syllable structures
of the three excluded languages, it can be seen that all possible syllable structure
are identified.

Fusion, LSTM Networks and Training. After syllable structure features
are extracted as a time series of different syllable structure, the series undergo
one hot encoding in order to preserve the categorical characteristic of syllable
structure IDs. The encoded output, now of 40 different 225 length arrays are
then fed into the language recognition network.

Experiments are done to determine the advantages of discarding all frames
labeled as silence (syllable ID 224). Other experiments employed different hidden
layers for the language recognition neural network. A layout of (256,256,256)



62 R.-H. A. Lee and J.-S. R. Jang

nodes on each of the three layers and one of (60,40,20) nodes are tested. The
two layouts are compared to investigate the strength of syllable structure as a
lightweight feature.

Training was done on the basis of loss for syllable feature extraction and
accuracy for language recognition. RMSprop is used for both networks for opti-
mization.

5 Experimental Results

Experiments are performed on the presence of masking, the layout of different
neural network layers for language recognition on syllable structure features, and
the use of different datasets. We also evaluated the time and processing efficiency
in training and prediction for the models. Here the accuracy refers to the final
accuracy of the model on evaluation data at convergence, or the average of the
maximum three models at the approximate convergence epoch. The accuracy is
calculated by the number of correct predictions divided by the number of all
predictions made.

5.1 Masking

We performed a set of experiments to determine the importance of masking,
that is, discarding null syllables, to the accuracy of the neural networks. The
masking is done to accommodate variable length syllable sequence input within
a fixed input array. Experiments on masking were done on dataset (200) and
dataset (1132). The same neural network was trained with and without masking
on the two datasets. We can see from Table 2 that models with masking outper-
forms models without masking by a significant margin, the difference increas-
ing as dataset size increases. The smallest difference was 3.94% using dataset
(200), model (256,256,256), while the largest difference was 14.34% using dataset
(1132), model (60,40,20). The significant average difference of the two test cases
implies that a masking layer will be essential for an optimum model, especially
with a large dataset.

Table 2. Comparison of neural networks with or without masking

Model Dataset Accuracy [%]
(256,256,256) 200 31.51
(256,256,256) Masking 200 35.45
(60,40,20) 1132 55.83
(60,40,20) Masking 1132 70.17
(256,256,256) 1132 61.73
(256,256,256) Masking 1132 70.40
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5.2 Neural Network Architecture

We performed experiments to determine the effect on accuracy on two different
neural network architectures, in order to determine the suitability of syllable
structure features as a lightweight feature. While on average, the (60,40,20) neu-
ral network model does have a lower accuracy as compared to the (256,256,256)
neural network model, the difference is fairly small. The maximum difference is
4.83% for the two models trained on dataset (200), while the minimum difference
is 0.23% for the two models trained on dataset (1132), as shown in Table 3. In
light of the difference in training time and evaluation time between (60,40,20)
and (256,256,256) models (the (60,40,20) models were faster by 475%), (60,40,20)
models should be adopted for most situations, as the accuracy difference is negli-
gible. However, for the purposes for the paper, (256,256,256) models, or models
with more nodes in general would be used to discuss overall performance.

Table 3. Comparison of neural networks of different architectures

Model Dataset Accuracy [%]
(60,40,20) Masking 200 30.62
(256,256,256) Masking 200 35.45
(60,40,20) Masking 400 41.21
(256,256,256) Masking 400 41.67
(60,40,20) Masking 800 53.47
(256,256,256) Masking 800 55.10
(60,40,20) Masking 1132 70.17
(256,256,256) Masking 1132 70.40

5.3 Prediction Speed

Another characteristic of the model that was investigated was the computing
speed in comparison with other approaches to spoken language recognition.
Speed is recorded as xRT, or the ratio between the computing time to the total
duration of the audio file. As shown in Table 4, the computing speed of finding
syllable structure is faster than phoneme extraction or word extraction. It can be
seen that the proposed SSEM is faster than all other feature extraction networks
with a comparable number of dimensions.

Table 4. Comparison of speeds of the proposed SSEM and other approaches proposed
in the literature

Model Target Speed [xRT]
SSEM (proposed) Syllable structure 0.03
CMU Sphinx4 [16] Word 0.05
OGI [15] Phoneme 0.40
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5.4 Overall Performance and Optimum Model

From Table 3, it is found that the (256,256,256) model with masking was the
best performing model, achieving an accuracy of 70.40% and a speed of x0.035
(extraction+processing), a significant decrease from other models. Figure 3 shows
the corresponding confusion matrix of this model, where Chinese achieved the
highest accuracy of 93%, while Japanese achieved the lowest accuracy of 54%.
The accuracy is comparable to the 75.9% accuracy of other LSTM based neural
networks on the NIST LRE data set, although comparisons may not be entirely
complete due to differences in data [4].

Fig. 3. Confusion matrix of recognized language vs ground truth language

6 Conclusions and Future Work

In this paper, we have proposed a new framework for language feature extraction,
with its application to the task of spoken language recognition which has resulted
in satisfactory performance. We developed a recurrent neural network that fea-
tures long short-term memory (LSTM) layers and compared it to the traditional



A Syllable Structure Approach to Spoken Language Recognition 65

deep convolutional recurrent networks from other papers. An LSTM layer and
decoding layer are first used for feature extraction and preprocessing, followed by
a more traditional recurrent LSTM network for language identification. In con-
trast to traditional methods, which take too much time to extract and process
features, the proposed network takes syllable sequences as features for better
efficiency. Experimental results show that, compared to traditional deep convo-
lutional recurrent networks based on phonotastic or acoustic-phonetic features,
our LSTM recurrent network can process the input in slightly over half of the
time, while attaining an acceptable accuracy. Specifically, the proposed model
with 3 hidden layers of (256,256,256) nodes trained on 1132 utterances for each
language can attain an accuracy of 70.40%. Our experiments have shown that
syllable features can provide sufficient information to recognize the language of
speech, while using less features and dimensions than traditional methods of spo-
ken language recognition. We also showed that for syllable structure features, a
large training dataset and masking are essential for optimum performance, but
fewer nodes compared to current dominant methods would be needed during
training and prediction. Syllable structure features may be used as a comple-
ment to existing spoken language recognition models for quicker identification.

While this paper has revealed syllable structures as a promising area for
future exploration, improvements and refinements can be made for syllable
structure extraction techniques. Better text syllabification techniques, such as
silence/pause detection, can be devised to produce more accurate reference data.
Moreover, more training data and other neural network architectures or machine
learning models may be applied to these syllable structure features for better
spoken language recognition. Furthermore, the rudimentary syllable structure
classifications can be improved by referring to known syllable structure con-
straints. These improvements to syllable structure extraction can then be evalu-
ated independently, which would also require IPA transliteration for all relevant
languages. Finally, common data sets, such as NIST LRE, can be applied in the
future for more complete comparisons against other evaluations.
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cepstral features for speaker verification. In: Twelfth Annual Conference of the
International Speech Communication Association (2011)

7. Kozea: Pyphen (2017). https://github.com/Kozea/Pyphen
8. larsyencken: Wide language index. https://github.com/larsyencken/wide-

language-index (2017). Accessed 05 June 2018
9. Maïonchi-Pino, N., Magnan, A., Écalle, J.: Syllable frequency effects in visual word

recognition: developmental approach in French children. J. Appl. Dev. Psychol.
31(1), 70–82 (2010)

10. Mortensen, D.R., Dalmia, S., Littell, P.: Epitran: precision G2P for many languages.
In: LREC (2018)

11. Ng, R.W., Lee, T., Leung, C.C., Ma, B., Li, H.: Spoken language recognition with
prosodic features. IEEE Trans. Audio Speech Lang. Process. 21(9), 1841–1853
(2013)

12. Tatoeba: Tatoeba. https://tatoeba.org/eng. Accessed 04 Apr 2018
13. Tong, R., Ma, B., Li, H., Chng, E.S.: A target-oriented phonotactic front-end for

spoken language recognition. IEEE Trans. Audio Speech Lang. Process. 17(7),
1335–1347 (2009)

14. Voxforge.org: Free speech... recognition (linux, windows and mac) - voxforge.org.
http://www.voxforge.org/. Accessed 05 June 2018

15. Walker, B.D., Lackey, B.C., Muller, J., Schone, P.J.: Language-reconfigurable uni-
versal phone recognition. In: Eighth European Conference on Speech Communica-
tion and Technology (2003)

16. Walker, W., et al.: Sphinx-4: a flexible open source framework for speech recogni-
tion. SML Technical report (2004)

17. Zamuner, T.S., Kharlamov, V.: Phonotactics and syllable structure in infant speech
perception. In: Oxford Handbook of Developmental Linguistics, pp. 27–42 (2016)

18. Zissman, M.A.: Comparison of four approaches to automatic language identifica-
tion of telephone speech. IEEE Trans. Speech Audio Process. 4(1), 31 (1996)

https://github.com/Kozea/Pyphen
https://github.com/larsyencken/wide-language-index
https://github.com/larsyencken/wide-language-index
https://tatoeba.org/eng
http://www.voxforge.org/


Investigating a Hybrid Learning
Approach for Robust Automatic Speech

Recognition

Gueorgui Pironkov1(B), Sean U. N. Wood2, Stéphane Dupont1,
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Abstract. In order to properly train an automatic speech recognition
system, speech with its annotated transcriptions is required. The amount
of real annotated data recorded in noisy and reverberant conditions is
extremely limited, especially compared to the amount of data that can be
simulated by adding noise to clean annotated speech. Thus, using both
real and simulated data is important in order to improve robust speech
recognition. Another promising method applied to speech recognition
in noisy and reverberant conditions is multi-task learning. A successful
auxiliary task consists of generating clean speech features using a regres-
sion loss (as a denoising auto-encoder). But this auxiliary task uses as
targets clean speech which implies that real data cannot be used. In
order to tackle this problem a Hybrid-Task Learning system is proposed.
This system switches frequently between multi and single-task learning
depending on whether the input is real or simulated data respectively. We
show that the relative improvement brought by the proposed hybrid-task
learning architecture can reach up to 4.4% compared to the traditional
single-task learning approach on the CHiME4 database.

Keywords: Speech recognition · Multi-task learning · Robust ASR
Denoising auto-encoder · CHiME4

1 Introduction

In a scenario of clean and non-reverberant acoustic environment, the amount of
available annotated data is very substantial for ASR. This eases speech recog-
nition considerably, with some researchers even suggesting that we may have
reached human-like performance [24]. However, these ideal acoustic conditions
are not very realistic since in many real-life situations, we are faced with degra-
dations of the speech signal. Degradations may come from the surrounding noise
(e.g. cars, babble, industrial noises, etc.) [11] or from the acoustic properties
of the room (when the microphone used for recording is not a close-talking
c© Springer Nature Switzerland AG 2018
T. Dutoit et al. (Eds.): SLSP 2018, LNAI 11171, pp. 67–78, 2018.
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microphone) leading to reverberations of the speech [8]. Another problem in this
noisy and reverberant scenario is the limited amount of annotated real data. A
method frequently used to tackle this problem is to artificially create simulated
data by adding noise and reverberation on top of clean speech, this way the
massive amounts of clean annotated speech can be reused in order to improve
ASR in this degrading conditions. Nevertheless, there is a considerable difference
between the simulated and real data. The mismatch between these two types of
noisy and reverberant data leads to poor results in real-life situations when the
acoustic model is trained using simulated data only [23]. Among the different
explanations for this mismatch includes the Lombard effect [6], when a speaker
talking in a noisy environment naturally tends to raise his/her voice, changing
the properties of the speech compared to speech recorded in clean environment.

In this paper, we propose a Hybrid-Task Learning (HTL) architecture that
benefits from both real and simulated data. We use the word hybrid as the
HTL system is a mix of Single-Task Learning (STL) and Multi-Task Learning
(MTL) [1]. STL refers to the traditional ASR training where the acoustic model
tries to solve only one task, i.e. the phone-state posterior probability estima-
tion for ASR, whereas during an MTL training, the acoustic model is trained to
jointly solve one main task (the same one as for STL) plus at least one auxiliary
task (for instance, gender recognition or speaker classification). The main moti-
vation for this HTL setup is that simulated data has an advantage compared to
real data: we have access to the original clean speech. Thus, the MTL system can
be used to train the acoustic model where simulated data is applied as input, and
the auxiliary task consists of regenerating the original clean speech, similarly to
a Denoising Auto-Encoder (DAE) for instance. However, training an MTL setup
exclusively would mean that only simulated data could be used, as we do not
have access to the clean speech when real data is applied. Hence, we investigate
this mixed STL/MTL architecture that behaves as an MTL system when the
input is simulated data and as an STL system when the input data is real. An
important point is that the system changes between MTL to STL depending of
the random variation of real and simulated data fed to the network. The main
goal of the HTL system is to take advantage of the large amount of annotated
simulated data easily available while simultaneously integrating real data to the
acoustic model, thus improving ASR performance for real-life acoustic condi-
tions. To evaluate this HTL setup, we use the CHiME4 database [23], which is
mainly composed of simulated data, but also contains a smaller quantity of real
data.

2 Related Work

Several studies have previously focused on applying MTL for ASR. The main
task for the acoustic model in ASR consists of predicting the phone-state pos-
terior probabilities, that are subsequently used as input of a Hidden-Markov
Model (HMM) that deals with the temporality of speech (or more recently and
alternatively, a network with recurrent connections is used instead). Some of the
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earliest studies use gender classification as an auxiliary task [12,20], where the
goal is to increase the awareness of the acoustic model concerning the correlation
between gender and speech. Recent studies have also focused on increasing the
speaker-awareness of the network in order to increase the generalization abil-
ity, by using speaker classification or i-vectors [3] estimation as auxiliary tasks
(rather than concatenating the i-vector to the input features) [14,21,22]. More
details about these auxiliary tasks and their application for ASR can be found
in [13].

Using a variety of different tasks in order to improve speech recognition
in noisy and reverberant acoustic environment is also a field of interest. For
instance, some studies have focused on improving ASR in solely reverberant
condition, by using reverberant data for training and applying a de-reverberant
auto-encoder as an auxiliary task [5,17]. Instead of using a regression auxiliary
task (the DAE here), other researches try classification auxiliary tasks for robust
ASR. In this case, the auxiliary task recognizes and classifies the type of noise
present in the corrupted sentence [7,19]. The improvement brought by this app-
roach is very limited though. A far more promising method previously cited
consists of using a denoising auto-encoder as auxiliary task [2,10,12,18], where
the DAE targets for training are the clean features (which implies having access
to clean features and making training with real data almost impossible). Very
similarly, another work used the same DAE MTL system for robust ASR, but in
their case an additional bottle-neck layer was added. As a result, this bottle-neck
layer was further used as the input of a classic STL ASR system [9]. Finally, in
a previous work, we obtained promising results by generating the noise only as
auxiliary task (instead of the clean speech only) [15].

The novelty of this work focuses on the Hybrid-Task Learning architecture
for ASR, leveraging both simulated and real data. To our best knowledge, it is
the first time that such a hybrid architecture is tested for speech recognition.

3 Hybrid-task Learning

In this work, we present and review the capacity and improvement brought by
the hybrid-task learning approach compared to single and multi-task learning,
where the auxiliary task investigated in order to improve the ASR robustness is
a denoising auto-encoder. The HTL architecture is directly derived from multi-
task learning, and can actually be seen as a special case of MTL, where the MTL
architecture is data dependent.

3.1 Multi-task Learning

Multi-Task Learning was initially introduced at the end of the twentieth cen-
tury [1]. The basic concept of MTL consists of training one system (e.g. a neural
network) to solve multiple different, but still related tasks. More specifically, in
an MTL setup, there should be one main task plus at least one auxiliary task.
The purpose of the auxiliary task is to improve the convergence of the system
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to the benefit of the main task. An MTL system with one main task and N
auxiliary tasks is presented in Fig. 1 as an example.

Fig. 1. A multi-task learning network with one main task and N auxiliary tasks.

The update of the parameters of the network is done by backpropagating a
mixture of the error of all tasks, with a term:

εMTL = εMain +
N∑

n=1

λn ∗ εAuxiliaryn
, (1)

where εMTL is the mixture error to be minimized, εMain and εAuxiliaryn
are

the errors computed from the main and auxiliary tasks respectively, λn is a
nonnegative weight associated to each auxiliary task, and N is the total number
of auxiliary tasks added to the main task of this system.

The influence of the auxiliary task with respect to the main task is controlled
by the value of λn. If the nth auxiliary task has its λn close to 1, then its
contribution to the error estimation will be as important as the main task’s
contribution. On the contrary, for λn close to 0, the auxiliary task’s influence will
be very small (or nonexistent), leading to a single-task system. Most frequently,
only the main task is kept during testing, the auxiliary tasks being withdrawn.

3.2 Hybrid-task Learning Mechanism

The novelty of HTL comes from its flexibility compared to MTL. The core idea is
to have a system that adapts the number of output tasks, and more specifically
the presence or absence of auxiliary tasks, depending on the input features.
The setup is applicable to the specific situation where the same training set
contains to two types of data, some of which that may be used to train the
auxiliary task(s), whereas the rest of the data could not be applied for the
auxiliary task(s). In this case, a setup that is able to adapt its auxiliary task(s)
dynamically is required in order to train the whole system using all the available
data. An illustration of the proposed hybrid architecture is shown in Fig. 2.

Computing the error to be backpropagated in this setup will be very similar
to the MTL Eq. (1), with the difference being an additional term which value
will depend of the feature type currently processed, leading to:

εHTL = εMain + γfeature ∗ (
N∑

n=1

λn ∗ εAuxiliaryn
), (2)
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Fig. 2. A hybrid-task learning (HTL) system which adapts its architecture depending
of the input features. The same system is represented, where α and β are two different
kind of input features randomly fed to the system (for instance real and simulated
data). (a) As the input features are α type, the HTL system behaves as a single-task
learning system. (b) The β type features force the system to behave as multi-task
learning system wit N auxiliary tasks.

with γfeature a binary variable equal to 1 if the error εHTL is computed from
features supporting MTL, or equal to 0 if the input features can be used only
for the main task.

In this paper, the hybrid setup is investigated for robust ASR. This setting
is a particularly suitable candidate for HTL. As discussed previously, on the
one hand, the amount of annotated clean speech if far more significant than the
amount of annotated noisy and reverberant speech, more specifically the amount
of real noisy and reverberant data. On the other hand, it is possible to generate
simulated noisy and reverberant data by adding noise to the original (annotated)
clean speech and convolving it with the impulse response of a reverberant room.
The limitation of the simulated data is the mismatch between the real data and
the artificially generated data. Thus, a solution is to create databases containing
real and simulated data, where the ratio of real-to-simulated data will be biased
towards the simulated data (as the annotations are required for ASR). In this
case though, the MTL setup could not be applied if the auxiliary task is a
denoising auto-encoder (one of the rare truly effective auxiliary task for robust
ASR), as there would be no ground-truth for the real data due to the lack of
clean features in real-life conditions. Applying an HTL setup to this database
will allow us to benefit from the DAE task with simulated data while the acoustic
model still learns valuable information from the real data.

4 Experimental Setup

This section presents the tools and techniques specifically used to evaluate the
HTL setup for ASR in noisy and reverberant conditions.

4.1 Database

To evaluate the proposed HTL setup for robust ASR, we use the CHiME4
database [23]. This database contains 1-channel, 2-channel, and 6-channel micro-
phone array data. Real acoustic mixing were recorded in four different noisy envi-
ronments (café, street junction, public transport and pedestrian area) through a
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tablet device with 6-channel microphones. Simulated data is also generated using
additive noise (recorded in the noisy environments as in the latter sentence) on
the WSJ0 database [4].

All training, development, and test sets contain real and simulated data pro-
vided as 16 bit wav files sampled at 16 kHz. The training dataset is composed of
7138 simulated utterances (≈15 h) recorded by 83 speakers and 1600 real utter-
ances (≈4 h) of real noisy and reverberant speech recorded by 4 speakers. The
development contains the same division of real and simulated data, that is a
total of 3280 utterances (≈5.6 h) from 4 other speakers respectively. Similarly,
the test set consists of a total of 2640 sentences leading to approximately 4.5 h
recorded by 4 speakers for real and 4 others for simulated data.

In this work, an DAE is used as auxiliary task, as a result we use only one
channel (channel no5) during training, while the development and test sets are
created from randomly selected channels.

4.2 Features

The features used as input of our system as well as targets for the DAE
task are obtained following this traditional ASR pipeline: (1) 13-dimensional
Mel-Frequency Cepstral Coefficients (MFCC) features are extracted from the
row audio wav files, and normalized via Cepstral Mean-Variance Normalization
(CMVN). (2) The adjacent ±3 frames are spliced for each frame. (3) The con-
catenate features dimension is reduced by a projection into a 40-dimension fea-
ture space using Linear Discriminative Analysis (LDA) transformation. (4) The
final features are obtained through feature-space Maximum Likelihood Linear
Regression (fMLLR), that is a feature-space speaker adaptation method.

Furthermore, these 40-dimensional features are spliced one more time with
the surrounding ±5 frames for the input features of the acoustic model, whereas
there is no splicing concerning the DAE task targets.

4.3 Acoustic Model Training

Training and testing the HTL setup was done using the nnet3 version of the
Kaldi toolbox [16].

The acoustic model used to evaluate the HTL performance is single-task
learning feed-forward Deep Neural Network (DNN). The DNN has 4 hidden
layers, each composed of 1024 neurons using rectified linear unit (ReLU) acti-
vations. The 1972 phone-state posterior probabilities of the STL main task are
computed after a softmax output layer. The DNN training is achieved through
14 epochs with an initial learning rate of 0.0015 which is progressively reduced
to 0.00015. The error of the main ASR task is computed using the cross-entropy
loss function. Whereas for the DAE auxiliary task, the quadratic loss function is
applied (as this is a regression issue and not a classification task). The param-
eters (weights and biases) of the network are updated by backpropagating the
error derivatives using stochastic gradient descent (SGD) and no momentum nor
regularization. The input features are processed through mini-batches of a size
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N = 512. Since the HTL DAE task requires knowing the type of features, e.g.
features extracted from real or simulated data, each mini-batch contains features
coming from only one of these two datasets (whereas usually all features would
be voluntarily mixed up in the mini-batch). The value of the coefficient γfeature
of the Eq. (2) is automatically updated during training, by keeping track of the
origin (real or simulated) of the mini-batches.

During decoding, the most likely transcriptions are obtained using the output
state probabilities computed by the network, and applying them to an HMM
system and a language model, the language model being the 3-gram KN language
model trained on the WSJ 5K standard corpus.

4.4 Baseline

Using the settings presented in the previous section, we train and test a feed-
forward single-task learning deep neural network as the baseline acoustic model.
The Word Error Rate (WER) is computed on both development and test sets,
for each type of data (real and simulated), and for all four noisy environments.
The results are shown in Table 1.

The effects of a significant mismatch between the development and test
datasets can be noticed for both real and simulated data. For the pedestrian
noisy environment for instance, the dev set WER on real data is 11.36% whereas
for the real data of the test set the WER more than doubles to 25.37%. Beside
the street environment, all other environments suffer from the mismatch between
the dev and test set, especially for real data. This tendency is also confirmed
on simulated data with the overall WER going from 18.12% to 26.00% for the
development set and test set respectively. This mismatch is even more notice-
able on real data with the overall WER dropping from 16.46% to 29.30%. The
mismatch is partially due to the variability of the recording conditions. Another
explanation can be the impact of the Lombard effect described in Sect. 1.

Table 1. Word error rate (WER) in % on the development and test sets of CHiME4
dataset used as baseline. Overall is the mean WER of all 4 environmental noises and
Avg. is the mean WER over real and simulated data.

Avg. Dev set Test set

Mean Simu Real Mean Simu Real

Overall 22.47 17.29 18.12 16.46 27.65 26.00 29.30

Bus 24.93 18.51 16.02 20.99 31.35 20.58 42.12

Café 24.98 19.12 21.81 16.43 30.84 30.01 31.66

Pedestrian 19.33 12.95 14.53 11.36 25.71 26.04 25.37

Street 20.66 18.60 20.12 17.08 22.71 27.36 18.06

Finally, it can also be noted that both the development and test sets contain
speech uttered by 8 different speakers (whereas 83 speakers are used for training).
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This lack of diversity can also explain the difference of WER between the two
datasets, as the impact of one or two speakers harder to recognize compared
to the others would be much more severe compared to having more speakers
in those datasets. As a general remark, our goal here is to provide a proof-of-
concept of the benefits of HTL and not directly challenge the state-of-the-art
results on CHiME4.

5 HTL Performance

In this section, we compare the HTL setup to an STL setup. The improvement
brought by the hybrid flexibility is also compared to MTL. For each experimental
situation, the results for the development set and test set are computed, as well
as the results on real and simulated data, and the average over all four datasets.

5.1 Denoising Auto-Encoder Auxiliary Task Impact

In order to evaluate the hybrid task setup, we vary the value of λ present in
Eq. (2). If λ = 0, the setup is behaving as single-task learning system, which is
our baseline. The higher the value of λ, the more influential the DAE task will
be compared to the ASR main task. Both the STL and HTL setups are trained
using real and simulated data, with the data fed to the networks being randomly
selected between real and simulated. Results are presented in Table 2.

Table 2. Performance of the hybrid-task learning architecture when the auxiliary task
is a denoising auto-encoder, with λ the weight attributed to the DAE auxiliary task
during training. The baseline, which is the single-task learning architecture, is obtained
for λ = 0. The Avg. value is computed over all four datasets.

Value of λ Avg. Dev set Test set

Mean Simu Real Mean Simu Real

0 (STL) 22.47 17.29 18.12 16.46 27.65 26.00 29.30

0.05 22.07 16.82 17.44 16.20 27.31 25.57 29.05

0.1 21.96 16.77 17.42 16.11 27.16 25.36 28.95

0.15 21.88 16.72 17.32 16.11 27.04 25.23 28.84

0.2 21.93 16.82 17.60 16.04 27.04 25.39 28.69

0.3 22.10 17.02 17.71 16.32 27.18 25.43 28.92

0.5 22.75 17.60 18.43 16.77 27.89 26.32 29.46

0.7 23.08 17.92 19.05 16.79 28.27 26.96 29.57

There is a persistent improvement brought by the hybrid-task learning archi-
tecture, overall all four possible datasets, especially for a value of λ less than
0.4. The relative improvement of HTL compared to STL reaches up to 4.4% for
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the development dataset applied on simulated noisy and reverberant speech for
λ = 0.15. More generally, an overall relative improvement of 2.6% is obtained
over all four datasets for λ = 0.15, showing the positive impact of the hybrid
auxiliary task in all cases. In light of the above best WER obtained while varying
the impact of the DAE auxiliary task, we set λ = 0.15 for the next sections.

5.2 Evaluating the “Hybrid” Impact

Despite the improvement brought by the HTL setup compared to single-task
learning, it is questionable if this improvement comes from the hybrid architec-
ture that frequently switches from single to multiple tasks depending of the input
features, or only from the usage of multiple tasks. In order to evaluate the HTL
impact we train an HTL and STL system using both real and simulated data
and compare the results to STL and MTL systems trained using only simulated
data, we also train an STL system on real data only. The results are presented
in Table 3.

Before discussing the HTL impact it can be noticed that the idea that “more
data is always better” applies here when comparing all three STL systems. Using
only real data (the smallest dataset) for training gives the worst results with
a WER of 54.57% over all four datasets. And when looking at the test results,
surprisingly, the WER on the simulated data is lower (62.92%) than for real data
(65.57%), despite the mismatch between real and simulated data (simulated data
that is unseen here), highlighting a even larger mismatch between the real data
used for training and the real data used for testing. Using simulated and real
data (largest dataset) for training gives an WER of 22.47% over all four datasets,
whereas using only simulated data reaches a word error rate of 23.73%.

