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Preface DATRA 2018

Clinical follow-up evaluation is critically important to patient care following inter-
ventions including surgical procedures, radiation therapy, or pharmaceutical treatment.
As treatments become more targeted and personalized, the need arises for accurate
prediction and assessment of a patient’s response. Such analysis generally relies on
time-related data analysis, wherein baseline and follow-up measurements are evaluated.
In medical imaging, computer vision and pattern recognition approaches are being
developed and adopted for such evaluations. The DATRA 2018 workshop aims at
exploring pattern recognition technologies for tackling clinical issues related to the
follow-up analysis of medical data with a focus on malignancy progression analysis,
computer-aided models of treatment response, and anomaly detection in recovery
feedback. The primary target of this workshop is to interface different backgrounds in
order to outline new problems regarding the evolution of a patient’s treatment response,
healing, or rehabilitation. This symposium of competences can be seen as an interesting
incentive to focusing on the right problems and to establishing a contact point between
the medical and technical environment.
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Preface PIPPI 2018

The application of sophisticated analysis tools to fetal, infant, and paediatric imaging
data is of interest to a substantial proportion of the MICCAI community. The main
objective of this workshop is to bring together researchers in the MICCAI community
to discuss the challenges of image analysis techniques as applied to the fetal and infant
setting. Advanced medical image analysis allows the detailed scientific study of con-
ditions such as prematurity and the study of both normal singleton and twin devel-
opment in addition to less common conditions unique to childhood. This workshop
brings together methods and experience from researchers and authors working on these
younger cohorts and provides a forum for the open discussion of advanced image
analysis approaches focused on the analysis of growth and development in the fetal,
infant, and paediatric period.
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DeepCS: Deep Convolutional Neural Network
and SVM Based Single Image

Super-Resolution

Jebaveerasingh Jebadurai(&) and J. Dinesh Peter

Department of Computer Science and Engineering,
Karunya Institute of Technology and Sciences, Coimbatore, India

jebaveerasingh.j@gmail.com

Abstract. Computer based patient monitoring systems help in keeping track of
the patients’ responsiveness to the treatment over the course of the treatment.
Further, development of these kind of healthcare systems that require minimal or
no human intervention form one of the most essential elements of smart cities. In
order to make it a reality, the computer vision and machine learning techniques
provide numerous ways to improve the efficiency of the automated healthcare
systems. Image super-resolution (SR) has been an active area of research in the
field of computer vision for the past couple of decades. The SR algorithms are
offline and independent of image capturing devices making them suitable for
various applications such as video surveillance, medical image analysis, remote
sensing etc. This paper proposes a learning based SR algorithm for generating
high resolution (HR) images from low resolution (LR) images. The proposed
approach uses the fusion of deep convolutional neural network (CNN) and
support vector machines (SVM) with regression for learning and reconstruction.
Learning with deep neural networks exhibit better approximation and support
vector machines work well in decision making. The experiments with the retinal
images from RIMONE and CHASEDB have shown that the proposed approach
outperforms the existing image super-resolution approaches in terms of peak
signal to noise ratio (PSNR) as well as mean squared error (MSE).

Keywords: Image super-resolution � Deep learning � Deep neural networks
Rectifier linear units

1 Introduction

The development in the field of computer vision is an integral part of the development
of remote health monitoring systems. Nowadays the effective application of computer
vision systems directly impacts the performance of the healthcare systems. While
developing a system that monitors the patients’ responsiveness to the treatment, it is
imperative to perform periodic analysis. Generally, the computer vision systems make
use of digital images of various kinds for making decisions. The resolution of digital
images play a vital role to the effectiveness of these systems. As, the high resolution
images contain more useful information and higher pixel density than the low

© Springer Nature Switzerland AG 2018
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https://doi.org/10.1007/978-3-030-00807-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00807-9_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00807-9_1&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00807-9_1&amp;domain=pdf


resolution images, they help the image analysis applications to produce more accurate
results. HR images are preferred over the LR images in all the applications.

Over the years several researchers have developed image super-resolution
approaches in order to improve the resolution of low resolution images. The applica-
tion of SR techniques for improving has the advantages such as device independency
and cost effectiveness. SR has vast application areas such as satellite imaging, medical
imaging and computer vision [1–4]. The learning based approaches form end to end
relationships between the low resolution patches and the high resolution patches. The
learning is achieved by employing various techniques. In order to improve the quality
of the high resolution image, attempts have been made by using SVM for learning and
the regression of SVM to minimize the reconstruction errors. The application of neural
networks has been explored by many researchers for achieving good approximation
from learning [5, 6]. This paper proposes a single image super-resolution algorithm
based on deep learning which will facilitate in the system that monitors patients’
responsiveness to the treatment.

The remainder of this paper is organized as follows. Section 2 gives the related
works. The proposed approach is explained in Sect. 3. The experimental setup and the
performance evaluation are given in Sect. 4. Section 5 gives the conclusion and the
future work.

2 Related Works

An elaborated study on various single image super-resolution algorithms has been
carried out. The single image SR algorithms are broadly classified into reconstruction
based algorithms and learning based algorithms. The reconstruction based SR algo-
rithms focus on the elimination of aliasing artifacts from the low resolution input
images but suffer from the lack of well-defined boundaries. It is also identified that, it is
highly difficult to use the reconstruction based algorithms in real time applications.
Further, the reconstruction based approaches fail to produce better results if the
magnification factor is set over 2.

The learning based algorithms formulate the relationship between the low resolu-
tion patches of the input image and the high resolution patches of the expected output
image. Various learning methods have been employed in SR algorithms. The sparse
representation of images for learning is used for image super-resolution. However, it
requires an additional refinement process [7, 8]. The approaches which use SVM and
its regression (SVR) minimize the reconstruction error considerably. The application of
SVR along with sparse coding technique produce commendable improvement in the
quality of the output SR images in terms of PSNR [9, 10].

Learning with the help of neural networks (NN) has also been applied to generate
high resolution results from low resolution images. Several researchers have attempted
to enhance the image super-resolution process by NN based learning. Hopfield NN was
used to produce SR outputs from remotely sensed images [11]. A hybrid of Proba-
bilistic neural network and the Multi-layer perceptron was used in order to make the SR
process faster [12, 13]. The usage of soft learning prior along with optical character
recognition (OCR) enabled better recognition of license plates [14].

4 J. Jebadurai and J. D. Peter



Learning with convolutional neural network produced better approximation and
applied in the reconstruction of high resolution outputs [6, 15]. The deep convolutional
networks with rectified linear unit (ReLU) as the activation function produce good
quality outcomes [5, 16]. The application of SVM along with deep CNN improved the
effectiveness of image classification [17].

This paper proposes a single image super-resolution approach that uses both the
benefits of CNN as well as SVM. The major objectives of the proposed approach are 1.
Generation of high resolution images from a single low resolution image, 2. Effective
learning with deep CNN and 3. Effective minimization of prediction errors.

3 Proposed DCS Approach

The proposed Deep learning based single image super-resolution approach has three
major layers namely patch categorization, non-linear mapping and image reconstruc-
tion. The increase in the number of layers increases the time taken for training by the
neural network. Hence, the number of layers in the proposed convolutional neural
network is limited to three. The proposed approach adopts the deep convolutional
neural network architecture of [5]. The flow diagram of the proposed DeepCS approach
is given in Fig. 1.

The patch categorization level form the patch vectors from the input low resolution
images. The non-linear mapping level produces the patches of the expected high res-
olution image. The image reconstruction level generates the final high resolution
image.

The activation functions play a vital role in the construction of any neural networks.
The rectifier linear unit is used in the proposed approach as the activation function. The
major advantage of using ReLU is that, it generates less number of non-zero entries
which help the algorithm to learn faster. The expression explaining ReLU is given in
(1), where x is the input.

f xð Þ ¼ max 0; xð Þ: ð1Þ

ReLU is better in approximation when compared to the other activation functions
such as sigmoid, softmax. ReLU produces sparse representation of inputs when other
activation functions generate dense representations. The size of the patch categorization
filter F1 is 1 � 1. Hence each and every pixel in the image will be categorized based on
the outcome of ReLU activation function.

Fig. 1. Flow diagram of DeepCS approach

DeepCS 5



The operation using ReLU L1 in the first layer is formulated as given in (2), where,
F1 represents filters, B1 represents biases and � represents the convolution operation.
L1 xð Þ is the value of patch categorization vector for input x.

L1 xð Þ ¼ max 0;F1 � xþB1ð Þ: ð2Þ

The generated vectors are used as the base for non-linear mapping.
The second layer of the convolutional neural network in the proposed DeepCS

approach is non-linear mapping. The results of patch categorization phase, the patch
categorization vectors, are the inputs to this non-linear mapping phase. The non-linear
mapping forms the predicted high resolution images.

Non-linear mapping is achieved by mapping the patch categorization vectors into
the vectors of higher dimensions. The filter F2 is used here. The non-linear mapping is
done on the higher dimensional feature map rather than on the patch of the input image
in order to produce the patches of higher dimensions. The dimension of filters F2 is
greater than F1. The filters are of size 3 � 3 or 5 � 5. The non-linear mapping
operation is given in expression (3).

L2 xð Þ ¼ maxð0;F2 � L1 xð ÞþB2Þ: ð3Þ

Here F2 represents filters and B2 the biases. The increase in the number of layers
also increases the time taken by training process. The results of non-linear mapping are
the predicted patches of output high resolution image. The final high resolution image
is constructed with these patches.

The final layer of the proposed DeepCS is the reconstruction of required HR image.
The predicted overlapping high resolution patches, formed by non-linear mapping, are
averaged in order to form the super-resolution output. In reconstruction, the proposed
fused system exploits the advantages of support vector machines. The learned out-
comes from the first two layers are used for reconstruction. The application of the
regression of support vector machines (SVR) refines the image by reducing the
reconstruction errors. In general, SVR is expressed as given in (4).

minx;b;n 1
2x

TxþC
Pl

i¼1 ni s:t:

xi xT/ yið Þþ bð Þ� 1� ni;

ni � 0; i ¼ 1; . . .::; l:

ð4Þ

Here x is the actual pixel for which the decision is being made, b denotes the offset
parameter, l represents the number of training patches and / yið Þ is the sparse repre-
sentation of image, x denotes the norm vector for non-linear mapping and C represents
the tradeoff between the training error bounds. The sparse representation of the image is
used here based on the fact that the HR image can be viewed as the sparse represen-
tation of LR patches.

Further, sparse representation for image super-resolution improves the quality of
the result. Since the outcome of sparse modeling will have very few non-zero entities, it
requires less time for training. Like ReLU in the first two phases, the reconstruction

6 J. Jebadurai and J. D. Peter



phase will also use very few non-zero entities. On the completion of learning with
SVR, a sample high resolution result is produced. The sigmoid kernel SVR learning
performs similar to a neural network with two layers. Hence, the application of sigmoid
kernel SVR reduces the running time of the SR approach. The expression (5) represents
sigmoid kernel where a is the magnification/scaling parameter of the input data, y de-
notes the vector being tested and r represents the parameter for shifting.

K yi; yj
� � ¼ tanh ayTi yj þ r

� �
: ð5Þ

Sigmoid kernel maps the output in a high dimensional feature space. The proposed
DeepCS approach applies SVR with Bayesian decision theory in order to reduce the
reconstruction errors by selecting the patch with the least error. The tradeoff between
the various decisions is quantified by Bayesian decision theory by using probabilities
and the associated costs or errors. According to Bayes formula, the patch which has the
maximum posterior probability values will be the one that has the minimal error. It is
also learned that the posterior probability of a patch and its corresponding error value
are inversely proportional. The reconstruction phase results in the generation of
expected high resolution image.

4 Experimental Setup and Performance Evaluation

In order to evaluate the performance, the proposed super-resolution approach was
implemented and tested with several images. As the proposed approach uses the
advantages of deep learning, ImageNet data set was used as learning dictionary for
training the network. 24,800 sub images in ImageNet dataset are used for training the
convolutional neural network. The size of training image sub size was 33 [18]. The
Caffe package was used for modeling the proposed learning network.

The images taken from the datasets such as RIMONE-db-r2, RIM-
ONE_database_r1, DRIONS-DB, CHASEDB1 were used as the test images. The
quantitative performance of the proposed approach was evaluated in terms of MSE and
PSNR. The values of MSE and PSNR were calculated using the expressions given in
(6) and (7) respectively where x denotes the ground truth image of size m � n and y be
the reconstructed image of same size.

MSE calculates the average of the squares of the difference between the ground
truth image and the actual reconstructed result image. The PSNR and MSE are
inversely proportional.

MSE x; yð Þ ¼ 1
mn

Xm

i¼1

Xn

j¼1
xij � yij
� �2

: ð6Þ

PSNR calculates the ratio between the maximum possible power of a signal and the
power of noise that affects the quality of its representation.

DeepCS 7



PSNR x; yð Þ ¼ 10log10 2552=MSE x; yð Þ� �
: ð7Þ

The PSNR and MSE values were calculated for the following state of art
algorithms.

• Bicubic - Bicubic Interpolation
• NE + LLE -Neighbor Embedding Locally Linear Embedding [19]
• SC + SVR - Sparse Coding with SVR SR [10]
• SLSVR - Self-Learning SR [20]
• SKSVR – Sigmoid kernel SVR [21]
• DCNN - Deep convolutional networks approach [5]
• MKSVR – Multi-kernel SVR [22]

The values of PSNR and MSE obtained after the experiments are tabulated. In
tables, the values denoting the best performance for each test images are highlighted
with bold letters. The MSE values require to be lesser in order to produce higher PSNR
values. The PSNR values from these experiments are given in Table 1.

From the values from Table 1, it is identified that the proposed SR approach works
well for the retinal images from other globally available datasets as well. Similarly, the
MSE values obtained from the experiments are tabulated in Table 2.

The PSNR values and the high resolution images that are obtained from the
experiments for the retinal image ‘IM319’ are given in Fig. 2. It is inferred from Fig. 2
that the proposed approach generates better high resolution results in terms of PSNR as
well as visual perception. The proposed approach improves the PSNR value by 2.63,

Table 1. PSNR values for retinal images from datasets with magnification factor 2

SR
methods

NE + LLE Bicubic SC + SVR SLSVR SKSVR DCNN MKSVR DeepCS

Image_002 32.30 33.98 34.14 34.20 34.31 34.53 34.64 34.78
Image_017 32.68 34.44 34.53 34.59 34.71 34.83 34.91 34.86
Image_037 30.64 32.16 32.38 32.52 32.54 32.75 32.78 32.90
Image_061 30.59 32.19 32.33 32.38 32.49 32.70 32.76 32.89
Image_081 31.41 33.12 33.19 33.25 33.36 33.58 33.64 33.82
IM005 41.16 41.74 43.49 43.57 43.71 43.71 43.92 43.87
IM102 36.96 38.16 39.05 39.12 39.25 39.50 39.50 39.62
IM124 38.39 39.78 40.56 40.64 40.77 41.04 41.15 41.20
IM144 36.59 38.10 38.67 38.71 38.87 39.12 39.24 39.32
IM167 39.94 41.66 42.21 42.28 42.42 42.70 42.86 42.82
IM256 48.44 48.64 51.19 51.28 51.30 51.78 51.80 51.84
IM270 42.35 43.09 44.76 44.84 44.98 45.16 45.28 45.32
IM293 44.60 44.70 46.13 46.21 46.77 47.37 47.41 47.52
IM302 43.00 43.60 45.44 45.52 45.67 45.97 45.84 46.02
IM319 37.31 38.90 39.43 39.50 39.63 39.68 39.92 39.94

8 J. Jebadurai and J. D. Peter



1.04, 0.51, 0.44, 0.31, 0.26 and 0.02 over NE + LLE, Bicubic, SC + SVR, SLSVR,
SKSVR, DCNN and MKSVR approaches respectively.

Similar to the experiments with retinal images from globally available datasets,
more experiments were carried out with the retinal images (100 images) captured using

Table 2. MSE values for retinal images from datasets with magnification factor 2

SR
methods

NE + LLE Bicubic SC + SVR SLSVR SKSVR DCNN MKSVR DeepCS

Image_002 38.29 26.01 25.07 24.72 24.10 22.91 22.34 21.63
Image_017 35.08 23.39 22.91 22.60 21.98 21.38 20.99 21.24
Image_037 56.12 39.54 37.59 36.40 36.23 34.52 34.28 33.35
Image_061 56.76 39.27 38.03 37.59 36.65 34.92 34.44 33.43
Image_081 47.00 31.70 31.19 30.77 30.00 28.52 28.12 26.98
IM005 4.98 4.36 2.91 2.86 2.77 2.77 2.64 2.67
IM102 13.09 9.93 8.09 7.96 7.73 7.30 7.30 7.10
IM124 9.42 6.84 5.72 5.61 5.45 5.12 4.99 4.93
IM144 14.26 10.07 8.83 8.75 8.43 7.96 7.75 7.60
IM167 6.59 4.44 3.91 3.85 3.72 3.49 3.37 3.40
IM256 0.93 0.89 0.49 0.48 0.48 0.43 0.43 0.43
IM270 3.79 3.19 2.17 2.13 2.07 1.98 1.93 1.91
IM293 2.25 2.20 1.59 1.56 1.37 1.19 1.18 1.15
IM302 3.26 2.84 1.86 1.82 1.76 1.64 1.69 1.63
IM319 12.08 8.38 7.41 7.30 7.08 7.00 6.62 6.59

NE+LLE – 37.31 dB Bicubic – 38.90 dB SC+SVR – 39.43 dB SLSVR – 39.50 dB

SKSVR – 39.63 dB DCNN – 39.68 dB MKSVR – 39.92 dB Proposed – 39.94 dB

Fig. 2. SR results and PSNR values for IM319 image from RIMONE_db_r2 dataset
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Welch-Allyn iExaminer, a smartphone based fundoscopy. The corresponding PSNR
and MSE values are tabulated in Tables 3 and 4 respectively.

The PSNR values and the high resolution images that are obtained from the
experiments for the retinal image ‘Image_14’ are given in Fig. 3. From Fig. 3 it is
identified that the proposed approach produces better high resolution images than the
state of the art approaches. The proposed approach improved the PSNR values by 2.53,

Table 3. PSNR values for retinal images captured with iExaminer with magnification factor 2

SR
methods

NE + LLE Bicubic SC + SVR SLSVR SKSVR DCNN MKSVR DeepCS

Image_01 33.38 34.94 35.27 35.34 35.45 35.68 35.73 35.82
Image_02 33.68 35.27 35.59 35.68 35.75 36.04 36.00 36.24
Image_03 34.66 36.29 36.63 36.70 36.81 37.04 37.02 37.12
Image_04 34.42 36.03 36.37 36.44 36.52 36.79 36.77 36.86
Image_05 33.78 35.36 35.69 35.78 35.88 36.11 36.02 36.12
Image_06 33.93 35.51 35.84 35.90 36.03 36.24 36.35 36.33
Image_07 33.80 35.72 35.71 35.78 35.80 36.24 36.17 36.38
Image_08 34.10 36.04 36.03 36.10 36.12 36.45 36.48 36.60
Image_09 33.79 35.72 35.71 35.77 35.79 36.13 36.19 36.32
Image_10 33.95 35.88 35.87 35.94 35.96 36.29 36.33 36.44
Image_11 34.76 36.73 36.72 36.79 36.81 37.16 37.22 37.30
Image_12 34.26 35.04 36.20 36.26 36.38 36.42 36.36 36.40
Image_13 34.28 35.12 36.22 36.38 36.40 36.63 36.66 36.84
Image_14 33.87 34.69 35.77 35.95 35.97 36.20 36.24 36.40

Table 4. MSE values for retinal images captured with iExaminer with magnification factor 2

SR
methods

NE + LLE Bicubic SC + SVR SLSVR SKSVR DCNN MKSVR DeepCS

Image_01 29.86 20.85 19.32 19.01 18.54 17.58 17.38 17.02
Image_02 27.87 19.32 17.95 17.58 17.30 16.18 16.33 15.46
Image_03 22.24 15.28 14.13 13.90 13.55 12.86 12.91 12.62
Image_04 23.50 16.22 15.00 14.76 14.49 13.62 13.68 13.40
Image_05 27.23 18.93 17.54 17.18 16.79 15.93 16.26 15.89
Image_06 26.31 18.28 16.95 16.71 16.22 15.46 15.07 15.14
Image_07 27.11 17.42 17.46 17.18 17.10 15.46 15.71 14.97
Image_08 25.30 16.18 16.22 15.96 15.89 14.73 14.62 14.23
Image_09 27.17 17.42 17.46 17.22 17.14 15.85 15.63 15.17
Image_10 26.19 16.79 16.83 16.56 16.48 15.28 15.14 14.76
Image_11 21.73 13.81 13.84 13.62 13.55 12.50 12.33 12.11
Image_12 24.38 20.37 15.60 15.38 14.97 14.83 15.03 14.90
Image_13 24.27 20.00 15.53 14.97 14.90 14.13 14.03 13.46
Image_14 26.67 22.08 17.22 16.52 16.45 15.60 15.46 14.90
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1.71, 0.63, 0.45, 0.43, 0.20 and 0.16 over NE + LLE, Bicubic, SC + SVR, SLSVR,
SKSVR, DCNN and MKSVR approaches respectively. The average values of PSNR
and MSE obtained from the experiments are given in Table 5. It is identified from
Table 5, that the proposed approach produces better quantitative values when com-
pared to the state of the art single image super-resolution approaches.

5 Conclusions and Future Work

A learning based single image super-resolution approach is proposed. The proposed
DeepCS approach exploits the benefits of learning with convolutional neural network
as well as the support vector machines. The experimental results indicated that the
proposed approach produced better high resolution images than the existing approaches
in terms of PSNR as well as MSE. The DeepCS approach is found to be suitable and

NE+LLE – 33.87 dB Bicubic – 34.69 dB SC+SVR – 35.77 dB SLSVR – 35.95 dB

SKSVR – 35.97 dB DCNN – 36.20 dB MKSVR – 36.24 dB Proposed – 36.40 dB

Fig. 3. SR results and PSNR values for retinal image Image_14

Table 5. Average PSNR and Average MSE values

SR methods Average PSNR Average MSE

NE + LLE 35.97 22.89
Bicubic 37.33 16.07
SC + SVR 37.97 14.79
SLSVR 38.05 14.52
SKSVR 38.15 14.25
DCNN 38.41 13.49
MKSVR 38.45 13.37
DeepCS 38.55 13.04
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can be used in the development of automated healthcare systems. The future works will
be focused on optimizing the SR approach.
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Abstract. The quantification of muscle mass is important in clinical
populations with chronic paralysis, cachexia, and sarcopenia. This is
especially true when testing interventions which are designed to maintain
or improve muscle mass. The purpose of this paper is to report on an
automated method of MRI-based thigh muscle segmentation framework
that minimizes longitudinal deviation by using femur segmentation as a
reference in a two-phase registration. Imaging data from seven patients
with severe multiple sclerosis who had undergone MRI scans at multiple
time points were used to develop and validate our method. The proposed
framework results in robust, automated co-registration between baseline
and follow up scans, and generates a reliable thigh muscle mask that
excludes intramuscular fat.

1 Introduction

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system
that can affect electrical conduction in axons in the brain, spinal cord, and optic
nerves [3]. The clinical manifestations are partly driven by the location of focal
inflammatory lesions and include paralysis/paresis, spasticity, fatigue, cognitive
impairment, and sphincter dysfunction.

Regular exercise may benefit patients with MS, primarily by ameliorating
deconditioning associated with disability. However, disability associated with
advanced disease (Expanded Disability Status Scale (EDSS) of 7.0 or more)
impedes regular exercise in this patient cohort [11,12]. Previous exercise inter-
ventions in patients with advanced MS have been short-term and largely limited
c© Springer Nature Switzerland AG 2018
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to arm exercise. Recently, studies have begun to investigate the potential of elec-
trical stimulation and other treatments to maintain leg muscle mass. To assess
the efficacy of these treatments in MS, a precise and accurate quantification of
limb muscle mass change is critical.

In this study, we assessed the change in longitudinal thigh muscle volume in
patients with advanced MS undergoing an exercise regime based on a modified
version of NMES (Neuromuscular Electrical Stimulation) cycling [5,6]. This work
describes an automated segmentation pipeline to rapidly quantitate lean thigh
muscle volume, and accurately estimate change over time.

Previously described methods for segmenting thigh muscle volume from MR
images have utilised semi-automated approaches, including threshold algorithms
and model matching techniques [2,9]. More recently, semantic segmentation has
become a popular approach for solving computer vision problems; and attempts
have been made to segment muscle masks from MR images with deep learning
based algorithms [1]. However, these models normally do not take the intra-
muscular fat of subject into account. Additionally, longitudinal changes in thigh
muscle ROIs (regions of interest) have been seldom studied, and most published
methods [4,10,13] employ cross-sectional segmentation without indicating the
method of alignment of ROIs between baseline and follow-up images.

Hence, we propose an automated segmentation framework to rapidly and
accurately quantitate longitudinal change in thigh muscle volume from MR
images. The framework uses a novel two-phase registration method to strictly
align the relevant ROIs between baseline and follow-up; and has been evaluated
in 7 subjects. Our results indicate that the proposed method achieves a consis-
tent geometric alignment in longitudinal MR thigh images in terms of Complex
Wavelet Structural Similarity Image Metric (CW-SSIM).

2 Method

The proposed automated longitudinal thigh muscle segmentation framework is
shown in Fig. 1. Any number of 3D T1-weighted MR images of both left and right
thighs are used as the input to generate the corresponding muscle segmentation
masks. To facilitate comparative analysis, region of interest (ROI) is defined by
the analyst based on the anatomical landmarks and extends from the axial slice
immediately superior to the patella to the inferior border of the gluteus maximus
muscle. The pipeline only requires the analyst to select these two ROI endpoints
on the baseline scan.

To maintain longitudinal coherence, the femur, which remains morphologi-
cally stable over time, is segmented at each time point. A two-phase process is
used to co-register follow-up to baseline images and derive follow up ROIs in the
baseline space. Inhomogeneity correction, thresholding and morphological pro-
cessing are then applied to generate the final thigh muscle masks. The details is
described as follow.
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Fig. 1. Overall workflow for longitudinal thigh muscle segmentation. The raw input
comprises 3D T1-weighted MR images of bilateral thighs; the pipeline outputs corre-
sponding thigh muscle masks.

Fig. 2. Automated division of left and right thighs in the sagittal plane.
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2.1 Cropping

The input data for each patient/scan contains both thighs, and their relative
position is slightly different at each time point. Direct co-registration between
baseline and follow-up will lead to an inaccurate rigid alignment result. In our
pipeline, thigh muscle analysis is performed separately for left and right thighs.
To achieve this, as shown in Fig. 2(b), each 3D image is firstly projected to the
axial plane by averaging the voxels along the superior-inferior direction, and
then further averaged to L-R line to obtain the mean intensity profile as shown
in Fig. 2(c). The 3D MR thigh image is divided into left and right thigh (black
line, Fig. 2(c)) in the sagittal plane, located automatically by the interpeak nadir
in the associated intensity plot.

2.2 Two-Phase Registration

External deformation of muscle during scanning, or longitudinal change in mus-
cle morphology hampers geometric alignment and accurate co-registration of
baseline and follow up 3D thigh images. This is a critical step when calculating
volumetric change of a ROI over time. We use a modified form of FLIRT [7] for
the registration in our framework. FLIRT was originally designed for longitudi-
nal brain registration, and is based on determining the transformation (T ∗) that
minimizes the intensity-based cost function:

T ∗ = arg min
T∈ST

C(BL, T (FU)), (1)

where BL and FU represent for baseline (reference) and follow-up respectively,
T (FU) represents for the transformed FU , ST is the set of all affine transforma-
tions and C(X,Y ) is the cost function. Here we use the correlation ratio (CR) [8]
as the cost function:

C(BL, T (FU)) =
1

V ar(BL)

∑

k

nk

N
V ar(BLk). (2)

When applied in this study, the default registration uses the whole thigh as the
reference target. Unlike soft tissues, changes in bone morphology are negligible
over the observation period; we therefore elect to define the femur as the refer-
ence target and propose a two-phase registration process: in the first phase, the
transformation Tfemur, is derived and “BL” and “FU” in Eqs. (1) and (2) are
replaced with “BLfemur” and “FUfemur” respectively. Tfemur is then applied
to FU to obtain the FUreg. Since we snip the ROI of the thigh along inferior-
superior direction on the baseline image, the same measurement area along the
thigh at follow-up is obtained by aligning the BLROI to FUreg.

Figure 3 demonstrates scenarios where the use of the whole thigh as the
registration reference fails to align the follow-ups with the baseline due to: (1)
morphological change of muscle and fat (Fig. 3(a)); and (2) absence of distal
thigh in the image (Fig. 3(b)).
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Fig. 3. Comparison of registration results in different scenarios (from left to right):
baseline, registration using femur as reference and registration without using femur as
reference.

Fig. 4. The intermediate steps of morphological processing.
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2.3 Inhomogeneity Correction and Normalization

Inherent intensity inhomogeneity in MR images requires correction before a fixed
threshold is applied for the segmentation of muscle from ROIs. In our pipeline,
N4 [16], an improved version of the N3 framework [15], was used. N4 achieves the
result by feeding the input image iteratively into a smoothing operator which
contains a B-spline approximator.

2.4 Morphological Processing

After intensity inhomogeneity-correction and normalization, a fixed intensity
threshold is used to segment the thigh muscle from surrounding tissues and dif-
ferentiate the muscle from the intramuscular fat. To eliminate the noisy “ring”
between the outer boundary of thigh and the background, and also the border
between the femur and the thigh muscle, we perform following morphological
process: first performing an opening of the threshold mask then take its inter-
section with the original mask. The demonstration of intermediate steps is shown
in Fig. 4.

3 Experimental Results

Seven participants (five females and two males) with progressive MS (median
age: 55 ± 6 years old, EDSS: 7.3 ± 0.6, patients with this level of EDSS lose
majority of their mobility functions) were recruited for this study from a mul-
tidisciplinary MS clinic. Participants were asked to maintain with their usual
activity and exercise routines in the first 12 weeks (control period) of the study;
they undertook NMES leg cycling exercises three times per week during the
second 12 week study epoch. In order to obtain consistent and reliable femur
imaging, patients with following scenarios were not included in the analysis:
(a) inability to lie in a standard position, (b) hip replacement and (c) severe
spasticity.

MRI scans (both thighs) were acquired at the time of enrolment (baseline;
week 0), following the 12 week control period, and post 12 weeks of NMES
training (week 24). Additionally, long-term data was acquired from two patients.
In summary, 21 MRI exams (7 baseline, 7 mid-study and 7 post-NMES) were
acquired on a GE Discovery MR750 Scanner with 32-channel torso coil. All
subjects were scanned with a 3DT1 sequence (IRFSPGR, TE = 2.7 ms, TR =
6.5 ms, acquisition metrix = 480 × 480, Slice thickness = 1 mm).

For qualitative evaluation of the co-registration between baseline and follow-
ups, Complex Wavelet Structural Similarity Image Metric (CW-SSIM) was com-
puted as previously described [14]. Based on CW-SSIM score, our method yielded
a higher similarity between baseline femur and femur on the co-registered follow-
ups as shown in Table 1.



20 Z. Tang et al.

Table 1. Similarities between the baseline femur and femur on the co-registered
follow-ups.

Subject FLIRT Proposed

Subject1 0.2073 ± 0.0227 0.2109 ± 0.0218

Subject2 0.2265 ± 0.0373 0.2315 ± 0.0374

Subject3 0.2303 ± 0.0392 0.2577 ± 0.0330

Subject4 0.2133 ± 0.0210 0.2165 ± 0.0201

Subject5 0.2693 ± 0.0027 0.3338 ± 0.0089

Subject6 0.2002 ± 0.0199 0.2451 ± 0.0165

Subject7 0.1145 ± 0.0497 0.1503 ± 0.0466

4 Conclusion

In this paper, we propose an automated longitudinal thigh muscle segmentation
framework to calculate muscle volume change over time to assess the treatment
effect. The technique can be potentially modified to sample upper arm muscu-
lature, and is ideally suited to applications requiring calculation of longitudinal
changes in lean muscle mass. Femur-based co-registration minimised registra-
tion error and resulted in improved baseline to follow up image alignment, as
measured by CW-SSIM. Low longitudinal measurement error and automation
suggest that our technique will be suited to future inclusion in large clinical
trials, both in the physical therapy and pharmacotherapy domains.
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Abstract. The detection of bone lesions is important for the diagno-
sis and staging of multiple myeloma patients. The scarce availability
of annotated data renders training of automated detectors challenging.
Here, we present a transfer learning approach using convolutional neu-
ral networks to detect bone lesions in computed tomography imaging
data. We compare different learning approaches, and demonstrate that
pretraining a convolutional neural network on natural images improves
detection accuracy. Also, we describe a patch extraction strategy which
encodes different information into each input channel of the networks.
We train and evaluate our approach on a dataset with 660 annotated
bone lesions, and show how the resulting marker map high-lights lesions
in computed tomography imaging data.

1 Introduction

Multiple myeloma (MM) is a cancer of plasma cells in the bone marrow. The
most common symptom for MM are bone lesions. Bone lesions can be detected
in computed tomography (CT) scans. An automated detection of lesions in CT
scans is desirable, because it would accelerate reading images and could help
during diagnosis and staging of multiple myeloma patients. The detection is dif-
ficult, and until now, no algorithms for automatic lesion detection in CT data
have been developed. Deep learning approaches such as convolutional neural net-
works (CNN) are a promising direction for this problem. However, a difficulty
arising with MM is the limited availability of annotated training data. The num-
bers of examples are smaller than those typically used for training CNNs, and
the representation capacity suffers correspondingly.

Here, we demonstrate two approaches to perform lesion detection in MM
using CNN architectures. First, we evaluate transfer learning as a means of
c© Springer Nature Switzerland AG 2018
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improving the performance of our approach by transferring knowledge from a
natural image classification task. Secondly, we explore two ways of representing
visual input data for CNN training: a single channel approach, and an approach
which distributes ranges of different hounsfield unit to different channels. We
compare these approaches on a data set containing overall 660 annotated bone
lesions.

Related Work. Convolutional neural networks [3] and transfer learning are used
in medical imaging for a variety of applications. Transfer learning aims to transfer
knowledge learned in a source task to improve learning in a target task [7].
Our approach uses a network pre-trained as a classifier on the natural image
database ImageNet [1] (the source task) and then applies it as a detector of
bone lesions (the target task). Fine-tuning on images extracted from CT scans is
applied to adapt to the target task. Shin et al. describe a similar approach in [5].
They compare different architectures and learning protocols, transfer learning
and random initalization, for lymph node detection and interstitial lung disease
classification [5]. In [4] the authors show how convolutional neural networks
can be used to reduce false positives while detecting sclerotic bone lesions in
computer aided detection (CAD) tools. In the most closely related work, Xu et
al. use a novel neural network architecture to detect bone lesions in multiple
myeloma patients in multimodal PET/CT scans [8].

The proposed method differs from previous approaches in several aspects.
It does not need a prior candidate detection stage before using the CNN [4],
instead we use the CNN to detect lesions directly. Our approach operates on
single 2D patches, while previous work used ensembles of neural networks and
extracted multiple patches at one volume location [4,5]. Finally, we use volumes
of a single modality (CT), instead of using a multimodal approach [8].

2 Method

We treat lesion detection as a classification task. We extract local image patches,
and train a convolutional neural network to classify patches into lesion and non-
lesion. We compare two ways of extracting image information and encoding it in
image patches used by the CNN: a single channel approach, and a three channel
approach. Furthermore, we compare two learning protocols to evaluate if the
transfer of parameters of pre-trained models is superior to random initialization.

