
Dietmar Seipel
Michael Hanus
Salvador Abreu (Eds.)

 123

LN
AI

 1
09

97

Declarative Programming
and Knowledge Management
Conference on Declarative Programming, DECLARE 2017
Unifying INAP, WFLP, and WLP
Würzburg, Germany, September 19–22, 2017
Revised Selected Papers

Lecture Notes in Artificial Intelligence 10997

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Dietmar Seipel • Michael Hanus
Salvador Abreu (Eds.)

Declarative Programming
and Knowledge Management
Conference on Declarative Programming, DECLARE 2017
Unifying INAP, WFLP, and WLP
Würzburg, Germany, September 19–22, 2017
Revised Selected Papers

123

Editors
Dietmar Seipel
Universität Würzburg
Wuerzburg
Germany

Michael Hanus
Christian-Albrechts-Universität zu Kiel
Kiel
Germany

Salvador Abreu
Universidade de Èvora
Evora
Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-030-00800-0 ISBN 978-3-030-00801-7 (eBook)
https://doi.org/10.1007/978-3-030-00801-7

Library of Congress Control Number: 2018954670

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-4953-8202
http://orcid.org/0000-0002-1613-4631

Preface

This volume contains a selection of the papers presented at the International Confer-
ence on Declarative Programming Declare 2017. The joint conference was held in
Würzburg, Germany, during September 19–22, 2017. It consisted of the 21st Inter-
national Conference on Applications of Declarative Programming and Knowledge
Management (INAP), the 31st Workshop on Logic Programming (WLP), and the 25th
Workshop on Functional and (Constraint) Logic Programming (WFLP), and it was
accompanied by a one-week summer school on Advanced Concepts for Databases and
Logic Programming for students and PhD students.

Declarative programming is an advanced paradigm for modeling and solving com-
plex problems, which has attracted increased attention over the last decades, e.g., in the
domains of data and knowledge engineering, databases, artificial intelligence, natural
language processing, modeling and processing combinatorial problems, and for estab-
lishing knowledge-based systems for the web. The conference Declare 2017 aimed to
promote the cross–fertilizing exchange of ideas and experiences among researches and
students from the different communities interested in the foundations, applications, and
combinations of high-level, declarative programming and related areas.

The INAP conferences provide a forum for intensive discussions of applications of
important technologies around logic programming, constraint problem solving, and
closely related advanced software. They comprehensively cover the impact of pro-
grammable logic solvers in the Internet society, its underlying technologies, and
leading edge applications in industry, commerce, government, and societal services.
Previous INAP conferences have been held in Japan, Germany, Portugal, and Austria.
The Workshops on Logic Programming (WLP) are the annual meeting of the German
Society for Logic Programming (GLP e.V.). They bring together international
researchers interested in logic programming, constraint programming, and related areas
like databases and artificial intelligence. Previous WLP workshops have been held in
Germany, Austria, Switzerland, and Egypt. The International Workshop on Functional
and Logic Programming (WFLP) brings together researchers interested in functional
programming, logic programming, as well as the integration of these paradigms. Pre-
vious WFLP editions have been held in Germany, France, Spain, Italy, Estonia, Brazil,
Denmark, and Japan. The topics of the papers of this year's joint conference Declare
concentrated on three currently important fields: constraint programming and solving,
functional and logic programming, and declarative programming.

The declarative programming paradigm expresses the logic of a computation in an
abstract way. Thus, the semantics of a declarative language becomes easier to grasp for
domain experts. Declarative programming offers many advantages for data and knowl-
edge engineering, such as, e.g., security, safety, and shorter development time. During the
last couple of years, a lot of research has been conducted on the usage of declarative
systems in areas like answer set programming, reasoning, meta-programming, and
deductive databases. Reasoning about knowledge wrapped in rules, databases, or the

Semantic Web allows to explore interesting hidden knowledge. Declarative techniques for
the transformation, deduction, induction, visualization, or querying of knowledge have the
advantage of high transparency and better maintainability compared to procedural
approaches.

Many problems which occur in large industrial tasks are intractable, invalidating
their solution by exact or even many approximate constructive algorithms. One
approach which has made substantial progress over the last few years is constraint
programming. Its declarative nature offers significant advantages, from a software
engineering standpoint and in the specification, implementation, and maintenance
phases. Several interesting aspects are in discussion: how can this paradigm be
improved or combined with known, classical methods; how can real-world situations
be modelled as constraint problems; what strategies may be pursued to solve a problem
once it has been specified; or what is the experience of applications in really large
industrial planning, simulation, and optimisation tasks?

Another area of active research is the use of declarative programming languages, in
particular, functional and logic languages, to implement more reliable software sys-
tems. The closeness of these languages to logical models provides new methods to test
and verify programs. Combining different programming paradigms is beneficial from a
software engineering point of view. Therefore, the extension of the logic programming
paradigm and its integration with other programming concepts are active research
branches. The successful extension of logic programming with constraints has already
been mentioned. The integration of logic programming with other programming
paradigms has been mainly investigated for the case of functional programming, so that
types, modules, higher-order operators, or lazy evaluation can also be used in
logic-oriented computations.

The three events INAP, WLP, and WFLP were jointly organized by the University
of Würzburg and the Society for Logic Programming (GLP e.V.). We would like to
thank all authors who submitted papers and all conference participants for the fruitful
discussions. We are grateful to the members of the Program Committee and the
external referees for their timely expertise in carefully reviewing the papers. We would
like to express our thanks to the German Federal Ministry of Education and Research
(BMBF) for funding the summer school on Advanced Concepts for Databases and
Logic Programming (under 01PL16019) and to the University of Würzburg for hosting
the conference in the new Central Lecture Building Z6 and for providing the Tuscany
Hall in the Baroque style Würzburg Residence Palace for a classical music concert in
honor of Jack Minker, a pioneer in deductive databases and disjunctive logic pro-
gramming and the longtime mentor of the first editor, who celebrated his 90th birthday
in 2017.

July 2018 Dietmar Seipel
Michael Hanus
Salvador Abreu

VI Preface

Organization

Program Chair

Dietmar Seipel University of Würzburg, Germany

Program Committee of INAP

Slim Abdennadher German University in Cairo, Egypt
Salvador Abreu (Co-chair) University of Évora, Portugal
Molham Aref Logic Blox Inc, Atlanta, USA
Chitta Baral Arizona State University, USA
Joachim Baumeister University of Würzburg, Germany
Stefan Brass University of Halle, Germany
François Bry Ludwig-Maximilian University of Munich, Germany
Philippe Codognet University Pierre-and-Marie Curie, France
Vitor Santos Costa University of Porto, Portugal
Agostino Dovier University of Udine, Italy
Thomas Eiter Vienna University of Technology, Austria
Thom Frühwirth University of Ulm, Germany
Parke Godfrey York University, Canada
Gopal Gupta University of Texas at Dallas, USA
Michael Hanus Kiel University, Germany
Jorge Lobo ICREA and Universitat Pompeu Fabra, Spain
Grzegorz J. Nalepa AGH University, Poland
Vitor Nogueira University of Évora, Portugal
Enrico Pontelli New Mexico State University, USA
Dietmar Seipel (Chair) University of Würzburg, Germany
Hans Tompits Vienna University of Technology, Austria
Masanobu Umeda Kyushu Institute of Technology, Japan

Program Committee of WLP/WFLP

Slim Abdennadher German University in Cairo, Egypt
Sergio Antoy Portland State University, USA
Olaf Chitil University of Kent, UK
Jürgen Dix Clausthal University of Technology, Germany
Moreno Falaschi Università di Siena, Italy
Michael Hanus (Chair) Kiel University, Germany
Sebastiaan Joosten University of Innsbruck, Austria
Oleg Kiselyov Tohoku University, Japan
Herbert Kuchen University of Münster, Germany
Tom Schrijvers Katholieke Universiteit Leuven, Belgium

Sibylle Schwarz HTWK Leipzig, Germany
Dietmar Seipel University of Würzburg, Germany
Martin Sulzmann Karlsruhe University of Applied Sciences, Germany
Hans Tompits Vienna University of Technology, Austria
German Vidal Universitat Politècnica de València, Spain
Janis Voigtländer University of Duisburg-Essen, Germany
Johannes Waldmann HTWK Leipzig, Germany

Local Organization

Falco Nogatz University of Würzburg, Germany
Dietmar Seipel University of Würzburg, Germany

Additional Reviewers

Pedro Barahona
Zhuo Chen
Daniel Gall
Falco Nogatz
Nada Sharaf

VIII Organization

Contents

Constraints

Constraint Solving on Hybrid Systems. 3
Pedro Roque and Vasco Pedro

Run-Time Analysis of Temporal Constrained Objects 20
Jinesh M. Kannimoola, Bharat Jayaraman, and Krishnashree Achuthan

Implementation of Logical Retraction in Constraint Handling Rules
with Justifications . 37

Thom Frühwirth

The Proportional Constraint and Its Pruning . 53
Armin Wolf

An Operational Semantics for Constraint-Logic Imperative Programming 64
Jan C. Dageförde and Herbert Kuchen

Hypertree Decomposition: The First Step Towards Parallel
Constraint Solving. 81

Ke Liu, Sven Löffler, and Petra Hofstedt

Declarative Systems

Declarative Aspects in Explicative Data Mining
for Computational Sensemaking . 97

Martin Atzmueller

An Approach for Representing Answer Sets in Natural Language 115
Min Fang and Hans Tompits

Techniques for Efficient Lazy-Grounding ASP Solving 132
Lorenz Leutgeb and Antonius Weinzierl

The Syllogistic Reasoning Task: Reasoning Principles
and Heuristic Strategies in Modeling Human Clusters 149

Emmanuelle-Anna Dietz Saldanha, Steffen Hölldobler,
and Richard Mörbitz

Functional and Logic Programming

Concolic Testing of Functional Logic Programs . 169
Jan Rasmus Tikovsky

Declarative XML Schema Validation with SWI–Prolog:
System Description . 187

Falco Nogatz and Jona Kalkus

plspec – A Specification Language for Prolog Data 198
Philipp Körner and Sebastian Krings

Author Index . 215

X Contents

Constraints

Constraint Solving on Hybrid Systems

Pedro Roque(B) and Vasco Pedro

LISP, Universidade de Évora, Évora, Portugal
d11735@alunos.uevora.pt, vp@di.uevora.pt

Abstract. Applying parallelism to constraint solving seems a promis-
ing approach and it has been done with varying degrees of success. Early
attempts to parallelize constraint propagation, which constitutes the core
of traditional interleaved propagation and search constraint solving, were
hindered by its essentially sequential nature. Recently, parallelization
efforts have focussed mainly on the search part of constraint solving, as
well as on local-search based solving. Lately, a particular source of par-
allelism has become pervasive, in the guise of GPUs, able to run thou-
sands of parallel threads, and they have naturally drawn the attention
of researchers in parallel constraint solving.

In this paper, we address challenges faced when using multiple devices
for constraint solving, especially GPUs, such as deciding on the appro-
priate level of parallelism to employ, load balancing and inter-device
communication, and present our current solutions.

Keywords: Constraint solving · Parallelism · GPU · Intel MIC
Hybrid systems

1 Introduction

Constraint Satisfaction Problems (CSPs) allow modeling problems like the Cos-
tas Array problem [6], and some real life problems like planning and schedul-
ing [2], resources allocation [7] and route definition [3].

CPU’s parallelism is already being used with success to speed up the solv-
ing processes of harder CSPs [5,16,19,21]. However, very few constraint solvers
contemplate the use of GPUs. In fact, Jenkins et al. recently concluded that
the execution model and the architecture of GPUs are not well suited to com-
putations displaying irregular data access and code execution patterns such as
backtracking search [10].

We are currently developing a constraint solver named Parallel Heterogeneous
Architecture Toolkit (PHACT) that is already capable of achieving state-of-the-
art performances on multi-core CPUs, and can also speed up the solving process
by adding GPUs and processors like Intel Many Integrated Cores (MICs1) to
solve the problems.
1 Intel MICs are coprocessors that combine many Intel processor cores onto a single

chip with dedicated RAM.

c© Springer Nature Switzerland AG 2018
D. Seipel et al. (Eds.): DECLARE 2017, LNAI 10997, pp. 3–19, 2018.
https://doi.org/10.1007/978-3-030-00801-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00801-7_1&domain=pdf

4 P. Roque and V. Pedro

The next section introduces the main CSP concepts and Sect. 3 presents some
related work. Section 4 describes the architecture of PHACT, and in Sect. 5 the
results achieved with PHACT, when solving some CSPs on multiple combi-
nations of devices and when compared with some state-of-the-art solvers, are
displayed and discussed. Section 6 presents the conclusions and directions for
future work.

2 CSPs Concepts

A CSP can be briefly described as a set of variables with finite domains, and a
set of constraints between the values of those variables. The solution of a CSP
is the assignment of one value from the respective domain to each one of the
variables, ensuring that all constraints are met [3].

For example, the Costas Array problem consists in placing n dots on a n×n
matrix such that each row and column contain only one dot and all vectors
between dots are distinct. It can be modeled as a CSP with n + n(n − 1)/2
variables, n of which correspond to the dots and each one is mapped to a different
matrix column. The domain of these n variables is composed by the integers that
correspond to the matrix rows where each dot may be placed. The remaining
n(n− 1)/2 variables constitute a difference triangle, whose rows cannot contain
repeated values [6].

The methods for solving CSPs can be categorized as incomplete or complete.
Incomplete solvers do not guarantee that an existing solution will be found,
being mostly used for optimization problems and for large problems that would
take too much time to fully explore. Incomplete search is beyond the scope of
this paper and will not be discussed here. On the contrary, complete methods,
such as the one implemented in PHACT, guarantee that if a solution exists, it
will be found.

3 Related Work

Searching for CSP solutions in a backtracking approach can be represented in the
form of a search tree. To take advantage of parallelism this search tree may be
split into multiple subtrees and each one of them explored in a different thread
that may be running on a different core, device or machine. This is the approach
generally found in parallel constraint solvers, which run on single or distributed
multi-core CPUs [5,16,19,21].

Pedro developed a CSP solver named Parallel Complete Constraint Solver
(PaCCS) capable of running from a single core CPU to multiple multi-core CPUs
in a distributed system [16]. Distributing the work among the threads through
work stealing techniques and using the Message Passing Interface (MPI) to allow
communication between machines, this solver achieved almost linear speedups
for most of the problems tested, when using machines with up to 16 CPU cores.

Régin et al. implemented Embarrassingly Parallel Search, featuring an inter-
face responsible for decomposing an initial problem into multiple sub-problems,

Constraint Solving on Hybrid Systems 5

filtering out those found to be inconsistent [20]. After generating the sub-
problems it creates multiple threads, each one corresponding to an execution
of a solver (e.g., Gecode [22]), to which a sub-problem is sent at a time for
exploration.

For some optimization and search problems, where the full search space is
explored, these authors achieved average gains of 13.8 and 7.7 against a sequen-
tial version, when using Gecode through their interface or just Gecode, respec-
tively [20]. On their trials, the best results were achieved when decomposing the
initial problem into 30 sub-problems per thread and running 40 threads on a
machine with 40 CPU cores.

While solving CSPs through parallelization has been a subject of research
for decades, the usage of GPUs for that purpose is a recent area, and as such
there are not many published reports of related work. To our knowledge, there
are only two published papers related with constraint solving on GPUs [1,4].
From these two, only Campeotto et al. presented a complete solver [4].

Campeotto et al. developed a CSP solver with Nvidia’s Compute Unified
Device Architecture (CUDA), capable of using simultaneously a CPU and an
Nvidia GPU to solve CSPs [4]. On the GPU, this solver implements an approach
different from the one mentioned before, namely, instead of splitting the search
tree over multiple threads, it splits each constraint propagation over multiple
threads. Constraints relating many variables are propagated on the GPU, while
the remaining constraints are filtered sequentially by the CPU. On the GPU,
the propagation and consistency check for each constraint are assigned to one
or more blocks of threads according to the number of variables involved. The
domain of each variable is filtered by a different thread.

Campeotto et al. reduced the data transfer to a minimum by transferring to
the GPU only the domains of the variables that were not labeled yet and the
events generated during the last propagation. Events identify the changes that
happened to a domain, like becoming a singleton or having a new maximum
value, which allows deciding on the appropriate propagator to apply.

Campeotto et al. obtained speedups of up to 6.61, with problems like the
Langford problem and some real problems such as the modified Renault prob-
lem [4], when comparing a sequential execution on a CPU with the hybrid
CPU/GPU version.

4 Solver Architecture

PHACT is a complete solver, capable of finding a solution for a CSP if one exists.
It is meant to be able to use all the (parallel) processing power of the devices
available on a system, such as CPUs, GPUs and MICs, to speed up solving
constraint problems.

The solver is composed of a master process which collects information about
the devices that are available on the machine, such as the number of cores and
the type of device (CPU, GPU or MIC), and calculates the number of sub-
search spaces that will be created to distribute among those devices. For each

6 P. Roque and V. Pedro

device there will be one thread (communicator) responsible for communicating
with that device, and inside each device there will be a range of threads (search
engines) that will perform labeling, constraint propagation and backtracking on
one sub-search space at a time. The number of search engines that will be created
inside each device will depend on the number of cores and type of that device,
and may vary from 8 on a Quad-core CPU to more than 100,000 on a GPU.

PHACT may be used to count all the solutions of a given CSP, to find just
one solution or a best one (for optimization problems).

Framework
PHACT is implemented in C and OpenCL [13], which allows its execution on
multiple types of devices from different vendors and the capability of being
executed on Linux or on Microsoft Windows.

We present some OpenCL concepts, in order to better understand PHACT’s
architecture:

– Compute unit. One or more processing elements and their local memory. In
Nvidia GPUs each Streaming Multiprocessor (SM) is a compute unit. AMD
GPUs have their own components called Compute Units that match this
definition. For CPUs and MICs, the number of available compute units is
normally equal to or higher than the number of threads that the device can
execute simultaneously [13];

– Kernel. The code that will be executed on the devices;
– Work-item. An instance of the kernel (thread);
– Work-group. Composed of one or more work-items that will be executed

on the same compute unit, in parallel. All work-groups for one kernel on one
device have the same number of work-items;

– Host. CPU where the application responsible for managing the execution of
the kernels is run;

– Device. A device where the kernels are executed (CPU, GPU, MIC).

In the implementation described here, the master process and the threads
responsible for communicating with the devices run on the OpenCL host and
the search engines run on the devices. The OpenCL host may also constitute a
device, in which case it will be simultaneously controlling and communicating
with the devices and running search engines. Each search engine corresponds to
a work-item, and all work-items execute the same kernel code, which implements
the search engine.

Search Space Splitting and Work Distribution
For distributing the work between the devices, PHACT splits the search space
into multiple sub-search spaces. Search-space splitting is effected by partitioning
the domains of one or more of the variables of the problem, so that the resulting
sub-search spaces partition the full search space. The number and the size of the
sub-search spaces thus created depend on the number of work-items which will
be used, and may go up to a few millions.

Constraint Solving on Hybrid Systems 7

Example 1 shows the result of splitting the search space of a CSP with three
variables, V 1, V 2 and V 3, all with domain {1, 2}, into 4 sub-search spaces, SS1,
SS2, SS3 and SS4.

Example 1. Creation of 4 sub-search spaces

SS1 = {V 1 = {1}, V 2 = {1}, V 3 = {1, 2}}
SS2 = {V 1 = {1}, V 2 = {2}, V 3 = {1, 2}}
SS3 = {V 1 = {2}, V 2 = {1}, V 3 = {1, 2}}
SS4 = {V 1 = {2}, V 2 = {2}, V 3 = {1, 2}}

Since each device will have multiple search engines running in parallel, the
computed partition is organized into blocks of contiguous sub-search spaces that
will be handled by each device, one at a time. The number of sub-search spaces
that will compose each block will vary along the solving process and depends on
the performance of each device on solving the current problem.

The communicator threads running on the host launch the execution of the
search engines on the devices, hand each device one block of sub-search spaces to
explore, and coordinate the progress of the solving process as each device finishes
exploring its assigned block. The coordination of the devices consists in assessing
the state of the search, distributing more blocks to the devices, signaling to all
the devices that they should stop (when a solution has been found and only one
is wanted), or updating the current bound (in optimization problems).

Load Balancing
An essential aspect to consider when parallelizing some task is the balancing of
the work between the parallel components. Creating sub-search spaces with bal-
anced domains, when possible, is no guarantee that the amount of work involved
in exploring each of them is even similar. To compound the issue, we are dealing
with devices with differing characteristics and varying speeds, making it even
harder to statically determine an optimal, or even good, work distribution.

Achieving effective load balancing between devices with such different archi-
tectures as CPUs and GPUs is a complex task [10]. When trying to imple-
ment dynamic load balancing, two important OpenCL limitations arise, namely
when a device is executing a kernel it is not possible for it to communicate
with other devices [8], and the execution of a kernel can not be paused or
stopped. Hence, techniques like work stealing [5,17], which requires commu-
nication between threads, will not work with kernels that run independently on
different devices and load balancing must be done on the host side.

To better manage the distribution of work, the host could reduce the amount
of work it sends to the devices each time, by reducing the number of sub-search
spaces in each block. This would make the devices synchronize more frequently
on the host and allow for a finer control over the behavior of the solver. When
working with GPUs, though, the number and the size of data transfers between
the devices and the host should be as small as possible, because these are very
time consuming operations. So, a balance must be struck between the workload
of the devices and the amount of communication needed.

8 P. Roque and V. Pedro

PHACT implements a dynamic load balancing technique which adjusts the
size of the blocks of sub-search spaces to the performance of each device solving
the current problem, when compared to the performance of the other devices.

Initially each device d explores two small blocks of sub-search spaces to get
the average time, avg(d), it needs to explore one sub-search space. The size
of those blocks may be distinct among devices as it is calculated according to
the number of threads that each device is capable of running simultaneously
and its clock speed. When two or more devices finish exploring those first two
blocks, their rank, rank(d) is calculated according to Eq. (1), where m is the
total number of devices.

rank(d) =
1

avg(d)
m∑

i=1

1
avg(i)

, avg(i) > 0 (1)

The rank of a device consists of a value between 0 and 1, corresponding to
the relative speed of the device against all the devices that were used for solving
a block of sub-search spaces. Faster devices will get a higher rank than slower
devices, and the sum of the ranks of all the devices will be 1. The rank is then
used to calculate the size of the next block of sub-search spaces to send to the
device, by multiplying its value by the number of sub-search spaces that are yet
to be explored.

Since the size of the first two blocks of sub-search spaces explored by each
device is small, to prevent slow devices from dominating the solving process,
it often only allows for a rough approximation of the speed of a device. So, in
the beginning, only 1/3 of the remaining sub-search spaces are considered when
computing the size of the next block to send to a device.

For the first device to finish its first two blocks, it will not be possible to
calculate its rank, as it would need the average time of at least one more device.
In this case, that device will get a new block with twice the size of the previous
ones, as this device is probably the fastest device solving the current problem.

As search progresses, every time a device finishes exploring another block,
its average time and rank are updated. The value of the average time of a device
is the result of dividing the total time that the device was exploring sub-search
spaces by the total number of sub-search spaces that it explored already.

As the rank value stabilizes, the size of the new block of sub-search spaces for
the device will be the corresponding percentage from all unexplored sub-search
spaces. Table 1 exemplifies the calculation of the number of search spaces that
will compose the block of search spaces which will be sent for each device as soon
as each of them finishes its previous block. This is repeated until a device waiting
for work is estimated to need less than one second2 to solve all the remaining
sub-search spaces, in which case it will be assigned all of them.