Table 3. Comparing the word error rate (%) of different task learning (TL) systems
depending of training datasets, where the hybrid-TL and multi-TL auxiliary tasks are
DAE with λ = 0.15. Avg. is the average WER over all four datasets.

Training dataset(s) System architecture Avg. Dev set Test set

Mean Simu Real Mean Simu Real

Real + Simu Single-TL 22.47 17.29 18.12 16.46 27.65 26.00 29.30

Real + Simu Hybrid-TL 21.88 16.72 17.32 16.11 27.04 25.23 28.84

Simu only Single-TL 23.73 18.27 18.45 18.09 29.18 26.55 31.81

Simu only Multi-TL 23.28 17.91 17.99 17.82 28.63 26.06 31.20

Real only Single-TL 54.57 44.89 49.83 39.95 64.25 62.92 65.57

Again having more data (and more diversified data) helps. Training with
added real data to the simulated data significantly improves the real data results
(going from 18.09% to 16.46% for the dev set for instance), whereas, as expected
this improvement is much smaller for simulated data (from 18.45% to 18.12%
on the same dataset) but still present.



76 G. Pironkov et al.

Both the MTL and HTL architectures appear to improve results compared
to their respective STL setups, with an averaged WER of 23.28% over all four
datasets for MTL and 21.88% for HTL. But as discussed earlier comparing
directly the WER of HTL and MTL directly would be incorrect as both systems
train on a different amount (and type) of features, making it hard to estimate if
the improvement comes from the hybrid architecture or from the greater amount
of data used during the HTL training.

Thus, we compute the relative improvement brought by HTL compared to
STL when real and simulated is used for training and compare it to the relative
improvement brought by MTL compared to STL when only simulated is used.
The results are shown in Fig. 3.

It can be observed that on average, and more specifically for three out of
the four datasets, using HTL gives better relative improvement than MTL. The
highest gap between the HTL and MTL relative improvements can be noticed on
the simulated datasets. Interestingly, for the test set using real data, MTL gives
a slightly higher relative improvement (0.3% better than for HTL), where for
MTL no real data was used during training. This result can be explained by the
fact that the WER on the real data testset are worst on STL when training on
simulated data only, thus in this situation MTL provides a better generalization
than HTL to the unseen data as a higher gap exists between the STL and MTL
WER.
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Fig. 3. Evaluation of the relative improvement brought by hybrid-task learning com-
pared to single-task learning versus the relative improvement brought by multi-task
learning compared to single-task learning.
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6 Conclusion

In this work, a novel task learning mechanism is proposed which is refereed
to as Hybrid-Task Learning. This mechanism is based on mixing the Multi-
Task Learning architecture with the tradition Single-Task Learning architecture,
leading to a dynamic hybrid system that switches between single and multi-task
learning depending of the input feature’s type. A relative improvement of 4.4%
can be achieved by HTL compared to STL. Additionally, it can be noted that,
as for MTL, implementing and training the proposed HTL setup is not time
consuming and does not require additional information, as the clean data used
for training the auxiliary task is already available when the simulated data is
generated. In future work, we would like to investigate other auxiliary tasks
for the proposed HTL setup, for instance generating only the noise as auxiliary
task (as opposed to the DAE), as well as evaluating HTL performance on other
databases and feature combinations other than real and simulated data.
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Abstract. Recently, recurrent neural networks have become state-of-
the-art in acoustic modeling for automatic speech recognition. The long
short-term memory (LSTM) units are the most popular ones. However,
alternative units like gated recurrent unit (GRU) and its modifications
outperformed LSTM in some publications. In this paper, we compared
five neural network (NN) architectures with various adaptation and fea-
ture normalization techniques. We have evaluated feature-space max-
imum likelihood linear regression, five variants of i-vector adaptation
and two variants of cepstral mean normalization. The most adaptation
and normalization techniques were developed for feed-forward NNs and,
according to results in this paper, not all of them worked also with RNNs.
For experiments, we have chosen a well known and available TIMIT
phone recognition task. The phone recognition is much more sensitive to
the quality of AM than large vocabulary task with a complex language
model. Also, we published the open-source scripts to easily replicate the
results and to help continue the development.

Keywords: Neural networks · Acoustic model · TIMIT · LSTM
GRU · Phone recognition · Adaptation · i-vectors

1 Introduction

Neural Networks (NNs) and deep NNs (DNNs) became dominant in the field
of the acoustic modeling several years ago. Simple feed-forward (FF) DNNs
were faded away in recent years. The current progress is based on the model-
ing of a longer temporal context of individual feature frames. Main two ways
are actually popular: First, a larger context is modeled by a time-delayed NN
(TDNN) [9,16]. TDNNs model long term temporal dependencies with training
times comparable to standard feed-forward DNNs. In the TDNN architecture,
the initial transforms learn narrow contexts and the deeper layers process the
hidden activations from a wider temporal context. Hence the higher layers have
the ability to learn wider temporal relationships. The second way to learn the
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longer temporal context is to use recurrent NNs (RNNs). The most popular
RNN architecture is a long short-term memory (LSTM) that has been designed
to address the vanishing and exploding gradient problems of conventional RNNs.
Unlike feed-forward neural networks, RNNs have cyclic connections making them
powerful for modeling sequences [12]. The main drawback is much slower train-
ing due to the sequential nature of the learning algorithm. An unfolding of the
recurrent network during training was proposed in [13] to speed-up the training,
however it is still significantly slower than FF NNs or TDNNs. More recently,
another type of recurrent unit, a gated recurrent unit (GRU), was proposed in
[2,3]. Similarly to the LSTM unit, the GRU has gating units that modulate the
flow of information inside the unit, however, without having a separate mem-
ory cells. Further revising GRUs leaded to a simplified architecture potentially
more suitable for speech recognition in [11]. First, removing the reset gate in the
GRU design resulted in a simpler single-gate architecture called modified GRU
(M-GRU). Second, replacing tanh with ReLU activations in the state update
equations was proposed and called M-reluGRU. A more detailed overview of the
RNN architectures follows in Sect. 3.

Even if large datasets are used for the DNN training, an adaptation of an
acoustic model (AM) to a test speaker and environment is beneficial. A lot of
techniques have been reported on the adaptation, such as the classical maximum
a posterior (MAP) and maximum likelihood linear regression (MLLR) for tradi-
tional GMM-HMM acoustic models. Although this technique can be modified for
an NN-based acoustic model, a much simpler application has so-called feature
space MLLR (fMLLR) [4] because fMLLR changes only features and it does not
adapt NN parameters. This speaker adaptation technique can be easily applied
in an NN-based acoustic model [8,10,15]. Therefore, fMLLR can be used to any
DNN architecture. i-vectors originally developed for speaker recognition can be
used to the speaker and environment adaptation also [7,14]. Alternative app-
roach is using of discriminative speaker codes [6,17]. More detailed description
of the adaptation techniques used in this paper follows.

2 Adaptation of DNNs

The simplest way of the adaptation is a feature level adaptation. When adapting
input features, NN can have any structure. The most popular and well known
technique is fMLLR based on an underlying HMM-GMM that is used during
initial stage of the NN training.

2.1 fMLLR

The fMLLR transforms feature frames with a speaker-specific square matrix A
and a bias b. For HMM-GMMs, A and b are estimated to maximize the like-
lihood of the adaptation data given the model [4,15]. In the training phase,
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the speaker-specific transform may be updated several-times alternating HMM-
GMM update. These approach is usually called a speaker adaptive training
(SAT). The result of the training phase is a canonical model that requires using
adaptation during testing phase. However, two-pass processing is required dur-
ing test phase. The first pass produces unsupervised alignment that is used to
estimate the transform parameters via maximum likelihood. The model used for
alignment does not need to be the identical model to the final canonical one.
Because all the steps are using the underline HMM-GMM any NN architecture
may be used to train the final NN acoustic model.

2.2 i-vectors

The i-vector extraction is a well known technique, so we focused here to more
practical points. An detailed description of i-vectors can be found in [7,14] and
further papers referenced in there.

The i-vector extraction is comprised from following steps:

1. An universal background model (UBM) needs to be trained. Usually a GMM
with 512 to 2048 diagonal components is used. The quality of GMM is not crit-
ical, so some speed-up methods can be utilized. Features for UBM do not need
to match witch features for NN nor i-vector accumulators. Usually, features
with cepstral mean normalization (CMN) or cepstral mean and variance nor-
malization (CMVN) are used for UBM. The normalization techniques reduce
speaker and environment variability. Features without any normalization are
used for the i-vector accumulators to carry more speaker- and environment-
related information.

2. Zero-order and centered first-order statistics are accumulated for every
speaker according to the UBM posteriors.

3. The i-vector extraction transforms are estimated iteratively by expecta-
tion/maximization (EM) algorithm.

4. The i-vector for individual speakers is evaluated. For training speakers, zero-
order and centered first-order statistics have been already accumulated. For
other speakers, statistics must be accumulated. Then, the i-vector is evaluated
by the i-vector extraction transforms computed in the third step.

The four step process seems simple but there are some details that need to be
mentioned:

– CMN or CMVN may be computed online or offline. The offline variant may be
per-utterance or per-speaker. The online variant starts from global cepstral
mean and it is subsequently updated. An exponential forgetting is usable for
very long utterances. The training setup should match with the testing one.

– The accumulated statistic should be saturated or scaled-down for long utter-
ances due to an i-vector overfitting.
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– The offline scenario is not proper for training. The number of speakers and
thus variants of i-vectors is very limited and leads to NN overfitting. The
online scenario is recommended for training, in the Kaldi Switchboard exam-
ple recipe the number of speakers is also boosted by pseudo-speakers. Two
training utterances represent one pseudo-speaker. The offline scenario may
be used in the test phase.

3 Recurrent Neural Network Architectures

3.1 Long Short-Term Memory

Long short-term memory (LSTM) is a widely used type of recurrent neural net-
work (RNN). Standard RNNs suffer from both exploding and vanishing gradient
problems. Both of these problems are caused by the fact, that information flowing
through the RNN passes through many stages of multiplication. The gradient is
essentially equal to the weight matrix raised to a high power. This results in the
gradient growing or shrinking at an exponential rate to the number of timesteps.

The exploding gradient problem can be solved simply by truncating the gra-
dient. On the other hand, the vanishing gradient problem is harder to overcome.
It does not simply cause the gradient to be small; the gradient components
corresponding to long-term dependencies are small while the components corre-
sponding to short-term dependencies are large. Resulting RNN can then learn
short-term dependencies but not long-term dependencies.

The LSTM was proposed in 1997 by Hochreiter and Scmidhuber [5] as a
solution to the vanishing gradient problem. Let ct denote a hidden state of a
LSTM. The main idea is that instead of computing ct directly from ct−1 with
matrix-vector product followed by an activation function, the LSTM computes
Δct and adds it to ct−1 to get ct. The addition operation is what eliminates the
vanishing gradient problem.

Each LSTM cell is composed of smaller units called gates, which control the
flow of information through the cell. The forget gate ft controls what information
will be discarded from the cell state, input gate it controls what new information
will be stored in the cell state and output gate ot controls what information from
the cell state will be used in the output.

The LSTM has two hidden states, ct and ht. The state ct fights the gradient
vanishing problem while ht allows the network to make complex decisions over
short periods of time. There are several slightly different LSTM variants. The
architecture used in this paper is specified by the following equations:

it = σ(Wxixt + Whiht−1 + bi)
ft = σ(Wxfxt + Whfht−1 + bf )
ot = σ(Wxoxt + Whoht−1 + bo)
ct = ft ∗ ct−1 + it ∗ tanh(Wxcxt + Whcht−1 + bc)
ht = ot ∗ tanh(ct)
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The Fig. 1 shows the internal structure of LSTM.
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Fig. 1. Structure of a LSTM unit

3.2 Gated Recurrent Unit

A gated recurrent unit (GRU) was proposed in 2014 by Cho et al. [3] Similarly to
the LSTM unit, the GRU has gating units that modulate the flow of information
inside the unit, however, without having a separate memory cells.

The update gate zt decides how much the unit updates its activation and
reset gate rt determines which information will be kept from the old state. GRU
does not have any mechanism to control what information to output, therefore
it exposes the whole state.

The main differences between LSTM unit and GRU are:

– GRU has 2 gates, LSTM has 3 gates
– GRUs do not have an internal memory different from the unit output, LSTMs

have an internal memory ct and the output is controlled by an output gate
– Second nonlinearity is not applied when computing the output of GRUs.

The GRU unit used in this work is described by the following equations:

rt = σ(Wrxt + Urht−1 + br)
zt = σ(Wzxt + Uzht−1 + bz)

h̃t = tanh(Wxt + U(rt ∗ ht−1) + bh)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t
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3.3 Modified Gated Recurrent Unit with ReLU

Ravanelli introduced a simplified GRU architecture, called M-reluGRU, in [11].
This simplified architecture does not have the reset gate and uses ReLU as an
activation function instead of tanh.

The M-reluGRU unit is described by the following equations:

zt = σ(Wzxt + Uzht−1 + bz)

h̃t = ReLU(Wxt + Uht−1 + bh)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t

We have also used this unit with the reset gate to evaluate the impact of the
missing reset gate on the network performance. This unit is effectively a normal
GRU with ReLU as an activation function and we called it reluGRU in this
paper.

The Fig. 2 shows the internal structure and difference of GRU and M-
reluGRU units.
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Fig. 2. Structure of GRU and M-reluGRU units

4 Experiments

We have chosen TIMIT, a small phone recognition task, as a benchmark of the
NN architectures and adaptation techniques. The TIMIT corpus is well known
and available. The small size allows a rapid testing and simulates a low-resource
scenario that is still an issue for many minor languages. The phone recognition is
much more sensitive to quality of AM than large vocabulary task with a complex
language model.
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The TIMIT corpus contains recordings of phonetically-balanced prompted
English speech. It was recorded using a Sennheiser close-talking microphone at
16 kHz rate with 16 bit sample resolution. TIMIT contains a total of 6300 sen-
tences (5.4 h), consisting of 10 sentences spoken by each of 630 speakers from
8 major dialect regions of the United States. All sentences were manually seg-
mented at the phone level.

The prompts for the 6300 utterances consist of 2 dialect sentences (SA), 450
phonetically compact sentences (SX) and 1890 phonetically-diverse sentences
(SI).

The training set contains 3696 utterances from 462 speakers. The core test
set consists of 192 utterances, 8 from each of 24 speakers (2 males and 1 female
from each dialect region). The training and test sets do not overlap.

4.1 Speech Data, Processing, and Test Description

As mentioned above, we used TIMIT data available from LDC as a corpus
LDC93S1. Then, we ran the Kaldi TIMIT example script s5, which trained
various NN-based phone recognition systems with a common HMM-GMM tied-
triphone model and alignments. The common baseline system consisted of the
following methods: It started from MFCC features which were augmented by Δ
and ΔΔ coefficients and then processed by LDA. Final feature vector dimension
was 40. We obtained final alignments by HMM-GMM tied-triphone model with
1909 tied-states (may vary slightly if rerun the script). We trained the model
with MLLT and SAT methods, and we used fMLLR for the SAT training and
a test phase adaptation. We dumped all training, development and test fMLLR
processed data, and alignments to disk. Therefore, it was easy to do compatible
experiments from the same common starting point. We also dumped MFCC
processed by LDA with no normalization and CMN calculated both per speaker
and per utterance.

We employed a bigram language/phone model for the final phone recognition.
A bigram model is a very weak model for phone recognition; however, it forced
focus to the acoustic part of the system, and it boosted benchmark sensitivity.
The training, as well as the recognition, was done for 48 phones. We mapped
the final results on TIMIT core test set to 39 phones (as is usual for TIMIT
corpus processing), and phone error rate (PER) was evaluated by the provided
NIST script to be compatible with previously published works. In contrast to the
Kaldi recipe, we used a different phone decoder. It is a standard Viterbi-based
triphone decoder. It gives better results than the Kaldi standard WFST decoder
on the TIMIT phone recognition task.
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We have used an open-source Chainer 3.2 DNNs Python tranining tool that
supports NVidia GPUs [1]. It is multiplatform and easy to use.

4.2 DNN Training

First, as a reference to RNNs, we trained feed-forward (FF) DNN with ReLU
activation function without any pre-training. We used dropout p = 0.2. We
stacked 11 input feature frames to 440 NN input dimension, like in Kaldi example
s5. We have used a network with 8 hidden layers and 2048 ReLU neurons, because
it gave the best performance according to our preliminary experiments. The
final softmax layer had 1909 neurons. We used SGD with momentum 0.9. The
networks were trained in 3 stages with learning rate 1e–2, 4e–3 and 1e–4. The
batch size was gradually increased from initial 256 to 1024, and finally to 2048.
The training in each stage was stopped when the development data criterion
increased in comparison to the last epoch.

Then we have trained LSTM, GRU, reluGRU and M-reluGRU networks. For
all of these recurrent networks, we have used identical training setup. We used
4 layers with 1024 units in each. The dropout used was p = 0.2. We have used
output time delay equal to 5 time steps. RNNs were trained in 4 stages. The first
stage used Adam optimization algorithm with batch size 512. The other stages
used SGD with momentum 0.9, batch size 128 and learning rate equal to 1e–3,
1e–4, and 1e–5 respectively. The training in each stage was stopped when the
development data criterion increased in comparison to the last epoch, as in FF
network case.

We have trained each network on several input data and i-vector combina-
tions. We used fMLLR data described in the previous section, MFCC and MFCC
with CMN. The normalization was calculated either per speaker or per utter-
ance. For training and testing, we used no i-vectors, online i-vectors and offline
i-vectors calculated also either per speaker or per utterance. We also evaluated
online i-vectors for training and offline i-vectors for testing. The i-vectors were
computed according to Kaldi Switchboard example script. However, because of
small TIMIT size, we did not use any reduction of data. Entire training dataset
was used to estimate i-vector extractor in all steps. The i-vector extractor has
been trained only once and online, per-speaker, and per-utterance i-vectors sets
were extracted by the same extractor transforms.

Because of stochastic nature of results due to random initialization and
stochastic gradient descent, we have performed each experiment 10 times in total.
Then, we have calculated the average phone error rate (PER) and its standard
deviation.
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4.3 Results

We have evaluated average PER, its standard deviation for all combinations of
three features variants, six i-vector variants, and five NNs architectures. We had
to split the results into two tables because of the page size. Table 1 shows the aver-
age PER for each experiment for FF, LSTM, and GRU NNs architectures. Table 2
compares three variants of GRU-based NNs: GRU, reluGRU, M-reluGRU. A sub-
set of the most valuable results is also depicted in Fig. 3. It is clear that fMLLR
adaptation technique worked quite well. All the NN architectures gave the best
result with fMLLR. The i-vector adaptation had a stable gain only for FF NN.
Two variants of the i-vector adaptation were the best: online i-vectors for train-
ing and online or offline per-speaker for testing. Results of RNNs with the i-vector
adaptation were interesting, because there was no significant gain. The results with
adaptation were rather worse. Between RNN architectures, LSTM was the win-
ner (PER 15.43% with fMLLR). The GRU and reluGRU gave comparable PERs,
15.7% with fMLLR, that was slightly worse than LSTM. M-reluGRU did not per-
formed well and the results were often worse than FF.

Table 1. Phone error rate [%] for FF, LSTM and GRU networks

Data i-vectors Phone error rate [%]

Training Testing FF LSTM GRU

fMLLR – – 17.00 ± 0.13 15.43 ± 0.28 15.69 ± 0.19

Off. spk. Off. spk. 17.17 ± 0.16 16.08 ± 0.19 16.04 ± 0.29

Off. utt. Off. utt. 17.32 ± 0.15 16.34 ± 0.32 16.43 ± 0.25

Online Off. spk. 17.17 ± 0.16 16.14 ± 0.22 16.15 ± 0.28

Online Off. utt. 17.10 ± 0.21 16.27 ± 0.34 16.14 ± 0.24

Online Online 17.18 ± 0.14 16.23 ± 0.26 16.23 ± 0.19

MFCC – – 19.42 ± 0.18 16.98 ± 0.27 17.48 ± 0.19

Off. spk. Off. spk. 19.02 ± 0.15 17.50 ± 0.19 17.63 ± 0.22

Off. utt. Off. utt. 19.29 ± 0.19 18.12 ± 0.27 18.09 ± 0.29

Online Off. spk. 18.22 ± 0.19 17.19 ± 0.26 17.00 ± 0.28

Online Off. utt. 18.48 ± 0.16 17.27 ± 0.26 17.21 ± 0.20

Online Online 18.19 ± 0.19 17.21 ± 0.15 17.33 ± 0.37

MFCC with CMN

per speaker

– – 18.49 ± 0.19 16.53 ± 0.20 17.00 ± 0.25

Off. spk. Off. spk. 18.47 ± 0.20 17.20 ± 0.23 17.33 ± 0.21

Off. utt. Off. utt. 18.59 ± 0.10 17.45 ± 0.19 17.36 ± 0.21

Online Off. spk. 18.11 ± 0.24 16.90 ± 0.24 17.04 ± 0.16

Online Off. utt. 18.17 ± 0.22 17.34 ± 0.31 17.06 ± 0.20

Online Online 18.21 ± 0.19 17.25 ± 0.26 17.24 ± 0.31

MFCC with CMN

per utterance

– – 19.44 ± 0.27 16.98 ± 0.20 17.54 ± 0.20

Off. spk. Off. spk. 19.10 ± 0.17 17.60 ± 0.31 17.64 ± 0.33

Off. utt. Off. utt. 19.32 ± 0.14 18.28 ± 0.35 18.15 ± 0.35

Online Off. spk. 18.70 ± 0.18 17.53 ± 0.23 17.33 ± 0.18

Online Off. utt. 18.63 ± 0.16 17.60 ± 0.23 17.46 ± 0.19

Online Online 18.73 ± 0.18 17.66 ± 0.23 17.43 ± 0.19
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Table 2. Phone error rate [%] for GRU and its modifications

Data i-vectors Phone error rate [%]

Training Testing GRU reluGRU M-reluGRU

fMLLR – – 15.69 ± 0.19 15.70 ± 0.56 17.06 ± 0.77

Off. spk. Off. spk. 16.04 ± 0.29 16.28 ± 0.38 17.50 ± 0.72

Off. utt. Off. utt. 16.43 ± 0.25 16.33 ± 0.13 18.25 ± 0.85

Online Off. spk. 16.15 ± 0.28 16.19 ± 0.22 17.76 ± 0.94

Online Off. utt. 16.14 ± 0.24 16.23 ± 0.18 17.85 ± 0.76

Online Online 16.23 ± 0.19 16.39 ± 0.33 17.60 ± 0.67

MFCC – – 17.48 ± 0.19 17.30 ± 0.50 19.64 ± 1.05

Off. spk. Off. spk. 17.63 ± 0.22 18.32 ± 0.39 20.13 ± 0.93

Off. utt. Off. utt. 18.09 ± 0.29 18.35 ± 0.37 20.70 ± 0.65

Online Off. spk. 17.00 ± 0.28 17.30 ± 0.38 19.38 ± 0.96

Online Off. utt. 17.21 ± 0.20 17.52 ± 0.47 19.44 ± 0.89

Online Online 17.33 ± 0.37 17.41 ± 0.44 19.29 ± 0.89

MFCC with CMN

per speaker

– – 17.00 ± 0.25 16.91 ± 0.22 18.23 ± 0.53

Off. spk. Off. spk. 17.33 ± 0.21 17.70 ± 0.39 19.44 ± 0.66

Off. utt. Off. utt. 17.36 ± 0.21 17.91 ± 0.35 19.43 ± 1.17

Online Off. spk. 17.04 ± 0.16 17.39 ± 0.27 19.03 ± 1.07

Online Off. utt. 17.06 ± 0.20 17.48 ± 0.29 18.93 ± 0.74

Online Online 17.24 ± 0.31 17.45 ± 0.27 18.89 ± 0.78

MFCC with CMN

per utterance

– – 17.54 ± 0.20 17.50 ± 0.29 19.26 ± 0.85

Off. spk. Off. spk. 17.64 ± 0.33 18.05 ± 0.27 19.08 ± 0.77

Off. utt. Off. utt. 18.15 ± 0.35 18.52 ± 0.33 21.04 ± 0.97

Online Off. spk. 17.33 ± 0.18 17.79 ± 0.31 20.10 ± 0.95

Online Off. utt. 17.46 ± 0.19 18.05 ± 0.24 19.63 ± 0.99

Online Online 17.43 ± 0.19 17.85 ± 0.18 20.01 ± 0.69
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Fig. 3. Phone error rate [%] on features with best performing i-vector variants
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5 Conclusion

In this paper, we have compared feed-forward and several recurrent network
architectures on input data with fMLLR or i-vector adaptation techniques. The
used recurrent networks were based on LSTM and GRU units. We have also
evaluated two GRU modifications: reluGRU, with ReLU activation function,
and M-reluGRU, with ReLU activation function and without the reset gate. As
features, we have used MFCC processed by LDA without normalization or with
CMN calculated either per speaker or per utterance, and also fMLLR adaptation.
We have also augmented the features with several variants of i-vectors: online
or offline calculated either per speaker or per utterance. Due to the stochas-
tic nature of the used optimizers, we have performed all experiments 10 times
in total and calculated the average phone error rate and its standard deviation.

For all networks, we have obtained the best results with fMLLR adaptation.
The i-vector adaptation consistently improved the results only for FF networks.
In the case of RNN, i-vectors did not lead to any significant improvement; it even
gave worse results in all LSTM experiments and in some experiments with GRU
variants. We have achieved the best results with LSTM network (PER 15.43%
with fMLLR). GRU and reluGRU were slightly worse (both having PER 15.7%
with fMLLR). M-reluGRU was in some cases even worse than FF network.

For all our experiments, we have used Chainer 3.2 DNN training framework
with Python programming language and we have published our open-source
scripts at https://github.com/OrcusCZ/NNAcousticModeling to easily replicate
the results and to help continue the development.
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Abstract. Restoring punctuation and capitalization in the output of
automatic speech recognition (ASR) system greatly improves readabil-
ity and extends the number of downstream applications. We present
a Transformer-based method for restoring punctuation and capitaliza-
tion for Latvian and English, following the established approach of using
neural machine translation (NMT) models. NMT methods here pose a
challenge as the length of the predicted sequence does not always match
the length of the input sequence. We offer two solutions to this problem:
a simple target sequence cutting or padding by force and a more sophis-
ticated attention alignment-based method. Our approach reaches new
state of the art results for Latvian and competitive results on English.

Keywords: Speech recognition · Punctuation restoration
Capitalization restoration · Transformer

1 Introduction

The raw output of a generic automatic speech recognition (ASR) system typically
consists of single-case word sequences, without any punctuation symbols. Adding
punctuation and capitalization greatly improves the readability of automatic
speech transcripts and can also help many of the natural language processing
(NLP) and understanding (NLU) tools that can be applied downstream.

There have been many previous studies on automatic punctuation restoration
in speech transcripts using data-driven methods. Language models (LM) and
prosody based systems have been commonly used as baseline methods [13,22,
24], which are outperformed by using conditional random fields (CRFs) [21]
and recurrent neural networks (RNN) [27]. Machine translation based models,
which translate non-punctuated text into punctuated text [14,23], showed their
effectiveness in spoken language translation evaluation campaigns [8–10]. While
phrase-based machine translation (PBMT) can be used for this task, the best
results [15] are achieved using neural machine translation (NMT) methods like
those based on encoder-decoder architectures [3].