2.1 Extracting Image Patches

We extract a set of image patches P for training and testing from a set of whole
body CT volumes {V1, . . . ,Vn}. Due to the anisotrophy of the volumes in axial
direction as well as to match the input channels of the CNN after transferring
from a 2D natural image task, the image patches are extracted in 2D along the
axial axes. For each volume Vi ∈ {V1, . . . ,Vn} the center positions of all lesions
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{xli
1 , . . . ,x

li
j } are annotated. Additionally a bone mask Mi is provided for each

Vi. All patches p ∈ P are extracted with a size of 15× 15ṁm.
For each Vi and each lesion xli

m a positive patch ppi
m is extracted centred

around xli
m. pli

m is augmented by random rotations and mirroring. This results
in a set of positive patches Ppi

for each Vi. A set of negative patches Pni
=

{pri
1 , . . . ,pri

m} is extracted from Vi at m random positions xri
m inside Mi, with

the restriction that they do not overlap with the extracted patches in Ppi
. The

negative patches pri
m are not augmented. The final set of patches used for training

and testing is given by P = {Ppi
∪ Pni

} for all i = 1 . . . n.
Figure 1 shows two ways of extracting a patch and representing the informa-

tion for CNN training:

Fig. 1. Positive patch extraction: A patch is extracted along the axial axes around
the center of a lesion. Single-channel patch extraction extracts gray-scale patches. 3-
Channel patch extraction encodes information of a low-attenuation, high-attenuation,
soft tissue window, into a combined three channel image.

1. Single channel patches: In the first approach a set of gray-scale patches PG

is extracted as described above. To implement transfer learning on pre-trained
networks, and to match the input size of the network, the patches are rescaled
to 64× 64 and the same patch is fed into each of the three input channels.

2. Three channel patches: The second approach exploits the quantitative
character of CT images, enabling the splitting of value ranges in a consistant
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manner across examples. We use three channels to encode different information
extracted from the image. By this decoupling, the network can potentially find
more meaningful features in different ranges corresponding to specific anatomical
characteristics. We extract 3-Channel patches P3C by assigning different ranges
of Hounsfield Units (HU) to three different channels. The first channel focuses
on a low-attenuation window of values smaller than 100 HU, the second on a
high-attenuation window (>400 HU) and the third on a soft tissue window [100–
400 HU]. The patches in P3C are rescaled to 64 × 64 to match the input size of
the network.

2.2 Network Architecture

We use the VGG-16 architecture [6] as a base for our network. This enables the
comparison of networks trained only on our data to transfer learning using net-
works trained on substantially larger sets of natural images. We use 64× 64× 3
as input size. Except the fully connected layers and the classification layer at the
end of the network, the architecture remains unchanged to the original VGG-
16 network. These layers are exchanged to fit the detection task resulting in a
single output value. The final model used is depicted in Fig. 2. It consists of
five convolutional blocks with two, respectively three convolutional layers sep-
arated by a max pooling layer with a stride of 2. In the end of the network
three fully-connected layers are used. Rectified Linear Units (ReLU) are used as
activation function for all hidden layers. A sigmoid activation function is used
for the output unit to produce a probability value of seeing a lesion. Depending
on the learning protocol used, we input different image patches to this network.
The single channel patches PG are rescaled from size 15 × 15 to 64× 64 and the
same patch is given to each channel of the input layer. The three channel patches
P3C are rescaled from 15 × 15× 3 patches to 64× 64× 3 and each channel of the
patch is used as input to one of the three input channels.

2.3 Four Models

Two different learning protocols, transfer learning and random initialization as
well as two different patch extraction strategies, single channel patches and 3-
channel patches, are used. For all four models trained the architecture of the
network shown in Fig. 2 remains unchanged.

1. Transfer Learning: The weights of our network are transfered from pre-
training a VGG-16 network on the natural image dataset ImageNet [1]. The
custom fully-connected layers are initialized randomly. For the transfer learning
approach the first six layers shown in Fig. 2 are frozen and the neural network
is fine-tuned on PG. We fine-tune the model with stochastic gradient descent
and use binary-crossentropy as loss function. The network is fine-tuned for 30
epochs. This approach will be called TL-approach .

2. Random Initialization: Instead of transferring from a pre-trained VGG-16
model all weights and biases are initialized randomly. The whole CNN is trained
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Fig. 2. The CNN architecture as used in our approach. It is based on the architecture
of VGG-16 [6], the input shape and the fully connected layers at the end of the network
are adapted to fit our detection task.

with stochastic gradient descent from scratch. Training is done for 40 epochs.
Only PG is used for training. We will call this approach RI-approach .

3. 3-Channel Transfer Learning approach: For this approach the transfer
learning protocol is used as described above. The only difference is that we use
3-channel patches P3C for training and evaluating the model. The approach will
be denoted as 3C-TL-approach .

4. 3-Channel Random Initialization approach: The random initialization
learning protocol is used in combination with 3-channel patches P3C . The app-
roach will be denoted as 3C-RI-approach .

2.4 Volume Parsing

After training the network, we apply the detection to a volume of the test set
Vj ∈ {V1, . . . ,Vt}, which was not part of the training process. At every position
xj
i within Mj an image patch pj

i of size 15 × 15 millimetres along the axial
axes is extracted. Depending on the model used, single channel or three channel
patches are extracted, rescaled and used as input to the network. The output is
a probability value P (pj

i ) that the patch is showing a lesion. The probabilities
are visualized as a probability map of the same size as Vj .

3 Evaluation

Data For training and evaluation a subset of the VISCERAL Detection Gold
Corpus [2] is used. We use a set of 25 volumes for which manually annotated
lesions and organ masks are provided. Three of those volumes, with a total of
62 lesions, are used for the evaluation of volume parsing in whole CT scans.
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In the 22 CT volumes used for training and validating the CNN, a total of
598 lesions are annotated. 5938 image patches are extracted and split randomly
into a training (72%), validation (10%) and test (18%) set. The training and
validation set are used during the training phase of the networks. The test set is
used for the evaluation of the models. Table 1 gives an overview of the dataset
used for the supervised fine tuning, respectively training of the network.

Table 1. Number of samples in the dataset

Lesion Non-lesion

Training set 2153 2124

Validation set 299 294

Test set 538 530

2990 2948

Evaluation on Patches. After training we evaluate the four approaches on a
dataset of image patches. We measure true positives, false positives, true neg-
atives, and false negatives. F-Score, precision and recall are computed on the
test set. To evaluate if the transfer of parameters is beneficial the TL-approach
and the RI-approach, respectively the 3C-TL-approach and the 3C-RI-approach
are compared. For the evaluation of the different patch extraction strategies the
results of the TL-approach and the 3C-TL-approach, respectively RI-approach
and 3C-RI-approach are compared.

Evaluation of Volume Parsing. We parse CT volumes that were not used for
training. Bone masks are used to restrict the Region of Interest (ROI) to bones.
We predict a probability score for each position in the ROI and generate proba-
bility maps. Those probability maps are compared visually to evaluate the ability
of the different models to detect lesions.

4 Results

Results on Image Patches. Table 2 compares different performance measures
for all four models. All four approaches can classify image patches into lesion
and non-lesion with high accuracy. The results show that models using transfer
learning achieve a higher F-Score, and AUC, outperforming networks trained
only on the CT image patches. Both approaches using transfer learning (TL-
approach and 3C-TL-approach) outperform the corresponding random initializa-
tion approaches. The 3C-TL-approach has the lowest number of false negatives,
which is critical as lesions should not stay undetected.

The comparison of the different patch extraction strategies demonstrates that
the models trained with three channel patches performs better. The 3-channel-
TL-approach (0.92) has a slightly higher F-Score than transfer learning with gray
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Table 2. Comparison of detection performance measures for the four approaches:
transfer learning (TL), random initialization (RI) and the 3 channel approaches (3C-
TL and 3C-RI).

Precision Recall F-Score AUC

TL 0.91 0.87 0.89 ± 0.010 0.96 ± 0.006

RI 0.82 0.84 0.83 ± 0.010 0.91 ± 0.008

3C-TL 0.95 0.90 0.92 ± 0.008 0.97 ± 0.004

3C-RI 0.92 0.90 0.91 ± 0.010 0.97 ± 0.004

Fig. 3. Results on image patches. In the upper row confusion matrices for all four
approaches are given. The lower row show examples for correct classifications and
misclassifications of the networks.

scale patches (0.89). Absolute numbers and examples of true/false classifications
are given in Fig. 3. The increased accuracy of the 3-channel approaches could be
due to the decoupling of the different HU ranges enabling a better exploitation
of the CNN architecture.

Results of Volume Parsing. Three details of probability maps for axial slices are
shown in Fig. 4. The TL-approach produces smooth results with a lot of noise,
while the RI-approach and the 3C-RI-approach produce more noise and sharper
borders between regions classified as lesion/non-lesion. The 3C-TL approach
produces the sharpest borders between regions and less noise than both RI-
approaches, consistent with its higher quantitative accuracy. The qualitative
analysis shows that the 3C-TL-approach outperforms the other approaches.
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Fig. 4. Details of probability maps for detecting bone lesions in axial slices. Each row
depicts the groundtruth and the detection probability of the three approaches.

The probability maps show that all approaches can detect the lesions
annotated in the groundtruth. However, the false positive rate is high for all
approaches with the 3C-TL approach showing the best performance. This indi-
cates that, due to the limited number of annotated lesions in the training data,
the generalization of the network is limited.

5 Conclusion

We propose an algorithm for automatic detection of bone lesions in CT data of
multiple myeloma patients. We evaluated two questions: can we transfer mod-
els from natural image data to improve accuracy, and does a decoupling of HU
ranges in the input representation help classification. We compared four differ-
ent approaches: a CNN trained on a set of lesion and non-lesion examples of
CT imaging data, a CNN pre-trained on natural images, transferred and fine
tuned on the CT data, and an alternative 3-channel representation of the image
data for both approaches. Results show that classification with high accuracy is
possible. Transfer learning, and splitting image information into channels, both
improve detection accuracy. Qualitative experiments on calculating marker maps
for lesions on full volumes, show that on large volumes the suppression of false
positives still needs to be improved. By providing insight the into number of
lesions detected as well as their extend, the proposed method could be used in
clinical context as a tool to monitor the progression of the disease.
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Abstract. Quantification of local metabolic tumor volume (MTV)
changes after Chemo-radiotherapy would allow accurate tumor response
evaluation. Currently, local MTV changes in esophageal (soft-tissue) can-
cer are measured by registering follow-up PET to baseline PET using
the same transformation obtained by deformable registration of follow-
up CT to baseline CT. Such approach is suboptimal because PET and
CT capture fundamentally different properties (metabolic vs. anatomy)
of a tumor. In this work we combined PET and CT images into a sin-
gle blended PET-CT image and registered follow-up blended PET-CT
image to baseline blended PET-CT image. B-spline regularized diffeo-
morphic registration was used to characterize the large MTV shrink-
age. Jacobian of the resulting transformation was computed to mea-
sure the local MTV changes. Radiomic features (intensity and texture)
were then extracted from the Jacobian map to predict pathologic tumor
response. Local MTV changes calculated using blended PET-CT regis-
tration achieved the highest correlation with ground truth segmentation
(R = 0.88) compared to PET-PET (R = 0.80) and CT-CT (R = 0.67)
registrations. Moreover, using blended PET-CT registration, the multi-
variate prediction model achieved the highest accuracy with only one
Jacobian co-occurrence texture feature (accuracy = 82.3%). This novel
framework can replace the conventional approach that applies CT-CT
transformation to the PET data for longitudinal evaluation of tumor
response.

1 Introduction

Image-based quantification of tumor change after Chemo-radiotherapy (CRT)
is important for evaluating treatment response and patient follow-up. Standard
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methods to assess the tumor metabolic response in Positron Emission Tomog-
raphy (PET) images are qualitative and described based on a discrete catego-
rization of reduction in Standardized Uptake Value (SUV) or Metabolic Tumor
Volume (MTV) [12]. Overall volumetric difference is a global measurement that
cannot characterize local non-uniform changes after the therapy [12]. For these
reasons, diameter/SUV/volume based measurements are not consistently corre-
lated to important outcomes [12]. Tensor Based Morphometry [8] exploits the
gradient of Deformation Vector Field (DVF) i.e. determinant of Jacobian matrix
termed Jacobian map (J), to characterize voxel-by-voxel volumetric ratio of an
object before and after the transformation. J > 1 means local volume expansion,
J < 1 means shrinkage and J = 1 denotes no change. There are many studies
that utilize Jacobian map to evaluate volumetric changes. Fuentes et al. [3] used
Jacobian integral (mean J×tumor volume) to measure the local volume change
of irradiated whole-brain tissues in Magnetic Resonance Images and showed that
the estimated change had good agreement with ground truth segmentation. In
our previous work [8] we showed that Jacobian features in Computed Tomogra-
phy (CT) images could predict the tumor pathologic response with high accuracy
(94%) in esophageal cancer patients.

However, structural change in CT is affected by daily anatomical variations
and therapy response is mostly seen in PET as metabolic activity [12]. Conven-
tionally, metabolic tumor change is measured by deforming the follow-up tumor
volume in PET and aligning it to baseline tumor volume using the transforma-
tion obtained from CT-CT Deformable Image Registration (DIR) [11]. However,
PET and CT capture different properties (metabolic vs. anatomy) of a tumor,
therefore applying the transformation from CT-CT registration is suboptimal.
On the other hand, directly registering PET images is problematic since there
are few image features to generate an accurate transformation [11].

Some attempts performed on deformable registration of PET-CT using joint
maximization of intensities [4] increased the uncertainties due to heteroge-
neous tumor uptake in PET and different intensity distributions between two
images. Additionally, deep learning methods to estimate DVF have been pro-
posed recently. However, training deformations were generated using existing
Free-Form registrations, hence the accuracy could be as good as already avail-
able algorithms [6]. Moreover, the algorithms were not tested for multi-modality
registrations.

In this work, we used a linear combination of PET and CT images to generate
a single grayscale blended PET-CT image using a pixel-level fusion method.
Our main goal is to combine anatomic and metabolic information to improve
the accuracy of multi-modality PET-CT registration for quantification of tumor
change and for prediction of pathologic tumor response. The contributions are
as follows:

1. Local MTV change calculated using Jacobian integral of blended PET-CT
image registration achieved higher correlation with the ground truth segmen-
tation (R = 0.88) compared to mono-modality PET-PET (R = 0.80) and
CT-CT (R = 0.67) registrations.
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2. Jacobian radiomic features extracted from blended PET-CT registration
could better differentiate pathologic tumor response (AUC = 0.85) than
mono-modality PET and CT Jacobian and clinical features (AUC = 0.65–
0.81) with only one Jacobian co-occurrence texture feature in esophageal
cancer patients.

Fig. 1. (a) Main workflow of our method. Conceptual illustration of Jacobian map. (b)
Larger sphere simulates MTV in the baseline image and smaller follow-up sphere illus-
trates shrinkage of a tumor. Converging DVF represents a volume loss and generates
a Jacobian map (c) that illustrates local shrinkage (blue). (Color figure online)

2 Materials and Methods

Figure 1 shows our workflow and illustrates the concept of Jacobian map using
a synthetic sphere that simulates a heterogeneous tumor shrinkage.

2.1 Dataset

This study included 61 patients with esophageal cancer who were treated with
induction chemotherapy followed by CRT and surgery. All patients underwent
baseline, post-induction and post-CRT PET/CT scans. Resolution for PET
images was 4.0 × 4.0 × 4.25 mm3 and for CT images was 0.98 × 0.98 × 4.0
mm3. MTV on each PET-CT was segmented using a semi-automatic adaptive
region-growing algorithm developed by our group [9]. Segmentations were visu-
ally reviewed and manually modified if necessary by a nuclear medicine physi-
cian. Average percentage of MTV change was 50 ± 30.6% in the cohort. Patho-
logic tumor response was assessed in surgical specimen and categorized into:
pathologic complete responders (absence of viable tumor cells, 6 patients) and
non-responders (partial response, progressive or stable disease, 55 patients). Reg-
istrations were performed between baseline and post-induction chemotherapy
(follow-up) images.
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2.2 Generating Blended PET-CT Images

Maximum intensity of CT images was clipped to 750 HU to eliminate the effect
of high attenuation metals. PET images were resampled to CT resolution. PET
and CT images were normalized to the range of [0, 1]. The normalization bounds
used for CT were (−1000, 750) HU and for PET, the range of tumor SUVs in
our patient cohort (0, 35) was used. To generate a grayscale blended PET-CT
image, a weighted sum of normalized PET (nPET) and CT images (nCT) was
formulated (Eq. 1) where α ∈ [0, 1]:

Blended PETCT = α(nCT ) + (1 − α)nPET (1)

α = 0.2 was found optimal in that it produced similar blending of PET and
CT information as when the nuclear medicine physician visually fused PET
(window/level = 6/3 SUV) and CT (window/level = 350/40 HU) images. By
using blended PET-CT images for registration, high metabolic uptake in the
tumor was emphasized in the foreground while anatomic details in surrounding
normal tissues were kept in the background (Fig. 3).

2.3 Registration Methods

B-Spline Regularized Diffeomorphic Registration: To correct respiratory-
induced tumor motion, we first aligned follow-up images to baseline images by
rigidly registering the tumors using their center of geometry as an initial trans-
formation. Then we deformably registered two images using a rigidity penalty
term [7] to enforce the local rigidity on tumor and preserve tumor’s structure
while compromising on the global surrounding differences. Rigidity penalty was
only applied to blended PET-CT and PET-PET registrations. Initial alignment
of CT images was performed using a rigid registration. We then deployed a B-
spline regularized symmetric diffeomorphic registration (BSD) [10] to character-
ize metabolic volume loss. A diffeomorphic registration estimates the optimized
transformation, φ, parameterized over t ∈ [0, 1] that maps the corresponding
points between two images. φ is obtained by a Symmetrized Large Deforma-
tion Diffeomorphic Metric Mapping (LDDMM) algorithm that finds a geodesic
solution in the space of diffeomorphism. A symmetrized LDDMM captures large
intra-modality differences and guarantees inverse consistency and one-one map-
ping in DVF while minimizing the bias between forward and inverse transforma-
tions. By explicitly integrating the B-spline regularization term, a viscous-fluid
model is formulated that fits the calculated DVF after each iteration to a B-
spline object. This gives free-form elasticity to converging vectors creating a
sink point that is mapped to many points in its vicinity and represents a mor-
phological shrinkage for the regions with non-mass conserving deformations. The
optimization cost function is as follows [10]:

c(φ(x, t), Ib ◦ If ) = EMI
similarity(φ(x, 1), Ib, If ) + E2

geodesic(φ(x, 0), φ(x, 1)) (2)

+ ρBspline(v(φ(x, t)), Bk)
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where EMI
similarity is a mutual information similarity energy, Egeodesic is a geodesic

energy function and ρBspline denotes a B-spline regularizer. The transformation
φ(x, t) between baseline (Ib) and follow-up (If ) images is characterized by the
maps of the shortest path between time points t = 0 and t = 1.

v(φ(x, t)) = ∂φ(x,t)
∂t is the gradient field that defines the displacement change

at any given time point. Bk is B-spline function (k spline order) applied on the
gradient field. Three levels of multi-resolution registration were implemented
with B-spline mesh size of 32 mm, 32 mm and 16 mm at the coarsest level for
blended PET-CT, PET-PET and CT-CT registrations, respectively. The mesh
size was reduced by a factor of 2 at each sequential level. The optimization step
size was set to 0.15 and the number of iterations (100, 70, 40) for all modalities.
We used Directly Modified Free Form Deformation optimization scheme [10] that
was robust to different parameters and all the registrations were performed in a
cropped region 5 cm surrounding the MTV.

Registration Evaluation Methods: We considered MTV change measured
by the semi-automatic segmentation with physician modification as the ground
truth to compare against Jacobian integral for registration evaluation. Correla-
tion and percentage of difference between MTV changes calculated by Jacobian
integral and by semi-automatic segmentation (ground-truth) were first assessed.
Dice Similarity Coefficient (DSC) was also calculated between baseline MTV
and deformed follow-up MTV. We compared BSD results with a Free-Form
Deformation Registration algorithm (FFD) regularized with bending energy [5].
The blended PET-CT, PET-PET and CT-CT registrations were separately per-
formed using these two algorithms.

Optimal Registration Parameter Estimation: (i) Regularization mesh size
(σ) and (ii) optimization step size (γ) were the most sensitive parameters. We
experimentally studied the influence of different σ = 16, 32, 64, 128 mm and
γ = 0.1, 0.15, 0.2, 0.25 on registration and Jacobian map. The registration
results were used as a quantitative benchmark to find the optimal trade-off
between the parameters. A parameter set that resulted in the best DSC and the
highest correlation between Jacobian integral and segmentation was chosen as
the optimal parameters.

2.4 Jacobian Features for Prediction of Tumor Response

We extracted 56 radiomic features quantifying the intensity and texture [13]
of a tumor in the Jacobian map. The Jacobian features quantified the spatial
patterns of tumor volumetric change. The importance of features in predicting
pathologic tumor response was evaluated by both univariate and multivariate
analysis. In univariate analysis, p-value and Area Under the Receiver Operat-
ing Characteristic Curve (AUC) for each feature was calculated using Wilcoxon
rank sum test. In multi-variate analysis, firstly distinctive features were iden-
tified using hierarchical clustering [2]. A Random Forest model (RF) was then
constructed (200 trees) with features chosen by a Least Absolute Shrinkage and
Selection Operator (LASSO) feature selection. All distinctive features were fed
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to the RF classifier in a manner of a 10-fold cross-validation (CV). Within each
fold, LASSO was applied to select the ten most important features. We repeated
the 10-fold CV ten times to obtain the model accuracy (10× 10-fold CV).

3 Results and Discussion

3.1 Quantitative Registration Evaluation

A combination of σ = 32 mm (blended PET-CT), 32 mm (PET-PET), 16 mm
(CT-CT) and γ = 0.15 achieved the best DSC and the highest correlation hence
were selected as the optimal registration parameters. Larger mesh size in blended
PET-CT and PET-PET registrations compared to CT-CT registration produced
a more regularized and smoothed DVF to compensate the local irregular defor-
mations due to non-uniform metabolic uptakes and lack of corresponding points
in PET. Figure 2 shows scatter plots with least square regression line (solid red)
between MTV change calculated by Jacobian integral and the ground truth seg-
mentation for (a) blended PET-CT, (b) PET-PET and (c) CT-CT BSD registra-
tions with goodness of fit (r2) values. Blended PET-CT registration showed the
highest r2 and captured the greatest range of deformations in tumor, compared
to PET-PET and CT-CT registrations. Table 1 shows correlation coefficients
and average percentage of difference between Jacobian integral and segmenta-
tion using BSD and FFD for each modality.

(a) Blended PET-CT (b) PET-PET (c) CT-CT

Fig. 2. Scatter plot showing correlation between MTV change calculated by Jacobian
integral and ground truth segmentation for (a) blended PET-CT, (b) PET-PET and
(c) CT-CT BSD registrations. Dashed blue line is identity line. (Color figure online)

Mean±stdev DSC are also presented in Table 1. Blended PET-CT registra-
tion showed higher DSC with less variation among the cohort. Using a blended
PET-CT registration, DVF in and near the tumor region was driven by the
metabolic changes while DVF outside the tumor region was driven by the
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Table 1. Registration results using the optimal parameters comparing correlation and
average percentage difference between MTV change estimated by Jacobian integral and
segmentation.

Registration Correlation % Difference DSC Quantified changes

Segmentation - - - 50%

PET-CT BSD 0.88 7.8% 0.73±0.08 42%

PET BSD 0.80 14.1% 0.66±0.13 28.6%

CT BSD 0.67 31.6% 0.69±0.16 7.6%

PET-CT FFD 0.77 18.6% 0.71±0.13 22%

PET FFD 0.74 25.1% 0.60±0.14 17.4%

CT FFD 0.32 28.4% 0.69±0.16 19.6%

anatomical structures surrounding the tumor. The blended PET-CT registra-
tion benefited by leveraging prominent image features from both PET and CT
simultaneously, hence, achieving higher DSC and more accurate estimation of
MTV change.

3.2 Residual Tumor versus Non-residual Tumor Cases

Figure 3 shows blended PET-CT images of 3 heterogeneous tumor cases. Tumor
shrinkage calculated by blended PET-CT, PET-PET and CT-CT registrations
are illustrated using DVF and Jacobian map for each case (Top, Middle and
Bottom). Qualitatively, using blended PET-CT image registration, vectors con-
verged from the boundary toward the center of baseline and follow-up MTVs
(green and blue volume), generated a sink point in the center where Jacobian was
much smaller than 1 (shown in blue in Jacobian map), indicating a large shrink-
age. Using PET-PET registration, due to lack of image features, the registration
couldn’t accurately find the corresponding points and DVF only converged in
the tumor boundary. For CT-CT registration, due to smaller structural change
and uniform intensity in soft tissue, DVF magnitude was small and Jacobian
map mostly showed no volume change. The percentage of tumor shrinkage cal-
culated by semi-automatic segmentation (ground-truth) is listed in Table 2 for
each case (Top, Middle and Bottom). The percentage of tumor shrinkage calcu-
lated by blended PET-CT, PET-PET and CT-CT registrations using both BSD
and FFD are also shown in Table 2 for each case. Quantitatively, using BSD,
both PET-PET and CT-CT registrations showed inferior results compared to
blended PET-CT. For smaller shrinkage, FFD had similar accuracy to BSD, but
its accuracy worsened for larger changes. However using FFD, PET-PET had the
worst results while CT-CT achieved much better accuracy. These results aligned
with the literature that diffeomorphic algorithm performs better on larger defor-
mations whereas smaller soft tissue changes in CT can be better captured using
the FFD algorithm [1].
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Baseline Follow-up Blended PET-CT PET-PET CT-CT

Fig. 3. First column shows baseline and follow-up blended PET-CT images for three
tumors in coronal (top, middle) and axial (bottom) views. Red contour is MTV. In the
second to the last column, DVF (left) illustrate the change from baseline MTV (green)
to follow-up MTV (blue) and Jacobian maps (right) are overlaid on baseline MTV.
Color bar indicates shrinkage (blue) to expansion (red) in Jacobian map. (Color figure
online)

Table 2. Tumor shrinkage quantified by blended PET-CT, PET-PET and CT-CT
registrations compared with ground truth segmentation for each case in Fig. 3.

Registration Cases Segmentation PET-CT PET-PET CT-CT

BSD Top 51% 35% 17% 17%

Middle 78.5% 58.5% 16% 14%

Bottom 100% 74.5% 19% 14%

FFD Top 51% 35% 5.8% 14%

Middle 78.5% 20% 2.3% 43%

Bottom 100% 35% 6% 37%

Jacobian maps in Fig. 3 illustrate local non-uniform tumor changes. Quanti-
fying change in a non-residual tumor (Fig. 3 bottom) using DIR is challenging
due to a large non-correspondence deformation between the two images. Here,
we showed that using blended PET-CT image registration we could generate a
DVF to quite accurately measure tumor change owing to the dominant metabolic
tumor structures in the baseline image and anatomical structures in the follow-
up image that guided the registration.
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3.3 Pathologic Tumor Response Prediction

Table 3 lists the p-value and AUC for all predictive Jacobian features compared
with clinical features as well as a recent esophageal cancer radiomics study using
univariate analysis. Standard Deviation (SD) of Correlation, a texture feature
in Jacobian map of tumors using blended PET-CT BSD registration achieved
higher AUC = 0.85 compared to PET radiomic features analysis performed by
Yip et al. [13]. Clinical features in our study were not predictive and none FFD
based Jacobian features were significant in differentiating pathologic response.

Table 3. Important Jacobian and clinical features in univariate analysis.

Study Features AUC p-value

Yip et al. [13] Run length matrix 0.71–0.81 p < 0.02

Current study ΔMTV 0.62 0.33

ΔSUVmax 0.53 0.81

Blended PET-CT SD Correlation 0.85 0.006

SD Energy 0.80 0.01

Mean Cluster Shade 0.77 0.03

PET-PET Mean Haralick Correlation 0.81 0.01

Mean Entropy 0.80 0.02

Mean Energy 0.75 0.04

CT-CT SD Long Run High Grey Level 0.79 0.02

SD Long Run 0.76 0.04

SD High Grey Level 0.76 0.04

In multivariate analysis, the RF-LASSO model achieved the highest accuracy
with only one texture feature - Mean of Cluster Shade extracted from blended
PET-CT BSD Jacobian map (Sensitivity = 80.6%, Specificity = 82.6%, Accu-
racy = 82.3%, AUC = 0.81). However, the performance was worsened when
adding more features (Fig. 4(a)). This feature quantified the heterogeneity of
the tumor change and responders showed higher values meaning more heteroge-
neous local MTV changes. Figure 4(b) is the ROC curve of the best model and
Fig. 4(c) shows this feature can differentiate response very well. Mean of Cluster
Shade was selected as the first feature by LASSO, however SD correlation with
the highest AUC in univariate analysis was selected as the third feature in the
multivariate model. This may be because LASSO selects the least correlated
features and Mean of Cluster Shade had the smallest mean absolute correlation
(r = 0.22) among the important distinctive features compared to SD correlation
(r = 0.46).
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Fig. 4. (a) Model performance with increasing number of features (b) ROC curve on
the best model (c) Box plot of Mean of Cluster Shade Jacobian feature.

4 Conclusion and Future Work

We combined PET and CT images into a grayscale blended PET-CT image
for quantification of local metabolic tumor change using Jacobian map. We
extracted intensity and texture features from the Jacobian map to predict patho-
logic tumor response in esophageal cancer patients. Jacobian texture features
showed the highest accuracy for prediction of pathologic tumor response (accu-
racy = 82.3%). In the future, we will explore automated optimal weight tuning
for PET-CT blending.
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Abstract. Real-time tracking of tumor motion due to the patient’s res-
piratory cycle is a crucial task in radiotherapy treatments. In this work a
proof-of-concept setup is presented where real-time tracked external skin
attached sensors are used to predict the internal tumor locations. The
spatiotemporal relationships between external sensors and targets dur-
ing the respiratory cycle are modeled using Gaussian Process regression
and trained on a preoperative 4D-CT image sequence of the respira-
tory cycle. A large set (N ≈ 25) of computer-tomography markers are
attached on the patient’s skin before CT acquisition to serve as candidate
sensor locations from which a smaller subset (N ≈ 6) is selected based
on their combined predictive power using a genetic algorithm based opti-
mization technique. A custom 3D printed sensor-holder design is used to
allow accurate positioning of optical or electromagnetic sensors at the
best predictive CT marker locations preoperatively, which are then used
for real-time prediction of the internal tumor locations. The method is
validated on an artificial respiratory phantom model. The model rep-
resents the candidate external locations (fiducials) and internal targets
(tumors) with CT markers. A 4D-CT image sequence with 11 time-steps
at different phases of the respiratory cycles was acquired. Within this
test setup, the CT markers for both internal and external structures are
automatically determined by a morphology-based algorithm in the CT
images. The method’s in-sample cross validation accuracy in the training
set as given by the average root mean-squared error (RMSE) is between
0.00024 and 0.072 mm.

Keywords: Tumor tracking · Respiratory motion · Prediction
Optimization

1 Problem

The localization of the internal tumors or structures and the detection of res-
piratory organ or tumor movement under certain therapies (e.g. in radiation
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therapy or radiofrequency ablation) and real-time visualization of these move-
ments are an important concern in the safe and effective provision of precision
radiotherapy, computer-assisted tumor surgery and biopsy. The information on
the movements and tracking of the current positions of targeted tumors, e.g. in
prostate, liver, lung or soft tissue tumors are traditionally performed by using
abdominal compression, breath hold, respiratory gating, implanted radiation-
impermeable markers and real-time motion tracking of these markers with opti-
cal (OP) or electromagnetic (EM) tracker [1,2] or over real-time image processing
of interventional 4D-CT, -MRI, and 3D/4D-ultrasound [3,4]. Because of the dif-
ficulties with respect to the intraoperative complexity of these methods, there
is currently no clinically established solution for the reliable determination of
respiratory movements of internal organs, tumors or soft tissues.

Specifically, in the real-time motion tracking of external sensors with OP or
EM tracking systems, it is difficult to determine the optimal amount and location
of sensors preoperatively that provides sufficient predictions of the internal tumor
locations. The used surface markers are randomly distributed [5] and placed on the
patient in the near region of a surgical area and all of them are used for respiratory
motion prediction, which can increase the error rate in the real-time prediction [6].

2 Materials andMethods

2.1 Phantom Respiratory System Model

The training and evaluation of internal target motion prediction is performed
with a custom built phantom model (see Fig. 1). It simulates the most impor-
tant aspects (with respect to motion prediction) of the human respiratory cycle.
The main components consist of a standard rubber hot-water bottle (modeling
the abdomen), an internally located spherical rubber balloon (modeling a moving
organ). A flexible silicone tube and a water blaster was used to control the amount
of air within the model. Sensor-holders within CT skin markers (external input)
and skin markers or retro-reflective balls (internal target) are to use in prediction.

Fig. 1. Left: Respiratory model with the fixed sensor-holders on it. Right: Interior view
of the model during an inhalation. The inside of the balloon (max. inflation � 120 cm)
is brought out and a rubber band from both ends of the balloon is glued, so that it
stays in the middle, if the outside brought in and inflated. To simulate tumor motion;
the X-Spot skin markers (� 1.5 mm) and retro-reflective markers (� 12 mm) are placed
inside of the balloon. A flexible silicone tube (L 200 cm, � 20 mm) is used for inflating
the balloon (inhalation/exhalation) with the water blaster (82 × 5 × 15 cm).
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2.2 Sensor Holders

The external surface sensors are used in several real-time tumor movement pre-
diction methods [7–11]. In most cases - however - the external sensors are fixed
at arbitrary locations that may be sub-optimal for prediction accuracy. Optimiz-
ing the spatial distribution and quantity of those surface markers with respect to
their prediction power in the preoperative phase therefore can improve the track-
ing accuracy in the intraoperative phase.

As the two phases typically require different types of external markers, cus-
tom made 3D printed sensor-holders were developed (see Fig. 2) to enable switch-
ing the sensors while maintaining the same sensor origin. This enables an offline
prediction preoperatively using CT markers, and using the pre-trained predictors
with a real-time tracking system during the intervention after the known relative
transformation between the X-Spot marker and the inserted real-time tracker sen-
sor is applied.

The main part of the sensor-holder consists of an X-Spot CT marker cen-
tered in a sensor attachment point. During the preoperative phase, 10–25 of these
empty sensor-holders are fixed to the phantom patient. During the intraoperative
phase, the sensor-holder can optionally hold an optical- or magnetic-tracking sen-
sor. When used with optical tracking, the sensor-holder can hold an active IRED
tracker sensor (11 × 7 × 5 mm, NDI Optotrak Certus) (Fig. 2(d)). When used with
magnetic (EM) tracking, it can hold a 5-DOF NDI Aurora sensor (Length: 8 mm,
� 0.6 mm) (Fig. 2(e)) concentrically.

Fig. 2. (a) Two M2 screws that are placed from both directions to establish a rigid setup
once an OP or EM sensor is placed in the main part. (b) The main part within a X-Spot
marker. It used in offline prediction step. (c) The EM-Sensor-Holder to fix the EM sensor
in it. (d) View of sensor-holder within an OP marker. (e) View of sensor-holder within
an EM sensor. The parts a, c, d and e are intended for the real-time prediction.
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2.3 Data Acquisition

In order to validate sensor optimization, a 4D-CT scan of phantom patient is
acquired. The phantom model with 27 external (candidate locations) and 5 inter-
nal (target locations) markers in the balloon is placed into the CT device. During
the imaging the respiration cycle is simulated by manually adjusting different air
amount within the balloon using the water blaster connected to the model with
a flexible tube. For the 4D-CT a scanner in Univ. Clinic for Radiology (Siemens
healthcare Austria) in Medical Univ. of Innsbruck is used. The scan consists of 11
discrete time steps of a breathing cycle (see Fig. 3). Each axial CT slice (512× 512
px) has a thickness of 1.0 mm and the 11 discrete CT phases consist of 261 images
with 0.488× 0.488× 0.488 mm pixel spacing.