2 If a device takes less than one second to explore a block of search spaces, most of
that time is spent communicating with the host and initializing its data structures.

Constraint Solving on Hybrid Systems 9

Table 1. Example of the calculation of blocks size when using three devices

Device Average time per
search space (ms)

Rank Remaining sub-search
spaces to explore

Size of the next block
of sub-search spaces

Device 1 0.00125 0.625 1233482 770926

Device 2 0.00236 0.331 462556 153106

Device 3 0.01782 0.044 309450 13616

Another challenge GPUs pose is that they achieve the best performance when
running hundreds or even thousands of threads simultaneously. But to use that
level of parallelism, they must have enough work to keep that many threads
busy. Otherwise, when a GPU receives a block with less sub-search spaces than
the number of threads that would allow it to achieve its best performance, the
average time needed to explore one sub-search space increases sharply.

For example the Nvidia GeForce GTX 980M takes about 1.1 s to find all the
solutions for the n-Queens 13 when splitting the problem in 742,586 sub-search
spaces, and 2.4 s when split in only 338 sub-search spaces. This challenge is also
valid for CPUs, but not so problematic due to their lesser degree of parallelism
when compared with the GPUs.

To overcome that challenge, sub-search spaces may be further divided inside
a device, by applying a multiplier factor m to the size of a block and turning
a block of sub-search spaces into a block with m times the original number of
sub-search spaces, that will be created as presented in Example 1.

Communication
To reduce the amount of data that is transferred to each device, all of them will
receive the full CSP, that is, all the constraints, variables and their domains,
at the beginning of the solving process. Afterwards, when a device must be
instructed to solve a new block of sub-search spaces, instead of sending all the
sub-search spaces to the device, only the information needed to create those
sub-search spaces is sent.

If a device is to solve sub-search spaces SS2 and SS3 from Example 1, it
will receive the information that the tree must be expanded down to depth 2,
that the values of the first variable are repeated 2 times and the values of the
second variable are repeated 1 time only (not repeated). With this information
the device will know that the values of the first variable are repeated 2 times,
so the third sub-search space (SS3) will get the second value of that variable,
and so on down to the expansion depth. The values of the variables that were
not expanded are simply copied from the original CSP that was passed to the
devices at the beginning of the solving process.

Each time a work-item needs a new sub-search space to explore, it increases
by one the number of the first/next sub-search space that is yet to be explored
on that device and creates the sub-search space corresponding to the number
before being increased. Then it will do labeling, propagation and backtracking
on that search-space, repeating all these steps until either all the sub-search

10 P. Roque and V. Pedro

spaces of that block have been explored, when all the solutions must be found,
or only one solution is wanted and one of the work-items on that device finds
a solution.

Implementation Details
Several tests were made to find the best number of work-groups to use for each
type of device. It was found that for CPUs and MICs the best results were
achieved with the same number of work-groups as the amount of compute units
of the device. For GPUs, the predefined number of work-groups is 4096 due to
the increased level of parallelism allowed by this type of devices.

The user can specify how many sub-search spaces must be created or let
PHACT estimate that number. For estimating the number of sub-search spaces
that will be generated, PHACT will sum all the work-items that will be used in
all the devices and multiply that value by 40 if all the solutions must be found
for the current CSP, or by 100 if only one solution is required or when solving an
optimization problem. After several tests these values (40 and 100) were found
as allowing to achieve a good load balancing between the devices, and as such
they are the predefined values.

When looking for just one solution or optimizing, the amount of work sent
to each device is reduced by generating more sub-search spaces and decreas-
ing the size of the blocks sent to the devices, which makes each one of them
faster to explore, to make sure all the devices are synchronized on the host more
frequently.

As for the number of work-items per work-group, CPUs and MICs are
assigned one work-item per work-group, as their compute units can only exe-
cute one thread at a time.

On the contrary, each GPU compute unit can execute more than one thread
simultaneously. For example, the Nvidia GeForce GTX 980 has 16 SMs with 128
CUDA cores3 each, making a total of 2048 CUDA cores. Nevertheless, each SM is
only capable of executing simultaneously 32 threads (using only 32 CUDA cores
at the same time) making it capable of running 512 threads simultaneously [15].

Each SM has very limited resources that are shared between work-groups and
their work-items, thus limiting the number of work-items per work-group that
can be used according to the resources needed by each work-item. The main
limitation is the size of the local memory of each SM that is shared between
all the work-items of the same work-group and between some work-groups (8
work-groups for the Nvidia GeForce GTX 980).

For this reason, PHACT estimates the best number of work-items per work-
group to use for GPUs, by limiting the amount of local memory required to the
size of the available local memory on the GPU. When the available local memory
is not enough to efficiently use at least one work-item per work-group, PHACT
will only use the global memory of the device, which is much larger but also
much slower, and 32 work-items per work-group, as each SM is only capable of
running 32 threads simultaneously.
3 A CUDA core is a processing element capable of executing one integer or floating

instruction per clock for a thread.

Constraint Solving on Hybrid Systems 11

Note that PHACT represents variable domains as either 32-bit bitmaps, mul-
tiples of 64-bit bitmaps, or as (compact) intervals. When using intervals, PHACT
is slower than when using bitmaps, but intervals are meant to be used instead
of larger bitmaps on systems where the size of the RAM is an issue.

The techniques described in this section allow PHACT to use all the devices
compatible with OpenCL to solve a CSP. It splits the search space in multiple
search spaces that are distributed among the devices in blocks to reduce the
number of communications between the host and the devices. The size of each
block is calculated according to the speed of the respective device when solving
the previous blocks to try to achieve a good load balancing between the devices.
The size of the data transfers between the devices and the host is reduced by
replacing the blocks of fully created search spaces with a small data set containing
the information needed for a device to generate those search spaces.

5 Results and Discussion

PHACT was evaluated on finding all the solutions for four different CSPs, on
optimizing one other CSP and on finding one solution for another CSP, each
one with two different sizes, except for the Latin Problem whose smaller size
is solved too fast and a bigger size takes too long to solve. Those tests were
executed on one, two and three devices and on four different machines running
Linux to evaluate the speedups when adding more devices to help the CPU.

PHACT performance was compared with those of PaCCS and Gecode 5.1.0
on these four machines. The four machines have the following characteristics:

M1. Machine with 32 GB of RAM and:
– Intel Core i7-4870HQ (8 compute units);
– Nvidia GeForce GTX 980M (12 compute units).

M2. Machine with 64 GB of RAM and:
– Intel Xeon E5-2690 v2 (referred to as Xeon 1, 40 compute units);
– Nvidia Tesla K20c (13 compute units).

M3. Machine with 128 GB of RAM and:
– AMD Opteron 6376 (64 compute units);
– Two AMD Tahitis (32 compute units each). These two devices are com-

bined in an AMD Radeon HD 7990, but are managed separately by
OpenCL.

M4. Machine with 64 GB of RAM and:
– Intel Xeon CPU E5-2640 v2 (referred to as Xeon 2, 32 compute units);
– Two Intel Many Integrated Core 7120P (240 compute units each).

Tables 2, 3, 4 and 5 present the elapsed times and speedups when solving
all the problems on M1, M2, M3 and M4, respectively. Five of the six problems
models were retrieved from the Minizinc Benchmarks suite [12]. The Langford
Numbers problem was retrieved from CSPLib [9], due to the absence of reified
constraints on PHACT and PaCCS, that are used in the Minizinc Benchmarks

12 P. Roque and V. Pedro

model, which would lead to different constraints being used among the three
solvers. PaCCS does not have the “absolute value” constraint implemented, so
it was not tested with the All Interval problem.

This set of problems allowed to evaluate the solvers with 8 different con-
straints combined with each other in different ways. All the solutions were found
for the problems whose name is followed by “(Count)” on the tables, the opti-
mal solution was searched for the problem identified with “(Optim.)” and for
the problem whose name is followed by “(One)”, only one solution was required.

For simplicity, the 4 tables have the resources used on the respective machine
identified as R1, R2, R3 and R4, where R1 means using only a single thread on
the CPU, R2 means using all the threads of that CPU, R3 means using all the
threads on the CPU and one device (Geforce, Tesla, Tahiti or MIC), and R4
means using all the threads on the CPU and two identical devices (MICs or
Tahitis). It must be noted that only PHACT is capable of using R3 and R4
resources.

Table 2 shows that using the Geforce to help I7 allowed speedups of up to
4.66. However, in two problems, using also the Geforce resulted in more time
needed to solve the same problems. This result is mainly due to the small number
of work-items per work-group that was effectively used on Geforce, due to the
local memory limitations detailed in Sect. 4. On this machine, adding the Geforce
to help I7 allowed a geometric mean speedup of 1.53.

The slowdown noted when optimizing the Golomb Ruler with 12 marks is
also due to the impossibility of different devices communicating with each other
while their kernels are running, as stated in Sect. 4. This is problematic when
optimizing, as a device which finds a better solution cannot tell the other devices
to find only solutions better than the one it just found. Instead it will finish
exploring its block of sub-search spaces and only after that it will inform the host
about the new solution, and only after this point, when another device finishes
its block, it will be informed about the new solution that must be optimized.
Due to this limitation, the devices spend some time looking for solutions that
may already be worse than the ones found by other devices. This problem was
also noted on the other three machines.

As for the Langford Numbers problem with 14 numbers, the worse result
when adding the Geforce was due to the very unbalanced sub-search spaces
that are generated leading to most of sub-search spaces being easily detected as
inconsistent, and only a few containing most of the work. This is problematic,
because as each thread explores each sub-search space sequentially, in the end
only a few threads will be working on the harder sub-search spaces while the
others are idle. This problem was also noted on the other three machines.

PHACT was faster than PaCCS in all problems, achieving speedups of up
to 5.37.

When comparing with Gecode, PHACT achieved good speedups on all the
problems, except on Market Split, which is a simple problem with only one
constraint type which may have a faster propagator on Gecode. On the contrary,
with the Latin problem, Gecode was 127.85 times slower than PHACT when

Constraint Solving on Hybrid Systems 13

Table 2. Elapsed times and speedups on M1, with 4 cores and 1 GPU

CSP ResourcesPHACT PaCCS GECODE

Elapsed

(s)

Speedup

vs. fewest

resources

Elapsed

(s)

Speedup

vs. fewest

resources

PHACT

speedup

Elapsed

(s)

Speedup

vs. fewest

resources

PHACT

speedup

All Interval 14

(Count)

R1 872.31 1188.10 1.36

R2 101.17 8.62 304.78 3.90 3.01

All Interval 15

(Count)

R2 1477.15 3303.50 2.24

R3 317.32 4.66 10.41

Costas Array 13

(Count)

R1 70.64 149.68 2.12 180.30 2.55

R2 16.41 4.30 34.85 4.29 2.12 41.78 4.32 2.55

Costas Array 15

(Count)

R2 555.61 1295.94 2.33 1422.73 2.56

R3 409.24 1.36 3.17 3.48

Golomb Ruler

11 (Optim.)

R1 172.08 498.32 2.90 366.65 2.13

R2 41.08 4.19 122.96 4.05 2.99 91.54 4.01 2.23

Golomb Ruler

12 (Optim.)

R2 454.43 1440.14 3.17 1148.96 2.53

R3 468.55 0.97 3.07 2.45

Langford Numb.

13 (Count)

R1 64.85 76.99 1.19 104.96 1.62

R2 19.54 3.32 21.04 3.66 1.08 24.84 4.23 1.27

Langford Numb.

14 (Count)

R2 159.58 184.11 1.15 197.97 1.24

R3 171.65 0.93 1.07 1.15

Latin 6 (Count) R1 1010.30 1746.46 1.73 20936.00 20.72

R2 209.40 4.82 385.62 4.53 1.84 26771.00 0.78 127.85

R3 118.13 1.77 3.26 226.62

Market Split

s4-07 (One)

R1 10.37 11.04 1.06 9.69 0.93

R2 3.16 3.28 1.19 9.28 0.38 3.94 2.46 1.25

Market Split

s5-01 (One)

R2 212.86 897.21 4.22 159.94 0.75

R3 167.07 1.27 5.37 0.96

using only the CPU. Gecode was slower in solving this problem with all the
CPU threads than when using only one thread, which suggests that the method
used for load balancing between threads is very inefficient for this problem. This
behavior of Gecode was noted in all the machines.

Table 3 presents the results on solving the same problems on M2. Using the
Tesla GPU to help the Xeon 1 resulted in most of the cases in a slowdown. In
fact, adding the Tesla to help Xeon 1 introduced an average slowdown of 0.84.
This is due to the fact that Tesla was the slowest GPU used on the tests, being
no match for Xeon 1. In fact, the work done by Tesla did not compensate the
time spent by Xeon 1 (host) to control Tesla (device).

On this machine, PHACT was faster than PaCCS in all but one prob-
lem, resulting in an average speedup of 1.44 favoring PHACT. Comparing with
Gecode, PHACT was faster on all the problems with all the resources combina-
tions.

The results for the M3 machine are presented in Table 4. This machine pos-
sesses the CPU used on the tests that has the greater number of cores (64),
and it is paired up with two Tahiti GPUs, that are faster than Tesla, but slower
than Geforce. So it is very hard for the Tahitis to display some performance
gains when compared with a 64 cores CPU. However, with the All Interval 15
problem, they were capable of speeding up the solving process by 1.48 times.
On average, adding the two Tahiti GPUs to help Opteron did not allow any

14 P. Roque and V. Pedro

Table 3. Elapsed times and speedups on M2, with 40 cores and 1 GPU

CSP Resources PHACT PaCCS GECODE

Elapsed

(s)

Speedup

vs. fewest

resources

Elapsed

(s)

Speedup

vs. fewest

resources

PHACT

speedup

Elapsed

(s)

Speedup

vs. fewest

resources

PHACT

speedup

All Interval 14

(Count)

R1 920.77 1356.75 1.47

R2 24.25 37.97 236.19 5.74 9.74

All Interval 15

(Count)

R2 329.57 2294.76 6.96

R3 263.60 1.25 8.71

Costas Array 13

(Count)

R1 74.77 183.80 2.46 188.43 2.52

R2 4.79 15.61 7.83 23.47 1.63 10.35 18.21 2.16

Costas Array 15

(Count)

R2 108.17 279.78 2.59 327.80 3.03

R3 144.73 0.75 1.93 2.26

Golomb Ruler

11 (Optim.)

R1 187.59 548.46 2.92 363.87 1.94

R2 10.59 17.71 27.84 19.70 2.63 25.85 14.08 2.44

Golomb Ruler

12 (Optim.)

R2 114.22 253.73 2.22 293.17 2.57

R3 180.56 0.63 1.41 1.62

Langford Numb.

13 (Count)

R1 78.83 83.84 1.06 115.89 1.47

R2 6.52 12.09 4.25 19.73 0.65 13.52 8.57 2.07

Langford Numb.

14 (Count)

R2 41.89 36.41 0.87 100.98 2.41

R3 60.24 0.70 0.60 1.68

Latin 6 (Count) R1 1126.44 1849.59 1.64 26653.00 23.66

R2 51.24 21.98 85.25 21.70 1.66 59227.00 0.45 1155.87

R3 56.77 0.90 1.50 1043.28

Market Split

s4-07 (One)

R1 11.17 12.24 1.10 11.22 1.00

R2 2.37 4.71 0.30 40.80 0.13 5.94 1.89 2.51

Market Split

s5-01 (One)

R2 46.39 148.69 3.21 1163.47 25.08

R3 48.09 0.96 3.09 24.19

speedup, because the time spent by Opteron to control and communicate with
the Tahitis was similar to the time that the Opteron would take to perform the
work done by the Tahitis.

The issues with Golomb Ruler and Langford Number discussed before in this
section, were also noted on this machine.

When comparing with PaCCS, PHACT achieved speedups that ranged from
0.21 on a very small problem to 4.67. PHACT was faster than Gecode in all
the tests, except when optimizing Golomb Ruler 12 with the Opteron and one
Tahiti.

Table 5 presents the results on the M4 machine. This machine possesses two
MICs whose architecture is more similar to the CPUs than to GPUs, so, they
are more prepared for solving sequential problems than GPUs. That difference
was noted with the Langford Numbers problem, where they were capable of
achieving a speedup of 1.51 despite the unbalanced sub-search spaces. On this
machine, adding the two MICs to help Xeon 2 allowed an average speedup of
1.45. When counting all the solutions for the Costas Array 15, the two MICs
allowed a top speedup of 1.90.

When compared with PaCCS and Gecode the results are very similar to the
ones achieved on the other machines, being faster than Gecode in all but one
problem and faster than PaCCS in 19 of the 24 tests.

Constraint Solving on Hybrid Systems 15

Table 4. Elapsed times and speedups on M3, with 64 cores and 2 GPUs

CSP ResourcesPHACT PaCCS GECODE

Elapsed

(s)

Speedup

vs. fewest

resources

Elapsed

(s)

Speedup

vs. fewest

resources

PHACT

speedup

Elapsed

(s)

Speedup

vs. fewest

resources

PHACT

speedup

All Interval 14

(Count)

R1 1806.78 2363.88 1.31

R2 26.46 68.28 838.62 2.82 31.69

All Interval 15

(Count)

R2 351.33 8502.00 24.20

R3 175.26 2.00 48.51

R4 237.49 1.48 35.80

Costas Array 13

(Count)

R1 133.62 345.57 2.59 334.95 2.51

R2 5.09 26.25 7.91 43.69 1.55 31.39 10.67 6.17

Costas Array 15

(Count)

R2 114.31 281.16 2.46 692.10 6.05

R3 118.13 0.97 2.38 5.86

R4 111.69 1.02 2.52 6.20

Golomb Ruler

11 (Optim.)

R1 378.81 1225.71 3.24 640.88 1.69

R2 11.56 32.77 29.72 41.24 2.57 26.80 23.91 2.32

Golomb Ruler

12 (Optim.)

R2 126.72 309.72 2.44 312.81 2.47

R3 361.60 0.35 0.86 0.87

R4 138.28 0.92 2.24 2.26

Langford Numb.

13 (Count)

R1 133.78 173.59 1.30 195.70 1.46

R2 6.38 20.97 4.85 35.79 0.76 47.95 4.08 7.52

Langford Numb.

14 (Count)

R2 40.42 40.91 1.01 387.10 9.58

R3 101.43 0.40 0.40 3.82

R4 56.11 0.72 0.73 6.90

Latin 6 (Count) R1 1871.64 3489.64 1.86 49361.00 26.37

R2 50.07 37.38 79.12 44.11 1.58 138065.00 0.36 2757.44

R3 56.95 0.88 1.39 2424.32

R4 44.37 1.13 1.78 3111.67

Market Split

s4-07 (One)

R1 19.24 23.24 1.21 20.54 1.07

R2 2.25 8.55 0.48 48.42 0.21 21.81 0.94 9.69

Market Split

s5-01 (One)

R2 46.69 218.07 4.67 2505.31 53.66

R3 48.48 0.96 4.50 51.68

R4 50.96 0.92 4.28 49.16

Figure 1 presents the geometric mean of the speedups achieved by PHACT
against PaCCS and Gecode, showing that PHACT was faster than Gecode and
PaCCS on all the machines with all the resources combinations.

We can observe that the difference in performance between PHACT and
Gecode is greater on the machines that have a CPU with more cores, which shows
that the load balancing techniques implemented in PHACT are more efficient
for the problems that were presented here. When compared with PaCCS, that
relation is no longer noticed and the results are much closer between the two
solvers when using only the CPUs.

Using all the available resources on the four machines allowed PHACT to
increase its performance when compared to PaCCS and Gecode, which shows
that its greater versatility can lead to an improved performance.

16 P. Roque and V. Pedro

Table 5. Elapsed times and speedups on M4, with 32 cores and 2 MICs

CSP Resources PHACT PaCCS GECODE

Elapsed

(s)

Speedup

vs. fewest

resources

Elapsed

(s)

Speedup

vs. fewest

resources

PHACT

speedup

Elapsed

(s)

Speedup

vs. fewest

resources

PHACT

speedup

All Interval 14

(Count)

R1 1697.78 1940.32 1.14

R2 43.69 38.86 310.89 6.24 7.12

All Interval 15

(Count)

R2 624.58 2986.63 4.78

R3 304.83 2.05 9.80

R4 245.43 2.54 12.17

Costas Array 13

(Count)

R1 118.40 262.07 2.21 270.49 2.28

R2 7.73 15.32 13.92 18.83 1.80 17.62 15.35 2.28

Costas Array 15

(Count)

R2 229.28 507.47 2.21 586.08 2.56

R3 174.52 1.31 2.91 3.36

R4 120.85 1.90 4.20 4.85

Golomb Ruler

11 (Optim.)

R1 262.06 793.89 3.03 526.13 2.01

R2 17.35 15.10 48.15 16.49 2.78 42.85 12.28 2.47

Golomb Ruler

12 (Optim.)

R2 195.73 439.97 2.25 456.06 2.33

R3 388.82 0.50 1.13 1.17

R4 279.53 0.70 1.57 1.63

Langford Numb.

13 (Count)

R1 119.68 120.81 1.01 166.89 1.39

R2 10.48 11.42 7.51 16.09 0.72 17.33 9.63 1.65

Langford Numb.

14 (Count)

R2 79.72 64.10 0.80 132.85 1.67

R3 77.60 1.03 0.83 1.71

R4 52.76 1.51 1.21 2.52

Latin 6 (Count) R1 1645.52 2664.03 1.62 39611.00 24.07

R2 84.38 19.50 149.60 17.81 1.77 72203.00 0.55 855.69

R3 73.69 1.15 2.03 979.82

R4 65.59 1.29 2.28 1100.82

Market Split

s4-07 (One)

R1 18.35 17.54 0.96 15.94 0.87

R2 2.48 7.40 0.43 40.79 0.17 7.34 2.17 2.96

Market Split

s5-01 (One)

R2 80.88 213.38 2.64 280.07 3.46

R3 68.03 1.19 3.14 4.12

R4 57.96 1.40 3.68 4.83

Fig. 1. Speedups when using PHACT against PaCCS and Gecode on the four machines

Constraint Solving on Hybrid Systems 17

6 Conclusion and Future Work

To our knowledge, PHACT is the only constraint solver capable of using simul-
taneously CPUs, GPUs, MICS and any other device compatible with OpenCL
to solve CSPs in a faster manner. Although GPUs are not particularly efficient
for this type of problems, they still can speed up the solving process and in some
cases, be even faster than the CPU of the same machine.

PHACT has been tested with 6 different CSPs on 4 different machines with
2 and 3 devices each, namely Intel CPUs and MICs, Nvidia GPUs, and AMD
CPUs and GPUs, allowing it to achieve speedups of up to 4.66 when compared
with using only the CPU of the machine to solve a single CPS, and a geometric
mean speedup of up to 1.53 when solving all the referred CSPs on each machine.

On the four machines used for testing, PHACT achieved a geometric mean
speedup that ranged from 1.28 to 2.83 when compared with PACCS, and 2.31 to
28.44 when compared with Gecode. The use of all the devices compatible with
OpenCL to solve a CSP allowed PHACT to improve its performance against
PaCCS and Gecode when compared with using only the CPUs.

Campeotto et al. [4] achieved a top speedup of 6.61 when using one thread of
a CPU together with a GPU, while PHACT achieved average speedups between
1.56 and 2.88 when using one thread on a CPU and a GPU, with a top speedup
of 15.15, and average and top speedups of 7.33 and 30.63 when replacing the
GPU by two MICs. Although their technique of using the GPUs to propagate
constraints relating many variables seems to have significant host–device syn-
chronization requirements, we intend to test this approach in the future.

