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Abstract. It seems widely accepted that human reasoning cannot be
modeled by means of classical logic. Psychological experiments have
repeatedly shown that participants’ answers systematically deviate from
the classical logically correct answers. Recently, a new computational
logic approach to modeling human syllogistic reasoning has been devel-
oped which seems to perform better than other state-of-the-art cognitive
theories. We take this approach as starting point, yet instead of trying
to model the human reasoner, we aim at identifying clusters of reason-
ers, which can be characterized by reasoning principles or by heuristic
strategies.

1 Introduction

In recent years, a new cognitive theory based on the Weak Completion Semantics
(WCS) has been developed. It has its roots in the ideas first expressed by Sten-
ning and van Lambalgen [12], but is mathematically sound [5], and has been
successfully applied to various human reasoning tasks. An overview can be found
in [4]. Hence, it was natural to ask whether the WCS is competitive in syllogistic
reasoning and how it performs with respect to the cognitive theories evaluated in
the meta-analysis by Khemlani and Johnson-Laird [7]. Syllogisms are one of the
oldest kinds of logical argument that date back to Aristotle. They are especially
important in the field of Psychology, as they can be easily understood, yet they
are sophisticated enough to require non-trivial reasoning. According to [7], an
established theory for human syllogistic reasoning is a necessary step towards a
unified cognitive theory of reasoning.

A syllogism consists of two premises and a conclusion. The syllogistic reason-
ing task is then: given the two premises, what conclusions are valid? Consider
the following pair of syllogistic premises:

All a are b. Some c are not b. (AO3)

The premises can be interpreted as quantified statements. In first-order logic
(FOL), some c are not a follows from these premises. However, according to [7],
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Table 1. The moods and their formalization.

Mood FOL Short

Affirmative universal ∀X(a(X) → b(X)) Aab

Affirmative existential ∃X(a(X) ∧ b(X)) Iab

Negative universal ∀X(a(X) → ¬b(X)) Eab

Negative existential ∃X(a(X) ∧ ¬b(X)) Oab

Table 2. The four figures.

Premise 1 Premise 2

Figure 1 a-b b-c

Figure 2 b-a c-b

Figure 3 a-b c-b

Figure 4 b-a b-c

the majority of participants in experimental studies either concluded some c
are not a or answered that no valid conclusion follows. Yet, these two responses
exclude each other, i.e., it is unlikely that the participants who answered no valid
conclusion are the same ones who answered some c are not a, and vice versa.

The possible quantifiers and figures of the premises are shown in Tables 1
and 2: Each premise can have one of four quantifiers called moods. The entities
can appear in four different orders called figures. Thus we can abbreviate the
example from above which consists of moods A and O and figure 3 with AO3.

In [8], cognitive principles under the WCS for modeling the logical form of
the representation of quantified statements in human reasoning are identified.
The approach achieved a match of 89% with respect to the conclusions given by
the participants and based on the data reported in [7]. This result stands out,
as the best of the twelve other state-of-the-art cognitive theories achieved only
a match of 84%.

While reasoning with conditionals, humans seem to take certain assumptions
for granted which, however, are not stated explicitly in the task description. As
psychological experiments show, these assumptions seem not to be arbitrary but
instead are systematic in the sense that they are repeatedly made by partici-
pants. Furthermore, some assumptions appear in various experiments, whereas
other assumptions are only made in very few experiments or only by some par-
ticipants. In order to identify and structure these assumptions, we view them
as principles that are either applied or ignored by the participants who have
to solve the task. As starting point, we take the syllogistic reasoning approach
presented in [8]. However, a drawback of this approach is that only the match-
ing with respect to the aggregated data is considered, i.e., the approach models
the human reasoner. However, the above example and other examples such as
cases of the Wason selection task reported in [9], serve as indication that the
human reasoner does not exist, but instead we might better search for clusters
of human reasoners. These clusters might be expressed by principles, i.e., some
clusters might apply some principles that are not applied by other clusters. We
also take into account the assumption that some humans do not reason at all
to solve syllogistic reasoning tasks. We believe that they use heuristic strate-
gies [13,14] and present a way to combine them within the WCS.

The paper is structured as follows: In Sect. 2 we present the principles for
the representation of quantified statements, motivated by findings from cognitive
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science and philosophy of language. The WCS and the encoding of quantified
statements within this approach are introduced in Sects. 3 and 4. In Sect. 5, the
clusters and heuristics are discussed and an overall evaluation of the WCS is
presented. In Sect. 6, we give an overview of our implementation of computing
the conclusions that are drawn depending on the applied principles.

2 Principles About Quantified Statements

Eight principles for developing a logical form of quantified statements are pre-
sented. They originate from [1,8] except of the principles in Sects. 2.5 and 2.8.