Fig. 3. Detected external markers in the first phase of the visualized 4D-CT images.
Left frame is used to set parameters for the automatic marker detection algorithm and
contains a marker list for the marker management. The detected markers are inserted
into the marker list and visualized in the standard DICOM views (axial, sagittal, coro-
nal) in the tiled right window. The green blobs are accepted automatically as external
markers (based on given geometrical properties in the detection algorithm) and blue
blobs are possible candidates to be accepted manually. The geometry view (right bot-
tom) represents the distances of all detected markers. (Color figure online)

2.4 Automatic Marker Detection

In order to learn the respiratory cycle of the patient from the observed CT
images, where the optimal sensor locations for prediction are determined,
a regressor is trained to predict internal motion given this data. The precise loca-
tions of external and internal fiducials in the CT image space are detected by a
GPU accelerated volumetric detection method [12].
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For this purpose, each of 11 CT phases are thresholded and binarized to deter-
mine the centroid of the fiducials. On the resulting image the 3D fiducials are fil-
tered for spherical structures using morphological opening with a spherical struc-
turing ball element of the appropriate scale given the voxel size of the dataset and
the physical dimensions of the markers. Using a geometry filter on the resulting
spherical blobs best candidates are selected based on shape and size. From the
best candidates the blob centroids are calculated and stored to be used in the pre-
diction step (see Fig. 4).

Fig. 4. Top Left: Discrete chronological 3D movement positions of all external surface
fiducials during in-/exhalation over 11 timesteps (Timestep 1: Fully inhaled, Timestep
11: Fully exhaled). The location coordinates are obtained by automatic marker detec-
tion. Bottom left: The positions of one external fiducial in 4D-CT image space. Move-
ment positions of internal fiducials in top right and bottom right.

2.5 Determining Surface Sensor Locations with GA

In order to train an accurate prediction of tumor motion from a few optimally posi-
tioned fiducials, a multi-objective genetic algorithm (GA) based feature selection
method (similar to [13,14]) is proposed.
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Before the imaging step, a larger set of CT markers {ck}, k ≈ 25 are fixed on
the surface at randomized candidate locations.

After imaging, all external surface marker locations are detected. This results
in k time-series, each with T timesteps and 3 output dimensions (the spatial coor-
dinates of the sensor in the CT reference frame). The target marker locations over
the T timesteps yield the time-series y ∈ RT×3.

An individual during the GA search is represented by an element of a k-
dimensional binary vector I = {0, 1}k, where the nth bit represents whether the
nth external sensor is used for prediction (1) or not (0).

If a marker is used, its x, y, z coordinates within the CT reference frame are
added to the input coordinate set used for prediction. This yields a 3 × p dimen-
sional input feature for each time-step, where p is the number of enabled markers
within the individual.

For each individual I, the fitness function is defined by a multi-objective func-
tion F (I) = (F1(I), S(I)).

The primary component is given by the weighted sum

F1(I) = E(I) + α ∗ min(0, S(I) − K)

where E(I) is the average RMS error between the predicted and target locations
using X as the input feature set over a 3-fold cross-validation on the T timesteps
and S(I) is the number of features enabled, K is the maximum preferred num-
ber of enabled fiducials and α is a scaling parameter, which balances the trade-
off between additional prediction error and the number of enabled fiducials. This
setup leads to an optimization goal of finding the minimum achievable prediction
error with as few sensors as possible, but softly punishing configurations that have
more than K enabled sensors.

For each individual, the predictions are evaluated using 3 Gaussian Process
Regressors (GPR) (Gi : X → ti, i = 1, 2, 3) for each coordinate of the target,
with C*SE + W where C is constant kernel, SE is squared exponential and W is
white noise kernel [15]. (see Fig. 5).

The C kernel is configured with the constant value: 1.0, constant value bounds:
1e−3, 1e3, SE with length scale: 10.0, length scale bounds: 1e−2, 1e2 and W
with noise level: 0.1 and noise level bounds: 1e−10, 1e+0.5. The Gaussian Pro-
cess Regressor is configured with normalized target value without an optimizer.
In GA, the parameters for population: 600, cv-proba: 0.5, mu-proba: 0.2, genera-
tion: 50, cv-independent-proba: 0.5 and mu-independent-proba: 0.05 are used.

3 Results

Table 1 represents the prediction results for 5 internal target markers in the bal-
loon using automatically recommended surface marker list. Each input marker
in the recommended surface sensor group is processed with the listed individual
target respectively. The best result is obtained from the C*SE + W of the GPR
algorithm. The prediction is performed with a raw data for each surface and target
marker respectively.
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Fig. 5. Prediction result (green dotted lines) for target 1 (red) based on surface marker
8 (blue) from the recommended group (8 and 14) in 11 different time-steps. (Color figure
online)

Table 1. Overview of the offline prediction results. The RMS is the average mean
squared error of the deviations in each timestep when using the recommended surface
sensors.

Internal
target

Optimal
amount of
Surface
sensors

Recommended
surface sensors

Used Kernel Used data Mean
prediction
RMS

1 2 (8 and 14) C*SE+W 11 × 3 0.00024

2 6 (1, 3, 7, 12, 18
and 25)

0.0014

3 9 (5, 6, 7, 8, 13,
19, 25, 26 and
27)

0.0023

4 1 (22) 0.072

5 4 (2, 3, 8 and
25)

0.014

4 Discussion

In many treatments, where respiratory motion prediction and tracking is a neces-
sary approach to apply, the success of a treatment strongly depends on the accu-
racy of prediction, which is related to the detection and placement of the external
surface marker locations on the patient.
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Therefore, the quantity, location and distribution of the sensors is impor-
tant and challenging during real-time tumor motion prediction. In the most clin-
ical approaches, the location of external markers is chosen empirically; that is,
operator-dependent [5]. Within this work, we examined that the distribution and
selection of the best placement locations automatically and intelligently, which
gives better prediction results with using less numbers of external sensors to use
e.g. in the thorax or abdominal regions. The proposed method is tested through
a custom built respiratory phantom model to provide the required dataset, that
surrogates same breathing circle of a real patient [16] (Table 2).

Table 2. The 3D positional movement variations of the internal target markers (marker
centroids) from fully exhaled to fully inhaled time-steps after 4D-CT.

Internal target marker 1 2 3 4 5

3D Movements in mm x y z 0.69 6.52 6.21 −4.05 1.8

6.44 17.6 16.57 3.1 1.97

1.51 2.39 1.4 −9.47 6.58

The primary aim of this work was to separate the preoperative and intraoper-
ative phase based on offline prediction method using sensor-holders. (see Fig. 6).
Having already optimal sensor amount and locations with the GPR and GA before
intervention also optimizes the whole complex workflow of the real-time respira-
tory motion prediction and serves a reliable solution to this complexity. All pro-
cesses in intraoperative phase workflow will be evaluated in the future on the phan-
tom model and real patients to validate the presented approach. The OP or EM
tracker will serve sensor data to be used as input for the real-time GPR.

Fig. 6. Current (preoperative phase) and future (intraoperative phase) workflow of the
presented work.
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5 Conclusion

In this work, a method is presented to automatically determine the optimal loca-
tions of the external OP/EM sensors on the patient’s surface to predict internal
tumor motions with high accuracy. The preoperatively determined optimal sensor
locations can be used in real-time tumor motion tracking using the sensors of NDI
Optotrak Certus or NDI Aurora tracking systems.

The experiments and evaluations on the built realistic respiratory phantom
model have shown that by using our method, best possible locations of surface
sensors can be determined with high accuracy and serves a reliable prediction,
based on the selected tumor inside the phantom. The experiments give also infor-
mation the distributing of recommended sensors locations have a high correlation
between the surface motion and the internal tumor motion. With this procedure,
EM or OP 3D measurement technologies can be used for real-time prediction and
it is suitable for use in the medical environment.
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Abstract. Adipose tissue mass has been shown to have a strong cor-
relation with fetal nourishment, which has consequences on health in
infancy and later life. In rural areas of developing nations, ultrasound
has the potential to be the key imaging modality due to its portability
and cost. However, many ultrasound image analysis algorithms are not
compatibly portable, with many taking several minutes to compute on
modern CPUs.

The contributions of this work are threefold. Firstly, by adapting
the popular U-Net, we show that CNNs can achieve excellent results
in fetal adipose segmentation from ultrasound images. We then propose
a reduced model, U-Ception, facilitating deployment of the algorithm on
mobile devices. The U-Ception network provides a 98.4% reduction in
model size for a 0.6% reduction in segmentation accuracy (mean Dice
coefficient). We also demonstrate the clinical applicability of the work,
showing that CNNs can be used to predict a trend between gestational
age and adipose area.

1 Introduction

Ultrasound has the potential to be the key imaging modality in rural areas
of developing nations, due to its low cost and portability. To complement this
portability, there is a need for image analysis tools which are similarly mobile,
allowing them to be implemented alongside the imaging itself in remote locations.
The most practical mode of deployment would be an application on an iOS or
Android device, such as a tablet or mobile phone, which typically come with
hardware limitations such as smaller RAM and less powerful GPUs.

However, current ultrasound analysis techniques are not compatibly efficient,
with many taking several minutes to run on modern CPUs [1]. Furthermore, most
convolutional neural networks (CNNs) - which are currently state-of-the-art in
image analysis tasks - require too much memory to deploy on a mobile phone
or tablet. In response to this, we propose a novel CNN architecture, U-Ception,
which uses depth-wise separable convolutions to analyze ultrasound images in a
computationally efficient manner.
c© Springer Nature Switzerland AG 2018
A. Melbourne and R. Licandro et al. (Eds.): DATRA/PIPPI 2018, LNCS 11076, pp. 55–65, 2018.
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Fig. 1. Cross-sectional image of fetal a arm (left), with segmentation (right). Segmenta-
tion shows adipose tissue (of interest, blue), muscle (red), and humerus (green). (Color
figure online)

The target application is the segmentation of fetal adipose tissue, as shown
in Fig. 1. It has been shown that adipose mass has a ‘pronounced sensitivity’ to
maternal - and thus fetal - nutritional state [2]. This is of special importance in
the developing world, where 152 of the world’s 155 million stunted under-five
year olds reside [3]. Thus, the observation and control of fetal nourishment is
crucial: developmentally, the most important time for proper nourishment is in
the first 1000 days (from conception until the 2nd birthday), and catch-up growth
in later childhood is ‘minimal’ [4].

This work presents the U-Ception network: a CNN designed for segmentation
of adipose tissue in fetal ultrasound data. Firstly, in Sect. 2, this work summarizes
previous efforts at fetal segmentation, and a number of popular methods which
reduce neural network size. Section 3 will then describe the CNNs proposed for
this segmentation challenge. The first - an adaptation of the popular ‘U-Net’ [5] -
provides a baseline performance against which the reduced U-Ception architec-
ture can be compared. Section 4 describes the experimental set-up, and Sect. 5
outlines our results, showing the similarity in performance between the adapted
U-Net and U-Ception models.

2 Previous Work

The current state-of-the-art in fetal adipose segmentation is the feature asymme-
try approach proposed by Rueda et al. [6]. Feature asymmetry is a phase-based
method, which uses points of phase congruency at specific frequencies to build an
edge map which is robust to changes in contrast. Other approaches to fetal ultra-
sound segmentation include the use of active contours [7,8], Hough transforms
[9] and multi-level thresholding [1].

However, for most biomedical image segmentation, the most prevalent algo-
rithms are convolutional neural networks (CNNs). An important CNN is the
‘U-Net’ [5], which has been used extensively in the biomedical field [10,11]. The
network won the ISBI neuronal segmentation challenge in 2015 by a significant
margin - despite a small training set of 30 images - by performing strong data
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augmentation. It is adapted in this work: first to form a baseline for the applica-
tion of CNNs to fetal adipose segmentation, and then as a guide for the proposed
CNN with a smaller ‘size’.

Network size is defined as its memory footprint, which is directly proportional
to the number of its parameters, and is the main bottleneck in the application of
CNNs on mobile devices. Mobile devices typically come with between 2 GB and
4 GB of RAM, with many modern networks (especially segmentation architec-
tures) having hundreds of millions of parameters, with sizes nearing a gigabyte.

Numerous efforts have been made to reduce neural network size by efficiently
storing these parameters. Wu et al. quantized the weights of the network, learn-
ing an optimal quantization codebook using K-Means clustering [12]. Huffman
coding (a lossless method of compressing data) has also been used to efficiently
store network weights [13].

Another method of building a smaller network is distillation [14]. Distillation
is the process of using a larger network to train a smaller network, passing on
the generalization ability of the large network.

A class of techniques seeks to factorize the convolutions in the networks,
breaking them down into a number of steps. One example of this was suggested
by Jin et al., which, instead of convolving feature maps with 3D tensors, decom-
poses the process into convolutions with three one-dimensional vectors [15].

This work uses depth-wise separable convolutions [16], which have been shown
to provide high accuracy results in the ‘Xception’ classification network [17]. The
latest model from Google DeepLab (‘DeepLab v3+’ [18]) adapts the Xception
network for segmentation purposes. Depth-wise separable convolutions were cho-
sen for this work as they factorize the 3D convolution in an intuitive fashion,
breaking the process into spatial and channel-wise components (see Sect. 3.2).

3 Architecture Design

3.1 Adapted U-Net

The ‘U-Net’ [5] was first adapted to provide a baseline performance for neural
networks in the context of fetal adipose segmentation. The encoder path of the
network contains two convolutional layers (13× 13 kernels, see Sect. 4) followed
by max-pooling, repeated 4 times, resulting in a reduction of spatial channel
dimensions by a factor of 16. With each down-sampling layer the number of
feature channels is doubled, with 48 channels in the first layer, and 768 channels
in the lowest. The decoder is symmetrical, but with up-sampling in place of
max-pooling. The final layer is a 1× 1 convolutional layer.

All convolutional layers were zero-padded, with all but the final layer using
the ReLU non-linearity. The final layer uses a sigmoidal activation to map net-
work predictions to values between 0 and 1, with scores close to 1 indicating a
confident prediction of adipose tissue at a pixel location.
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3.2 Reduced U-Net: U-Ception

This section describes the efforts made to reduce the number of parameters in
the segmentation network, and hence the size of the model’s parameter file.
The proposed method uses depth-wise separable convolutions, which were used
successfully in the ‘Xception’ network [17]. These convolutions were applied to
the U-Net architecture, with the resulting architecture termed U-Ception.

The proposed architecture is essentially identical to the adapted U-Net, but
with more feature channels per layer, and all convolutional layers replaced with
separable convolutional layers. This modification leads to a drastic reduction in
the network’s parameter count, from 296 million to 4.6 million parameters.
The architecture is detailed in Fig. 2.
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Fig. 2. U-Ception architecture

Depth-Wise Separable Convolutions: Regular convolutional layers in CNNs
involve convolutions with three-dimensional kernels. Two of these dimensions are
spatial, and are responsible for combining data from a single channel, in a similar
manner to convolution filters in classical image processing. The third dimension,
however, is responsible for combining information from all of the feature chan-
nels, such that new feature maps can be produced. The number of parameters in
the convolution tensor for a layer, therefore, can be described by Eq. 1. Here, K
is the spatial dimension of the square filter, N is the number of input channels,
and M the number of output channels. Note that K2N parameters are required
to compute each of the M output feature maps. The process is illustrated in
Fig. 3(a).

nparameters = K2NM K,N,M ∈ Z
+ (1)

The idea behind depth-wise separable convolutions is to separate the convo-
lutions in the spatial dimensions and the channel dimension. First, one feature
map is calculated per input channel by spatially convolving each input channel
with a single filter. Next, the output is fed to a regular convolutional layer with
1×1×N kernel size, so the information across input channels can be combined.
In this way, the multiplicative interaction between the N input channels and M
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output channels is not scaled by the squared spatial kernel size, K2. The number
of parameters in this new layer is described by Eq. 2.

nparameters = K2N + K̄2NM = K2N + NM K,N,M ∈ Z
+ (2)

Note that the variable K̄ = 1 is introduced to illustrate that the second stage
of convolutions is identical to a regular convolutional layer with a spatial kernel
size of 1. Also, in some implementations, a channel multiplier Cm is introduced
such that, in the spatial convolution stage, Cm intermediate feature maps are
produced per input channel. This would scale the number of parameters in the
depth-wise separable layer by Cm. In this work, a channel multiplier of 1 is used.
The process is shown in Fig. 3(b).

K2N

M

N

K

(a)

12 ∗ NCm

M

N

K2

NCm

K

(b)

Fig. 3. (a) Regular convolutional layer. Here convolution occurs with a tensor with
square spatial dimensions K, and depth equal to the number of input channels, N .
Each of the M filters requires K2N parameters. (b) Separable convolutional layer.
Here each input feature channel is convolved separately with Cm tensors with depth
of 1 and spatial dimensions of K. The resulting feature maps are convolved with M
tensors of depth NCm and spatial dimensions of 1. In this work, layers with Cm = 1
are used.

4 Experimental Setup

4.1 Fetal Dataset

Data for this task was collected as part of the INTERGROWTH-21st Project,
with 324 3D ultrasound volumes of healthy fetal arms acquired. From each
volume, five 2D slices were extracted perpendicular to the humerus and anno-
tated by one of three experts, delineating the adipose tissue, as shown in Fig. 4.
The images were collected with a Philips HD9 ultrasound machine (resolution
of 0.99 mm per voxel), with the subjects’ gestational ages ranging from 17 to
41 weeks. The dataset is a larger sample of that used by Rueda et al. [6] (the
previous effort at fetal adipose segmentation).
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Fig. 4. Extraction and segmentation of 2D slices from an ultrasound volume. Left-
most image shows a sagittal view of the fetal humerus. Red points show humerus end
points and yellow lines indicate slice planes. Intersections of the red and yellow lines -
the yellow points - show centers of extracted slices. Also shown is one extracted slice
(middle) and its segmentation (right). (Color figure online)

The dataset was divided with an 80–20 split into folds for training and testing
respectively. The training set was further broken down, with 20% of the 2D slices
used as a validation set, on which network hyper-parameters were tuned. The
training, validation and test sets had 1100, 270 and 340 slices respectively, and
all slices were resized to 128 × 256 pixels.

4.2 Implementation Details

Both CNNs were optimized by maximizing the following function:

L(θ;y, ŷ) = −λ1||θ||2 +
n∑

i=1

IoU(yi , ŷi) + λ2h(yi , ŷi) (3)

Here, y and ŷ represent the manual training labels and the network predic-
tions respectively, while θ represents the CNN parameters. IoU represents the
intersection-over-union score of the manual labels and the network predictions,
with λ1 signifying the weight decay strength. The function h represents a bound-
ary regularizer, which explicitly penalizes incorrect network predictions at the
adipose boundaries.

Optimization was done with stochastic gradient descent, reducing the learn-
ing rate by a factor of 10 every 15 epochs. Both networks were implemented
using Keras (TensorFlow backend), with training done on an NVIDIA Quadro
P5000 GPU. Interestingly, independent optimization of both the adapted U-Net
and the U-Ception models showed that both networks had identical optimal
hyper-parameter settings. An initial learning rate of 1 × 10−2 was used, with
λ1 (weight decay) set to 1 × 10−2, and λ2 (boundary regularizer strength) to
1 × 10−3. Furthermore, batch normalization was used on all layer inputs, and
dropout regularization was used on the input layer and lowest layer (p = 0.2
and p = 0.5 respectively) as in the original U-Net. Kernels of size 13 × 13 were
used in both networks to deal with the large areas of adipose discontinuity in
the images (a product of ultrasound shadows).
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5 Results and Discussion

This section compares the performances of the regular convolution U-Net and
U-Ception networks on a held-out test set of 340 slices (extracted from 68 vol-
umes).

Sample qualitative results are shown in Fig. 5. It can be seen that the net-
works generally capture the adipose tissue well, with both learning to predict
closed-ring segmentations, even in the presence of adipose signal occlusion (for
instance, the vertical shadow below the humerus). Failure modes are also shown
(Dice coefficient < 0.5), with failure occurring in the presence of a sparse signal
(Example 6), or when the target slice has many distracting shapes (Example 7).

Fig. 5. Sample results from the CNNs on a held-out test set. Failure modes are shown
in Examples 6 and 7. Note that a disproportionate number of failure modes are shown.

A chi-square test was performed on the Dice coefficients produced by the
U-Net and U-Ception models on the test set. It was found that there is no
statistically significant difference between the U-Ception’s Dice distribution and
that of the regular U-Net (p ≈ 1.00). Though this p value is high, it is perhaps
unsurprising given the visual similarities of the two models’ results (see Fig. 5).
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Fig. 6. (a) Bland-Altman plot of the number of segmented pixels in U-Ception model
against regular convolution model. (b) Adipose area trend (in number of segmented
pixels) with respect to gestational age using test set volumes.

Further insight into performance of the models can be gained by inspecting
Bland-Altman plots of the number of segmented pixels in both models’ predic-
tions. Figure 6(a) shows a plot of the U-Ception architecture compared against
the regular convolution U-Net. This diagram suggests strongly that there is lit-
tle difference in the predictions of the two models; it shows very tight standard
deviation bounds on the difference between the number of segmented pixels, and
a similarly small mean difference (μ = 100, σ = 380).

An example of the clinical applications of the algorithms is given in Fig. 6(b),
where the trend of adipose area against gestational age is given. Here, the trends
computed using the manual annotations and CNN results are given for all vol-
umes in the test set. The similarity between the manual and CNN trends is
evident, as is the similarity of the trends between the CNNs.

5.1 Comparison with Previous Work

The results of this work are quantitatively compared with the previous efforts by
Rueda et al. [6] in Table 1. Here, the accuracy (sensitivity and specificity) and
Dice are detailed. To contextualize the results, it should be noted that the images
fed to the algorithm by Rueda et al. were heavily cropped to contain only the area
of interest. This makes the task of adipose localization easier, contributing to the
higher mean Dice coefficient achieved by the previous work. It also increases the
foreground-to-background ratio, contributing to the higher specificities achieved
by the CNNs. It should also be noted that a larger evaluation set was used in
this work - 340 slices, in contrast to the 81 slices in the work by Rueda et al. -
contributing to the larger standard deviations in our results.

Nonetheless, the classical algorithm outperforms the CNNs in terms of Dice
coefficient, while the CNNs achieve better results with respect to both accuracy
metrics. Also, the U-Ception network gives a small but not statistically signifi-
cant compromise in performance when compared against the regular convolution
U-Net.



Segmentation of Fetal Adipose Tissue Using Efficient CNNs 63

Table 1. Comparison of method by Rueda et al. [6] against the proposed CNNs (μ±σ).

Sensitivity (%) Specificity (%) Dice (%)

Rueda et al. 87.30 ± 3.84 97.05 ± 1.17 87.11 ± 2.60

Regular conv. 88.29 ± 12.15 98.85 ± 0.75 80.89 ± 13.75

U-Ception 87.45 ± 13.30 98.71 ± 0.83 80.25 ± 11.50

5.2 Comparing Algorithm Efficiencies

Table 2 summarizes the two model sizes and prediction times of both networks
on a CPU and on a variety of portable devices. The CPU prediction times
are averaged over 100 samples. The times shown compare favorably with those
required for classical techniques - many of which take several minutes to run on
a modern CPU [1].

Table 2. Model sizes of both networks, as well as prediction times on a range of
hardware. Note that the regular convolution model was too large to deploy on the
mobile devices.

Model size
i5-4200M Google Samsung Samsung

CPU Pixel 2 Galaxy S5 Galaxy Tab A

Regular conv. 1.10 GB 15.8 s N/A N/A N/A

U-Ception 18 MB 2.7 s ≈4 s ≈8 s ≈11 s

The table also shows that, with modern hardware, even the large network can
make a prediction in reasonable time (15.8 s), as the number of FLOPs required
for a forward pass rises only linearly with the number of parameters in the
network. Thus, the main bottleneck in implementation of these networks on a
mobile device is clarified: the size of the weight file. Typically, TensorFlow stores
each parameter as a 32-bit float, meaning a network with 20 million parameters
will have a weight file of approximately 75 MB in size. The regular convolution U-
Net has 296 million parameters, with the resulting weight file taking 1.10 GB
on disk. The U-Ception architecture requires only 4.6 million parameters, with
a weight file of 18 MB. Thus the model provides a reduction in both weight file
size and parameter count of 98.4%, while achieving similar performance on the
test set (with a 0.6% compromise in mean Dice coefficient).
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6 Conclusion

This work proposes an end-to-end framework for the semantic segmentation of
fetal adipose tissue using convolutional neural networks. Furthermore, a highly
efficient novel network architecture - U-Ception - is proposed, using depth-wise
separable convolutions to reduce model parameter count. It is shown that the
U-Ception architecture’s performance is statistically equivalent to that of the
regular convolution U-Net, with the benefit of a 98.4% reduction in model size.
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Abstract. Automatically detecting acoustic shadows is of great impor-
tance for automatic 2D ultrasound analysis ranging from anatomy seg-
mentation to landmark detection. However, variation in shape and sim-
ilarity in intensity to other structures make shadow detection a very
challenging task. In this paper, we propose an automatic shadow detec-
tion method to generate a pixel-wise, shadow-focused confidence map
from weakly labelled, anatomically-focused images. Our method: (1) ini-
tializes potential shadow areas based on a classification task. (2) extends
potential shadow areas using a GAN model. (3) adds intensity informa-
tion to generate the final confidence map using a distance matrix. The
proposed method accurately highlights the shadow areas in 2D ultra-
sound datasets comprising standard view planes as acquired during fetal
screening. Moreover, the proposed method outperforms the state-of-the-
art quantitatively and improves failure cases for automatic biometric
measurement.

1 Introduction

2D Ultrasound (US) imaging is a popular medical imaging modality based on
reflection and scattering of high frequency sound in tissue, well known for its
portability, low cost, and high temporal resolution. However, this modality is
inherently prone to artefacts in clinical practice due to low energies used and
the physical nature of sound waves propagation in tissue. Artefacts such as noise,
distortions and acoustic shadows are unavoidable, and have a significant impact
on the achievable image quality. Noise can be handled through better hardware
and advanced image reconstruction algorithms [7], while distortions can be tack-
led by operator training and knowledge of the underlying anatomy [15]. However,
acoustic shadows are more challenging to resolve.

Acoustic shadows are caused by sound-opaque occluders, which can poten-
tially conceal vital anatomical information. Shadow regions have low signal
c© Springer Nature Switzerland AG 2018
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intensity with very high acoustic impedance differences at the boundaries. Sono-
graphers are trained to avoid acoustic shadows by using real-time acquisition
devices. Shadows are either avoided by moving to a more preferable viewing
direction or, if no shadow-free viewing direction can be found, a mental map
is compounded with iterative acquisitions from different orientations. Although
acoustic shadows may be useful for practitioners to determine the anatomical
properties of occluders, images containing strong shadows can be problematic for
automatic real-time image analysis methods which, such as; provide directional
guidance; perform biometric measurements; or automatic evaluate biomarkers,
etc. Therefore shadow-aware US image analysis would beneficial for many of
these applications, as well as clinical practice.

Contribution: (1) We propose a novel method that uses weak annotations
(shadow/shadow-free images) to generate an anatomically agnostic shadow con-
fidence map in 2D ultrasound images; (2) The proposed method achieves accu-
rate shadow detection visually and quantitatively for different fetal anatomies;
(3) To our knowledge, this is the first shadow detection model for ultrasound
images that generates a dense, shadow-focused confidence map; (4) The proposed
shadow detection method can be used in real-time automatic US image analy-
sis, such as anatomical segmentation and registration. In our experiments, the
obtained shadow confidence map greatly improves segmentation performance of
failure cases in automatic biometric measurement.

Related Work: US artefacts have been well studied in clinical literature,
e.g. [5,13] provide an overview. However, anatomically agnostic acoustic shadow
detection has rarely been the focus within the medical image analysis commu-
nity. [10] developed a shadow detection method based on geometrical modelling
of the US B-Mode cone with statistical tests. This is an anatomical-specific
technique designed to detect only a subset of ‘deep’ acoustic shadows, which has
shown improvements in 3D reconstruction/registration/tracking. [11] proposed
a more general solution using the Random Walks (RW) algorithm for US atten-
uation estimation and shadow detection. In their work, ultrasound confidence
maps are obtained to classify the reliability of US intensity information, and
thus, to detect regions of acoustic shadow. Their approach yields good results
for 3D US compounding but is sensitive to US transducer settings. [12] further
extended the RW method to generate distribution-based confidence maps for a
specific Radio Frequency (RF) US data. Other applications, such as [4,6], use
acoustic shadow detection as additional information in their pipeline. In both
works, acoustic shadow detection functions as task-specific components, and is
mainly based on image intensity features and the special anatomical constraints.

Advances in weakly supervised deep learning methods have drastically
improved fully automatic semantic real-time image understanding [14,17,21].
However, most of these methods require pixel-wise labels for the training data,
which is infeasible for acoustic shadows.

Unsupervised deep learning methods, showing visual attribution of differ-
ent classes, have recently been developed in the context of Alzheimer’s disease
classification from MRI brain scans [3].
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Inspired by these works, we develop a method to identify potential shadow
areas based on supervised classification of weakly labelled, anatomically-focused
US images, and further extend the detection of potential shadow areas using
the visual attribution from an unsupervised model. We then combine intensity
features, extracted by a graph-cut model, with potential shadow areas to pro-
vide a pixel-wise, shadow-focused confidence map. The overview of the proposed
method is shown in Fig. 1.

Input US
Image

FCN Model
(Supervised)

GAN Model
(Unsupervised)

Distance
Matrix (Γ )

Dense Shadow
Confidence Map

Graph-
cut Model

(I) (II) (IV)

(III)

Fig. 1. Pipeline of the proposed method. (I) Identify potential shadow areas by a FCN
model; (II) Extend obtained potential shadow areas using a GAN model; (III) Graph-
cut is used to extract intensity features; (IV) The proposed distance matrix is designed
to generate dense shadow confidence map from potential shadow areas and intensity
features.

2 Method

Figure 2 shows an detailed inference flowchart over our method, which consists
of four steps: (I) and (II) are used to highlight potential shadow areas, while step
(III) selects coarse shadow areas based on intensity information. (IV) combines
detection results from (II) and (III) to achieve the final shadow confidence map.

Fig. 2. Inference of our anatomy agnostic shadow detection approach.
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(I) Saliency Map Generation: Saliency maps are generated by finding dis-
criminative features from a trained classifier, using a gradient based back-
propagation method, and thus, highlight distinct areas among different classes.
Based on this property, it is a näıve approach to use saliency maps generated by
shadow/shadow-free classifier for shadow detection.

We use a Fully Convolutional Neural-Network (FCN) to discern images con-
taining shadows from shadow-free images. Here, we denote the has-shadow class
with label l = 1 and the shadow-free class with label l = 0. Image set X =
{x1, x2, ..., xK} and their corresponding labels L = {l1, l2, ..., lK} s.t. li ∈ {0, 1}
are used to train the FCN. The classifier provides predictions p(xi|l = 1) for
image xi during testing. We build the classifier model using SonoNet-32 [2], as it
has shown promising results for 2D ultrasound fetal standard view classification.
The training of the classifier is shown in Fig. 3.

Based on the trained shadow/shadow-free classifier, corresponding saliency
maps Sm = [sm1, sm2, ..., smN ] are generated by guided back-propagation [19] for
N testing samples. Shadows typically have features such as directional occlusion
with relatively low intensity. These features, highlighted in Sm, are potential
shadow candidates on a per-pixel basis.

However, by using gradient based back-propagation, saliency maps may
ignore some areas which are evidence of a class but may have no ultimate effect
on the classification result. In the shadow detection task, obtained saliency maps
focus mainly on the edge of shadow areas but may ignore the homogeneous centre
of shadow areas.

Fig. 3. Training FCN model for saliency map (Sm) generation

(II) Potential Shadow Areas Detection: Saliency maps heavily favour edges
of the largest shadow region, especially when the image has multiple shadows,
because these areas are the main difference between shadow and shadow-free
images. In order to detect more shadows and inspired by VA-GAN [3], we develop
a GAN model (shown in Fig. 4) that utilizes Sm to generate a Shadow Attribu-
tion Map (SAm). Sm is used to inpaint the corresponding shadow image before
passing the shadow image into the GAN model, so that the GAN model is forced
to focus on other distinct areas between shadow and shadow-free images. Com-
pared to Sm alone, this GAN model allows detection of more edges of relatively
weak shadow areas as well as central areas of shadows.
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Fig. 4. Training GAN model for Feature Attribution map (FAm) Generation.

The generator of the GAN model, G, produces a fake clear image from a
shadow image xi that has been inpainted with a binary mask of its corresponding
saliency map. G has a U-Net structure with all its convolution layers being
replaced by residual-units [9]. We optimize G by the Wasserstein distance [1],
as it simplifies the optimization process and makes training more stable. The
discriminator of the GAN model, D, is used to discern fake clear images from
real clear images, and is trained with unpaired data. In the proposed method,
the discriminator is a FCN without dense layers.

The inpainting function, used for the GAN input, is defined as ψ := ψ(xi|li =
1, T (smi)). Here, T a

b (·) produces a pixel-wise binary mask to identify pixels that
lie in the top a and bottom b percentile of the input’s intensity histogram dis-
tribution. In our experiments, we take the 2nd and 98th percentile respectively
of the saliency map, s.t. T 98

2 (smi) = {0 : P2 ≤ smi ≤ P98, 1 : otherwise}.
ψ then replaces pixels in xi(T 98

2 (smi) = 1) with the mean intensity value of
xi(T 98

2 (smi) = 0). The generator therefore focuses on more ambiguous shadow
areas, as well as the central areas of shadows, to generate the fake clear image.

The overall cost function (shown in Eq. 1) consists of the GAN model loss
LGAN (G,D), a L1-loss L1 and a L2-loss L2. The LGAN (G,D) is defined in Eq. 2.
L1 is defined as in Eq. 3 to guarantee small changes in the output, while L2 is
defined as Eq. 4 to encourage changes to happen only in potential shadow areas.

L = LGAN (G,D) + λ1L1 + λ2L2 (1)

LGAN (G,D) = Eψ(·)∼p(ψ(·)|l=0)[D(xi)] − Eψ(·)∼p(ψ(·)|l=1)[D(G(ψ(·)))] (2)

L1 = ||G(ψ(·)) − ψ(·)||1 (3)

L2 = ||G(ψ(·)B − ψ(·)B ||2 (4)

We train the networks using the optimisation method from [8] and set the
gradient penalty as 10. The parameters for the optimiser are β1 = 0, β2 =
0.9, with the learning rate 10−3. In the first 30 iterations and every hundredth
iteration, the discriminator updates 100 times for every update of the generator.
In other iterations, the discriminator updates five times for every single update of
the generator. We set the weights of the combined loss function to λ1 = 0, λ2 =
0.1 for the first 20 epochs and λ1 = 104, λ2 = 0 for the remaining epochs.
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The Feature Attribution map, FAm, defined in Eq. 5, is obtained by sub-
tracting the generated fake clear image from the original shadow image. The
Shadow Attribution map is then SAm = FAm + Sm.

FAm = |G(ψ(xi|li = 1, T (smi))) − xi| (5)

(III) Graph Cut Model: Another feature of shadows is their relatively low
intensity. To integrate this feature, we build a graph cut model using intensity
information as weights to connect each pixel in the image to shadow class and
background class. After using the Min-Cut/Max-Flow algorithm [20] to cut the
graph, the model shows pixels belonging to the shadow class. The weights that
connect pixels to the shadow class give an intensity saliency map ICm.

Since shadow ground truth is not available for every image, we randomly
select ten shadow images from training data for manual segmentation to compute
the shadow mean intensity IS . Background mean intensity IB is computed by
thresholding these ten images using the top 80th percentile.