Capitalization recovery has also been explored with various methods for sta-
tistical machine translation [11,30], but it has received less attention for enriching
transcribed speech [7,16]. Commonly used methods are similar to punctuation
c© Springer Nature Switzerland AG 2018
T. Dutoit et al. (Eds.): SLSP 2018, LNAI 11171, pp. 91–102, 2018.
https://doi.org/10.1007/978-3-030-00810-9_9
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restoration: n-gram language models [2,20] and maximum entropy models for
sequence labeling [5,11]. While there have been attempts to integrate capital-
ization directly into the ASR language model [6], both punctuation and capital-
ization recovery is usually performed as post-processing.

In NMT, a new architecture called Transformer [29] has provided a strong
alternative to RNNs and convolutional neural networks (CNNs) with a number
of considerable advantages. Transformer models can process sequences in parallel
during training, use fewer parameters for the same or better translation quality
versus RNNs and CNNs, and also converge considerably faster [29], thus reducing
the required time and hardware for obtaining a high quality model.

In this work, we propose to tackle the problems concerning both punctuation
restoration for Latvian and English and capitalization restoration for Latvian by
using the NMT approach, and basing our models on Transformer architecture.
We first describe our modeling method for these problems in Sect. 2 and then
outline experiment details in Sect. 3. Results and discussion follow in Sects. 4
and 5.

2 Method

In this section, we outline the modeling architecture we used and any adaptations
we made for the task of punctuation or capitalization restoration.

2.1 Transformer Model

Our method closely follows the Transformer models in NMT [29], adapted for
the purposes of punctuation restoration, capitalization, or both.

Transformer models eliminate the requirement for sequential processing dur-
ing training that RNNs have without having the size of the network scale up
with the length of the sequence to be processed (either in width or depth), a
property that CNNs exhibit for sequence processing tasks [4].

Instead, Transformer uses a novel combination of position-wise fully con-
nected feedforward networks (FFNs) and self-attention layers that allow the
Transformer to process each position in the sequence differently, while sharing
the same parameters across all positions. This allows Transformer to process
sequences of arbitrary length using a constant number of parameters. Further-
more, typically the number of parameters required for Transformer to achieve the
same or better quality is lower than RNN or CNN-based solutions for machine
translation [12,29].

The overall architecture of the model follows that of the encoder-decoder
architecture [3], where the encoder and decoder both consist of several Trans-
former specific self-attention and position wise feed-forward layers; however, the
input and output word piece embeddings and a softmax function for predicting
the next word piece remain unchanged from conventional NMT architectures.
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2.2 Input and Output Vocabularies

The previous best model for punctuation restoration in Latvian [25] used word
stems for creating a vocabulary 100,000 units large, which is more efficient than
creating the vocabulary using full words. However, using word stems loses a
considerable amount of morphological information, which might be important
for a morphologically rich language like Latvian, while still retaining a rather
large vocabulary for an NMT model. Instead, we choose to follow the by now
standard practice in NMT of using word piece vocabularies [26] with a desired
vocabulary size of 32,000 units for both Latvian and English.

We use a method similar to [15] for target vocabulary size reduction. Unlike
NMT, the target sequence in both the punctuation and capitalization problems
does not change word wise, it only alters the capitalization or inserts punctua-
tion respectively. This information can be captured in the output sequence by
treating this as a sequence labeling problem. The model must learn to output
a target class for each word in the input sequence, where target class describes
what should be done with the input at this position in the sequence to restore
punctuation or capitalization. We call a position for a target label corresponding
to a full word in the input a “word slot”.

The number of classes differ from experiment to experiment. When the source
dataset contains more punctuation symbols than we want the model to learn in
a particular experiment, we use simple rule-based substitutions to reduce the
number of punctuation classes, e.g., “!” and “?” might be mapped to a “.”.

Another difference from the previous best model for Latvian is the interpre-
tation of the word slot classes. Where [25] used classes to indicate punctuation
that should be following after a word, we make the classes describe the punc-
tuation symbols that should come before the given word. This was validated
experimentally using the BLSTM model, see Table 1. Datasets in this table are
described in Sect. 3.1.

Table 1. Predicting punctuation after and before a word slot for Latvian using
BLSTM [25].

Test set Word slot interpretation Classes Prec., % Recall, % F1, %

Webnews After Comma 82.7 67.5 74.3

Period 74.6 64.2 69.0

Average 78.7 65.8 71.7

Before Comma 82.9 67.8 74.6

Period 77.8 66.2 71.6

Average 80.3 67.0 73.0

While all the relevant classification metrics do go up for this new interpreta-
tion, it also presents two additional complications: (1) sentence boundaries are
now tied to the beginning of the next sentence, as it is the first word of the next
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sentence that will have the closing symbol of the last sentence attached to it; (2)
the closing symbol of the last sentence has nothing to be attached to, forcing us
to add an end-of-segment marker during training.

To make sure the model does not learn to cheat by relying on end-of-segment
markers for predicting sentence boundaries, we randomly concatenate sentences
from training data into longer segments, forcing the model to learn that sentences
can end at any point inside a segment. However, the end-of-segment marker still
has to be appended at the end of a batch during inference, and given that we
can not assume exact sentence boundaries, this end-of-segment most likely does
not match an actual sentence boundary. But practically speaking, this does not
matter because it is possible to batch the text to be evaluated by using predicted
sentence boundaries between second-to-last and last potential sentence in a batch
and then moving this last sentence, which might have been a partial sentence,
to the next batch. This approach is basically the same as [27].

2.3 Mapping Word Pieces to Word Slots

A significant problem with using word pieces for our input vocabulary is that the
target sequence no longer matches the input sequence in terms of length. There
are two possible solutions here: (1) have the output sequence classify individual
word pieces, thus making the sequence lengths match, or (2) rely on the seq2seq
ability to generate sequences of different lengths for a given input sequence and
have the model learn the mapping from input word pieces to target word slots.

The former solution is problematic because the model could assign differ-
ent classes to different pieces of the same word, as outlined by [15]. The latter
solution, however, can result in mismatch of sequence lengths, where a model
mispredicts the number of word slots and breaks the alignment. But, given that
doing predictions on a word piece level does not actually guarantee that the
alignment will never be broken, we need some sort of a strategy for dealing with
the cases with broken alignment anyway. This motivated us to choose the second
option, and perform predictions on the whole word level.

There seem to be several potential solutions for dealing with broken align-
ment between input word pieces and target word slots.

The simplest option (1) is correcting sequence length by cutting or filling
the sequence with likely, but hard-coded tokens until the sequence matches the
target length. If the word slot alignment breaks somewhere in the middle of the
sequence, this solution does nothing to repair such a case. It is, however, very
simple to implement and fast to perform. We call this the “brute force” approach
to sequence mismatch correction.

A more promising option (2) is to use wider beam search for decoding and to
only consider those hypotheses that match the desired word slot number like [15].
However, there is no guarantee of such a hypothesis being produced even with a
very large beam, which would also make decoding very slow. When none of the
beam entries contain a hypothesis with the correct length, we still need some
other method to correct the alignment mismatch.
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Another solution (3) is to try to repair the alignment by analyzing the atten-
tion alignment matrices for a given sequence. Several post-processing techniques
in NMT rely on the alignment between input and output sequences typically
produced by the attention layer between encoder and decoder in conventional
NMT systems following [3]. But this is more complicated in Transformer mod-
els due to the presence of multiple attention distributions for each Transformer
layer, each of which learns to attend to something else.

Practically speaking, however, there is usually at least one attention head
that still produces a seemingly reliable alignment between input and output,
particularly in the final layers of the model. We checked manually for such a
head and found it present in all our punctuation models. The attention align-
ment information can then be used to map any predicted word slots that have
punctuation to the exact input word pieces, padding or cutting the word slots in
between that have no punctuation attached to them. This approach has only the
extra cost of producing the attention matrices after the best hypothesis has been
obtained, but it should otherwise be faster than (2) and perhaps more robust, if
the alignment turns out to be reliable.

We implemented (1) as a fast and simple baseline, and also implemented a
version of (3) to test whether the alignments produced by any of the heads in
Transformer models can be used to reliably repair alignment for seq2seq tasks
like this.

3 Experiments

3.1 Datasets

We used three internal text corpora for experiments in Latvian and English
monolingual data from Europarl corpus [18] for a point of comparison with [27].

All three Latvian corpora are created automatically by crawling Latvian
internet resources. First corpus with the name “webnews” consists of 50 million
sentences that were collected automatically from Latvian web news portals. The
corpus consists of about 905 million tokens, i.e., words and punctuation symbols.
Due to the automatic nature of web crawling, this corpus is noisy, with lots
of spelling mistakes, incorrect grammar, and otherwise unusable text for our
purposes, so we apply extensive filtering to this corpus. This dataset is the same
as the one used in [25]. We also refer to that paper for detailed filtering steps,
with the only notable differences being that we do not employ stemming for
vocabulary size reduction and we do not replace punctuation symbols with their
word forms, e.g., we do not replace “,” with “comma”.

Additionally, we use a 1.3 million sentence “SaeimaHalf” and a 2.1 million
sentence “SaeimaFull” corpora, where SaeimaHalf is a subset of SaeimaFull. Both
were created from the public transcripts of Latvian Parliament (Saeima) sessions.
The total number of words in both corpora is 34M. Even though these corpora
are also collected automatically, their quality is much higher than webnews, so
filtering leaves proportionally more data for experiments.
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The total size of English data is approximately 2.2M sentences and 54M
words. We adapted the data preparation script for Europarl from [27] so that
we have a point of comparison for English.

After processing, development and evaluation held-out sets are created. The
sizes of the respective training, development and test sets as well as the impact
of filtering for each corpora can be found in Table 2.

Table 2. Datasets used

Language Name Raw/filtered, sentences Train/dev/test, sentences

Latvian Webnews 50M/40.5M 40.4M/50K/50K

SaeimaHalf 1.3M/1M 1M/5K/10K

SaeimaFull 2.1M/2.1M 2M/25K/25K

English Europarl en [18] 2.2M/2M 1.6M/200K/200K

3.2 Experiment Details

All Transformer models are implemented in Tensorflow [1], based on reference
implementations in Tensor2Tensor [28]. All of the models are trained on a sin-
gle nVidia GTX 1080 Ti GPU, using a batch size of 8192, and the “trans-
former small” hyerparameter set from Tensor2Tensor. This corresponds to only
2 layers in encoder and 2 layers in decoder, 4 attention heads per layer, a hidden
and vocabulary embedding size of 256, and an FFN size of 1024. Dropout and
label smoothing is applied for regularization, following the Transformer defaults
in Tensor2tensor. All models use an input vocabulary of roughly 32,000 word
pieces. Adam [17] optimizer was used for all experiments.

For punctuation, we have trained a total of 3 Transformer models for Lat-
vian datasets, and a single model for the English Europarl dataset. To identify
the Latvian models, we use their training dataset name and the number of
punctuation classes modeled for their naming. The models are: “T webnews 3”,
“T saeima 3”, and “T saeima 5” for Latvian and “T europarl en 8” for English.
All of the Latvian models have been trained for 1M iterations, while the English
one was trained for 0.5M steps. Since these models are concerned only with pre-
dicting with punctuation, we preprocess the data by removing all capitalization,
and then we create a separate file with filtered inputs without any punctuation
and a file with target labels describing the now lost punctuation.

We train a single dedicated model for capitalization using the same hyper-
parameter set as for punctuation, just with a different list of classes for output,
indicating that word slot contains a word to be left alone or capitalized. The
model is called “T saeima capitalization”, as it is trained on the SaeimaFull
dataset. The main reason for training a separate capitalization model on the
more narrow domain SaeimaFull dataset, and not the larger webnews, is the
specifics of the domain: the model needs to learn to non-trivial patterns for
commission names, ministries, and laws. Extra preprocessing is used for this
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model: all punctuation is removed from the training data, while capitalization
is left intact. To have a point of comparison for this scenario, we also train the
recaser tool from Moses toolkit [19].

We also train a single combined model for Latvian that performs restoration
of both punctuation and capitalization at the same time. This model follows
the same hyperparameters as the rest, and is trained for 1M steps, like other
Latvian models. We use combined labels for predictions, where each word slot
predicts both the punctuation mark to be used and whether or not the word at
this word slot should be capitalized. This model is called “T webnews comb 3”,
and is evaluated on punctuation and capitalization tasks separately.

All the models we have trained and points of comparison from literature are
summarized in Table 3.

Table 3. Models used in experiments

Name Train set Punctuation classes Capitalization Train
steps

BLSTM [25] Webnews word, comma, period No -

T webnews 3 No 1M

T webnews comb 3 Yes 1M

T saeima 3 SaeimaHalf word, comma, period No 1M

T saeima 5 SaeimaHalf word, comma, period, No 1M

question mark, dash

Punctuator2 [27] Europarl en word, comma, period, No 1.5M

quest. m., dash, excl. m.,

T europarl 8 colon, semicolon 1M

Moses recaser SaeimaFull - Yes -

T saeima cap 1M

4 Results and Discussion

We have summarized all of the punctuation results in Table 4, grouped together
by the respective test set. We have also added BLSTM results from [25] as
baseline, where available for Latvian. We use [27] as baseline for English Europarl
results1. For capitalization we use the recaser tool from Moses toolkit [19] as
a strong baseline. All the numbers presented here have been computed after
applying the sequence length fix hack outlined in Sect. 2.3. We also try out
sequence alignment repair from attention alignments on webnews test data for
comparison.
1 Europarl results were not in print version of the paper, but they can be found at

https://github.com/ottokart/punctuator2.

https://github.com/ottokart/punctuator2
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We can see the basic improvement Transformer models obtain over our
BLSTM baseline model for Latvian on webnews test set. Of particular note
is the considerable increase in recall performance of these models, while preci-
sion is boosted to a lesser degree. Models have also learned well how word pieces
in the input map to word slots in the output. T webnews 3 exhibits sequence
length mismatch in only 1.8% cases, while T saeima 3 in only 3.7%. However,
the amount of sequence length mismatch increases significantly if we try to apply
a model trained on a more narrow domain to a test set from a wider domain, as
evidenced by the behavior of T saeima 3 on the webnews dataset.

Interestingly enough, the combined punctuation and capitalization model
T webnews comb 3 shows both better precision and recall for all punctuation
classes and a very low mismatch amount. This demonstrates that the ability
of the model to perform well on punctuation restoration task does not suffer,
when paired together with another task. We evaluate the capitalization ability
separately in Table 5.

We carry out our attempts to repair the sentences with broken alignments
between inputs and predictions using the T webnews 3 model. This procedure
produces some improvements for long sequences, however, as reflected in the
results for webnews dataset, the macro average F1 is actually the exact same as
for the brute force approach. In particular, the precision and recall seems to be
better for commas, but worse for periods.

Looking at individual examples, we can find both examples where the repair
from attention has salvaged a broken alignment and examples, where the align-
ment was correct, but trying to re-align the outputs with inputs using the atten-
tion breaks it by shifting the predictions a token to the left or right side of the
truth. We also tried out using attention values from other heads, but all of them
produced substantially worse results. For our purposes repairing alignment from
attention is, thus, not reliable enough to be used over the brute force approach,
which is simpler and faster.

On the SaeimaHalf dataset, we perform experiments with more than 3 punc-
tuation classes, training both a 3 (word, period, comma) and a 5 class (word,
comma, period, question mark, and dash) model on it. Furthermore, we tried
applying a more general domain model to the Saeima test set, which presents a
more narrow domain, and observe good, but worse results than a domain-specific
model.

In the case of English and the Punctuator2 model from [27], the advantage
of Transformer models becomes less pronounced. We still observe a noticeable
increase in recall performance across all punctuation classes; however, for the less
common punctuation classes, precision is worse than Punctuator2. Overall, the
macro average F1 score is slightly better for Transformer, but the improvement
is marginal. It is possible the model could do better with more training time, as
this model was only trained for 500,000 steps instead of the 1,000,000 for other
models.

In Table 5, our Transformer capitalization model demonstrates a small but
considerable improvement over the Moses recaser tool for the Latvian Saeima
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Table 4. Results on the punctuation restoration task.

Test set Model Mismatch, % Classes Prec., % Recall, % F1, %

Webnews BLSTM [25] - Comma 82.8 70.0 75.9

Period 77.8 69.5 73.4

Average 80.3 69.8 74.7

T webnews 3 1.8 Comma 84.5 83.3 83.9

Period 83.3 86.3 84.7

Average 84.0 84.8 84.4

T webnews 3 with

alignment repair

0.0 Comma 84.7 83.5 84.1

Period 83.2 86.1 84.6

Average 84.0 84.8 84.4

T saeima 3 12.4 Comma 60.4 63.9 62.1

Period 62.3 63.6 63.0

Average 61.4 63.8 62.6

T webnews comb 3 0.3 Comma 85.7 83.8 84.7

Period 84.1 87.6 85.8

Average 84.9 85.7 85.3

SaeimaHalf T saeima 5 1.0 Comma 91.3 92.1 91.7

Period 88.8 88.2 88.5

Quest.m. 77.5 73.6 75.5

Dash 77.7 66.7 71.8

Average 83.8 80.2 82.0

T saeima 3 0.8 Comma 91.8 90.9 91.4

Period 89.4 89.4 89.4

Average 90.6 90.2 90.4

T webnews 3 4.7 Comma 84.6 80.5 82.5

Period 84.2 74.0 78.7

Average 84.4 77.3 80.7

Europarl en Punctuator2 [27] - Comma 68.9 72.0 70.4

Period 84.7 84.1 84.4

Quest.m. 77.7 73.2 75.4

Dash 55.9 8.8 15.2

Excl.m. 50.0 0.1 0.1

Colon 60.9 23.8 34.2

Semicolon 44.7 1.1 2.2

Average 63.3 37.6 47.2

T europarl en 8 1.3 Comma 67.1 73.6 70.2

Period 89.3 90.0 89.7

Quest.m. 77.9 81.8 79.8

Dash 38.8 11.7 18.0

Excl.m. 25.8 1.6 3.0

Colon 47.0 34.1 39.5

Semicolon 25.9 11.0 15.4

Average 53.1 43.4 47.8

dataset. This model still suffers from mismatch between input and output
sequence lengths, but to a much lesser degree than punctuation models: the
actual mismatch amount is just 0.27%.

We also try out our combined model for both punctuation and capitalization
T webnews comb 3 on both webnews and Saeima datasets. It shows good results
on webnews test set, as expected, but the performance does noticeably degrade
on the more narrow and specialized domain Saeima test set. Domain sensitivity
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is even more pronounced, when we try to truecase webnews test set using the
model trained on Saeima: performance degrades massively, as the model is unable
to cope with a more general domain, showing an F1 score of only 35.5 versus
an F1 score of 74.1, displayed by a model that was trained on webnews, but
evaluated on Saeima test set.

Table 5. Capitalization results on Latvian Saeima and webnews datasets.

Model Test set Prec., % Recall, % F1, %

T saeima capitalization SaeimaFull 99.1 98.7 98.9

Moses recaser SaeimaFull 97.2 97.5 97.3

T webnews comb 3 SaeimaFull 89.9 63.1 74.1

T webnews comb 3 webnews 94.9 91.2 93.0

T saeima capitalization webnews 37.5 33.7 35.5

5 Conclusions

In this paper, we have presented a method for punctuation restoration and cap-
italization restoration tasks using the novel Transformer models. These models
are fast and show strong results on both tasks, but they do exhibit considerable
domain sensitivity both in terms of classification metrics and in terms of decoded
sequence length mismatch.

The problem of sequence length mismatch remains without a complete solu-
tion. In our experiments we found the brute force sequence cutting or padding
approach to provide good results most of the time, when the test domain is close
to train domain. Our attempts to improve the alignment in mismatched cases
using Transformer attention heads did not yield the expected improvements, as
there was no overall improvement, compared to the brute force approach.

We achieve new state of the art results on our internal datasets for Latvian,
improving the average F1 score from 74.7 to 85.3 on webnews corpus, and estab-
lish strong baselines for SaeimaHalf dataset, where our 3 class model achieves an
average F1 score of 90.4, but a more complex 5 class model reaches an average
F1 of 82.0. Our combined capitalization and punctuation model also displays
good results for capitalization on the test set from its domain, showing an F1
score of 93.0 on webnews, but a more modest 74.1 on the more narrow domain
SaeimaHalf test set.
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Abstract. Many applications that we use on a daily basis incorporate
Natural Language Processing (NLP), from simple tasks such as auto-
matic text correction to speech recognition. A lot of research has been
done on NLP for the English language but not much attention was given
to the NLP of the Arabic language. The purpose of this work is to imple-
ment a tagging model for Arabic Name Entity Recognition which is an
important information extraction task in NLP. It serves as a building
block for more advanced tasks. We developed a deep learning model
that consists of Bidirectional Long Short Term Memory and Conditional
Random Field with the addition of different network layers such as Word
Embedding, Convolutional Neural Network, and Character Embedding.
Hyperparameters have been tuned to maximize the F1-score.

Keywords: Natural Language Processing · Name Entity Recognition
Deep Learning · Arabic · Bidirectional Long Short Term Memory
Word Embedding · Convolutional Neural Network

1 Introduction

Nowadays, Natural Language Processing (NLP) is extensively discussed and
researched. It has been used in large fields like machine translation, speech recog-
nition, and text processing. NLP has brought a serious development in the field
of computation and Artificial Intelligence [10]. It focuses on transforming human
language into an acceptable presentation for computers to understand. Recently,
applications involve information extraction, machine translation, summarization,
search, and human-computer interface. To reach the goal of fully semantic under-
standing, researchers used divide and conquer approach and established a few
subtasks functional for application development and analysis [6]. These vary
from the syntactic, such as part-of-speech tagging, chunking, and parsing, to
the semantic, such as word sense disambiguation, semantic-role labeling, named
entity extraction and anaphora resolution.

c© Springer Nature Switzerland AG 2018
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Name Entity Recognition (NER) systems were found to be extremely signifi-
cant for various tasks in NLP as Information Retrieval and Question Answering
tasks. NER manages to identifying proper name entities such as person, loca-
tion, organization, and miscellaneous. Several methods have been implemented
for NER that depends on manual features and pays attention to improve feature
selection and engineering [19].

Arabic is a language spoken by around 420 million people, making it one of
the most spoken languages in the world. Arabic is the official language in 24
countries dominantly lying in the middle east and north Africa [18]. The rapid
increase in globalization, languages are becoming a key part in technology due
to the wide variety of applications and tools for translation, speech recognition,
question answering and information retrieval. Research in Arabic language pro-
cessing should be of an importance to keep up with recent technology because
of the increase in Arabic language presence in the technology and social media
scene.

What makes English NER easier than Arabic NER is that most of the names
begin with capital letters which is not an option in Arabic. In addition, Arabic
nature as is a morphologically complex language due to its extremely inflectional,
it has a general form of a word: Prefix (es) + Stem + Suffix (es) and the number
of prefixes and suffixes could be 0 or more. Another problem is that a letter
in the Arabic language could have up to three various forms according to its
position in the word [1,2].

One of the major problems that faces NER, in general, is the lack of labeled
data. To perform a task like NER, a large corpus specifically labeled data is
needed. Another problem is the building of complex hand-designed features
which come from various linguistic analysis [17]. The use of the deep neural
network like the Recurrent Neural Network (RNN) approach is well known for
its efficiency for sequential inputs like speech and languages. Moreover, RNN
enables the model to process variable length input.

The main aim of this work is to implement a tagger for Arabic Name Entity
Recognition using a Recurrent Neural Network (RNN) model. Since it is a new
promising approach and there is only one tagger for the Arabic language in
Neural Networks (NN).

In this work, several RNN layers have been investigated, to reach the final
model with the best performance. The final model uses the combination of
character- and word-level representations as input to Bidirectional Long Short
Term Memory (BLSTM) in order to model contextual information. The word
embedding are passed into a CNN layer before being fed into the BLSTM. After
the BLSTM layer, a sequential CRF was used to cooperatively decode labels
for the whole sentence. This model requires no feature engineering, task-specific
resources or data pre-processing beyond character embedding and pre-trained
word embedding.

Our model has been evaluated on combining two datasets ANERCorp which
is a Corpus of more than 150,000 words annotated for the NER task [2] and
AQMAR Arabic Wikipedia Named Entity Corpus and Tagger that is a 74,000-
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token corpus of 28 Arabic Wikipedia articles hand-annotated for named entities
[15]. Finally, our model has obtained 76.65% F1 score for ANER.

2 Related Work

Deep Learning has shown good performance in Name Entity Recognition (NER)
field for English language but there is not much research done for Arabic Name
Entity recognition (ANER).

A Name Entity Recognition System for English based on Recurrent Neural
Network was proposed in [9]. It proposed several models for sequence tagging
and the model that produced accurate tagging performance without resorting
to word embedding was BLSTM-CRF. The advantage of using BLSTM is the
efficiency in using the previous and the future input features. CRF added to the
model the use of sentence-level tag information. They scored 90.10% F1 using
Senna embedding and Gazetteer features.

In [11] they tackle the problem of developing resources and features for new
languages and domains. They obtain an NER performance using LSTM-CRF
model for different languages other than English without gazetteers or hand-
engineered features. Their Model does not need any language-specific resources
or features. They also used character-based word representation model to capture
orthographic sensitivity. The model got 90.94% F1 score for LSTM-CRF added
to it pre-trained word embedding, dropout rate and character-based modeling
of words.

Another NER model developed in [4] is hybrid bidirectional LSTM and CNN
architecture. Its advantages are to detect word and character features and no
need to use most feature engineering. For modeling character-level information
they used CNN. A special bidirectional recursive neural network connected to
a convolutional network was explored in [12]. This approach is to divide each
sentence into chunks of meaningful sentences holed by nodes then BRNN-CNN
model categorizes each node by these hidden features and evaluates hidden state
features of every node. They got 90.91% F1 for BLSTM-CNN added to it Word
Embedding only and 91.55% F1 score with lexicon features and capitalization
feature, which is a feature not applicable for the Arabic language because there
are no capital words in Arabic to define name entities. They also Scored 91.62%
F1 BLSTM-CNN + lex and added to it word embedding.

[14] introduced an updated model BI-LSTM-CRF, they added to it a CNN
to benefit from its capability to convert character-level data of a word into its
character-level presentation. After that, they combined word and character level
representation to be the input to BI-directional LSTM and like in [9] a CRF layer
was connected on top of BI-LSTM to decode labels for the entire sentence. They
also obtained 91.21% F1 Score for NER. One of the advantages of their model
is applying data from several domains to the model easily because it doesn’t
require data from a specific domain or task-specific knowledge.

All the previous stated work mainly tackle the English language. One of the
most effective learner for Arabic Name Entity Recognition task is implemented
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using CRF. This was proposed in [1]. Due to the small size corpora and selected
features for the Arabic language, a model may lose identification of some name
entities. Their solution was using CRF which is one of the machine learning
techniques. Their CRF Model results of this are 72.16%, 79.20% and 67.18% for
Person, Location and Organization classes.

[8] used deep learning for Arabic NER. It takes advantage of both character-
and word-level representations by applying them to an integration between
BLSTM and CRF, as well as not requiring most feature engineering. Not only
did this paper uses unannotated corpora dataset but its model also depends
on unsupervised word representations learned from this corpora. They obtained
85.71% F1 Score for Arabic NER in social media. One of the differences between
this paper and our work is the datasets. NER is usually easier especially in social
media like Twitter as most of the Named Entities are preceded with hashtags.
The dataset used in this paper is an unsupervised dataset and it was collected
from Twitter. In addition, this paper did not add the CNN layer, which was
observed in our work to boost performance.