2.1 Quantified Statements as Conditionals (conditionals)

Independent of the quantifiers mood, we formalize any relation between two
objects of a quantified statement by means of a conditional such that the
first object is the antecedent and the second object is the conclusion in
the conditional. For instance, the statement All a are b is expressed as
∀X(a(X) → b(X)).

2.2 Licenses for Inferences (licenses)

Given the quantified statement all a are b, a license for this inference can then
be expressed by all a that are not abnormal, are b [12]. Given the previous for-
malization of this statement as ∀X(a(X) → b(X)), we extend this conditional by
conjoining a(X) together with an abnormality predicate: ∀X(a(X) ∧ ¬ab(X) →
b(X)). Further, nothing is abnormal with respect to X, i.e., ¬ab(X) is assumed.

2.3 Existential Import and Gricean Implicature (import)

Humans understand quantifiers differently due to a pragmatic understanding of
the language. For instance, in natural language, humans normally do not quantify
over things that do not exist. Consequently, all a implies some a exists. This
appears to be in line with human reasoning and has been called the Gricean
implicature [3]. It corresponds to what sometimes in literature is also called
existential import.

2.4 Unknown Generalization (unknownGen)

Humans seem to distinguish between some y are z and some z are y, as the
results reported by [7] show. Nevertheless, if we would represent some y are z
by ∃X(y(X) ∧ z(X)) then this is semantically equivalent to ∃X(z(X) ∧ y(X))
because conjunction is commutative in FOL. Likewise, humans seem to distin-
guish between some y are z and all y are z. Accordingly, if we only observe that
an object o belongs to y and z then we do not want to conclude both, some y
are z and all y are z. In order to distinguish between some y are z and all y
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are z, we introduce the following principle: If we know that some y are z, then
there must not only be an object o1, which belongs to y and z but there must
be another object o2, which belongs to y and for which it is unknown whether
it belongs to z.

2.5 Deliberate Generalization (deliberateGen)

If all of the principles introduced so far are applied to an existential premise,
the only object about which an inference can be made is the one resulting from
the existential import principle. This is because the abnormality introduced by
the licenses for inferences principle and according to the unknown generalization
principle has to be false for the object introduced by existential import, but it is
unknown for other objects. There is, however, evidence that some humans still
draw conclusions in such circumstances [7]. We believe that they do not take into
account abnormalities regarding objects that are not related to the premise.

2.6 Converse Premise (converse)

Although there seems to be some evidence that humans distinguish between
some y are z and some z are y (see the results reported in [7]) we propose
that premises of the form Iab imply Iba and vice versa. If there is an object
which belongs to y and z, then there is also an object which belongs to z and y.
Similarly, we apply this principle for the E mood.

2.7 Search Alternative Conclusions to NVC (searchAlt)

Our hypothesis is that when participants are faced with a NVC conclusion (no
valid conclusion), they might not want to accept this conclusion and proceed
to check whether there exists unknown information that is relevant. This infor-
mation may be explanations about the facts coming either from an existential
import or from unknown generalization. We use only the first as source for obser-
vations, as they are used directly to infer new information.

2.8 Contraposition (contraposition)

In FOL, a conditional statement of the form ∀(X)(a(X) → b(X)) is logically
equivalent to its contrapositive ∀(X)(¬b(X) → ¬a(X)). This contraposition also
holds for the syllogistic moods A and E. There is evidence in [7] that some of
the participants make use of this equivalence when solving syllogistic reasoning
tasks. We believe that when they encounter a premise with the mood A (e.g.,
all a are b), then they might reason with the contrapositive conditional as well.
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3 Weak Completion Semantics

3.1 Contextual Logic Programs

Contextual logic programs are (data) logic programs extended by the truth-
functional operator ctxt, called context [2]. Contextual (logic) program clauses are
expressions of the forms A ← L1∧. . .∧Lm∧ctxt(Lm+1)∧. . .∧ctxt(Lm+p) (called
rules), A ← � (called facts), A ← ⊥ (called negative assumptions)1 and A ← U
(called unknown assumptions), where A is an atom and the Li with 1 ≤ i ≤ m+p
are literals. A is called head and L1 ∧ . . .∧Lm ∧ ctxt(Lm+1)∧ . . .∧ ctxt(Lm+p) as
well as �,⊥ and U, standing for true, false and unknown respectively, are called
body of the corresponding clauses. A contextual program, denoted by P, is a finite
set of contextual program clauses. gP denotes the set of all ground instances of
clauses occurring in P. A is defined in gP iff gP contains a rule or a fact with
head A. A is undefined in gP iff A is not defined in gP. The set of all atoms that
are undefined in gP is denoted by undef(P). The definition of A in gP is defined
as def(A,P) = {A ← Body | A ← Body is a rule or a fact occurring in gP}. ¬A
is assumed in gP iff gP contains a negative assumption with head A, gP does
not contain an unknown assumption with head A, and def(A,P) = ∅. We omit
the word contextual when we refer to programs, if not stated otherwise.