For a pixel xij with intensity Iij , the score of being a shadow pixel Fij

is given by Eq. 6 while the score of being a background pixel Bij is given by
Eq. 7. The weight from xij to source (shadow class) is set as WFij

= Fij

Fij+Bij

and the weight from xij to sink (background) is WBij
= Bij

Fij+Bij
. We use a

4-connected neighbourhood to set weights between pixels and all the weights
between neighbourhood pixels are set to 0.5.

Fij = − |Iij − IS |
|Iij − IS | + |Iij − IB | (6)

Bij = − |Iij − IB|
|Iij − IS | + |Iij − IB | (7)

(IV) Distance Matrix: Since the intensity distribution of shadow areas are
homogeneous, potential shadow areas detected in SAm from (II) are mainly edges
of shadows. Meanwhile, ICm from (III) shows all pixels with a similar intensity
to shadow areas. In this step, we propose a distance matrix D combining ICm

with SAm to produce a Shadow Confidence Map (SCm). In SCm, pixels with a
similar intensity to shadow areas and spatially closer to potential shadow areas
achieves higher confidence of being part of shadow areas.

Γ (ICm, SAm) = 1 − Dis

max(Dis)
(8)

SCm = Γ (ICm, SAm) · ICm (9)

The distance matrix is defined in Eq. 8. Dis is the set of the spatial distances
that each pixel ICmij to potential shadow areas in SAm. Each element Disij

in Dis refers to the smallest distance of ICmij to all connected components in
SAm. SCm is obtained by multiplying the distance matrix Γ to ICm (shown in
Eq. 9) which leads to pixels with similar shadow area intensity and closer to the
potential shadow areas achieve a higher score in SCm.
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3 Evaluation and Results

US Image Data: The data set used in our experiments consists of ∼8.5k 2D
fetal ultrasound images sampled from 14 different anatomical standard plane
locations as they are defined in the UK FASP handbook [16]. These images have
been sampled from 2694 2D ultrasound examinations from volunteers with gesta-
tional ages between 18–22 weeks. Eight different ultrasound systems of identical
make and model (GE Voluson E8) were used for the acquisitions. The images
have been classified by expert observers as containing strong shadow, being clear,
or being corrupted, e.g. lacking acoustic impedance gel. Corrupted images (<3%)
have been excluded.

3448 shadow images and 3842 clear images have been randomly selected for
data set A, which is used for training. The remaining 491 shadow images and 502
clear images are used for validation. Data set B, a subset from the 491 shadow
validation images, comprises of 48 randomly selected non-brain images, where
shadows have been manually segmented to provide ground truth.

An additional data set C, which has no overlap with the ∼8.5k fetal images,
comprises of 643 fetal brain images. The entire data set C has been used for
validation and shadows in this data set have been coarsely segmented by bio-
engineering students.

We apply image flipping as data augmentation. Our models are trained on a
Nvidia Titan X GPU with 12 GB of memory.

Table 1. Threshold ranges and DICE scores of different shadow detection methods:
RW [11] vs. intermediate results from our approach and the final shadow confidence
map.

RW Sm FAm SAm SCm

Dataset B T 100
3 (Sm) T 99

1 (Sm) T 85
1 (FAm) T 96

1 (SAm) T 80
0 (SCm)

0.06 0.25 0.06 0.27 0.55

Dataset C T 100
3 (Sm) T 99

1 (Sm) T 80
1 (FAm) T 90

0 (SAm) T 70
0 (SCm)

0.11 0.28 0.08 0.31 0.36

Experiment Results: The classification accuracy of the FCN classifier on the
validation data set C is 94%. The FCN classifier’s saliency maps are shown in
Fig. 5 column (b) for three examples from data set B and C.

To provide quantitative evaluation (Table 1), we chose the percentile range
used by T for SCm as well as other intermediate maps (Sm, FAm, SAm). These
percentile ranges for different maps are chosen heuristically through experimen-
tations on validation data set B and C, so that these thresholded segmentation
of data set B and C contains the most shadow areas and the least noise. We com-
pare these thresholded segmentation with manual segmentation in data set B
and C using the DICE score. Additionally, we compare the thresholded versions
of the confidence map derived from the RW method [11]. The parameters for RW
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(a) Image (b) T (Sm) (c) T (SAm) (d) T (SCm) (e) Overlap (f) weak GT

Fig. 5. Rows 1–3 show examples for shadow detection; Right Ventricular Outflow Tract
(top), Kidney (middle), and an axial view through the brain (bottom). The key steps
from Fig. 2 are illustrated from (a) the input image to (f) the coarse ground truth (GT)
from manual segmentation.

in our experiments are: α = 1; β = 90; γ = 0.3, which reach the highest DICE
score on our validation data sets. Qualitative results are shown in Fig. 5. The
GAN model in our approach is essential as it picks up less prominent shadows
as shown in Fig. 6.

Application: We integrate SCm as an additional channel in a clinical system
that automatically measures cranial and abdominal circumferences [18]. This
system is based on FCNs and works well for images without shadows but fails

(a) Dataset B: Abdominal (b) Dataset C: Brain

(c) w/o SCm (d) with SCm (e) w/o SCm (f) with SCm

Fig. 6. (a–b) Two examples for the importance of the GAN model (input image –
w/o GAN – with GAN). (c–f) Improving automatic biometric measurements through
applying SCm as additional channel to a FCN [18] (yellow = GT, red = prediction,
green = segmentation boundary). (Color figure online)
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for about 5–10% of abdominal test images which show strong shadows. By adding
SCm as an additional input channel, segmentation performance is boosted by
up to 10% for individual failure cases, when measuring the DICE overlap between
automatically generated circumferences and manual ground truth. Figure 5c–f
show examples for these cases.

Runtime: ICm, SAm and SCm are computed on the CPU (Xeon E5-2643) and
the average runtimes are 1.86 s, 0.09 s and 7.4 s respectively. Sm and FAm are
computed on the GPU and the average inference times are 1.11 s and 0.89 s.

Discussion: Because shadow areas have no solid edges and can be harder to
annotated consistently than anatomy, manual segmentation can be ambiguous.
Additionally, thresholding the shadow confidence map to generate a binary
shadow segmentation reduces information provided by the confidence map.
These two facts lead to a seemingly low DICE score when compared to current
object segmentation frameworks. However, shadows are image properties rather
than objects, and our final aim is to provide a confidence map, which cannot
be compared quantitatively to a ground truth. The quantitative measurement
in Table 1 indicates the effectiveness of the proposed method compared with the
state-of-the-art method when handling complex shadow images. The qualitative
results in Fig. 5 show accurate shadow detection of the proposed method and
Fig. 6 demonstrate the importance of shadow detection in automatic medical
image analysis.

4 Conclusion

We have presented a novel method to generate pixel-wise, shadow-focused con-
fidence maps for 2D ultrasound. Such confidence maps can be used to identify
less certain regions in images, which is important for fully automatic segmenta-
tion tasks or automatic image-based biometric measurements. We show shadow
detection results of our method qualitatively and compare our method with the
state-of-the-art method quantitatively. We also show the advantage of shadow
confidence maps via integration into an automatic biometrics FCN. In the future
we explore ways to convert our pipeline into a learn-able end-to-end approach.

Acknowledgments. Supported by the Wellcome Trust IEH Award [102431] and
Nvidia Corporation.
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Abstract. In this paper, we describe a method to construct a 3D
atlas from fetal brain ultrasound (US) volumes. A multi-channel group-
wise Demons registration is proposed to simultaneously register a set of
images from a population to a common reference space, thereby repre-
senting the population average. Similar to the standard Demons formu-
lation, our approach takes as input an intensity image, but with an addi-
tional channel which contains phase-based features extracted from the
intensity channel. The proposed multi-channel atlas construction method
is evaluated using a groupwise Dice overlap, and is shown to outperform
standard (single-channel) groupwise diffeomorphic Demons registration.
This method is then used to construct an atlas from US brain volumes
collected from a population of 39 healthy fetal subjects at 23 gestational
weeks. The resulting atlas manifests high structural overlap, and corre-
spondence between the US-based and an age-matched fetal MRI-based
atlas is observed.

1 Introduction

Tracking fetal growth and developmental progression is paramount in obstet-
ric care. The fetal brain undergoes a predictable sequence of structural changes
across gestation: from a smooth surface, to progressively bearing more folds [1].
This process follows a precise schedule, and delays are indicative of impaired
brain maturation. Thus, the presence of a cerebral abnormality may be mani-
fested by structural deviations from the norm. In order to detect such develop-
mental deviations, an individual’s image can be compared against an atlas that
is representative of the healthy population. Atlases of the developing brain have
been developed from magnetic resonance (MR) image data collected from infant
and fetal subjects (reviewed in [2]). These atlases have provided a representation
of brain anatomy in the womb, and have facilitated tissue segmentation, thereby
c© Springer Nature Switzerland AG 2018
A. Melbourne and R. Licandro et al. (Eds.): DATRA/PIPPI 2018, LNCS 11076, pp. 76–86, 2018.
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enabling studies of structural growth and aiding the detection (or characteri-
zation) of fetal pathologies [2]. However, given that ultrasound (US) imaging
forms one of the first steps in perinatal monitoring, there is still a need to create
an ultrasound-specific atlas for use in routine care. This work presents a tool to
automatically generate an atlas from 3D US images of the fetal brain.

The standard approach to construct an anatomical atlas is to perform one
of state-of-the-art pairwise deformable registration algorithms [3] between the
chosen (reference) volume and the remaining volumes from a data set. Such an
approach is simple and easily scalable to large data sets, however it introduces
a bias to registration results due to the selection of reference volume. That is,
if the selected reference volume is an outlier then all registrations will estimate
implausible transformations. Additionally, the transformation estimated using
a pairwise approach accumulates inverse consistency and transitivity errors [4],
which could be propagated to any subsequent analysis. Different approaches have
been proposed to reduce transformation errors when building atlases, including
statistical deformation models [5], linear [6] or geodesic [7,8] averaging of the
transformations and intensity to produce the atlases. Approaches with simulta-
neous registration (i.e. groupwise registration) of all volumes in a dataset have
been shown to reduce the bias introduced by selection of a fixed reference volume,
and errors in the estimated displacement fields.

Developing intensity-based methods for registration of ultrasound images is
challenging due to strong intensity inhomogeneities within tissues, and the pres-
ence of shadows, which cause partial, low-contrast boundaries. Local phase [9]
and feature asymmetry (derived from the monogenic signal [10]) extract contrast-
invariant structural information, and have been shown to improve analysis of US
images in several tasks. Specifically, feature asymmetry (FA) has the potential
to enhance tissue boundaries, and as such, has been extensively used to process
fetal ultrasound data, where there are large structural changes (e.g. [11,12]).
A hybrid intensity and local phase representation of US images has been applied
to tumour tracking in 2D liver US [13], showing overall improved registration
accuracy. Realizing the potential of FA to enhance and sharpen the sonographic
landmarks necessary for accurate registration, this work explores its inclusion as
additional image channels for US atlas construction.

In this paper, we present a framework to construct the first 3D atlas of the
fetal brain using non-rigid groupwise registration of US images. Our framework
extends a standard groupwise registration [4] to its multi-channel counterpart
using a composite image representation to improve the registration of tissue
interfaces in US data. The proposed multi-channel image representation com-
prises of ultrasound intensities and features extracted using different FA scales,
thereby representing boundaries of different sizes in a multiscale manner. The
presented evaluation shows that the presented method is capable of constructing
an atlas from fetal brain US data, and at the same time, the performed quan-
titative analysis shows that our method outperforms standard intensity-based,
and single channel image registration methods.
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2 Materials and Methods

2.1 Fetal Dataset and Preprocessing

The fetal US images used in this work comprised of 39 volumes (247×190×179
voxels) with known age of 23 gestational weeks (GW). The sonographic volumes
of the fetal head were obtained from the INTERGROWTH-21st study database
[14], which were collected using a Philips HD9 curvilinear probe at a 2–5 MHz
wave frequency. After alignment [15], all volumes were resampled to an isotropic
voxel size (0.6 × 0.6 × 0.6 mm) and resized to 160 × 160 × 160 voxels.

2.2 Atlas Construction

Given a set of M images, the goal of atlas construction is to find a set of trans-
formations T , each of which maps its corresponding image Im to a common
reference space: T : {TmR : Im �→ IR,m = 1, . . . , M}. This typically comprises
of two steps: a global transformation to correct for size and growth differences,
followed by a non-rigid registration to account for local morphological differences.

Sonographic scans of the fetal head were first rigidly aligned using the method
proposed in [15]. Briefly, a slice-wise classifier segmented the skull boundaries and
predicted the relative position of the slice in the brain volume. This information
was then combined to estimate a similarity transformation modelling 9 degrees of
freedom (namely, rotation, translation, and isotropic scaling) to linearly register
all volumes to a standard (atlas) space. One of the challenges of processing
fetal brain US is that the ultrasound signal is attenuated by the cranial bones
in its path, and the concave shape also refracts it and creates reverberation
artifacts. This affects the visibility of anatomical boundaries, particularly in the
cerebral hemisphere proximal to the US probe. Since only one of the hemispheres
has clearly visible structures, this hemisphere is mirrored across the midsagittal
plane. This generates a complete representation of the brain, thereby making an
assumption of brain symmetry, for simplicity [16].

The non-rigid image registration used in this work, is built on the groupwise
deformable registration proposed in [4,17]. The implicit reference groupwise reg-
istration reduces bias introduced by selection of a reference volume by jointly
estimating the transformation between all volumes in the dataset to an unknown
reference volume. This process is defined as the following optimization problem:

arg min
u

⎛
⎝

M∑
m

M∑
n,n �=m

∫

Ω

Sim (Im(TmR(x)), In(T nR(x))) dx + (1)

α

M∑
m

∫

Ω

Reg(umR(x))dx

)
(2)

where Sim and Reg denote the similarity measure and regularisation term,
respectively, α is the weighting parameter, TmR = x + umR(x) (or T nR =
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x+unR(x)) is the transformation from volume Im (or In) to the implicit refer-
ence volume IR at spatial position x. The umR (or unR) represents a subsequent
displacement field, Ω is the volume domain, and M is the number of volumes
to be registered. The implicit reference volume is iteratively updated based on
all the volumes deformed during the displacement field estimation process. In
this work, we choose the diffeomorphic Demons framework [18], where optimi-
sation iteratively alternates between minimising the energy related to the sim-
ilarity measure Sim and the regularization term Reg performed via Gaussian
smoothing of the estimated displacement fields. In order to establish anatomi-
cally meaningful correspondences between brain US volumes, we replace state-
of-the-art intensity differences used in the classic Demons by a multi-channel
feature-based representation of the US volumes. The implementation details for
efficient Demons-like implicit reference groupwise registration can be found in
[19].

2.3 Feature Extraction

The monogenic signal uses the Riesz transform to generate a representation of
an image in the frequency domain [20]. By applying an appropriately selected
bandpass filter (f{o,e}), the signal can be decomposed into local structural (phase
and orientation) and energetic (amplitude) information. The phase component
extracts contrast-invariant, structural information, which is particularly useful in
recovering feature asymmetry (FA) [21]. FA is a measure of the extent to which
a structure around an image voxel is locally asymmetric, thus representing a
step-edge [10,21]. The FA edge image Î of an input image I is recovered as:

Î =
�|fo,λ(I)| − |fe,λ(I)| − t�√

fo,λ(I)2 + fe,λ(I)2 + ε
(3)

where λ represents the filter scale, fo and fe represent the odd and even parts of
the signal, t is a threshold that controls the sensitivity of the response, �·� sets
negative values to zero, and ε is a filter regularization parameter which prevents
division by zero.

FA allows edge features to be obtained at different centre-wavelengths, λ.
The centre frequency is equivalent to the scale of the bandpass filter f{o,e},λ

(i.e. size of structures of interest) used to the calculate the monogenic signal.
In fetal brain US images, the anatomical boundaries appear as step-edges and
ridge-like structures, which are best extracted with a log-Gabor filter [11]. Given
an US image, I, a corresponding FA edge image Î is defined to highlight struc-
tural boundaries [10,21]. An FA image typically detects thick edges which are
thinned by applying non-maximum suppression for improved boundary local-
ization. Here, we explore the effect of supplementary structural information for
atlas construction by varying the centre frequency at which the monogenic signal
was recovered from the images, λ = [0.025, 0.425] (Fig. 1). The other parameters
were empirically set to t = 0.5 and ε = 10−6.
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Fig. 1. Schematic of a coronal view of the fetal brain at 23 GW, and a typical US scan.
Feature asymmetry edge images are shown at varying centre-frequency wavelengths,
λ = {0.075, 0.125, 0.275}, overlaid in yellow. (Color figure online)

2.4 Evaluation Metrics

Ten brain volumes were linearly registered using [15] and anatomical regions were
manually segmented and verified by an expert with 10 years’ experience and a
senior sonographer. The segmented regions of interest (Vk) included the brain
stem (BS), cavum septum pellucidum (CSP), thalamus (TH), and white matter
(WM) (Fig. 2c). In order to evaluate registration performance, we compute the
average relative overlap (ARO) for each of the K = 4 regions as follows [4]:

ARO =
1

N(N − 1)

N∑
j=1,
j �=i

N∑
i=1

∑
K Vk

i ∩ Vk
j∑

K Vk
i ∪ Vk

j

(4)

where Vk
i = Vk

i (TiR(I)), K is the number structures, and N is the number of
annotated volumes.

All experiments were performed on an Intel i7 2.80 GHz quad-core machine
(32 GB RAM) with a C++ implementation of the diffeomorphic Demons algo-
rithm.

3 Results and Discussion

3.1 Registration of Anatomical Structures

In the first experiment, we explored different formulations of the groupwise reg-
istration algorithm to construct an atlas that maximizes anatomical correspon-
dence between the neurosonographic images. By varying the diffusion parameter
of the Demons-like forces (σd = [0.25, 5.0]), we find that the best performance is
achieved with σd = 1.0 (ARO > 0.868 for WM, Fig. 2a), and gradually decreases
as σd increases. This behaviour was observed regardless of input: single- or multi-
channel.

Furthermore, we explored the effect of FA wavelength (scale) selection by vary-
ing λ from 0.025 to 0.425. Figure 2b shows the ARO averaged across all four struc-
tures. The groupwise approach outperformed the linearly aligned data, regardless
of input. However, the multi-channel Demons (intensity + sFA) outperformed
single-channel Demons (intensity) only for scales λ = {0.075, 0.125, 0.175}.
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For further comparison, we explored the performance of a multi-channel Demons
with multi-scale feature extraction by combining the features from the best FA
scales (λ = 0.075, 0.125, 0.175) into the second input channel. This yielded the
highest structural overlap (ARO = 0.8029 ± 0.049) and was selected as the best
method for atlas construction.

Figure 2c shows the result of applying the groupwise registration to the set of
ten volumes for which corresponding segmentations were available. The atlases
were constructed by averaging the images after affine registration, and then fur-
ther transformed by the groupwise registration. There is high consensus between
the structures, as observed in the probability maps, which is corroborated by the
groupwise ARO of the resulting atlas (Table 1).

To further examine the anatomical agreement recovered by the groupwise
registration algorithm, we compared the average segmentation maps obtained
by transforming the annotated images, with a segmentation of the resulting
groupwise atlas. High volumetric overlap was also observed for all four structures
(mean ARO = 0.8580 ± 0.036).

Fig. 2. (a) Registration regularization parameter (σd) versus average relative overlap
(ARO). (b) Different atlas construction methods plotted against ARO. (c) Resulting
US atlas constructed using intensity and multi-scale FA from n = 10 volumes for which
segmentations were available. Denser colour signifies higher overlap.
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3.2 Construction of Population Brain Atlas

In the second experiment, we applied the proposed multi-channel groupwise reg-
istration algorithm to 39 brain volumes to construct an atlas. Figure 3 shows
atlases constructed by averaging the images after the affine registration [15],
and after non-rigid registration with either a single (intensity) channel, or multi-
ple channels (i.e. intensity and feature asymmetry). It is evident that the atlases
constructed with groupwise registration had higher anatomical definition, and
more distinct boundaries. Structural clarity was even higher in the atlas con-
structed with multi-channel inputs.

In order to visualize the structural variation within the healthy fetal cohort
at 23 GW, we performed principal component analysis (PCA) of the deforma-
tion fields estimated from the 39 volumes. Figure 5 demonstrates the first four

Fig. 3. Visual comparison between fetal brain atlases constructed from n = 39 US
volumes at 23 GW using affine (first column), intensity-based (second column), and
multi-channel groupwise methods (third column). Comparison to MRI-based fetal atlas
at 23 GW shows the presence of similar structures in both modalities [22] (yellow
arrows), but some structures are better observed in US images (red arrows). (Color
figure online)

Fig. 4. Volumetric US atlas with superimposed segmentation of four structures from
a fetal MR atlas at 23 GW (obtained from Gholipour et al. [22]).
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Fig. 5. Principal component analysis (PCA) result display the mean brain ±3 stan-
dard deviations (i.e. μ ± 3σ) for the first four components. All modes show realistic
representations of the brain.

components, altogether explaining 65.6% of the variation at this gestational age.
PC1, PC2, and PC4 display variations in anatomical shape and global eccen-
tricity of the brain. Small changes in ventricular shape are particularly observed
around the posterior lateral ventricles and the cortical plate in PC1. Nonethe-
less, all modes of variation demonstrate realistic representations of the brain at
23 GW.

3.3 Comparison to Existing Fetal Atlas

In order to assess the quality of the resulting atlas, Fig. 4 compares our US-
specific atlas with a MRI-based fetal template at 23 GW generated by Gholipour
et al. [22]. The contours of the latter are superimposed on the US-based atlas
constructed from n = 39 volumes. Here, we can visually determine that despite
there not being a direct intensity mapping between the two, there is a good
match between the shape and location of the structures in both modalities at
this gestational week. This illustrates the complementarity between the modal-
ities, and presents opportunities to transfer anatomical insights from one to the
other, and the possibility to facilitate analysis of fetal brain US with information
contained within MRI models of development (e.g. [22]). The fact that structures
such as the basal ganglia are better visible in the US-based atlas (Fig. 3) also
presents new opportunities for use of neurosonographic data to study structural
development.
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Table 1. Average relative overlap for all four structures on 10 annotated volumes.
Intensity: single-channel Demons. Intensity+sFA: multi-channel, single-scale demons
(λ = 0.075). Intensity+mFA: multi-channel, multi-scale Demons with FA scales λ =
{0.075, 0.125, 0.175}.

Method Structural ARO (D̄k) Mean ARO

WM TH CSP BS

Linear only [15] 0.8174 0.6467 0.6379 0.6412 0.6858 ± 0.076

Intensity 0.8680 0.7383 0.7289 0.7652 0.7751 ± 0.055

Intensity + sFA 0.8829 0.7672 0.7806 0.7771 0.8019 ± 0.047

Intensity + mFA 0.8873 0.7680 0.7824 0.7738 0.8029± 0.049

Structural volume (cm3) 37.64 1.954 0.449 1.233 –

4 Conclusion

In this paper, we present the first fetal brain atlas constructed from US data.
The proposed multi-channel Demons formulation takes as input an image with
intensity and feature-enhanced channels. It was shown to outperform a single-
channel Demons registration approach, generating high structural overlap in the
resulting atlas. Comparison with an age-matched MR atlas demonstrated simi-
larities in the shape and presence of key anatomies in both imaging modalities,
but also revealed new structures that are better observed in the US atlas. Given
the formulation of the proposed method, it is expected that it should extend to
a broader gestational age range.
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Abstract. This study examined postmenstrual age (PMA) estimation (in
weeks) from brain diffusion MRI of very preterm born infants (born <31weeks
gestational age), with an objective to investigate how differences in estimated
brain age and PMA were associated with the risk of Cerebral Palsy disorders
(CP). Infants were scanned up to 2 times, between 29 and 46 weeks (w) PMA.
We applied a deep learning 2D convolutional neural network (CNN) regression
model to estimate PMA from local image patches extracted from the diffusion
MRI dataset. These were combined to form a global prediction for each MRI
scan. We found that CNN can reliably estimate PMA (Pearson’s r = 0.6,
p < 0.05) from MRIs before 36 weeks of age (‘Early’ scans). These results
revealed that the local fractional anisotropy (FA) measures of these very early
scans preserved age specific information. Most interestingly, infants who were
later diagnosed with CP were more likely to have an estimated younger brain
age from ‘Early’ scans, the estimated age deviations were significantly different
(Regression coefficient: −2.16, p < 0.05, corrected for actual age) compared to
those infants who were not diagnosed with CP.

Keywords: Preterm � CNN � Cerebral Palsy � Postmenstrual age
Deep learning

1 Introduction

Infants born very preterm may be at high risk of structural and functional abnormalities
of the brain, as well as adverse outcomes including Cerebral Palsy (CP) [1]. Currently,
the diagnosis of CP or other motor and cognitive abnormalities are made at approxi-
mately 2 years of age [2]. Early detection of developmental abnormalities and thus
earlier intervention and treatment are critical to improve outcomes for affected indi-
viduals. Brain imaging, such as magnetic resonance imaging (MRI), is one of the
techniques to identify early markers of motor or cognitive outcome [3]. Finding an
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early biomarker specific to CP or other types of adverse outcomes is a challenging task
[4]. Analyses of large datasets are needed to determine any overlooked and generalized
features for early prediction of adverse neurodevelopmental outcome such as CP in
preterm infants. For this task, cutting-edge techniques like machine learning or deep
learning based technologies may play an important role.

Estimating morphological age and its deviation from the nominal gestational age by
atlas based methods from brain MR images has proven useful for assessment of
pathologies like lissencephaly [5]. Few studies that used CNN for estimating age (in
years) directly from the MRI scans were on adult cohort [6, 7], however, these tech-
niques have not been investigated in preterm infants or for prediction of infants at risk
of CP. We propose to use a CNN trained with brain patches to estimate PMA of
preterm born infants using brain diffusion MRI. The globally and locally estimated
brain ages might be utilized to identify brain structures that indicate of PMA and to
determine the correlation of local and global age deviations with clinical phenotype.

Here, we estimated the postmenstrual age (PMA) from diffusion MRI of preterm
infants by a deep learning CNN based regression model. Infants were scanned at 2 time
points, ‘Early’ (29.4–35.3 weeks) and ‘Term’ (age: 38.43–46.6 weeks) PMA. A CNN
regression model was trained on a preterm cohort with no evidence of CP at 2 years
corrected age, and then tested on the infants with or without a later diagnosis of CP
separately. We compared our findings with a brain-volume based age estimation model.
Overall, our aim was to investigate whether estimating PMA from MRI of preterm
infants is possible in weekly resolution by a patch based CNN model and whether there
is any difference in the range of estimated deviations between infants later diagnosed
with CP compared to those who were not.

2 Method

2.1 MR Imaging Acquisition

Infants born <31 weeks gestational age (GA) were enrolled and scanned utilizing an
MR compatible incubator equipped with a dedicated neonatal head coil (LMT Lam-
mers Medical Technology, Lübeck, Germany) as part of a prospective cohort study [1].
Diffusion images were acquired, consisting of one low (b = 0 s/mm2) and 64 diffusion-
weighted images (2000 s/mm2), in which the diffusion encoding gradients were uni-
formly distributed in space. Imaging parameters of the diffusion sequence were: field of
view 224 � 224 mm, matrix 128 � 128, repetition time 9500 ms, echo time 130 ms
and flip angle of 90°. Conventional MRI was conducted to assess brain abnormalities.
A total of 119 infants underwent at least the ‘Early’ MRI. We excluded infants from
our study who did not attend follow-up assessment at 2 years, or whose diffusion
weighted images were of poor quality. Data of a total of 82 infants not diagnosed with
CP (non-CP cohort) and 4 infants diagnosed with CP (CP cohort) at 2 years corrected
age were analyzed.

Brain abnormalities were scored using conventional images [8], see Table 1.
A histogram on the distribution of age is shown in Fig. 1.
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2.2 MRI Preprocessing

MRI pre-processing procedures included removal of volumes affected by intra-volume
motion, correction of between volume motion including rotation of the b-matrix,
correction of image distortions due to susceptibility inhomogeneities using a field map,
and detection and replacement of signal intensity outlier slices prior to resampling.
Images were upsampled to 1.25 mm isotropic resolution and maps of fractional ani-
sotropy (FA) were estimated using the diffusion tensor model. Brain masks were
estimated from the non-diffusion-weighted images using registration to a study specific
template and subsequent multi-atlas voting. Brain volumes were calculated from the
brain masks. FA images were affinely registered to one of two study specific atlases
created separately for the ‘Early’ and ‘Term’ time points. The same transformations
were applied to the brain masks. All data were normalized to zero mean and unit
variance.

Table 1. MRI based global brain abnormality (according to Kidokoro scores [8]) for the MRIs
of preterm infants in our dataset

Classification Full
dataset

Training
(non-CP)

Validation
(non-CP)

Test
(non-CP)

CP

Normal 71 58 8 5 2
Mild abnormality 51 36 6 9 –

Moderate
abnormality

13 13 – – –

Severe
abnormality

6 5 – 1 4

N/A 1 1 – – –

Fig. 1. Distribution of postmenstrual ages at the time of MRI.
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2.3 Data Preprocessing for CNN and ‘Brain Volume’ Model

Our dataset for the non-CP cohort was composed of 142 scans (72 ‘Early’ and 70
‘Term’ MRI). We used 80% of the scans for training, 10% for validation and 10% for
test. Our CP cohort was small with 6 scans (2 ‘Early’ and 4 ‘Term’ MRI) from 4
infants. The same partitions were used for the brain-volume based linear regression
model (‘Brain Volume’ model) for age estimation. For the CNN, 20 � 20 � 20 voxel
non-overlapping patches were extracted from the scans within the brain using the brain
masks, which were then used to train the network. The number of scans and patches for
training, validation and test datasets are listed in Table 2.

2.4 Network Architecture

The CNN consisted of three 2D convolution layers with 3 � 3 kernel and three max-
pooling layers with stride of 2. Dropout was used as regularization to prevent over-
fitting. ReLU activation was used for each of the convolutional layers. The final 3
layers were fully connected, which blended the parameters to combine the feature
vectors. The output of the network was a scalar, which indicated the predicted brain age
for each patch. The learning rate was 0.001 and ‘Adam’ optimizer was used. The
details of this network architecture can be found in Table 3.

Table 2. Number of patches and scans in different datasets used for CNN models

Dataset No of scans No of patches

Training (non-CP) 113 7719
Validation (non-CP) 14 898
Test (non-CP) 15 895
CP 6 449

Table 3. CNN network architecture

Layer index Name Relevant parameters (no of filters,
kernel size, number of output neurons,
dropout)

1 Conv2D 16@3x3
2 ReLU N/A
3 Maxpooling 2D 2
4 Dropout 0.8
5 Conv2D 32@3x3
6 ReLU N/A
7 Maxpooling 2D 2
9 Conv2D 32@3x3
10 ReLU N/A
11 Maxpooling 2D 2

(continued)
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2.5 Implementation

The CNN was implemented in TensorFlow (1.5.0) on a clustered CPU computation
environment. The end-to-end algorithm was written in Python. With CPU computation,
the time for training was *2 h and testing was *2 s for each test dataset. For the
‘Brain Volume’ model, a scikit-learn based linear regression function was used.

2.6 Performance Measures

As a post-processing step (Fig. 2), a single estimated age value was assigned to each
scan from the CNN estimation with maximum frequency (mode) over its patches.
Pearson correlation coefficients were calculated between actual and predicted PMA for
‘Early’ and ‘Term’ patches and scans of ‘Validation’ and ‘Test’ datasets. Similarly,
correlations were also measured for the ‘Brain Volume’ model. Bland-Altman plots
were generated for analyzing residuals for both of the models. In addition, CNN
prediction accuracies for patches and scans at different estimated deviation ranges were
reported. Finally, brain age deviation for each scan was calculated from the difference
between the model-predicted brain age and actual postmenstrual age for both of the
models and compared between non-CP and CP group by histograms, fitted kernel
density estimates (KDE) and general linear regression models.

3 Results

We first tested whether our CNN model can estimate the local and global PMA from
MRI patches and scans respectively for both preterm infants with and without
CP. CNN model predictions for patches for the non-CP ‘Validation’, non-CP ‘Test’
and CP scans are shown in Fig. 3A. The Pearson’s r between actual and predicted ages
was (0.07, p = 0.1) for ‘Early’ non-CP ‘Test’ patches and (0.2, p < 0.05) for the
‘Term’ patches. This poor correlation can be attributed to a high variability in the
predicted ages over local patches of any scan. Therefore, after combining the patch-
based estimates into a single scan-based estimate (post-processing), r increased to 0.62

Table 3. (continued)

Layer index Name Relevant parameters (no of filters,
kernel size, number of output neurons,
dropout)

12 Dropout 0.8
13 Flatten N/A
14 FC 256
15 Dropout 0.8
16 FC 128
17 Dropout 0.8
18 FC 1
19 Linear N/A
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(p = 0.054) for the ‘Early’ non-CP ‘Test’ scans and 0.63 (p = 0.25) for ‘Term’ scans.
When the ‘Test’ and ‘Validation’ datasets were combined, we found a significant
correlation (r = 0.6, p < 0.05) for ‘Early’ scans and a poor correlation (r = 0.25
p = 0.3) for the ‘Term’ scans. Thus, despite the variability over local estimations, local
patches in scans preserved age specific features in ‘Early’ MRI. The ‘Brain Volume’
model predictions also showed a strong correlation for both ‘Early’ (r = 0.75, p < 0.05)
and ‘Term’ (r = 0.65, p = 0.23) non-CP ‘Test’ scans. For the combination of ‘Vali-
dation’ and ‘Test’ scans, r decreased to 0.61 (p < 0.05) for ‘Early’ scans and to 0.4
(p = 0.22) for ‘Term’ scans. Thus, both of the models showed a strong age pre-
dictability (in weeks) from ‘Early’ MRI. Predictions from ‘Term’ MRI were unreliable

Fig. 2. End to end training, inference and post-processing phases with a deep learning CNN
regression network.
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Fig. 3. A. Patch based predictions of PMA in non-CP (Validation and Test) and CP datasets.
B and C. Scan based predictions (after post-processing) of PMA in non-CP and CP datasets by
CNN and ‘Brain Volume’ model respectively. D & E: Residual plots for CNN and ‘Brain
Volume’ model, respectively. F & G. Comparison of estimated age deviations between non-CP
‘Test’ and ‘CP’ group from CNN and ‘Brain Volume’ model respectively.
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for the CNN model with the particular post-processing scheme and inaccurate for the
‘Brain Volume’ model as shown by their respective residual plots in Fig. 3D and E.
Therefore, we excluded ‘Term’ predictions from further analysis.

As a secondary analysis, we calculated the patch and scan based prediction accu-
racy for ‘Early’ scans only at different age deviations as shown in Tables 4 and 5. The
age prediction accuracies for CNN model were 70% for non-CP (‘Test’) and 100% for
CP scans within ±2w deviation. We then compared the distributions in estimated age
deviations (for ‘Early’ scans only) between non-CP and CP scans for both of the
models (Fig. 3F and G). Interestingly, for CNN model, ‘Early’ brain age was consis-
tently underestimated for infants with CP, while it was either under- or overestimated
for infants without CP (Fig. 3D and F). For ‘Brain Volume’ model, 50% of the ‘Early’
CP scans were underestimated (Fig. 3E and G). Thus, the CNN estimated age devia-
tions for ‘Early’ scans were significantly reduced (Regression coefficient: −2.16,
p < 0.05, corrected for actual age) in CP compared to non-CP (Test +Validation) while
the ‘Brain Volume’ model estimated deviations were not (Regression coeffi-
cient = −1.58, p = 0.11, corrected for actual age). For the ‘Brain Volume’ model, the
underestimation for CP scans seems to be related to a smaller brain volume than
expected at an age, while CNN features related with underestimation are still to be
explored as the MRI preprocessing steps essentially negate the effect of brain size.
Nevertheless, these results represent that underestimated brain age preferably by CNN
models might indicate risk of CP.