PHACT is yet being improved to try to overcome the lack of synchroniza-
tion between devices when optimizing. The solution may pass by more frequent
communication between host and devices, taking into account the number of
solutions already found and increasing the frequency of the communication for
problems with more solutions.

As for the unbalanced sub-search spaces that lead to only a few threads
working in parallel while the others have already finished their work, we are
analysing a work-sharing strategy [18] that may be executed when all the sub-
search spaces generated for the block have ended but some threads are still
working.

A MiniZinc/FlatZinc [14] reader is also being implemented to allow the direct
input of problems already modeled in this language.

Acknowledgments. This work was partially funded by Fundação para a Ciência e
Tecnologia (FCT) under grant UID/CEC/4668/2016 (LISP). Some of the experimen-
tation was carried out on the khromeleque cluster of the University of Évora, which
was partly funded by grants ALENT-07-0262-FEDER-001872 and ALENT-07-0262-
FEDER-001876.

18 P. Roque and V. Pedro

References

1. Arbelaez, A., Codognet, P.: A GPU implementation of parallel constraint-based
local search. In: 2014 22nd Euromicro International Conference on PDP, pp. 648–
655. IEEE (2014)

2. Barták, R., Salido, M.A.: Constraint satisfaction for planning and scheduling prob-
lems. Constraints 16(3), 223–227 (2011)

3. Brailsford, S., Potts, C., Smith, B.: Constraint satisfaction problems: algorithms
and applications. Eur. J. Oper. Res. 119, 557–581 (1999)

4. Campeotto, F., Dal Palù, A., Dovier, A., Fioretto, F., Pontelli, E.: Exploring the
use of GPUs in constraint solving. In: Flatt, M., Guo, H.-F. (eds.) PADL 2014.
LNCS, vol. 8324, pp. 152–167. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-04132-2 11

5. Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in parallel
constraint programming. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 226–
241. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7 20

6. Diaz, D., Richoux, F., Codognet, P., Caniou, Y., Abreu, S.: Constraint-based local
search for the costas array problem. In: Hamadi, Y., Schoenauer, M. (eds.) LION
2012. LNCS, pp. 378–383. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34413-8 31

7. Filho, C., Rocha, D., Costa, M., Albuquerque, P.: Using constraint satisfaction
problem approach to solve human resource allocation problems in cooperative
health services. Expert Syst. Appl. 39(1), 385–394 (2012)

8. Gaster, B., Howes, L., Kaeli, D., Mistry, P., Schaa, D.: Heterogeneous Computing
with OpenCL. Morgan Kaufmann Publishers Inc., San Francisco (2011)

9. Jefferson, C., Miguel, I., Hnich, B., Walsh, T., Gent, I.P.: CSPLib: a problem
library for constraints (1999). http://www.csplib.org

10. Jenkins, J., Arkatkar, I., Owens, J.D., Choudhary, A., Samatova, N.F.: Lessons
learned from exploring the backtracking paradigm on the GPU. In: Jeannot, E.,
Namyst, R., Roman, J. (eds.) Euro-Par 2011. LNCS, vol. 6853, pp. 425–437.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23397-5 42

11. Mairy, J.-B., Deville, Y., Lecoutre, C.: Domain k-wise consistency made as sim-
ple as generalized arc consistency. In: Simonis, H. (ed.) CPAIOR 2014. LNCS,
vol. 8451, pp. 235–250. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07046-9 17

12. MIT: a suite of minizinc benchmarks (2017). https://github.com/MiniZinc/
minizinc-benchmarks

13. Munshi, A., Gaster, B., Mattson, T.G., Fung, J., Ginsburg, D.: OpenCL Program-
ming Guide, 1st edn. Addison-Wesley Professional, Boston (2011)

14. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS,
vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74970-7 38

15. NVIDIA Corporation: NVIDIA GeForce GTX 980 featuring maxwell, the most
advanced GPU ever made. White paper. NVIDIA Corporation (2014)

16. Pedro, V.: Constraint programming on hierarchical multiprocessor systems. Ph.D.
thesis, Universidade de Évora (2012)

17. Pedro, V., Abreu, S.: Distributed work stealing for constraint solving. In: Vidal,
G., Zhou, N.F. (eds.) CICLOPS-WLPE 2010, Edinburgh, Scotland, U.K. (2010)

https://doi.org/10.1007/978-3-319-04132-2_11
https://doi.org/10.1007/978-3-319-04132-2_11
https://doi.org/10.1007/978-3-642-04244-7_20
https://doi.org/10.1007/978-3-642-34413-8_31
https://doi.org/10.1007/978-3-642-34413-8_31
http://www.csplib.org
https://doi.org/10.1007/978-3-642-23397-5_42
https://doi.org/10.1007/978-3-319-07046-9_17
https://doi.org/10.1007/978-3-319-07046-9_17
https://github.com/MiniZinc/minizinc-benchmarks
https://github.com/MiniZinc/minizinc-benchmarks
https://doi.org/10.1007/978-3-540-74970-7_38
https://doi.org/10.1007/978-3-540-74970-7_38

Constraint Solving on Hybrid Systems 19

18. Rolf, C.C., Kuchcinski, K.: Load-balancing methods for parallel and distributed
constraint solving. In: 2008 IEEE International Conference on Cluster Computing,
pp. 304–309, September 2008

19. Rolf, C.C., Kuchcinski, K.: Parallel solving in constraint programming. In: MCC
2010, November 2010

20. Régin, J.-C., Rezgui, M., Malapert, A.: Embarrassingly parallel search. In: Schulte,
C. (ed.) CP 2013. LNCS, vol. 8124, pp. 596–610. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40627-0 45

21. Schulte, C.: Parallel search made simple. In: Beldiceanu, N., et al. (eds.) Proceed-
ings of TRICS: CP 2000, Singapore, September 2000

22. Schulte, C., Duchier, D., Konvicka, F., Szokoli, G., Tack, G.: Generic constraint
development environment. http://www.gecode.org/

https://doi.org/10.1007/978-3-642-40627-0_45
http://www.gecode.org/

Run-Time Analysis of Temporal
Constrained Objects

Jinesh M. Kannimoola1(B), Bharat Jayaraman2, and Krishnashree Achuthan1

1 Center for Cybersecurity Systems and Networks,
Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, India

jinesh@am.amrita.edu, krishna@amrita.edu
2 Department of Computer Science and Engineering,
State University of New York at Buffalo, Buffalo, USA

bharat@buffalo.edu

Abstract. The programming paradigm of constrained objects is a
declarative variant of the object-oriented paradigm wherein objects
define the structure of a system and declarative constraints (rather than
imperative methods) define its behavior. Constrained objects have many
uses in the engineering domain and computation in this paradigm is
essentially constraint solving. This paper is concerned with an exten-
sion of constrained objects called temporal constrained objects, which
are especially appropriate for modeling dynamical systems. The main
extensions are series variables and metric temporal operators to declar-
atively specify time-varying behavior. The language TCOB exemplifies
this paradigm and the execution of TCOB programs consists of con-
straint solving within a time-based simulation framework. One of the
challenges in TCOB is identifying errors owing both to the complexity
of programs and the underlying constraint solving methods. We address
this problem by extracting a run-time trace of the execution of a TCOB
program and providing an analysis of the cause of error. The run-time
trace also serves as a basis, in many cases, for constructing a finite-state
machine which in turn can be used for ‘model-checking’ properties of the
system. The paper also presents abstraction techniques for dealing with
simulations that result in large state spaces.

Keywords: Temporal constraints objects · Time-based simulation
Run-time verification · Finite state models · Error analysis
Predicate abstraction · Visualization

1 Introduction

Constrained objects are a natural modeling approach for complex structures
with two essential characteristics: (i) They are compositional in nature, i.e., a
complex structure is built (recursively) of smaller structures. (ii) The behavior
of an individual component by itself and its relation to other components are

c© Springer Nature Switzerland AG 2018
D. Seipel et al. (Eds.): DECLARE 2017, LNAI 10997, pp. 20–36, 2018.
https://doi.org/10.1007/978-3-030-00801-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00801-7_2&domain=pdf

Run-Time Analysis of Temporal Constrained Objects 21

regulated by laws, or rules. The language COB exemplifies this concept, and it
has been shown to be useful especially in modeling complex engineering struc-
tures [7]. COB makes use of Java-like classes, inheritance, and aggregation for
modeling structure and makes use of declarative constraints (rather than imper-
ative methods) for modeling behavior. The emergent behavior of a collection
of constrained objects is determined by a process of constraint solving over the
attributes of objects.

Temporal constrained objects [8] are an extension of constrained objects that
are particularly suited for modeling the time-dependent behavior of complex
dynamic systems. The new feature here is the series variable, which records the
sequence of changes to some entity of interest in a dynamic system. Time is
considered as a metric quantity; a built-in variable Time represents the current
time and it is automatically incremented by one unit to record the passage
of time. For example, while the current and voltage across a resistor in a DC
circuit can be modeled using ordinary variables, in an AC circuit the current and
voltage change with time and hence are better modeled with series variables. It
is common, in such examples, for constraints to be placed over consecutive values
in the time-sequence. The language TCOB extends COB with series variables
as well as metric temporal operators, which are a metric variant of the classic
temporal operators of LTL [3]. Together they are effective in specifying the
overall dynamic behavior of a variety of complex structures. The execution model
for TCOB involves a time-based simulation along with constraint solving at each
time-step.

Run-time analysis refers to methods and tools for monitoring the run-time
behavior of a program or system with the goal of debugging and verifying its
behavior. An important aspect of run-time analysis is run-time verification,
which attempts to bridge the gap between formal verification and software test-
ing [9]. Most of these techniques are based upon a finite execution trace of a
program [13]. The execution trace records the major events that occurred dur-
ing execution, such as variable/field read’s and write’s, method call/return, and
object creation. In this paper we investigate the usability of a similar approach
in the paradigm of temporal constrained objects, an important difference being
that state updating is not permitted in our paradigm.

The time-based simulation used in temporal constrained objects naturally
lends itself to analysis based upon a linear execution trace. Detecting errors
when constraint solving is interwoven with a time-based simulation is especially
challenging because the cause of an error often is often separated by many time
steps from the point at which the symptom of the error manifests. We show how
run-time analysis together with run-time visualization greatly help in addressing
this challenge. We construct a temporal constraint dependency graph at run-time
in order to clarify temporal dependencies and help identification of errors.

We also extract a finite state machine from the execution trace and formu-
late properties of interest as verification conditions in a propositional temporal
logic [3]. A state consists of the values of a set of variables chosen by the user. The
set of states is the set of distinct combinations of values taken by these variables

22 J. M. Kannimoola et al.

during the course of program execution. Since state updating is not possible
in temporal constrained objects, state changes are possible only because series
variables may assume different values as time progresses. Of course, it is possible
that the series variables assume the same values at two different points in time,
i.e., it is possible that states repeat. Sometimes there could be a large number of
states, and there is a need to construct a reduced run-time model that clarifies
the emergent behavior at a high level. We propose an approach which we call
predicate abstraction in order to reduce the number of states without losing an
abstract view of the system. In our approach, we can directly encode the predi-
cate abstraction rules as constraints in the system. Thus, our run-time analysis
is a combination of visualization, error-detection and verification.

The remainder of this paper is organized as follows. Section 2 discusses the
related literature in this field; Sect. 3 introduces the concept of temporal con-
strained objects with the aid of examples; Sect. 4 presents the run-time analysis
of temporal constrained objects; and, finally, Sect. 5 presents conclusions and
areas of further work.

2 Related Work

Run-time verification is based on extracting a trace from a running system
and using it to detect observed behaviors satisfying or violating certain prop-
erties [9]. Binary code instrumentation [4] is one of the most commonly used
mechanisms for trace extraction. Ducassé et al. [5] discuss dynamic program
analysis and debugging in different logic programming environments. Different
approaches are used for extracting an execution trace from a logic program,
including source code instrumentation, meta-interpreter instrumentation and
compiled code instrumentation.

As the textual representation of the trace is usually not very informative and
often difficult to interpret and understand, tools such as JIVE [13] and Java Path
Finder [4] support various diagrams built from the execution trace for the easy
debugging of Java programs. Maggi et al. [10] introduces the automata-based
techniques for the runtime verification of LTL-based process models extracted
from the execution logs. In the logic programming context, in addition to domain
specific visualization, most logic programming environments support step-by-
step execution of programs with limited graphical debugging capability. A good
example is SWI-Prolog [12] which provides a step-by-step debugger with views
of the call-stack and variable bindings.

The concept of variable binding in constraint languages is more complex than
in imperative languages. Carro Liñares et al. [2] presents a visual representation
of finite domain CLP programs. This approach mainly focuses on the evolution
of variables during the labeling phase of constraint evaluation. The reference [2]
also introduces the concept of abstract representation of a variable that has a
large number of possible values.

Run-time verification integrates tools and techniques proposed in the formal
methods field for the analysis of execution trace [4]. Run-time verification is

Run-Time Analysis of Temporal Constrained Objects 23

similar to model checking approach except that the model is built from finite set
of traces. RV-Match, RV-Predict and RV-Monitor [4] are some of the examples
which use formal analysis methods such as a symbolic execution engine, a seman-
tic debugger, a model checker, and a full-fledged deductive program verifier for
the debugging and verification of sequential and object oriented programs. Ref-
erence [1] introduces a three-valued semantics to include the meaning of partial
observation in run-time verification, where an inconclusive decision represents
the fact that the trace is not long enough to determine the truth value for tem-
poral specification.

The proposed approach in this paper has much in common with JIVE [13]
which supports run-time verification of state diagrams extracted from one or
more execution traces. This includes checking consistency of run-time with
design-time state diagrams, as well as checking properties stated in CTL. In
our approach, the execution trace is implicitly present in the values of series
variables at different points in time. In a way, series variables simplify the task
of extracting an execution trace.

3 Temporal Constrained Objects

Temporal constrained objects extend the basic paradigm of constrained objects
to support time-varying properties of dynamic systems. The TCOB execution
follows a discrete time simulation based on the value of built-in variable Time.
The user can attain any granularity of time by multiplying a suitable scaling
factor with Time, e.g., MyTime = 0.01*Time. The default initial value for Time
is equal to 1 unless the different value is specified by the user. A TCOB program
defines a collection of classes, each of which contains a set of attributes, con-
straints, predicates, and constructors [8]. Each of temporal constrained object is
an instance of some class whose outline is as follows.

class definition ::= [abstract] class class id [extends class id]{ body }
body ::= [attributes attributes]

[constraints constraints]
[predicates predicates]
[constructors constructors]

As in Java, single inheritance is defined by the extends keyword. An abstract
class is a class without a constructor and cannot be instantiated. An attribute
is a typed identifier, which support both primitive and user-defined types. The
keyword series is used to define series variable. The series variable takes on an
unbounded sequence of values over time, and temporal constraints are defined
in terms of past and future values of the series variable. For every series variable
v, the TCOB expression 'v and v' refers to the immediate previous and next
values of v respectively. These operators can be juxtaposed to refer to successive
values of v in the past or future. The past values of v at any point in time are
referred to by 'v, ''v, '''v, . . ., and the future values of v at any point in time

24 J. M. Kannimoola et al.

are referred to by v', v'', v''', TCOB also allows a series of variables to
be initialized by explicitly assigning values at specific time points. The value
of a series variable v at some specific time point i can be accessed by v<i>.
Appendix A shows the complete grammar of TCOB syntax.

Constraints are relations over the attributes of classes. TCOB supports sim-
ple, conditional, quantified and creational constraints over typed attributes. It
also provides two metric temporal operators, F and G, analogous to ‘always’ (�)
and ‘eventually’ (♦) operators in (non-metric) temporal logic. In the following,
evaluation of F and G operators are carried out with respect to the current value
of Time. The constraints specified with metric temporal operator is called metric
temporal constraints, which appears in the body part of conditional constraint.
The basic meaning of metric temporal constraints are

1. F p states that constraint p must hold at some time point in the future;
2. F<t> p states that constraint p must hold exactly after t units of time; and
3. F<t1,t2> p states the constraint p must hold sometime starting after t1 units

of time but before t2 units of time.
4. G p states that constraint p must hold at all time points in the future;
5. G<t> p states that constraint p must hold at all time points after t units of

time; and
6. G<t1,t2> p states the constraint p must hold at all time points starting after

t1 units of time but before t2 units of time.

Performance is one of the leading considerations for declarative programming
languages. We have discussed the performance of TCOB programs is detail in [8],
where we have shown the benefits of partial evaluation for improving run-time.
This is a compile-time optimization that unravels the time-loop and also elimi-
nates some of the inefficiencies arising due to layers of predicate calls and also
due to repeated consistency checks of the constraint store during constraint-
solving. By generating a reduced set of constraints as its output, partial evalua-
tion also helps make our language independent of specific constraint solvers. The
following section explains the PID controller and traffic lights example from [8].

PID Controller Example: A Proportional Integral Derivative (PID) controller
is one of the most commonly used control-loop feedback mechanism in industrial
automation. The PID controller consists of three components: controller, plant,
and sensor [11]. The output of the controller is given as the control input to
the plant. The sensor collects the output from the plant and calculates the error
based on the desired output. The estimated error is fed back as the controller
input. The controller is defined by the equation.

u(t) = Kpe(t) + Ki

∫ t

0

e(t)dt + Kd
de(t)
dt

Here u(t) represents the output from the controller; e(t) is the error feedback
to the controller; and the Kp, Ki and Kd are the non-negative coefficients. The
first term denotes the present value of the error; the second term indicates the
past values of error; and the last term accounts for future values of error. The
corresponding TCOB formulation is given below:

Run-Time Analysis of Temporal Constrained Objects 25

class controller {
attributes

int Kp, Ki, Kd;
series real Error,ESum,Out;

constraints
Kp > 0; Kd > 0; Ki > 0;
ESum = Error + 'ESum;
Out = (Kp * Error) + (Ki * ESum) + Kd * (Error - ′ Error);

constructors controller(KP, KI, KD) {
Kp = KP; Ki = KI; Kd = KD;
Error<1> = 0; ESum<1> = 0; Error<2> = 0; ESum<2> = 0;

}
}
The series variables Error and Out define the input and output of the controller
respectively. The constraint section models the PID controller equation. For the
plant model, we consider a simple mass spring damper problem. The modeling
equation is

M
d2x

d2t
+ b

dx

dt
+ kx = F

where x is the displacement of body, M represents the mass of the body, and b
and k are the damping constant and spring constant, and F is the force applied
on the body to position it. In each iteration, the controller calculates a new
force and the plant takes it as the input. In the equilibrium condition of this
experiment, the displacement value remains at one.

class plant{
attributes

series real Fo, X, V;
int M,B,K;

constraints
V = X - 'X;
Fo = M * (V - 'V)+ B * V + K * X;

constructor plant(M1,B1,K1,X1,V1)
{ M = M1; B = B1; K = K1; X<1> = X1; V<1> = V1; }

}
The sensor takes the output from the plant, and the system works out the error
and feedback to the controller. Appendix B gives the definition of sensor and
system class.

The error is the difference between the expected value (here the displace-
ment = 1) and sensed value. In our experiments, we modeled the system by
assigning the value one to the coefficients Kp,Ki and Kd. We can fine tune this
value based on the system behavior.

Traffic Light Example: Consider two traffic lights which control respectively
the traffic in east-west and north-south intersections by sensing the traffic on

26 J. M. Kannimoola et al.

these roads and controlling the duration of the green and red lights depending
upon the number of vehicles on each road. We refer to these as “intelligent” traffic
lights and they are modeled by class int light below. The traffic sensor
class generates random values (between 0 and 5) to represents the number of
new vehicles that have arrived at every time point. The int light class sums
up these values to determine the total number of vehicles waiting while the light
is not green. When the light changes to green, the number of waiting vehicles
determines the duration of the green light (5 time steps for each vehicle); if this
number is zero, the green light is skipped. The remaining constraints specify the
safety and synchronization properties between traffic lights.

class int light{
attributes

enum Color = [red,green,yellow];
series Color C;
traffic_sensor Ts; int_light Tl;
series int NumV;

constraints
C = green --> NumV = 0;
not (C = green) --> NumV = 'NumV + Ts.V;
'C = red & C = yellow & NumV > 0 -->

G<1,NumV * 5> C = green & F<NumV * 5> C = yellow;
'C = green & C = yellow & Tl.NumV = 0 -->

G<1,NumV * 5> C = green & F<NumV * 5> C = yellow;
Tl.C = yellow --> C = yellow; Tl.C = green --> C = red;

constructors int_light(C1,C2,TL){
Tl = TL; C<1> = C1; C<2> = C2; NumV<2> = Ts.V<2>;
Ts = new traffic_sensor();

}
}
class system {

attributes
int_light NS, EW;

constructor system(){
NS = new int_light(red,yellow,EW);
EW = new int_light(green,yellow,NS);

}
}
The system class initializes the two traffic lights with initial colors. The construc-
tor call NS = new int light(red,yellow,EW) creates the North-South traffic
light with initial colors and traffic light in the opposite direction. The NS object
makes use of EW object attributes for color synchronization. Note that EW is
unbound when NS is initialized, but the implementation of conditional constraints
handles this situation by keeping the unbounded object constraints in the con-
straint store and automatically invoking it when EW becomes bound.

Run-Time Analysis of Temporal Constrained Objects 27

4 Run-Time Analysis

Run-time analysis of temporal constrained objects consists of three main compo-
nents: visualization, error detection, and verification. Figure 1 gives an overview
of these three aspects, which are all driven by an execution trace. In order to
obtain this execution trace, the body of every class definition may include an
optional ‘monitor’ clause which specifies which class attributes are to be mon-
itored during execution. Here, attributes is a comma-separated list of attribute
names, and they can be both series variables as well as non-series variables. The
following example illustrate the use of ‘monitor’ clause in a simple program of
a moving object whose position at each step depends on the previous position
and a constant value.

Fig. 1. Overview of run-time analysis

class example {
attributes

series int P; int C;
constraints

P > 0;
P = 'P + C;

constructors example()
C = -1; P<1> = 2;

monitor P,C;
}

At run-time, the underlying system creates an execution trace file contain-
ing, for every time-point of execution, the attribute name, object reference and
value for every designated attribute in every monitor clause in the program. The
following is a sample trace file for the above example, here we have added a
monitor clause for attribute P and C in class plant.

28 J. M. Kannimoola et al.

Time = 2, Obj = P, Var = P, Val = NaV
Time = 2, Obj = P, Var = X, Val = 1
Time = 2, Obj = C, Var = X, Val = -1
Time = 3, Obj = P, Var = X, Val = NaV
Time = 3, Obj = C, Var = X, Val = -1
.......

The monitor clause effectively causes a listener to be placed on each attribute to
be monitored. The monitor outputs a value ‘NaV’ (Not a Value) if the attribute is
undefined. The trace file may contains multiple value for same attributes at each
instance of time due to the complex backtracking in the underlying computing
engine.

4.1 Run-Time Visualization

Visualization conveys information in a more readable and efficient way and, in
our approach, it serves as the foundation for debugging and verification.

Our analysis framework provides a web-based GUI (Fig. 2a), where the user
can upload an execution trace file generated by the monitored program and
then select one or more attributes for visualization. Currently, the framework
supports three types of diagrams, as described below.