3.2 Three-Valued �Lukasiewicz Logic Extended by ctxt Connective

We consider the three-valued �Lukasiewicz logic together with the ctxt connec-
tive, for which the corresponding truth values are �, ⊥ and U, meaning true,
false and unknown, respectively. A three-valued interpretation I is a mapping
from the set of logical formulas to the set of truth values {�,⊥,U}, repre-
sented as a pair I = 〈I�, I⊥〉 of two disjoint sets of atoms: I� = {A |
A is mapped to � under I} and I⊥ = {A | A is mapped to ⊥ under I}. Atoms
which do not occur in I� ∪ I⊥ are mapped to U. The truth value of a given for-
mula under I is determined according to the truth tables in Table 3. I(F ) = �
means that a formula F is mapped to true under I. A three-valued model M
of P is a three-valued interpretation such that M(A ← Body) = � for each
A ← Body ∈ gP. Let I = 〈I�, I⊥〉 and J = 〈J�, J⊥〉 be two interpretations.
I ⊆ J iff I� ⊆ J� and I⊥ ⊆ J⊥. I is the least model of P iff for any other
model J of P it holds that I ⊆ J .

3.3 Integrity Constraints

A set of integrity constraints IC consists of clauses of the form U ← Body,
where Body is a conjunction of literals and U denotes the unknown. Hence, an
interpretation maps an integrity constraint to � iff Body is either mapped to U or
⊥. Given an interpretation I and a set of integrity constraints IC, I satisfies IC
iff all clauses in IC are true under I.
1 Under WCS, the negative assumption will become A ↔ ⊥ and, hence, A has to

be false. This can, however, be overwritten by other rules and facts (defeating the
assumption).
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Table 3. The truth tables for the connectives under the three-valued �Lukasiewicz logic
and for ctxt(L). L is a literal, �, ⊥, and U denote true, false, and unknown, respectively.

F ¬F
� ⊥
⊥ �
U U

∧ � U ⊥
� � U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ � U ⊥
� � � �
U � U U
⊥ � U ⊥

← � U ⊥
� � � �
U U � �
⊥ ⊥ U �

↔ � U ⊥
� � U ⊥
U U � U
⊥ ⊥ U �

L ctxt(L)

� �
⊥ ⊥
U ⊥

3.4 Forward Reasoning: Least Fixed Point of ΦP

For a given P, consider the following transformation: 1. For each ground atom A
which occurs as head of a clause in gP, replace all clauses of the form A ←
Body1, . . . , A ← Bodym occurring in gP by A ← Body1 ∨ . . .∨Bodym. 2. Replace
all occurrences of ← by ↔. The obtained ground set of equivalences is called the
weak completion of P or wcP. Consider the following semantic operator, which is
due to Stenning and van Lambalgen [12]: Let I = 〈I�, I⊥〉 be an interpretation.
ΦP(I) = 〈J�, J⊥〉, where

J� = {A | A ← Body ∈ def(A,P) and Body is true under 〈I�, I⊥〉}
J⊥ = {A | def(A,P) �= ∅ and

Body is false under 〈I�, I⊥〉 for all A ← Body ∈ def(A,P)}.

[5] showed that the weak completion of non-contextual programs always has a
least model under �Lukasiewicz logic, which can be obtained as the least fixed
point of ΦP . However, for programs with the ctxt operator this property only
holds if the programs do not contain cycles [2]. In this paper, let MP denote the
least fixed point of ΦP . We define P |=wcs F iff MP(F ) = �.

3.5 Backward Reasoning: Explanations by Means of Abduction

An abductive framework 〈P,A, IC, |=wcs〉 consists of a program P, a set A
of abducibles, a set IC of integrity constraints, and the entailment relation
|=wcs. The set of abducibles is A = {A ← � | A ∈ undef(P)} ∪ {A ←
⊥ | A ∈ undef(P) and ¬A is not assumed in gP}. Let 〈P,A, IC, |=wcs〉 be an
abductive framework and the observation O a set of literals. O is explainable in
〈P,A, IC, |=wcs〉 iff there exists an E ⊆ A, such that P ∪ E |= L for all L ∈ O
and P ∪ E satisfies IC. E is then called explanation for O given P and IC. We
restrict E to be minimal, i.e. there does not exist any other explanation E ′ ⊆ A
for O such that E ′ ⊆ E .