4 Discussion

We presented a CNN based postmenstrual age prediction approach for preterm infants
and, to our knowledge, this is the first study to utilize the CNN estimations as a very
early predictor of CP. The expected developmental abnormalities of the preterm brain
with varying degrees of brain abnormalities made the age prediction task from local

Table 4. Patch accuracies at different ranges of deviations from CNN estimations

Dataset Patch accuracy (%)
±0.5w ±1w ±2w ±3w ±4w

Validation 36.75 58.24 89.75 95.10 95.10
Test 26.03 51.51 86.59 94.30 97.09
CP 73.94 79.51 89.53 97.10 98.89

Table 5. ‘Early’ scan accuracies at different ranges of deviations (after post processing) from
CNN estimations

Dataset Scan accuracy (%)
±1w ±2w ±3w

Validation 37.5 87.5 100
Test 40 70 90
CP 50 100 100
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brain features challenging. Our study showed that both local brain feature based CNN
regression model and total brain volume based linear regression model (‘Brain Vol-
ume’) reliably predicted PMA of the preterm infants from their ‘Early’ scans with
strong correlations and reasonable prediction accuracy within ±2w deviation.

The Bland-Altman plots for CNN predictions (Fig. 3D) appear to show a sys-
tematic prediction error (overestimation for younger, underestimation for older) for
‘Early’ test scans but not for ‘Early’ validation scans. With only one train/validation/
test split, it is difficult to determine whether this is coincidental. Cross-validations are
required to verify these findings. More importantly, different types of post processing
schemes, which biologically represent how the local age information in the brain is
related to a global age, should be explored. Detailed studies on the patches, which are
associated with the closest estimation of the actual age, should be conducted and thus
only specific regions could be considered while predicting a global age. The brain age
prediction was unreliable/inaccurate at term equivalent age for both of the models as
indicated by lower Pearson’s r correlation and residuals (Fig. 3D and E). The more
reliable prediction at younger age could be due to more rapid changes to the brain
folding patterns or fractional anisotropy in the early period than later. As a conse-
quence, there may not be enough information in the local features of the ‘Term’ scans
for sufficiently reliable predictions; in addition, the expected abnormal developmental
trajectory for the preterm might make the prediction harder. The ideal post-processing
scheme might be different between ‘Early’ and ‘Term’ scans. In addition, the age band
for ‘Term’ training was fairly narrow.

The most interesting finding is that while the non-CP dataset consisted of some
patients with brain abnormality as shown in Table 1, the estimated age deviations from
CNN models were significantly different between the ‘Early’ non-CP and CP groups of
scans. The difference was not significant though for ‘Brain Volume’ model estimations.
Nevertheless, the distributions from both of the models as shown in Fig. 3F and G
revealed that CP cases are more likely to be underestimated than non-CP ones. In
addition, it is noticeable that 100% of the CP scans (Early + Term) in CNN and*70%
of the CP scans in Brain Volume model were underestimated. This underestimation
could be related to smaller brain volumes than normal, and for the CNN, any devel-
opmental delay in FA features. A number of previous studies [9, 10] reported the
association of head circumference and developmental dysfunction related to CP, while
with respect to FA features, previous data [11] showed that children with poor
developmental outcomes at the age of 2 have lower FA in specific brain regions. Our
study investigated these features at very early stages by utilizing local and global brain
age deviations with an aim to find out a distinction line between non-CP and CP scans.
It seems that underestimated brain age from the ‘Early’ scans preferably by CNN
model could be one of the diagnostic features of CP, which in combination with other
clinical scores could be indicative of CP disorder at a very early stage. Finally, it should
be noted that all these observations were made on 2 ‘Early’ and 4 ‘Term’ CP scans and
need to be verified on larger cohorts of preterm infants with CP.

One of the main advantages of a patch based CNN approach is that it might be able
to identify the local brain patches that contain stronger features for age as well as the
patches that show higher estimated deviations and thus could be potentially related to
brain abnormalities. Future studies will explore the correlation of CNN model
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estimations and clinical findings in local brain regions. CNN training with larger
samples and with multimodal MRI inputs will likely facilitate this kind of study.
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Abstract. In this paper, we propose a patch-based deep learning app-
roach to segment pelvic vessels in 3D MRI images of pediatric patients.
For a given T2 weighted MRI volume, a set of 2D axial patches are
extracted using a limited number of user-selected landmarks. In order to
take into account the volumetric information, successive 2D axial patches
are combined together, producing a set of pseudo RGB color images.
These RGB images are then used as input for a convolutional neural
network (CNN), pre-trained on the ImageNet dataset, which results into
both segmentation and vessel labeling as veins or arteries. The pro-
posed method is evaluated on 35 MRI volumes of pediatric patients,
obtaining an average segmentation accuracy in terms of Average Sym-
metric Surface Distance of ASSD = 0.89 ± 0.07 mm and Dice Index of
DC = 0.79 ± 0.02.

1 Introduction

Surgical planning relies on the patient’s anatomy and is often based on medical
images acquired before the surgery. In particular, this is the case for pelvic
surgery where the standard procedure is still to visually analyze, slice by slice,
the images of the pelvic region. This operation can be quite difficult and tedious
due to the complexity and variability of the pelvic structures. Furthermore,
it is even more complicated in the case of children, since the anatomy varies
over time and it is specific to the age of the patient. Difficulties are emphasized
when dealing with pathological cases such as malformations or tumors. For these
reasons, it is very important and challenging, especially for children, to provide
surgeons with patient-specific 3D models, obtained from the segmentation of
anatomical images.
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In this paper, we propose a method to segment the pelvic vessels. Within
all pelvic structures, vessels are particularly important since they need to be
preserved during surgery in order to avoid potential functional damages to the
patient’s organs.

Most of the studies on vessels segmentation are dedicated to adult patients
and applied to contrast-enhanced imaging modalities, such as computed tomog-
raphy angiography (CTA) or magnetic resonance angiography (MRA) images,
as extensively described in [1,2]. These image modalities often rely on the injec-
tion of a contrast agent and on specific acquisition protocols, producing vessels-
enhanced images.

However, the use of contrast agents is not always recommended in clinical
practice, especially for pediatric patients [3]. For this reason, standard MRI
acquisitions are usually chosen for pediatric pelvis exams. The choice of MRI,
instead of other modalities such as CT, is also related to its non-irradiating
nature, which is very important in pediatrics, and to its good contrast resolution
of the soft tissues [4,5]. The use of standard MRI makes it difficult to apply the
methods developed for angiography images, since they are specifically designed
for strong vessels enhanced images. Moreover, for pediatric patients, there are
harder clinical constraints on the scan acquisition time than for adults, which
do not allow to considerably increase the images resolution. This, coupled with
a smaller size of the vessels walls for pediatric patients, produces images with
higher partial volume effects compared to adults. These partial volume effects
could locally create weak or missing boundaries, which makes it even more dif-
ficult to apply classical methods such as level-sets [6]. This shows why there is
a need for segmentation methods specifically conceived for pediatric imaging.

In the last years, deep learning methods and in particular convolutional neu-
ral networks (CNNs) have shown excellent performances in various medical imag-
ing tasks [7]. However, deep learning methods usually require a huge number
of manually annotated data, which is really difficult to obtain in the medical
field, and especially in pediatrics. To this end, recent studies [8–11] have relied
on transfer learning [12] from pre-trained networks on large datasets of natural
images (e.g. ImageNet [13]). However, these studies cannot be directly applied to
volumetric data, due to the nature of the training dataset (e.g. 2D color images
for ImageNet). Moreover, discarding the 3D nature of medical images would
result in a loss of useful information for the segmentation task. For this reason,
some studies [10,11] successfully proposed to generate 2D pseudo-color images
from volumetric gray-level images, aiming to incorporate 3D information.

In this paper, we propose a patch-based deep learning approach that is,
to the best of our knowledge, the first study on pelvic vessels segmentation
with pediatric MRI. Starting from a set of user-selected landmarks, a series
of patches containing the structures of interest is extracted. In this way, for
each patient, the user can focus on the analysis of the vascular structures of
surgical interest. Similarly to [11], the patches are generated by stacking the gray
levels information of successive slices (Sect. 2.1), forming pseudo-RGB images.
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This approach allows us to take into account the 3D information of the image
while using a CNN pre-trained on ImageNet (Sect. 2.2).

2 Vessels Segmentation and Labeling

The proposed method for the segmentation of the pelvic vessels consists of two
main steps: a semi-automatic extraction of a set of axial patches containing the
vascular structures of interest, followed by an automatic segmentation procedure
based on CNN and transfer learning. The pipeline of the proposed method is
depicted in Fig. 1.

Fig. 1. Pipeline of the proposed method. A set of 2D pseudo-RGB patches are extracted
from the MRI volume and from a set of user-selected landmarks. Patches are then
segmented through a modified version [11] of the VGG network [14], obtaining the 3D
segmentation of the vessels.

Preprocessing. First, histogram equalization of each MRI volume is performed.
Then, in order to reduce the noise, an anisotropic diffusion filter [15] is applied,
taking into account the tubular structure of the vessels.

2.1 Patches Extraction

The definition of patches relies on three steps. First, some landmarks along the
vessels are provided by the user. The only constraint is that these points should
belong to the vessels. In particular, in case of bifurcations, the user can select
landmarks on vessel branches in any order. The other two steps, detailed next,
consist in reconstructing the vascular tree from the landmarks, and in defining
patches centered on the vessels branches in each slice of the image volume.
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Vascular Tree Reconstruction. Let L = {ϕi = (xi, yi, zi) ∈ Ω, i ∈ {1...n}}
be the set of user-selected landmarks, where n = |L| is the number of land-
marks, Ω ⊆ R

3 is the image domain, and L is ordered decreasingly in z
(∀i ∈ {1...n − 1}, zi+1 ≤ zi), hence in the cranio-caudal direction. The vascular
tree is reconstructed iteratively by choosing, at each step i, the best candidate
landmark ϕc = (xc, yc, zc) to be connected with ϕi, minimizing the following
objective function, which combines shape and appearance information:

f(ϕi, ϕc) = α||ϕi − ϕc||2 + βκ(ϕi, ϕc, ϕc−1) + γσ2
(ϕi,ϕc)

,

where ϕc−1 is the landmark already connected with ϕc, such that zc−1 > zc, κ
is the local curvature, estimated as 1

r where r is the radius of the circle passing
through the three points, σ2 is the variance of the image intensity in a cylinder
whose axis is the line joining ϕi and ϕc and whose circular basis has a fixed
radius rc, and α, β, γ are constant weight values. Minimizing f means that the
path should be formed by points as close as possible, forming a line as straight
as possible, and whose spatial context is homogeneous in terms of intensity.

For each iteration i, the candidates ϕc are chosen as the landmarks that have
zc > zi and that are already connected to at most one landmark. This candi-
dates selection allows us to take into account that, in the pelvis, the different
vessels branches are descending along the cranio-caudal direction. Furthermore,
we can also automatically handle bifurcation points while avoiding anatomically
incoherent connection (i.e. trifurcations). This procedure, repeated for each ϕi,
results in an approximate reconstruction of the vascular tree, as shown in Fig. 2.
The parameters for the reconstruction are experimentally set to α = 1, β = 200,
γ = 103, rc = 1 mm, producing a correct vascular tree reconstruction for all the
patients present in the dataset.

Pseudo-RGB Patch Extraction. Once the vascular tree is obtained, each
vessel branch is approximated by a spline. For every slice k, we first define
pk as the point where the spline intersects slice k. Then we extract a square
patch (N × N pixels) centered at pk. Every triple of successive patches (k − 1,
k and k + 1) is interpreted as a pseudo-RGB patch, that incorporates the 3D
information of successive patches. This procedure produces a set of pseudo-RGB
patches, containing the vascular structures, that will be used as input for the
segmentation method that follows.

2.2 Deep CNN for Patches Segmentation

In this section, we propose to use CNN to segment the patches into vessel and
non-vessel regions, and jointly classify the vessel regions into veins or arteries.
To this aim, a modified version of the VGG-16 network [14], pre-trained on the
ImageNet dataset [13] is employed.

The network is built by removing the final fully connected layers of the
pre-trained VGG-16 network, while preserving the 5 convolutional stages which
constitute the base network. Each of these stages consists of Convolutional layers
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(a) i = 1 (b) i = 2 (c) i = 3

(d) i = 4 (e) i = 5 (f) Final result

Fig. 2. Example of reconstruction of the vascular tree (fist five steps). In each image
each blue sphere is a generic landmark, the yellow sphere is the landmark ϕi analyzed
at step i and the green spheres are the candidate landmarks for connection ϕc. The
vessel paths are represented in red. (Color figure online)

and Rectified Linear Unit layers. Each convolutional stage is connected with the
following one by a Max Pooling layer. Starting from this base network, a modified
network is then added, similarly to [9,11], where a specialized convolutional layer
(3 × 3 kernel size) with 16 features maps is inserted after the last convolutional
layer of each stage. These specialized layers are resized to the original image size
and concatenated together. Finally, the feature maps in the concatenated layers
are linearly combined through a final convolutional layer (1× 1 kernel), in order
to produce the output segmented image.

As previously mentioned, the layers of the base network are already pre-
trained on the large ImageNet dataset of natural RGB images. For our applica-
tion, the entire network is then fine-tuned with a training set of manually seg-
mented patches. Each annotated patch consists of three labels, corresponding
to vein, artery and background pixels. The network is trained for 115 k itera-
tions, with a constant learning rate lr = 10−6, using a multinomial logistic loss
function. The loss function is minimized using a stochastic gradient descent with
momentum m = 0.95.

The analyzed patches, obtained as described in Sect. 2.1 and segmented using
the CNN previously described, are then restored to their original position in the
image domain Ω ∈ R

3, thus providing a classification into veins, artery and
background of the whole image volume.
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3 Results

The image dataset used in this study is composed of 35 T2 weighted MRI vol-
umes, of patients between 1 and 18 years old. Images have different sizes and
resolutions (average voxel size 0.92 × 0.92 × 0.74 mm3).

All pelvic vessels of interest were manually segmented by medical experts
and labeled as veins or arteries. In particular, the following structures were
segmented: the abdominal aorta, the inferior vena cava, the iliac arteries and
the iliac veins.

On the tested cases, 12 landmarks were needed, in average, for the vessels
paths reconstruction (see Sect. 2.1), which required an interaction time of few
minutes for each patient. The only guideline for the user was to select the land-
marks inside the vessels lumen, which is easier to achieve by navigating through
the axial views. This type of interaction was found reasonable by medical experts,
and was considered as a good guarantee to obtain good results from the subse-
quent automatic steps. The patches dimensions were set to 31×31 pixels. Given
the resolution of the images and the thickness of the vessels, the patches largely
include the sections of the vessels.

The performance of the proposed method was evaluated using a 5-fold cross
validation, which corresponds to a training and test set of 28 and 7 patients
for each fold respectively. The segmentation accuracy was evaluated in terms
of Average Symmetric Surface Distance (ASSD [mm]) and Dice Index (DC)
between the proposed segmentation A and the corresponding manual segmenta-
tion B provided by a medical expert:

DC(A,B) =
2|A ∩ B|
|A| + |B| ,

ASSD = 1
|S(A)|+|S(B)|

( ∑
sA∈S(A) min

sB∈S(B)
||sA − sB ||2 +

∑
sB∈S(B) min

sA∈S(A)
||sA − sB ||2

)
,

where S(A) and S(B) are the sets of surface voxels of A and B, sA and sB are
points on S(A) and S(B) respectively. For each patient, these measures were
evaluated for both the global vascular segmentation (fusion of vein and artery)
and for veins and arteries separately. The average quantitative results for each
fold are reported in Table 1.

The results in terms of ASSD, taking into account the images resolution,
were considered satisfying by medical experts for surgical planning applications.
As expected, results for a single structure (i.e. either artery or vein) were less
accurate compared to the overall segmentation. This is mostly due to the addi-
tional classification task challenge. Nevertheless, the limited differences between
the Dice indices of the three columns in Table 1 indicate an overall good classi-
fication performance.
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Table 1. Quantitative evaluation of the segmentation results.

Arteries Veins Arteries & Veins

DC ASSD DC ASSD DC ASSD

Fold 1 0.77 1.45 0.78 1.04 0.80 0.88

Fold 2 0.71 1.38 0.72 2.21 0.79 0.96

Fold 3 0.74 1.33 0.72 1.42 0.78 0.84

Fold 4 0.74 1.31 0.78 1.46 0.81 0.80

Fold 5 0.71 1.58 0.72 1.30 0.76 0.95

Mean± std 0.73± 0.02 1.41± 0.11 0.75± 0.03 1.49± 0.44 0.79± 0.02 0.89± 0.07

Some qualitative results are shown in Fig. 3. In order to correctly interpret
them, it is important to consider the anatomy of the vascular structures. The
veins, due to their non rigid internal musculature, tend to collapse more than
the arteries. This behavior usually leads to arteries that have a more circular
shape in the axial section than veins. As shown in Fig. 3(a) and (b), this feature
appears to be effectively incorporated in our method, providing an overall good
veins/arteries classification. Furthermore, we also noticed that most of the mis-
classification cases were locally confined to regions where this “shape feature”
was not expressed. An illustrative example is shown in Fig. 3(c), where a vein
with a strong circular shape is erroneously labeled as artery by our method.
However, as can be seen in the 3D model of Fig. 3(d), the overall classification
is very satisfying and was positively evaluated by medical experts.

(a) (b) (c) (d)

Fig. 3. Examples of segmentation results. In (a), (b) and (c) the results on some axial
sections are depicted. The red contours correspond to the arteries, and the blue ones
to the veins. The final 3D model obtained from the segmentation is depicted in (d)
with the same color conventions. The three patches in (a), (b) and (c) are shown in (d)
with three different colors. Some examples of misclassification are indicated by white
arrows. (Color figure online)
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Another qualitative result is shown in Fig. 4. It depicts the clinical relevance
of the pelvic vessels segmentation in a pediatric patient (8 years old) affected by
ovarian teratoma. As it is possible to see, the patient-specific 3D model eases the
analysis of the spatial relations between the tumor and the right iliac vessels,
which is essential for surgical planning.

(a) (b)

(c) (d)

Fig. 4. Example of 3D patient-specific pelvic model of a 8 years old patient, affected
by ovarian teratoma (green). The arteries (red) and veins (blue) are segmented with
the proposed method. The other pelvic structures (bones, colon, bladder, sacrum and
left ovary) are segmented either manually or using other dedicated methods [4]. (Color
figure online)

4 Conclusion

In this paper we presented, to the best of our knowledge, the first study on
pelvic vessels segmentation of pediatric MRI. We proposed a patch-based deep
learning approach using transfer learning.
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A main contribution of this paper was the design of a semi-automatic method
for the patches extraction, based on the structural information of the pelvic vas-
cular tree. This approach allows the user to focus, for each patient, on the vas-
cular structures of surgical interest, while avoiding potential unexpected results.
We also propose to use pseudo-RGB color patches, that incorporate the 3D infor-
mation of successive slices. The use of these patches makes it possible to exploit
a 2D CNN pre-trained on the ImageNet dataset, which drastically decreases the
number of images needed for training. This is fundamental for medical applica-
tions where the number of annotated images is limited. It is important to remark
that the same strategy, based on transfer learning, would have been difficult to
employ with 3D CNNs. In fact, even if efficient implementations of 3D CNNs
have been released [16], there is a lack of publicly available 3D CNN models
pre-trained on large datasets of 3D images.

As future work, we plan to post-process our results in order to improve the
vein/artery classification. This could be done by analyzing the spatial consistency
of the classes along the entire 3D model. Moreover, we also plan to investigate
other methodologies that take into account the 3D information using more than
three successive slices.

Finally, we plan to integrate this method into a complete framework for
surgical planning, that will include the semi-automatic segmentation and the
3D visualization of the entire pelvic region (i.e. vessels, nerve fibers, bones ...),
using the 3D Slicer software [17]. This will thus provide the surgeon with a
complete 3D digital model of the patient (see Fig. 4).
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Abstract. Ultrasound (US), a standard diagnostic tool to detect fetal
abnormalities, is a direction dependent imaging modality, i.e. the posi-
tion of the probe highly influences the appearance of the image. View-
dependent artifacts such as shadows can obstruct parts of the anatomy of
interest and degrade the quality and usefulness of the image. If multiple
images of the same structure are acquired from different views, view-
dependent artifacts can be minimized.

In this work, we propose a new US image reconstruction technique
using multiple B-spline grids to enable multi-view US image compound-
ing. The B-spline coefficients of different control point grids adapted to
the geometry of the data are simultaneously optimized at every resolu-
tion level. Data points are weighted depending on their view, position and
intensity. We demonstrate our method on the compounding of co-planar
2D fetal US images acquired from multiple views. Using quantitative
and qualitative evaluation scores, we show that the proposed method
outperforms other multi-view compounding methods.

1 Introduction

Ultrasound (US) is an imaging technique using high-frequency sound waves to
visualize soft tissues and organs inside the body. US is used as a routine diag-
nostic tool to detect fetal abnormalities. The diagnostic value of US images is
limited by the expertise of the operator and the image quality. View-dependent
artifacts such as shadows can obstruct parts of the anatomy of interest and
degrade the quality and usefulness of the image.

The position of the probe highly influences the appearance of the image. Focal
depth is typically set such that the center of the image achieves higher quality.
Some of the most degrading artifacts are acoustic shadows (Fig. 1(a)/(b)), which
obscure regions of the image, and changes in pixel intensity with depth due to
tissue attenuation, which cannot always be compensated for using time gain

c© Springer Nature Switzerland AG 2018
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(a) (b) (c)

Fig. 1. (a)/(b) US images from different view directions with shadow artifacts; (c)
co-planar alignment of both views, which are acquired with two active transducers.

compensation (TGC) accurately. If multiple images of the same structure are
acquired from different views, view-dependent artifacts can be minimized. This
can yield an easier and improved delineation of the detailed fetal anatomy by
the sonographers.

Previous work has focused on compounding of multi-view 3D volumes, where
there is some overlap of the fields of view (FoV) [1–3]. However, 2D imaging
provides better image quality and higher frame rate and is the main imaging
mode in fetal screening protocols. But obtaining a coincident imaging plane for
multi-view compounding with a freehand 2D transducer is nearly impossible in
practice.

In this work, we focus on the compounding of fetal 2D multi-view US images.
To this end, we use a custom-made modification to a standard ultrasound system
to connect two active transducers, and a physical device to maintain them on
the same imaging plane, see Fig. 1(c).

To compound the multi-view images, we propose a new B-spline based [4]
image reconstruction method. Due to the lack of a ground truth, different com-
pounding methods were compared and rated qualitatively by experts, indicating
a higher image quality when using multiple polar grids and a data point weight-
ing.

Our main contributions are three-fold. First, we define multiple, view-
dependent B-spline grids, adapted to the intrinsic polar geometry of US images.
The US signal is measured in a polar coordinate system and only afterwards
scan converted to Cartesian coordinates and interpolated for visualization. To
obtain a single multi-view image, the B-spline coefficients of the grids are then
determined simultaneously. Second, we introduce a data point weighting in the
B-spline formulation based on the position (not only on the beam angles as in [5])
and on the intensities. And third, we evaluate our method on a dataset of 2D
fetal US images acquired from multiple co-planar views.
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2 Methods

2.1 Classical B-Spline Approximation

Let X = {xn}Nn=1 ∈ Ω ⊂ R2 with xn = (xn, yn) be a set of N image sampling
points and f = fn ∈ R corresponding image intensities. The aim is to find
a function S(x) such that S(xn) ≈ fn. Using B-splines, this function can be
expressed as

S(x;w) =
∑

p,q

β(
x

a
− p)β(

y

b
− q)wp,q,

where p, q are the indices of the grid control points, wp,q their coefficients, a, b
the grid spacings along x- and y-direction with grid size Np×Nq, and β(·) is the
B-spline basis function of degree d. Now, one has to find the coefficient vector
w∗ = (wp,q) such that

w∗ = argmin
w

∑

n

‖ S(xn;w) − fn ‖2 +λR(S(x;w)),

where R is a regularization term and λ ∈ R a weighting parameter accounting
for the trade-off between the reconstruction accuracy and the smoothness of the
function S.

For each point xn, the B-spline expansion S can be expressed in matrix form
as S(xn) = Bnw with Bn = [b0,0(xn) b0,1(xn) . . . bNp,Nq (xn)] ∈ RNp·Nq

and
bp,q = β(xa − p)β(yb − q). For all image points, this can be written as f = Bw,
where the nth row of B ∈ RN×(Np·Nq) is Bn, corresponding to image point xn.
The coefficient vector w∗ is then calculated by [6]

w∗ = (BTB + λR)−1BT f . (1)

A widely used strategy, adopted in this work, is to compute the B-spline
expansion on multiple resolution levels l = 0, . . . , L [4]. On the coarsest level
l = 0, the function Sl is approximating the image intensities f . On all subsequent
levels l > 0, Sl(xn) is fitted against the residual rn = fn − (

∑L
l=1 Sl(xn)). The

coefficients for each level are summed up for the final B-spline reconstruction.

2.2 Data Point Weighting Scheme

The contribution of each image point n can be weighted by a scalar cn ∈ R+,∑
n cn = N . By arranging these weights in the diagonal of a weight matrix

C ∈ RNp·Nq × RNp·Nq , the weights can be incorporated into Eq. (1) as

w∗ = (BTCB + λR)−1BTCf . (2)

Our proposed weighting scheme is motivated by the widely used maximum
compounding technique, where for the fusion of two images always the pixel value
with maximum intensity is selected. Therefore, the weights in Eq. (2) are chosen
such that data points with a strong signal have higher weights: cn = N∑N

i fi
fn.
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Additionally, we propose to take into account the position of a data point in the
image. At acquisition time, image settings are optimized to get the best quality
in the center, where the object of interest will be. We formulate the weight of
data point xn as a function of the depth with respect to the probe position
b ∈ R2 and the beam angle αn ∈ R:

gn = g(xn, αn,b) =
1
2π

exp
(

−
(‖ xn − b ‖2

2σ2
1

+
αn

2σ2
2

))

cn =
N

∑N
i gifi

gnfn

(3)

with standard deviations σ1, σ2 ∈ R. Using the Gaussian kernel g(xn, αn,b), a
higher weight is given to data points closer to the transducer and with small
beam angles. σ1 and σ2 were chosen to get high weights at the center of the
image.

2.3 Multi-view Image Reconstruction

The matrix formulation of the B-spline approximation problem is convenient for
the incorporation of multiple grids of different geometry.

Particularly, we propose to use multiple polar B-spline grids, which are
adapted to the US acquisition geometry. Single polar grids have been used before
for example for cardiac US registration [7]. Polar coordinates (r,θ) can be param-
eterized as x ∈ R2,x = (x, y)T : x = r sin(θ) and y = r cos(θ).

US images from different views do not share the same polar coordinate sys-
tem. To account for this, we propose to use a separate grid for each view (as
illustrated in Fig. 2(b)/(c) for two views) and optimize the coefficients of all grids
simultaneously at each resolution level.

C1(a) (b) C2 (c) P2

Fig. 2. Geometry of control point grids. (a) C1, single uniform (Cartesian) grid; (b)
C2, two uniform (Cartesian) grids; (c) P2, two polar grids.

We consider T US views of the same object, acquired from different direc-
tions. The spatial transformations φt : R2 → R2, t = 1, . . . , T , align the T
views. Those transformations can be obtained for example using image registra-
tion, tracker information or are known a priori due to special system settings.
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At resolution level l, we construct T B-spline matrices Bt, t = 1, . . . , T , with
Bt = [b0,0(φt(xn)) b0,1(φt(xn)) . . . bNp

t ,N
q
t
(φt(xn))] ∈ RNt . Here, Nt = Np

t · Nq
t

is the number of control points for view t with grid size Np
t × Nq

t . For each
view, a separate coefficient vector wt ∈ RNt has to be calculated. This is
done by concatenating the Bt’s to a single matrix B ∈ RN×(N1+N2+···+NT )

as B = [B1 B2 · · · BT ].
With the regularization matrix R ∈ R(N1+N2+···+NT )×(N1+N2+···+NT )

R =

⎛

⎜⎜⎜⎝

R1 0 . . . 0
0 R2

. . . 0
0 0 RT

⎞

⎟⎟⎟⎠ ,

Equation (1) is solved and the coefficient vectors wt are optimized simultane-
ously.

3 Materials and Experiments

3.1 Data Acquisition

We use a custom-made US signal multiplexer which allows to connect multiple
US transducers to a standard US system, and switches rapidly between them so
that images from each transducer are acquired alternatively. If the frame rate
is high (as is generally in 2D mode, typically > 20 Hz), the images from both
transducers are acquired nearly at the same time. We use a physical device that
keeps the transducers’ imaging planes co-planar and that ensures a large overlap
in the center of the images to capture the region of interest from two different
view angles (see Figs. 1 and 2). The relative position of the images is constant and
known by calibration. If fetal motion occurred during the alternating transducer
switch, images were discarded. 25 image pairs from five patients (gestational age
20–30w) were acquired using a Philips EPIQ 7g and two x6-1 transducers in 2D
mode.

US images are acquired in polar coordinates. As a post-processing step, the
recorded US signals are scan converted to a Cartesian coordinate system and
spatially interpolated to form a 2D image. We use the scan converted but not
interpolated data as input to our method to reduce interpolation artifacts.

3.2 Experiments

B-Spline Fitting Using Data Geometry. We evaluated the effect of using
control point grids of different geometry for B-spline fitting of single views
(Cartesian vs. polar). For a fair comparison, we ensured that the spacing of
the grid points is similar in the center of the image. The grid spacing of the last
and finest resolution level was 0.89 × 1.23mm for the Cartesian grid and for the
polar grid 0.89 × 0.22mm (close to the probe), 0.89 × 1.01mm (center of image)
and 0.89 × 1.77mm (furthest to the transducer).
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Multi-view Image Compounding. We compared different multi-view B-
spline reconstructions. The methods differ in the number of control point grids,
T (see Sect. 2.3), the geometry of the grids and the data point weighting. We
compared the following grid (compare Fig. 2) and weighting configurations:

– C1: A single uniform (Cartesian) grid of control points (Fig. 2(a)).
– C2: Two uniform (Cartesian) grids of control points transformed rigidly

according to the alignment of the two views (Fig. 2(b)).
– P2: Two polar grids of control points transformed rigidly according to the

alignment of the two views (Fig. 2(c)).
– W0: No data point weighting.
– W1: Data point weighting according to Eq. (3).

Accordingly, the method C1W0 denotes a B-spline fitting with a single Cartesian
grid and without data point weighting. In total, six methods are compared.

3.3 Evaluation

Quantitative Evaluation. We selected four complementary quality measures
to compare reconstructions I to a reference image J (available only for the
first experiment): the Mean Square Error (MSE, compares the intensities of two
images), the Peak Signal to Noise Ratio (PSNR, accesses the noise level of an
image w.r.t. a reference image), the Structural Similarity Index (SSIM, compares
structural information, such as luminance and contrast [8]), and the Variance
of the Laplacian (VarL, estimates the amount of blur in an image [9]). Given
two images I, J ∈ RM1×M2 , the measures MSE, PSNR, SSIM and VarL are
defined as:

MSE(I, J) =
1

M1M2

M1∑

i=1

M2∑

j=1

(I(i, j) − J(i, j))2,

PSNR(I, J) = 10 log10

(
max(I)

MSE(I, J)

)
,

SSIM(I, J) =
(2μIμJ + c1)(2σIJ + c2)

(μ2
I + μ2

J + c1)(σ2
I + σ2

J + c2)
,

VarL(I) =
M1∑

i=1

M2∑

j=1

(|L(i, j)| − L̄)2,

where μI , μJ , σI , σJ , σIJ ∈ R are the means, standard deviation and cross-
covariance for images I, J , c1, c2 ∈ R small constants close to zero, L ∈ RM1×M2

the Laplacian image of I and L̄ = 1
M1M2

∑M1
i=1

∑M2
j=1 |L(i, j)|.

Qualitative Evaluation. No ground truth is available for the compounding of
multiple views and only VarL scores can be computed. Therefore, we addition-
ally designed a qualitative evaluation strategy. We asked seven experts (three
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clinical and four US engineering experts) to evaluate as follows: at a time, two
compounded images obtained by different methods from the same image pair
are presented to the rater and he/she has to select which one is best, or if they
have equal quality. Each rater selects from a different randomization of the six
methods. The result is a quality score Q for each method, that indicates how
often (in %) a method was selected as best, when it was presented to the rater
as part of an image pair. No instructions were given to the experts on which fea-
tures of the image to concentrate on for the quality rating. Inter-rater variability
between those two groups was measured using Pearson’s r.

4 Results

4.1 B-Spline Fitting Using Data Geometry

Table 1 shows the results when reconstructing US images using the classical
B-spline fitting scheme in Eq. (1) with Cartesian and polar grids. MSE, PSNR
and SSIM values are computed using the original scan converted and interpo-
lated images as reference. Using geometry-adapted (polar) grids, lower MSE and
higher PSNR, SSIM and ValL values are obtained suggesting higher quality in
the reconstructions compared with Cartesian grids.

Table 1. Mean square error (MSE), Peak Signal to Nose Ratio (PSNR), Structural
Similarity Index (SSIM) and Variance of Laplacian (VarL) of B-spline reconstructions
with single Cartesian and polar grids.

MSE PSNR SSIM VarL

Cartesian 395.62 ± 143.30 22.44 ± 1.44 0.76 ± 0.03 113.35 ± 48.05

Polar 238.99± 162.24 25.01± 2.13 0.78± 0.05 139.24± 51.10

4.2 Multi-view Image Compounding

Table 2 reports the VarL values and Q-scores on the six different methods
described in Sect. 3. It can be seen, that P2W1 (two view-dependent polar grids

Table 2. Evaluation of multi-view B-spline reconstructions using the Variance of Lapla-
cian (VarL) and a qualitative Q-score obtained by the rating procedure explained in
Sect. 3.2. C1: cartesian with one grid; C2: cartesian with two grids; P2: polar with two
grids; W0: no weighting; W1: weighting as detailed in Eq. (3).

C1W0 C1W1 C2W0 C2W1 P2W0 P2W1

VarL 48.6 ± 12.4 93.7 ± 17.4 53.9 ± 14.5 94.9 ± 20.4 92.0 ± 28.1 139.7± 33.6

Q 4.0 26.9 24.6 54.9 71.4 96.0
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with data point weighting) received the highest score of Q = 96, i.e. the image
obtained by P2W1 was chosen best in 96% of the cases. The “second best”
method was P2W0 with Q = 70.7, further demonstrating the importance of the
geometry-adapted grids to the final result. This is also reflected in the VarL val-
ues. High values, indicating sharper images, are obtained for P2W0 and P2W1.
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Fig. 3. (a)–(d) Original images of the two views; (e)/(g) compounded image with two
polar grids, without data point weighting; (f)/(h) compounded image with two polar
grids and data point weighting according to Eq. (3). (Color figure online)
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For all grid configurations, the weighting improved both the ValL and Q-
scores. While the best ValL values are achieved with all three grid configurations
with data point weighting (C1W1: 93.7±17.4, C2W1: 94.0±20.4, P2W1: 139.7±
33.6), the highest Q scores are obtained with the polar grid configuration.

Overall, the inter-rater variability between all raters was low. The correlation
measured with Pearson’s r is r = 0.93 for all experts, when comparing how
often each expert selected a specific method as best. The variability when only
considering the US engineers was higher (r = 0.89) than considering only the
clinical experts (r = 0.95).

Two examples for the multi-view image compounding are shown in Fig. 3.
By combining two views, shadow artifacts are reduced and the field-of-view is
extended. By incorporating the data point weighting, artifacts due to varying
intensities in both views are reduced (red arrows in Fig. 3 (e)–(h))). Those arti-
facts were, next to contrast and sharpness of image features, the main aspects
the majority of the experts concentrated on for the quality assessment.