Timed State Diagram. A state diagram is a more precise way to portray the
evolution of a system over time. The timed state diagram describes the values
of variables at each discrete time-points. Once a non-series variable is bound,
its value remains fixed at every time-point whereas series variables may assume
different values at different time-points. For example, Fig. 2b shows the timed
state diagram of a traffic light example.

Abstract State Diagram. The abstract state digram shows the abstract view of
the system by extracting the distinct states of the execution. The timed state
diagram shows the linear progression of the system with respect to time. This
diagram is not an appropriate choice when we wish to visualize the repetitive
behavior of a system. The following procedure can build the abstract state dia-
gram from a trace by considering the state vector in each trace entry.

Trace T;
Abstract_State_Graph AS = {}
foreach E<time,state> in T

if (E.state not in AS)
AS = AS U {E.state};

Figure 2c present the abstract view of traffic light example, whereas the equiva-
lent timed state diagram would contain as many states as the number of simu-
lation steps.

Run-Time Analysis of Temporal Constrained Objects 29

(a) Visualization GUI (b) Timed State Diagram

(c) Abstract State Diagram (d) Timed Line Diagram

Fig. 2. Run-time visualization of TCOB programs

Timed Line Diagram. The timed line diagram plots the values of the chosen
variables over time. Unlike other diagrams, it supports only numerical attributes
but is often useful in identifying incorrectness by direct inspection of the form
the output diagram. For example, the Fig. 2d shows the timed line diagram for
displacement(X) in the PID controller example. It captures the correctness of
PID controller implementation, since the displacement should eventually reach
a stable state.

4.2 Run-Time Error Detection

Several factors contribute to an erroneous output of a TCOB program and it is
hard to pinpoint the cause of failure in a complex large-scale simulation. Here we
illustrate the various methods to identify the cause of errors in TCOB simulation
using run-time analysis.

30 J. M. Kannimoola et al.

Case 1: Constraint Failure. The execution of a TCOB program involves a
discrete-time simulation with constraint satisfaction performed at each time-
point, where the constraints may involve non-series as well as series variables.
Each time-step can be viewed as a computation frame that involves values of
series variables from next and previous time-steps. The size of the computa-
tion frame depends on the next and previous reference of series variables in the
constraints; the default size is 1 when there are no such references.

Consider the position example described above. The programmer erroneously
enters a negative value (-1) for the constant. As a result, the unary constraint
P>0 fails at Time = 3 since the value of the series variable P is 2 at Time = 1
and it decreases by 1 at each time-step.

In general, the interweaving of constraint solving within a time-based simu-
lation makes it is difficult to detect this type of programming error in a larger
system. In order to address this problem, we propose the use of a temporal
constraint dependency graph using the computation frame of TCOB execution.
In this example, the size of computation frame is 2. Each computation frame
maintains two sets: bound variables (BV) and unbound variables (UV). The
bound variables set maintains the set of ground variables along with their val-
ues. Both sets are computed before constraint solving is initiated at each time
step. Figure 3a gives the computation frame and temporal constraint dependency
graph at Time = 2. The edge between nodes indicates a (binary) constraint rela-
tion and the self-loop indicate the unary constraints. The vertical dotted lines
delineate the computation frame.

The computation frame moves by one time unit at each execution step. For
example, at Time = 3 the computation frame is shown in Fig. 3b. The dotted
edge indicates the relation in previous computation frame. During the constraint
solving at Time = 3, the variable P<3> is assigned to 0 and causes a violation
of the unary constraint P>0. The user can quickly backtrack and find which
assignment or constraint leads to this inconsistency. The red edge shows the
constraint violation in the system.

Fig. 3. Temporal constraint dependency graph (Color figure online)

Run-Time Analysis of Temporal Constrained Objects 31

Case 2: Incorrect and Undefined Answers. Incorrectness arises when constraint
satisfaction results in a successful outcome but the computed answer for one or
more variables is incorrect. The probable cause could be incorrect constraints,
erroneous initialization or possibly incorrect assembly of objects. The user must
have enough domain knowledge to distinguish which of these cases is the real
cause. When the programmer has some partial knowledge about the output, s/he
can encode it as a constraint in the program.

One of the primary advantages of programming with constraints is their
ability to compute with partial (or incomplete) information. Sometimes partial
information is not adequate to compute a specific value for a variable. This
usually happens in TCOB due to either missing variable initialization or missing
constraints. Consider the following constructor from the controller class in the
PID controller example.

controller(KP,KI,KD){
Kp = KP; Ki = KI; Kd = KD;
Error<2> = 0; Error<1> = 0;

}

Fig. 4. Time based state diagram of TCOB execution

Suppose we monitor the series variables ESum, Error and Out. Figure 4
presents the state diagram of execution, which is built from the execution trace
of the PID controller program. The figure clearly shows that the constraints
failed to determine exact values for ESum and Out using the available informa-
tion at time step 2. The current value ESum depends on Error and previous
value of ESum. The initialization ESum<1> = 0 in the constructor can correct
this problem.

4.3 Run-Time Verification

We now illustrate the concept of run-time verification for temporal constrained
objects. In a model-based approach [3], we check the consistency of a model M
against a specification φ. In run-time verification, execution traces are used to
build a run-time model and properties are verified for this model. Both timed as
well as the abstract state diagram can serve as the basis of a model. However,
the abstract state diagram is a more compact view of the timed state diagram;
it is essentially a (run-time) Kripke structure [3] in the terminology the model
checking. The safety and liveness verification conditions are specified as LTL
formula; if an LTL condition is true in the abstract state diagram it is also true
in the timed state diagram.

32 J. M. Kannimoola et al.

For example, the abstract state diagram for the traffic light example of Sect. 3
is given in Fig. 2c. In this example, safety means that two lights are not green
at the same time, and liveness means that the lights always changing without
being stuck at any state. The corresponding LTL formulation is as follows, where
NS and EW refer to north-south and east-west respectively. From Fig. 2c, it is
evident that all these conditions are satisfied by our model.

�¬((NS.C = green) ∧ (EW.C = green))
�(NS.C = green =⇒ ♦NS.C = red)
�(NS.C = red =⇒ ♦NS.C = green)
�(EW.C = green =⇒ ♦EW.C = red)
�(EW.C = red =⇒ ♦EW.C = green)

There is an important difference between a run-time state diagram derived from a
finite execution trace and the design-time state diagrams used in model-checking.
Whereas cycles in the design-time state diagrams represent nonterminating exe-
cution paths, cycles in run-time state diagrams represent finite execution paths.
For example, in Fig. 2c, the self-loops are executed only a finite number of time-
steps.

Predicate Abstraction. Predicate abstraction is a form of abstract interpre-
tation wherein we can reduce the size of the model constructed by abstracting
details [6]. For example, if in some analysis we care only whether an integer
variable is negative, zero, or positive, we can effectively abstract the infinite
set of integers by a set with just three values. TCOB simulations can result
in a large number of states causing a state explosion problem during run-time
verification. Predicate abstraction is very useful in reducing the run-time state
diagrams. This abstraction can directly specified as declarative constraints in a
TCOB class definition.

For example, consider the series variable X from the plant class in PID con-
troller example. This models the displacement, a real number, which has minute
differences from one time-step to another. We need to verify this variable X
eventually reaches a stable state, where value is approximately equal to required
displacement value, namely, 1.

In such scenarios, we can use predicate abstraction by grouping the displace-
ment value into in a few different ranges using constraints, as shown below.

X > 0.4 & X < 0.8 --> PV = 0.5;
X < 0.4 --> PV = 0.0;
X > 0.8 & X < 1.2 --> PV = 1;
X > 1.2 --> PV = 1.5

Run-Time Analysis of Temporal Constrained Objects 33

Here PV is a series variable. For a 1000-step simulation, there would be 1000
different values X, but predicate abstraction reduces them to three values and
hence three states in the state diagram. The state diagram would uphold the LTL
condition: �(♦PV = 1). This formula represents the stability of PID controller
by ensuring the displacement reaches the user-specified value.

Run-time verification is aimed at analyzing individual executions of a system.
In comparison with traditional verification, which is more complex, run-time ver-
ification is simpler but has the shortcoming of sacrificing full coverage. However,
many applications that are modeled with state diagrams involve a repetitive
cycle and a single run often covers many scenarios. And, through the availabil-
ity of a good set of test cases, coverage of all possible behaviors can be better
approximated.

5 Conclusions and Further Work

The main contribution of this paper is a set of techniques for run-time analysis
of temporal constrained objects. The execution of temporal constrained objects
involves a time-based simulation together with constraint solving at each time-
step, where the constraints could involve ordinary variables as well as series
variables, which may take different values at each time-step. We have developed
techniques for error detection as well as reasoning about the correctness of exe-
cution, i.e., run-time verification. In the former case, we make use a temporal
constraint dependency graph and in the latter case, we construct finite state
machines which serve as a basis for (run-time) model-checking using proposi-
tional temporal logic. In both cases, we make crucial use of the execution trace
of the program.

The ideas discussed in this paper have been implemented as part of the TCOB
language and execution environment. The TCOB compiler translates TCOB
programs to SWI-Prolog programs. Run-time analysis is carried out starting
from the execution trace that is generated based upon the monitor clauses in
the program. Temporal constrained objects simplify the task of constructing an
execution trace, because this is implicitly present in the values bound to the series
variables. The state diagrams were constructed using the PlantUML drawing
package. As part of our future work, we propose to apply our run-time analysis
methodology to larger applications and combine execution, visualization, error
analysis and run-time verification in more integrated manner.

34 J. M. Kannimoola et al.

Appendix

A. TCOB Grammar

class definition ::= [abstract] class class id [extends class id]{ body }
body ::= [attributes attributes]

[constraints constraints]
[predicates predicates]
[constructors constructors]

attributes ::= [decl ;]+

decl ::= [series] type id list
type ::= primitive | class id | type[]

primitive ::= real | int | bool | char | string

id list ::= attribute id [, attribute id]+

constraints ::= [constraint ;]+

constraint ::= creational | quantified | simple
creational ::= attribute = new class id(terms)
quantified ::= forall var in enum : constraint |

exists var in enum : constraint

simple ::= conditional | constraint atom

conditional ::= literals −−> condi body

condi body ::= mto literals [& mto literals]+

mto literals ::= literal | mto constraint

mto constraint ::= F constraint atom | F < interval > constraint atom |
F < interval, interval > constraint atom | G constraint atom |
G < interval > constraint atom |
G < interval, interval > constraint atom

constraint atom ::= term relop term | cpred id(terms)

relop ::= = | ! = | > | < | >= | <=

Run-Time Analysis of Temporal Constrained Objects 35

B. PID Controller

class controller {
attributes

int Kp, Ki, Kd;

series real Error,ESum,Out;

constraints

Kp > 0; Kd > 0; Ki > 0;

ESum = Error + 'ESum;
Out = Kp * Error + Ki * ESum

+ Kd * (Error - 'Error);
constructors

controller(KP, KI, KD) {
Kp = KP; Ki = KI; Kd = KD;

Error<1> = 0; ESum<1> = 0;

Error<2> = 0; ESum<2> = 0;

}
}

class plant {
attributes

series real Fo, X, V;

int M,B,K;

constraints

V = X-'X;
Fo = M *(V-'V)+ B * V + K*X;

constructor

plant(M1,B1,K1,X1,V1){
M = M1; B = B1; K = K1;

X<1> = X1; V<1> = V1;

}
}

class sensor {
attributes

series real Output;

plant P;

constraints

P.X = Output;

constructor sensor(P1)

{ P = P1;}
}

class system {
attributes

plant P; controller C;

sensor S; real Dvalue;

constraints

P.Fo = C.Out;

Dvalue = C.Error' + S.Output;

constructor system() {
P = new plant(1,10,20,0,1);

C = new controller(1,1,1);

S = new sensor(P);

Dvalue = 1;

}
}

References

1. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. (TOSEM) 20(4), 14 (2011)

2. Carro Liñares, M., Hermenegildo, M.V.: Visualization designs for constraint logic
programming. Upgrade 2(2), 27–34 (2001)

3. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press, Cambridge
(1999)

4. Daian, P., et al.: Runtime verification at work: a tutorial. In: Falcone, Y., Sánchez,
C. (eds.) RV 2016. LNCS, vol. 10012, pp. 46–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46982-9 5

5. Ducassé, M., Noyé, J.: Logic programming environments: dynamic program anal-
ysis and debugging. J. Log. Program. 19, 351–384 (1994)

6. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: ACM
SIGPLAN Notices, vol. 37, pp. 191–202. ACM (2002)

https://doi.org/10.1007/978-3-319-46982-9_5
https://doi.org/10.1007/978-3-319-46982-9_5

36 J. M. Kannimoola et al.

7. Jayaraman, B., Tambay, P.: Modeling engineering structures with constrained
objects. In: Krishnamurthi, S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS,
vol. 2257, pp. 28–46. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45587-6 4

8. Kannimoola, J.M., Jayaraman, B., Tambay, P., Achuthan, K.: Temporal con-
strained objects: application and implementation. Comput. Lang. Syst. Struct.
49, 82–100 (2017)

9. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr.
Program. 78(5), 293–303 (2009)

10. Maggi, F.M., Westergaard, M., Montali, M., van der Aalst, W.M.P.: Runtime ver-
ification of LTL-based declarative process models. In: Khurshid, S., Sen, K. (eds.)
RV 2011. LNCS, vol. 7186, pp. 131–146. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-29860-8 11

11. Matlab: Introduction: PID Controller Design (2015). http://ctms.engin.umich.
edu/CTMS/index.php?example=Introduction§ion=ControlPID

12. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-prolog. Theory Pract.
Log. Program. 12(1–2), 67–96 (2012)

13. Ziarek, L., Jayaraman, B., Lessa, D., Swaminathan, J.: Runtime visualization and
verification in JIVE. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012,
pp. 493–497. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46982-9
33

https://doi.org/10.1007/3-540-45587-6_4
https://doi.org/10.1007/3-540-45587-6_4
https://doi.org/10.1007/978-3-642-29860-8_11
https://doi.org/10.1007/978-3-642-29860-8_11
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
https://doi.org/10.1007/978-3-319-46982-9_33
https://doi.org/10.1007/978-3-319-46982-9_33

Implementation of Logical Retraction
in Constraint Handling Rules

with Justifications

Thom Frühwirth(B)

Ulm University, Ulm, Germany
thom.fruehwirth@uni-ulm.de

Abstract. In previous work we added justifications to Constraint Han-
dling Rules (CHR) to enable logical retraction of constraints for dynamic
algorithms. We presented a straightforward source-to-source transforma-
tion to implement this conservative extension. In this companion paper,
we improve the performance of the transformation. We discuss its worst-
case time complexity in general. Then we perform experiments. We
benchmark the dynamic problem of maintaining shortest paths under
addition and retraction of paths. The results validate our complexity
considerations.

1 Introduction

Justifications have their origin in truth maintenance systems (TMS) [McA90]
for automated reasoning. Derived information (a formula) is explicitly stored
and associated with the information it originates from by means of justifica-
tions. With the help of justifications, conclusions can be withdrawn (undone)
by retracting their premises. By this logical retraction, inconsistencies can be
repaired by retracting one of the reasons for the inconsistency.

In the formalism and programming language Constraint Handling Rules
(CHR) [Frü09,Frü15,FR18], conjunctions of atomic formulae (constraints) are
rewritten by rule applications. When algorithms are written in CHR, constraints
represent both data and operations. CHR is already incremental by nature, i.e.
constraints can be added at runtime. Logical retraction then adds decremental-
ity. To accomplish logical retraction in CHR, we have to be aware that CHR
constraints can also be deleted by rule applications. These constraints may have
to be restored when a premise constraint is retracted. With logical retraction, any
algorithm written in CHR becomes fully dynamic1. Operations can be undone
and data can be removed at any point in the computation without compromising
the correctness of the result.

In [Fru17], we formally defined a correct conservative extension of CHR with
justifications (CHRJ). We gave a straightforward source-to-source transforma-
tion that adds justifications for user-defined constraints. A scheme of two rules
1 Dynamic algorithms for dynamic problems should not be confused with dynamic
programming.

c© Springer Nature Switzerland AG 2018
D. Seipel et al. (Eds.): DECLARE 2017, LNAI 10997, pp. 37–52, 2018.
https://doi.org/10.1007/978-3-030-00801-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00801-7_3&domain=pdf

38 T. Frühwirth

sufficed to allow for logical retraction (deletion, removal) of constraints during
computation. Without the need to recompute from scratch, these rules retract
not only the constraint but also undo all consequences of the rule applications
that involved the constraint.

The runtime performance of the previous translation scheme is not optimal,
however. In this paper, we present an improved source-to-source transformation
for logical retraction of constraints with justifications in CHR (CHRJ). This
transformation only imposes a constant factor overhead as long as justifications
are not used for retraction. We will argue that the worst-case time complexity
for any number of retractions is in general proportional to the number of rule
applications, i.e. derivation length. The complexity of an algorithm expressed in
CHR is usually a polynomial in the derivation length. Therefore retraction indeed
has typically less complexity than recomputation from scratch at the expense of
storing removed constraints. The added space complexity is again bounded by
the derivation length. In our experiments, we will consider the dynamic problem
of maintaining shortest paths under addition and retraction of paths.

Minimum Example. Given a multiset of numbers represented as conjunction
min(n1),min(n2),...,min(nk). The constraint (predicate) min(ni) means
that the number ni is a candidate for the minimum value. The following CHR
rule filters the candidates.

min(N) \ min(M) <=> N=<M | true.

The rule consists of a left-hand side, on which a pair of constraints has to be
matched, a guard check N=<M that has to be satisfied, and an empty right-hand
side denoted by true. In effect, the rule takes two min candidates and removes
the one with the larger value (constraints after the \ symbol are deleted). Note
that the min constraints behave both as operations (removing other constraints)
and as data (being removed).

CHR rules are applied exhaustively. Here the rule keeps on going until only
one, thus the smallest value, remains as single min constraint, denoting the cur-
rent minimum. If another min constraint is added during the computation, it
will eventually react with a previous min constraint, and the correct current
minimum will be computed in the end. Thus the algorithm as implemented in
CHR is incremental. It is not decremental, though: We cannot logically retract
a min candidate. While removing a candidate that is larger than the minimum
would be trivial, the retraction of the minimum itself requires to remember all
deleted candidates and to find their minimum. As we will see, with the help of
justifications, this logical retraction will be possible automatically.

Related Work. The work of Armin Wolf on Adaptive CHR [WGG00] introduced
justifications into CHR. Different to our work, this technically involved app-
roach requires to store detailed information about the rule instances that have
been applied in a derivation in order to undo them. In our approach, we use
a straightforward source-to-source transformation and retract constraints one-
by-one instead. Adaptive CHR had a low-level implementation in Java [Wol01],

Implementation of Logical Retraction in CHR with Justifications 39

while we give an implementation in CHR itself by source-to-source transfor-
mations. The more recent work of Duck [Duc12] introduces SMCHR, a tight
integration of CHR with a Boolean Satisfiability (SAT) solver for quantifier-
free formulae including disjunction and negation as logical connectives. It is
mentioned without giving further details that for clause generation, SMCHR
supports justifications.

Overview of the Paper. In the next section we recall abstract syntax and refined
operational semantics for CHR. In Sect. 3, we describe CHR with justifications
for logical retraction of constraints and its previous implementation by a straight-
forward source-to-source transformation. In Sect. 4, our current work is to opti-
mize this implementation and to discuss its worst-case run-time complexity. In
Sect. 5, we report on the results of experiments with our new implementation for
the dynamic problem of maintaining shortest paths in a graph under addition
(insertion) and deletion (retraction) of paths. The paper ends with conclusions
and directions for future work.

2 Preliminaries

We recall abstract syntax and refined operational semantics of CHR [Frü09] in
this section.

2.1 Abstract Syntax of CHR

Constraints are relations, distinguished predicates of first-order predicate logic.
We differentiate between two kinds of constraints: built-in (pre-defined) con-
straints and user-defined (CHR) constraints which are defined by the rules in a
CHR program.

Definition 1. A CHR program is a finite set of rules. A (generalized) simpaga-
tion rule is of the form

r : H1\H2 ⇔ C|B
where r: is an optional name (a unique identifier) of a rule. In the rule head (left-
hand side), H1 and H2 are conjunctions of user-defined constraints, the optional
guard C is a conjunction of built-in constraints, and the body (right-hand side)
B is a goal. A goal is a conjunction of built-in and user-defined constraints. A
state is a goal. Conjunctions are understood as multisets of their conjuncts.

In the rule, H1 are called the kept constraints, while H2 are called the removed
constraints. At least one of H1 and H2 must be non-empty. If H1 is empty, the
rule corresponds to a simplification rule, also written

s : H2 ⇔ C|B.

If H2 is empty, the rule corresponds to a propagation rule, also written

p : H1 ⇒ C|B.

In this work, we restrict given CHR programs to rules without built-in con-
straints in the body except true and false.

40 T. Frühwirth

2.2 Operational Semantics of CHR

We follow the exposition in [SF06] in this subsection. Given a query, the rules of
the program are applied to exhaustion. A rule is applicable, if its head constraints
are matched by constraints in the current goal one-by-one and if, under this
matching, the guard check of the rule holds. More formally, the guard is logically
implied by the built-in constraints in the goal.

Any of the applicable rules can be applied, and the application cannot be
undone, it is committed-choice (in contrast to Prolog). When a simplification
rule is applied, the matched constraints in the current goal are replaced by the
body of the rule, when a propagation rule is applied, the body of the rule is
added to the goal without removing any constraints. When a simpagation rule
is applied, only the head constraints right to the backslash symbol are removed,
the head constraints before are kept.

As in Prolog, almost all CHR implementations execute queries from left to
right and apply rules top-down in the textual order of the program. This behavior
has been formalized in the so-called refined semantics that was also proven to
be a concretization of the standard operational semantics [DSdlBH04]. In this
refined semantics of actual implementations, a CHR constraint in a query can be
understood as a procedure that goes efficiently through the rules of the program
in the order they are written.

We consider such a constraint to be active. When it matches a head constraint
of a rule, it will look for the other, partner constraints of the head in the constraint
store and check the guard until an applicable rule is found. If the active constraint
has not been removed after trying all rules, it will be delayed and put into the
constraint store as data. Constraints from the store will be reconsidered (woken)
if newly added built-in constraints constrain variables of the constraint, because
then rules may become applicable since their guards are now implied.

Hash Indexing in CHR. For optimal time complexity, (near) constant-time addi-
tion, finding and removal of CHR constraints is required. To achieve this effi-
ciency, CHR implementations typically provide for indexing on arguments of
constraints. Most current CHR libraries in Prolog are based on the KU Leuven
CHR system. It supports indexing for terms via attributed variables, in SWI
Prolog also hash tables for ground terms and arrays for dense integers.

The hash table based indexes in SWI Prolog work at the argument level. For
efficient constraint lookups, these arguments have to be ground during computa-
tion. For optimal generation of indexes, the SWI Prolog CHR system depends on
mode and type information specified in constraint declarations. We will therefore
use these declarations for justifications and other constraint arguments in our
implementation examples.

3 CHR with Justifications (CHRJ)

We present a conservative extension of CHR by justifications following [Fru17].
If justifications are not used, programs behave as without them. Justifications

Implementation of Logical Retraction in CHR with Justifications 41

annotate atomic CHR constraints. A straightforward source-to-source transfor-
mation extends the rules with justifications.

3.1 CHR with Justifications for Logical Retraction

We start with adding justifications to CHR constraints and states.