Among the minimal explanations, it is possible that some of them entail a
certain formula F while others do not. There exist two strategies to determine
whether F is a valid conclusion in such cases. F follows credulously, if it is
entailed by at least one explanation. F follows skeptically, if it is entailed by all
explanations. Due to previous results on modeling human reasoning [4], skeptical
abduction seems to be adequate.
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Here, observations, are specified as OP = {A | A ← � ∈ def(A,P)}. Usu-
ally, this set is further restricted by considering only facts that result from the
application of certain principles. The idea is to find an explanation for each
observation A ∈ OP after the fact A ← � has been removed from gP.

3.6 Encoding of Quantified Statements

Negation by Transformation (transformation). The logic programs we con-
sider do not allow heads of clauses to be negative literals. A negative conclu-
sion ¬p(X) is represented by introducing an auxiliary formula p′(X) together
with the clause p(X) ← ¬p′(X) and the integrity constraint U ← p(X) ∧ p′(X).
This is a widely used technique in Logic Programming. Applying the prin-
ciple licenses introduced in Sect. 2.2, the first clause is extended to p(X) ←
¬p′(X) ∧ ¬abnpp(X) and the assumption abnpp(X) ← ⊥ is added.

No Derivation Through Double Negation (doubleNeg). A positive con-
clusion can be derived from double negation using two conditionals under the
WCS. It appears to be the case that humans do not reason in such a way (see
[7]). Hence, we block them with the help of abnormalities.

4 Quantified Statements as Logic Programs

Based on the principles and encoding aspects presented in Sects. 2 and 3.6, we
encode the quantified statements into logic programs. The programs are specified
using the predicates y and z and depend on the figures shown in Table 2, where yz
can be replaced by ab, ba, cb, or bc. Here, all principles regarding a premise are
applied. However, we will later assume different clusters of reasoners, some of
which do not apply certain principles (see Sect. 5). The clauses associated with
principles that are not applied are removed for such clusters.

4.1 All y Are z (Ayz)

All y are z is represented by PAyz, which consists of the following clauses:

z(X) ← y(X) ∧ ¬abyz(X). (conditionals & licenses)
abyz(X) ← ⊥. (licenses)

y(o) ← �. (import)
abyz(X) ← ctxt(z′(X)). (contraposition & licenses & deliberateGen)

y′(X) ← ¬z(X) ∧ ¬abzy(X). (contraposition & conditionals & licenses)
abzy(X) ← ⊥. (contraposition & licenses)

y(X) ← ¬y′(X) ∧ ¬abnyy(X). (contraposition & transformation & licenses)

As contraposition has been applied, we have to add the integrity constraint
U ← y(X) ∧ y′(X). We obtain MPAyz

= 〈{y(o), z(o)}, {abyz(o)}〉. Remember
that we want to construct pairs of syllogistic premises. Sometimes, if a premise
of A mood is combined with a premise of E or O mood (see Sects. 4.2 and 4.4),
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then z′(X) appearing in the body of the fourth clause becomes the negation
of z(X). Otherwise, any ground instance of z′(X) is unknown and, consequently,
ctxt(z′(X)) is false in this case. The necessity of the fourth clause and the usage
of the ctxt operator is discussed in the example presented in Sect. 5.2.

4.2 No y Is z (Eyz)

No y is z is represented by PEyz, which consists of the following clauses:

z′(X) ← y(X) ∧ ¬abynz(X). (transformation & licenses)
abynz(X) ← ⊥. (licenses)
z(X) ← ¬z′(X) ∧ ¬abnzz(X). (transformation & licenses)
y(o1) ← �. (import)
abnzz(o1) ← ⊥. (licenses & doubleNeg)
y′(X) ← z(X) ∧ ¬abzny(X). (converse & transformation & licenses)
abzny(X) ← ⊥. (converse & licenses)
y(X) ← ¬y′(X) ∧ ¬abnyy(X). (converse & transformation & licenses)
z(o2) ← �. (converse & import)
abnyy(o2) ← ⊥. (converse & licenses & doubleNeg)

The integrity constraints U ← z(X) ∧ z′(X) and U ← y(X) ∧ y′(X) must be
added. Iterating ΦPEyz

we obtain MPEyz
= 〈{y(o1), z′(o1), z(o2), y′(o2)

}
,

{abynz(o1), abnzz(o1), z(o1), abzny(o2), abnyy(o2), y(o2)}〉.