5 Discussion and Conclusions

We proposed a method for multi-view US image compounding, that uses multiple
geometry-adapted B-spline grids that are simultaneously optimized at multiple
levels. Furthermore, we introduced a data point weighting for reducing artifacts
arising from different signal intensities in multiple views. Our results on co-planar
US image pairs (acquired with two transducers simultaneously and held in the
same plane) show that using adapted grids and our proposed weighting system
yields better results qualitatively and quantitatively.

Due to the lack of a ground truth for compounded 2D US images, we designed
a rating procedure evaluating the quality of the images by experts. There is some
disagreement between the VarL scores and the quality rating Q score regarding
the different grid and weighting configurations. This raises the question what
makes out a good compounding of two US views. The sharpness or blurring, as
measured by VarL, is not sufficient to rate the quality of compounding.

Motion was disregarded in our study because by using a rigid physical device,
we can ensure that the images are co-planar and the transformation for aligning
them is known a priori. However, fetal motion can occur in the small time gap
between image acquisition from two transducers. For future work, we plan to
incorporate a registration step in our framework to correct for fetal motion.

It is straightforward to generalize our framework to 3D. However, in the
real-time 3D mode the frame rate decreases significantly and the assumption of
no motion between the two transducer acquisitions does not hold anymore. A
registration step becomes inevitable.

The proposed method is not restricted to B-splines for interpolation, and
other gridded functions such as Gaussian functions are also possible. The ability
to perform multi-view image reconstruction opens several possibilities, for exam-
ple further reduction of acoustic shadows or other artifacts, or the inclusion of
the orientation as additional dimension for image representation [2].
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Abstract. Ultrasound (US) is the most widely used fetal imaging tech-
nique. However, US images have limited capture range, and suffer from
view dependent artefacts such as acoustic shadows. Compounding of
overlapping 3D US acquisitions into a high-resolution volume can extend
the field of view and remove image artefacts, which is useful for ret-
rospective analysis including population based studies. However, such
volume reconstructions require information about relative transforma-
tions between probe positions from which the individual volumes were
acquired. In prenatal US scans, the fetus can move independently from
the mother, making external trackers such as electromagnetic or opti-
cal tracking unable to track the motion between probe position and the
moving fetus. We provide a novel methodology for image-based track-
ing and volume reconstruction by combining recent advances in deep
learning and simultaneous localisation and mapping (SLAM). Tracking
semantics are established through the use of a Residual 3D U-Net and
the output is fed to the SLAM algorithm. As a proof of concept, exper-
iments are conducted on US volumes taken from a whole body fetal
phantom, and from the heads of real fetuses. For the fetal head segmen-
tation, we also introduce a novel weak annotation approach to minimise
the required manual effort for ground truth annotation. We evaluate our
method qualitatively, and quantitatively with respect to tissue discrimi-
nation accuracy and tracking robustness.

1 Introduction

Ultrasound (US) is a very widely used medical imaging modality, well known
for its portability, low cost, and high temporal resolution. Although the most
popular US imaging is 2D B-mode, 3D mode has become an attractive addition
providing a larger field of view at an increased frame rate. There is also growing
interest in developing low cost 3D US probes [1]. While 2D mode images are
c© Springer Nature Switzerland AG 2018
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usually of higher resolution, 3D mode has the ability to provide better context of
the anatomy with smaller number of images. Thus, 3D images could allow easier
compounding and field of view extension to capture all the desired anatomy in
a single compounded volume.

Volumetric compounding requires the relative transformation between indi-
vidual volumes. This can be achieved using image registration if the offset is small
and assumptions about the spatial arrangement of the volumes hold, e.g., when
performing an imaging sweep at constant speed. For large offsets, or random
views of a target volume, image registration alone is insufficient and external
tracking such as electromagnetic or optical tracking has to be used to estab-
lish localisation coherence. External tracking measures absolute transformations
between a fiducial marker on the ultrasound probe and a calibrated world coor-
dinate system. Moving targets within a patient cannot be tracked with fiducial
markers, computer vision methods that rely on a direct line of sight, or by track-
ing the probe via external trackers.

An ability to generate high quality compounded volumes of individual fetuses
can be useful for retrospective analysis by experts who might not be available,
e.g. in rural areas where the live scanning may be performed by non-experts.
High quality compounded volumes can also be important in creating US atlases
of different fetal organs. For example, it would be desirable to combine all pos-
sible views of the brain of single fetus to maximise the information obtained
from individual fetal brains. In fetuses of late Gestational ages (GAs), acquir-
ing images from all possible directions requires probe manipulation, incurring
large rotation and translational motion. Registration and tracking of images
resulting from such constraint-free probe motions is typically highly challenging.
A motion-robust and hardware-lean image-based method to compound a large
anatomical RoI in real-time is thus highly desired.

Contribution: We propose a novel approach to tackle the tracking problem
during 3D fetal US examinations where an application-focused tissue discrimi-
nator, based on convolutional neural networks, is integrated into a simultane-
ous localisation and mapping (SLAM) formulation named EchoFusion. The pro-
posed method yields relative transformations between subsequent volumes, sur-
face reconstruction of the target anatomy, and reconstruction of a compounded
volume at the same time. We demonstrate the potential of the proposed app-
roach with experiments for rigid whole body fetal phantom, and for free-hand 4D
US covering the head region in real fetuses, without external tracking or a highly
restrictive scanning protocol. EchoFusion requires the fetal tissue discriminator
to be accurate only in the fetal surface closest to the US probe, allowing the use
of: (i) challenging 4D fetal screening US images coming from a very wide range
of views, and (ii) weak annotations, enabling large training data at low cost.

Related Work: Extending the FOV by compounding multiple 3D images has
been in focus since a wide range of freehand ultrasound probes support 3D images
with either matrix array transducers [19] or mechanically steered linear arrays
in plane fan mode [5]. Tracking-based methods [3,15] provide good initialisa-
tion for a variety of subsequent and task-specific registration methods but often
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need additional calibration to establish the transformation between object and
tracking coordinate system [2]. For rigid non-moving targets, advanced registra-
tion strategies can yield good compounding results, given that the acquisition
protocol is well defined. For example, [16] uses defined sweeps and multivariate
similarity measures in a maximum likelihood framework to mitigate the problem
of registration drift observed in earlier, pair-wise registration methods [6]. How-
ever, algorithms requiring all the available images simultaneously to estimate
transformations cannot be used in real-time applications such as a visual guid-
ance system for non-expert sonographers to receive feedback, during scanning,
of the regions already captured.

Recent advances in the robustness of semantic discrimination of tissues in
medical images largely enabled by the advent of deep learning, and in SLAM
algorithms, provide potential to combine these processes in a reliable fashion.
SLAM is known from natural image processing as a powerful tool for indoor
[17] and outdoor [8] mapping, location awareness of robots [4] and real-time
3D mesh reconstruction from a stream of RGB images that additionally provide
depth information [12]. These techniques have been applied in the medical image
analysis community to laparoscopy [19] and movement-based diagnosis [10], but
never went beyond RGB (+depth) imaging.

Traditional SLAM methods assume a clear line of sight to map the depth of a
scene. However, US images require preprocessing such as segmentation to extract
depth of the desired target objects. Convolutional neural networks constitute the
state of the art for solving (medical) image segmentation tasks e.g. [9] and have
recently shown to be robust for the use in, e.g., fetal screening examinations
[20], however only at very young GA when the fetus is fully visible in 3D US
volumes. Our work combines fast automatic tissue segmentation that works also
on partially visible tissue in later gestation with modern SLAM algorithms. To
the best of our knowledge, this is the first time such an approach is proposed.

2 Method

Our approach consists of three main components: (1) semantic tissue segmen-
tation, (2) transducer to object depth map generation, and (3) simultaneous
localisation and mapping algorithm. An overview of our approach is shown in
Fig. 1.

(1) Semantic tissue discrimination: The objective is to produce a binary
segmentation of the target object. For example, for fetal head tracking and
reconstruction, the foreground is the fetal head and the remaining structures
such as fetal limbs and maternal tissues are background. Fetal segmentation
from freehand 4D US can be quite challenging because of the diversity in the
image appearance of the same anatomy, cropping due to limited field of view,
and the relatively low quality of 4D images compared to 2D images or static 3D
volumes. As the images are often corrupted by shadows, fetal body surface at
distances far from the transducer cannot be delineated as accurately as surfaces
physically nearer to the probe. Thus, in the present work, expert sonographers
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Fig. 1. Overview: Residual 3D U-Net segments each incoming 3D US from which target
fetal organ’s surface depth is extracted by a virtual camera located at the ultrasound
probe. EchoFusion estimates the camera transformation w.r.t previous frame using the
incoming depth image and updates the dense surface model.

Fig. 2. Four US volumes with input, GT, and predicted volumes (left to right) of
two central orthogonal slices. This shows the typical diversity of the input sizes, view
direction, partial head views, shadows and US artifacts in the dataset used in our
experiments.

delineated the closest surface accurately but approximated the shape of the RoI
in the surface further from the probe as shown in Fig. 2.

For semantic segmentation, we use a Residual 3D U-Net architecture which
has U-Net structure [13] and is similar to V-net [11] with all convolution layers
being replaced by residual-units [7] known to make training more stable. We
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follow the common strategy whereby skip connections are implemented via con-
catenation in the up-sampling component of the network and down-sampling is
performed with strided convolution (cf. max pooling). Each convolutional layer
of the original architecture is additionally augmented by a residual block con-
taining two convolutions in a similar fashion to [9]. We employ [16, 32, 64, 128]
feature maps per layer and all kernels and feature maps are 3D. Each layer
additionally utilizes batch normalization, ReLUs and zero-padding.

For training we draw input training patches of size 64×64×64 voxels with an
equal probability of patches being centered around a voxel from the foreground
or background label class. We train to minimize a standard cross-entropy loss
using Adam optimization with learning rate of 0.001 and l2 regularization. Our
training imagery is augmented via Gaussian additive noise (σ = 0.02) with image
flipping in each axis.

(2) Transducer distance field generation: Depth images can be generated
using a virtual pinhole camera that looks into the 3D segmented model from
the same direction as the US probe. All voxels in the output segmentation have
known physical co-ordinates with respect to an arbitrary reference point, set
as the origin of the world co-ordinate. In the input image volumes, the origin
was set to a central point in xz-plane at y = 0 making the US probe directed
towards positive y-direction and placed y < 0. We set a virtual camera that looks
towards positive y-axis and along the line x = z = 0. The exact position and the
view angle of the camera depends on the sector width and sector height of the
input 3D US volume. If the camera is too far away, it sees the flat surface at the
edge of the US sector. Similarly, if the camera is too close, the FoV is not wide
enough and some parts of the tissue region may be missed. In order to estimate
an optimal camera position, first we separately compute the intersection and
angle between sector lines for the central slices in yz-plane and the central slices
in xy-plane as follows:

1. Extract sector mask using thresholding, morphological closing to remove
holes.
2. Extract edges using Canny edge detection on the sector mask.
3. Use Hough transform to detect the two sector lines.
4. Compute intersection and angle between the lines found in 3.

Then, the camera distance is set to be the minimum of the two intersection
points, and the view angle is chosen to be the wider of the two angles.

(3) Tracking and Reconstruction with EchoFusion: In SLAM [12], a
sequence of partial views of a 3D scene captured as 2D RGB images and/or
depth images is used to estimate all the relative poses of the camera and recon-
struct the 3D scene. Like all SLAM algorithms, we also use only the frontal
surface of the 3D scene that are not occluded from the camera view to track and
build the 3D scene incrementally. Thus, we use a volumetric surface represen-
tation to store global 3D scene as a truncated signed distance function (TSDF)
[12] in a predetermined 3D voxel grid. This 3D model is updated with each new
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incoming depth image by estimating the camera transformation with respect to
the previous frame. The algorithm can be outlined as follows:

1. From the generated depth image compute the 3D vertex and normals in
camera co-ordinate space.
2. The 3D vertex and normals from the previous frame are estimated by ray
casting the 3D model built so far from the global camera position estimated
from the previous frame.
3. The relative camera transformation is then estimated using Iterative Closest
Point (ICP) of the two point sets from the current and the previous frames.

The 3D model gets better and smoother as more consistent data becomes
available.

Implementation Details: We adapted an open source implementation1 of
Kinect Fusion [12]. The focal length of the virtual camera can be computed
as f = w/2

tan(α/2) , where α is the view angle and w is the image width in pixel
co-ordinates. We set depth and RGB image sizes to 480 × 480. The discrimina-
tor model is trained on a Nvidia Titan X GPU with 12 GB of memory. During
runtime, the same GPU can be used for inference and EchoFusion, as the infer-
ence from the network does not require large resources like in training time. The
network was implemented in tensorflow.

3 Experiments and Results

Phantom Data: We use data from a fetal phantom Kyotokagaku UTU-1 at
a gestational age of about 20 weeks. The GT segmentation consists of fetal vs.
maternal tissue delineation in 28 3D volumes which is randomly split into 24
training samples and 4 validation samples. The GT segmentations include both
the fetal head and body as foreground.

Fetal Screening Data: Two expert sonographers delineated 192 US fetal head
volumes for training and validation of fetal head segmentation. These 3D images
were selected from 4D freehand scanning of 19 different fetuses having GAs in
the range of 23–34 weeks with mean (std) age of 30 (2.842) weeks.

The sonographers used MITK [18] to segment six to seven representative
slices manually, then performed 3D interpolation from these slices to create a
3D shape. Many of these images contained shadows on the far-field surface, so the
manual delineation was done empirically based on the sonographers’ anatomical
knowledge of the head shape. We split 192 GT data into 184 training and 8
validation images. We then test the trained network only once on a set containing
GT segmentations from five fetuses not used in training-validation set.

Evaluation: We use Dice score to evaluate the performance of segmentation
quantitatively. Evaluating tracking accuracy is challenging without a ground
truth. Surface reconstruction which can be qualitatively observed depends on
1 https://github.com/Nerei/kinfu remake.

https://github.com/Nerei/kinfu_remake
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the tracking obtained from the SLAM. To assess the tracking robustness on
freehand 4D US stream of the real fetal heads, we test our framework on 37
fetuses and compute the number of tracking losses (i.e. reset of the tracked
pose) and the longest sequence without any resets.

(a) (b) (c)

Fig. 3. Orthogonal slices through examples of compounded volumes (a), EchoFusion
tracking trajectory (b) and TSDF iso-surface reconstruction (c) for sequences from
whole body fetus phantom. The sequence of images of the static phantom were taken
with a very wide range of probe directions as seen in the top right slice in (a), and from
the trajectory in (b). Limbs are not reconstructed faithfully due to limb information
being purposefully discarded at segmentation time.

Results: Table 1 shows quantitative results for segmentation performance on
both the phantom and the real fetuses. Since there was only one phantom avail-
able which was used to create training and validation set, there is no test set
for the phantom. For the real fetuses, test set was created using the same pro-
tocol as the training sets but from the fetuses that were not used for training or
validation. Although the number of images used for training on the phantom is
much smaller than for the real fetuses, the validation set accuracy is higher for
the phantom. This is not surprising because the images from the phantom are
much less challenging than the real fetuses.

Table 1. Dice scores for real-time semantic tissue discrimination.

Set images(real) mean(std) images(Phantom) mean(std)

Train 178 0.9408(0.0389) 24 0.9735(0.0125)

Validation 8 0.9217(0.0212) 4 0.9267(0.0074)

Test 26 0.8942(0.0671) - -

Figures 3 and 4 show qualitative results after compounding a series of 10–20
EchoFusion-tracked consecutive 3D volume acquisitions from different locations.
3D surface reconstruction in Fig. 3 shows that both the phantom face and body
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(a) (b) (c)

Fig. 4. Orthogonal slices through examples of compounded volumes (a), EchoFusion
tracking trajectory (b) and TSDF iso-surface reconstruction (c) for sequences of a real
fetal head. Note that the tracking is relative only to the fetal head, and not the other
moving maternal and fetal tissues.

which were selected as foreground objects for the segmentation are nicely recon-
structed. Similarly, the fetal head in compounded volume in Fig. 4 shows that the
sequence of images registered reasonably well although they were taken from a
wide range of angles. Table 2 shows EchoFusion tracking performance on 37 fetal
sequences of volumes. On average, there were approximately 98 total frames for
which the SLAM algorithm lost tracking approximately 5 times. These sequences
were obtained by moving the probe in different directions trying to cover the head
(skull and face) from all possible directions. The sequences were used as they
were acquired without data cleaning, thus containing views which do not show
the fetal head and many frames with only partial views of the head region.

Table 2. Robustness with respect to continuously tracked frames for 37 fetuses.

mean(std) median range

Total frames 98.11(54.65) 91 [21, 277]

No. of tracking losses 5.16(3.67) 5 [0, 15]

Longest sequence without tracking loss 40.86(30.85) 31 [4, 152]

4 Discussion

The key contribution of this work is the novel approach to the tracking and
compounding problem in freehand 4D US, which constitutes combining the pow-
erful semantic segmentation neural networks with modern SLAM algorithms.
Since both of them are very active fields of research, there is a lot of potential
to improve EchoFusion for a multitude of applications including compounding,
image reconstruction, artefact reduction, super resolution and fetal face biomet-
rics using the resulting dense surface model. Moreover, this method could also
allow non-expert to acquire dense data for retrospective evaluation.
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The goal of this work was to provide a proof of concept, but clinical transla-
tion of this method would require a more extensive quantitative validation of the
tracking accuracy, drift over the long sequence, and compare how segmentation
accuracy impacts the overall tracking accuracy.

The use of whole body phantom vs fetal head also demonstrates that the
top level approach generalises across organs and anatomy as we can train the
segmentation network for a desired RoI. However, the current implementation
of the SLAM algorithm works only for largely rigid body motion; the static
phantom and the fetal head can be reasonably assumed to have mostly rigid
body movement with respect to the probe at the semantic level. For non-rigid
movements of the fetus such as the whole body or abdomen, the current SLAM
component must be replaced with the methods that take dynamic scene changes
into account [14]. However, such approaches would still not be robust to sud-
den movements (e.g. kicks) and introduce a significant computational overhead,
potentially jeopardizing hard real-time constraints. One approach to tackle this
problem is to consider such suddenly moving limbs as background in segmen-
tation so that they are ignored during the tracking and reconstruction. There
can still be challenges, (e.g. turning the head in the opposite direction and stay-
ing there, when reconstructing head/shoulders/torso at once), and is more of
an open problem at present. However, being able to focus and compound on
quasi-rigid areas like only the head or only abdomen and changing the model
depending on target application would already be very valuable e.g., for the
creation of fetal brain or abdomen atlases.

5 Conclusion

We have developed a novel approach demonstrating a promising potential for
robust segmentation and tracking of fetuses in utero. EchoFusion is versatile
and could be applied in any situation where an independently moving target
object is occluded by other tissue or material. We have also introduced a way to
learn a tissue discriminator from weak annotations in fetal 3D US images and
discussed the performance of a Residual 3D U-Net tissue discriminator learning
from this data. This discriminator is key to establishing semantics for SLAM-
based tracking, which we evaluated on 4D freehand US of a fetal phantom and
on real fetuses from screening examinations. In the future, we will perform a
more extensive validation of the tracking accuracy, and also find a way to derive
robust SDFs from tissue probabilities to exploit the possibilities of dynamic
fusion approaches.
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Abstract. Twin-to-twin transfusion syndrome is a potentially fatal pla-
cental vascular disease of twin pregnancies. The only definitive treatment
is surgical cauterization of problematic vascular formations with a fetal
endoscope. This surgery is made difficult by the poor visibility conditions
of the intrauterine environment and the limited field of view of the endo-
scope. There have been efforts to address the limited field of view of fetal
endoscopes with algorithms that use visual correspondences between suc-
cessive fetoscopic video frames to stitch those frames together into a
composite map of the placental surface. The existing work, however, has
been evaluated primarily on ex vivo images of placentas, which tend to
have more visual features and fewer visual distractors than the in vivo
images that would be encountered in actual surgical procedures. This
work shows that guiding feature matching with deep learned segmen-
tations of placental vessels and grid-based motion statistics can make
feature-based registration tractable even in in vivo images that have few
distinctive visual features.

Keywords: Feature matching · Fetoscopy
Grid-based motion statistics · Mosaic construction
Twin-to-twin transfusion syndrome

1 Introduction

1.1 Twin-to-Twin Transfusion Syndrome

Twin-to-twin transfusion syndrome (TTTS) is a disease of placental vasculature
that can affect twin pregnancies. In some twin pregnancies, the two fetuses share
a single placenta. It is possible for vascular connections to develop between the
c© Springer Nature Switzerland AG 2018
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portions of the placenta that serve each of the fetuses. When an unequal distri-
bution of blood across these connections leads to a net flow of blood from one
twin to the other, the result is TTTS [5]. TTTS can have serious consequences
for both twins, including cardiac dysfunction in the twin that serves as a net
blood recipient, injury to the central nervous system in the twin that serves as
a net donor, and death in either twin [1,5].

While there are several options for managing TTTS, there is only one defini-
tive treatment: fetoscopic laser photocoagulation surgery [4]. In this procedure,
a specialized endoscope known as a fetoscope is inserted through an incision in
the maternal abdominal wall and then into the uterus. Once in the uterus, the
fetoscope is used to inspect blood vessels on the surface of the placenta. Any
problematic vascular connections that are found are cauterized with a laser. This
procedure is illustrated in Fig. 1.

Fig. 1. A diagram of fetoscopic laser photocoagulation surgery for twin-to-twin trans-
fusion syndrome by Luks [8]. Pictured are twin fetuses, each within their own amniotic
sac. There is a single, shared placenta with problematic vascular connections that
allow a net flow of blood from the donor fetus (left) to the recipient fetus (right). An
endoscope (top) is used to inspect the placental vasculature and find problematic con-
nections. When such connections are found, they are cauterized with a laser (center).

The challenges of fetoscopic laser photocoagulation are well described in the
literature [12–14]. The problematic placental vascular formations cannot be visu-
alized preoperatively with ultrasound or magnetic resonance imaging. They must
therefore be identified intraoperatively using a fetoscope. This is made difficult,
however, by the turbidity of amniotic fluid. The turbid nature of amniotic fluid
not only reduces the clarity of the fetoscopic image, but also makes it impossible
for the fetoscope’s attached light source to reliably illuminate structures that are
more than a few centimeters away. The fetoscope must therefore be kept close
to the placental surface, but this has the effect of reducing the field of view.
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The distance across the placental vascular network (i.e. the distance from
one twin’s umbilical cord to the other) can be several dozen times the diameter
of the fetoscope’s field of view. As the surgeon can only see a small fraction of
the placental surface at any given time, he or she must create a mental map
of the relevant placental anatomy in real time and must rely on landmarks
from this mental map in order to remain oriented as the surgery progresses.
The high cognitive burden that fetoscopic laser photocoagulation surgery places
on the surgeon increases the risk of error, which in the worst case can lead
to the failure to identify and cauterize one or more vascular malformations,
thereby necessitating a follow-up surgery. There has been interest in reducing
the cognitive burden on the surgeon by replacing the surgeon’s mental map-
making process with computer software that performs a similar task.

Fig. 2. An example of a panoramic view of the vasculature of a placenta that was cre-
ated by concatenating fetoscopic video frames. This example was manually constructed
from 30min of fetoscopic footage from a fetoscopic laser photocoagulation surgery.

1.2 Prior Work

In the existing literature on placental panorama construction, by far the most
common approach is to extract visual frame-to-frame correspondences and
use those correspondences to calculate a homography from one frame to the
other [3,7,10,14]. Such approaches consist of a four step process: (i) using a
feature detector to select key points from within an image; (ii) converting the
high-dimensional raw pixel data of the image regions surrounding each key point
into lower-dimensional vectors with the use of a feature description algorithm;
(iii) matching the key points from one image with key points from the other,
usually via a nearest-neighbor criterion on the key points’ associated feature
descriptors; and (iv) calculating a homography from the coordinates of the
matched key points. The two most popular feature matching and description
algorithms in the existing literature on placental panorama construction are
the Scale-Invariant Feature Transform (SIFT) and its derivation, Speeded Up
Robust Features (SURF).



Better Feature Matching for Placental Panorama Construction 131

To the best of the authors’ knowledge, all placental panorama construction
studies to date have been evaluated primarily on ex vivo images [3,10,12–14] or
images of placental phantoms [7]. Ex vivo images of placentas, however, tend to
have more visual features and fewer visual distractors than in vivo images [6,7].
Blood vessels are identifiable in both ex vivo and in vivo images, but ex vivo
feature-rich backgrounds whereas in vivo images tend to have backgrounds that
are almost entirely featureless (Fig. 3).

Fig. 3. Blood vessels are visible in both ex vivo and in vivo images of placentas. Ex
vivo images, however, are rich in background features while in vivo images often have
backgrounds that are entirely devoid of features. In the in vivo image, the guide light
for the cautery laser is visible in the upper center area. The guide light moves along
with the fetoscope, so it is not suitable as a landmark for registration.

Gaisser et al. [7] simulated ex vivo and in vivo settings using a placental
phantom and found that the performance of SIFT and SURF feature detectors
could fall dramatically in the translation to in vivo. When applied to images
from an in vivo setting with amniotic fluid of a yellow coloration, SIFT detected
73% fewer features than it did in an ex vivo setting. SURF detected 45% fewer
features. The results reported by Gaisser et al. suggest that the underlying issue
in registering in vivo placental images is a dearth of high-quality key points. If
few key points are repeatable between different in vivo views of the same portion
of a placenta, then there will be few matches. A homography calculated from
a small number of matches will be highly sensitive to false or outlier matches.
Furthermore, if the number of matches is low enough it will not be possible
to compute a homography at all. Bian et al. [2] argue, however, that in many
feature matching tasks, the underlying issue is not that there is a lack of good
key points or good matches, but that standard matching techniques have dif-
ficulty distinguishing good matches from bad matches. It follows that better
algorithms for determining matches between feature descriptors may be able to
produce more accurate homographies for registering in vivo placental images
into a panoramic map. In this work, we show that by extending the matching
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algorithm beyond the typical nearest-neighbor approach, it is possible to extract
meaningful matches between in vivo placental images even with low-quality key
points and to exceed the accuracy of registrations produced with SURF and
SIFT feature matching.

2 Methods

2.1 Feature Matching

Bian et al. [2] argue that when feature matching fails to produce sufficient
matches, the underlying issue is often not a lack of good matches, but diffi-
culty in distinguishing good matches from bad matches. In other words, when
scoring matches (which is typically done by calculating the distance between
the feature descriptors of the two matched key points), there tends to be a sig-
nificant overlap between the score distribution of true matches and the score
distribution of false matches. Setting a high minimum threshold for the match
score minimizes the number of false positive matches but also eliminates many
true matches.

Feature descriptor distance is not the only method for scoring matches.
Bian et al. [2] propose scoring feature matches using the observation that true
matches are likely to be neighbored by other true matches whereas false matches
are more frequently found in isolation. Preliminary feature matches are first gen-
erated using the traditional nearest-neighbor approach. One image in the pair
is then divided into a regularly spaced grid. A secondary score for a match that
falls within the i-th cell of the first image and the j-th cell of the second is
calculated as follows:

Si,j = |Xi,j | − 1

where Xi,j = {x1, x2, x3, ..., xn} is the union of matches found in the i-th cell of
the first image and the j-th cell of the second. This secondary score is used to
determine which cells in the first image are paired with which cells in the second.
A constraint is then enforced in which key points within a given cell in the first
image must match to its paired cell in the second image. Bian et al. refer to
this approach as grid-based motion statistics (GMS). We apply a GMS match
refinement step after the initial nearest-neighbor matching.

2.2 Feature Detection and Description

When matching key points with GMS, the quantity of key points is more impor-
tant than their quality. We therefore use a feature detector that can generate a
large number of key points: the AGAST corner detector [9]. We further increase
the number of key points by lowering the AGAST detection threshold to zero and
disabling the suppression of non-max corners. Although GMS is predicated on
the notion that low quality key points can produce useful matches, it remains a
fact that not all key points are of equal value. In vivo fetoscopic images are filled
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with visual distractors such as the glare effects and floating debris in the amni-
otic fluid. These visual distractors are not useful for computing homographies
between placental images.

In Sadda et al. [11], we showed that a neural network could be trained to
segment blood vessels in in vivo placental images with human-level accuracy.
We repurpose the segmentations produced by this trained neural network as a
key point filter. Only key points that fall on a placental blood vessel are used;
all other key points are discarded. The remaining key points are described with
SIFT descriptors and matched with a nearest-neighbors approach. The matches
are then refined with GMS.

2.3 Image Acquisition

In vivo placental images were acquired to evaluate the registration approach
described in this paper. Intraoperative videos of ten fetoscopic laser coagula-
tion surgeries performed at Yale-New Haven Hospital were obtained in a process
approved by an institutional review board. All ten videos were recorded using
a Karl Storz miniature 11540AA endoscope with incorporated fiber optic light
transmission. 544,975 video frames were collected in total, accounting for approx-
imately five hours of video. These video frames were cropped and downscaled
from an initial resolution of 1920×1080 pixels to a resolution of 256×256 pixels.

3 Results and Discussion

3.1 Synthetic Registration Task

188 video frames were extracted from the dataset of in vivo fetoscopic videos
described in Sect. 2.3. Each image was randomly rotated between 0 and 360
degrees, translated by up to 64 pixels (one-quarter of the side-length of the
viewport) along each axis, and perspective-warped by displacing each of the
four corners of the image by up to 20 pixels.

Table 1. The results of the synthetic registration task described in Sect. 3.1. Fetoscopic
video frames were distorted with randomly generated homographies. Various feature
matching algorithms were used to recover the homographies. Each algorithm was eval-
uated in terms of success rate, defined as the percentage of image pairs for which the
algorithm found enough matches to compute a homography, and transformation error,
defined as the mean distance between a grid of points transformed by the ground truth
homography and the same points transformed by the recovered homography.

Algorithm Transformation error (pixels) Success rate

SIFT 143.3 ± 366.2 49.5%

SURF 60.3 ± 65.7 85.1%

AGAST + SIFT + GMS 3.2 ± 5.5 100.0%
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Various feature matching algorithms were used to recover the homography
between the original image and the distorted image. Each algorithm was evalu-
ated in terms of success rate, defined as the percentage of image pairs for which

(a)

(b)

(c)

Fig. 4. An example from the natural registration task described in Sect. 3.2. The lower
part of image A (left column) contains the upper ends of the blood vessels found in
image B (center column). A composite image (right column) is created by overlaying
the registered image A on top of image B. Several algorithms were compared: (a)
Standard SURF key point detection and feature description yields a high ratio of false
matches to total matches. This leads to image A being misregistered to such an extent
that it falls completely outside of the composite image. (b) AGAST key point detection,
SURF feature description, and GMS refinement of matches yields fewer false matches,
but many of these matches are centered in a largely featureless background region. This
leads to a number image A being registered to approximately the correct region of B
but without proper alignment of the blood vessels in A to the corresponding vessels
in B. (c) By using a deep-learned vessel segmentation algorithm, it is possible to limit
AGAST key points to those that fall on blood vessels. This results in the algorithm
correctly registering image A to the upper portion of image B. There are enough true
matches for RANSAC-based homography estimation to identify and eliminate the false
matches at the bottom of the images. The blood vessels in A are correctly aligned to
the corresponding vessels in B.
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the algorithm found enough matches to compute a homography, and transforma-
tion error, defined as the mean distance between a grid of points transformed by
the ground truth homography and the same points transformed by the recovered
homography. The results are summarized in Table 1.

The registration task in this experiment is admittedly trivial: since one image
in each pair is a direct geometric transformation of the other image, a feature
descriptor that lacked any invariance to lighting, illumination, or noise would in
theory be able to generate matches across the images. However, this task is suffi-
cient to show that the standard usage patterns of SIFT and SURF are unsuitable
even for very trivial registration problems involving in vivo placental images.
These methods fail to produce enough matches to compute a homography in
a significant fraction of cases, and even when they can produce homographies,
the homographies are of much lower quality than those produced by matching
AGAST features with GMS.

3.2 Natural Registration Task

22 image pairs were selected from the dataset of in vivo fetoscopic videos described
in Sect. 2.3. Each pair consisted of two images that depicted overlapping segments
of the same vascular formation. To ensure that the frames were sufficiently differ-
ent to make registration a nontrivial task, pairs were selected such that the video
frames in each pair were acquired a minimum of 20 seconds apart. One image from
each pair was manually rotated, translated, and perspective warped in an image
editing program until it was aligned with the other image. The transformation

Table 2. The results of the natural registration task described in Sect. 3.2. Each algo-
rithm was evaluated in terms of success rate, defined as the percentage of image pairs
for which the algorithm found enough matches to compute a homography, and transfor-
mation error, defined as the mean distance between a grid of points transformed by the
ground truth homography and the same points transformed by the recovered homog-
raphy. The algorithms are as follows: (i) SIFT key point detection and SIFT feature
description; (ii) SURF detection and description; (iii) SURF with key points filtered
by a deep learned mask; (iv) SURF with a deep learned mask and with the Hessian
threshold for detection reduced to zero; (v) AGAST feature detection, SIFT feature
description and subsequent refinement of matches with grid-based motion statistics
(GMS); and (vi) the AGAST/SIFT/GMS pipeline with the addition of a deep mask.

Algorithm Transf error (pixels) Success rate

SIFT 97.1 ± 34.6 72.72%

SURF 158.9 ± 143.9 100.00%

SURF + Deep Filter 223.5 ± 215.7 40.90%

SURF (0 threshold) + Deep Filter 118.9 ± 57.0 100.00%

AGAST + SIFT + GMS 45.6 ± 21.2 100.00%

AGAST + Deep Filter + SIFT + GMS 55.1 ± 32.1 100.00%
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matrix corresponding to the concatenation of these editing operations was saved
as the ground truth homography for that image pair.

Several feature matching and algorithms were executed on each image pair in
an effort to recover the ground truth homography from visual correspondences.
Each algorithm was evaluated in terms of success rate and transformation error,
as defined in Sect. 3.1. The results are summarized in Table 2 and Fig. 4. Standard
SIFT and SURF approaches perform poorly. SIFT fails to produce enough key
point matches to produce a homography in over one quarter of cases. SURF
is able to generate a homography more frequently, but the homographies that
it produces have a high transformation error relative to the ground truth. One
might expect that applying the deep learned vessel segmentations as a key point
mask would help eliminate matches to visual distractors and increase match
quality. However, applying deep filtering to SURF further reduces the number of
available features, and lowering the Hessian threshold to increase the number of
SURF features does not lead to better matches. Matching with GMS consistently
produces the best registrations.

Adding a deep filter to GMS matching slightly increases the average trans-
formation error. This is the result of images in which there is a single, linear
blood vessel. As the deep filter limits key points to those that lie on a blood
vessel, it causes the set of matched points in such images to be almost co-linear,
and even slight deviations in the positions of matched key points can have a
large effect on the computed homography if they are orthogonal to the axis of
the lone blood vessel.

4 Conclusion

Prior research into the construction of panoramic maps of the placenta has made
great strides in processing ex vivo placental images. Given that the ultimate
goal is to use this technology intraoperatively, the next step is to extend existing
techniques to handle the more complicated domain of in vivo images. However,
the most common technique for panorama construction in the existing literature,
nearest neighbor matching of SIFT and SURF features, gives unsatisfactory
results even for very trivial registration tasks involving in vivo images. Feature
matching with in vivo placental images is difficult because placental images lack a
rich variety of visually distinct features. The appearance of one blood vessel on a
placenta is not necessarily significantly different from the appearance of another
blood vessel a centimeter away, and this leads to a high rate of false matches.
In this work, we demonstrate that the paucity of visually distinct features is
not necessarily a limiting factor in the registration of in vivo images. By using
matching algorithms that impose a structure on matched elements – in this case
a grid-based locality constraint – it is possible to significantly improve the quality
of feature matches and the resulting image registrations.
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Abstract. In recent years there is growing interest in studying the pla-
centa in vivo. However, 3D ultrasound images (3DUS) are typically very
noisy, and the placenta shape and position are highly variable. As such,
placental segmentation efforts to date have focused on interactive meth-
ods that require considerable user input, or automated methods with
relatively low performance and various limitations. We propose a novel
algorithm using a combination of deep learning and multi-atlas joint
label fusion (JLF) methods for automated segmentation of the placenta
in 3DUS images. We extract 2D cross-sections of the ultrasound cone
beam with a variety of orientations from the 3DUS images and train a
convolutional neural network (CNN) on these slices. We use the predic-
tion by the CNN to initialize the multi-atlas JLF algorithm. The poste-
riors obtained by the CNN and JLF models are combined to enhance the
overall segmentation performance. The method is evaluated on a dataset
of 47 patients in the first trimester. We perform 4-fold cross-validation
and achieve a mean Dice coefficient of 86.3±5.3 for the test folds. This is
a substantial increase in accuracy compared to existing automated meth-
ods and is comparable to the performance of semi-automated methods
currently considered the bronze standard in placenta segmentation.