3 Dataset Pre-processing

The dataset used for training and testing is the ANERCorp and AQMAR.
ANERCorp is a Corpus of more than 150,000 words annotated for the NER
task [2] and AQMAR Arabic Wikipedia Named Entity Corpus and Tagger is a
74,000-token corpus of 28 Arabic Wikipedia articles hand-annotated for named
entities [15]. Both datasets were added together to get more than 200K words.
Since tags across the two corpora do not follow the same labeling guideline, they
have been normalized. The different tags in the data are PER, LOC, ORG and
MISC. For each type of tag there are two different forms one for indicating the
beginning of a name entity and the other for indicating the inside of a named
entity. The whole dataset was divided into chunks of 150 words. The vocabulary
was created using all distinct words. For tags, we used One Hot Encoder because
every tag needs to have a different vector from each other. Otherwise, the model
might get confused when predicting the tag of a word.

A word2Vec Arabic model, which contains 600k vocabulary and 100 dimen-
sions has been used for word embedding. Out-of-Vocabulary words have been
assigned embedding vector of zeros. The main usage of character embedding is
to give another representation for words. This should help our model to learn the
word embedding OOV rather than ignoring them. So the words are represented
by an array of characters and these characters represented by one hot encoder.
The model also takes a second input sequence of words in the form of character
embedding. Finally, after granting a format for words, characters and tags, we
need to use these forms to represent three different sequences to be trained and
tested.
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4 Model Architecture

Our model had several layers that we could modify to understand their impact
on the overall performance. The first layers that come after the input layer
are the Word Embedding and Character Embedding. After computing their
outputs, these outputs are concatenated together to get the best result. Then two
Convolutional Neural Network layers were added on top of the word embedding
before concatenation of word embedding with character embedding. Now the
main layers of our models come, they are the BLSTM then the CRF layers.
They are mainly responsible for training the model on the input sequence and
connecting the tags of a sequence together as shown in Fig. 1.

Fig. 1. Proposed Arabic NER Deep Learning Model

4.1 Word Embedding

In the first stage of BLSTM-CRF model was using index encoding for word
sequences but the performance of the model was not high compared to most
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models that used Word2Vec. Thus, Word2Vec was fed to BLSTM-CRF. The
advantage to our model from using Word2Vec is capturing the characteristics of
the neighbors of a word and similarities between words.

4.2 Convolutional Neural Network

A multiple of convolutional layers with nonlinear activation function form a Con-
volutional Neural Network (CNN). It is used to directly manipulate the output
layer. It could apply different filters and then add their results. In our model
we used 2 layers of CNN after pre-trained word embedding to improve accuracy.
Each with filter equal to 800 which is the best filter count after tuning the hyper-
parameters. The kernel size must be 1 because any number greater than 1 will
produce a problem of decreasing the number of the word embedding sequence.
The use of pooling layers is a key aspect of Convolutional Neural Networks,
typically defined after the convolutional layers. Pooling layers subsample their
input [13]. The pooling layer was not used for the model because it decreases
the input sequence of the word embedding sequence while the tag sequence and
character embedding sequence have not changed their sizes.

4.3 Character Embedding

Bidirectional LSTM was applied to create character embedding model. Firstly
a list of characters and their embedding were randomly initialized. Then the
character embedding matching to each character in a word are given in straight
and reverse order to the bidirectional LSTM. Then, the concatenation of both
forward and backward forms of character embedding is formed to derive the
word.

4.4 BLSTM-CRF

LSTM is one of the types of RNNs that have shown extreme success in mod-
eling sequential data. LSTM shows great performance in learning long-distance
dependencies. LSTM considers the previous history only. However, BLSTM can
work on both past and future features from the input sequence of words. Con-
ditional Random Field (CRF) is one of the most conventional high-performance
sequence labeling models. BLSTM-CRF network has an advantage over BLSTM
alone and CRF alone. CRF layer on top of BLSTM will add to it the sentence
level tag information. Now the CRF Layer can efficiently predict the current tag
from past and future tag which is equal to the BLSTM past and future input
features. These extra features can boost tagging accuracy [9].

4.5 Model Hyper-parameters

One of the most important properties that affect the learning of Artificial Neural
Network (ANN) is the activation function which calculates the output from the
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summation of the weighted input signals of the neural network. It also maps the
result between 0 to 1 or −1 to 1 depending on the function. The main reason for
using it is transforming the input signal of a node in an ANN to an output signal.
It is applied to the summation of the product of input nodes and their weights.
A Neural Network unaccompanied by Activation function would directly be a
Linear regression Model, which will not fulfill learning complicated functional
mappings from data [3]. The activation function that was used by our model
was softplus. Softplus showed the best performance after tuning the activation
function for BLSTM layer and Tanh for the 2 CNN layers.

Another function that affects the training of deep learning models is Opti-
mization function. Optimization function used to minimize the output of error
function. It depends on the internal learn-able parameters of a model that are
applied to the input to compute the predicted output. The internal parameters of
a model have a tremendously important job in effectively and efficiently training
the model and process accurate outcomes. Thus, several optimization functions
were tried to improve the output [3]. Nadam is the optimization function that
was used in our model and it outperformed other optimization functions.

Deep neural networks have various non-linear hidden layers, which make
the model exceedingly expressive model to be able to learn very complicated
relationships between the outputs and the inputs. Some of the complicated rela-
tionships will be the outcome of sampling noise due to the limited training data.
The dropout rate is used to tackle the problem of overfitting, which is due to the
noise found in the training dataset but not in the test dataset [16]. The dropout
used in the model 0.2 it reduced over fitting slightly and improved the F1 score.

5 Evaluation and Results

The dataset has been divided into training, validation, and testing of 72%, 8%,
and 10%. In this section, the different evaluations and results will be discussed.
The sections start by introducing the different stages or layers of the model.
Afterward, it presents the process of tuning the Hyper-parameters.

5.1 Model Results

We will discuss the output results of each stage until it reaches the final stage
as shown in Table 1. The first model consisted of BLSTM and CRF. The input
of the model was sequences of words with word represented by an index. The
result of the precision is 86.07% and recall equal to 34.5%. Due to the very low
recall percentage, the F1 score was the lowest, which is equal to 50.17%. The
accuracy of the model is 91.93% which is the lowest accuracy we got too.

After we added the Word2Vec, as it boosts deep learning models. Our model
experienced remarkable improvement after adding the word2vec layer. We used
the word2vec on LSTM layer first then we tried on BLSTM to show the difference
between LSTM and Bidirectional LSTM. Word2vec on LSTM and CRF has
precision equal to 76.2% and recall equal to 65.1%, then F1 score equal to 70.2%
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and accuracy equal to 96.26%. The precision of the model using BLSTM is
86.78%, recall is 62.47% and an F1 score is equal to 72.65%. The model accuracy
has increased by 0.32%. Thus, BLSTM is better than regular LSTM. Two CNN
layers with 800 Filters joined our model. The new precision is equal to 80.5%,
recall is 68% and the F1 score is 73.7%.

Our final model had a character embedding concatenated to its word embed-
ding to solve the problem of OOV and enable our model to enhance prediction.
The final results of the precision reached 84.15%, recall reached 68.74% and
the F1 score is 75.68%. The accuracy is the highest accuracy compared to our
previous models, its accuracy is equal to 95.71%.

Table 1. Results of different models

Models Precision Recall F1 score Validation
accuracy

Testing
accuracy

BLSTM-CRF 86.07 34.50 50.17 91.93 94.33

LSTM-CRF-WE 76.20 65.10 70.20 95.26 97.28

BLSTM-CRF-WE 86.78 62.47 72.65 95.58 98.85

BLSTM-CRF-WE-CNN 80.50 68.00 73.70 95.54 98.17

BLSTM-CRF-WE-CNN-CE 84.15 68.74 75.68 95.71 98.06

5.2 Tuning Hyper-parameters

The tuned parameters are the optimizer, activation function, epoch number and
batch size. These Parameters affect the performance of the model as explained
below.

Epoch. Epoch is a random cutoff, usually defined as “one pass over the whole
dataset”, used to separate training into different phases, which is useful for
logging and periodic assessment [5]. The epoch of our model was tuned between
5, 10 and 50. The best results came from 10 epochs as shown in Table 2.

Batch Size. Batch size is the number of sentences that will be propagated
through the networks. The training dataset, which is 1252 sequences, will be
divided by the number of batch size. Small batch sizes are attractive since they
are able to make convergence in fewer epochs. However, large batch sizes provide
more data-parallelism which successively enhance computational efficiency and
scalability [7]. Table 3 show the best batch sizes according to our experiment
which are 10 and 32.
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Table 2. F1-score versus number of epochs

Number of epochs F1 score

5 72.15

10 75.86

15 73.84

20 74.84

25 74.21

30 73.97

35 74.97

40 74.13

45 74.17

50 74.24

Table 3. F1-score versus batch sizes

Batch size F1 score

10 76.05

20 73.64

32 75.15

40 74.81

60 74.39

80 74.62

100 73.25

Activation Function. Activation functions are used to establish nonlinear-
ity to models, which allows deep learning models to learn nonlinear prediction.
There are multiple activation functions that have been experimented with in
our model to find the best match for the model. These activation functions are
Softmax, Softplus, Softsign, Relu, Tanh, Sigmoid, Hard-Sigmoid and Linear. The
model has 2 different layers CNN and BLSTM, each one of them needs an activa-
tion function. For CNN the activation function that could improve the F1-score
is Tanh and for BLSTM are Linear, Softplus, Tanh and Sigmoid as shown in
Table 4.

Optimization Function. To minimize the output of the error function, the
optimization function has been tuned, to get the best optimization function
for our model. The different optimization functions that were tried out are
RMSprop, Adagrad, Adadelta, Adam, Adamax, and Nadam. As shown in Table 5
Nadam was the best optimizer found in Keras and it has improved the F1-score
of the model.
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Table 4. F1-score for different activation functions applied on CNN and BLSTM

Activation functions CNN F1 BLSTM F1

Softmax 43.4 19.6

Softplus 72.2 75.3

Softsign 74.7 74.7

Relu 72.8 71.8

Tanh 76.7 75.3

Sigmoid 68.2 75.2

Hard-Sigmoid 74.6 66.4

Linear 69.8 75.6

Table 5. F1-score for different activation functions applied on CNN and BLSTM

Optimization function F1 score

RMSProp 71.41

Adagrad 72.63

Adadelta 63.4

Adam 72.28

Adamax 73.84

Nadam 75.43

Dropout Rate. The model was using a dropout equal to 0.1 which has a high
over fitting between the accuracy and the validation accuracy. After tuning the
drop out 0.2 was chosen by us to be the best performing dropout rate. The F1
score of the 0.1 is 75.11% and of the 0.2 is equal to 76.65%.

Final Model. The final model that consists of all layers after tuning their hyper-
parameters to get the highest F1-score and accuracy. It consists of BLSTM-CRF,
Word Embedding, 2 CNN layers and Character Embedding. Its activation func-
tions are Tanh for CNN layers and Softplus for the BLSTM layer. In addition,
Nadam was used as the optimization function and dropout rate equal to 0.2.
The accuracy is equal to 95.94%, recall is equal to 69.66% and the final F1-score
is 76.65%.

6 Conclusion and Future Work

We have introduced a tagger for Arabic Name Entity Recognition using deep
learning techniques. The dataset used in this work is a combination of ANER-
Corp and AQMAR. Various deep learning models have been investigated such
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as LSTM-CRF, BLSTM-CRF, Word Embedding, CNN and Character Embed-
ding to reach the model with the highest F1-score. In addition, various hyper-
parameters have been tuned such as the optimizer, activation function, epoch
number and batch size. We concluded that the final model with the highest
F1-score and accuracy consists of BLSTM-CRF with Word Embedding, CNN,
and Character Embedding after tuning their hyper-parameters. The F1-Score
of the final model is equal to 76.65% and the accuracy is equal to 95.94%. For
future work, we are intending to add different layers to test their performance.
In addition, the learning rate hyper-parameter could be tuned.
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Abstract. We show that by applying discourse features derived through
topological data analysis (TDA), namely homological persistence, we can
improve classification results on the task of movie genre detection, includ-
ing identification of overlapping movie genres. On the IMDB dataset we
improve prior art results, namely we increase the Jaccard score by 4.7%
over a recent results by Hoang. We also significantly improve the F-score
(by over 15%) and slightly improve the hit rate (by 0.5%, ibid.). We
see our contribution as threefold: (a) for general audience of computa-
tional linguists, we want to increase their awareness about topology as
a possible source of semantic features; (b) for researchers using machine
learning for NLP tasks, we want to propose the use of topological fea-
tures when the number of training examples is small; and (c) for those
already aware of the existence of computational topology, we see this
work as contributing to the discussion about the value of topology for
NLP, in view of mixed results reported by others.

Keywords: Topological data analysis · Text classification · NLP

1 Introduction

In this paper we describe an experiment in using topological discourse features for
text classification. We show that this new method is capable of superior perfor-
mance even if trained on small data sets. The topological features are extracted
using ‘persistent homology’ – a standard tool of Topological Data Analysis. Our
task is classification of movie genres. We show that adding topological features
derived from text structure improves classification accuracy, namely, we increase
the Jaccard score by 4.7% compared to the recently published results by Hoang
[13]. (See Sect. 4 for details).

Topological Data Analysis (TDA) is a collection of data analysis methods,
derived from the mathematical field of topology, that aim at finding topological
structures in data. Most frequently the term refers to persistent homology, which
is a method for computing topological features of a space in different spatial reso-
lutions. (we explain this in more detail in Sect. 2.2). However, its extended mean-
ing may include clustering, manifold estimation, non-linear dimension reduction,
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etc. TDA is a new and growing subfield of data analysis, with successful appli-
cations reported in neuroscience [21], bioinformatics [15], sensor networks [4,5],
medical imaging [3], shape analysis [10], computer vision [9], audio processing
[16] and speech [2]. More recently we see applications to the analysis of neural
networks (NN), showing e.g. the architectural power of NN being closely related
to the algebraic topology of decision regions [12].

Although TDA is a very active area of research, it is only very rarely applied
to textual data, with only a handful of papers published so far. (We discuss them
in Sect. 4).

What This Paper Is About:
We see our contribution as threefold: (a) for general audience of computa-

tional linguists, we want to increase their awareness about topology as a possible
source of semantic features; (b) for researchers using machine learning for NLP
tasks, we want to propose the use of topological features when the number of
training examples is small; and (c) for those already aware of the existence of
computational topology, we see this work as contributing to the discussion about
the value of topology for NLP.

We show that when the text can be interpreted as describing a progression
of events (as in movies), topological features, namely, homological persistence,
when added to representation of text, can significantly improve classification
accuracy. In our experiment of classification of movie genres, using IMDB data1,
we show that adding topological features derived from text structure improves
classification: we significantly improve the Jaccard score by 4.7% compared to
the baseline and previously published results [13]; we also slightly improve the
hit rate. Our work uses the methods and tools introduced by Zhu [23].

2 Introduction to Topological Data Analysis (TDA)

Topological Data Analysis (TDA) can broadly be described as a collection of data
analysis methods that find structure in data. This includes: clustering, manifold
estimation, non-linear dimension reduction, mode estimation, ridge estimation
and persistent homology [22]. As the name suggests, these methods make use of
topological ideas. Often, the term TDA is used narrowly to describe a particular
method called persistent homology (discussed in Sect. 2.2). Zhu [23] also explains
that as a branch of topological data analysis, persistent homology has the advan-
tage of capturing novel invariant structural features of documents. Intuitively,
persistent homology can identify clusters (0-th order holes), holes (1st order, as
in our loopy curve), voids (2nd order holes, the inside of a balloon), and so on
in a point cloud.

2.1 Betti Numbers

Singh et al. [21] explains the concept of a topological invariant with an example.
Consider a world where objects are made of elastic rubber. Two objects are
1 ftp://ftp.fu-berlin.de/pub/misc/movies/database/.

ftp://ftp.fu-berlin.de/pub/misc/movies/database/
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considered equivalent if they can be deformed into each other without tearing
the material. If such a transformation between X and Y exists, we say they are
topologically equivalent. Thus a pyramid and a ball are equivalent. It turns out
two shapes are not equivalent if they differ in the number of holes. Thus, simply
counting holes can provide a signature for the object at hand. Holes can exist in
different dimensions. A one-dimensional hole is exposed when a one-dimensional
loop (a closed curve) on the object cannot be deformed into a single point without
tearing the loop. If two such loops can be deformed into one another they define
the same hole, which should be counted only once. Analogous definitions can be
invoked in higher dimensions (Fig. 1).

Fig. 1. Betti numbers provide a signature of the underlying topology (shape).

The notion of counting holes of different dimensions is formalized by the
definition of Betti numbers. The Betti numbers of an object X can be arranged
in a sequence, b(X) = (b0, b1, b2, ...), where b0 represents the number of connected
components, b1 represents the number of one dimensional holes, b2 – the number
of two-dimensional holes, and so forth. An important property of Betti sequences
is that if two objects are topologically equivalent (they can be deformed into each
other) they share the same Betti sequence.

2.2 Persistent Homology and Barcodes

Persistent homology is a multi-scale approach to quantifying topological features
in data [6–8]. That is we connect Persistent homology finds “holes” by identifying
equivalent cycles [23]. The basic idea of the method is to track the different
“holes” across different spatial scales of analysis. We visualize the results of the
analysis by plotting “birth” and “death” intervals of individual holes of different
dimensions as the spatial scale ε goes from zero to infinity. For each Betti number,
we keep a separate graph. Connected components are drawn as horizontal lines
in the b0 graph, one-dimensional holes correspond to horizontal lines in the b1
graph, two-dimensional holes in the b2 graph, and so on. For each hole, the
horizontal line has its endpoints at the values of ε at which the structure was
first created and then destroyed. The set of all these lines together is called a
barcode.
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2.3 Topological Data Analysis for Textual Data

Zhu [23] presents one of the first applications of persistent homology for natural
language processing. His “Similarity Filtration with Time Skeleton” (SIFTS)
algorithm identifies holes that can be interpreted as semantic “tie-backs” in a text
document, providing a new document structure representation. A brief overview
of the approach is explained in [23]: imagine dividing a document into smaller
units such as paragraphs. A paragraph can be represented by a point in some
space, for example, as the bag-of-words vector in Rd where d is the vocabulary
size. All paragraphs in the document form a point cloud in this space. Now
let us “connect the dots” by linking the point for the first paragraph to the
second, the second to the third, and so on. What does the curve look like?
Certain structures of the curve capture information relevant to Natural Language
Processing (NLP). For instance, a good essay may have a conclusion paragraph
that “ties back” to the introduction paragraph. Thus the starting point and the
ending point of the curve may be close in the space. If we further connect all
points within some small ε diameter, the curve may become a loop with a hole in
the middle. In contrast, an essay without any tying back may not contain holes,
no matter how large ε is.

Although we tried to provide some intuitions about TDA, for the purpose of
this paper we can treat TDA as a black box and a provider of additional numerical
features. We do not assume any prior knowledge of topology or TDA. However,
to follow the remainder of this paper the reader will benefit remembering the
following three points:

– One of its key tools is persistent homology which tries to find geometric pat-
terns such as clusters and holes in different dimensions and different resolu-
tions, simultaneously.

– The result of this analysis is represented as barcodes or equivalently persis-
tence diagrams.

– For machine learning tasks such as classification, these can be viewed as
additional numerical features.

For a technical and accessible introduction to topological data analysis for
text processing we refer the reader to [23]. The reader will also find there all the
necessary background of the SIFTS method used in this paper.

3 Description of Experiments

In this section we explain our experiment and the data preparation process.
We evaluate whether topological features are effective in text classification by
predicting movie genres based on plot descriptions (as in the example below). We
perform multiple preprocessing steps before generating barcodes, as explained
in subsections below.

We also explain the initial experiments we performed to get a better under-
standing of the procedure, and this we hope might help the reader to follow up
the paper.
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Fig. 2. Outlines our entire experiment procedure. The dataset used for the experiment
is the IMDB dataset. We explain Data Preparation in detail in the Sect. 3.2. The steps
mentioned in the table are simplified to get a clear understanding of the experiment
procedure. We perform a 4-step text preprocessing and use Lancaster Stemming to
avoid writing style bias. Once we create the vector matrices, we use Javaplex with
Matlab to generate the persistence diagrams i.e. barcodes (shown in the next section).
Section 3.3 explains our Data Distribution and Results.

3.1 Initial Experiment

In this section we explain our initial experiment and lay the foundation for the
final experiment.

The main insight of [23] experiment was that persistence diagrams can outline
the strength of the main idea of a text. Following this, in an initial experiment,
we compare the barcodes for two movie plots (one Action genre and one Comedy
genre), from the IMDB’s website, in our experiment to identify the movie plot.
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We use the [1] dataset to identify the top words from the Action genre using the
TF-IDF measure. Using these top words, we generate Term Frequency matrix
for both the movie plots, as explained in Sect. 3.2. Understanding that an Action
movie plot would have more words common with the top words list and hence
the Action movie vector would present stronger looping between the sentences.

Fig. 3. The existence of 1-dimensional holes/loops in a document is shown by the hor-
izontal bars in the barcodes. The count of the horizontal bar would give the number
of 1-dimensional holes in the document. Length of the bar determines the persistence
of holes. More the number of bars and length of the bars gives the strength of sim-
ilarity between rows of the vector for a particular genre. Thus, with the presence of
1-dimensional holes/loops we say the movie belongs to the respective genre. (a) and
(b) both showcase same number of 1-dimensional loops/holes. However, we can see a
clear distinction in the persistence of these holes. In the (a), the holes are not as per-
sistent as in (b), if not more. The sentences of both the movie plots were converted to
vector forms using the same set of words belonging to movies exclusively from Action
genre. Hence, when the Comedy movie represents stronger bond between the vectors,
it indicates the ambiguity in the approach followed for generating vectors.

The barcodes in Fig. 3 indicated three major issue in our first experiments:
1. Not considering overlapping genres 2. Writing Style of the text 3. No use of
semantics. Movies usually belong to more than one genres and not considering
this while classifying them could result in sub-par results. We used the top
words for vectors from [1] dataset while tested on an IMDB’s movie plot. To
account for change of writing styles and implicitly for semantics, we simply use
the Lancaster stemming [14] in our final experiment (as the performance of most
stemming algorithms is data specific, we observed Lancaster Stemming to be
working best for our experiment and hence decided to use Lancaster Stemming
over other algorithms). This is clearly a very simple solution, and others, e.g.
based on word2vec-like solutions will perhaps be more appropriate for future
work to produce better semantic representations.
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3.2 Data Preparation and Generation of Topological Signatures

As we performed some basic preprocessing on the text and used NLTK’s stop-
words list for removing the stopwords. We also remove the punctuation marks
and numerical characters from the sentences. Next, we separate each sentence
from the text into a new line, thereby letting us handle each sentence indi-
vidually. To make the experiment neutral to writing styles, we use Lancaster
Stemming and reduce each token to its base form. After the data preparation,
next is creating the Term Frequency Matrix for each genre in consideration per
movie plot. Hence, each column in the matrix represented the top words from
the respective genre and each row was the vector representation of the respec-
tive line from the text. We create this matrix for every movie plot that satisfied
‘Testing Data Conditions’.

3.3 Experiment and Results

Data Selection: From the dataset we filtered out the details regarding TV
episodes and short/documentary as that would not be inline with the problem
statement. With the movies, we collect the plots, genres and a movie id, for
uniquely identifying each movie in the database. As our major comparison is
between the movies from genre Action, Romance, Comedy and Horror, we seg-
regate the movie belonging exclusively to only these four genres i.e. no overlap.
Thus we got 3286 movies belonging to only action genre, 3500 movies belonging
to only comedy genre, 2176 movies belonging to only horror genre and 18000
movies belonging to comedy genre of which we randomly select 3000 movies
belonging to comedy genre, to avoid the problem of over fitting.

Data Preparation: We preprocess all the movies belonging one of the four gen-
res, individually. Thereby removing the stop words, punctuation marks, numeric
tokens, stemming to reduce tokens to their same base forms. Next, we use TF-
IDF to get the top 1000 words from each genre. With the four lists of 1000
top tokens of each genre, we perform subtraction of list to remove the common
nouns from each list, as nouns like ‘second’, ‘depict’, etc. added noise resulting
in incorrect final outputs. After manually removing the common nouns left after
subtraction, we are left with top words belonging to each genres without any
noise, each list is approximately 200 tokens long. We use these lists of top tokens
for creating sentence vectors for the test documents.

Selection of Testing Data: While picking movies for testing, we found that
one movie could have more than 1 plot summaries, provided by different authors.
Hence, database had multiple entries for a movie with same name, however with
a unique movie id, for each different plot summary. Hence, for each movie plot,
we first assign the longest movie plot provided for each movie. For testing, we
randomly pick 250 movies from the database satisfying the basic criteria, i.e.
belonging to more than one genres, having more than 100 tokens in the plot
and having at least 4 sentences. We found 66000 movies satisfying our above
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criteria and we randomly picked 250 movies, keeping no preference for genre
combinations or length of the plots.

Testing: We want to find the 1-dimension holes across the sentences. Using the
vectors generated with the top words from each genre as explained above, we run
them through Javaplex for generating the homology complexes. We compare the
four 1-dimension homology complexes generated for each movie plot to determine
the genre for the respective movie. Using the barcode representation of the 1-
dimension homology complexes, the program is able to correctly identify the
genres of 208 movies with overlapping genres, giving a hit rate of 0.8333%. The
output was considered correct if we were able to correctly predict at least one
genre if a movie belonged to n genres. As hit rate is considered a weak metric,
we calculate Jaccard index and F-score using the formula mention in Fig. 2. We
obtained a Jaccard index of 54.8% and an F-score of 71.88%.

In Fig. 4 we present an example of the output. Here, we consider a movie
plot form the IMDB dataset which is listed as Comedy and Romance genre. We,
generate the Term Frequency Matrix and run TDA to generate the barcodes
presented in Fig. 4. Plot of the movie tested is highlighted below.

Example Movie Plot: Al Bennett and Alice Cook are blissfully happy and are
building their house in an isolated area; using Al’s savings of $7;000. Troubles
begin when Al’s uncle and boss; Uncle George; unaware of Al’s engagement;
inspects the house and announces he will live with him. Furthermore; he wants
Al to marry Minnie Spring; a wonderful girl George just met; so the three of them
can live happily ever after. Troubles mount when Alice’s parents come to see the
partially built house. They bring with them eleven other family members; some
of whom expect to live with the couple when they marry. Badgered on all sides;
Al finally yells “There’s too many Cooks.” Alice breaks their engagement; and
George fires him. As if these problems weren’t enough; the Carpenter’s Union
calls a strike; but a determined Al decides to finish the house himself. Months
later; lonely and depressed; Al puts his finished house up for sale; but things are
looking up for Al.

Reproducibility: As mentioned earlier, the code and data we used for experi-
ments is available (http://pages.cs.wisc.edu/~jerryzhu/publications.html, ftp://
ftp.fu-berlin.de/pub/misc/movies/database/). We have published the data we
used, with topological features, and the classification results on data (https://
data.world/pdoshi3/movie-genre-classification-using-tda).