Definition 2 (CHR Constraints and Initial States with Justifications).
A justification f is a unique identifier. Given an atomic CHR constraint G, a CHR
constraint with justifications is of the form GF , where F is a set of justifications.
An initial state with justifications is of the form

∧n
i=1 G

{fi}
i where the fi are

distinct justifications.

We now define a source-to-source translation from rules to rules with justi-
fications. Let kill (retract) and rem (remember removed) be to unary reserved
CHR constraint symbols. This means they are only allowed to occur in rules as
specified in the following.

Definition 3 (Translation to Rules with Justifications). Given a gener-
alized simpagation rule

r :
l∧

i=1

Ki \
m∧

j=1

Rj ⇔ C |
n∧

k=1

Bk

Its translation to a simpagation rule with justifications is of the form

rf :
l∧

i=1

KFi
i \

m∧

j=1

R
Fj

j ⇔ C |
m∧

j=1

rem(RFj

j)F ∧
n∧

k=1

BF
k where F =

l⋃

i=1

Fi∪
m⋃

j=1

Fj .

The translation ensures that the head and the body of a rule mention exactly
the same justifications. The reserved CHR constraint rem/1 (remember removed)
stores the constraints removed by the rule together with their justifications.

Translating the minimum rule from the introduction to one with justifications
results in:

min(A)F2 \ min(C)F2 ⇔ A < C | F = F1∪F2 ∧ rem(min(C)F2)F .

To avoid clutter, let AJ , BJ , CJ . . . stand for conjunctions (or corresponding
states) whose atomic CHR constraints are annotated with justifications accord-
ing to the above definition of the rule scheme. Similarly, let rem(R)J denote a
conjunction

∧m
j=1 rem(RFj

j)F .
We showed previously that rule applications correspond to each other in

standard CHR and in CHRJ .

Lemma 1 (Equivalence of Program Rules). [Fru17] There is a computation
step S �→r T with simpagation rule

r : H1\H2 ⇔ C|B

42 T. Frühwirth

if and only if there is a computation step with justifications SJ �→rf TJ ∧
rem(H2)J with the corresponding simpagation rule with justifications

rf : HJ
1 \HJ

2 ⇔ C|rem(H2)J ∧ BJ .

Since computations are sequences of connected computation steps, this lemma
implies that computations in standard CHR program and in CHRJ correspond
to each other. Thus CHR with justifications is a conservative extension of CHR.

Logical Retraction Using Justifications. We use justifications to retract a CHR
constraint from a computation without the need to recompute from scratch.
This means that all its consequences due to rule applications it was involved
in are undone. CHR constraints added by those rules are removed and CHR
constraints removed by the rules are re-added (inserted). To specify and imple-
ment this behavior, we give a scheme of two rules, one for retraction and one for
re-adding of constraints. The reserved CHR constraint kill(f) (retract) undoes
all consequences of the constraint with justification f .

Definition 4 (Rules for CHR Logical Retraction). For each n-ary CHR
constraint symbol c (except the reserved kill and rem), we add a rule to kill
constraints and a rule to revive removed constraints of the form:

kill : kill(f) \ GF ⇔ f ∈ F | true
revive : kill(f) \ rem(GFc)F ⇔ f ∈ F | GFc ,

where G = c(X1, . . . , Xn), where X1, . . . , Xn are different variables.

Note that a constraint may be revived and subsequently killed. This is the case
when both Fc and F contain the justification f .

We proved previously correctness of logical retraction: the result of a com-
putation with retraction is the same as if the constraint would never have been
introduced in the computation. We showed that given a computation starting
from an initial state with a kill(f) constraint that ends in a state where the kill
and revive rules have been applied to exhaustion, then there is a corresponding
computation without constraints that contain the justification f .

Theorem 1 (Correctness of Logical Retraction). [Fru17] Given a compu-
tation

AJ ∧ G{f} ∧ kill(f) �→∗ BJ ∧ rem(R)J ∧ kill(f) 	�→kill,revive,

where f does not occur in AJ . Then there is a computation without G{f} and
kill(f)

AJ �→∗ BJ ∧ rem(R)J .

3.2 Previous Implementation

We recall the implementation of [Fru17] for CHR with justifications (CHRJ).

Implementation of Logical Retraction in CHR with Justifications 43

Constraints with Justifications. CHR constraints annotated by a set of justifi-
cations are realized by a binary infix operator ##, where the second argument is
a list of justifications:

C{F1,F2,...} is realized as C ## [F1,F2,...].
For convenience, we add rules that add a new justification to a given con-

straint C. For each constraint symbol c with arity n there is a rule of the form

addjust @ c(X1,X2,...Xn) <=> c(X1,X2,...Xn) ## [F].

where the arguments of X1,X2,...Xn are different variables.

Rules with Justifications. A CHR simpagation rule with justifications is realized
as follows:

rf :
l∧

i=1

KFi
i \

m∧

j=1

R
Fj

j ⇔ C |
m∧

j=1

rem(RFj

j)F ∧
n∧

k=1

BF
k where F =

l⋃

i=1

Fi∪
m⋃

j=1

Fj

rf @ K1 ## FK1,... \ R1 ## FR1,... <=> C |
union([FK1,...FR1,...],Fs), rem(R1##FR1) ## Fs,...B1 ## Fs,...

where the auxiliary predicate union/2 computes the ordered duplicate-free union
of a list of lists2.

Rules kill, remove and revive. Justifications are realized as flags that are initially
unbound logical variables. This eases the generation of new unique justifications
and their use in killing. Concretely, the reserved constraint kill(f) is realized as
built-in equality F=r, i.e. the justification variable gets bound. If kill(f) occurred
in the head of a kill or revive rule, it is moved to the guard as equality test F==r.

revive : kill(f) \ rem(CFc)F ⇔ f ∈ F | CFc

kill : kill(f) \ CF ⇔ f ∈ F | true
revive @ rem(C##FC) ## Fs <=> member(F,Fs),F==r | C ## FC.
remove @ C ## Fs <=> notfunctor(C,rem),member(F,Fs),F==r | true.

The check notfunctor(C,rem) ensures that C is not a rem constraint. The check
for set membership in the guards is expressed using the standard nondetermin-
istic Prolog built-in predicate member/2.

Logical Retraction with killc/1. We extend the translation to allow for retrac-
tion of derived constraints. The constraint killc(C) logically retracts one occur-
rence of a constraint C. The two rules killc and killr try to find the constraint
C. The killr rule applie sin the case where constraint C has been removed and
is therefore now present in a rem constraint. The associated justifications point
to all initial constraints that where involved in producing the constraint C. For
retracting the constraint, it is sufficient to remove one of its producers. This
introduces a choice which is implemented by the member predicate.
2 More precisely, a simplification rule is generated if there are no kept constraints and
a propagation rule is generated if there are no removed constraints.

44 T. Frühwirth

killc @ killc(C), C ## Fs <=> member(F,Fs),F=r.
killr @ killc(C), rem(C ## FC) ## _Fs <=> member(F,FC),F=r.

Note that in the killr rule, we bind a justification F from FC, because FC contains
the justifications of the producers of constraint C, while Fs also contains those
that removed it by a rule application.

Dynamic Minimum Example. Translating the minimum rule to one with justi-
fications results in:

min(A)##B \ min(C)##D <=> A<C | union([B,D],E), rem(min(C)##D)##E.

The following shows an example query and the resulting answer in SWI-Prolog:

?- min(1)##[A], min(0)##[B], min(2)##[C].
rem(min(1)##[A])##[A,B], rem(min(2)##[C])##[B,C], min(0)##[B].

The constraint min(0) remained. This means that 0 is the minimum. The con-
straints min(1) and min(2) have been removed and are now remembered. Both
have been removed by the constraint with justification B, i.e. min(0).

We now logically retract with killc the constraint min(1) at the end of the
query. The killr rule

killr @ killc(C), rem(C ## FC) ## _Fs <=> member(F,FC),F=r

applies and removes rem(min(1)##[A])##[A,B]. In the rule body, the justifica-
tion A is bound to r – to no effect, since there are no other constraints with this
justification:

?- min(1)##[A], min(0)##[B], min(2)##[C], killc(min(1)).
rem(min(2)##[C])##[B,C], min(0)##[B].

What happens if we retract the current minimum min(0)? The killc rule

killc @ killc(C), C ## Fs <=> member(F,Fs),F=r

applies, removes min(0)##[B] and binds justification B. The two rem con-
straints for min(1) and min(2) involve B as well, so these two constraints are
re-introduced by applications of rule revive

revive @ rem(C##FC) ## Fs <=> member(F,Fs),F==r | C ## FC

The minimum rule applies to the two revived constraints. Note that min(2)
is now removed by min(1) (before it was min(0)). The result is the updated
minimum, which is 1:

?- min(1)##[A], min(0)##[B], min(2)##[C], killc(min(0)).
rem(min(2)##[C])##[A,C], min(1)##[B].

Implementation of Logical Retraction in CHR with Justifications 45

4 Optimizing the Implementation

We would like to avoid any overhead complexity-wise when computing with
justifications as long as we do not use them for retraction. We are ready to
accept a constant factor penalty. While the insertion of rem constraints takes
constant time, the computation of the union of justifications is linear in the sizes
of its input justification sets. The idea is to delay this computation until it is
needed due to a retraction. We actually never compute the union of justifications,
but will use the union constraints as data to find the necessary justifications.
We describe the modifications for this new implementations and then discuss
the complexity of this approach.

4.1 New Improved Implementation

To retract a constraint with justification F, the constraint killd(F) (kill down)
finds its initial justifications. The arguments of the delayed union constraints are
unbound variables now (except for the singleton sets of the justifications from
the initial constraints in the query). The constraint killd has to find the union
constraint with its justification in the output and follow all its input justifications
(which are represented by a list). It proceeds recursively with the help of killl
(kill list) until it reaches an initial justification. On the way, we can stop if we
see a justification again that we have already seen.

already_seen @ killd(F) \ killd(F) <=> true.
go_to_initial @ union(FL,F) \ killd(F) <=> killl(FL).

killl @ killl([]) <=> true.
killl @ killl([F|FL]) <=> killd(F), killl(FL).

Then the auxiliary constraint killone (kill one) chooses one of these justifi-
cations in turn and removes it.

choice @ killone, killd([F]) <=> (F=r,waitrem ; killone).
done @ killone <=> false.

The rule choice uses Prolog’s disjunction in the body. In the first disjunct, the
binding of justification F to the constant r marks it as to be killed and wakes
up all constraints in which this justification occurs. In this way, constraints
are retracted and revived, respectively. The auxiliary constraint waitrem delays
re-addition of previously removed constraints via the rule revive until all con-
straints with bound justification F have been retracted by the remove rule. This
improves the performance. On Prolog’s chronological backtracking, all compu-
tations caused by this first disjunct are undone and the second disjunct is tried.
Note that killd([F]) stays removed. The recursion on killone in the second
disjunct ensures that all constraints killd(F) are eventually removed and thus
all justifications are eventually tried. Note that as a consequence, in rule done

46 T. Frühwirth

for the base case when there are no more justifications, we must fail (not suc-
ceed), since we then have exhausted trying all justifications. Otherwise we would
wrongly succeed with a computation that did not retract any constraint.

Now we also have to kill all output justifications of unions that have this
killed justification as input justification, i.e. we go upwards.

go_upwards @ union(FL,F) <=> member(F1,FL),F1==[r] | F=[r].

Note that we will only pass a subset of the union constraints that killd visited,
those that involve the chosen initial justification. We will also pass additional
other union constraints as consequence of this.

Finally, for retraction, we remove constraints with killed justifications and we
revive remembered constraints with killed justifications. We translate program
constraints C with justifications F of the form c(X1,..Xn)##F into c(X1,..Xn,F)
to support argument-wise indexing if necessary.

remove @ c(X1,..Xn,[r]) <=> true.
revive @ waitrem \ rem(c(X1,..Xn,FC),[r]) <=> c(X1,..Xn,FC).

waitrem <=> true.

Here we put waitrem to work to trigger the re-addition of constraints in the
revive rule. Having done so, waitrem is removed at the very end.

4.2 Worst-Case Time Complexity

We now discuss the complexity of our optimized implementation in terms of
the input size and derivation length following the principles of [Frü02]. Let k
be the largest number of head constraints in a given program. Note that k is a
constant. Let c be the number of CHR constraints in the initial state (query). Let
n be the derivation length of a computation, i.e. the number of rule applications
(transitions).

The complexity of the original computation is at least n, because there are n
rule applications that take at least constant time each. If the computation does
not fail, each initial constraint is processed, which adds c to the lower bound
of the complexity, which thus is n + c. Typically, n is larger than c, so we may
assume just n.

All rule tries (application attempts) and rule applications take constant time,
mostly because of the index on the justification. There is no overhead in run-
time complexity until a constraint is killed: the union constraint and the rem
constraints are just added to the constraint store. Since the number of rem con-
straints is bounded by k, complexity does not increase, if constraints can be
added (inserted) in constant time. Based on these observations, we can also see
that the space complexity is bounded by O(n).

The union constraints have at most k input justifications that already have
been introduced. The result is the output justification, represented by a new
fresh logical variable. The union constraints form a directed acyclic graph (dag)

Implementation of Logical Retraction in CHR with Justifications 47

with bounded width k, where the nodes are the justification set variables and
where there is an directed edge (arc) from each input to the output justification
for each union in a derivation. Since the output justification is always new, the
corresponding graph is acyclic. It is typically not a tree, since a union may have
input justifications from arbitrary previous unions.

There are at most n unions in a computation of length n. Thus there are at
most n new justification nodes and c initial justifications. Therefore we have at
most n+c different nodes. The number of edges is at most k for each union and is
therefore of order O(n). The constraint killd has to go along at most kn edges,
pass at most n + c different nodes and stop at most at c initial justifications.

The constraint killone will chose the next initial justification in constant
time. There may be up to c choices. Once we have chosen this initial justification
to use for killing and retraction, we use the rule go upwards to find all effected
justifications with the help of the union constraint. We may have up to n non-
initial justifications to revive and remove (kill) constraints in turn. Typically,
the number will be much smaller, because n refers to all union constraints in
the derivation. For each justification, there can only be a bounded number of
remembered (k) and added constraints, because the number of head and body
constraints in rules is bounded in a given program.

The killing of a justification and the retraction of constraints is accomplished
by binding the justification variable. This will wake up all constraints in which
the variable occurs. These are the union constraints and the all program con-
straints that have this justification. Thus the rule go upwards and remove are
immediately applicable, while the revive rule applications have to wait for the
constraint waitrem.

In summary, the overall worst-case complexity of retracting a constraint with
one choice of an initial justification is of order O(n) (assuming n > c). The
complexity trying each of the up to c found initial constraints is then O(nc).
Note that the complexity of removing all constraints or all initial c justifications
in a computation is also bounded by O(n), since the number of remembered and
added constraints is also of order O(n).

The additional cost of processing the revived re-added constraints is of course
dependent on the given program and has to be added to the above complexity
results. In the worst case, it amounts to a complete recomputation from scratch
(cf. minimum example). It may be constant in the best case. If all rules of the
program can be tried and applied in constant time, the derivation length n that
was needed for c initial constraints may provide a O(n) worst case complexity for
computations with the revived constraints, thus leaving the overall worst-case
complexity at O(n).

5 Experiments

Experiments were run with SWI Prolog 6.2.1. in standard configuration on an
Apple Mac Mini with OS X 10.9.5 2,5 GHz Intel Core i5 and 4 GB RAM. For
compilation of the CHR files debugging was switched off and full optimization

48 T. Frühwirth

enabled. We explicitly specified the arguments for indexing of program con-
straints in a declaration. This lead to a constant-factor improvement of the
runtime over automatic indexing provided by the CHR compiler.

We also introduced passive declarations in the rules that handle the justi-
fications for retraction where feasible. These annotate head constraints in rules.
Such a constraint is then treated as data only that has to be searched for in
the constraint store. No active code is generated for that constraint, i.e. it does
not behave as an operation anymore that looks for its matching partner con-
straints. This optimizations avoids useless rule tries. Note that some of these
passive constraints are also automatically inferred by the compiler.

The programs used can be found in the appendix of the full online version
of this paper.

5.1 Dynamic All-Pair Shortest Paths

We want to find the shortest distance between all pairs of nodes in a complete
directed graph whose edges are annotated with non-negative distances. Initially,
for each edge, there is a corresponding path with the distance of the edge. For
every other pair of nodes, the unknown distances are initialized with ∞. Then
the following rule suffices to solve the problem:

shorten @ path(I,K,D1), path(K,J,D2) \ path(I,J,D3) <=>
D4 is D1+D2, D3>D4 | path(I,J,D4).

A currently shortest path between nodes I and J is replaced by the sum of the
distances between paths I to K and K to J if this new distance is shorter. Note
that the graph is complete. If the rule is not applicable anymore, all paths must
be shortest. From the shorten rule we generated the following rules augmented
with justifications

add_justification @ path(A,B,C) <=> path(A,B,C,[D]).

shorten @ path(A,B,C,D), path(B,E,F,G) \ path(A,E,H,I) <=>
J is C+F,H>J |
union([D,G,I],K), rem(path(A,E,H,I),K), path(A,E,J,K).

Example. The answer output has been slightly edited to improve readability.

?-path(a,b,1),path(b,a,2),path(a,c,3),path(c,a,0),path(b,c,1),path(c,b,4).

rem(path(c,b,4,[A]),B), rem(path(a,c,3,[C]),D), rem(path(b,a,2,[E]),F),

union([[G],[H],[A]],B), union([[H],[I],[C]],D), union([[I],[G],[E]],F),

path(c,b,1,B), path(a,c,2,D), path(b,a,1,F), path(b,c,1,[I]),

path(c,a,0,[G]), path(a,b,1,[H])

Initial justifications are in square brackets as single elements of lists. Thus the
last three paths in the answer were not shortened, while the other three paths

Implementation of Logical Retraction in CHR with Justifications 49

were shortened once, as can be seen by the deleted original path/3 constraints
for them. From the first arguments of the delaying union/2 constraints we can
also read off the constraints that lead to a shorter path.

For our experiments, the shorten rule was then instrumented to count rule
tries (in the guard) and applications (in the body) with the help of Prolog’s global
variables. We explicitly added indexing information for the compiler because it
slightly improved the performance on our examples. This means there is an hash
index on the first and second argument of the path/4 constraint and it can also
be accessed without index.

Random Graph Generation and Shortest Paths. We generated complete graphs
from a given number of nodes represented by integers. For every pair of different
nodes, a path is generated with a random distance between 1 and the number
of nodes. This is accomplished by the rule:

gengraph(N), node(A), node(B) ==> random(1,N,D), path(A,B,D).

Previous Implementation
Nodes Apply Try Time
12 125 2817 0.208
12 113 2332 0.171
12 142 2567 0.206
14 210 4929 0.494
14 250 5564 0.590
14 223 4274 0.467
16 338 9105 1.218
16 379 8607 1.299
16 362 8425 1.234
18 501 11256 2.154
18 502 12799 2.390
18 416 9915 1.693
21 801 21171 5.965
21 783 22265 5.970
21 778 19831 5.502
24 1318 38188 14.809
24 1295 40549 16.172
24 1162 31898 12.270

New Implementation
Nodes Apply Try Time
12 157 2958 0.106
12 129 2770 0.093
12 99 2362 0.083
14 246 5215 0.225
14 248 4693 0.189
14 270 5449 0.234
16 366 7667 0.402
16 333 7643 0.391
16 356 7613 0.391
18 499 11899 0.759
18 476 10567 0.674
18 404 9980 0.628
21 837 19134 1.499
21 858 23550 1.928
21 830 21094 1.676
24 1228 36507 3.553
24 1165 32543 3.422
24 1316 42426 4.039

Fig. 1. Shortest paths for random complete directed graphs

In Fig. 1 the number of nodes of the random directed graph is given, leading
to a quadratic number of paths. Column Apply reports the number of applica-
tions of the shorten rule, while column Try shows how often this rule has been
tried. Finally, Time reports the execution time in seconds. The time is roughly
proportional to the number of rules tries indicating that indexing reduces the
time for finding the three matching head constraints indeed to a constant.

50 T. Frühwirth

Complexity. Let v be the number of nodes in the graph. There can be at most
v2 shortest path, one between each pair of nodes, so c = v2. With indexes
on the nodes in a path, the rule shorten can be applied in constant time,
given one of the path constraints. The worst-case derivation length depends on
the scheduling of paths for rule application. The optimal complexity is O(v3)
when the scheduling of the Floyd-Warshall algorithm is used. It assumes an
order on nodes and processes paths by their smallest nodes. We do not specify
the scheduling and therefore expect a higher polynomial complexity in v. To
reach the optimal complexity was not the scope of this work, since here we are
interested in increasing the performance of logical retraction in comparison with
the previous implementation.

Back to our experiments reported in Fig. 1: for a complete graph with v nodes
and v2 paths, the average execution time is of order O(v4) as was confirmed by
computing the interpolating polynomial with WolframAlpha. This also holds for
the number of rule tries and applications. So the derivation length n is quadratic
in the number of paths c, i.e. O(c2). The previous implementation has a similar
complexity, but a higher constant factor.

New Implementation
Nodes Apply Try Down Up Remove Revive Time
12 30 481 369 167 196 167 0.032
12 37 581 208 147 180 147 0.030
12 17 541 78 97 119 97 0.026
14 42 832 1990 242 281 242 0.075
14 54 894 1592 278 317 278 0.076
14 77 1245 1939 318 350 318 0.095
16 111 1901 5490 491 539 491 0.203
16 55 1413 3481 383 428 383 0.141
16 135 2513 1496 447 508 447 0.193
18 132 3158 7735 595 663 595 0.341
18 96 1869 4810 514 581 514 0.215
18 199 4598 8323 657 732 657 0.465
21 180 4963 51274 962 1033 962 1.170
21 207 4671 203119 917 966 917 2.980
21 188 4559 75441 908 985 908 1.381

Fig. 2. Removing all shortest paths from random graphs

Logical Retraction of Paths. In Fig. 2 we can see that the times for retracting all
shortest paths in a complete random directed graph vary. The columns Apply
and Try refer to accumulated recomputations of shortest paths after retraction
of paths. Down reports the number of rule applications for going to the initial
justifications through union constraints, while Up counts the propagation of the
killed justification to the roots. The counts for Down and thus the time needed
vary, the variation seems to increase the larger the graph is. This number depends

Implementation of Logical Retraction in CHR with Justifications 51

on the number of updates to particular intermediate shortest paths, i.e on the
depth of the justification dag.

Remove and Revive show the number of actual removals of constraints and
re-addition of previously removed path constraints. These last two numbers are
similar, with slightly more removals than revivals. (Note that re-added con-
straints may be removed afterwards.) The numbers for Up and Revive are iden-
tical, because the shorten rule always removes a single path constraint.

Overall, the complexity is once again quartic, O(v4). This corresponds once
again to the derivation length and thus is in line with our complexity considera-
tions in the previous section. It also means that the overhead of the recomputa-
tions is neglectable complexity-wise. Indeed, comparing the two figures, we can
see that it typically takes less time to remove each shortest paths one by one and
recompute all effected paths each time than to compute all the shortest paths
initially. Moreover, the numbers of path recomputations are about a fourth of
the number of initial path computations.

Note that recomputing from scratch would result in O(v2) recomputations
(one for each retracted path) of complexity O(v4) each and thus in a polyno-
mial of higher degree. The previous implementation also has a worse polynomial
complexity for retracting constraints. For a graph of size 14, the previous imple-
mentation is already about an order of magnitude slower.