1 Introduction

Adverse pregnancy outcomes such as preeclampsia and intrauterine growth
restriction contribute to perinatal morbidity and mortality. Given mounting evi-
dence [1–3] that placental abnormalities are related to such outcomes, placental
morphometry has recently become major foci of study. Ultrasound imaging is
the most common modality to study the placenta in clinical settings due to its
low cost, wide availability and ease of acquisition. 2D and 3D ultrasound have
c© Springer Nature Switzerland AG 2018
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been used to study early, in utero placental size and morphology in relation to
birthweight and preeclampsia [14,16]. While placental biometry may be help-
ful in clinical care [15], there is currently no clinical tool to evaluate placental
morphology due to the lack of automated segmentation methods.

Automated quantification of the placenta from 3D ultrasound images (3DUS)
is challenging. 3DUS images are prone to high levels of speckle noise, and the
contrast between the placenta and uterine tissue is especially weak in early preg-
nancy. Additionally, the position of the placenta with respect to the amniotic
sac is highly variable which makes it difficult to even detect the placenta auto-
matically, much less determine its precise boundaries. In particular, placentas
can be positioned anteriorly or posteriorly to the amniotic sac. Maternal habitus
and fetal shadowing artifacts can further obscure the placenta boundary, espe-
cially in posterior placentas. The size and shape of the placenta are variable, and
uterine contractions can dramatically affect the shape of the placenta.

Many current techniques for placental segmentation from 3DUS rely on user
input to overcome these challenges. These include the commercial VOCAL soft-
ware (GE Healthcare) and a random-walker (RW) algorithm [4,17]. Such inter-
active methods are time-consuming, subjective and prone to intra- and inter-
observer variability, which makes automated methods more attractive. Only 4
fully automated approaches have been proposed to date.

1. A recurrent neural network [19]. While this is a more general-purpose seg-
mentation framework that aims to segment not just the placenta but also the
gestational sac and the fetus, the placenta segmentation accuracy achieved
with this method is rather limited (average Dice of 0.64 is reported in [19]).

2. A multi-atlas label fusion algorithm [10]. Since this is a registration-based
method, it suffers from registration initialization robustness issues. The fully
automated version of the algorithm relies on initialization based on the ultra-
sound cone beam, but is limited to anterior placentas (mean Dice of 0.83
in anteriors reported in [10]). For generalization to non-anterior placentas,
manual initialization on a 2D slice is required to guide the registration [11].

3. A deep convolutional neural network (CNN), DeepMedic [8]. The “ground
truth” segmentations are produced via the RW algorithm [17], as opposed to
fully manual expert annotations used in other studies. While this algorithm is
readily applicable to anterior and posterior placentas, the performance leaves
room for improvement (median Dice of 0.73 reported in [8]).

4. An improved version of [8], with a 3D fully convolutional network (OxNNet)
[9]. Perhaps the most distinguishing aspect of this paper is the significantly
larger amount of training data. They utilize 2400 labelled 3DUS images in a
2-fold cross validation setup. They report a mean Dice score of 0.81. Like [8],
this used the results of the random walker algorithm as “truth”.

We propose a novel technique that combines the strengths of the deep learn-
ing and multi-atlas label fusion (MALF) approaches for fully automated segmen-
tation of the placenta from 3DUS images. MALF methods require good registra-
tion initialization and have limited performance in hard-to-register patches such
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as thin features and low-contrast boundaries. CNN’s [6] are more robust to such
problems but tend to be noisier, and are hard to train in 3D given the sparsity of
training data in medical image analysis; as such, their results can lack 3D shape
context. Triplanar CNN’s were studied in [12] as a workaround. In our proposed
algorithm, we begin with a 2D CNN to construct an initial prediction and we
leverage the rotational ambiguity of the ultrasound cone beam for an innovative
data augmentation strategy. Next, we deploy a MALF algorithm using the CNN
results to initialize the registrations. We use a second-tier model to combine the
posterior maps from the CNN model and the MALF method.

2 Methods

Our algorithm begins with pre-processing and extracting 2D slices from the
3DUS images and trains a convolutional neural network (CNN) with online ran-
dom augmentation to create an initial prediction in 3D. Next, multi-atlas joint
label fusion (JLF) is applied on the CNN output to construct an alternative
prediction. The predictions from CNN and JLF are combined via a second tier
random forest (RF) model to obtain the final segmentation result (Fig. 1a).

(a) (b)

Fig. 1. (a) Workflow of our algorithm. (b) Placenta cross-sections from various views.

2.1 Dataset, Pre-processing and Augmentation

Our dataset consists of first trimester 3D US images from 47 subjects with
singleton pregnancies, acquired with GE Voluson E8 ultrasound machines. 28
subjects had anterior placentas, and 19 had posterior placentas. Each image has
isotropic resolution (mean: 0.47 mm, min: 0.35 mm, max: 0.57 mm). Each image
was manually segmented by N.Y.. under the supervision of N.S., who has over
10 years of experience in prenatal ultrasound imaging and who has segmented
100’s of placentas for other research endeavors. The ITK-SNAP software1 was
used for segmentation. The main metric for evaluating the pipeline is the Dice
overlap between automated results and these manual segmentations.
1 www.itksnap.org.

http://www.itksnap.org
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26 of the 47 subjects were imaged twice within the same session. Patients
were allowed to move around between the two acquisitions. These secondary
images were used in a reproducibility experiment, described in Sect. 2.6 below.

The images in our dataset have various dimensions and may contain sizable
blank spaces around the edges. Thus, the images are cropped to a 3D bounding
box of the ultrasound cone beam (automatically, by simply thresholding at 0),
and downsampled to standard dimensions (1283).

We extract 2D slices from the original 3D images and train a CNN with
2D convolutions. Our experiments showed that the axial view presents little
information to the CNN regarding the placenta. Therefore, we extract slices
only in the sagittal (0◦) and coronal (90◦) planes, and a 45◦ plane between
them. This leads to a stack of 128× 3 = 384 slices per subject, along 3 different
orientations. Given the rotational ambiguity of the ultrasound probe, these 3
orientations contain similar cross-sections of the placenta (Fig. 1b).

To further mitigate the impact of a small training dataset, we use online
random augmentation. Various transforms are applied to each 2D slice before it
is seen by the CNN. These transforms consist of horizontal/vertical flipping, 2D
translation, 2D rotations (in-plane), and scaling. Whether each transformation
is applied, and if relevant its magnitude, is determined randomly. Translation
magnitudes are between −5/+5 pixels (image size is 128× 128). In-plane rotation
amount is between −15/+15◦. Scaling is performed by zooming in 0–10%.

2.2 Convolutional Neural Network

Typical CNN’s for classification tasks [6] contain 3 main types of layers: (1)
Convolutional layers extract local features by sliding a kernel (aka filter) over
the input image to compute a feature map. (2) Pooling layers downsample the
feature maps obtained by the convolutional layer, commonly applying a function
like max, mean, sum, etc. (3) Fully connected layers consolidate the features from
convolutional and pooling layers, and output probabilities for each class.

The strength of convolutional layers and CNN’s comes from their ability to
preserve spatial relationships in the input images. The main parameters that
affect the performance of a convolutional layer are the kernel size, the strides,
and the number of feature maps. Kernel size and strides are often chosen empir-
ically in relation to the input image dimensions. The number of feature maps
determines the number of trainable parameters in the layer and must be chosen
with consideration of under/over-fitting.

Initial convolutional layers usually extract low-level features such as edges,
corners, etc. Successive layers build on top of previously extracted feature maps
and discover higher-level features significant for the task. Pooling layers condense
the information from convolutional layers, by retaining whether a feature is
present in the active kernel window, but dismissing the exact location within
the kernel. While this quality is favorable in many vision tasks where the goal
is to detect a higher level entity (cat, car, face) in the image, in our preliminary
experiments we found that using pooling layers degrades the mean Dice results
of CNN predictions. This might be because the task of segmentation requires a
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decision for each voxel in the input. However, further investigation remains for
future work; in the work presented here, pooling layers were not used.

U-net [13] proposes a multi-channel approach to the problem of retaining
location information. They use max-pooling layers for downsampling but still
present the unpooled feature maps to the final convolution by side channels.
In our approach, we utilize convolutional layers with larger strides instead of
pooling, to retain the benefit of condensing feature information, while keeping
the location information intact. This effectively downsamples the feature maps
from the convolutional layers, while preventing systematic loss of information.

Fully connected layers are used when the dimensions of the output are much
smaller relative to the input (classification, bounding box locations, etc.). In the
segmentation task, the dimensions of the output are identical to that of the input.
To reach the required output dimensions from the downsampled feature maps,
we apply upsampling via transposed convolution (aka deconvolution) layers.

Our CNN architecture consists of 23 layers in total: 1 batch normalization,
15 ordinary convolutions (1× 1 strides), 3 downsampling convolutions (2× 2
strides), 3 upsampling deconvolutions (2× 2 strides), and 1 sigmoid output
(Fig. 2). All the kernels we use in the convolutional layers have the dimensions
of 3× 3, and ReLU was used as activation function in all intermediate layers.

Fig. 2. Our CNN architecture contains 23 layers in total: 1 normalization + 18 convo-
lutional + 3 deconvolutional + 1 sigmoid. There are 2,730,627 trainable parameters.

In the training phase, we use 384 2D slices for each subject (128 each from 0◦,
45◦, and 90◦ orientations), and train a single CNN. In the prediction phase, we
produce 4 probability maps for each 2D slice, by flipping the slice horizontally
and vertically. The mean of the 4 orientations is used as the prediction for that
slice. For each subject, we predict for the three orientations above, obtaining
three 3D probability maps. To provide an initialization for the JLF step, we
take the mean of these three maps and binarize by a threshold.

The CNN code is implemented on the Python/Numpy stack. We used Ten-
sorFlow for the CNN backend and Keras as a higher level frontend. The CNN
training is run on a machine with 4x Nvidia GTX-1080Ti GPUs. The online
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random augmentation is performed on the CPU, in parallel to the CNN working
on the GPU. One epoch of training takes around 2–3 min, the final model at 35
epochs lasts around 90 min. Due to our cross-validation setup, we trained 4 such
models, one for each fold. The total time for the CNN part of the pipeline takes
around 8 h including pre/post processing. The prediction phase is much faster
and completes within minutes for the entire dataset.

2.3 Joint Label Fusion (JLF)

Registration-based segmentation methods are popular in medical image analysis.
In the simplest form, an atlas image is created via manual annotation. This atlas
image is registered deformably to the target image, and the segmentation of the
target is calculated by applying the same deformation to the atlas annotation.
This single atlas method does not generalize well, due to the large variability
in shape, size, and location of anatomical structures. The next evolution of this
method utilizes multiple atlases instead of a single one [5]. Each atlas produces
a solution to the target image, and these solutions are combined in a label fusion
step. The fusion is typically based on a weighted voting scheme, usually taking
into consideration the similarity of each atlas to the target image.

Specifically, we use the publicly available JLF approach [18] for label fusion,
which jointly estimates the weights for all available atlases, minimizing the
redundancy from correlated atlases. These weights are given by wx = M−1

x 1n

1tnM−1
x 1n

,
where 1n = [1; 1; . . . ; 1] is a vector of size n and t stands for transpose. The depen-
dency matrix M is estimated by Mx(i, j) = [|Ai(N(x))−T (N(x))| · |Aj(N(x))−
T (N(x))|]β , where |Ai(N(x)) − T (N(x))| is the vector of absolute intensity dif-
ference between a warped atlas Ai and the target image over a local patch N(x)
centered at x and · is the dot product. β is a model parameter. Default values
were used for all parameters in the JLF implementation [18].

All registrations were done using the open source greedy package2. We use
the binary prediction from the CNN as a mask to guide the affine registrations,
which use the SSD metric. The subsequent deformable registrations do not use
a mask as the affine registration provides a stable enough initialization; the
normalized cross correlation (NCC) metric is used with a 4 × 4 × 4 patch size.

2.4 Combining CNN and JLF Results

Our CNN step produces 3 probability maps for each subject (for 0◦, 45◦, and
90◦ orientations). We average and threshold these to provide input for the JLF
step. We obtain another probability map from the JLF, ending up with 4 maps.
Simply averaging these maps offers limited Dice improvement over the individ-
ual probability maps. To extract more information from the 4 maps, we utilize a
second tier model. This model takes the 4 probabilities for each pixel and addi-
tional statistical features (min, mean, max, stdev, max-min) to produce a final
probability. We use a random forest model with 50 trees and max depth of 6.
2 https://sites.google.com/view/greedyreg/home.

https://sites.google.com/view/greedyreg/home
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2.5 Experimental Methods for Cross-Validation

Given the relatively small dataset, we opted for a two-tiered 4-fold cross-
validation (cv) scheme. At each cv step of the 1st tier, we used 3 folds for
training a CNN, and the last fold for testing, ending up with 4 CNN’s. Each of
these CNN’s use identical architecture and parameters, to prevent overfitting to
a single test fold.

These unseen test fold predictions are then used as a registration mask in
the JLF part of the pipeline. For each subject, the manual segmentations from
all training subjects are used as atlases (i.e., training), using the same train/test
split as the CNN folds. Thus, for each of the test folds, we end up with 3 proba-
bilities (for 0◦, 45◦, and 90◦ orientations) from a CNN and the JLF probability.

To train the 2nd tier RF, we apply an inner 4-fold cv to each test fold from the
CNN/JLF tier, for a total of 16 RF models with identical parameters. Finally,
we approximate the performance on an independent validation set by taking the
mean of the results from the 16 unseen test folds of the 2nd tier inner cv.

2.6 Reproducibility Experiment

During the recording of 3DUS images, movements of the subject and the fetus,
specific position of the ultrasound probe, and other factors may result in signif-
icant variations in image appearance. 26 of the 47 subjects in our dataset have
secondary images taken within the same session, which we use to test the repro-
ducibility of our algorithm. In this experiment, we trained our CNN model on
the 21 subjects with only one image. We performed the JLF step with using only
these 21 subjects as atlases. We trained the RF models via an inner 4-fold on
these 21 subjects. Using this pipeline trained on the disjoint set of 21 subjects,
we segmented the placenta for the 26 test subjects, 2 segmentations for each
subject (one per image). We calculated the volume of the segmentations, and
evaluated the correlation of volume between the pairs of images.

3 Results

Our results are summarized in Fig. 3. The proposed combination of CNN and
JLF results via a second tier RF model outperforms the individual methods.

Fig. 3. Dice scores for test folds. P-values from paired two-tailed t-tests are reported.
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These differences were found to be highly significant (p < 0.001) in paired two-
tailed t-tests. We note that all compared methods have lower performance in
the posterior placentas where fetal shadowing artifacts are common. Qualitative
results are shown in Fig. 4. The reproducibility results are shown in Fig. 5-a.

Fig. 4. Qualitative results from an anterior and a posterior subject. In the first sub-
ject, CNN models are erroneously drawn to bright regions, but the JLF accurately
captures the placenta. In the second subject, JLF oversegments the placenta due to
weak boundaries, but CNN models capture the correct result. In both subjects, the
second-tier RF model effectively combines the two approaches.

(a) (b)

Fig. 5. (a) Test-retest volumes (measured in ml) at each stage of our pipeline are
shown for 26 pairs of images. The Pearson correlation coefficient between volume test-
retest measurements was 0.786 for CNN, 0.787 for CNN+JLF, and 0.797 for the final
(CNN+JLF+RF) method. Final correlation was 0.848 when one outlier was removed,
and 0.874 when 3 outliers were removed. (b) Final Dice scores with various number of
atlases for the JLF step. The differences between using the entire training fold (n = 35)
and only 5 randomly selected subjects were minimal (0.859 vs. 0.863).

4 Discussion

Our Findings. Our combined approach utilizes both the automated power of
CNN’s and the 3D context of multi-atlas label fusion. Both methods have their
strengths and weaknesses, and our second tier RF model effectively blends their
results into a more accurate and robust final prediction. Our results (0.863 mean
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Dice overall) provide a substantial improvement over existing automated meth-
ods (mean Dice of 0.81 reported in [9], median Dice of 0.73 reported in [8],
mean Dice of 0.64 reported in [19], mean Dice of 0.83 reported for anterior-only
placentas in [10]), and are comparable to the performance of semi-automated
methods (mean Dice scores of 0.80 reported in [11] and 0.86 reported in [17]),
which require manual input and may have reproducibility issues.

Comparison to Other Network Architectures. A common task in com-
puter vision is classification, including binary, multi-class and multi-label prob-
lems. In these settings, the output is one or more ordinal labels for each input
image. Common architectures for this task contain convolution and downsam-
pling layers in the first half of the network. The second half contains fully con-
nected dense layers, producing predicted labels from the inner representation of
the first half. Image segmentation differs from classification, requiring an out-
put for each input voxel. Thus, most common architectures are variations of the
fully convolutional network [7]. In this setup, the second half contains upsam-
pling layers, producing a full size prediction from the inner representation. Our
CNN is also based on this architecture. In the downsampling layers, we used
strided convolutions, which produced better results in our experiments than the
pooling approach. We also experimented with U-net [13] style side channels, but
that also did not provide much improvement, and extended training time. A
formal comparison of these alternative architectures remains as future work.

2D vs. 3D CNNs. In recent years, CNN’s have consistently shown high per-
formance in many visual learning tasks, especially thriving on large amounts
of training data. The medical imaging field, in contrast, typically has much less
data available. Our annotated 3DUS dataset consists of 47 subjects, which is sig-
nificantly low in quantity when compared to general image datasets containing
multi-million labelled images used for more general CNN tasks. It is difficult to
obtain large amounts of labeled placenta images, since the segmentation needs
to be manually created by expert annotators in a time-consuming process.

While it is possible to train a CNN on 3D images using 3D convolutions, our
dataset size is too small to fully take advantage of such an approach. Training
3D CNN’s also requires much larger computational resources compared to 2D
CNN’s. Therefore, we opted for using 2D CNNs on slices from the 3DUS images.
Evidently, this leads to a loss of 3D context. We mitigated this shortcoming by
extracting 2D slices from three different axises. We also applied random online
augmentation during training to further increase the variance in the dataset.

Number of Atlases Needed for MALF. MALF is computationally inten-
sive. The runtime grows linearly with each atlas and each test subject, since
each pair needs to be registered. In our dataset consisting of 47 subjects, using
all train-fold subjects (n = 35) as atlases took around 1000 CPU-hours on a
computer cluster, utilizing up to 25 CPUs in parallel. This is longer than the
CNN training time. More importantly, in a real-life application, the CNN only
needs to be trained once whereas the atlas registrations are needed for each



Deep Learning and Label Fusion for Automated 3DUS Placenta 147

new test subject. This causes a bottleneck for the practical applicability of our
method.

We hypothesized that the main benefit from the JLF step in this application
is the access to 3D context, which can be gained from just a handful of atlases.
This is unlike other applications where a large set of atlases are needed to ade-
quately represent the underlying distribution of image appearance. To test this
hypothesis, we experimented with using a small random subset of subjects in
the train fold as atlases, instead of all of them. The results for utilizing 5-10-20
atlases are given in Fig. 5-b. While using the full train fold as atlases gives the
best results, the mean Dice when using only 5 randomly chosen subjects is still
very closely comparable (0.8588 vs. 0.8631). This finding supports our hypothe-
sis. It also reinforces the main idea behind our approach, which is combining two
methodologically different approaches to produce a more robust segmentation.
Running the JLF step with even just 5 atlases provides considerable improve-
ment in the Dice scores while reducing the runtime substantially.
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Abstract. In this work, we propose a deep learning-based method for
iterative registration of fetal brain images acquired by ultrasound and
magnetic resonance, inspired by “Spatial Transformer Networks”. Images
are co-aligned to a dual modality spatio-temporal atlas, where computa-
tional image analysis may be performed in the future. Our results show
better alignment accuracy compared to “Self-Similarity Context descrip-
tors”, a state-of-the-art method developed for multi-modal image regis-
tration. Furthermore, our method is robust and able to register highly
misaligned images, with any initial orientation, where similarity-based
methods typically fail.

1 Introduction

Registration, the process of aligning images, is an important technique which
allows visual inspection and computational analysis of images in a common coor-
dinate system. For fetal abnormality screening, registered Magnetic Resonance
(MR)/Ultrasound (US) images may assist diagnosis as the two modalities cap-
ture complementary anatomical information. For example, in the fetal brain, MR
images have better contrast between important structures such as cortical Grey
Matter (GM) and White Matter (WM), whereas the higher spatial resolutions
of US gives better discrimination between fine structures such as the septum
pellucidum and the choroid plexus [7].

A voxel-wise image similarity measure or cost function is commonly used
in medical imaging to register images. This function quantifies the alignment
of images, where an extremum gives the optimum alignment between images.
Unfortunately, image similarity-based methods are ill-suited to the challeng-
ing task of US/MR image registration as there is no global intensity relation-
ship between the two modalities. Primarily this is due to the imaging artefacts
present in US images, such as view-dependent shadows, speckle noise, anisotropy,
attenuation, reverberation and refraction. Popular similarity measures devel-
oped specifically for other multi-modal registration problems in the past, such
c© Springer Nature Switzerland AG 2018
A. Melbourne and R. Licandro et al. (Eds.): DATRA/PIPPI 2018, LNCS 11076, pp. 149–159, 2018.
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as Normalised Mutual Information (NMI), often fail, even with a good initiali-
sation [12].

Consequently, an alternative approach has arisen for registration of images
with non-global intensity relationships whereby image intensities are first trans-
formed to a modality independent representation. These are typically derived
from hand-crafted descriptors which capture structural information from images
such as edges and corners. Representations used by previous authors include
local gradient orientation [4], local phase [9] and local entropy [16]. Notably, [5]
use the concept of self-similarity, computing the similarity of small image patches
in a local neighboured within an image, which achieved state-of-the-art perfor-
mance on a challenging US/MRI registration dataset. Another approach to this
problem is modality synthesis, which aims to transform image intensities from
one modality to another allowing the registration task to be treated as a mono-
modal problem. [7] made use of this approach to register the fetal brain imaged
by US and MR for the first time.

More recently, deep neural networks have been applied to the problem of reg-
istration. Two common strategies for registration with deep learning include esti-
mating a similarity measure [2,15] and predicting transformations directly [1,13].
An advantage of the first approach is that it allows established transformation
models and optimizers to be used, however, this could be a hindrance if the learnt
similarity function is not smooth or convex. The second approach, predicting the
parameters of a transformation model directly, is receiving more research focus
recently as it allows more robust transformation estimates.

1.1 Proposed Method

In this work, we adopt a deep learning approach to tackle the challenging task
of paired 3D MR/US fetal brain registration. Our Long Short-Term Memory
(LSTM) network simultaneously predicts a joint isotropic rescaling plus inde-
pendent rigid transformations for both MR/US images, aligning them to a dual-
modality spatio-temporal atlas (Sect. 2.6). Transformation estimates are refined
iteratively over time, allowing for higher accuracy. For this, we extend the itera-
tive spatial transformer [8] for co-transformation of multiple images (see Fig. 1).
The main contributions of this work are as follows:

– A network architecture inspired by spatial transformer networks [6] for group-
wise registration of images to a common pose.

– A loss function which encourages convergence and fine alignment of images.

2 Methods

2.1 Overview

The spatial transformer module [6] allows geometric transformation of network
inputs or feature maps within a network, conditioned on the input or feature
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Fig. 1. Proposed LSTM spatial co-transformer for coalignment of 3D MR/US images.
Flow of image intensities is shown in blue while flow of transformation parameters is
shown in red. An LSTM network predicts residual transformations Mδ

mr, M
δ
us condi-

tioned on the current warped images Ous, Omr, iteratively refining their alignment.
(Color figure online)

map itself. Importantly, the spatial transformer module is differentiable, allowing
end-to-end training of any network it is inserted into. This allows reorientation
of an image into a canonical pose, simplifying the task of subsequent layers.
[8] proposed an elegant iterative version of the spatial transformer that passes
composed transformation parameters through the network instead of warped
images, preserving image intensities until the final transformation. The same
geometric predictor with a much simpler network architecture can be used in a
recurrent manner, for more accurate alignment.

In this work, we propose a novel extension the “ recurrent/LSTM spatial
co-transformer”, which allows simultaneous transformation of multiple images
to a common pose. Commonly, registration algorithms estimate a warp from
one image (the source) towards another (the target). However, we found that
fine alignment is more easily learnt between images in a common pose. Thus,
we simultaneously co-align pairs of MR/US images to a common atlas-space
(Sect. 2.6), which will also facilitate future computational image analysis.

Additionally, we propose an LSTM-based parameter prediction network
(Fig. 2) and a temporally varying loss function (Sect. 2.5) for more accurate
alignments.

2.2 Recurrent Spatial Co-transformer

The recurrent spatial co-transformer consists of three main components: (1) the
warper, (2) the residual parameter prediction network and (3) the composer. The
first component, the warper, is the computational machinery needed to trans-
form an image and does not contain any learnable parameters. For simplicity of
discourse, we treat this as a single function fwarp and refer the reader to [6] for
a detailed description of grid transformation and differentiable interpolation.
The second component, the parameter prediction network, fpredict, predicts
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residual transformations conditioned on the current warped output images.
Finally, the third component, the composer, updates the transformation esti-
mates. The recurrent spatial co-transformer iterates between three steps, which
will now be described in more detail.

Step 1 - Image Warping. For iteration t, Let I = (I0, I1, . . . , IN ) denote
an N -tuple of input images, Θt = (θ0t , θ1t , . . . , θN

t ) denote an N -tuple of cor-
responding transformation estimates and Ot = (O0

t , O1
t , . . . , ON

t ) denote an
N -tuple of corresponding warped output images. Then each input image Ii is
first warped independently given its last transformation estimate θi

t−1

Oi
t−1 = fwarp(Ii, G, θi

t−1) ∀i ∈ [1, . . . , N ]. (1)

Here, G = [g1, . . . ,gg] ∈ R
4×g is a matrix of homogeneous grid coordinates.

Step 2 - Residual Parameter Prediction. Warped images Ot−1 are con-
catenated along the channel axis and passed as a single tensor to fpredict which
simultaneously predicts an N -tuple of corresponding residual transformations
Δt = (δ0t , δ1t , . . . , δN

t )

Δt = fpredict(O0
t−1

�O1
t−1

� . . . �ON
t−1). (2)

fpredict can take any form but typically consists of a feed-forward network with
several interleaved convolutional and max pooling layers followed by a fully con-
nected layer and a final fully connected regression layer with the number of units
equalling the number of model parameters.

Step 3 - Parameter Composition. Finally, each transformation estimate
θi

t−1, is composed with its residual transformation estimate δi
t, yielding a new

transformation estimate θi
t

θi
t = fupdate(θi

t−1, δi
t) ∀i ∈ [1, . . . , N ]. (3)

The composition function fupdate will vary depending on the transformation
model. For example, if θ parametrises a homogeneous transformation matrix,
fupdate would be matrix multiplication.

2.3 LSTM Spatial Co-transformer

For more accurate parameter prediction, we propose an LSTM network architec-
ture for fpredict. LSTMs are an extremely powerful network architecture capable
of storing information in a cell state allowing them to learn long term depen-
dencies in sequential data much better than recurrent neural networks. For this
we modify the prediction function fpredict (Eq. 2) so that it now takes a feature
vector xt, and a cell state vector ct

Δt = fpredict(xt, ct), where xt = fextract(O0
t−1

�O1
t−1

� . . . �ON
t−1). (4)

Here fextract is a function that extracts the feature vector xt from the con-
catenation of the output images, O0

t−1
�O1

t−1
� . . . �ON

t−1. For this, we chose a
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neural network with a series of convolutions and max pooling operations fol-
lowed by a flattening procedure (see Fig. 2 for a schematic, however any network
architecture may be used that produces a vector). At each iteration t, the cell
state ct is updated by a linear blend of the previous cell state ct−1 and a vector
of candidate values c̃t [3]

ct = ft � ct−1 + (1 − ft) � c̃t. (5)

Here, � is the Hadamard or element-wise product and ft is the forget mask,
a real valued vector that determines which information is forgotten from the
cell state and which candidate values are added. We define ft as the result of
a single function fforget that takes the extracted feature vector xt and also the
previous cell state ct−1. We implement both the forget and candidate functions
as a sequence of two dense layers with weight matrices Wf1, Wf2 and Wc1,
Wc2, respectively

ft = fforget(ct−1, xt) = σ(Wf2 .max(Wf1 . [ct−1, xt] , 0)), (6)

c̃t = fcandidate(ct−1, xt) = tanh(Wc2 .max(Wc1 . [ct−1, xt] , 0)). (7)

Fig. 2. LSTM parameter prediction architecture for rigid alignment of MR/US images.
The image feature extractor encodes a dual-channel image as a vector that is passed
into an LSTM network which predicts a residual transformation. Fourteen parameters
are predicted: three for rotation, three for translation and one for isotropic scale, per
modality (note, weights for scaling are shared between modalities).

2.4 Rigid Parameter Prediction

For rigid coalignment, our network predicts seven residual update parameters
per image: an isotropic log scaling s, three rotation parameters rx, ry, rz and
three translation parameters tx, ty, tz. Here, [rx, ry, rz] gives an axis of rota-
tion, while φ = ‖[rx, ry, rz]‖2, gives the angle of rotation. Note, weights are
shared between images for scaling parameters. Our transformation parameters
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now become rigid transformation matrices δt = Mδ
t , θt = Mt. Note, for simplic-

ity, transformations M are applied to the target grid G before resampling, i.e.
the inverse transformation. For consistency, we define Mδ as the inverse update
and (Mδ)−1 as the forward update. Learning a series of forward update transfor-
mations is inherently easier for the network, thus we post-multiply the current
transformation matrix by the residual matrix, M ← MMδ. This is equivalent
to updating the forward transformation as follows M−1 ← (Mδ)−1M−1. The
forward update transformation is composed as a translation, followed by a rota-
tion, followed by an isotropic rescaling, (Mδ)−1 = SRT. In practice, we predict
the inverse of the update directly by reversing the composition and inverting the
operations Mδ = T−1R−1S−1.

2.5 Training and Loss Function

Let X = {I0, I1, . . . , In} denote a training set of n aligned image tuples. Images
in the training set are initially aligned to a common pose (in our case we affinely
align our MR and US images to a dual-modality atlas, see Sect. 2.6). For each
training iteration, an image tuple is selected I = (I0, I1, . . . , IN ) and each
image Ii is transformed by a randomly generated matrix Di, before being fed
into the network. Di incorporates an affine augmentation (shared across the
input tuple) and an initial rigid disorientation. For augmentation, we randomly
sample and compose a shearing, an anisotropic scaling and an isotropic scaling.
For disorientation, we compose a random rotation and translation. Crucially, the
use of a recurrent network allows us to back-propagate errors through time. We
took advantage of this by designing a temporally varying loss function comprising
of a relative and an absolute term, which allows our network to learn a long term
strategy for alignment. For k alignment iterations of N images, we define our
loss

L =
N∑

i=1

k∑

t=1

d(Mi
t D

i)/d(Mi
t−1 Di) + λ

t

k
d(Mi

t D
i). (8)

Here, d is a distance function of a transformation matrix from the identity and λ
is a weighting between the loss terms. The first loss term rescales distance errors
d(Mi

t D
i), relative to the previous distance error, d(Mi

t−1 Di). This encour-
ages the network to learn fine alignments and convergence. Note, d(Mi

t−1 Di) is
treated as a constant here. The second term penalises the absolute error with
increasing weight, encouraging initial exploration but still penalising poor final
alignments. The distance function d(M) is computed by first decomposing matrix
M into a isotropic scale s, a translation vector t and a rotation matrix R. We
then compute d(M) as a sum of separate distance measures for each of these
components

d(M) = dscale(s) + drotate(R) + dtranslate(t), where dtranslate(t) = ‖t‖2 ,

dscale(s) = μ |log(s)| and drotate(R) =
1
g

g∑

i=1

‖gi − Rgi‖2 . (9)
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Here, μ weights dscale relative to the other two distance measures. Rota-
tion distance, drotate, is given by the mean distance between transformed grid
points Rgi and their initial locations gi. This gives a natural weighting between
translation and rotation components.

2.6 Joint Affine MR/US Spatio-Temporal Atlas (Ground Truth)

We followed the approach of [14], by constructing average image intensity tem-
plates for each week of gestation (20–31 weeks), from 166 3D reconstructed
MR/3D US image pairs. A set of templates was constructed for each modality
separately with a final registration step between templates to establish corre-
spondences across modalities. This process comprised of three parts: (1) manual
reorientation (2) age-dependant template bootstrapping and (3) unified tem-
plate bootstrapping. All images were carefully manually reoriented to a standard
pose with the yz plane aligned with the brain midline and the top of the brain
stem centred at the origin. Averaging reoriented image intensities yielded an ini-
tial template estimate which was refined using a bootstrapping procedure. This
involved alternating between two steps: (1) affinely registering images to the cur-
rent template and (2) averaging registered image intensities. The bootstrapping
procedure was then repeated between templates to establish correspondences
across time. MR templates were constructed first, allowing us to fix the shearing
and scaling parameters for US template construction. For US registration, we
restrict the optimisation to three degrees of freedom, rotation around x, and
translation along y and z, thus respecting the manual definition of the mid-
line. With additional masking, this allowed robust registration of US images for
template construction using [10].

3 Results and Discussion

3.1 Alignment Error

To demonstrate the accuracy of our method (LSTM ST) we compute registration
errors with respect to two ground truth alignments: the first, derived from our
spatio-temporal atlas and the second, derived from anatomical landmarks picked
by clinical experts (fourteen per image), which offers an unbiased alternative.
For comparison, two image similarity-based registration methods were chosen,
NMI with block-matching (NMI+MI) [10] and self-similarity context descriptors
with discrete optimisation (SSC+DO) [5]. Both of these methods were developed
for robust registration and have been used for multi-modality registration tasks
previously. To compare the accuracy of the methods and also their ability to
register highly misaligned images, we created three test sets with different ranges
of disorientation: [3–5◦, 3–5mm], [30–60◦, 10–20mm] and [90–180◦, 30–50mm].

As we can see from Table 1 our method outperforms both similarity-based
methods for all disorientation levels and both ground truth datasets. Further-
more, our method converges to the same alignment for each image pair, irre-
spective of initial orientation and positioning, which explains the very similar
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mean errors seen for the three disorientation levels. Conversely, similarity-based
methods failed to register images for higher levels of disorientation. All pairs
of images registered by our method were visually inspected and a reasonable
alignment was found in all cases (see Fig. 3 for example alignments). The worst

Table 1. Mean alignment error. Mean rotation and translation errors over our test
set are shown for three automated registration methods, relative to two ground truth
alignments.