4 Comparison with Related Work and Discussion

TDA although a very active area of research, as mentioned above, is very rarely
applied to textual data. The main reference in this space is [23], which can also
serve as an excellent introduction to the field. Since the paper is accompanied
by software it was relatively painless for us to run the experiments described
above. The works cited here might be (as of May 2018) complete or close to

http://pages.cs.wisc.edu/~jerryzhu/publications.html
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
https://data.world/pdoshi3/movie-genre-classification-using-tda
https://data.world/pdoshi3/movie-genre-classification-using-tda
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Fig. 4. Comparing the four barcodes, we can see that (c) and (d) have persistent
1-dimensional holes whereas (a) and (b) have none. For (c) and (d), top words from
Comedy genre and Romance genre, respectively, were used to represent the columns for
the Term Frequency Matrix. For (a) and (b), top words from Action genre and Horror
genre, respectively, were used to represent the columns in the Term Frequency Matrix.
This clearly shows the inclination of the movie plot in question, towards Comedy and
Romance genre, which are the original genres for the movie in IMDB dataset.

complete list of papers using persistent homology for text processing (and not
just mentioning it as a possibility). We briefly discuss them now.

There is substantial amount of work on classification of movie plots, as the
problem appears in movie recommendations. A recent article by Hoang [13]
is closest to our work, as it is focused on the same task of predicting movie
genres based on plots,and contains state of the art results. The author reports
results of experiments with more than 250,000 movies using neural networks
for classification. The produced model achieves the Jaccard-score of 50%, the
F-score of 56% and the hit rate of 80.5%. Table 1 Compares our results with
Hoang’s.

While our results look better, this is not exactly an apples-to-apples compar-
ison: while Hoang performs the experiment on a very large data set, our test is
limited to a sample of 250 movies. On the other hand, this limitation is also the
strength of the method. Namely, we only need to train on approximately 1% of
the data to obtain a very good performance.

Secondly, we perform our experiment on 4 most popular genres i.e. Action,
Comedy, Horror and Romance, while Hoang [13] also considers not-so popular
genres like Adventure, Sport, Mystery, Family. We believe, the F-score for TDA
approach would be higher when compared to Hoang’s [13] result for the same
four genres, since we have better precision and recall. However we estimate the
difference in the F-score of 15.88% might come down to 7% since [13] model
performed better for popular genres compared to other genres. Therefore we do
not want to emphasize the F-score improvements.
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However, we want to bring the reader’s attention to the fact that our 250
movies were explicitly chosen to belong to overlapping genres. The reason for
that choice was that (a) our initial experiment on a few dozen movies showed
100% accuracy of TDA on movies with no overlapping genres; (b) we decided in
late 2017 to run the experiment on overlapping categories, which arguably can
be viewed as a more difficult problem. Statistically speaking 250 serves as a good
sample set to compare the results. We are currently focused on testing TDA on
a larger dataset that would allow us remove the limitations of this comparison.
One of the issues here is that for a larger set we need to change the set of TDA
tools to a more efficient program than used in the reported experiment; we are
experimenting with Ripser2 for this purpose.

There are only a few other examples of application of TDA to text. [18]
perform sentiment classification on both sentence level, on the Cornell Sentence
Polarity (the CSP-corpus of [19]), and on IMDB movie reviews (following Michel
et al. [17]). They conclude “using persistence diagrams for text representation
does not seem to positively contribute to document clustering and sentiment
classification tasks”. Although they leave open the possibility of topological fea-
tures contributing to other NLP tasks such a parsing.

On the other hand Guan et al. [11] show that topological features can improve
extraction of multiword expressions and in document summarization.

Finally, we want to mention [20] who argues for the applicability of TDA to
visualization of texts; this is an important issue, but somewhat orthogonal to
the tasks discussed in this paper.

Table 1. Comparison with recent prior art. See the discussion in text for the limitations
of this comparison.

Methods Jaccard Hit rate F-score

Hoang [13] 50% 74.2–82.9% 56%
Our results (TDA) 54.8% 83.3% 71.88%

5 Conclusion

In the reported experiment, we showed the ability of Topological Data Analysis
(TDA) to perform text classification. TDA not only matches the performance
of widely used algorithms like Multinomial Naive Bayes, Logistic Regression for
binary text classification, but also can also outperform more advanced techniques
like neural networks when in multi-label text classification. On the task of clas-
sification of movies according to four most common genres, we obtain Jaccard
score of 54.8%, F-score of 71.88%, and hit rate of 83.3%. This is a significant
improvement in 2 of the 3 measures over recently reported results of [13]: (+4.7%,
+15.88%, and +0.5%)-respectively. As noted above, one limitation of our work
2 https://github.com/Ripser/ripser.

https://github.com/Ripser/ripser
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is that the testing has only been performed on a (random) sample of 250 movies,
moreover we limited ourselves to four categories. However, we also chose – on
purpose – the data consisting of the movies which belong to multiple categories,
and thus made the task harder. (And this harder task was our initial objective,
as we found out about [13] after most of the experiments were done).

Clearly, the main message of this exercise is that TDA can be seriously used as
a tool for discourse classification, notwithstanding mixed results of other exper-
iments (discussed above in Sect. 4). Topology can be a source of useful features.
And while this work focused on low dimensional persistence, higher dimensional
topological features can be a source of additional insights by representing more
complex repeating patterns.
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Abstract. Deep learning techniques have recently shown to be success-
ful in many natural language processing tasks forming state-of-the-art
systems. They require, however, a large amount of annotated data which
is often missing. This paper explores the use of domain-adversarial learn-
ing as a regularizer to avoid overfitting when training domain invari-
ant features for deep, complex neural network in low-resource and zero-
resource settings in new target domains or languages. In case of new lan-
guages, we show that monolingual word-vectors can be directly used for
training without pre-alignment. Their projection into a common space
can be learnt ad-hoc at training time reaching the final performance of
pretrained multilingual word-vectors.

Keywords: NLP · Low-resource · Deep learning · Domain-adversarial

1 Introduction

Text classification is the generic term to describe the process of assigning a
document x to a class y [1]. Depending on the nature of the class label y, text
classification can be used for a variety of tasks, including sentiment analysis [24],
spam filtering [34] or topic labeling [38].

Traditional approaches use sparse, symbolic representations of words and
documents, such as the bag-of-words model [8]. Then, linear models or kernel
methods are used for the classification [38]. This approach has obvious disad-
vantages. While the symbolic representation of words can not model similarities
and relations between words [6], linear models often fail to understand relations
in longer sentences which is particularly important for sentiment detection [29].

Current state-of-the-art natural language processing (NLP) models often use
distributed representations of words [27,30] which are then feed into complex
neural network models such as convolutional neural networks (CNNs) [21] or
recurrent neural networks (RNNs) [36]. While these approaches proved to be
successful for many NLP tasks [5,8], they often require large amounts of labeled
data. However, there is often only a little training data or even no data available
c© Springer Nature Switzerland AG 2018
T. Dutoit et al. (Eds.): SLSP 2018, LNAI 11171, pp. 129–139, 2018.
https://doi.org/10.1007/978-3-030-00810-9_12
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when a NLP application is needed for new domains [12] or new languages [2,9,
15]. Moreover in case of adaptation to new languages, multilingual word-vectors
are considered to be required. They are, however, not trivial to obtain due to
the lack of parallel data [10] or multilingual dictionaries [3].

In this work we explore domain adversarial training and its interpretation
as a regularizer for training of complex model architectures avoiding overfitting
in low-resource and zero-resource settings. In the case of transfer learning from
one to another, low-resource, language, our experimental results reveal that a
projection of separate word-vectors into a common space can be automatically
learnt during training, which suggests that the multilingual word-vectors are no
longer needed. All code necessary to reproduce our experimental results is made
available1.

The remainder of the paper is organized as follows: In Sect. 2, we shortly
summarize the most related work and emphasize the differences between our
work and the previous one. Section 3 describes the model architecture and var-
ious feature extractors. In Sect. 4, we introduce the three datasets and present
our experimental setups. Section 5 reports the results and our analysis on the
two experiments including low-resource domain and language. The study is con-
cluded in Sect. 6.

2 Related Work

Adversarial training [13] has recently gained considerable interest in NLP
research community [7,11,14,19,23,31,33,41]. The most related works to our
research are presented in [11] and [7]. [11] proposed domain-adversarial neural
networks (DANN), a general approach for domain adaptive classifiers using the
reversal of the gradients in an adversarial domain classifier. They showed that
domain-adversarial training using gradient-reversal enables a feature-extractor
to learn domain-invariant representations of an input. [7] extended it by using
Wasserstein approximation over categorical cross-entropy as the loss function
and used the general DANN architecture for multilingual sentiment classifica-
tion by averaging multilingual word-vectors. In comparison with t*/hese works,
we will explore DANN when training of more complex networks in low-resource
scenarios. Furthermore, we will address the question whether multilingual word-
vectors are necessary in transfer learning to low-resource languages.

3 Proposed Model

3.1 Architecture

Figure 1 shows the general network architecture. Input to the network is a doc-
ument x represented by a K × |x| matrix where each row represents a K dimen-
sional word vector and |x| is the number of words in x. In the case where the

1 https://gitlab.mi.hdm-stuttgart.de/griesshaber/dann-evaluation.

https://gitlab.mi.hdm-stuttgart.de/griesshaber/dann-evaluation
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Fig. 1. The general network architecture using domain-adversarial training

documents xsrc and xtgt are from different languages, an additional layer with
shape K×K for each domain is introduced to project word-vector into a common
space. As this projection is learnt during training of the classifier, it optimises
the alignment to the objective of the network. We argue this presents an advan-
tage over the use of a pre-aligned embedding which may have been optimised
to a different objective (i.e. using the distributional hypothesis [16] or parallel
corpora).

The projected input is then fed into a feature extractor F (more details
in Subsect. 3.2) which should learn to produce a single document vector z for
any document x. The objective of F is to learn features that are discrimina-
tive to the class of the document but indiscriminate to the domain. To achieve
this, the architecture trains 2 separate classifiers: a label predictor P(z) ⇒ y
and a domain discriminator Q(z) ⇒ d. Both get their input from the joint
feature extractor F(x) ⇒ z and are jointly trained. While P is trained to min-
imise the loss on the label classification, the domain classifier Q is adversarially
trained to minimise the loss on the domain classification. Thus, the intuition
is that F will learn a joint feature space where elements are invariant for their
domain d but distinguishable in their class label y. For the adversarial training,
a gradient-reversal-layer (GRL) is used that inverts the gradients of Q during
back-propagation. Thus, minimising the loss L(Q) effectively trains F to pro-
duce features that hinder Q from learning a good domain discriminator. This
is explained by the fact that L(Q) approximates the divergence of the space of
hyperplanes H of F that separates the training elements by their domain asso-
ciation. See [11] for a full mathematical elaboration. To weight the impact of
the two branches, the gradients of Q are multiplied with the hyperparameter λ
during training. Therefore a higher λ value puts more emphasis on learning F
to produce domain-invariant features. One important property of this architec-
ture is that it does not explicitly need labeled training samples from the target
domain. Moreover, it is also possible to use any available data from the target
domain for the training of P. This makes the architecture suitable for no- and
low-resource learning.

The label predictor P is trained to minimise the cross-entropy between the
output and the document labels. As the domain discriminator effectively tries
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to predict from which distribution PF a document vector z is drawn from, we
follow [4] and approximate the Wasserstein distance by using the Kantorovich-
Rubenstein duality [37] with the output of Q to avoid saturating the gradients
and thus giving F good feedback during training:

W (P src
F , P tgt

F ) ∼=
sup

‖Q‖L≤1

( E
F(x)∼P src

F
[Q(F(x))] − E

F(x′)∼P tgt
F

[Q(F(x′))])

where P src
F and P tgt

F are the distributions of the feature-representations of the
elements from the source- and target-domain respectively. To meet the Lipschitz
constraint ‖Q‖L ≤ 1, all weights of Q are clipped to the interval [−0.01, 0.01].

3.2 Feature Extractors

We implement several feature extractors F with an increasing level of complex-
ities in this work. The idea is to explore the effectiveness of domain adversarial
learning as a regularizer when training complex networks with small amount of
annotated training data or even without any training data.

Word-Vector Average. The first simple feature extractor maps a document to a
single vector by averaging all embedded word-vectors in the document wi ∈ x.

Favg(x) =
1
|x|

∑

wi∈x

wi

The document vector is then fed into a subsequent ReLU fully connected layer
with 100 neurons [28].

tf-idf weighted Average. The second method extends Favg by weighting all the
word-vectors by its term frequency-inverse document frequency (tf-idf) [32, p.
7].

Ftfidf (x) =
1
|x|

∑

wi∈x

tfidf(wi, x,X) · wi

Convolutional Neural Network. We also use convolutional neural networks
(CNNs) following [21]. Each document x is modelled as a N × K matrix, where
N = max(|X|) is the maximum number of words in the set of documents X,
and K is the dimensionality of the used word-embedding. Shorter documents
are padded with zero vectors. This input representation is fed into a set of filters
with widths 3, 4, 5 each with 100 feature maps. The feature maps are max-over-
time pooled [8] which naturally deals with the zero-padding. For regularization,
dropout with a constraint on l2-norms [18] is applied to the flattened and pooled
feature maps.
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Hierarchical Attention Network. The most complex feature extractor explored
in this work is the Hierarchical Attention Network (HAN) presented in [40],
which captures the inherent hierarchical structure of a document. Each word in
a sentence is fed into a bidirectional recurrent network (RNN) consisting of 100
GRU-cells [5], the word-encoder with output hit. Attention mechanism [5,39] is
used to weight each representation. Specifically,

uit = tanh(Wwhit + bw)

αit =
exp(uit

Tuw)∑
t exp(uit

Tuw)

si =
∑

t

αithit

where uit is the hidden representation of hit for the attention mechanism and αit

is the softmax-normalized attention for the current word as a similarity measure
of the hidden representation with a word-context vector uw that is learned during
training. si is then the weighted sum of all word representations and used as input
to the sentence-encoder. The sentence-encoder uses the sentence vectors si as an
input and has the same general structure as the word-encoder.

4 Experiment Setup

4.1 Datasets

We evaluate the model across three datasets with a focus on sentiment classifi-
cation:

– Amazon Reviews dataset contains 142.8M text reviews including a 5-star rat-
ing [17,26] including many different categories. We simplified the sentiment
classification task to the case of binary classification. A rating of 1 or 2 indi-
cated a negative example, while reviews with a rating of 4 or 5 got labeled
positive. The categories are used as a domain-label d.

– the Arabic Social Media dataset [35] contains 1200 Arabic sentences from
social media posts, annotated into 3 sentiment classes (+, 0 and -).

– the last dataset contains over 4.7M reviews from the Yelp Open Dataset Chal-
lenge2 that have a 5 star rating. A subset of 600.000 reviews (120.000 entries
per rating) was selected for training. To match the polarity labels of the Ara-
bic Social Media dataset, reviews with a rating of 1 and 2 were assigned the
- label, 4 and 5 rated reviews were assigned the + category and a rating of 3
was assigned the 0 label.

In order to simulate the low-resource scenario, a fixed number of 500 elements
from the target category were randomly selected and used in training. In the
source domain, 80% of the dataset are used for training. We conduct two different
experiments:
2 https://www.yelp.com/dataset.

https://www.yelp.com/dataset
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– In the low-resource domain experiments, the five main categories Electronics,
Home and Kitchen, Beauty and Baby from the Amazon Reviews corpus com-
posed the source domain, while Automotive was used as low-resource target
domain.

– For the low-resource language settings, Arabic was used as the low-resource
target language, while the English Yelp reviews were used as the source.

4.2 Hyperparameters

We use two different word-vectors: (a) the pretrained monolingual fastText word-
vectors3 [20] and (b) the pretrained multilingual word-vectors MUSE 4. Both
vectors have a dimensionality of K = 300.

The label and domain predictors are trained using ADAM [22] with a
learning-rate of μP = 0.01 resp. μQ = 0.00005. The domain discriminator Q’s
first layer is the GRL that is implemented by multiplying the gradients with
−1 during back-propagation, effectively inverting them, and passing all values
unaltered during the forward pass. The values are then passed to two subse-
quent, fully-connected layers: one hidden layer with 100 neurons and ReLU non-
linearities and the output layer with unscaled, linear outputs. Following [4,7] we
also calculate the Wasserstein loss on the output of Q. The domain predictor is
trained for ncritic = 5 iterations for each P step and the weights of Q are clipped
to the interval [−0.01, 0.01]. More details can be found in footnote 1.

5 Results and Discussion

5.1 Low-Resource Domain

Table 1 compares the accuracy of the different feature extractors on the senti-
ment classification tasks. The models trained only on documents of the source
domain perform poorly on the target data. Moreover, the more complex Fcnn

and Fhan model architectures perform worse in this scenario than the simpler
Favg and Ftfidf models. This indicates, that the complex models overfit on the
source domain. In comparison, the models using the adversarial training of Q,
are regularized and do not overfit on the source domain, even if no labeled target
data is used.

Figure 2 compares the classification accuracy of the two extreme cases: very
simple model Favg and fairly complex model Fhan varying the amount of adapta-
tion data. Strong overfitting of the HAN architecture without adversarial train-
ing was observed when training with source and target training data. The simpler
approach using word-vector averaging performs considerably better in this low-
resource scenario without the domain adversarial training. All models benefit
from introducing labeled training data from the target domain. With domain
adversarial training, the complex Fhan performs best in this experiment.
3 https://github.com/facebookresearch/fastText.
4 https://github.com/facebookresearch/MUSE.

https://github.com/facebookresearch/fastText
https://github.com/facebookresearch/MUSE
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Table 1. Classifier accuracies on the 3-class classification tasks. DANNn is the domain
adversarial model trained on n labeled examples from the respective target domain.
The S only column shows the accuracy of the models trained with source data without
adversarial training, while for S+T the model is trained on source domain data and
500 target domain data points

Features DANN500 DANN0 S only S+T

Favg 86.0 81.5 79.7 82.1

Ftfidf 86.2 83.9 79.0 83.2

Fcnn 88.8 84.7 77.2 80.6

Fhan 86.7 85.9 77.5 79.3

Fig. 2. Performance of the Favg and Fhan models trained on different numbers of
target data

5.2 Low-Resource Language

Table 2 shows the results with different feature extractors using monolingual and
multilingual word-vectors. Note that the monolingual word-vectors are trained
independently and therefore are in different subspaces. The models trained only
in the source domain without domain-adversarial training are not able to learn
a usable classification rule for the target domain. When projecting the word-

Table 2. Model accuracies using the monolingual word-vectors (ft) and multilingual
MUSE word-vectors (muse)

F DANNft−500 DANNft−0 S onlyft DANNmuse−500 DANNmuse−0

Favg 54.6 51.2 35.3 54.4 51.1

Fcnn 55.4 52.3 42.2 55.4 52.4

Fhan 55.3 51.8 41.5 55.7 52.0
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Fig. 3. Visualization of selected word-vectors in a two-dimensional space using t-SNE
[25] for dimensionality reduction. (a) shows the unaligned fastText vectors, (b) are the
prealigned MUSE vectors and (c) shows the fastText vectors after projection into a
common space during training

vectors in a common space during training, we obtain a similar performance
to the model architecture with the pretrained multilingual MUSE word-vectors.
This can be explained that the learnt alignment is trained to best suit the task
of the classifier, while the multilingual word-vectors may be trained towards
a different objective. A visualization of our fine-tuned word-vectors in Fig. 3
supports these results. The monolingual word-vectors do not show any visible
alignment between words in different languages. Using our model, they were
projected into a common space during training and have overall lower average
Hausdorff distance, indicating an alignment of the two embedding spaces.

6 Conclusion

We evaluated different feature extractors for the domain-adversarial training
of text classifiers in low- and zero-resource scenarios. Our experimental results
reveal that adversarial training of a domain discriminator works as a regular-
izer across different architectures ranging from simple to complex networks.
All tested feature extractors were able to learn a domain-invariant document-
representation. We also showed that learning a projection of word-vectors into a
common space during training can improve classification performance and ren-
ders the use of pretrained multilingual word-vectors unnecessary.
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and Hervé Spechbach2

1 FTI/TIM, University of Geneva, Geneva, Switzerland
{Emmanuel.Rayner,Johanna.Gerlach,Pierrette.Bouillon,

Nikolaos.Tsourakis}@unige.ch
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Abstract. We consider methods for handling incomplete (elliptical)
utterances in spoken phraselators, and describe how they have been
implemented inside BabelDr, a substantial spoken medical phraselator.
The challenge is to extend the phrase matching process so that it is sen-
sitive to preceding dialogue context. We contrast two methods, one using
limited-vocabulary strict grammar-based speech and language processing
and one using large-vocabulary speech recognition with fuzzy grammar-
based processing, and present an initial evaluation on a spoken corpus of
821 context-sentence/elliptical-phrase pairs. The large-vocabulary/fuzzy
method strongly outperforms the limited-vocabulary/strict method over
the whole corpus, though it is slightly inferior for the subset that is
within grammar coverage. We investigate possibilities for combining
the two processing paths, using several machine learning frameworks,
and demonstrate that hybrid methods strongly outperform the large-
vocabulary/fuzzy method.

Keywords: Phraselators · Speech understanding · Ellipsis
Medical applications · Context-dependent translation

1 Background and Motivation

In this paper, we will be examining issues that arise when building spoken med-
ical phraselators. By this, we mean speech-enabled systems useful to medical
professionals (hereafter, “doctors”, though in practice they can be nurses or
medical receptionists), which contain a limited repertoire of phrases, each one
paired with translations in a number of target languages. The operation of the
system is that the doctor speaks, and the system shows her the phrase or phrases
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which match it most closely. If the doctor selects one of the candidate phrases
offered by the system, the system speaks the translation in the currently active
target language. If the doctor considers that none of the phrases are a close
enough match to what she said, she respeaks.

There are two points following from the above which we will mention at once.
First, medical phraselators have in no way been rendered obsolete by Google
Translate (GT) and similar systems. GT is known to be seriously inaccurate in
medical situations; experiments carried out by ourselves and other groups suggest
that it mistranslates 30–40% of all utterances [2,5]. The problem is not so much
the error rate as the fact that the only feedback given to the source language user,
the recognition result, is unreliable, since correctly recognised utterances can
often be mistranslated. For these reasons, doctors are sceptical about systems like
GT and more interested in phraselators, which are constructed to give completely
reliable feedback.

Second, medical phraselators are nontrivial to build. There is a temptation to
think that little more is required than to assemble a collection of useful phrases,
get them translated into the target languages, and connect them to a speech
recogniser, but practical experience shows this picture is deceptive. Quite apart
from the fact that selection and accurate translation of the content requires sub-
stantial expertise, the fundamental challenge at the software level is the match-
ing process. It is unreasonable to expect the doctor to remember more than a
small number of fixed phrases [3], so the system must be able to support robust,
accurate matching of freely expressed user input against the phrase repertoire.

The specific problem we will examine in this paper is that of incomplete
(elliptical) phrases, which constitute a particularly difficult challenge for the
matching process. For example, suppose that the last question was “Is the pain
worse when you lean forward?”. If the doctor now wants to continue by asking
whether standing up also makes the pain worse, it is obviously clumsy to say
“Is the pain worse when you stand up?”; a shorter and more natural phrasing
is the elliptical “When you stand up?”. The problem is that incomplete phrases
of this kind are systematically ambiguous unless discourse context is taken into
account: thus, in this particular example, “When you stand up?” could equally
well mean “Is the pain better when you stand up?” or “Does it hurt when you
stand up?”, given suitable preceding contexts.

The paper describes approaches to the problem of translating elliptical utter-
ances which have been implemented inside BabelDr, a medical phraselator cur-
rently being developed at the University of Geneva. Section 2 gives an overview
of BabelDr, highlighting aspects of processing which are relevant here. The next
three sections form the main content of the paper. Section 3 describes two solu-
tions to the ellipsis translation problem which we have implemented, respec-
tively using the system’s “limited-vocabulary/strict grammar-based” and “large-
vocabulary/fuzzy grammar-based” processing paths, Sect. 4 describes how the
two solutions can be combined into a hybrid processing method, and Sect. 5
describes an initial evaluation. The final section concludes and suggests next
steps.
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2 The BabelDr Medical Phraselator

The BabelDr project (http://babeldr.unige.ch/) is a collaboration, initiated in
mid-2015, between the Hôpitaux Universitaires de Genéve (HUG), Geneva’s
main hospital, and Geneva University’s Faculty of Translation and Interpret-
ing. The goal is to develop a medical phraselator usable in real medical sit-
uations, focusing initially on communication between French-speaking medical
professionals and Arabic- and Tigrinya-speaking patients presenting at HUG’s
Accident and Emergency and Migrant Health facilities. Target languages cur-
rently being added include Spanish, Farsi, Albanian, Amharic and Swiss French
Sign Language. Two evaluations with simulated patients have been carried out
(the first is described in [2]). Initial clinical trials are scheduled for August 2018.

The currently popular way to create systems of the kind under consideration
here is to use machine learning methods, collecting data to train a domain-
specific speech recogniser, together with a classifier which maps recogniser out-
put to the set of defined phrases. This approach is not feasible in the medical
phraselator context, where no relevant data is available and data collection is
difficult and expensive. Instead, it is necessary to revert to an earlier kind of
architecture based on hand-coded grammars. Human intelligence makes it pos-
sible to develop usable grammars with quantities of domain data that are still
insufficient for machine learning methods.

Fig. 1. BabelDr rule for the question-schema “Avez-vous mal au ventre 〈DepuisDurée〉”
(“Have you had abdominal pain 〈SinceTime〉”). We only show the source-language
(French) side. Items starting with a single dollar sign ($) are simple non-terminals.
$$depuis durée is a synchronised (translated) non-terminal defined by the TrLex rules,
only two of which are shown. The line starting Target/french is the canonical sen-
tence/backtranslation. The notation is defined in the online documentation [6].

http://babeldr.unige.ch/
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BabelDr’s grammars are written in a variant of Synchronised Context Free
Grammar (SCFG; [1]) which compactly associates source-language and target-
language patterns. In order to allow modular development of the grammars,
source- and target-language content is split into separate files, with a canon-
ical version of the source-language used both as a pivot and as a backtrans-
lation; thus source-language rules map source language phrases into canonical
phrases/backtranslations, and target-language rules map canonical phrases into
target-language phrases. Typically, on the order of tens or hundreds of thou-
sands of possible source-language utterances will be mapped into each canonical
phrase; an example of a source-language rule is shown in Fig. 1. Rules are com-
piled into GrXML grammars and then into grammar-based language models
that can be run on a variety of recognition platforms supporting the GrXML
standard. This architecture is described in detail in [7].

The key advantage of the limited-vocabulary/strict grammar-based architec-
ture is that it is fast. Recognition, parsing and translation are all combined by
compilation into a single efficient operation, yielding response latency of sev-
eral times real time on the commercial Nuance 10.2 platform. The downside, as
usual, is that strict grammar-based processing is fragile, with poor performance
on utterances which are outside grammar coverage. For these reasons, we later
added a second processing path which combines large-vocabulary recognition
and robust matching of grammar rules against recogniser output.

We experimented with different methods for performing the robust matching.
The conceptually simplest one is well-known (e.g. [4]): sample the grammar to
create a semantically annotated corpus, and use it to train a machine learning
classifier. We have found, however, that directly performing fuzzy matching of
the grammar against the recogniser output is a highly competitive alternative. By
weighting the words with tf-idf scores [9] and doing the match with a bottom-up
dynamic programming algorithm1, we have obtained accuracy not worse than
any of the machine learning methods we have so far investigated, and much
better than the strict grammar-based method [8]. The fuzzy matching process
is fast enough that response times are in practice dominated by the recognition
speed of the large-vocabulary recogniser.