4.3 Some y Are z (Iyz)

Some y are z is represented by PIyz, which consists of the following clauses:

z(X) ← y(X) ∧ ¬abyz(X). (conditionals & licenses)
abyz(o1) ← ⊥. (unknownGen & licenses)

y(o1) ← �. (import)
y(o2) ← �. (unknownGen)

abyz(X) ← ctxt(z′(X)). (licenses & deliberateGen)
abyz(o2) ← U. (licenses & deliberateGen)

y(X) ← z(X) ∧ ¬abzy(X). (converse & conditionals & licenses)
abzy(o3) ← ⊥. (converse & licenses & unknownGen)

z(o3) ← �. (converse & import)
z(o4) ← �. (converse & unknownGen)

abzy(X) ← ctxt(y′(X)). (converse & licenses & deliberateGen)
abzy(o4) ← U. (converse & licenses & deliberateGen)

We obtain MPIyz
= 〈{y(o1), y(o2), z(o1)}, {abyz(o1)}〉. One should observe that

abyz(o2) is an unknown assumption in PIyz and, hence, MPIyz
(z(o2)) = U.
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4.4 Some y Are Not z (Oyz)

Some y are not z is represented by POyz which consists of the following clauses:

z′(X) ← y(X) ∧ ¬abynz(X). (conditionals & transformation & licenses)
abynz(o1) ← ⊥. (unknownGen & licenses)

z(X) ← ¬z′(X) ∧ ¬abnzz(X). (transformation & licenses)
y(o1) ← �. (import)
y(o2) ← �. (unknownGen)

abnzz(o1) ← ⊥. (doubleNeg & licenses)
abnzz(o2) ← ⊥. (doubleNeg & licenses)

We have to add the integrity constraint U ← z(X)∧z′(X) and obtain MPOyz
=

〈{y(o1), y(o2), z′(o1)}, {abynz(o1), abnzz(o1), abnzz(o2), z(o1)}〉.

4.5 Entailment of Conclusions from Pairs of Syllogistic Premises

Based on the applied principles of the previous section, we specify when MP
entails a conclusion, where yz is to be replaced by ac or ca.
Ayz (all) P |= Ayz iff there exists an object o such that P |=wcs y(o) and for

all objects o we find that if P |=wcs y(o) then P |=wcs z(o).
Eyz (no) P |= Eyz iff there exists an object o1 such that P |=wcs y(o1) and for

all objects o1 we find that if P |=wcs y(o1) then P |=wcs ¬z(o1) and there
exists an object o2 such that P |=wcs z(o2) and for all objects o2 we find that
if P |=wcs z(o2) then P |=wcs ¬y(o2).

Iyz (some) P |= Iyz iff there exists an object o1 such that P |=wcs y(o1)∧z(o1)
and there exists an object o2 such that P |=wcs y(o2) and P �|=wcs z(o2) and
there exists an object o3 such that P |=wcs z(o3) ∧ y(o3) and there exists an
object o4 such that P |=wcs z(o4) and P �|=wcs y(o4).

Oyz (Some Are Not) P |= Oyz iff there exists an object o1 such that P |=wcs

y(o1) ∧ ¬z(o1) and there exists an object o2 such that P |=wcs y(o2) and
P �|=wcs ¬z(o2).

NVC When no previous conclusion can be derived, no valid conclusion holds.

4.6 Accuracy of Predictions

We have nine different answer possibilities for each of the 64 pairs of syllogistic
premises: Aac, Eac, Iac, Oac, Aca, Eca, Ica, Oca and NVC. For every pair of
syllogistic premises, we define two lists of length nine for the predictions of the
WCS and for the participants’ answers, where the first element represents Aac,
the second element represents Eac, and so forth. When Aac is predicted under
the WCS (or the majority’s conclusions) for a given pair of syllogistic premises,
then the value of the first element of this list is a 1, otherwise it is a 0, and the
same holds for the other eight elements in the list. Given

comp(i) =
{

1 if both lists have the same value for the ith element

0 otherwise

the matching percentage of this pair of syllogistic premises is then computed by∑9
i=1 comp(i)/9.
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5 Clusters and Heuristics

We understand clusters of human reasoners in terms of principles or heuristics.
Each cluster is a group of humans that applies the same principles or heuristics.
When identifying such clusters, e.g., among the participants in [7], the principles
or heuristics used by a single cluster should lead to a significant answer for the
pair of syllogistic premises in question. As the answers of all participants have
been accumulated in the meta-analysis, the combined answers of all clusters
should exactly correspond to the significant answers for that pair of syllogistic
premises.

5.1 Basic Principles

Basic principles are assumed to be applied by all reasoners, regardless of any
cluster. These are conditionals, licenses, import, and unknownGen. Note that they
are not necessarily applicable to every pair of syllogistic premises: unknownGen
may only be used for premises with an existential mood.

5.2 Advanced Principles and Clusters

Advanced principles are assumed by some but not all humans, making them
the starting point for clusters. Advanced principles considered in this paper are
converse, deliberateGen, contraposition, and searchAlt, but there may exist more.
When two individuals differ in the sense that one applies such a principle and
the other one does not, we assume that they belong to different clusters.