(a) Atlas-based ground truth alignment

Disorientation NMI+BM SSC+DO LSTM ST

3–5◦ 3–5mm 23.00◦ 3.49mm 4.08◦ 1.01mm 2.97◦ 0.63mm

30–60◦ 10–20mm 42.11◦ 5.26mm 36.62◦ 3.97mm 2.94◦ 0.63mm

90–180◦ 30–50mm 131.25◦ 9.18mm 129.74◦ 13.01mm 2.91◦ 0.62mm

(b) Landmark-based ground truth alignment

Disorientation NMI+BM SSC+DO LSTM ST

3–5◦ 3–5mm 23.84◦ 3.57mm 5.49◦ 1.73mm 4.06◦ 1.60mm

30–60◦ 10–20mm 42.58◦ 5.22mm 35.16◦ 4.11mm 4.03◦ 1.60mm

90–180◦ 30–50mm 131.70◦ 8.98mm 131.28◦ 11.68mm 4.03◦ 1.60mm

Fig. 3. Median (blue) and 95th percentile (red) alignments by rotation error for
SSC+DO and LSTM ST. Alignments for other methods are shown for comparison.
Each column shows the same MR image for a subject from our test set with its corre-
sponding US image thresholded, colour-mapped, overlayed and aligned, by each of the
automated methods. (Color figure online)
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Fig. 4. Template sharpness. Templates are constructed by averaging image intensities
for US images registered to an MR template via their corresponding MR images (see
Sect. 3.2). Higher Variance of the Laplacian (VAR) indicates sharper templates and
better registration accuracy, while higher Peak Signal-to-Noise Ratio (PSNR) indicates
greater similarity with the atlas ground truth template.

rotation and translation errors seen were 7.9◦ and 1.8mm respectively, showing
our method is relatively robust.

3.2 Mean Templates

We construct US mean templates by first registering each US image to its corre-
sponding MR image, rigidly, then affinely transforming the image pair to the MR
atlas space and finally averaging the intensities for all transformed US images.
If registration between modalities is accurate, then the constructed US template
should be crisp. To evaluate the constructed templates, we compute two mea-
sures, Peak Signal-to-Noise Ratio (PSNR) with respect to our ground truth US
template (Sect. 2.6) and the Variance of the image Laplacian (VAR), which pro-
vides an unbiased measure of sharpness [11]. Figure 4 shows that our method
produces the sharpest template as measured by VAR and also has the highest
PNSR. Furthermore, templates for our method have the same sharpness for any
level of initial disorientation.

4 Conclusion

In this work, we proposed the LSTM spatial co-transformer, a deep learning-
based method for group-wise registration of images to a standard pose.
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We applied this to the challenging task of fetal MR/US brain image registration.
Our method automatically coaligns brain images with a dual-modality spatio-
temporal atlas, where future computational image analysis may be performed.
Our results show that our method registers images more accurately than state-
of-the-art similarity-based registration method “self-similarity context descrip-
tors” [5]. Furthermore, it is able to robustly register highly misaligned images,
where similarity-based will fail.
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5. Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards
realtime multimodal fusion for image-guided interventions using self-similarities.
In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013.
LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-40811-3 24

6. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks. In: NIPS, pp. 2017–2025 (2015)

7. Kuklisova-Murgasova, M., et al.: Registration of 3D fetal brain US and MRI. In:
MICCAI, pp. 667–674 (2012)

8. Lin, C.H., Lucey, S.: Inverse compositional spatial transformer networks. In:
CVPR, pp. 2252–2260 (2017)

9. Mellor, M., Brady, M.: Phase mutual information as a similarity measure for regis-
tration. Med. Image Anal. 9(4), 330–343 (2005). Functional Imaging and Modeling
of the Heart - FIMH 2003

10. Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D
structure from serial histological sections. Image Vis. Comput. 19(1), 25–31 (2001)

11. Pech-Pacheco, J.L., Cristobal, G., Chamorro-Martinez, J., Fernandez-Valdivia, J.:
Diatom autofocusing in brightfield microscopy: a comparative study. ICPR 3, 314–
317 (2000)

12. Rivaz, H., Karimaghaloo, Z., Collins, D.L.: Self-similarity weighted mutual infor-
mation: a new nonrigid image registration metric. Med. Image Anal. 18(2), 343–358
(2014)

https://doi.org/10.1007/11866763_89
https://doi.org/10.1007/11866763_89
https://doi.org/10.1007/978-3-642-40811-3_24
https://doi.org/10.1007/978-3-642-40811-3_24


LSTM Spatial Co-transformer Networks 159
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Abstract. The determination and interpretation of fetal standard planes (FSPs)
in ultrasound examinations are the precondition and essential step for prenatal
ultrasonography diagnosis. However, identifying multiple standard planes from
ultrasound videos is a time-consuming and tedious task since there are only little
differences between standard and non-standard planes in the adjacent scan
frames. To address this challenge, we propose a general and efficient framework
to detect several standard planes from ultrasound scan images or videos auto-
matically. Specifically, a multi-scale dense networks (MSDNet) utilizing the
multi-scale architecture and dense connection is exploited, which combines the
fine level features from the shallow layers and coarse level features from the
deep layers. Moreover, this MSDNet is resource efficient, and the cascade
structure can adaptively select lightweight networks when test images are not
complicated or computational resources limited. Experimental results based on
our self-collected dataset demonstrate that the proposed method achieves a mean
average precision (mAP) of 98.15% with half resources and double speeds in
FSPs recognition task.

Keywords: Standard plane recognition � Prenatal ultrasound images
Resource efficient � Multi-scale dense networks

1 Introduction

Prenatal diagnosis of fetal abnormalities is quite important for both family and com-
munity. 2D ultrasonic examination is the most widely used prenatal diagnostic tech-
nique because of its low cost, radiation-free, and the ability to observe the fetus in real
time. Prenatal ultrasonography generally involves image scanning, standard planes
searching, structural observation, parameter measurement and diagnosis. The deter-
mination of standard planes is the precondition of structural observation, parameter
measurement and final diagnosis [1], which is a crucial part of antenatal diagnosis.
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In fact, the judging of the standard plane requires deep knowledge and clinical expe-
rience [2]. In the underdeveloped areas, there are lack of the medical resources and
experienced doctors. Also, standard plane screening is a time-consuming and laborious
task. Therefore, it is of great significance to design an automatic standard plane
recognition system, which not only improves the efficiency of prenatal ultrasound
examination, but also reduces the burden of doctors.

Due to the continuity of the ultrasound scan images, there are only subtle difference
between the standard image and the non-standard image from adjacent frames [3].
Compared with other imaging methods, ultrasound imaging is often affected by noise
and artifacts such as shadowing, which results in poor imaging effect and affects the
recognition accuracy [4]. As shown in Fig. 1, the first row is the standard plane images,
and the second row is the non-standard plane images corresponding to different
regions. It can be seen that it is quite difficult for non-professionals to accurately
evaluate and distinguish FSPs images. Therefore, recognizing the standard image from
ultrasound image automatically is a highly challenging task.

In the recent years, deep learning is poised to reshape the feature of machine
learning. Over the last decade, research on deep learning has made amazing achieve-
ments in many fields. The deep learning related methods has also been widely applied
in analyzing medical images for prenatal analysis and diagnosis [5]. In fact, the core
concept of deep learning is to learn data representations through increasing abstraction
levels, which can learn more abstract and complex representations directly from the
raw data. In addition, deep learning has been proved to have stronger applicability and
better performance than traditional machine learning methods in the complex image
recognition tasks [6]. For this reason, we mainly focus on deep network and repre-
sentation in this study.

In order to ensure the portability of the algorithm and meet the diagnostic
requirements in speed, our study focuses on the resource efficient planning model
architecture. However, the previous deep learning studies on the standard image
recognition task ignores the computing resources issue when designing the model,

Fig. 1. Illustration of high similarity between standard and non-standard planes in ultrasound
images. (a) brain; (b) four channel chamber (4CH); (c) abdominal; (d) facial axial.
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which makes the recognition quite slow [7]. Meanwhile, densenet has demonstrated the
effectiveness of dense connections in the feature learning process in the related studies
since its inception in 2017. For example, Huang et al. built a cascaded network
MSDNet [8] based on the idea of dense connections and achieved good classification
effect on the CIFAR dataset. Inspired by this, we exploit the MSDNet to build the FSPs
recognition architecture. Experimental results on our collected in-house dataset show
that our method is easier to mitigate the practical applications to achieve the real time
detection in the clinical diagnosis.

2 Methodology

Figure 2 shows the architecture of our proposed method. There are four layers of our
network. The specific model design of dense connection and cascade are described in
the following sections.

2.1 Network Architecture

The overall structure of the network is illustrated in Fig. 2. We use Fig. 3 to specify the
dense connections in the model. The dense connection mode makes full use of the
features with the low-complexity in the shallow layers, which allows the network to
reuse and bypass the existing features of the previous layer and ensure high accuracy in
later layers [9]. Moreover, dense connections also avoid gradient disappearance, which
makes training faster and has less computational power for the same performance.

Fig. 2. The first four layers of our network. The horizontal coordinate represents the depth of the
network, and the vertical coordinate represents the scale of the feature map. The dense
connections across more than one layer are not explicitly drawn: they are implicit through
recursive connections.
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The network is designed as a cascade of layers that can be split or superimposed
depending on the difficulty of different tasks. As can be seen from Fig. 2, there is a
classifier designed between each layer and the second layer. This is designed for
resource efficient, which enables the model output classification results at any layer of
the network. This network adaptively chooses the deeper network for tough task and
the shallow network for easy task. The performance of a classifier is located in the
shallow layers of a general network, which is often poor due to the lack of coarse scale
features. The multi-scale design in the architecture provides coarse scale and high-level
feature representations that are amenable to classification.

The vertical connection on the first layer is designed to produce representations on
all S scales. It can be thought as an S-layers convolutional network. As shown in Fig. 3,
we use xsl to represent the output feature maps at layer l and scale s, and the original
input is represented as x10. Feature maps at coarser scales are obtained using the down-
sampling method.

The feature maps xsl of each subsequent layers are a concatenation of all previous
feature maps of scale s and s − 1. At the bottom of Fig. 3, we have listed the formula
for xsl of the first four layers. Here, we use . . .½ � to represent concatenation operator,
hsl :ð Þ is regular convolution, and ~hsl :ð Þ is stride convolution.

In order to test performance of any position in the network, a classifier is designed
behind each layer. The classifiers use dense connection within coarsest scale S, such as
the classifier at layer l uses all features xs1; . . .; x

s
l

� �
. Afterwards, we identify the number

Fig. 3. Illustration of dense connections (e.g. x34) and the list of output xsl of layer l in scale s.
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of layers that are most suitable for our FSPs recognition task by relevant experiments
about testing at any location of the model.

For all classifiers, we use cross entropy L fkð Þ as a loss function in training. The total
cumulative loss functions is defined as

LMSD ¼ 1
Dj j

X
x;yð Þ�D

X
k
wkL fkð Þ ð1Þ

where D represents the distribution of training dataset, wk denotes the weight of the
k-th classifier. Empirically, we find that using the same weight for all loss functions
works well in practice. In this study, we empirically set the same weight for all the loss
functions in our task.

2.2 Data Processing

Our dataset came from acquires 1499 ultrasound examinations of pregnant women with
fetal gestational aged from 14 to 28 weeks. All of the data (including images and
videos) is compiled from the electronic medical records of the hospital’s ultrasound
workstation. To some extent, those raw data in the workstation is somewhat cluttered.
Unlike some previous studies [10, 11], data is limited to one type of ultrasound device.
Our data contains images collected from several brand models of ultrasonic devices
consist of Siemens, Samsung, GE, mindray, etc. In order to be more consistent with the
actual data distribution, we did not select the data in particular. Therefore, the gap of
imaging styles between different devices will be a big challenge for classification and
recognition. And then during normal exam, sonographers are used to keep only
important standard plane images. Hence all the image data stored in the workstation is
basically standard plane. We can only get the non-standard planes from the video set.
And sonographers often add pseudo-color to the ultrasound images for more careful
observation in some cases. For majority of cases we don’t have screen capture videos
of entire fetal exam. Only a small number of medical records have short video frag-
ments that record views adjacent to the standard planes. The same as the image data,
the short videos also come from multiple branded devices. Each video was acquired
from one patient and contained 17–48 frames. We used macro command to extract all
their frames.

Because in this study we are only interested in structural information, we removed
all color doppler ultrasound images by referring to the practice of ultrasound image
data processing in other people’s studies [10]. The images contains of doctor’s marking
and the split screen images showing multiple sections also be removed. In addition all
pseudo-color images are converted to grayscale. According to the data situation, we
combined our previous work and finally selected six standard plane on the advice of
doctors. Finally, we have 22715 ultrasound images in our data set for FSPs recognition
task. The detailed composition of data set is shown in Table 1. Moreover we divided
the data into training set and test set in a ratio of 4:1.
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3 Experimental Setting and Results

We implemented all of our models using PyTorch deep learning framework. The
training was performed on a single Nvidia GTX Titan Xp, and 64G of RAM. In order
to find out the best network depth (l) for our task. We firstly conducted the experiment
of five-fold cross validation for different l. Therefore, we randomly divide all data into
two parts in a ratio of 1:4, where the small part is used as the final test set and the large
part is used for cross-validation. Afterwards, we set the network depth (l) to 15. The
results of different depths is collected, and the train epochs is set as 300. We obtain the
result of 5 verifications in each classifier, and the average accuracy of five tasks is
shown in Fig. 4. In the broken line graph, it can be seen that the recognition accuracy
has a significant upward trend at the beginning with the increase of network depth, and
it becomes flattens out after the 7th layer. The broken line peaks at the tenth floor, then
drops slightly and finally tends to be stable.

Based on the verification results in the previous step, we finally set the network
depth as 10, take all the data used in the validation as the training set, training epochs is

Table 1. Data summary

Standard planes Intro ImageNum

Brain Horizontal cross section of the thalamus 1840
4CH Four-chamber view 2409
Abdominal Standard abdominal view at stomach level 1687
Facial axial Axial facial view at eyeball level 1585
Facial coronal Coronal facial view of lips and nose 1959
Facial sagittal Facial median sagittal view 1725
Others Unmentioned standard views and non-standard planes 11510

97.57

Av
er

ag
e 

ac
cu

ra
cy

Classifiers position

Fig. 4. The average accuracy of five cross
validation by classifiers in different depth.

Table 2. Performance comparison of different
networks

Model FLOPs ACC (%) FPS

ResNet110 250.81 M 97.23 128.0

DenseNet100 292.23 M 97.64 137.7

Our (l = 10) 148.01 M 98.26 226.9
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also set as 300. Table 2 shows the comparison of the computation amount, accuracy,
and FSPs recognition speed (using frame rate measurements) of different networks. It
can be seen that our model achieves nearly twice the speed and half the calculation
compared with other networks. Our model obtains a recognition accuracy of 98.25%,
which is the highest among all the listed models.

Considering that ‘Others’ class occupies a large proportion in the dataset compared
with other classes, we measure the model performance using precision, recall and F1-
score for each category. Table 3 shows the detailed test scores for all the standard
planes. We can see that our method has achieved good performance in each category,
and the average value of all three indicators is over 98%. In addition, the confusion
matrix for this test is shown in Fig. 5. From the confusion matrix, we can observe the
misclassification occurs between the standard surfaces and ‘others’ class because
completely separating standard and non-standard planes is really a hard task.

Table 3. Recognition result (%)

Standard planes Precision Recall F1-score Images

4CH 98.76 99.38 99.07 481
Abdominal 96.41 95.55 95.98 337
FA 94.74 96.84 95.77 316
FC 98.42 95.40 96.88 391
Brain 100 100 100 368
FS 97.89 94.19 96.00 344
Others 98.45 99.22 98.83 2302
Avg/total 98.15 98.15 98.14 4539

Fig. 5. Confusion matrix for MSD model
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For the deep learning model, feature representation has a great impact on the
recognition results. In order to more directly demonstrate the effectiveness of our
network for FSPs recognition task, we use the t-SNE method [12] to visualize the test
data and network feature maps. Specifically, for the original image, we convert the
pixels of each image into a row vector and concatenate the values of all the sample
vectors along the column dimension. We enter the pixel matrix and their labels into the
t-SNE function. Similarly, the output feature vectors before linear layer of classifier are
extracted, and t-SNE visualization is performed using the obtained representation form.
The visualized results are illustrated in Fig. 6, where different colors in the diagram are
used to represent data from different labels. One point in the figure represents one
image sample, where a significantly larger number of purple marks represent ‘others’
classes. The left side of the figure is the distribution of the raw data in our testset, and
the right side is the data distribution of the network classifier input feature maps (take
l = 10 as an example). The mixed distribution of test data in the original domain shows
that the class differences between FSPs and non-FSPs are very small, which makes our
task challenging. We can clearly see that the deep representation after network pro-
cessing makes the samples have obvious separability, which proves that the proposed
model is very effective for FSPs recognition tasks.

4 Conclusion

In this paper, we propose an automatic and efficient FSPs recognition method based on
MSDNet with powerful feature representation and efficient cascade design. We verify
the effectiveness of our model on the ultrasound standard plane dataset for FSPs
recognition task. We obtain the optimal number of network layers for our task through
five-fold cross validation. Compared with other networks, the experimental results
show that the proposed model achieves quite impressive performance (double speed
and half calculations). Finally, through the analysis of multiple indicators, it is proved
that our method achieves amazing performance in the recognition of each category.
Furthermore, our approach is a general framework and can be extended to the other
ultrasound standard planes recognition task. In future work, we will increase the variety

Fig. 6. t-SNE visualization results to illustrate the separability of deep representations in our
model. (a) The raw test data distribution; (b) the distribution of data using our network.
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of standard planes in the dataset and demonstrate the generalization ability of our
model. Also, we will apply this algorithm to real-time detection in clinical practice.
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Abstract. CT images from combined PET-CT scanners are of low con-
trast. Automatic organ segmentation on these images are challenging.
This paper proposed an adaptive kernel-based Statistical Region Merg-
ing (SRM) algorithm for paediatric liver segmentation in low contrast
PET-CT images. The results are compared to that from the original
SRM. The average dice index is 0.79 for SRM and 0.85 for the adaptive
kernel-based SRM. In addition, the proposed method was successful in
segmenting all 37 CT images while SRM failed in 5 images.

Keywords: Low contrast CT · PET-CT · Adaptive-kernel

1 Introduction

Children are sensitive to radiation dose. The use of ionizing radiation such as
x-ray on children needs extra care. In some settings, segmenting of the liver
from x-ray images may be required. Conventional CT images from dedicated CT
scanners are typically involved due to high image quality but radiation dose is a
concern. Combined PET-CT scanners generate CT images with lower radiation
dose but the image has lower contrast. Automatic segmentation of organs from
these low contrast CT images is challenging. A review of liver segmentation
techniques can be found in [1,2].

A probabilistic atlas has been widely used for liver segmentation [3–6] and has
produced good segmentation outcomes. In [3] Linguraru et al. have investigated
the use of a probabilistic atlas for liver segmentation in low-contrast CT images.
Based on a 20 patients’ datasets (10 for training and 10 for testing) a Dice
index of 88.2 ± 3.7 was achieved. The use of probabilistic atlas information can
be augmented with other information. Li et al. [6] supplements the probabilistic
atlas with primary liver shape and localization obtained from the PET scans. The
probabilistic atlas was built using 60 CT studies from dedicated CT scanners.
The PET-guided probabilistic atlas approach was applied on 35 PET-CT studies
with a volume overlap percentage (VOP) of 92.9%±2.1. In this approach, larger
number of training data lead to improved segmentation results [3,6,7].
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In more recent studies, statistical shape model (SSM) has attracted a lot of
interest [8–13]. A review of the statistical shape models for 3D medical image
segmentation can be found in [14]. The results are promising but they also require
large datasets for the SSM. For instance, in [13], 120 cases were used to develop
the SSM. Annotation of the liver in the large training set is laborious.

The Statistical Region Merging (SRM) technique [15] is founded on Prob-
ability and Statistical theory and has been proposed for natural scene image
segmentaion. The technique merges pixels into statistically homogenous regions
(superpixels) to be regrouped into target objects/organs. Lee et al. [16] employed
the SRM method [15] for multi-organ segmentation on non-contrast CT images.
The technique has also been extended to 3D-SRM [17] for the spatial connectiv-
ity of volume CT data. Medical image segmentation based on the SRM method
does not require large dataset for developing probabilistic atlas or statistical
shape model. It does employ a prior knowledge of shape and location but pri-
mary segmentation of the liver on PET scans such as in [10] or the use of a simple
model [18] suffices. In this paper, an adaptive kernel-based SRM (kernel-SRM) is
proposed for segmentation of low contrast CT images. The method uses a kernel
regressor and employs regional statistics. Results are compared with that of the
SRM method.

2 Proposed Method

2.1 Adaptive Kernel-SRM

Consider a gray level intensity image of size M × N

I : {1, 2, . . . ,M} × {1, 2, . . . N} → [0, 255)

where I(m,n) = f(m,n) + ε, with f being the true intensity value and ε the
noise. The task is to estimate the unknown function f . In 1964 Nadaraya [19]
(and also Watson [20]) proposed the following non-parametric estimator of the
regression function

f(x, y) = E(I(X,Y )|(X,Y ) = (x, y)), (1)

where E denotes (conditional) expectation, and ((X,Y ), I(X,Y )) is the observed
couple of random variables.

In order to estimate the regression function in Eq. (1), a non-parametric
kernel-based estimator of Nadaraya-Watson type, which combines estimation
and smoothing of the regression function, is commonly used. In this study, we
consider a local version of the estimator defined for a given region in the image.
The Nadaraya-Watson local estimator of the regression function f(m,n), for a
given region R, can be defined as

̂f(m,n) =
∑

(mi,ni)∈R
wiI(mi, ni), (2)
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wi =
K

(

I
(m,n)
i

)

∑

(mi,ni)∈R K
(

I
(m,n)
i

) , (3)

I
(m,n)
i =

I(m,n) − I(mi, ni)
hI

, (4)

where (mi, ni) ∈ M ×N , K is a kernel function and hI is the smoothing param-
eter for a given image I. Observe that (3) gives a weighted contribution from
I(mi, ni) to the estimated (true) value at (mi, ni).

As an example, consider the normal distribution Nμ,σ(m,n) with mean μ
and standard deviation σ

Nμ,σ(m,n) =
1

σ
√

2π
exp

(

−1
2

(

I(m,n) − μ

σ

)2
)

. (5)

The kernel is then defined as

K(I(m,n)
i ) =

1
σ
√

2π
exp

⎛

⎝−1
2

(

|I(m,n)
i | − μ

σ

)2
⎞

⎠ (6)

where |.| denotes absolute value.
From the definition of weights (3), one can observe that for a given image pixel

the pixel’s estimated (new) value will be most influenced by those local pixels
whose intensities differ from the given one by the expected value of the intensity
across the region. In other words, pixels having intensities very different from
the given pixel intensity (with difference significantly bigger or smaller than the
average intensity of the region) - noise pixels - will have little or no impact on the
estimated intensity value (value of the regression function). Hence, assuming that
the noise pixels have the distribution following the kernel function distribution
the formula (2) can be effectively used to reduce noise in the image.

Using the notation in [15], the Statistical Region Merging (SRM) method
allows merging of two regions R,R′ if

|R̄ − R̄′| ≤
√

b2(R) + b2(R′) (7)

where

b(R) = g

√

1
2Q|R| ln

2
δ
, (8)

|.| denotes cardinality of a set, R̄ denotes the average intensity across the region
R, Q is a parameter which controls coarseness of the segmentation, δ = 1

6 |I|2
and g is the number of image intensity levels.

By incorporating an appropriate kernel function into the regional expecta-
tion R̄ one can alleviate the effect of noise. Each time two pixels are considered
for merging Eq. (2) is used to modify intensities in spatial neighbourhoods of
these pixels. The radius for this neighbourhood was fixed to 2 pixels. This pro-
posed method shall be called Adaptive Kernel-Based Statistical Region Merging
method, and abbreviated as “kernel-SRM”.
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2.2 Determination of the Kernel Function

As described in the previous section, in order to successfully alleviate noise the
kernel function corresponding to the noise distribution has to be determined.
This is achieved by defining a structure-free region outside the human body on
the CT image for image noise estimation. The primary variation of the image
intensity in this region is due to noise. The histograms are built using the long-
standing Sturges’ rule [21] to estimate the number of bins k = 1+log2(n), where
n is the number of data points.

The best fit probability density function was selected from the following range
of distributions: Rayleigh, normal, Poisson, gamma and the generalized extreme
value (GEV) distributions. In determining the most appropriate distribution,
the Mean Square Error (MSE) was calculated for each fit and the distribution
with the smallest MSE value was selected as the best fit.

3 Experiments and Results

3.1 Data

Thirty-seven paediatric liver CT images acquired from combined PET-CT scan-
ner were included in this retrospective study. The images were de-identified and
were obtained from a hospital in Sydney, Australia with ethics approval. The
Siemens Emotion Duo scanner was used in acquiring the images with pixel size
0.98 × 0.98 mm and slice separation 0.34 mm. Ground truths of the liver regions
were delineated by an expert in human anatomy and physiology (MC). CT
images acquired from combined PET-CT scanners are of low image contrast
and high noise level when compare with CT images acquired from dedicated CT
scanners.

3.2 Kernel-SRM Segmentation

Image Pre-processing. Adaptive kernel-based segmentation is a computa-
tionally demanding process. To decrease the processing time, each CT image
was automatically cropped to the area of the patient body. The CT images were
then subsampled by 2 using the nearest-neighbour method to further reduce
computational time.

Kernel Function/Image Noise Distribution Estimation. The kernel func-
tion (Sect. 2.2) of each CT image was estimated by automatically analysing the
noise distribution in that image. In each image, the region comprising the top
120 rows of pixels across the full-width of the image is designated for noise distri-
bution estimation. This region is outside the human body and is structure-free
(anatomy-free). The histogram of the pixel intensities in this region was analysed
(Sect. 2.2). Table 1 shows that in all but one case, the noise distribution was best
estimated using normal distribution. For the remaining single case, the image
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Table 1. Determination of the kernel function/image noise distribution estimation.
The distributions Rayleigh, normal, Poisson, gamma and GEV were considered for the
CT image noise estimation. The best fit with the smallest Mean Square Error (MSE)
for individual CT are shown in below.

Index Type Param 1 Param 2 Param 3 Index Type Param 1 Param 2 Param 3

1 normal 25.01 9.60 − 20 normal 25.16 8.94 −
2 normal 24.47 9.96 − 21 normal 24.61 8.58 −
3 normal 25.10 9.72 − 22 normal 24.18 8.48 −
4 gev −0.19 8.80 19.92 23 normal 24.58 8.98 −
5 normal 25.14 9.89 − 24 normal 24.73 8.57 −
6 normal 24.09 9.70 − 25 normal 24.66 8.93 −
7 normal 24.38 9.87 − 26 normal 24.09 8.50 −
8 normal 25.11 9.22 − 27 normal 24.96 8.04 −
9 normal 24.13 9.33 − 28 normal 24.38 8.35 −
10 normal 24.67 9.66 − 29 normal 23.94 7.82 −
11 normal 25.06 9.26 − 30 normal 25.06 8.11 −
12 normal 24.36 9.24 − 31 normal 24.52 8.89 −
13 normal 24.71 9.17 − 32 normal 24.10 8.53 −
14 normal 23.00 8.63 − 33 normal 24.99 8.45 −
15 normal 24.75 8.98 − 34 normal 24.58 8.36 −
16 normal 24.29 8.49 − 35 normal 24.23 8.37 −
17 normal 24.87 8.51 − 36 normal 24.63 8.87 −
18 normal 24.99 9.23 − 37 normal 24.90 8.39 −
19 normal 24.23 8.74 −

noise has a generalized extreme value (GEV) distribution. In the proposed kernel-
SRM method, the kernel function for each CT image was determined based on
the estimated noise distribution of that image. Further analysis of these noise
distributions shows that, for the normal distributions, the average of the mean
parameter is 24.6 (std 0.45; range 23–25.2) and the average of the standard
deviation parameter is 8.9 (std 0.6; range 7.8–9.9). One image has the general-
ized extreme value distribution with parameter (μ, σ, ξ) = (−0.19, 8.80, 19.92).
Guided by these results, the normal (Gaussian) distribution with μ = 24 and
σ = 9 was selected as the kernel function.

Kernel Bandwidth Optimizing. The smoothing parameter hI (Eq. 4), also
known as the kernel bandwidth, was determined experimentally by searching
over a wide range [1, 30]. Table 2 shows that the best segmentation result is
achieved for hI = 3. In addition, for hI ∈ {2, 3, 4, 5}, the segmentation outcomes
are similarly good with the average Dice index and average Hausdorff distance
(in pixels) over all CT images being (0.84, 0.85, 0.84, 0.84) and (10.04, 8.77,
9.98, 10.48), respectively. This suggests that the performance of the proposed
kernel-SRM is robust to small changes in the parameter hI . The last column
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Table 2. Optimization of the kernel bandwidth hI . The parameter hI was searched
over the range [0.6, 30]. For each value of hI , the average Dice index and the average
Hausdorf value over all 37 kernel-SRM segmented livers are shown. The last column
shows the number of CT images in which the kernel-SRM failed to segment the liver.
The value of hI producing the best results is boxed.

hI value Ave Dice Ave Hausdorff Failures

0.6 0.79 16.20 2

1 0.83 12.49 −
2 0.84 10.04 −

3 0.85 8.77 −
4 0.84 9.98 −
5 0.84 10.48 −
6 0.83 11.57 −
7 0.84 11.93 1

8 0.84 11.85 1

9 0.84 11.81 1

10 0.84 12.15 1

15 0.82 12.53 1

20 0.82 12.75 1

30 0.81 14.86 2

in Table 2 reports the number of CT images in which the proposed kernel-SRM
method failed to generate a segmentation of the liver (Sect. 3.3).

3.3 Segmentation Representation and Evaluation Measures

As in the Statistical Region Merging (SRM) method in [15], through the employ-
ment of an appropriate value of the parameter Q (Eq. 8), the kernel-SRM was set
to over-segmented the CT images, thereby, partitioned the images into statisti-
cally homogeneous regions (superpixels). These superpixels are non-overlapping.
The union of these superpixels gives the exact image.

Over-Segmentation and Eligible Superpixels. In a perfect segmentation,
the segmented liver would be ideally represented by a single superpixel. However,
anatomical structures on CT images are not homogeneous. As such, the repre-
sentation of the liver (target organ/tissue) is relaxed such that the segmented
liver is represented by the union of one or more statistically homogeneous regions
(superpixels). For a superpixel to be included in the segmented liver, over 50%
of the superpixel must overlap with the ground truth which is unknown but can
be estimated using different approaches such as the model-based approach [18].
In order to evaluate the performance of the proposed kernel-SRM against that



Paediatric Liver Segmentation for Low-Contrast CT Images 175

of the SRM method without the interaction with ground truth estimated, the
ground truth is used in this experiment. A superpixel satisfying this condition
of >50% overlap is called an ‘eligible’ superpixel. Thus, the kernel-SRM/SRM
segmented liver is the union of these ‘eligible’ superpixels. Though the num-
ber of the eligible superpixels in the segmented liver does not directly associate
with the accuracy of the segmentation, when two segmentation outcomes are of
similar accuracies, the one with a smaller number of eligible superpixels is of
lower complexity and is a preferred solution. Figures 1a and b show two exam-
ples of the kernel-SRM segmentation outcomes. The ground truth was outlined
in black and the eligible superpixel(s) that contributed to the kernel-SRM seg-
mentation results are shown in patch(es) of color (false color for visualization).
In the first example (Fig. 1a), only one eligible superpixel with a major (>50%)
of the superpixel in the ground truth was found. In the second example (Fig. 1b),
three eligible superpixels were found. Though two of them are small, over 50%
of each the superpixel is in the ground truth. The kernel-SRM segmented liver
is the union of these superpixels.

Failure - Resulting in Empty Set. If the liver is presented on a CT image
but no eligible superpixels was found, this means that the liver segmentation
on that image failed. The generated segmentation of liver is an empty set and
no segmentation result was presented. Figures 1e and f show the SRM segmen-
tation outcomes in two examples. The SRM statistically homogeneous regions
(superpixels) were presented in false color for visualization. In Fig. 1e, less than
50% of the green superpixel overlap with the ground truth whereas in Fig. 1f,
less than 50% of the purple superpixel overlap with the ground truth. Thus, the
segmentation outputs are empty sets in both examples.

Segmentation Accuracy - Dice Index and Hausdorff Distance. For seg-
mentation accuracy, Dice index and Hausdorff distance are measured on the
segmentation outcome (union of the eligible superpixels), if eligible superpixel(s)
is/are found. Dice index measures the agreement between the machine segmen-
tation and the ground truth whereas Hausdorff distance measures the largest
deviation between the two. If a segmentation outcome has no eligible superpixel,
i.e. the segmentation failed, it follows that Dice index = 0 and the Hausdorff
distance cannot be calculated.

3.4 Results and Discussions

Segmentation results of the proposed kernel-SRM and that of the original SRM
are compared in this section. The results are generated with the kernel function a
normal distribution with mean μ = 24 and standard deviation σ = 9 (Sect. 3.2),
an optimal bandwidth hI = 3 (Sect. 3.2), and a g value of g = 256 for 256
grayscale level images and a Q value (Eq. 8) of Q = 256 determined empirically.
Table 3 shows the average Dice index, average Hausdorff distance and the number
of failures (Sect. 3.3). Kernel-SRM performs better than the SRM. The average
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(a) Example 1: 1 eligible superpixel found (b) Example 2: 3 eligible superpixels found

(c) Example 1:Kernel-SRM (proposed) (d) Example 2:Kernel-SRM (proposed)

(e) Example 1:SRM (f) Example 2:SRM

Fig. 1. Two Examples. The ground truth is delineation in black in all panels. Example
1 is presented in (a, c, e) and example 2 is presented in (b, d, f). Using the kernel-SRM,
(a) 1 eligible superpixel (red) overlap with the liver was found in Example 1 and (b) 3
eligible superpixels (grey, green and dark blue) were found. The green and dark blue
superpixels are small but over 50% is inside the ground truth, making them eligible. (c,
d) kernel-SRM segmentation. The Dice index for (c) Example 1 is 0.88 and that for (d)
Example 2 is 0.83. (e, f) SRM segmentation failed to produce any eligible superpixels
in both examples as less than 50% of the green superpixel in example 1 and the purple
superpixel in example 2 are inside the ground truth. Dice = 0 for both examples. (False
color for visualization) (Color figure online)
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Table 3. Comparison of SRM and kernel-SRM segmentation results.

Ave Dice Ave Hausdorff (in pixel) Failure

SRM [15] 0.79 19.06a 14%(5/37)

Kernel-SRM (proposed) 0.85 8.77 0%(0/37)
aExcluding the 5 failure cases that Hausdorff distance cannot be calculated

Dice index and average Hausdorff distance over all 37 CTs were 0.79 and 19.06
for SRM and 0.85 and 8.77 for kernel-SRM, respectively. Moreover, SRM failed
to segment (produced empty sets) in 5 cases while kernel-SRM was successful (no
empty sets) in segmenting all images. Figures 2 and 3 show the detail of SRM and
kernel-SRM comparisons in Dice index and Hausdorff distance, respectively. The
five SRM failed examples are identified with Dice index = 0 in Fig. 2. Hausdorff
distance cannot be calculated for the 5 failures and are shown with infinite lines
in Fig. 3. Both Figs. 2 and 3 show that the kernel-SRM performs better in almost
all cases.

Fig. 2. Dice index - SRM vs. kernel-SRM
liver segmentation results.

Fig. 3. Hausdorff distance (in pixel)- SRM
vs. kernel-SRM results.

4 Conclusion

Segmentation of abdominal organs in low image contrast CT images generated
from combined PET-CT scanners is challenging. This paper extended the well
founded statistical region merging (SRM) method with a built-in kernel that
handles the high level of image noise adaptively for every pair of regions to
be considered for merging. Results showed that the proposed adaptive kernel-
based statistical region merging (kernel-SRM) performs significantly better when
compared with the original SRM method. The results, however, were found using
a small dataset. Future work in validating the results with a larger dataset is
required.
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