As noted, the fuzzy matching method is much more accurate than the strict
grammar-based method; the experiments in [8] show relative reductions in 1-best
semantic error rate by 35% and 2-best semantic error rate by 45% on realistic
unseen speech data. This is unsurprising, given that commercial large-vocabulary
recognisers, with a little domain tuning, can achieve word error rates of under
15% on BabelDr data, while the grammar-based recogniser’s WER is typically
in the neighbourhood of 30–40%.

3 Context-Dependence and Ellipsis

We now describe how we extended the limited-vocabulary/strict grammar-based
and large-vocabulary/fuzzy grammar-based processing methods sketched in the
1 The matching algorithm is fully specified in [8].
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previous section to make them capable of handling elliptical utterances. In the
following section, we go on to consider hybrid processing.

3.1 Limited-Vocabulary/Strict Grammar-Based Method

The limited-vocabulary/strict grammar-based processing path allows an obvious
approach to handling elliptical sentences. Grammar rules are extended to include
plausible elliptical variants of phrases; since this makes many elliptical phrases
ambiguous, a method is added to prefer readings coherent with the preceding
dialogue context to ones which are not. We examine the details.

The first question is how to extend the grammar. The example rule in
Fig. 1 immediately suggests one plausible strategy: look for rules which are
parametrized by synchronised/translation variables, then include the variable
as an elliptical alternative. So in the example, which gives different French
expressions meaning “Have you had abdominal pain 〈SinceTime〉?”, we add
“〈SinceTime〉” as an elliptical variant. This means that e.g. the French ver-
sion of “for a long time” (depuis longtemps) will be included as an elliptical
form of “Have you had abdominal pain for a long time?”, the French version of
“for a few hours” (depuis plusieurs heures) will be included as an elliptical form
of “Have you had abdominal pain for a few hours?”, and so on. So far, all the
elliptical rules added to the grammar have basically used this approach. In a few
cases, the parametrization of the rule is not explicit, and the grammar contains
several related rules. Here, the elliptical variant is in effect the element which
would been the translation variable if the rules had been parametrized.

In the initial version, we have also used a minimal approach to defining the
preference method which chooses between ambiguous readings of an elliptical
utterance: we compare the canonical sentences/backtranslations for the different
readings of the current utterance against the canonical sentence/backtranslation
for the preceding accepted utterance, and pick the one which has the smallest
edit distance. Thus, adapting the French examples to English for convenience,
suppose the preceding sentence was “Initially, was the pain most intense in the
upper part of the abdomen?”, with canonical form“When the pain first appeared,
was it strongest in the upper part of the abdomen?”. If the following utterance is
“Around the navel?”, there are two possible interpretations, with canonical forms
“Is the pain strongest around the navel?” and “When the pain first appeared,
was it strongest around the navel?”. The edit distance is smaller for the second
alternative, so this one is preferred.

3.2 Large-Vocabulary/Fuzzy Grammar-Based Method

The strict grammar-based solution is conceptually straightforward, but it is not
obvious how to add enough rules to give good coverage of plausible elliptical
sentences. The strategy of adding rules for the parameters/translation variables
is too simplistic. A straightforward example of a type of ellipsis not conforming
to this pattern is provided by the words for “left” and “right”. The doctor will
often ask a question which refers to a side of the body, e.g. “Did the pain start
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in the left side?” Here, the parametrized element is “in the left side”. The doctor
can continue “In the right side?”, which fits the pattern; but they can equally
well shorten the question to the single word “Right?”, which does not fit.

The fuzzy grammar-based processing route offers a more principled way to
address the problem. Rather than add any special rules, we simply say that
fuzzy matching of rules can take input both from the current input string and
from the discourse context. In the initial implementation, we define the discourse
context to be the matched string from the most recent accepted sentence. Thus
in the example above, we assume that the system has just successfully recognised
“Did the pain start in the left side?”, making this sentence the context. It can
then correctly interpret “Right?” as “Did the pain start in the right side?” by
matching the word “right” against the current input, and the remaining words
against the context.

This simple idea appears to work remarkably well, with just two minor
enhancements. First, we need to enforce the constraint that words in the current
input are preferred to words in the context. We do this by multiplying the tf-idf
scores for words taken from the context by a discounting factor kcontext; the
value of kcontext is unimportant, as long as it is small enough that context words
always have lower scores than non-context words. Second, we prefer matches
which are similar to the context by adding a component to the global score for
the match, consisting of the word edit distance between the candidate match
and the context multiplied by another constant kparallel. Again, performance
does not appear to be sensitive to the value of the parameter, as long as it pro-
duces parallelism scores small compared to the normal tf-idf scores. In Sect. 5,
we describe an initial evaluation.

4 Hybrid Processing and Machine Learning

It is possible to improve on the performance of the “fuzzy” method by exploit-
ing the fact that grammar-based recognition platforms like Nuance 10.2 deliver
fairly reliable confidence scores. This lets us create a hybrid system which uses
the pure grammar-based result when the confidence score is over a threshold,
otherwise defaulting to the “fuzzy” result. The point is that the grammar-based
recogniser’s WER is much lower on the high-confidence portion of the data, and
with a suitable threshold can be reduced to a point substantially under that of
the large-vocabulary recogniser. The experiments in [8] show the hybrid method
achieving a relative reduction in 1-best semantic error rate by 8% and 2-best
semantic error rate by 20%, compared to the plain fuzzy matching method.

The reason why this simple method worked well in [8] is the fact that text
processing on plain utterances is normally trivial. If a plain utterance is correctly
recognised, we can be almost sure that it will also produce a correct interpre-
tation. Utterances where the grammar-based recogniser gives a high confidence
score have a high probability of being correctly recognised, hence are also likely
to give correct interpretations. The argument is however not valid for elliptical
utterances, where text processing poses more challenging problems, and a cor-
rectly recognised utterance can easily be misinterpreted. It seemed reasonable to
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hope that a better procedure for deciding between the strict and fuzzy process-
ing paths could be crafted by including a larger number of features and training
a classifier. In our initial experiments, we have used the following set:

1. Grammar-based recogniser confidence score. A low score suggests strict
grammar-based processing is wrong.

2. Edit distance between the current strict grammar-based canonical sentence
and the previous strict grammar-based canonical sentence. A low score sug-
gests that strict grammar-based processing is right.

3. Fuzzy match score. A high score suggests that fuzzy processing is right.
4. Number of words in current large-vocabulary recogniser input that are not in

the fuzzy match string. A high score suggests fuzzy matching is wrong.
5. Number of words in the fuzzy match string that are neither in the current

recogniser input nor in the previous match. A high score suggests fuzzy match-
ing is wrong.

6. Edit distance between the current fuzzy match string and the previous fuzzy
match string. A low score suggests fuzzy processing is right.

7. Length in words of the large-vocabulary recognition result. Short results tend
to be elliptical.

We used these features, together with the SVM, NaiveBayes, J48, Random-
Forest, DecisionTable and KStar methods from the Weka toolkit, to train several
classifiers on the task of predicting which of the two kinds of processing was more
likely to yield a correct result: in other words, the hybrid output for each example
is the result of the classifier choosing between the “strict” and “fuzzy” outputs,
and the machine learning problem is to make this choice as accurate as possible.
Experiments and results are described in the next section.

5 Experiments

This section describes preliminary experiments to investigate the performance of
the ellipsis processing mechanisms just described. We describe the data, experi-
ments on each individual ellipsis processing method, and experiments on hybrid
processing.

5.1 Data

Collecting spontaneous data in the medical interpretation domain is costly and
time-consuming. For example, the experiments described in [2], which produced
less than a thousand utterances of high-quality annotated data, required over
three person-months of work. Support for ellipsis processing was only introduced
recently; previous data collection exercises threw up few examples of ellipsis, in
part because subjects were explicitly advised in the pre-experiment instructions
not to use incomplete phrases.

We have consequently begun by using an artificial corpus, which was pro-
duced as follows. The project member responsible for grammar development first
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selected 191 sentences currently inside grammar coverage where an elliptical con-
tinuation was intuitively plausible, writing down an example of a continuation
in each case. The intention was that the sentences and fragments would provide
as broad a range of examples as possible. Five native francophone subjects, all
students at Geneva University, were then asked to read the pairs in a natural
voice, freely varying the wording if possible under the constraint that the frag-
ment would still be a plausible follow-on to the sentence. Data was collected
using a web tool which prompted the students and recorded their responses.
This produced a total of 955 recorded spoken sentence/fragment pairs.

Each utterance was then transcribed and semantically annotated, using a
web tool, by a project member familiar with the grammar. Semantic annota-
tion consisted of labelling each utterance with the canonical sentence that the
annotator considered closest in meaning to the utterance, or with a null token
if there was no sufficiently close canonical sentence. Sentences were divided into
pairs consisting of a plain utterance and a follow-on elliptical utterance; pairs
were removed in cases where this was not possible, most frequently because the
subject had failed to follow the instructions and had not produced an elliptical
follow-on utterance. Semantic annotation assumed a null context in the case of
the plain utterance, and a context consisting of the associated plain utterance
in the case of the elliptical sentence. This process finally produced 821 recorded,
transcribed and annotated utterance pairs. The average utterance length for
the plain utterances was 8.96 words, and 73.0% were inside grammar coverage;
for the elliptical utterances, the average length was 3.14 words and 51.6% were
inside grammar coverage.

5.2 Different Types of Ellipsis Processing

We first processed the corpus just described, in both spoken and text form,
through three different offline versions of the system:

Strict Grammar-based speech and text processing using the commercial Nuance
10.2 recogniser, strict grammar-based ellipsis processing.

Fuzzy/NTE Large-vocabulary recognition using the commercial Nuance Tran-
scription engine, fuzzy grammar-based text processing. The version of NTE
used a language model created as an interpolation between a domain-specific
model trained on data sampled from the grammar, and a general model.

Fuzzy/Google Large-vocabulary recognition using Google Speech API, fuzzy
grammar-based text processing. Google Speech API offers considerably more
restricted possibilities for domain tuning than NTE, and we decided it was
most interesting to maximise the contrast by using an untuned recogniser.

Since the focus of the experiment is processing of elliptical utterances and the
data is any case artificial, we used an idealised “best-case” approach to define
the context. Consistent with the annotation scheme, utterances were processed
in pairs, where the first sentence in each pair was a plain utterance and the sec-
ond was a follow-on elliptical utterance. The plain utterance was processed with
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a null context. The elliptical utterance was processed with a context where the
canonical sentence used by grammar-based processing was the correct canoni-
cal sentence for the preceding plain utterance, and the context string used by
fuzzy processing was the match string resulting from fuzzy processing of the
transcription from the preceding plain utterance.

The above definition is more natural than it may first seem. During normal
operation of the phraselator, the doctor will abort processing on all sentences
which have been misunderstood, so it is reasonable to assume that processing of
the “plain” sentence in the pair will be correct. Another possible methodological
objection is that the processing methodology ignores a problem which can arise
in the general setting, where fuzzy processing of a plain utterance yields an
incorrect result due to words being inappropriately taken from the preceding
context. This occurs, but it is rare on the data we have so far examined. As a
check, we processed the (non-artificial) corpus from [8] in a mode where each
sentence provided the context for the following one. The results were almost
unchanged, with a marginal difference in semantic error rate of less than 1%
absolute.

Finally, we used the different machine learning methods described in Sect. 4 to
create a number of hybrid systems that combined two different processing paths.
Experiments were carried out using the combinations Strict + Fuzzy/NTE
and Strict + Fuzzy/Google.

5.3 Results

We now present the results of the experiments just described. Table 1 shows
raw recognition performance in terms of Word Error Rate (WER) and Sen-
tence Error Rate (SER), contrasting one limited-vocabulary grammar-based
recogniser, Nuance Recognizer 10.2, against two large-vocabulary recognisers,
Nuance Transcription Engine and Google Speech API. Several points stand
out. First, WER is much higher for the grammar-based recogniser than for the
large-vocabulary recognisers (34.8% versus 6.4% and 9.9% for plain utterances,
42.1% versus 23.3% and 14.2% for elliptical utterances). Second, the difference
between WER on in-coverage and out-of-coverage utterances is very large for the
grammar-based recogniser (26.8% versus 53.4% for plain, 15.4% versus 67.9% for
elliptical), but quite small for the large-vocabulary recognisers (5.3% and 9.0%
versus 9.1% and 8.6% for plain; 21.4% and 14.4% versus 25.2% and 14.6% for
elliptical). Third, WER is much higher on elliptical utterances than on non-
elliptical for the Nuance Transcription Engine (23.3% versus 6.4%), but only
moderately higher for the other two recognisers (42.1% versus 34.8% for Nuance
Recogniser; 14.2% versus 9.9% for Google Speech API). The unexpected result
here is the WER for the Nuance Transcription Engine, which is dramatically
worse on elliptical utterances compared to plain utterances, the difference cor-
responding to a factor of 3.6.

Table 2 presents figures for semantic error rate, which, as previously, we define
as the proportion of utterances producing an incorrect canonical sentence. For
the whole set of plain utterances, the semantic error rate for the tuned NTE
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Table 1. Recogniser performance for plain and elliptical utterances on in-coverage, out-
of-coverage and all data, using three recognizers: grammar-based/Nuance Recognizer
10.2, large-vocabulary/Nuance Transcription Engine and large-vocabulary/Google
Speech API.

Recogniser IC OOC All

WER SER WER SER WER SER

Plain utterances

Nuance Recognizer 26.8 63.1 53.4 100.0 34.8 73.1

Nuance Transcription Engine 5.3 20.9 9.1 52.7 6.4 29.5

Google Speech API 9.0 44.6 8.6 44.1 9.9 45.9

Elliptical utterances

Nuance Recognizer 15.4 23.6 67.9 100.0 42.1 60.5

Nuance Transcription Engine 21.1 35.6 25.2 56.7 23.3 45.8

Google Speech API 14.4 33.6 14.6 31.8 14.2 35.5

recogniser on speech input is about half that for the grammar-based recogniser
(18.9% versus 35.2%). The difference for elliptical utterances is slightly smaller
(30.5% versus 53.1%), but still represents a reduction in error rate by 43%. This
is consistent with the results presented in our paper from last year [8].

The semantic error rates are roughly in line with the WER figures from
Table 1. Looking first at the in-coverage part of the data, we find that the seman-
tic error rate on plain utterances is much lower for the NTE large-vocabulary
recogniser than for the grammar-based one (10.7% versus 23.7%, 56% relative
reduction); but for elliptical utterances, the grammar-based recogniser narrowly
outperforms NTE (27.8% versus 29.7%). When we compare the untuned Google
Speech API recogniser to the tuned NTE recogniser, we see a similar pattern. For
plain utterances, it performed much worse than NTE (26.2% versus 18.9%), but
for elliptical utterances the two large-vocabulary recognisers delivered almost
the same performance (30.5% versus 30.3%).

Over the 1642 utterances in the corpus, the balance between the two pro-
cessing methods is as follows when the NTE recogniser is used to provide input
for fuzzy processing. For 790 utterances, both methods give a correct result, and
for 282 they both give an incorrect result. Out of the 570 remaining utterances,
there are 443 (78%) where fuzzy processing is correct and strict grammar-based
is incorrect, and 127 (22%) where strict grammar-based processing is correct
and fuzzy processing is incorrect. With Google Speech API, the breakdown is
727 both correct, 279 neither correct, 446 (62%) fuzzy correct/strict incorrect,
and 279 (38%) strict correct/fuzzy incorrect.

The results for hybrid methods are shown in Table 3. Unexpectedly, since we
had thought the problem of deciding between strict and fuzzy processing was
challenging and there was little data, machine learning delivered very substantial
gains. Several different methods were able to reduce the semantic error rate on
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Table 2. 1-best semantic classification error for three different recognisers, distinguish-
ing plain and elliptical utterances. “Speech” = spoken input processed by recogniser;
“Text” = simulated perfect recognition.

Version IC OOC All data

Speech Text Speech Text Speech Text

Plain utterances

Nuance Recognizer 10.2 23.7 (0) 66.2 (100) 35.2 27.0

Nuance Transcription Engine 10.7 1.7 41.0 32.9 18.9 10.1

Google Speech API 21.5 1.7 38.7 32.9 26.2 10.1

Elliptical utterances

Nuance Recognizer 10.2 27.8 (0) 80.1 (100) 53.1 48.4

Nuance Transcription Engine 29.7 14.6 31.2 17.1 30.5 15.8

Google Speech API 28.8 14.6 32.0 17.1 30.3 15.8

elliptical utterances from about 30% to 22–23%, a relative reduction of around
25%. With the Google recogniser, there was also a large improvement in semantic
error rate on plain utterances, from 26% to 17–19%. The surprising consequence
is that the hybrid system with the untuned Google recogniser is approximately
equivalent to the hybrid system with the tuned NTE recogniser; it is slightly less
accurate on ‘plain’ and slightly more accurate on ‘ellipsis’.

Table 3. 1-best semantic classification error on speech data for hybrid strategies using
different ML methods to combine strict and fuzzy grammar-based processing.

Nuance Trans. Engine Google Speech API

Plain Elliptical Plain Elliptical

Version IC OOC All IC OOC All IC OOC All IC OOC All

Baseline 10.7 41.0 18.9 29.7 31.2 30.5 21.5 38.7 26.2 28.8 32.0 30.3

NaiveBayes 9.1 37.8 16.6 26.9 32.0 29.5 10.5 36.0 17.6 27.8 32.7 30.3

KStar 10.0 37.8 17.5 17.9 31.5 25.2 9.3 35.5 17.9 16.0 31.2 23.1

SVM 9.5 38.7 16.7 17.2 32.0 24.2 10.0 38.3 17.7 15.3 32.7 23.1

J48 7.7 39.6 16.8 17.0 30.2 24.7 11.5 37.8 19.4 15.3 31.0 23.3

DecisionTable 9.2 39.6 16.8 16.5 31.0 24.1 12.2 38.3 19.4 14.9 31.7 22.8

RandomForest 8.0 37.4 15.6 16.5 30.5 23.9 9.0 34.6 17.2 14.8 30.7 22.5

6 Conclusions and Further Directions

We have presented two general methods that can be used to extend the func-
tionality of a grammar-based spoken phraselator so that it includes support
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for elliptical utterances, and evaluated them inside the BabelDr prototype. The
first method is uses only strict grammar-based methods for both recognition
and language processing, and the second combines large-vocabulary recognition
with fuzzy grammar-based matching. On our initial artificial corpus, the fuzzy
method strongly outperforms the strict grammar-based method, reducing the
semantic error rate on elliptical utterances from 53% to 30%. Despite this, we
were surprised to find that a hybrid system combining the two methods strongly
outperforms plain fuzzy processing, further reducing the error rate to 22.5%.

To progress beyond this point, one plausible idea is to address the speech
recognition component. On plain utterances, Nuance Transcription Engine,
whose language model had been tuned to the domain, achieved by far the best
performance. It however did no better than the untuned Google Speech API on
elliptical utterances, and its WER on elliptical data was over three and a half
times higher than on the plain data. It may well be significant that the data
used to train the Nuance Transcription Engine domain language model so far
only contains plain utterances sampled from the grammar. The next step will
consequently be to investigate strategies for adding elliptical utterances to the
language model training corpus.

As noted, the experiments described here tell us nothing about the impact the
methods would have in real situations. In the next BabelDr system evaluation,
scheduled for August 2018 and involving real patients, we will use a version of
the system which includes support for ellipsis processing. This will let us make
an initial evaluation of its relevance at the level of system usability.
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Abstract. Data privacy compliance has gained a lot of attention over
the last years. The automation of the de-identification process is a chal-
lenging task that often requires annotating in-domain data from scratch,
as there is usually a lack of annotated resources for such scenarios. In this
work, knowledge from a classifier learnt from a source annotated dataset
is transferred to speed up the process of training a binary personal data
identification classifier in a pool-based Active Learning context, for a
new initially unlabelled target dataset which differs in language and
domain. To this end, knowledge from the source classifier is used for seed
selection and uncertainty based query selection strategies. Through the
experimentation phase, multiple entropy-based criteria and input diver-
sity measures are combined. Results show a significant improvement of
the anonymisation label from the first batch, speeding up the classifier’s
learning curve in the target domain and reaching top performance with
less than 10% of the total training data, thus demonstrating the useful-
ness of the proposed approach even when the anonymisation domains
diverge significantly.

Keywords: Knowledge Transfer · Active Learning · Seed selection
Query selection strategy · Textual anonymisation

1 Introduction

Due to the growing amount of data (and especially textual data) created every
day through social network posts, official documents, etc. that contain personal
information, data privacy has gained a lot of attention over the last few years.
Furthermore, valuable data which could be beneficial for research or trans-
parency purposes may be kept unshared if it contains personal information
because of the prohibitively high costs of its manual anonymisation and the
legal repercussions of not doing it correctly. Even if datasets are not too large,
manual anonymisation is a tedious and time-consuming task: Dorr et al. [6]
assessed that manually de-identifying medical notes containing an average of 7.9
Personal Health Information items took around 87.3 s per note to complete. In
this scenario, the automation of data sanitisation while preserving its usefulness
has been widely researched [4,8,12,28].
c© Springer Nature Switzerland AG 2018
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Different approaches oriented to the anonymisation of unstructured tex-
tual data have been proposed in [4,16], where techniques of suppression, tag-
ging/categorisation, and substitution are described. In this paper, the step pre-
vious to applying these techniques, i.e. personal data identification, is tackled.
This step can be seen as a binary classification task, where the positive label cor-
responds to the words in an utterance that refer to sensible data such as personal
names, organisations, passwords, and so on that need to be anonymised.

Lack of annotated data is a common issue when automating de-identification
in supervised machine learning (ML) settings. In this context, the use of Active
Learning (AL) [3] can optimise the data annotation phase, resulting in better
ML models with fewer data. In a typical pool-based AL scenario the input is a
small set of labelled instances (seed) and a large set of unannotated ones (pool).
A classifier (base learner) is trained on the labelled instances and then asks an
oracle to label the instance (in serial AL) or set of instances (in batch mode
AL) which the classifier considers more informative according to some criterion
(query selection strategy). The newly labelled data are moved from the pool to
the labelled set and the classifier is retrained following this process iteratively
until some stopping criterion is satisfied or the pool is empty. Two of the main
questions that need to be answered in every AL framework are: (1) how to select
the seed, and (2) which AL query selection strategy will be best to speed up the
classifier’s learning curve.

Very little attention has been paid to the seed selection aspect in the liter-
ature. Olsson [17] compared using a random seed against using cluster-centroid
based sampling with little to no improvement for a NERC annotation task.
Tomanek et al. [29,30] compare multiple kinds of seeds checking instances against
manually created entity gazetteers, reporting significant improvements over the
random selection. Other automatic approach presented by Dligach and Palmer
[5] uses unsupervised language model (LM) sampling to select a seed containing
the examples with lowest LM probability in a word sense disambiguation task,
obtaining significantly better results than using a random seed.

As surveyed by Settles [21,22], there are multiple approaches for serial query
selection in AL. In Uncertainty Sampling [10] scenarios, the learner uses an
uncertainty measure (e.g. entropy) to query the most uncertain instances. Query-
by-Committee [24] strategies use a committee of classifiers that present different
hypotheses and query the instances with most disagreement. Expected classifier
change methods query those instances which may cause the greatest change in
the classifier. In Expected error reduction methods the classifier estimates the
expected future error of the instances in the unlabelled pool and queries those
with the minimal expected risk. In variance reduction strategies the learner
queries those instances which minimise the output variance and thus the clas-
sifier’s generalisation error. Finally, Density-weighted methods [2,20,23] query
those instances which are both uncertain to the classifier and representative of
the data’s underlying distribution. Batch mode query strategies also attempt
at selecting the best batch taking into account notions like information overlap
in the set. Not much attention has been paid to this type of strategies in the
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literature even if batch mode AL is a more realistic practice scenario, as the
overhead of re-training the ML model for each annotated instance often renders
serial query selection unusable.

The Knowledge Transfer (KT) or Transfer Learning paradigm encompasses
the idea of re-using existing annotated resources to improve learning in new
domains or tasks [18]. As the anonymisation task may re-use information
extracted from different corpora that may vary in domain and language, it is sen-
sible to consider combining KT with AL. There have been some previous works
in the Natural Language Processing (NLP) field that combine KT with AL. Rai
et al. [19] propose hyperplane-based distances to choose the most divergent sam-
ples from the source and target domains as seed in a sentiment analysis task.
However the existence of this hyperplane narrows down the possibilities of classi-
fication algorithms and may not be suitable for sequential data [1]. Shi et al. [27]
use a set of labelled instances in the target domain to train a text classifier with
data from both domains, the oracle is only asked to label when the classifier’s
confidence is too low. In a sentiment classification task, Li et al. [11] train one
classifier on the source data and another one on the target data and then both
are used to select the most informative samples using a Query-By-Committee
strategy.

The motivation of this paper is to speed up the process of training a robust
classifier for textual data anonymisation using KT from available corpora within
the Active Learning framework. Our main contribution is a previously unex-
plored method for transferring the knowledge from a classifier trained on a source
corpus, differing from the target corpus both in language and domain, to improve
the AL process both at seed selection and query selection strategies, and acceler-
ating the learning curve in the target domain from the very first labelled batch.
The source classifier’s uncertainty is combined using different scoring method-
ologies to select the best possible seed and query selection criteria. Also, to the
extent of our knowledge, the Active Learning paradigm is tested for the first
time in an anonymisation task. Finally, a strong baseline for the anonymisation
task using the publicly available ES-Port corpus [7] is set.

The paper is structured as follows: in Sect. 2 the proposed methods to exploit
Knowledge Transfer for Active Learning from a theoretical point of view are
described; then the feature sets and corpora used for the selected anonymisation
task are introduced in Sect. 3; in Sect. 4 the methods are tested and their results
are presented focusing on the two topics of interest of the paper: seed and query
selection strategy in the AL setting; final remarks and conclusions are given in
Sect. 5, as well as some ideas on future work directions.

2 Knowledge Transfer for Seed and Query Selection
Strategy

In this section, the different query strategies used in this work and how the
knowledge from the source domain is used to improve the Active Learning pro-
cess are explained in detail.
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2.1 Active Learning

The traditional pool-based Active Learning process as described in Sect. 1 is
shown in Algorithm1.

Algorithm 1. Pool Active Learning typical setting
input : set of labelled instances L, pool of unlabelled instances U , query

strategy φ, batch size B, stopping criterion S
repeat

// Train model M on L
Q = best set in U of size=B according to φ
// Ask Oracle to label Q
L = L + Q
U = U - Q

until S or size(U)=0
return M , L

The anonymisation task is approached as a binary classification problem,
where the positive label corresponds to the words to anonymise. Due to the
sequential nature of the task, a discriminative model based on Conditional Ran-
dom Fields [9] is used. These models have been intensively used for sequence
labelling and segmentation [1,15,25].