As an example, consider AO3 introduced in Sect. 1. According to the encoding
described in Sect. 4, PAO3,basic represents the logic program for AO3, where only
the basic principles are applied:

b(X) ← a(X) ∧ ¬abab(X). b′(X) ← c(X) ∧ ¬abcnb(X). c(o3) ← �.
abab(X) ← ⊥. c(o2) ← �. abnbb(o2) ← ⊥.
a(o1) ← �. b(X) ← ¬b′(X) ∧ ¬abnbb(X). abcnb(o2) ← ⊥.

abnbb(o3) ← ⊥.

We obtain

MPAO3,basic = 〈 { a(o1) , b(o1), c(o2) , c(o3) , b′(o2)},

{abab(o1), abab(o2), abab(o3), abcnb(o2), abnbb(o2), abnbb(o3)}〉.
The highlighted atoms are relevant for conclusions: NVC follows. Note that
abab(oi) is false for all oi, 1 ≤ i ≤ 3. If additionally contraposition is used,

PAO3,contra = PAO3,basic ∪ {a′(X) ← ¬b(X) ∧ ¬abba(X), abba(X) ← ⊥,
a(X) ← ¬a′(X) ∧ ¬abnaa(X), abab(X) ← ctxt(b′(X))},

is considered that has another clause where abab(X) is in the head. We obtain

MPAO3,contra = 〈 { a(o1) , abab(o2), b(o1), c(o2) , c(o3) , a′(o2), b′(o2)},

{ a(o2) , abab(o1), abab(o3), abcnb(o2), abnba(o1), abnba(o2),
abnba(o3), abnbb(o2), abnbb(o3), b(o2), a′(o1)}〉.
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Again, the relevant atoms are highlighted. MPAO3,contra entails the conclusion Oca:
As c(o2) is true, b′(o2) is true, therefore ctxt(b′(o2)) is true. This in turn makes
abab(o2) true, and accordingly b(o2) has to be false. But then, a′(o2) can be
derived true, which finally makes a(o2) false.

One should observe that b′(o1) is unknown in MPAO3,contra . Hence, ctxt(b′(o1))
is false and, consequently, abab(o1) is false as well. Together with a(o1) being
true we obtain that b(o1) is true. The latter is needed to correctly implement
the first premise, all a are b, in AO3. Without the ctxt operator, b′(o1) would be
unknown and, consequently abab(o1) as well as b(o1) would be unknown as well
violating the premise all a are b.

Assuming two clusters of people whose reasoning process differs in the appli-
cation of the contraposition principle, we unite the conclusions predicted for
the clusters and obtain {Oca,NVC}. These are exactly the significant answers
reported in [7].

In order to represent the principles leading to a conclusion, multinomial pro-
cessing trees (MPTs) [11] are used. They have been suggested for modeling
cognitive theories because they represent cognitive processes as probabilistic
procedures, thus being able to predict multiple answers and even their quantita-
tive distribution [10]. We set the latent states (inner nodes) of the MPTs to the
decisions whether to use certain principles and put the corresponding conclu-
sions in the leaves. The MPT for AO3 based on the clustering described above
is presented in Fig. 1. The parameter pcontraposition models the probability that
an individual applies the contraposition principle and, therefore, belongs to the
corresponding cluster. It can be trained from experimental data with algorithms
like expectation-maximization [6]. Note that the MPT in Fig. 1 is not complete
in the sense that it cannot predict all possible conclusions for AO3. This issue is
addressed below.

Basic principles

No contraposition Contraposition

NVC Oca

1 − pcontraposition pcontraposition

Fig. 1. The MPT for AO3.

5.3 Heuristic Strategies

Some theories suggest that some humans do not reason at all to solve syllogistic
reasoning tasks, but rely on heuristics such as the atmosphere bias [14] or the
matching bias [13]. Such heuristics are simple rules that state what conclusions
are likely depending on certain features of the premises, e.g., mood or figure.
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Some of the participants’ answers presented in [7], that are given by a small
amount of people (less then 5%), but also some significant ones, are not (yet)
explainable by the WCS. A plausible explanation for that is that these people
simply guess or use one of the heuristics mentioned below (educated guess).

A generative approach to model this behavior can be based on MPTs. The
MPT for a random guess can lead to all nine conclusions. MPTs for a particular
heuristic strategy only take into account the valid conclusions under the corre-
sponding theory. For the atmosphere bias, universal and affirmative conclusions
are excluded when one of the premises is existential or negative, respectively.
In the case of identical moods, the conclusion must have this mood as well. For
the matching bias, the following order from the most to the least conservative
quantifier is defined on moods:

E > O = I > A.