6 Conclusions

We presented an improved source-to-source transformation for logical retraction
of constraints with justifications in CHR (CHRJ). This transformation only
imposes a constant factor overhead as long as justifications are not used for
retraction. We argued that the worst-case time complexity for any number of
retractions is in general proportional to the number of rule applications, i.e.
derivation length. The complexity of an algorithm expressed in CHR is usually a
polynomial in the derivation length. Therefore retraction indeed has typically less
complexity than recomputation from scratch at the expense of storing removed
constraints. The added space complexity is again bounded by the derivation
length. In our experiments, we benchmarked the dynamic problem of maintaining
shortest paths under addition and retraction of paths. The results support our
complexity considerations. For future work, we would like to further improve the
implementation and benchmark it. Since our rules for retraction are confluent
with the original program [Fru17], we think that the optimization techniques in
[AF04] might be helpful. At the same time, we would like to investigate how
logical as well as classical algorithms like union-find behave when they become
dynamic in CHRJ .

52 T. Frühwirth

References

[AF04] Abdennadher, S., Frühwirth, T.: Integration and optimization of rule-
based constraint solvers. In: Bruynooghe, M. (ed.) LOPSTR 2003. LNCS,
vol. 3018, pp. 198–213. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-25938-1 17

[DSdlBH04] Duck, G.J., Stuckey, P.J., de la Banda, M.G., Holzbaur, C.: The refined
operational semantics of constraint handling rules. In: Demoen, B., Lifs-
chitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 90–104. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-27775-0 7

[Duc12] Duck, G.J.: SMCHR: satisfiability modulo constraint handling rules. The-
ory Pract. Log. Program. 12(4–5), 601–618 (2012)

[FR18] Frühwirth, T., Raiser, F. (eds.): Constraint Handling Rules - Compilation,
Execution, and Analysis. BOD, Norderstedt (2018). ISBN 9783746069050

[Frü02] Frühwirth, T.: As time goes by II: more automatic complexity analysis
of concurrent rule programs. ENTCS 59(3), 185–206 (2002). Di Pierro,
A., Wiklicky, H. (eds.) QAPL 2001: Proceedings of First International
Workshop on Quantitative Aspects of Programming Languages. Elsevier

[Frü09] Frühwirth, T.: Constraint Handling Rules. Cambridge University Press,
Cambridge (2009)

[Frü15] Frühwirth, T.: Constraint handling rules - what else? In: Bassiliades,
N., Gottlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015.
LNCS, vol. 9202, pp. 13–34. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21542-6 2

[Fru17] Frühwirth, T.: Justifications in constraint handling rules for logical retrac-
tion in dynamic algorithms. In: Fioravanti, F., Gallagher, J.P. (eds.)
LOPSTR 2017. LNCS, vol. 10855, pp. 147–163. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-94460-9 9

[McA90] McAllester, D.A.: Truth maintenance. In: AAAI, vol. 90, pp. 1109–1116
(1990)

[SF06] Schrijvers, T., Frühwirth, T.: Optimal union-find in constraint handling
rules, programming pearl. Theory Pract. Log. Program. (TPLP) 6(1),
213–224 (2006)

[WGG00] Wolf, A., Gruenhagen, T., Geske, U.: On the incremental adaptation of
chr derivations. Appl. Artif. Intell. 14(4), 389–416 (2000)

[Wol01] Wolf, A.: Adaptive constraint handling with CHR in Java. In: Walsh, T.
(ed.) CP 2001. LNCS, vol. 2239, pp. 256–270. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45578-7 18

https://doi.org/10.1007/978-3-540-25938-1_17
https://doi.org/10.1007/978-3-540-25938-1_17
https://doi.org/10.1007/978-3-540-27775-0_7
https://doi.org/10.1007/978-3-319-21542-6_2
https://doi.org/10.1007/978-3-319-21542-6_2
https://doi.org/10.1007/978-3-319-94460-9_9
https://doi.org/10.1007/3-540-45578-7_18

The Proportional Constraint
and Its Pruning

Armin Wolf(B)

IT4Energy Center, Fraunhofer FOKUS, Kaiserin-Augusta-Allee 31,
10589 Berlin, Germany

armin.wolf@fokus.fraunhofer.de

Abstract. Motivated by the necessity to model the energy loss of energy
storage devices, a Proportional Constraint is introduced in finite integer
domain Constraint Programming. Therefore rounding is used within its
definition. For practical applications in finite domain Constraint Pro-
gramming, pruning rules are presented and their correctness is proven.
Further, it is shown by examples that the number of iterations necessary
to reach a fixed-point while pruning depends on the considered constraint
instances. However, fixed-point iteration always results in the strongest
notion of bounds consistency. Furthermore, an alternative modeling of
the Proportional Constraint is presented. The run-times of the imple-
mentations of both alternatives are compared showing that the imple-
mentation of the Proportional Constraint on the basis of the presented
pruning rules performs always better on sample problem classes.

Keywords: Bounds consistency
Finite domain Constraint Programming · Fixed-point iteration
Proportional Constraint · Pruning rules

1 Motivation and Overview

Within the publicly funded project WaveSave1 we are concerning cost-optimized
trans-sectoral operation plans for hybrid energy systems within buildings. Those
energy systems may consist of Combined Heat and Power (CHP) systems, Photo-
voltaic (PV) systems, heat pumps, boilers etc. as well as energy storage systems
like hot water tanks or batteries. The operation of such systems is time critical
and highly dynamic: Such systems have to react immediately to deviations in
order to ensure the energy supply of the buildings and theirs users. Deviations
might be caused by disturbances or uncertain forecasts. In order to generate
cost-optimal operations plans (aka schedules) for the components of such hybrid
energy systems in buildings, we model them as Constraint Optimization Prob-
lems (COP).

The presented work is funded by the German Federal Ministry for Economic Affairs
and Energy within the project “WaveSave” (BMWi, funding number 03ET1312A).

1 cf. http://www.it4energy-zentrum.de/de/it4energy/wavesave.

c© Springer Nature Switzerland AG 2018
D. Seipel et al. (Eds.): DECLARE 2017, LNAI 10997, pp. 53–63, 2018.
https://doi.org/10.1007/978-3-030-00801-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00801-7_4&domain=pdf
http://www.it4energy-zentrum.de/de/it4energy/wavesave

54 A. Wolf

For an evaluation of configurations of energy systems in buildings with
respect to their overall costs including investment, operation, emission, main-
tenance etc. over their live-time, we applied Mixed Integer Programming (MIP)
while using similar approaches as presented in [1–3]. In our approach the MIP
models are automatically generated from domain-specific XML descriptions
defining the characteristics of the energy system components, the forecast data
on energy use and supply, current states of the energy system components, etc.
For MIP modeling the <Coliop|Coin> Mathematical Programming Language
(CMPL) (cf. http://www.coliop.org/) is used offering the opportunity to use
different solvers like the open-source MIP solver CbC or the commercial MIP
solver CPLEX.

To our knowledge it is rather difficult to consider domain-specific heuristics
in MIP solvers, e.g. to consider preferences or soft constraints, e.g. in order to
adapt schedules to changed constraints within the time-critical context of online
operation scheduling of the energy systems components. Therefore, we decided to
apply finite integer domain Constraint Programming (fdCP) allowing heuristic
search to model and solve such COP adequately within this highly dynamic
context. This means that good solutions have to be found or adapted within
reasonable short time. Furthermore, Constraint Programming is the preferred
choice in order to solve scheduling problems (cf. [4]).

Due to its nature, finite integer domain Constraint Programming only sup-
ports integer variables such that linear equations are considered as diophantine
equations, i.e. only the integer solutions are sought. However, this is not suitable
for any modeling of energy storage devices (cf., e.g. [2,3]) in the context of the
WaveSave project, which requires the consideration of energy losses of energy
storages to the environment over time.

Example 1. Let an energy storage be given having a characteristic energy loss
of 3� within a given time unit. Further, let the energy load within time unit t
be Lt of such a storage. Then the load Lt+1 within the next time unit t + 1 is
determined by at least the part which is proportional to the factor of loss, i.e.
Lt+1 = 0.997 · Lt + · · · .

Another situation in the energy context where the modeling of a propor-
tional relationship with diophantine equations is not adequate occurs when the
energetic behavior of CHP systems has to be modeled: Any CHP system has a
specific current characteristic σ > 0 denoting the ratio of the supplied electric
power Pel and the usable heat flow Q̇.

Example 2. Let a Stirling engine based CHP system be given having a current
characteristic σ = 0.34. Then it holds that the supplied electric power Pel is
proportional to the usable heat flow Q̇ which varies over time according to the
operation mode of the CHP system:

Pel = 0.34 · Q̇ .

Assuming that the energy loads of a storage or the electric and thermal
powers of CHP systems over time are decision variables A and B, simple linear

http://www.coliop.org/

The Proportional Constraint and Its Pruning 55

equations like B = t ·A where t ∈ R are modeled in a straight-forward manner in
any Linear Programming system. However, in fdCP this is not the case. There,
the decision variables have integer domains such that only integer solutions are
considered. Consequently, Lt+1 = 0.997 ·45689 has no integral solution. However
Lt+1 = 45552 = round(0.997 · 45689) seems to be an acceptable approximation
in this case.

The work is organized as follows: First we present some related work, then
we define the Proportional Constraint and some pruning rules. Further, the
correctness of these rules is proven and it is shown that iterative pruning leads
to the strongest notion of bounds consistency. Then, an alternative modeling
of the Proportional Constraint based on linear inequalities is presented and the
run-times of these two approaches on sample problem classes are compared.
Finally we conclude with some remarks on the implementation and the use of
this constraint.

2 Related Work

Linear equations y = α · x where the variable y is proportional to another vari-
able x – where α is a scalar value – are special cases of weighted sums, i.e.
y = α1 · x1 + · · · + αn · xn(n > 0). Weighted sum constraints are already con-
sidered in [5]. Applying the pruning rules defined there on finite domain integer
variables, the resulting consistency only ensures that there exist real solutions
which is not adequate in the context of our WaveSave project. There, the solu-
tions have to integral, i.e. the integer values of finite domain decision variables
considered in further constraints. Thus, we decided to extend our object-oriented
constraint solving library firstCS [6] which already supports weighted sum con-
straints with an adequate proportional constraint y = α · x for finite domain
integer variables.

3 The Proportional Constraint

In application domains of finite domain Constraint Programming such as the
optimized operation of energy systems there is a need to model a proportional
energy loss when using energy storage devices as already mentioned. Therefore
and for other applications as well, we define the binary Proportional Constraint :

Definition 1 (Proportional Constraint). Let t > 0 be a real value and
A,B finite domain constraint variables having integer domains dom(A) respec-
tive dom(B). For convenience, let min(X) = min(dom(X)) and max(X) =
max(dom(X)) for any domain variable X. The (binary) Proportional Con-
straint

round(t · A) = B

is satisfied, if for any value a ∈ dom(A) there is a value b ∈ dom(B) respective if
for any value b ∈ dom(B) there is a value a ∈ dom(A) such that round(t · a) = b

56 A. Wolf

holds. Such value pairs (a, b) or labelings Θ = {A �→ a,B �→ b} satisfying
the constraint are called solutions. There, round(.) is the rounding function as
defined by round(x) = �x + 0.5�, where �y� is the greatest integer value less than
or equal to y for any real value y.

The definition of the Proportional Constraint is sound in the sense that for
any t > 0 and any integer value a there is another integer value b such that
round(t · a) = b holds: For a there is obviously b = round(t · a). For any integer
value b and 0 < t ≤ 1 there is always an integer value a ∈ [(b−0.5)/t, (b+0.5)/t]
satisfying the constraint, because it holds

t ≤ 1
⇔ t ≤ (b + 0.5) − (b − 0.5)

⇔ 1 ≤ b + 0.5
t

− b − 0.5
t

However, for t > 1 this is not always the case: Let b = 1 and t = 1.9, then there
is not any integer value a such that 1 = round(1.9 · a) holds.

In order to implement and use such a constraint in a Constraint Program-
ming system some pruning rules have to be defined, reducing the domains of
the involved variables without losing any solutions and resulting in a fixed-point
when iterated such that the pruned domains of the variables hopefully satisfy
some notion of consistency. Our definition of some pruning rules for the Pro-
portional Constraint requires a special kind of “floor” function mapping reals to
integers. It is defined as follows:

Definition 2. For any real value x let the function �.� : R → Z be defined by

�x� =
{

x − 1 if x = �x�,
�x� otherwise.

This definition of the function �.� is sound in the sense that for any x ∈ R there
is exactly one y ∈ Z such that y = �x� holds.

For the defined Proportional Constraint we propose the following pruning
rules:

Definition 3 (Pruning Rules). For any Proportional constraint

round(t · A) = B

with t > 0 and finite domain constraint variables A and B having integer
domains dom(A) respective dom(B) let

dom∗(B) = dom(B) ∩ [round(t · min(A)), round(t · max(A))] (1)
dom∗(A) = dom(A) ∩ [
(min∗(B) − 0.5)/t�, �(max∗(B) + 0.5)/t�] (2)

The Proportional Constraint and Its Pruning 57

be some pruning rules – to be applied in the given order – where min∗(B) =
min(dom∗(B)) and max∗(B) = max(dom∗(B)) for the sake of convenience. Fur-
ther, let
y� be the smallest integer value greater than or equal to y for any real
value y.

These rules are potentially reducing the domains of A and B, i.e. dom∗(A) ⊆
dom(A) and dom∗(B) ⊆ dom(B) hold.

The indicator ∗ in dom∗(A) respective in dom∗(B) is used to distinguish
between the original and the updated domains of the variables A and B which
will replace dom(A) respective dom(B) in any next iteration of these pruning
rules.

Example 3. Let the Proportional Constraint round(2.1 · A) = B with dom(A) =
{0, 1, 2, 3} and dom(B) = {2} be given. After applying the pruning rules defined
in Definition 3 it holds that dom∗(B) = {2} ∩ [0, 6] = {2} and dom∗(A) =
{0, 1, 2, 3} ∩ [1, 1] = {1}. This means that pruning determines the solution Θ =
{A �→ 1, B �→ 2} correctly.

Obviously, the question arises whether the pruning rules are in general correct
or whether there are any integer solutions of the constraint which will be lost
while pruning? – The following proposition answers this question:

Proposition 1. Let t > 0 be a real value and A,B finite domain constraint
variables having integer domains dom(A), dom(B). If there is a value pair (a, b) ∈
dom(A) × dom(B) such that b = round(t · a) holds, then it will hold that (a, b) ∈
dom∗(A) × dom∗(B). In other words the propagation rules are correct, i.e. not
any integer solution is lost while pruning.

Proof. Let a ∈ dom(A) and b ∈ dom(B) be any two integer values such that
round(t · a) = b holds. Due to the fact that min(A) ≤ a ≤ max(A) holds and
the function f(x) = round(t · x)) is monotonic, it holds f(min(A)) ≤ f(a) ≤
f(max(A)) and thus b ∈ dom∗(B). According to the definition of round exactly
one of the following two cases is valid:

1. t · a = round(t · a) + ε with 0 ≤ ε < 0.5,
2. t · a = round(t · a) − ε with 0 < ε ≤ 0.5.

Let us suppose that the first case is valid. Due to the facts that b ∈ dom∗(B)
and b = round(t · a) it holds that

(min∗(B) − 0.5)/t� ≤
(b − 0.5)/t�
=
(round(t · a) − 0.5)/t�
=
(t · a − ε) − 0.5)/t�
=
a − (0.5 + ε)/t�
≤ a . (3)

58 A. Wolf

Further, it holds that

�(max∗(B) + 0.5)/t� ≥ �(b + 0.5)/t�
= �(round(t · a) + 0.5)/t�
= �(t · a − ε) + 0.5)/t�
= �a + (0.5 − ε)/t�
≥ a (4)

given that (0.5 − ε)/t > 0 holds.
Now, let us suppose that the second case is valid. Due to the facts that

b ∈ dom∗(B) and b = round(t · a) it holds that

(min∗(B) − 0.5)/t� ≤
(b − 0.5)/t�
=
(round(t · a) − 0.5)/t�
=
(t · a + ε) − 0.5)/t�
=
a − (0.5 − ε)/t�
≤ a (5)

given that (0.5 − ε)/t ≥ 0 holds. Further it holds that

�(max∗(B) + 0.5)/t� ≥ �(b + 0.5)/t�
= �(round(t · a) + 0.5)/t�
= �(t · a + ε) + 0.5)/t�
= �a + (0.5 + ε)/t�
≥ a . (6)

��
An iterated application of the pruning rules defined in Definition 3 on the con-

straint variables’ domains either reduces these finite domains until they become
empty or will not be further reduced. In any case, the iteration stops after a finite
number of steps, such that dom∗(A) = dom(A) and dom∗(B) = dom(B) holds,
i.e. any further applications of the pruning rules will not change the domains
of the variables. This means that a fixed-point is reached (cf. [7]). However,
how many iterations are necessary for reaching a fixed-point? – The following
proposition answers this question:

Proposition 2. The number of iterations of the pruning rules necessary to
reach a fixed-point has no fixed upper bound: The number of iterations strongly
depends on the constraint instance, in particular on the structure and on the size
of the domains of the variables.

Example 4 (Counter Examples). Let t = 3.0 and for any integer value n > 1 let
dom(A) = {1, 2, 3, . . . , n} and dom(B) = {3, 5, 8, . . . , 3n − 1} be given. Then a
fixed-point is reached after at least n − 1 iterations. The same holds for t = 0.3

The Proportional Constraint and Its Pruning 59

and any integer value n > 1 if dom(A) = {10, 20, 30, . . . , 10 · n} and dom(B) =
{3, 5, 8, . . . , 3n − 1}, then a fixed-point is reached after n − 1 iterations, too.2

Finally we show that after a fixed-point iteration of the pruning rules (cf. Def-
inition 3) the domains of the variables of the Proportional Constraint are bounds
consistent in the strongest sense – cf. [8] for a detailed analysis of different
notions of bounds consistency. From there we adopted the following definition:

Definition 4. A domain D is bounds(D) consistent for a constraint c where
vars(c) = {x1, . . . , xn}, if for each variable xi with 1 ≤ i ≤ n and for each di ∈
{min(xi),max(xi)} there exist integers dj with dj ∈ dom(xj) where 1 ≤ j ≤ n,
j �= i such that the labeling Θ = {x1 �→ d1, . . . , xn �→ dn} is an integer solution
of c.

This definition considers n-ary constraints and thus binary constraints like
the Proportional Constraint as well.

Proposition 3. Let a Proportional Constraint

round(t · A) = B

be given with t > 0 and finite domain constraint variables A and B having integer
domains dom(A) respective dom(B). Furthermore, it is assumed that the pruning
rules (cf. Definition 3) are iterated until a fixed-point is reached, i.e. it holds that
dom∗(A) = dom(A) and dom∗(B) = dom(B). Then it holds that the domain D
(cf. Definition 4) consisting of dom(A) and dom(B) is bounds(D) consistent.

Proof. Let a = min(A). Then, there is an integer value b such that b = round(t ·
a) holds. Now we assume that b �∈ dom(B) respective that b �= min(B). It
follows that b < min(B) due to the pruning rule (1) and the monotonicity
of the rounding function. Thus, round(t · a) ≤ min(B) − 1 holds and further
t · a ± ε ≤ min(B) − 1 (cf. case distinction in the proof of Proposition 1). This
implies that a < (min(B)−0.5)/t and finally a <
(min(B)−0.5)/t� holds. This
contradicts a = min(A), i.e. the assumption is wrong, it holds that b ∈ dom(B)
respective that b = min(B).
Let a = max(A). Then, there is an integer value b such that b = round(t ·
a) holds. Now we assume that b �∈ dom(B) respective that b �= max(B). It
follows that b > max(B) due to the pruning rule (1) and the monotonicity
of the rounding function. Thus, round(t · a) ≥ max(B) + 1 holds and further
t · a ± ε ≥ max(B) + 1 (cf. case distinction in the proof of Proposition 1). This
implies that a ≥ (max(B)+0.5)/t and finally a > �(max(B)+0.5)/t� because a
is an integer value. This contradicts a = max(A), i.e. the assumption is wrong,
it holds that b ∈ dom(B) respective that b = max(B).
Let b = min(B). We further distinguish two additional sub-cases:

2 The formal proof by induction is left to the interested reader.

60 A. Wolf

(a) We further suppose that there is an integer value a such that b = round(t ·a)
holds. Now, we assume that a �∈ dom(A) respective that a �= min(A). It
follows that a < min(A) due to the pruning rule (2) and the monotonicity
of the rounding function. Thus, t · a < min(B) − 0.5 holds implying that
b = round(t · a) ≤ t · a + 0.5 < min(B) , i.e. the assumption was wrong, it
holds that a ∈ dom(A) respective that a = min(A).

(b) Now, we assume that for each integer value a it holds that b �= round(t · a)
even for a = min(A). Thus, b > round(t·min(A)) holds. According to the case
distinction in the proof of Proposition 1 it holds that b ≥ t ·min(A) ± ε+1
and thus in either case b ≥ t · min(A) + 0.5 holds. It follows that (min(B) −
0.5)/t > min(A) and thus
(min(B) − 0.5)/t� > min(A) are holding. This
contradicts the pruning rule (2). The assumption is wrong, i.e. there is an
integer value a such that b = round(t · a) holds. The case (b) never occurs.

Let b = max(B). Again, we further distinguish two additional sub-cases:

(a) We further suppose that there is an integer value a such that b = round(t ·a)
holds. Now, we assume that a �∈ dom(A) respective that a �= max(A). It
follows that a > max(A) due to the pruning rule (2) and the monotonicity
of the rounding function. Thus, t · a ≤ max(B) + 0.5 holds. Due to the fact
that max(B) is an integer value it holds that b = round(t · a) > max(B),
i.e. the assumption was wrong, it holds that a ∈ dom(A) respective that
a = max(A).

(b) Now, we assume that for each integer value a it holds that b �= round(t ·
a) even for a = max(A). Thus, b < round(t · max(A)) holds. According
to the case distinction in the proof of Proposition 1 it holds that b ≤ t ·
max(A) ± ε− 1 and thus in either case b ≤ t ·max(A)− 0.5. It follows that
(max(B) + 0.5)/t ≤ max(A) and thus �(max(B) + 0.5)/t� < max(A) are
holding because max(A) is an integer value. This contradicts the pruning
rule (2). The assumption is wrong, i.e. there is an integer value a such that
b = round(t · a) holds. The case (b) never occurs.

��

4 Alternative Modeling of the Proportional Constraint

For any rational factor t > 0 within a Proportional Constraint round(t · A) = B
it is possible to model this constraint equivalently on the basis of a weighted sum
constraints which are well established in fdCP [5]:3

Proposition 4. Let t = p/q where p and q are positive integer values. Then,
for any two finite domain constraint variables A,B the constraint

−q

2
< q · B − p · A ≤ q

2
(7)

3 Many thanks to the anonymous reviewer who suggested this approach.

The Proportional Constraint and Its Pruning 61

is equivalent to the Proportional Constraint round(t · A) = B in the sense that
any solution {A �→ a,B �→ b} is a solution of (7) and vice-versa.

Proof. Let {A �→ a,B �→ b} be any solution of the Proportional Constraint, i.e.
b = round(t · a). We distinguish two sub-cases:

1. Let q = 1, i.e. t be an integer value. It holds that q·b−p·a = round(p·a)−p·a =
0. Obviously, {A �→ a,B �→ b} is a solution of (7).