2.2 Entropy Score Query Strategies

Being I = (w1, w2, ...w|I|) an instance (i.e., a sentence or utterance) composed
of words of a corpus and given the stochastic nature of the CRF classifiers, the
uncertainty over the binary decision for each word wi ∈ I can be measured using
the Shannon entropy [26]:

H(wi) = −P (ŷi = A| I)log2(P (ŷi = A| I))

−(1 − P (ŷi = A| I))log2(1 − P (ŷi = A| I))

where P (ŷi = A | I) is the probability of the classifier assigning the anon label
A to the word wi. As each instance is a sequence of words, the entropy score of
the whole instance can be defined in multiple ways:

1. H Sum: Sum of all its word entropies: H(I) =
∑

w∈I H(w)
2. H Mean: Mean of its word entropies: H(I) = 1

|I|
∑

w∈I H(w)

3. H K-Max: Mean of its K-Max word entropies: H(I) = 1
K

∑K
i=0 H(w), where

the K words with highest entropy of the instance I are chosen.
4. H Max: Maximum entropy: H(I) = maxw∈IH(w)

The entropy scorers can be used to measure how certain the classifier is about
a taken decision, yielding a robust query strategy to select the instances with
high information content in the AL process.
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2.3 K-Means-Centroids Query Strategy

The K-Means clustering algorithm [13] can be used to split the sample set into
K clusters or groups. Then, the closest candidate to each cluster’s centroid is
selected. Being B the batch size of the instances to select from the pool, let
K = B in the clustering algorithm, splitting the pool in B clusters. Then, being
c1, c2, · · · , cB the centroids of each cluster and Ick the instances that encompass
the cluster of centroid ck, the closest instance Ik to the cluster centroid according
to the Euclidean distance is chosen for each cluster:

Ik = argminI∈Ick
||ck − I|| ∀ k = 1, · · · , B

2.4 K-Means-Centroids-Entropy Query Strategies

As the K-Means algorithm measures the input diversity and the H(I) entropy
scorers measure the base learner’s uncertainty, both measures can be combined
to select the instance Ik for each cluster centroid:

Ik = argminI∈Ick
||ck − I|| · (1 − rescale(H(I))) (1)

where the H(I) results are rescaled so they are within the range [0, 1].

2.5 Entropy-Based Knowledge Transfer

In this section the proposed Knowledge Transfer methodology is explained.
As depicted in Fig. 1, the entropy measures from the source classifier (S-H
Sum/Mean/K-Max/Max) are used for both seed selection and query strategy
in the target domain.

Fig. 1. KT schema, where entropy-based query strategies from the source classifier are
used first for seed selection and then for query selection in the target domain

For seed selection, one cannot rely on knowledge from the target classifier
or base learner since there is no labelled data in the target domain on which to



160 L. Garćıa-Sardiña et al.

train it. To overcome this limitation, the source domain classifier’s entropy score
S-H can be used to sample the most uncertain instances (Useed) of the target
domain as seed. After annotation, these labelled instances L(Useed) can be used
to start training the target base learner. In addition, S-H can be combined with
the target domain classifiers’ entropy scorers (T -H) for query selection, in order
to select the next batch Ubatch of instances for the oracle to label.

3 Corpora

Two publicly available anonymised corpora differing in language, style, and
domain have been used: ITAC and ES-Port. Both resources are briefly described
below and their main characteristics are summarised in Table 1.

Table 1. ITAC and ES-Port corpora comparison

Characteristics ITAC ES-Port

Main language English Spanish

Language switching No Yes

Language form Written, planned (emails) Spoken, spontaneous (phone calls)

Domain various (personal, corporate) IT, telecommunications

Training utterances 473 47073

3.1 ITAC

The Informal Text Anonymisation Corpus (ITAC) [16] consists of about 2500
personal emails written in English. Due to the nature of the data, spelling,
punctuation, and capitalisation inconsistencies and errors are common.

The corpus is anonymised with binary labels (anon/no-anon) and partitioned
into training, development, and test sets of 666138, 6026, and 31926 tokens
respectively. Unfortunately, only the last two sets are annotated. Following the
solution given in [16] to the unannotated training set issue, the development set
is used as training set.

Given the subjectivity of what constitutes a sensitive item that needs to be
anonymised, ITAC was annotated following two different schemes: a compre-
hensive one where every reference that might possibly be related to people or
organisations is anonymised even if the risk of identification is very low, called
blanket anonymisation, and a more selective one where only those references
directly related to people or organisations are annotated, referred to as selective
anonymisation. In this work the blanket version is used as source corpus.
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3.2 ES-Port

The Spanish Technical Support (ES-Port) corpus [7] consists of transcriptions of
1170 dialogues from calls to the technical support service of a telecommunications
provider. Due to its nature, the corpus includes numerous turn overlaps, unfin-
ished sentences and words, mispronunciations, filler words, grammatical errors,
and other phenomena alike typical of spontaneous spoken language. Although
Spanish is the main language of the corpus, various code switching events take
place adding up to six other languages, of which English is the most common one.

The corpus is fully anonymised by token substitution. The types of items
which are anonymised include basic personal information, contact information
and digital trace items. Despite the anonymised items are annotated with their
specific anonymisation categories, for the experiments reported in this paper the
categorised labels have been converted to a simple ‘anon’ label to accommodate
to our binary identification task.

As opposed to ITAC, ES-Port is not pre-partitioned, so for our tests we chose
to divide the corpus by taking the first 900 dialogues (47073 utterances after the
removal of turns not containing any text, e.g. silences, unintelligible speech) as
training set and the rest (around 23% of the data) as test set.

3.3 Feature Selection

As the proposed methodology is used on cross-lingual data, two source classifiers
were trained over the ITAC corpus, one with language independent features
and another one with language dependent features. Beginning/End of Sentence
(BOS/EOS), punctuation, case, NERC and Part of Speech (PoS) tags1 were used
as language independent features. For the language dependent case, features also
included lower cased word forms and prefixes and suffixes (two and three first
and last characters in the word). The selected features in a [−2, +2] word context
window were also included. The features used for each instance (i.e., sentence
or utterance) are the concatenation of the word-level features for each token
in the sequence. The target classifier was trained over the ES-Port corpus with
language dependent features only.

4 Experiments

In this section, the experiments carried out and their results are presented. Since
the ITAC annotated training set is too short (473 utterances), we have tested
the KT for AL setting using ES-Port as target, but not in the opposite direction.
That being so, we will be referring to ITAC as Source and to ES-Port as Target.
All results are reported on the ES-Port test set, taking into account the positive
(‘anon’) label only.

1 NERC and PoS tags were automatically extracted using the Stanford CoreNLP tool
[14] for both languages and normalised to share the same values, e.g. both Spanish
tag ‘LUG’ and English tag ‘LOCATION’ refer to place entities.
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CRF classifiers were trained passively on the whole ES-Port training data
to test their top performance, achieving 0.935 of F1 score on the ‘anon’ label.
Source CRF models were trained using the blanket data, achieving 0.803 of F1
score with language dependent features and 0.785 without on ITAC’s test set.

4.1 Seed Selection Evaluation

For seed selection, various methods have been implemented:

– Random: the seed is selected at random. This is used as a weak baseline.
– Maximum Utterance Length: the samples with largest number of words

are chosen as seed.
– K-Means-Centroids (K-MC): the K-Means algorithm is used to split the

corpus and choose a representative sample in each cluster to build the seed.
– Source entropy (S-H): a source classifier is used to calculate the target

instances’ entropy score and select the ones with highest uncertainty as seed.
Both language dependent (SD) and independent (SI) models are tested.

– S-H and K-MC Combination: the top ranked instances are selected as
seed according to their entropy and K-MC combination score following Eq. 1.

– S-H and Length Combination: the instances are ranked according to
their entropy and length combination score and the top ones are chosen as
seed. The combination score of an instance is the product multiplication of
its rescaled (range 0–1) length with its entropy score.

Table 2. F1 and standard error results for different seed selection methods and sizes

Method B = 100 B = 250 B = 500 B = 1000

Random 0.598 ± .024 0.735 ± .013 0.793 ± .004 0.829 ± .004

Length 0.749 0.811 0.834 0.851

K-MC 0.655 ± .016 0.8 ± .004 0.832 ± 002 0.864 ± 001

K-MC & Length 0.665 ± .021 0.794 ± .003 0.831 ± .004 0.864 ± .001

SD-H Sum 0.746 0.809 0.838 0.845

SD-H Mean 0.108 0.456 0.627 0.66

SD-H K-Max 0.717 0.762 0.828 0.854

SD-H Max 0.69 0.737 0.783 0.849

SI -H Sum 0.777 0.806 0.831 0.862

SI -H Mean 0.08 0.289 0.432 0.609

SI -H K-Max 0.769 0.797 0.821 0.863

SI -H Max 0.67 0.762 0.807 0.862

SI -H Sum & K-MC 0.79± .005 0.839± .003 0.858± .002 0.876± .001

SI -H K-Max & K-MC 0.756 ± .007 0.805 ± .005 0.845 ± .002 0.879± .002

SI -H Sum & Length 0.77 0.786 0.842 0.878

SI -H K-Max & Length 0.766 0.786 0.842 0.873
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Table 2 shows the results obtained for each explored configuration using prac-
tical seed sizes for a real environment. For the K-Means and Random selec-
tors, their mean and standard error over 5 iterations are shown. As expected,
the random baseline performs the worst. Selecting instances according to their
length gives good results, although performance decreases as the number of
selected instances increases. The K-MC sampling method yields better results
as the batch size increases, demonstrating that input diversity plays an impor-
tant role for instance sampling. Nevertheless, results for smaller seeds are lower
than using other methods because information content is not taken into account.
When transferring knowledge from the source classifier using the entropy scorers
Sum and K-Max2, SI models perform slightly better than SD models in smaller
seeds, although such difference gets narrower in bigger seeds. While both S-H K-
Max and S-H Sum demonstrate to be useful, the latter has direct relation with
instance length, as the longer it is the more likely it is to have a higher entropy
sum. It also shows similar patterns to the utterance length method, no longer
being among the top methods in the largest seed size tested. The reason for
this could be that it takes into account all the words of the instance, thus being
sensitive to noise. On the other hand, the S-H K-Max scorer takes into account
only the K words with highest entropy of the instance so it is more agnostic to
length and low-entropy words in the utterance, making it more robust to noisy
instances. As SI models yield better results in general, only this method was
combined with length and KMC.

The best results for seed selection are rendered by combining the K-MC
method with the SI -H Sum scorer, as this method takes into account the diver-
gence between the input data, the length of the input samples, and their uncer-
tainty. Likewise, the combination of K-MC with the SI -H K-Max model yields
better results as the seed size increases. It is interesting to note that when K-MC
is combined with S-H the standard error intervals are reduced, improving the
robustness of the method.

4.2 Query Selection Strategy Evaluation

In this section, the AL process is evaluated using different query strategies. To
visualise the impact on learning speed, the learning curves for the base learners
trained on the first 10.000 selected samples of the target corpus are plotted
in Fig. 2. The classifiers were asked to stop learning when they reached top
performance3. The best configuration of Sect. 4.1 is used as seed. The query
strategies evaluated are: Random baseline (R), Target domain T -H Sum/K-Max,
the product multiplication of T -H Sum/K-Max with SI -H Sum/K-Max, and the
K-MC combination with T -H Sum/K-Max following Eq. 1. The selected size for
both seed and query batches was 250 instances.

The reported learning curves show that all the proposed query selection meth-
ods perform significantly better than passive random selection, showing a much
2 K = 3 is used throughout the experiments.
3 Instead of using the hard 0.935 top performance score, a minimally softened break-

point of 0.9345 was set.
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Fig. 2. F1 results of using the different query strategies for AL (left), and close up look
of the top performance reaching iterations of the best methods (right). The standard
deviation over 5 iterations appears shadowed

steeper curve and reaching top performance in fewer iterations. The two meth-
ods which consider target domain information only (T -H Sum and T -H K-Max)
perform equally well, reaching top performance trained on 4250 instances only.
Methods which combine target and source model information are in the top posi-
tions of best possible query strategies. Although the former has a slightly less
steep curve in the first iterations, both the T -H K-Max · S-H Sum and the
T -H Sum · S-H Sum combinations reach the top score with just 4000 training
instances (less than 10% of the target training corpus), outperforming methods
which do not use source model information. On the other hand, the combina-
tion of target and source H K-Max scores performs moderately worse than the
mentioned methods, even the ones which do not consider S-H. Considering that
H K-Max is agnostic to instance length we may conclude that this aspect may
actually play a somewhat important role in best query selection. This hypothe-
sis is supported by the fact that K-MC combination with T -H Sum has better
results than its combination with T -H K-Max as the number of instances in the
training set gets larger, although the two combinations perform the worst among
the AL strategies tested.

5 Conclusions and Future Work

In this paper, new methods combining Knowledge Transfer and Active Learning
to approach the lack of available annotated data for textual anonymisation have
been proposed and compared. This has been done taking advantage of existing
resources from a different language and domain. Exploiting classifiers trained on
the source data, we demonstrate that the learning process on the target data for
the anonymisation task at hand can be notably speeded up from the very first
batch, or seed, given to the target classifier.

Different scoring methods considering input divergence, length, uncertainty,
and their combinations have been tested for seed selection and as AL query
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strategy criteria. Best seeds were achieved using scorers that considered all three
aspects. For query strategy, methods that combined information from the source
and the target models were the ones which performed better. With such query
strategy methods and best seed selection, top classifier performance was reached
using less than 10% of the full training data.

As future work, we plan to test this methodology for non-binary classification
tasks, and to explore new ways to exploit information from multiple source model
classifiers from different domains for textual anonymisation and other tasks.
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Abstract. The analysis of social media posts can provide useful feedback
regarding user experience for people and organizations. This task requires the
use of computational tools due to the massive amount of content and the speed
at which it is generated. In this article we study the effects of text preprocessing
heuristics and ensembles of machine learning algorithms on the accuracy and
polarity bias of classifiers when performing sentiment analysis on short text
messages. The results of an experimental evaluation performed on a Brazilian
Portuguese tweets dataset have shown that these strategies have significant
impact on increasing classification accuracy, particularly when the ensembles
include a deep neural net, but not always on reducing polarity bias.

1 Introduction

People, from different places, genders and ages, use social media to express their
opinions regarding all kinds of subjects such as events, services and products. These
opinions could be a source of very useful feedback for people and organizations; this
feedback allows them to come up with new and better products and services. The
analysis of these opinions could partially replace traditional opinion polls, which are
usually slow and expensive.

However, social media content is huge and grows at a tremendous rate which
makes it unfeasible to analyze it manually, requiring the use of computational tools to
automate the task. An undertaking that is also difficult since social media users fre-
quently use slang, comparative text, metaphors, sarcasm and many other language
elements that make automatic text analysis a non-trivial challenge. When the analysis
task is concerned with identifying the polarity (positive and negative) of the text it is
usually referred to as sentiment analysis.

In sentiment analysis, two main approaches are widely used and studied: lexicon-
based methods and statistical/machine learning based methods [1]. Lexicon-based
method aim to identify the opinion lexicons which help in analyzing the data; one of
the major drawback of these methods is that they depend heavily on the language they
are designed to work with. On the other hand, machine learning algorithms can learn
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how to provide sentiment analysis for any language after being exposed to a large
collection of text documents of that language [2].

There are many machine learning algorithms that can be applied to sentiment
analysis, each processes the data in a different way and therefore can produce different
results for the same document, and some algorithms work better on a set of domains
and not very well on others [3]. Several studies show that this limitations can be
partially overcome using ensemble methods [4] and text preprocessing heuristics.
However, these approaches are usually not used in combination. On the other hand,
there is a shortage of papers that analyze the impact of each preprocessing heuristic, as
well as their combined effect.

2 Machine Learning Algorithms

All algorithms used in this research belong are supervised machine learning algorithms.
They classify input data into pre-determined classes, to do that they must pass through
a process called training, in which they are provided with a series of pre-classified
example data that allow them to develop a model on how to classify the next data they
are inputted with.

Although there are some algorithms that use the same data representation for inputs
and produce models with similar structures, this elements are usually algorithm
specific.

In the experimental study discussed in this paper three popular algorithms were
chosen: Naïve Bayes (NB), Logistic Regression (LR) and Support Vector Machine
(SVM) [5], and a deep learning algorithm, the Recursive Neural Tensor Network
(RNTN) [6].

Naïve Bayes is a probabilistic machine learning algorithms. It applies the Bayes
theorem with the assumption that terms are independent (that is why it is called naïve).

Logistic Regression, also a probabilistic machine learning algorithms, produce
classifiers based on regression. Its output has the form of a percentage that represents
the cumulative logistic distribution, which is then transformed into a categorical binary
value (belong or not belong to a class). LR considers that input terms are dependent.

Support Vector Machine is a linear non-probabilistic classification algorithm, it
represents data inputs as points in a space and its output is generated based on the
position of the data in a hyperplane defined by support vectors.

Naïve Bayes, Logistic Regression and Support Vector Machines input format is a
vector of features. The meaning of each feature depends on the type of data that will be
classified. The Recursive Neural Tensor Network is a classifier organized as a neural
network. The neural networks layering approach produces models more complex than
those seem in the other three algorithms. With enough data, neural network algorithms
often perform better than most other classifier algorithms. However, in environments
that are not data rich they can produce complex bad models, and the added complexity
makes them more computationally expensive.

The literature shows that ensemble methods can be used to combine multiple
models (classifiers) to produce improved results. Ensemble methods usually produce
more accurate solutions than a single model would. This can be confirmed by several
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machine learning contests where the winning solutions used ensemble methods, as for
example the Netflix prize1 and many Kaggle competitions2.

We used Logistic Regression and Support Vector Machine implementations
available in LIBLINEAR [7], with regularization L2 and minimum frequency feature
selection of two (selects terms that appears at least twice); Naïve Bayes was imple-
mented with chi-square feature selection; the Recursive Neural Tensor Network used
was Stanford’s implementation [8] and in the construction of ensembles we adopted the
majority voting method [9].

3 Data Representation

Machine learning algorithms are usually generic and can be used in a plentitude of
domains. Each algorithm does have a format to which input data must fit. Naïve Bayes,
Logistic Regression and Support Vector Machines receive as input feature vectors. In
sentiment analysis, the input data is composed of text documents that must be trans-
formed into feature vectors to be processed by the algorithms. In this study, this was
done using the bag-of-words representation that does not retain word positions in text
documents.

The bag-of-words representation firstly requires the construction of a conversion
table between words and vector positions. This table includes all the words in the
vocabulary used for training; the table maps each word to a position into a feature vector,
so text documents can be transformed into a vector of word occurrences. Upon ana-
lyzing new documents, words that are not present in the conversion table are discarded.

The Recursive Neural Tensor Network does not use the bag-of-words representa-
tion, instead, it uses word vectors and a parse tree to compute vectors for higher nodes
in the tree using a tensor-based composition function. This data representation allows
the RNTN to capture the compositionality of phrases, allowing it to detect negation and
other language phenomena.

4 Text Preprocessing

Noise is a relevant issue when trying to perform sentiment analysis in tweets, it appears
in diverse forms, including terms that are not relevant to express sentiments, terms with
wrong spelling and shortened terms. For example, algorithms are incapable of knowing
that “mate” and “m8” should have the same meaning. Without text preprocessing, they
are treated as different terms. There are many ways to reduce noise on text data; in this
work, the following heuristics are used:

A. Bigrams.
B. All characters are converted to lower case.
C. Accentuation removal.

1 http://blog.echen.me/2011/10/24/winning-the-netflix-prize-a-summary/.
2 https://www.kaggle.com/.
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D. Special character treatment.
E. Stop-words removal.
F. Twitter user names removal.
G. Twitter topics removal.
H. Reduction of laugh expressions to a common token.

An important issue to address in sentiment analysis is the way data is represented.
In a bag-of-words, the position of words in sentences is lost. In this scenario, the order
in which words appear becomes irrelevant for sentiment classification. To try to cope
with this problem we can associate words before mapping them into the bag-of-words
representation. For example, words can be represented in the frequency vector as
individual terms (unigrams) and pairs of terms (bigrams), this way “not like” turns into
“not”, “like” and “not_like”. In the data representation used by RNTN, the parse tree,
the position and association of words is not lost, which means there is no need for
bigrams with this representation.

Lower-casing characters makes sure that common writing variation of words, such
as “good”, “Good” and “gOOd” are treated as the same word. Often a difference in the
letter case might be related to an intensity variation on the text meaning, for example: “I
HATE THIS” and “I hate this” have different intensities. Usually though, the polarity
of the sentence stays the same. In addition, to counter balance the loss of intensity,
higher-case typed words could be duplicated during this process, increasing their fre-
quency in the text.

While accentuation is not a problem in the English language, in Romance lan-
guages, such as Portuguese, there is heavy use of accentuation. Nevertheless, it is often
ignored in social media writing. For example, words such as “não” (“no” in Por-
tuguese) can easily be seen written as “nao”. Without accentuation removal, algorithms
would treat these words as different terms. In most cases, this heuristic is helpful.
Nonetheless, there are exceptions. Some words with different meanings are written the
same except for the accentuation. Nevertheless, as will be seen in the experimental
evaluation section, the benefits of this heuristic outweigh its problems.

Special character treatment, in this work, consists of removing characters that
represent emoticons (character sequences which show faces with expressions, such as
“:)”). This was done because some research, as [10], have found that emoticons are able
to reverse the polarity of the true sentiment values of sentences. That means that while
very important to sentiment analysis they need a special treatment that is out of the
scope of this work.

Stop-word removal is a strategy to remove very common words which tend to be of
little value in associating sentiment to texts.

Removal of Twitter user names and topics is used to reduce data sparsity and noise.
Reduction of laugh expressions to a common token helps to diminish data noise

generated by the many forms of expressing laughs in social media, in Portuguese it is
common to represent laugh with the following patterns: “kkkkkkkk”, “kkkk”, “haha-
haha”, “hehehehe”, “rsrsrsrs”, “lol”, and others. With laugh reduction, most laugh
patterns are transformed into the same token “_laugh_”, holding the meaning of a laugh
while removing the data noise it would cause.
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After text preprocessing, documents pass through different steps to be prepared as
inputs for the machine learning algorithms. For Naïve Bayes, Support Vector Machines
and Logistic Regression the documents go through the bag-of-words conversion table,
in a process called tokenization. After tokenization, words are represented as positions
in a vector where their magnitude is given by their frequency of occurrence in the
document they came from. For the RNTN, the document goes through the Stan-
ford NLP Pipeline that parses, tokenizes and transform the text into a tree.

5 Dataset

For the task of evaluating the algorithms performances, we created a dataset collecting
tweets written in Brazilian Portuguese over a six months period. The dataset is generic
and comprises tweets from a range of different subjects, specifically: brands, social
networks, telecommunication companies, companies with active marketing campaigns,
sports, regions, videogames, movies, books, food, government and events.

A total of 12076 tweets were manually classified in the classes positive, negative,
ambiguous and non-opinionated. Tweets are considered ambiguous when they have
more than one kind of expressed opinion, such as “I love tulips but I hate roses” and are
considered non-opinionated when they have no opinion expressed, such as in “The
president arrives today”.

Out of the 12076 tweets, 5034 were classified as non-opinionated, 582 as
ambiguous, 3280 as negatives and 3180 as positives.

To use the dataset with the RNTN it was necessary to parse it using the Stanford
Parser [6], generating a treebank dataset in the Portuguese language.

6 Experimental Evaluation

The performance of the algorithms was measured using the metrics accuracy, overall
polarity, r, and polarity bias, b [11, 12]. The accuracy of a model is the fraction of its
classifications that are correct. Overall polarity, r, is the ratio of positive tweets to the
number of positive plus negative tweets. Polarity bias, b, is the absolute difference
between the predicted r’ and the real r. The best b value is zero, denoting that the
algorithm is unbiased.

To evaluate each algorithm and the effects of text preprocessing on sentiment
analysis several experiments were performed, using fivefold cross validation3.

Initially, Naïve Bayes (NB), Logistic Regression (LR), and Support Vector
Machine (SVM) were run with all combinations of text preprocessing heuristics. As it
is impractical to present here the results of all 785 executions performed, Tables 1 and

3 Fivefold cross validation is a method in which 80% of the dataset is used to train the algorithm, while
the rest 20% are used to test its accuracy. The 80–20% chunks of data are swapped five times until all
data have been used for both testing and training.
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2 present only the lower (Min) and higher (Max) values for accuracy and polarity bias
according to the number of heuristics used. Each cell shows the heuristics used and the
corresponding accuracy or polarity bias values.

Table 1. Accuracy (in %) with text preprocessing heuristics (higher is better). A. Bigrams; B.
Lower case; C. Accentuation removal; D. Special character treatment; E. Stop-words removal; F.
User names removal; G. Topics removal; H. Reduction of laugh expressions.

LR NB SVM

Min Max Min Max Min Max

0 59.68 68.53 56.93
1 B

60.79
D
67.33

B
71.43

G
72.67

C
54.18

D
62.08

2 BF
60.79

DE
68.88

BE
70.38

FG
72.67

BH
54.25

DE
64.78

3 BFG
60.79

CDE
71.31

ABE
70.08

BDF
73.03

ABG
53.51

DEG
65.47

4 CDE
71.31

BCDE
72.77

ABEF
70.08

BCDG
73.51

ACFH
53.52

CDEG
67.63

5 ABFGH
60.96

ABCDE
73.00

BCDEF
69.54

BCDGH
73.54

ABFGH
55.05

BCDEF
67.74

6 ABEFGH
60.97

ABCDEG
72.96

BCDEFH
69.53

BCDFGH
73.00

ABCFGH
54.86

ABCDEG
67.58

7 ABCEFGH
61.93

ABCDEGH
72.74

BCDEFGH
70.20

ABCDFGH
72.45

ABCEFGH
57.91

BCDEFGH
68.44

8 ABCDEFGH
72.58

ABCDEFGH
71.26

ABCDEFGH
65.88

Table 2. Polarity bias with text preprocessing heuristics (lower is better). A. Bigrams; B. Lower
case; C. Accentuation removal; D. Special character treatment; E. Stop-words removal; F. User
names removal; G. Topics removal; H. Reduction of laugh expressions.

# of heuristics LR NB SVM

Min Max Min Max Min Max

1 D
0,001

E
0.204

D
0.001

E
0.040

F
0.024

C
0.186

2 DH
0.002

BE
0.209

BD
0.002

EH
0.041

DH
0.005

FG
0.223

3 DGH
0.003

BCE
0.212

BDF
0.004

ACE
0.045

CGH
0.001

AEF
0.294

4 ACDF
0.001

BCEG
0.212

BDFH
0.004

ABCE
0.047

DEGH
0.000

ABCG
0.234

5 ACDFH
0.000

BCEFG
0.212

BCDGH
0.001

ABCEG
0.047

ACDEF
0.003

ABCEG
0.270

6 ACDFGH
0.000

BCEFGH
0.211

ABCDFH
0.003

ABCEFG
0.047

ABDFGH
0.001

ABCEGH
0.280

7 ABCDFGH
0.000

ABCEFGH
0.210

ABCDFGH
0.008

ABCEFGH
0.047

ABCDEFG
0.001

ABCEFGH
0.053

8 ABCDEFGH
0.025

ABCDEFGH
0.030

ABCEFGH
0.053
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As can be seem in Tables 1 and 2, different combinations of the same number of
heuristics can produce substantially diverse results, and each algorithm has a different
best heuristics combination. It is also easy to see that the heuristics combinations that
increase accuracy are usually not the same that decrease polarity bias. That means that
depending on the application objectives a different set of heuristics should be use. But,
for all the algorithms a good set of heuristics can provide noticeable increases on
accuracy.

Naïve Bayes presented its higher accuracy of 73.54% when using the heuristics B,
C, D, G and H; the same heuristics that account for its the lower polarity bias of 0.001
(see Table 2). The higher Logistic Regression accuracy of 73.00% is due to using also
five heuristics, in this case A, B, C, D and E, that is associated with polarity bias of
0.025 (not shown on Table 2). Finally, the highest accuracy of Support Vector
Machine, 68.44%, when using B, C, D, E, F, G and H, having an associated bias of
0.010, is the lowest of the three algorithms.