A conclusion may not be answered if it is less conservative than one of the
premises with respect to that order. We have also observed biased conclusions
in the data of [7] that may be explained by the following heuristic strategy: F
or almost all pairs of syllogistic premises with Fig. 1, Xac is answered, while the
answer Xca is not given at all, where X is the least conservative mood from the
premises that is still allowed under the matching strategy (O is preferred over I).

As an alternative to generating the answers given by a cluster of guessers
using MPTs, the following inverse process can be considered: predictions of the
WCS that are not in accordance with a particular heuristic strategy are not given
by a cluster using that strategy. In the filtering approach, these conclusions are
suppressed in the predictions. If no conclusion remains, NVC is answered instead.
As it is likely that some participants do not use logic [13], such clusters must be
modeled under the WCS by using the generative or the filtering approach. As a
consequence, MPTs can construct a prediction for all answer possibilities.

5.4 A Clustering Approach

Based on the principles and heuristic strategies described above, the partici-
pants of [7] have been partitioned into three reasoning clusters and two clusters
applying heuristic strategies:

1. Basic principles, searchAlt, and converse for I.
2. Basic principles, converse for I and deliberateGen.
3. Basic principles, converse for I, E, and contraposition for A.
4. Matching strategy.
5. Biased conclusions in figure 1.

Abduction was only used in one cluster because of the computational effort it
requires. Although it would be interesting to model this principle for different
clusters, the impact would be very small. This is because converse is the only
advanced principle that adds existential imports, which we currently consider as
atoms for observations. According to the results of [8], abduction has the same
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results independent of whether only the converse I mood or both the converse I
and E mood are used. The matching strategy was implemented using the filtering
approach. The biased conclusions in figure 1 heuristics was implemented using
the generative approach such that its prediction overwrites the answers of other
clusters, except NVC.

Table 4. Comparison of the WCS with other cognitive theories. The participants’
answers are highlighted.

Participants PSYCOP Verbal Models Mental Models Conversion WCS

AO3 Oca Oca Oca Oca Oca Oca
NVC Ica Iac NVC NVC Oac NVC NVC

Overall 100% 77% 84% 78% 83% 92%

5.5 Evaluation

We evaluate the predictions of the WCS based on the clustering approach
described in Sect. 5.4. For that, we combine the answers of all clusters and
compared them with both the data of humans and the predictions of other
cognitive theories presented in [7]. In that study, the results of six psychological
experiments on syllogistic reasoning were aggregated and compared with twelve
well-known cognitive theories. In Table 4, it can be seen that the WCS predicts
the same answers for AO3 as the majority of humans, but some other theories
fail to do so. For the overall evaluation, the accuracy is computed as described
in Sect. 4.6. Here the WCS clearly stands out against the other theories, but to
be fair, we must also admit that we compare a relatively new theory to the best
theories of 2012. The WCS predicts the participants’ answers in [7] correctly for
32 out of the 64 pairs of syllogistic premises. For 20 cases there is one incorrect
prediction, for 11 cases there are two and for one case there are three mismatches.
The overall match between the predictions of the WCS and the answers of the
participants is 92%.

6 Implementation

The goal of our implementation is to automate the process of evaluating a cer-
tain clustering. This is crucial, because as stated above, the number of possible
clusterings grows exponentially with the number of principles. We want to be
able to evaluate new candidates for an optimal clustering as fast as possible.

We have developed a modular, declarative implementation, which consists
of two parts: An implementation of the ΦP operator to compute the least fixed
point of a given program P, and a framework that generates logic programs from
an abstract representation of principles and evaluate the entailed conclusions.
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6.1 Computing the Least Fixed Point of ΦP

The least fixed point of ΦP is computed in Prolog. The implementation receives
a program P – written in Prolog – as input and processes it in two phases. The
output is an interpretation 〈I�, I⊥〉 of wcP represented as two lists correspond-
ing to I� and I⊥. The input program P is first grounded to obtain gP and,
secondly, computes the least fixed point of ΦP starting with the empty inter-
pretation 〈∅, ∅〉. Recall that ΦP operates directly on gP. The context operator
is implemented such that contextual logic programs can be handled. However,
there is a problem: if a contextual logic program P contains a cycle, then the least
fixed point of ΦP may not exist. Consider the following quantified statements:

All a are b. No b is c. (AE1)

Assume that additionally to the basic principles we apply for each quantified
statement the advanced principles converse, deliberateGen, and contraposition.
The corresponding program consists of the following clauses:

b(X) ← a(X) ∧ ¬ abab(X) .

abab(X) ← ⊥.

a(o1) ← �.

abab(X) ← ctxt( b′(X) ).

a′(X) ← ¬b(X) ∧ ¬abba(X).

abba(X) ← ⊥.

a(X) ← ¬a′(X) ∧ ¬abnaa(X).

c′(X) ← b(X) ∧ ¬abnbc(X).

b(o2) ← �.

abnbc(X) ← ⊥.

c(X) ← ¬ c′(X) ∧ ¬abncc(X).

abncc(o2) ← ⊥.

b′(X) ← ¬ c(X) ∧ ¬abncb(X).

abncb(X) ← ⊥.

b(X) ← ¬b′(X) ∧ ¬abnbb(X).