2. Let q > 1, i.e. t be non-integral. According to the case distinction in the
proof of Proposition 1 it holds that q · b − p · a = q · round(p/q · a) − p · a =
q · p/q · a ± ε − p · a = ±ε. Due to the fact that −q/2 < −ε and ε ≤ q/2
holds for any q > 1, it also holds that {A �→ a,B �→ b} is a solution of (7).

Now, let {A �→ a,B �→ b} be any solution of (7), i.e. −q/2 < q · b−p ·a ≤ q/2
holds and thus −1/2 < b − p/q · a ≤ 1/2. Consequently, b = round(t · a) is the
only integer value satisfying this condition and thus {A �→ a,B �→ b} is also a
solution of the Proportional constraint. ��

5 Run-Time Comparison

For a run-time comparison of the Proportional Constraint and its alternative
modeling (cf. (7)) we implemented the Proportional Constraint with the pruning
rules presented in Definition 3 in our finite domain constraint solving library
firstCS [6] which already supports weighted sum constraints. Then, we modeled
the following classes of problem instances

– A(n): t = 0.3, dom(A) = {10, 20, 30, . . . , 10n}, dom(B) = {3, 5, 8, . . . , 3n−1}.
– B(n): t = 0.997, dom(A) = {1, 2, 3, . . . , n}, dom(B) = {1, 2, 3, . . . , n}.
– C(n): t = 0.003, dom(A) = {1, 2, 3, . . . , n}, dom(B) = {1, 2, 3, . . . , n}.

For problem class A (cf. Example 4) we perform initial pruning resulting in
one solution. For the problem classes B and C we perform initial pruning and
additional pruning while searching all solutions. The search strategy chooses
variable A then B and their values in increasing order performing chronological
backtracking in cases where dead ends are reached, i.e. a domain of a variable
becomes empty. Pruning means that the according pruning rules are applied
until a fixed-point is reached.

Table 1 shows the results of our run-time comparison of the Proportional
Constraint (PC) and its alternative modeling (ALT) executed on a Windows
computer with Windows 10 Pro (64 bit), Intel i7 CPU, 2.60 GHz, 12 GByte RAM.
The computations for all problem instances were repeated 10 times. We com-
pared best run-times and average run-times (in ms) showing that the execution
of the Proportional Constraint is always faster – in the best cases 79%, in the
worst case 2% and on average 45%:

62 A. Wolf

Table 1. Run-time comparison of the Proportional Constraint and its alternative

Instance PC avg. PC best ALT avg. ALT best ALT/PC avg. ALT/PC best

A(10000) 310.2 297 539.5 440 174% 148%

A(20000) 1238.8 1199 1277.8 1227 103% 102%

A(40000) 4035.3 3999 4985.4 4864 124% 122%

A(80000) 15582.6 15280 19188.7 18885 123% 124%

B(10000) 103.3 78 170.7 109 165% 140%

B(20000) 149.5 125 200.1 172 134% 138%

B(40000) 196.3 187 278.3 250 142% 137%

B(80000) 276.5 250 452.9 406 164% 162%

C(10000) 86.0 78 153.6 140 179% 179%

C(20000) 123.4 109 218.8 156 177% 143%

C(40000) 191.4 172 281.5 265 147% 154%

C(80000) 273.4 250 409.7 359 150% 144%

6 Conclusion

Within this work a Proportional Constraint for finite integer domains is defined
and according pruning rules are presented and analyzed. Its is shown that prun-
ing based on these rules is correct and results in the strongest notion of bounds
consistency (cf. [8]). The introduced Proportional Constraint is implemented in
our object-oriented constraint solving library firstCS [6] and compared with an
alternative approach based on linear inequalities already available in firstCS.

The Proportional Constraint is used in the context of the WaveSave project
to model the energy loss of energy storages like heat tanks or batteries over time
and the relationship between the supplied electric powers and the usable heat
flows of CHP systems. It is noteworthy that for other applications we imple-
mented a more general version of the Proportional Constraint for any t ∈ R:
For t = 0 the pruning rules are trivial: If 0 �∈ dom(B) holds, dom∗(B) will
become empty as well as dom∗(A). If 0 ∈ dom(B) holds, dom∗(B) = {0} and
dom∗(A) = dom(A) will hold. For t < 0 the pruning rules for t > 0 are adapted
accordingly respecting the fact that B = round(−t · −A) while pruning the
domain of A and −B = round(−t · A) while pruning the domain of B.

References

1. Bosman, M., Bakker, V., Molderink, A., Hurink, J., Smit, G.: Planning the produc-
tion of a fleet of domestic combined heat and power generators. Eur. J. Oper. Res.
216, 140–151 (2012)

2. Bozchalui, M.C., Sharma, R.: Optimal operation of commercial building microgrids
using multi-objective optimization to achieve emissions and efficiency targets. In:
2012 IEEE Power and Energy Society General Meeting, pp. 1–8. IEEE (2012)

The Proportional Constraint and Its Pruning 63

3. Brahman, F., Honarmand, M., Jadid, S.: Optimal electrical and thermal energy
management of a residential energy hub, integrating demand response and energy
storage system. Energy Build. 90, 65–75 (2015)

4. Baptiste, P., Pape, C.L., Nuijten, W.: Constraint-Based Scheduling - Applying Con-
straint Programming to Scheduling Problems. Springer, Boston (2001). https://doi.
org/10.1007/978-1-4615-1479-4

5. Schulte, C., Stuckey, P.J.: When do bounds and domain propagation lead to the
same search space? ACM Trans. Program. Lang. Syst. (TOPLAS) 27(3), 388–425
(2005)

6. Wolf, A.: firstCS - new aspects on combining constraint programming with object-
orientation in Java. KI - Künstliche Intelligenz 26(1), 55–60 (2012)

7. Apt, K.R.: From chaotic iteration to constraint propagation. In: Degano, P., Gorri-
eri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 36–55.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63165-8 163

8. Choi, C.W., Harvey, W., Lee, J.H.M., Stuckey, P.J.: Finite domain bounds consis-
tency revisited. In: Sattar, A., Kang, B. (eds.) AI 2006. LNCS (LNAI), vol. 4304,
pp. 49–58. Springer, Heidelberg (2006). https://doi.org/10.1007/11941439 9

https://doi.org/10.1007/978-1-4615-1479-4
https://doi.org/10.1007/978-1-4615-1479-4
https://doi.org/10.1007/3-540-63165-8_163
https://doi.org/10.1007/11941439_9

An Operational Semantics
for Constraint-Logic Imperative

Programming

Jan C. Dageförde(B) and Herbert Kuchen

ERCIS, University of Münster, Münster, Germany
{dagefoerde,kuchen}@uni-muenster.de

Abstract. Object-oriented (OO) languages such as Java are the dom-
inating programming languages nowadays, among other reasons due to
their ability to encapsulate data and operations working on them, as
well as due to their support of inheritance. However, in contrast to
constraint-logic languages, they are not particularly suited for solving
search problems. During development of enterprise software, which occa-
sionally requires some search, one option is to produce components in
different languages and let them communicate. However, this can be
clumsy.

As a remedy, we have developed the constraint-logic OO language
Muli, which augments Java with logic variables and encapsulated search.
Its implementation is based on a symbolic Java virtual machine that
supports constraint solving and backtracking. In the present paper, we
focus on the non-deterministic operational semantics of an imperative
core language.

Keywords: Java · Operational semantics · Encapsulated search
Programming paradigm integration

1 Introduction

Contemporary software development is dominated by object-oriented (OO) pro-
gramming. Its programming style benefits most industry applications by provid-
ing e.g. inheritance and encapsulation of structure and behaviour, since these
concepts can positively contribute towards reusability and maintainability [13].
Nevertheless, some industry applications require search, for which constraint-
logic programming is more suited than OO (or imperative) programming. How-
ever, developing applications that integrate both worlds, e.g. a Java application
using a Prolog search component via Java Native Interface (JNI), is tedious and
error-prone [10].

For that reason, we propose the Münster Logic-Imperative Programming Lan-
guage (Muli), integrating constraint-logic programming with OO programming
in a novel way. Based on Java, it adds logic variables and encapsulated search to

c© Springer Nature Switzerland AG 2018
D. Seipel et al. (Eds.): DECLARE 2017, LNAI 10997, pp. 64–80, 2018.
https://doi.org/10.1007/978-3-030-00801-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00801-7_5&domain=pdf
http://orcid.org/0000-0001-9141-7968

An Operational Semantics for Constraint-Logic Imperative Programming 65

the language, supported by constraint solvers and non-deterministic execution
on a symbolic Java virtual machine (JVM). The symbolic JVM adapts concepts
from the Warren Abstract Machine, such as choice points and trail [22]. Muli’s
tight integration of both paradigms facilitates development of applications whose
business logic is implemented in Java, but which also require occasional search,
such as operations research applications [8].

In this paper, we describe a reduction semantics for a core subset of Muli.
In particular, the interaction of imperative statements, free variables, and non-
determinism is of interest. For simplicity, this core language abstracts from inher-
itance, multi-threading, and reflection, because those features do not exhibit
interesting behaviour w.r.t. our semantics. The formulated semantics is helpful
to get an understanding of the mechanics behind concepts that are novel to
imperative and OO programming, and serves as a formal basis for implementing
the symbolic JVM. It can also be used for reasoning about applications developed
in Muli.

To that end, our paper is structured as follows. We provide an overview of
the new language and its concepts in Sect. 2. Section 3 formalises the operational
semantics of the core language. An example evaluation using this semantics is
shown in Sect. 4. Section 5 presents a discussion of our concepts. Related work is
outlined in Sect. 6. We then conclude in Sect. 7 and provide an outlook towards
further research.

2 Language Concepts

The Muli language is derived from Java 8. We do not change existing concepts
and features of Java, so that Muli also benefits from Java’s well-known and well-
received features, such as OO and managed memory. Instead, the language is
defined by its additions to Java, i.e. Muli is a superset of Java.

Muli adds the concept of free variables, i.e. variables that are declared and
instantiated, but not to a particular value. Instead, they are treated symboli-
cally and can be used in statements and expressions. Constraints on symbolic
variables and expressions are imposed during symbolic execution of conditional
statements. For example, an if statement with a condition that involves insuffi-
ciently constrained variables results in multiple branches that can be evaluated.
Conceptually, we can non-deterministically choose a branch and evaluate it. Our
implementation considers all these branches using backtracking and a (complete!)
iterative deepening depth-first search strategy. This is supported by a specialised
symbolic JVM that records choice points for each non-deterministic branch.

Furthermore, we enforce that non-determinism only takes place inside encap-
sulated search regions, whereas code outside encapsulation is executed deter-
ministically. This ensures that non-determinism is not introduced by accident,
intending not to harm the understanding of known Java concepts. Furthermore,
this ensures that the overall application exits in a single state. In contrast, unen-
capsulated symbolic execution could result in multiple exit states, which could

66 J. C. Dageförde and H. Kuchen

cause difficulties on the side of the caller. Encapsulation is expressed by using
either of the getAllSolutions and getOneSolution operators. The logic
of encapsulated search is described by search regions that are implemented as
methods, e.g. as lambda abstractions, in order to defer their evaluation until
encapsulation begins.

Solutions of encapsulated search are defined by values or expressions returned
from search regions. Due to non-determinism, multiple solutions can be returned
from search. Additionally, we introduce the special statement fail;, whose eval-
uation results in immediate backtracking in the symbolic JVM without recording
a solution for the current branch.

From a syntactic perspective, these concepts extend Java only minimally. The
resulting syntax of Muli can best be demonstrated using an example. Listing 1
exhibits a Muli method log() that searches for the logarithm of a number
x to the base 2 using a free variable y and a method pow that calculates by

imperatively, which is constrained to be equal to x.

int log(int x) {
int y free;
if (pow(2,y) == x) return y;
else fail; }

int pow(int b, int y) {
int i; int r; i = 0; r = 1;
while (i < y) {

r = r * b; i = i + 1; }
return r; }

Listing 1. Non-deterministic computation of the logarithm of a number to the base 2
using (core) Muli.

Let us assume that the considered search region consists of a call to log, e.g.
log(4). When calling log with a given x, the free variable y is created and then
passed to pow that calculates the power by symbolically, as y is free. Therefore,
it returns a value that is accompanied by a set of accumulated constraints from
which this particular value follows.1 Consequently, log computes the logarithm
by defining a constraint system using an imperative method that calculates the
power.

If the variables involved in a branching condition (of if or while in List-
ing 1) are not sufficiently constrained, one of the feasible branches is chosen
non-deterministically. Actually, our symbolic JVM would try them systemati-
cally one after the other, aided by a backtracking mechanism. When selecting a
branch, the corresponding condition is added to the constraint store and consis-
tency is checked. For example, while (i < y) can be either true or false as y
is a free variable. As a result, one branch assumes the condition to be true and
therefore adds the constraint i < y to the constraint store by imposing a conjunc-
tion of the existing store and the new constraint. In contrast, the second branch

1 In other problems the return value could be a symbolic expressions if the accumulated
constraints do not reduce the return value’s domain to a concrete value.

An Operational Semantics for Constraint-Logic Imperative Programming 67

assumes it to be false and therefore adds the negated condition as a constraint.
If an added constraint renders the store inconsistent, backtracking occurs, i.e.
that branch is pruned and execution continues with a subsequent branch. Simi-
larly, backtracking occurs when a solution is found so that the next branch can
be evaluated to find further solutions. Muli’s encapsulated search operators use
lazy streams to return collected solutions to the surrounding deterministic com-
putation, such that the surrounding computation can decide how many solutions
it wants to obtain.

3 A Non-deterministic Operational Semantics of Muli

Muli is an extension to Java and therefore intends to fully support all Java func-
tionality. In fact, all Muli programs even compile to regular JVM bytecode that
can be parsed and executed by a regular JVM (but incorrectly), and all Java
programs can be executed correctly by Muli’s symbolic JVM. Outside of encap-
sulated search, execution in Muli is deterministic and replicates the behaviour
of a standard JVM [12]. Inside encapsulation, search regions are executed non-
deterministically. This changes the semantics of Java and adds subtleties that
need to be explicated, particularly regarding the interaction of imperative state-
ments, free variables, and non-determinism. Therefore, we formally define the
semantics for non-deterministic evaluation of search regions.

For the purpose of describing a (non-deterministic) operational semantics of
Muli, we focus on an imperative, procedural subset of Java (and Muli). This
concise subset allows us to focus on the interaction between imperative and
constraint-logic programming. It therefore abstracts from some features that
are expected from Java but that would not contribute to the discussion in the
present paper, such as inheritance.2 Furthermore, this semantics abstracts from
the execution of deterministic program parts and therefore does not prescribe
an implementation for the encapsulation operators, getAllSolutions and
getOneSolution.

Let us first describe the syntax of our core language. We will use variables
taken from a finite set V ar = {x1, . . . , xm}, for simplicity all of type integer (m ∈
N). Also let Op = AOp ∪ BOp ∪ ROp = {+, −, ∗, /} ∪ {&&, ||} ∪ {==, ! =,
<=, >=, <, >} be a finite set of arithmetic, boolean, and relational operation
symbols, respectively. We focus on binary operation symbols. Furthermore, M
is a finite set of methods.3

The syntax of arithmetic expressions and boolean expressions as well as state-
ments can be described by the following grammar. AExpr, BExpr, and Stat
denote the sets of all arithmetic expressions, boolean expressions, and state-
ments, respectively, which can be constructed by the rules of this grammar.

2 Nevertheless, Muli’s symbolic JVM supports these features exactly according to the
JVM specification [12] (but does not add interesting details w.r.t. non-determinism).

3 In fact they are functions, since we ignore object-orientation in this presentation.

68 J. C. Dageförde and H. Kuchen

e ::= c | x | e1 ⊕ e2 | m(e1, . . . , ek)
where c ∈ Z, x ∈ V ar, e1, . . . , ek ∈ AExpr, ⊕ ∈ AOp, m ∈ M, k ∈ N,

b ::= e1 � e2 | b1 ⊗ b2 | true | false
where e1, e2 ∈ AExpr, b1, b2 ∈ BExpr, � ∈ ROp, ⊗ ∈ BOp,

s ::= ; | int x; | int x free; | x = e; | e; | {s} | s1 s2 |
if (b) s1 else s2 | while (b) s | return e; | fail;

where x ∈ V ar, e ∈ AExpr, b ∈ BExpr, s, s1, s2 ∈ Stat.

Note, in particular, the possibility to create free logic variables by int x free;.
After describing the syntax of the core language, let us now define its seman-

tics. In the sequel, let A = {α0, . . . , αn} be a finite set of memory addresses
(n ∈ N). Moreover, let

Tree(A, Z) = A ∪ Z ∪ {⊕(t1, t2) | t1, t2 ∈ Tree(A, Z),⊕ ∈ Op}
be the set of all symbolic expression trees with addresses and integer constants
as leaves and operation symbols as internal nodes.

We provide a reduction semantics, where the computations depend on an
environment, a state, and a constraint store. Let Env = (V ar ∪ M) →
(A ∪ (V ar∗ ×Stat)) be the set of all environments, mapping each variable to an
address and each function to a representation ((x1, . . . , xk), s) that describes its
parameters and code, with the additional restriction that elements of Env may
neither map variables to parameters and code nor functions to addresses. We
consider functions to be in global scope and define a special initial environment
ρ0 ∈ Env that maps functions to their respective parameters and code. More-
over, let Σ = A → ({⊥} ∪ Tree(A, Z)) be the set of all possible memory states.
In σ ∈ Σ, a special address α0 with σ(α0) = ⊥ is reserved for holding return
values of method invocations. Furthermore, CS = {true} ∪ Tree(A, Z) is the
set of all possible constraint store states. Since constraints are specific boolean
expressions, only conjunctions and relational operation symbols such as == and
> will appear at the root of such a tree.

In the sequel, ρ ∈ Env, σ ∈ Σ, γ ∈ CS; if needed, we will also add dis-
criminating indices. We will use the notation a[x/d] when modifying a state or
environment a, meaning

a[x/d](b) =

{
d , if b = x

a(b) , otherwise.

A free variable is represented by a reference to its own location in mem-
ory. Consequently, σ(ρ(x)) = ρ(x) if x is a free variable. Initially, a constraint
store γ is empty, i.e. it is initialised with true. During execution of a program,
constraints may incrementally be added to the store. This is done by imposing
a conjunction of the existing constraints and a new constraint, thus replacing
the constraint store by the new conjunction. As a result, the constraint store
is typically described by a conjunction of atomic boolean expressions. We treat
the constraint solver as a black box. In our implementation, we use the external

An Operational Semantics for Constraint-Logic Imperative Programming 69

constraint solver JaCoP [11] in its most recent version 4.4. In fact, the constraint
solver is exchangeable and any solver implementation fulfilling our requirements
(particularly incremental adding/removal of constraints) can be used.4

Note that our definition of functions does not fully cover the concept of meth-
ods in object-oriented languages, since we abstract from classes and, therefore,
inheritance. However, a function in our semantics can be compared to a static
method, since a function in this semantics can access and modify its own argu-
ments and variables, but not instance variables of an object. Static fields could
be modelled as global variables, i.e. further entries in ρ0.

Since classes, inheritance, instance variables, and static variables have little
influence on the interaction between imperative statements, free variables, and
non-determinism, object orientation can be considered (almost) orthogonal to
our work.

3.1 Semantics of Expressions

Let us start with the semantics of expressions. The semantics of expressions is
described by a relation → ⊂ (Expr × Env × Σ × CS) × ((B ∪ Tree(A, Z)) ×
Σ × CS), which we use in infix notation. Note that evaluating an expression
can, in general, change state and constraint store as a side effect, although only
the Invoke rule actively does so. We will point out expressions that make use
of this, whereas the others merely propagate changes (if any) resulting from the
evaluation of subexpressions.

The treatment of constants and variables is trivial.

〈c, ρ, σ, γ〉 → (c, σ, γ), if c ∈ Z ∪ B (Con)
〈x, ρ, σ, γ〉 → (σ(ρ(x)), σ, γ) (Var)

Nested arithmetic expressions without free variables are evaluated directly,
whereas expressions comprising free variables result in a (deterministic) uneval-
uated (!) symbolic expression (∈ Tree(A, Z)).

〈e1, ρ, σ, γ〉 → (v1, σ1, γ1), 〈e2, ρ, σ1, γ1〉 → (v2, σ2, γ2),
v1, v2, v = v1 ⊕ v2 ∈ Z

〈e1 ⊕ e2, ρ, σ, γ〉 → (v, σ2, γ2)
(AOp1)

〈e1, ρ, σ, γ〉 → (v1, σ1, γ1), 〈e2, ρ, σ1, γ1〉 → (v2, σ2, γ2),
{v1, v2} � Z

〈e1 ⊕ e2, ρ, σ, γ〉 → (⊕(v1, v2), σ2, γ2)
(AOp2)

A boolean expression of the form e1 � e2 is evaluated analogously.

4 A very simple constraint solver could just take equality constraints into account. In
this case, γ |= x == v, if γ = b1∧ . . .∧bk and for some j ∈ {1, . . . , k} bk = (x == v).

70 J. C. Dageförde and H. Kuchen

Coherent with Java, conjunctions of boolean expressions are evaluated non-
strictly. The rules for the non-strict boolean disjunction operator || are defined
analogously to the following rules for &&.

〈b1, ρ, σ, γ〉 → (v1, σ1, γ1), γ |= ¬v1
〈b1 && b2, ρ, σ, γ〉 → (false, σ1, γ1)

(And1)

〈b1, ρ, σ, γ〉 → (v1, σ1, γ1), γ |= ¬v1, (b2, σ1, γ1) → (v2, σ2, γ2)
〈b1 && b2, ρ, σ, γ〉 → (∧(v1, v2), σ2, γ2)

(And2)

We consider a function invocation to be an expression as well, as the caller can
use its result in a surrounding expression. Evaluation of the function is likely to
result in a state change as well as in additions to the constraint store. Invoking m
implies that its description ρ(m) is looked up and corresponding fresh addresses
α1, . . . , αk, one for each of its k parameters, are created. The corresponding
memory locations are initialised by the caller. Note that the respective values
can contain free variables. σk+1(α0) will contain the return value from evaluating
the return statement in the body, whose semantics will be defined later (cf. rule
Ret). As the compiler enforces the presence of a return statement, we can safely
assume that σk+1(α0) holds a value after reducing s. Invoke resets that value
to ⊥ for further evaluations within the calling method. We use the shorthand
notation āk = (a1, . . . , ak) for vectors of k elements.

〈e1, ρ, σ, γ〉 → (v1, σ1, γ1), 〈e2, ρ, σ1, γ1〉 → (v2, σ2, γ2), . . . ,
〈ek, ρ, σk−1, γk−1〉 → (vk, σk, γk), ρ(m) = (x̄k, s),

〈s, ρ0[x̄k/ᾱk], σk[ᾱk/̄vk], γk〉 � (ρk+1, σk+1, γk+1), σk+1(α0) = r

〈m(e1, . . . , ek), ρ, σ, γ〉 → (r, σk+1[α0/⊥], γk+1)
(Invoke)

3.2 Semantics of Statements

Next, we describe the semantics of statements by a relation � ⊂ (Stat×Env×
Σ × CS) × (Env × Σ × CS), which we also use in infix notation.

A variable declaration changes the environment by reserving a fresh memory
location α for that variable. A free variable is represented by a reference to
its own location. Enclosing declarations in a block ensures that changes of the
environment stay local.