Text preprocessing impacted most Logistic Regression, its accuracy rose 22.3%,
from 59.68 to 73.00%. Support Vector Machine was the second most impacted
algorithm by text preprocessing with an increase of 20.21% on accuracy. Naïve Bayes
was the least affected, it received a small boost in accuracy of 7.31%.

For the sake of evaluating different ensembles we also used Recursive Neural
Tensor Network (RNTN). When executed alone it took a good advantage from text
preprocessing, it was unable to surpass LR, NV and SVM in accuracy but was the only
algorithm that got better in both accuracy and bias, its accuracy rose from 65.32 to
69.38% and its bias got a bit closer to zero, from 0.0097 to 0.009.

Table 3 presents the results for the ensembles combining NB, LR, SVM and
RNTN, with all the algorithms using text preprocessing. All ensembles used the
majority voting method for computing their final predictions.

As shown in Table 3, all ensembles yielded better results than each individual
algorithm. Naïve Bayes, Logistic Regression and Recursive Neural Tensor Network
(NB+LR+RNTN) formed the best ensemble in accuracy, reaching 76.14%; and had the
second lowest bias 0.0217 within the ensembles.

Naïve Bayes, Support Vector Machines and Recursive Neural Tensor Network (NB
+SVM+RNTN) formed the second best ensemble with 75.06% accuracy and the lowest
bias 0.0173 among the ensembles.

Table 3. Ensembles accuracy (in %) and polarity bias with text preprocessing

Accuracy Polarity bias

NB+LR+SVM 73.53 0.0376
NB+SVM+RNTN 75.06 0.0173
SVM+LR+RNTN 73.09 0.0328
NB+LR+RNTN 76.14 0.0217
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The top two performing ensembles both had Recursive Neural Tensor Network as a
member, what suggest that it is an important factor in raising ensemble accuracy.
RNTN produce more complex models than the other algorithms, and can better detect
some linguistic facts that simpler models cannot, such as the effects of nearby terms and
negations. Alone, RNTN did not show good results, yet, in an ensemble it seems to
complement the simpler algorithms, this might be what makes these ensembles present
better performance.

The ensemble with Naïve Bayes, Support Vector Machines and Logistic Regres-
sion (NB+LR+SVM) reached 73.53% accuracy and 0.0373 bias.

Logistic Regression, Support Vector Machines and Recursive Neural Tensor
Network (SVM+LR+RNTN) was the less performing ensemble with three algorithms,
with 73.09% accuracy, yet it was still better than the individual algorithms.

One commonality the two less performant ensembles share is that both include
Logistic Regression and Support Vector Machines, which use the same feature
selection method (minimum frequency). These two algorithms also have in common
that both form a decision boundary, which linearly separates the feature vector
hyperplane. This kind of similarity usually is not good for ensembles, as they benefit
from algorithms that produce complementary models.

7 Discussion

Our experiments show that each machine learning algorithm alone could barely reach
70% accuracy when performing sentiment analysis on our Brazilian Portuguese Tweets
dataset. The experiments also showed that text preprocessing has a very positive impact
in accuracy for all algorithms and a varied impact in polarity bias.

Each algorithm had its accuracy boosted differently by text preprocessing. With the
highest boost being of 22.3% and the smallest 7.31%.

For Naïve Bayes, the least affected, the small boost was probably due to the fact
that text preprocessing reduced the effectiveness of its chi-square feature selection.

For the algorithms that used minimum frequency feature selection, Support Vector
Machine and Logistic Regression, text preprocessing had a very positive outcome,
since it removed high frequency non-relevant terms and merged misspelled words,
raising their frequency.

Overall, text preprocessing showed itself to be a good way to raise algorithms
accuracy, regardless of the machine learning algorithm used. It is interesting to note
that in [10] it has been found that emoticons are able to reverse the polarity of the true
sentiment values of sentences. Our experiments seems to confirm this observation, as
the highest accuracies were obtained when the removal of emoticons was one of the
heuristics used. In the case of using a single heuristic, two of the three algorithms, LR
and SVM, reached their higher accuracy when using this heuristic, and two others, NB
and SVM, presented their lower polarity bias.

Ensembles also proved effective on raising the accuracy on sentiment analysis.
However in their construction it is important to consider that their outcomes are highly
affected by the characteristics of the combined individual algorithms.
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The experimental evaluation confirms what is known form the literature that there
are two conditions to create effective ensembles: (1) the algorithms should have similar
performances so each could have a positive effect on the ensemble; (2) the algorithms
should produce different and complementary models. The showed that similar algo-
rithms usually do not produce good ensembles, as it was the case with Logistic
Regression and Support Vector Machines. When algorithms are too similar they do not
add value to the ensemble decision boundary, instead they reinforce their own outputs,
diminishing the added effectiveness of other less similar algorithms.

Finally, the literature points out that neural networks usually yield good results with
abundant datasets, but, as shown here, they can also contribute to produce good results
with smaller datasets when used in ensembles.

8 Related Work

There is a number of works that describe the construction of corpora of Brazilian
Portuguese texts for sentiment analysis. Some well-kwon examples are TweetSentBR
[13] and ReLi [14]. TweetSentBR has 15,000 manually annotated tweets on the domain
of TV shows, and ReLi 12,000 manually annotated book reviews, at the phrase and
syntag levels. These and other data sets differ from ours by not collecting Twitter texts
or by focusing on a specific topic. Our corpus consists of tweets of more than ten
different topics.

In [15] it is described an opinion mining application over a dataset of app reviews
written in Brazilian Portuguese extracted from the Google Play. The authors apply
several text preprocessing heuristic and concluded that they have an insignificant role
in the opinion mining task for the considered domain. Our corpus consists of tweets
related to more than 10 different subjects, and the use of text preprocessing proved to
be very relevant to increase the accuracy of the evaluated classifiers. Several other
papers deal with sentiment analysis text in Brazilian Portuguese, as, for example, [16–
19], but, they differ from ours by not focusing on Twitter, or by dealing with a single
topic, and, mainly, for not doing a detailed analysis of different combinations of text
preprocessing heuristics.

9 Conclusion

The focus of this paper was to present a study on the effects of text preprocessing and
ensembles of machine learning algorithms on accuracy and polarity bias when per-
forming sentiment analysis.

An experimental evaluation showed that both approaches contribute to expressive
increases in classification accuracy, although not always on reducing the classification
polarity bias.

It also was found that classification algorithms such as Naïve Bayes, Logistic
Regression and Support Vector Machine combined with neural networks, such as the
RNTN, can form very effective ensembles, raising the classification accuracy even for
small datasets.
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In future work we intend to expand our study including other deep learning models,
in particular Convolutional and Recurrent Neural Networks.
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Abstract. In order to use a machine learning methodology for classi-
fying text documents, relevant features have to be first extracted from
them. The current approach uses the chaos game representation to pro-
duce an image out of a text document, flattens the images into vectors,
while further reduces the dimension via singular value decomposition.
Finally, a neural network learns the features relevant for each author and
the built model is used to classify new samples. The results obtained on
some well known benchmark data sets approach or exceed those in prior
literature, and encourage further research within this unexplored area.

Keywords: Author attribution · Chaos game representation
Machine learning

1 Introduction

Authorship attribution (AA) represents the task of determining the author of a
text out of several candidates based on text samples written by all these authors
[17,22]. In order to achieve AA automatically, the process involves the use of a
machine learning (ML) technique that learns characteristics from a training set
of documents written by the authors. The found characteristics specific to each
author are then used to discover the best matches for new texts.

Jeffrey [6] introduced the Chaos Game Representation (CGR) as a means
to visualize the structure of a DNA sequence. Such a sequence contains a long
string built on an alphabet of only 4 letters, usually G, C, A and T . The CGR
produces a grayscale image for a given DNA sequence that can be interpreted as
a symbol (akin to a fingerprint) of that long sequence of characters. The current
approach proposes the use of CGR for texts written in the Latin alphabet to
generate symbolic images that can be further used for AA.

The application to authorship attribution proceeds as follows. Using some
adjustments, CGR is applied to Latin alphabet texts that are written by vari-
ous authors, and images, each associated to its corresponding author, are pro-
duced. The images can be intuitively regarded as signatures or fingerprints of
the authors. When new texts are considered, the same CGR procedure is applied
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for producing new fingerprint images that can be compared to the previous ones.
In order to automate such comparison, a Neural Network (NN) learns charac-
teristics from a training set comprised of the symbolic representations for each
author. The built model recognizes images that correspond to new manuscripts
written by authors that had assigned texts in the training set. In order to simplify
the NN task, the images are transformed into numerical vectors in the current
study, first by flattening them and then by an extra reduction in dimension via
Singular Value Decomposition (SVD).

2 Related Work

The AA task assumes that there is a data set of text samples that is split into
training items for which the authors are known and a test corpus of distinct
text documents with unknown authorship, but for which the authors should be
identified from a set of known candidates. The ML methods need to extract
relevant features from both the training and the test text samples. These can
refer to lexical characteristics, like word frequencies or richness of the vocabulary,
character attributes (n-grams are the most extensively used ones), syntactic
observations, e.g. structure of the sentence, or even semantic ones [17,22]. As
the extracted characteristics can be very numerous, usually feature selection is
used as a subsequent step to keep only the most relevant attributes and to allow
the successful application of a ML approach.

Some of the most successful methods that are applied for the considered data
sets in English are next briefly presented. A support vector machines (SVM) with
bag of local histograms is used in [2]. In [5] and a SVM is applied to a set of
values obtained from 3-, 4- and 5-grams, after applying feature selection. Test are
made for each n-gram size separately and in combinations, while varying the size
of features selected from 2000 to 10000. Other methods consider different types
of n-grams and apply SVM [13], or utilize continuous n-grams representation
with a NN [15], use tensors for representation and apply SVM [11], distort text
for eliminating terms that do not possess information [18] or use orthogonal
similarity relations [14].

As concern the applications to the Portuguese data set considered in the
experiments, Varela et al. [19] selects syntactic attributes, use a SVM as a wrap-
per and also employ a multi-objective genetic algorithm for AA, while Oliveira
et al. [10] uses compression models and again SVM for the same purpose.

As opposed to the standard AA methods, that usually establish a numerical
data set from texts, the currently proposed work uses a completely different
perspective. The text samples are transformed into images through CGR and
these are next transformed into numerical data to be used by a ML technique.
Although the CGR holds information related to n-grams, the representation is
completely different from the usual ones that use character attributes.

We previously proposed the use of CGR for AA and text categorization
[9] with very competitive results. The current work drives forward the general
methodology by further improving results with the following alterations:
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– Characters have a different grouping, one that is better balanced (as measured
on the CCAT-50 data set).

– After the CGR representations are flattened, further dimensionality reduction
is achieved via SVD.

– After SVD, a NN classifier is used to handle the obtained samples.

Advantages over [9] can be enumerated as follows.

– NN does not face the curse of dimensionality due to significant reduction in
the number of dimensions achieved through SVD and hence scales well.

– The overall methodology becomes computationally faster.
– The quality of results is considerably higher. It now exceeds the best prior

literature on all benchmarks considered. Prior to this, no method has given
best results on multiple benchmarks, let alone in more than one language.

– There are fewer parameters to tune and the method is essentially automated.

3 Chaos Game Representation

CGR is used to produce graphical representations of DNA sequences which are
represented using a 4 letters alphabet, A, C, G and T . The representation starts
from a blank square having the corners labeled each with one of the 4 letters
and the starting (and current) point is the middle of the square. Then, each
nucleotide of the sequence is taken in turn and plotted as the middle point
between the corner labeled by that letter and the current point. This new point
becomes the current one and is used to represent the next nucleotide and the
process continues until the letter sequence is finished.

The graphical representation will be in the form of a grayscale square. Given
its size of 2k × 2k pixels, every pixel represents a distinct k-mer [6]. The num-
ber of times a k-mer occurs in the DNA sequence determines the gray level of
the corresponding pixel, relative to the total number of k-mers. Subsequence
repetitions (like words occurrences in an alphabet) lead to similar patterns rep-
resented in the image. It is interesting to see that the CGR representations of
various species have distinct patterns [7]. The existence of such specific proto-
types associated to diverse species led us to the hypothesis that some patterns
might be formed from Latin text that would tend to correlate with their author.

Deschavanne [1] proposed a modified CGR procedure known as Frequency
CGR (FCGR), equivalent to the former once the pixelation level is fixed, but
easier to implement [20]. FCGR is adopted in the current work.

4 Proposed Methodology

The FCGR procedure is applied on sequences of text that use a 4 letters alphabet
so, for its application for a text written with a Latin alphabet, several alterations
are required. It is necessary that the text is transformed into an alphabet of only
4 characters to be able to apply FCGR directly, and a base 4 representation is
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adopted. Similarly to [9], 16 symbols are considered for transforming the initial
text in the current study, with each element now regarded as a base 4 pair.
Thus, like DNA sequences, the obtained alphabet contains 4 distinct characters,
denoted by 0, 1, 2 and 3. Subsequently, the application of the FCGR procedure
is straightforward [1,7]. Algorithm 1 briefly illustrates the work flow of the pro-
posed FCGR-SVD-NN methodology for AA. There are no other preprocessing
procedures applied to the texts.

Algorithm 1. Overview of the proposed FCGR-SVD-NN methodology
Data: Input text documents with their known authors split into training and

test
Result: Assignation of test samples to candidate authors, depending on the

problem
1 Reduce the alphabet of the input document samples to 16 characters;
2 Transform the obtained documents into base 4 representation, i.e. 2 digits per

input character;
3 Produce FCGR images for each distinct sample;
4 Flatten FCGR representations to numerical vectors;
5 Use SVD to further reduce dimensionality of the vectors;
6 Apply NN to learn corresponding numerical features from the training cases

and use the model to classify test samples;

4.1 From Latin Alphabet to Base Four

No distinction is made between upper and lowercases and all non-Latin char-
acters are omitted. In order to keep the size of the transformed text low, it is
decided to represent each character from the initial material with 2 digits of
base 4. This leads to a number of 16 distinct symbols that can be represented
each as a pair from the set {00, 01, . . . , 33}. To reduce to a character set of size
16 without discarding from the texts, sets of characters are merged so that we
only use 16 distinct “character groups” (where some groups are in fact single-
tons). The process to test various combinations in groups and permutations of
the ordering of character sets was carried out on the CCAT-50 benchmark. The
character grouping was done with the goal to have a crude balance in counts for
each group of characters. The sets are shown in Fig. 1. As the plot illustrates, an
acceptable balance is obtained with this separation: on the maximal side there is
the character space, with characters m and u at the low end. It should be noted
that this character grouping and ordering is dissimilar to the one from [9]. The
latter was done by a modest amount of trial and error tests, and while it led to
reasonable results, it did not perform so well as the one proposed herein.

4.2 Classification

A pixelation level of 7 is considered, as suggested to be the most suitable in
[9], where tests were made on the Federalist Papers using different levels. After
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Fig. 1. Chosen sets of characters and their corresponding base 4 representation are
represented on the horizontal axis. The number of counts for the sets of characters, as
found in the CCAT-50, are shown on the vertical axis.

transformation into a base 4 representation, all texts are fed into the FCGR
procedure, which produces images of 128×128 pixels, that is 27×27. Subsequent
processing takes place at the pixel level. Each matrix of values behind an image
is flattened to a vector of 16384 numerical values between 0 and 256. All the
vectors that derive from the training set are gathered as separate rows of a
large matrix that will be subsequently used by the SVD. Naturally, the labels
(authors) are retained for each row in turn. Similarly, the images from the test
set are each flattened to long vectors.

Singular Value Decomposition. The SVD on the training matrix is then
computed. Recall that the full SVD of a matrix M returns a triple of matrices
U , W , V such that U and V are orthogonal matrices, W is a diagonal matrix of
nonnegative values, and MV = UW due to orthogonality of V (that is, V V ∗ = I)
[3]. In the current study, only the k largest singular values are retained, along
with the corresponding singular vectors from U and V . UW is thus the best rank
k approximation to MV in Euclidean norm. The left singular vector matrix U
has rows that correspond to each particular author, one row per initial document.
UV is then fed to the NN classifier.

The right singular vectors V from the largest singular values are needed for
the test phase. The test samples to be classified are multiplied with the transpose
of the V matrix and then fed to the NN model in order to determine their classes.

During pre-experimental testing, it was observed that normalizing the values
of the involved matrices led to better results, so that was consequently applied.

Neural Network. NN [4] simulates the biological neural connections from the
animal brain. The structure is comprised of a network of units (or neurons) that
transfer information from the training data and adjusts the synaptic weights with
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the aim of reducing the loss between the true label and the predicted one. The
NN architecture can have a certain number of units, layers, various functions and
learning schemes. Once the training phase is accomplished, the model receives
new samples and decides their labels.

Each neuron is associated with a set of synaptic weights w, which are used
in order to compute a function of its inputs. The expression of a neuron u is
represented in (1), where in is its input received from a predecessor neuron, w
is the vector of synaptic weights and b is the bias.

u = w · in + b (1)

Its output is given by (2), where ϕ is the activation function.

out = ϕ(u) (2)

The architecture that led to the most accurate results during pre-
experimentation, when tests were made on the CCAT-50 data set (which is pre-
sented in the following section), is next described. A fully connected layer receives
the initial sample vectors, then a ramp function is applied to the inputs followed
by a hyperbolic tangent activation function. The output results from another
hyperbolic tangent function and a subsequent softmax layer. The cross-entropy
loss is computed by comparing input class probability vectors with indices rep-
resenting the target class. The Adam optimizer method is used for minimizing
the model outputs and the actual ones. For every training sample xi in turn, the
information is forwardly propagated from the input layer to the output through
hidden units. All computations, including the NN, were done in version 11.3 of
Mathematica [21].

5 Experimental Results

Two corpora are considered for testing the proposed methodology and the results
are compared to the most successful ones found in the literature.

5.1 Benchmark Data Sets

One corpus contains texts written in English, while the other one is in Por-
tuguese. CCAT is in English and represents a subset of the Reuters Corpus
Volume 1 [8] and it was used before for AA in [13,16]. There are two subsets
used, CCAT-10 and CCAT-50. The numbers in the names indicate that they
have 10 and 50 authors, respectively. Each author has 100 articles, and in both
sets 50 articles per author are used for training and 50 for testing. The topic of
the documents is corporate/industrial news.

The other corpus is represented by articles published in newspapers from
Brazil, written by 100 distinct authors, and is firstly presented in [19]. In the
initial data set, each author has 30 articles, but some duplicates are found and
removed within the experiments, so a few authors remain with only 28 or 29
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articles. Specifically, 2 texts are removed from author 26 and one from authors: 3,
17, 49, 59, 60, 88, 90 and 92. The total number of remaining articles is 2990. The
data set consists of 10 separate genres and there are 10 authors that contributed
for each one of them. The information about the publication and author name
is removed from each article. In order to keep the methodology unchanged, all
diacritical marks from the Portuguese language are erased.

5.2 Experimental Setup

The CCAT subsets have pre-defined settings as concerns the splitting into
training-test sets, and this simplifies the comparison to other techniques. Each
author has 100 articles and they are split into a set of 50 for training and 50 for
testing.

Varela et al. [19] does not provide a similar direct separation, but they use
60% of the articles for training and the rest for testing. Next is described how
the training and test sets were extracted from the data set in the present work,
so that further replication of the experiments can be done. From each block of
5 articles from the same author, the second and fourth are withheld for testing,
except for the sixth block where instead the second and third are kept out.
Consequently, there are 1200 articles used for testing and the remaining 1790
are kept for training, so the separation is similar as concerns percentages to
the one in [19]. The chosen separation could be useful to make the experiments
repeatable.

A pixelation level of 7 is used for all situation and an FCGR representation
is obtained for each distinct document, that is each text is transformed into an
image of 27 × 27 pixels.

The NN uses 300 units for CCAT-10 and 500 for the other two data sets.
The number of training rounds is set to 300 for CCAT-10, and 100 for both
the CCAT-50 and Brazilian data sets; in all cases the number was set based on
where the incremental improvement in the training phase was observed to tail
off. As mentioned in Subsect. 4.2, the optimizer is Adam and the β1 parameter
is set to 0.9. The values for these parameters are chosen based on fine tuning
performed on CCAT-50.

The number of singular values to keep is chosen as 500 for CCAT-10 and
1000 for the other two data sets. A larger value was considered for CCAT-50
and Brazilian data sets because they are more complex both as regards the
number of classes and documents, and therefore we considered a larger number
of features to represent the samples. For CCAT-10 the value is taken as the
maximal one, since 500 is the number of samples in the test set. For the other
two data sets greater values than 1000 were tried during pre-experimentation,
but no significant improvements were reached. For smaller sizes however, losses
in classification accuracy were observed. With these settings, the reduction in
size for each training and test sample exceeds a factor of 16.

Due to the stochastic nature of the classifier, in order to reach objective
results, all classification settings presume the execution of 10 runs for the same
configuration. The usual average over the 10 runs is reported in the results. Also
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an aggregate output over all repeated runs is computed as follows. In each run,
for one test sample, probabilities of assigning it to each class are computed.
Subsequently, the 10 probabilities for each class are summed and the maximal
value decides the class of the sample. Experimentally it was observed that this
aggregation has two advantages over individual runs: it reduces variance and, for
the two larger corpora, sometimes outperforms all individual runs. Both results
will be presented in next subsection, the former under the name average and the
latter as aggregated. For all data sets the 10 runs were repeated five times, and
one with the median aggregated score is reported.

5.3 Results and Discussion

Figure 2 illustrates the FCGR representation of 4 distinct documents: the first 2
belong to the same author, while the others correspond to documents written by
a different person. At a glance, it is difficult for the human eye to observe similar-
ities or differences between these images. Nevertheless, these representations are
very useful for comparing texts (as they were previously for DNA sequences) by
means of computing machines, as they discern between FCGR representations
remarkably well.

Fig. 2. From left to right, the FCGR representations of the first and last documents
for the first author and the same first and last texts for the second author in CCAT-10.

Table 1 shows a comparison over the results obtained by several recent tech-
niques for the CCAT tasks. Besides the proposed method, a similarly good result
for CCAT-10 is reported in [2]. Nevertheless, there are several works like [15] and
[12] which demonstrate that the result in [2] is difficult to replicate, perhaps due
to sensitive parameters that require specific values. While their implementations
of the technique in [2] performed reasonably well, i.e. 77% and 75.4% respec-
tively, they are significantly far from the 86.4% reported in the original publi-
cation. Our previous attempt [9] applies linear regression to the FCGR images
directly (without any dimension reduction) and the results are presented under
the name FCGR+LR. Although FCGR+LR accuracy is very competitive for
both data sets, the ones we put forward herein (denoted by FCGR-SVD-NN)
are better by more than 3%. Alternatively, an application of the NN directly
on the FCGR representation (without the SVD reduction) is achieved on the
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CCAT-10 data set and the classification accuracy results reached only 78%.
This variant is therefore not considered for the rest of the comparison.

The second best result for CCAT-50 is reported in [5]. The result presented
in Table 1 is obtained for 4-grams and for 10000 features.

Table 1. Classification accuracy results compared to other methods on CCAT-10 and
CCAT-50 data sets. The best results are written in bold.

Method CCAT-10(%) CCAT-50(%)

FCGR-SVD-NN average 86.5 74.3

FCGR-SVD-NN aggregated 85.9 73.7

FCGR+LR [9] 82.2 70

SVM [5] – 74

SVM [2] 86.4 –

SVM [13] 78.8 69.3

n-gram char (1, 2) [15] 77.8 70.2

n-gram char (2, 3, 4) [15] 74.8 72.6

SVM [11] 80.8 –

Character n-grams [18] 80.6 –

MSMF+FLF [14] 78.8 69.5

It is also important to mention that for the aggregated score for CCAT-10,
beside 84.5% text documents with correctly identified authors, there are another
13% (63 samples) that have the correct author as second choice. For CCAT-50
11.6% of documents have the correct author as second choice.

Figure 3 illustrates a confusion matrix for CCAT-10 and also how many times
the texts are assigned to each author, both correctly and incorrectly. As it can
be noticed from both plots, the author that is hardest to recognize is the fourth.
22 of the texts written by A4 are labeled as belonging to A10. This is also the
reason why author 10 has so many samples assigned in the second plot. On the
other hand, there is also A5 that is very clearly distinct from the rest: texts of
A5 are both precisely identified and moreover none of the other documents are
misattributed to A5 (but neither to A7).

For CCAT-50 the confusion matrix is too large to be included in the manu-
script. Four authors are accurately identified for all 50 of their documents in
the test set (authors 11, 16, 21, and 29), while at the low end A44 is correctly
attributed in only 13 cases, and A7 in only 14.

Table 2 presents a comparison to the best performing methods as presented
in [9,10,19]. The result of the proposed technique clearly outperforms those of
the other methods applied for the same data set, with the next best result more
than 5% lower. Also the second choice guess for the proposed method remains
relatively high, at 5.75%. It should be noted that no change was required, other



Text Documents Encoding Through Images for Authorship Attribution 187

35

15

49

1

33

17

21

7

22

50

1

2

47

49

1

1

49

50

1

8

41A10

A9

A8

A7

A6

A5

A4

A3

A2

A1

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
Actual authors

P
re

di
ct

ed
 a

ut
ho

rs

0
10
20
30
40
50

labels

0

20

40

60

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
Authors

T
im

es
 la

be
le

d

category
wrong
correct

Fig. 3. Confusion matrix for CCAT-10 on the left plot and the number of documents
correctly and wrongly attributed to each author in turn for the same data set.

than preprocessing to remove diacritical marks, in applying this method to the
Portuguese data set.

The FCGR+LR in [9] is also applied for genre classification and the accuracy
obtained for this task is identical to the aggregated one of the proposed approach
for AA. As a side experiment, the current method is also applied for genre
recognition, but the classification accuracy is similar to the one for the AA task.
Having no significant increase in result quality for the text categorization task,
we decided to keep the focus of the study only on AA.

Table 2. Comparison of classification accuracy results in percentages for AA for the
Brazilian newspaper data set. The last column shows the percent of samples attributed
to the correct author as second choice.

Classifier Correct author Correct second author

FCGR-SVD-NN average 89.2 4.4

FCGR-SVD-NN aggregated 87.8 –

FCGR+LR [9] 82 6.9

SVM [19] 72 –

SVM [10] 77 –

The results of the proposed approach are seen to be generally better than
other successful techniques applied to these benchmark data sets. Moreover these
results are achieved despite a rough truncation of the initial alphabet and no
other modifications to the text. For instance, text distortion similar to [18] might
be very useful as a preprocessing step, as the FCGR images would perhaps be
more informative for the classifier. Such a preprocessing step will be tried in
future research.
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6 Conclusions

The current approach is based on the encoding proposed in [9] that transforms
the texts into visual representations using chaos game representation, but herein
the development goes further by reducing the dimensionality of the vectorized
image matrix and then applying a neural network for classification. The proposed
methodology proves to be notably superior to the FCGR+LR method on all
three benchmark data sets considered for testing. Moreover, it performs similar
or better than other well established techniques applied for author attribution
on the same corpora.

The proposed methodology holds the promise of gaining a place among the
state-of-the-art techniques for author attribution, since it already proves suc-
cessful when applied to several benchmark problems, without a thorough inves-
tigation of all the possible settings for the process. For instance, tasks of future
research analysis might involve other transformations of the initial text into the
base 4 representation, as there might still exist important information loss at this
point. A change of the classifier or even other means of reducing dimensionality
could also prove favorable for boosting the classification accuracy.
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