Consider the highlighted atoms: Note the cycle b′ > c > c′ > b > abab > b′ where
A > B if A is an atom in the head of a rule and B is an atom that occurs in the
body of that rule. As b′ is an argument of the context operator and is part of the
cycle, this program does not admit a least fixed point. When modeling clusters,
we must ensure that the logic program resulting from the applied principles do
not contain such cycles. This is guaranteed for the clusters given in Sect. 5.4.

6.2 Computing the Predictions for a Cluster of Reasoners

The evaluation of a cluster is written in Haskell. A run consists of four phases:

1. Generate program P of the pair of syllogistic premises using the principles.
2. Call the Prolog implementation to compute the least fixed point of ΦP .
3. Extract the conclusions entailed by the least fixed point of ΦP .
4. Compare the conclusions with the participants’ answers and output score.



The Syllogistic Reasoning Task 163

The Haskell program contains definitions of datatypes for all entities occurring in
the programs, i.e., truth values, atoms, literals, and clauses. These entities are
built recursively on each other and have functions for conversion into Prolog.
Principles are implemented as functions that return their corresponding clause
representation. The source code of the unknownGen principle is as follows:

unknownGen = Principle {
apply = \m f -> m == MI || m == MO,
clauseRep = \ y z prf -> [clause (atom y) [top] (prf ++ "ug")]

}

where the first line states that the principle is applied to negative moods (I and O)
and the second line states that the clause has the form y(prfug) ← �, where
prf is an identifier for objects of the clause. Using this abstraction, clusters are
written as lists of ‘principle functions’ and are thus valid Haskell source code
by themselves. As an example, consider the definition of the basic cluster which
uses the basic principles and the converse principle for mood I:

basicCluster = Cluster {
principles = basicPrinciples ++ map converseI basicPrinciples,
...

}

Here, basicPrinciples is defined as list of principles (those we called basic in
Sect. 5.1). Of course, one consequence is that the user of our implementation has
to be familiar with Haskell. However, there are two main advantages of using
Haskell source code as a representation. Firstly, many principles are part of a
certain subset of the pair of syllogistic premises (e.g., the unknown generalization
principle is used for all premises with an existential mood). These connections
can be modeled precisely and without redundancy in source code. This can
be seen in the example above, where converseI is implemented as a function
that takes a principle as argument and returns the corresponding principle for
the converse premise. Secondly, because Haskell is a compiled language, the
representation of the pair of syllogistic premises itself is compiled. Therefore, a
representation is automatically checked and the program does not crash due to
an error, which would not be the case if e.g., a string representation was used.

The Prolog representation of the program results from a function converting
sets of clauses to a string and is written into a file. Then, the Prolog imple-
mentation of the previous program is called to compute the least fixed point
of ΦP , which is again written to a file. After completion that file is parsed and
the conclusions are extracted with respect to the definitions given in Sect. 4.5.
Our heuristic filters—implemented as post-processing functions—are applied to
these conclusions. This process is done for all 64 pairs where the conclusions are
compared with the participants’ answers and the score of the cluster is computed.

Until now, we have only described the evaluation of a single cluster, although
a clustering consists of the combined answers of all clusters. For this purpose, a
list of clusters is specified, where the program computes the predictions for each
cluster, combines them, and compares the results with the participants’ answers.
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7 Conclusions

We have successfully extended the approach in [1,8] by introducing two new
principles and by applying a clustering approach to model individual differences
in human reasoning. This takes into account that some people may not reason at
all, but guess or apply heuristic strategies. The clustering presented in Sect. 5.4
is currently the best one but possibly not the optimal one. However, due to the
combinatorial explosion,2 it is difficult to find the global optimum. Furthermore,
programs based on certain principles considered for some moods, might not have
a least fixed point, as they contain cycles with respect to the ctxt operator. This
must be taken into account when selecting the principles for a clustering. Finally,
we have applied multinomial processing trees to model that different principles
lead to different conclusions. This information is lost if the data containing the
predictions for all clusters is aggregated. If we would have more insight about the
patterns participants opted for, we could model single pair of syllogistic premises
by multinomial process trees instead of fitting them to the overall results.

Future work might allow us to identify and understand why humans within a
cluster come to certain conclusions. Accordingly, if it is known which principles
they apply, it should be possible to predict their answers.
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