〈int x;, ρ, σ, γ〉 � (ρ[x/α], σ, γ) (Decl)
〈int x free;, ρ, σ, γ〉 � (ρ[x/α], σ[α/α], γ) (Free)

〈s, ρ, σ, γ〉 � (ρ1, σ1, γ1)
〈{ s }, ρ, σ, γ〉 � (ρ, σ1, γ1)

(Block)

As a particularity of a constraint-logic OO language, an assignment x = e
cannot just overwrite a location in memory corresponding to x, since this might

An Operational Semantics for Constraint-Logic Imperative Programming 71

have an unwanted side effect on constraints that involve x and refer to its for-
mer value. This side effect might turn such constraints unsatisfiable after they
have been imposed and checked, thus leaving a currently executed branch in
an inconsistent state. We avoid this by assigning a new memory address α1 to
the variable on the left-hand side. At the new address, we store the result from
evaluating the right-hand side. Consequently, old constraints or expressions that
involve the former value of x are deliberately left untouched by the assignment.
In contrast, later uses of the variable refer to its new value. The environment is
updated to achieve this behaviour.

〈e, ρ, σ, γ〉 → (v, σ1, γ1)
〈x = e, ρ, σ, γ〉 � (ρ[x/α1], σ1[α1/v], γ1)

(Assign)

Since the syntax does not enforce that no statements follow a return state-
ment, we provide sequence rules that take into account that the state may hold a
value in α0 (indicating a preceding return) or not (⊥). Further statements are
executed iff the latter is the case. Otherwise, further statements are discarded
as a preceding return has already provided a result in α0.

〈s1, ρ, σ, γ〉 � (ρ1, σ1, γ1), σ1(α0) == ⊥,

〈s2, ρ1, σ1, γ1〉 � (ρ2, σ2, γ2)
〈s1 s2, ρ, σ, γ〉 � (ρ2, σ2, γ2)

(Seq)

〈s1, ρ, σ, γ〉 � (ρ1, σ1, γ1), σ1(α0) = ⊥
〈s1 s2, ρ, σ, γ〉 � (ρ1, σ1, γ1)

(SeqFin)

The two following rules for if-statements introduce non-determinism in case
that the constraints neither entail the branching condition nor its negation.5

〈b, ρ, σ, γ〉 → (v, σ1, γ1), γ1 |= ¬v, 〈s1, ρ, σ1, γ1 ∧ v〉 � (ρ1, σ2, γ2)
〈if (b) s1 else s2, ρ, σ, γ〉 � (ρ1, σ2, γ2)

(Ift)

〈b, ρ, σ, γ〉 → (v, σ1, γ1), γ1 |= v, 〈s2, ρ, σ1, γ1 ∧ ¬v〉 � (ρ1, σ2, γ2)
〈if (b) s1 else s2, ρ, σ, γ〉 � (ρ1, σ2, γ2)

(Iff)

As with if, while can also behave non-deterministically.

〈b, ρ, σ, γ〉 → (v, σ1, γ1), γ1 |= ¬v, 〈s, ρ, σ1, γ1 ∧ v〉 �
(ρ1, σ2, γ2), 〈while (b) s, ρ1, σ2, γ2〉 � (ρ2, σ3, γ3)

〈while (b) s, ρ, σ, γ〉 � (ρ2, σ3, γ3)
(Wht)

〈b, ρ, σ, γ〉 → (v, σ1, γ1), γ1 |= v

〈while (b) s, ρ, σ, γ〉 � (ρ, σ1, γ1 ∧ ¬v)
(Whf)

5 In the implementation, the applicability of these rules will depend on the constraint
propagation abilities of the employed constraint solver. We discuss the implications
in Sect. 5.

72 J. C. Dageförde and H. Kuchen

All branching rules Iff , Ift, Whf , and Wht could be accompanied by more
efficient ones that deterministically choose a branch if its condition does not
involve free variables, i.e. without having to consult the constraint store. We
omit these rules in an effort to keep our definitions concise, as the provided ones
can also handle these cases.

We assume that the code of a user-defined function is terminated by a
return statement, i.e. its existence has to be ensured by the compiler. The
corresponding return value is supplied to the caller by storing it in α0, causing
remaining statements of the function to be skipped (cf. rule SeqFin), and letting
the caller extract the result from α0 (cf. rule Invoke). The return statement is
handled as follows:

〈e, ρ, σ, γ〉 → (v, σ1, γ1)
〈return e, ρ, σ, γ〉 � (ρ, σ1[α0/v], γ1)

(Ret)

Furthermore, we do not define an evaluation rule involving a fail statement.
This is intentional, as the evaluation of such a statement leads to a computation
that fails immediately.

The following (optional) substitution rule allows to simplify expressions and
results.

γ |= γ(α) == v, 〈s, ρ, σ[α/v], γ〉 � (ρ1, σ1, γ1)
〈s, ρ, σ, γ〉 � (ρ1, σ1, γ1)

(Subst)

When variables are not sufficiently constrained to concrete values, labeling
can be used to substitute variables for values that satisfy the imposed constraints
[5]. This non-deterministic rule is applied with the least priority, i.e. it should
only be used if no other rule can be applied. Otherwise, it would result in a lot
of non-deterministic branching, thus preventing the constraint solver from an
efficient reduction of the search space by constraint propagation.

γ |= σ(α) = v, 〈s, ρ, σ[α/v], γ ∧ (σ(α) == v)〉 � (ρ1, σ1, γ1)
〈s, ρ, σ, γ〉 � (ρ1, σ1, γ1)

(Label)

4 Example Evaluation

We demonstrate the use of the reduction rules defined in Sect. 3 by computing one
possible result of the logarithm program from Listing 1 that will be invoked by
an additional method int main() { return log(1); }. Other possible
results can be computed analogously. We abbreviate the code of log and pow by
s1 and s3, respectively, to improve readability. The substatement s2 is included
in s1, while s3 includes the substatements s4, s5, and s6. Moreover, we use the
infix notation for nested expressions, e.g. we write n ≥ 1 instead of ≥ (n, 1).

An Operational Semantics for Constraint-Logic Imperative Programming 73

Initially, let ρ0 = {main �→ (ε, return log(1);), log �→ ((x), s1), pow �→
((b, y), s3)}. Furthermore, let γ1 = true and σ0 = {α0 �→⊥}. We begin in method
main(), which evaluates to

〈1, ρ0, σ0, γ1〉 → (1, σ0, γ1) (Con), ρ0(log) = ((x), s1),
(Lemma1), σ6(α0) = 0

〈log(1), ρ0, σ0, γ1〉 → (0, σ6[α0/⊥], α2 == 0)
(Invoke)

〈return log(1), ρ0, σ0, γ1〉 � (ρ0, σ6[α0/0], α2 == 0)
(Ret)

Performing an entire evaluation with this example is interesting, but lengthy. We
therefore moved the detailed evaluation into the appendix (cf. Lemma1) and use
the opportunity to highlight some interesting evaluation steps here. In the final
state, σ6 = σ0[α0/0, α1/1, α2/α2, α3/2, α4/α2, α7/0, α8/1].

The final result σ6(α0) = 0 results from the constraint α2 ≤ 0 obtained from
evaluating Whf (Lemma9 in the appendix provides context):

〈i, ρ4, σ3, γ1〉 → (0, σ3, γ1) (Var),
〈y, ρ4, σ3, γ1〉 → (α2, σ3, γ1) (Var)

〈i < y, ρ4, σ3, γ1〉 → (0 < α2, σ3, γ1)
(AOp2),

γ |= (0 < α2)
〈while (i < y) s6, ρ4, σ3, γ1〉 � (ρ4, σ3, γ1 ∧ ¬(0 < α2))

(Whf)

where ρ4 = ρ0[b/α3, y/α4, i/α7, r/α8] and σ0[α1/1, α2/α2, α3/2, α4/α2, α7/0,
α8/1]. α2 ≤ 0 is further refined to α2 == 0 by the labeling rule in Lemma2
in the appendix.

In Lemma2, the constraint store is used to deduce that α2 == 0 is consistent
with the current constraint, α2 ≤ 0, as well as with the constraint store γ2.
Therefore, labeling non-deterministically imposes the more restrictive constraint
α2 == 0. Other branches may impose further constraints consistent with α2 < 0.

If we had non-deterministically chosen rule Wht in Lemma9, we would have
performed an iteration of the while loop, leading to more computations that
would not result in solutions, as they would be discarded as incorrect by the
fail statement of the log method.

The evaluation of rule Assign in Lemma7 creates a new memory location α7

in σ2 for the new value of i and updates the environment accordingly. At this
point, no references to the old location α5 exist, so an implementation could use
garbage collection to free that location. Hypothetically, if rule Wht had been
chosen in Lemma9, an iteration of the loop would have resulted in additional
evaluations of rule Assign, e.g. to increment i, thus reserving additional locations.
In the case of i, the new value would depend on the value in α7. However, as
the old value and the increment are constant, the new value would be computed
by evaluating rule AOp1, so that, again, no reference to α7 is needed.

74 J. C. Dageförde and H. Kuchen

5 Discussion

The key aspect of the semantic rules for the presented core language is the
interaction between constraint-logic programming and imperative programming.
Some aspects of it offer themselves for thorough discussion.

The (potentially) non-deterministic evaluation of our rules Iff , Ift, Whf , and
Wht highly depends on the included constraint solver. Our definition allows to
follow a branch if the negation of its condition is not entailed by the current con-
straint store γ. When implementing this, a constraint solver will be used to check
whether γ |= ¬v (analogously for γ |= v). If the constraint solver is not able to
show that the constraints entail ¬v, this may have three reasons: (1) γ |= v, or (2)
the current constraints neither entail v nor ¬v, or (3) the constraint propagation
abilities of the employed constraint solver are insufficient to show that γ |= ¬v,
but in fact γ |= ¬v. In case (1), the system behaves deterministically and only
one rule for if (or while) will be applied. In case (2), one of the two rules
for if (or while) can be chosen non-deterministically. Only case (3) is prob-
lematic. In this case, a branch can be chosen that corresponds to inconsistent
constraints. In practice, solvers do not achieve perfect constraint propagation
and also no global consistency of the constraints. Consequently, results corre-
sponding to inconsistent constraints may only be discovered later, e.g. during
labeling. In the meantime, non-backtrackable statements (e.g. ones that result in
input/output) of search regions may have been executed in branches that prove
infeasible later. Thus, we suggest to avoid input/output in search regions.

We would like to point out that the aforementioned problem is not specific
to Muli, as this can occur in Prolog (using CLP(FD) [20]) as well. Consider
the Prolog program provided in Listing 2. When you execute the first goal, the
output will (among the unreduced constraint system) contain a line that says
successful, even though it is apparent to the human reader that there is no
solution, so that the write statement should not have been reached. In contrast,
if label is invoked before write (second goal), Prolog realises that there is no
solution and therefore gives the correct result false.

use_module(library(clpfd)).
?- [X,Y,Z] ins 0..1, all_different([X,Y,Z]),

write(’successful’).
?- [X,Y,Z] ins 0..1, all_different([X,Y,Z]),

label([X,Y,Z]), write(’successful’).

Listing 2. Demonstration of the limits of constraint propagation using an example in
Prolog+CLP(FD).

We see two options to handle this situation in Muli programs. The first option
is to explicitly label variables sufficiently at every branch such that the constraint
solver is able to either infer γ |= v or γ |= ¬v. However, as explained in context
of the Label rule, this also introduces a lot of non-deterministic branching by
creating one branch per label. Therefore, the effectivity of constraint propagation
is reduced and the overall effort for search is increased. For the same reason we

An Operational Semantics for Constraint-Logic Imperative Programming 75

decided that Muli should not implicitly perform labeling at every branch either,
as performance would deteriorate.

The second option is to perform labeling only after a solution has been found
during encapsulated search. In fact, such a solution is merely a potential solution,
under the condition that the corresponding constraints are also satisfiable. As a
result, encapsulated search produces a stream of pairs, each of which comprises
one potential solution and its corresponding set of constraints. Thus, at this point
the enclosing application can iterate over this stream and perform (sufficient)
labeling, until it is clear whether the constraints are actually satisfiable. This
rules out infeasible solutions afterwards. The implementation of Muli provides
an explicit label operation, which the application developer can use for this
purpose. We decided not to do this implicitly in order to give the developer
more flexibility. It is easy to wrap this functionality into a search operation
which labels every found solution implicitly.

Both mentioned options are available to the developer. We recommend the
second one, possibly in the wrapped version with implicit labeling. For search
regions that involve only backtrackable statements, the result does not depend on
the chosen option, but the second option is presumably more efficient as fewer
branches have to be evaluated. For other search regions, only the first option
can avoid unwanted side effects of illegally accessed branches. However, search
then becomes less efficient. Therefore, in case that non-backtrackable side effects
have to be avoided, we recommend that the developer removes input/output
operations from search regions and moves them behind encapsulation instead.

Formalising the operational semantics of Muli has also helped uncover some
operations whose semantics are sufficiently clear in deterministic Java, but
become ambiguous when non-determinism and symbolic execution are added.
Consequently, some alternatives could be discussed on a conceptual level using
this semantics, before deriving a corresponding implementation. This particu-
larly involves the interpretation of symbolic variables (rules Invoke and Var)
and assignments, as outlined subsequently.

By rule Assign, an assignment x = e creates a new memory address for
the variable x and changes the environment accordingly. As a result, memory
usage of a Muli program is increased with every assignment, instead of with
every declaration of a variable as in imperative OO languages. Nevertheless,
this behaviour is required in order to avoid unwanted side effects on previous
constraints involving x. The alternative, mutating σ(ρ(x)) directly, would result
in assignments to x that could render constraints involving x unsatisfiable ex
post, i.e. after branching has occurred that depended on such a constraint.

As another consequence, rule Assign ensures that the interpretation of sym-
bolic variables is equivalent to that of regular values. Consider the simple excerpt
from a Java program given in Listing 3 as an example: After evaluating the last
line, y is still expected to be 5, even though x now holds a different value. After
all, although primitive variables can be directly mutated in Java, their previous
interpretations cannot. Similarly, for symbolic values, rule Assign ensures that
references before and after an assignment are treated distinctly, even though

76 J. C. Dageförde and H. Kuchen

memory efficiency is adversely affected. Nevertheless, unreferenced former mean-
ings of a variable may be destroyed by the garbage collector, thus reclaiming
(some) memory.

int x = 5; int y = x;
x = 3;

Listing 3. Minimal example demonstrating that variables may be mutated directly, in
contrast to results of their uses: After evaluation, y is 5.

Implicitly, our rules Assign (or Invoke) and Var enable sharing of symbolic
values. Assigning a free variable x to another free variable y means that the
address ρ(x) of x is stored in the memory location corresponding to y by modify-
ing state as σ[ρ(y)/ρ(x)]. Consequently, subsequent constraints and expressions
that involve either variable will actually reference the same variable. The sharing
behaviour is exhibited in the example in Lemma5 in the appendix, where a free
variable is passed to the pow method as its second parameter. pow adds con-
straints to that variable that only come into effect when labeling is performed
in its invoking context in log (Lemma2 in the appendix).

Regarding backtracking, the implementation is only implicitly affected by the
presented operational semantics. Here, the semantics defines the desired state of
the overall VM that must be achieved before evaluation in terms of ρ ∈ Env,
σ ∈ Σ, γ ∈ CS. Considering the multitude of options for achieving the desired
VM state that lend themselves for the implementation, we briefly outline the
options without prescribing either. Firstly, “don’t care” non-determinism consid-
ers only one evaluation alternative and therefore does not require backtracking
at all. Secondly, it would be possible to fork at statements that introduce non-
determinism, thus evaluating all alternatives in parallel. This does not require
backtracking either, however, consider that this generates a lot of overhead in
terms of memory and computation, as the VM must be forked in its entirety
to accommodate for any side effects, and as all forks must be joined in order
to return to deterministic computation after a search region is fully processed.
Thirdly, the alternatives can be evaluated sequentially. To achieve this, the VM
must record changes to the data structures on a trail equivalent to that of Prolog
in order to reconstruct a previous state during backtracking. Our implementa-
tion resorts to the latter option using a trail adapted from the Warren Abstract
Machine. Nevertheless, the remaining options would also be interesting to pur-
sue.

6 Related Work

To the best of our knowledge, this paper is the first to present a formal semantics
of an imperative language enhanced by features of constraint-logic programming.
For sake of clarity we focused on a core language. A full formal semantics of
Java alone may require an entire book as in the work by Stärk et al. [19]. K-Java
[2] is another approach to define a formal semantics of Java. However, in the

An Operational Semantics for Constraint-Logic Imperative Programming 77

cited paper the authors focus on selected aspects of the language. The official
semantics of Java is extensively described in natural language (cf. [6,12]).

Some existing core languages of Java such as Featherweight Java [9] are tai-
lored to the investigation of the typing system and not meant to be executable.
Hainry [7] investigates an object-oriented core language focussing on computa-
tional complexity. As a result of their respective foci they were not suitable to
be extended for Muli.

The encapsulated search of Muli has been inspired and adapted from the
corresponding feature of the functional-logic language Curry. An operational
semantics of Curry can be found in [1]. It is simpler than our semantics, since
Curry is purely declarative and does not have to bother with side effects.

Approaches for integrating object-oriented features into a (constrained) logic
language are e.g. Oz [21], Visual Prolog [17], Prolog++ [15], and Concurrent Pro-
log [18]. However, these approaches maintain a declarative flavour and mainly
provide syntactic sugar for object-orientation. They are unfamiliar for main-
stream object-oriented programmers.

There are also approaches which add constrained-logic features to an
imperative/object-oriented language. Typically, the integration is less seamless
than in Muli and the language parts stemming from different paradigms can
clearly be distinguished [3,4]. CAPJa combines Java and Prolog and provides a
simplified interface mapping Java objects to Prolog terms, but requires distinct
code in each language nevertheless [16]. LogicJava [14] is more restrictive than
Muli and only allows class fields to be logic variables. Moreover, entire methods
have to be declared as searching or non-searching.

7 Conclusions and Future Work

Our work formalises an operational reduction semantics for an imperative core of
the novel integrated constraint-logic object-oriented language Muli. Muli extends
Java by logic variables, non-determinism, encapsulated search, and constraint
solving. Muli is particularly suited for enterprise applications that involve both
searching and non-searching business logic. Encapsulated search ensures that
non-determinism is only introduced deliberately where needed, instead of spread-
ing out over the whole program. Thus, the code outside of encapsulated search
regions behaves just as ordinary Java code.

The presented operational semantics provides a basis for implementations of
compiler, symbolic JVM, and tools for processing Muli programs. In particular,
the formalisation has helped clarify possible ambiguities w.r.t. the semantics
of certain statements under non-determinism, such as that of assignments to
variables and uses of them. Furthermore, the semantics will facilitate reasoning
about programs developed in Muli as demonstrated in the example evaluation.
We made the symbolic JVM that executes Muli programs available as free soft-
ware on GitHub.6

6 https://github.com/wwu-pi/muli-env.

https://github.com/wwu-pi/muli-env

78 J. C. Dageförde and H. Kuchen

As future work, we would like to extend our core language and its seman-
tics by more features of Java, such as classes and inheritance. We expect these
additions to be quite orthogonal to the presently supported concepts. However,
when (non-deterministically) instantiating a free variable with an object type,
we have to take the whole corresponding inheritance hierarchy into account.

Appendix: Full Example Evaluation

In addition to ρ0, σ0, and γ1 defined in section Sect. 4, the following auxiliary
definitions will be needed as intermediate results: ρ1 = ρ0[x/α1, y/α2], ρ2 =
ρ0[b/α3, y/α4], ρ3 = ρ2[i/α5, r/α6], ρ4 = ρ3[i/α7, r/α8], σ1 = σ0[α1/1, α2/α2],
σ2 = σ1[α3/2, α4/α2], σ3 = σ2[α7/0, α8/1], σ4 = σ3[α0/1], σ5 = σ4[α0/ ⊥],
σ6 = σ5[α0/0], γ2 = γ1 ∧ α2 ≤ 0, and γ3 = γ2 ∧ α2 == 0. To simplify the
understanding of the full computation provided in Sect. 4, we have decomposed
it into a couple of lemmas. We present the computation in a top-down fashion.
If you prefer a bottom-up fashion, just read the lemmas in reverse order. The
names of the applied rules are specified in each step.

〈int y free;〉 � (ρ0[x/α1, y/α2], σ0[α1/1, α2/α2], γ1) (Free),
(Lemma2)

〈int y free; s2, ρ0[x/α1], σ0[α1/1], γ1〉 � (ρ1, σ6, γ3)
(Seq)

(Lemma1)

(Lemma3), γ2 |= ¬true, γ2 |= σ5(α2) = 0, (Lemma4)
〈return y;, ρ1, σ5, γ2〉 � (ρ1, σ6, γ3)

(Label)

〈s2, ρ1, σ1, γ1〉 � (ρ1, σ6, γ3)
(Ift)

(Lemma2)

(Lemma5), 〈x, ρ1, σ5, γ2〉 → (1, σ5, γ2) (Var), 1 == 1 = true

〈pow(2, y) == x, ρ1, σ1, γ1〉 → (true, σ5, γ2)
(AOp1)

(Lemma3)

〈y, ρ1, σ5[α2/0], γ2 ∧ α2 == 0〉 → (0, σ5, γ3) (Var)
〈return y;, ρ1, σ5, γ2〉 � (ρ1, σ5[α0/0], γ3)

(Ret) (Lemma4)

〈2, ρ1, σ1, γ1〉 → (2, σ1, γ1) (Con),
〈y, ρ1, σ1, γ1〉 → (α2, σ1, γ1) (Var),

ρ1(pow) = ((b, y), s3), (Lemma6), σ4(α0) = 1
〈pow(2, y), ρ1, σ1, γ1〉 → (1, σ4[α0/⊥], γ2)

(Invoke) (Lemma5)

An Operational Semantics for Constraint-Logic Imperative Programming 79

〈int i;, ρ2, σ2, γ1〉 � (ρ2[i/α5], σ2, γ1) (Decl),
〈int r;, ρ2[i/α5], σ2, γ1〉 � (ρ2[i/α5, r/α6], σ2, γ1) (Decl),

(Lemma7)
〈int r; i = 0; r = 1; s4, ρ2[i/α5], σ2, γ1〉 � (ρ4, σ4, γ2)

(Seq)

〈int i; int r; i = 0; r = 1; s4, ρ2, σ2, γ1〉 � (ρ4, σ4, γ2)
(Seq)

(Lemma6)

〈0, ρ3, σ2, γ1〉 → (0, σ2, γ1) (Con)
〈i = 0;, ρ3, σ2, γ1〉 � (ρ3[i/α7], σ2[α7/0], γ1)

(Assign),

〈1, ρ3[i/α7], σ2[α7/0], γ1〉 → (0, σ2[α7/0], γ1) (Con)
〈r = 1;, ρ3[i/α7], σ2[α7/0], γ1〉 � (ρ4, σ3, γ1)

(Assign),

(Lemma8)
〈r = 1; s4, ρ3[i/α7], σ2[α7/0], γ1〉 � (ρ4, σ4, γ2)

(Seq)

〈i = 0; r = 1; s4, ρ3, σ2, γ1〉 � (ρ4, σ4, γ2)
(Seq)

(Lemma7)

(Lemma9),
〈r, ρ4, σ3, γ2〉 → (1, σ3, γ2) (Var)

〈return r;, ρ4, σ3, γ2〉 � (ρ4, σ3[α0/1], γ2)
(Ret)

〈s5; return r;, ρ4, σ3, γ1〉 � (ρ4, σ3[α0/1], γ2)
(Seq) (Lemma8)

〈i, ρ4, σ3, γ1〉 → (0, σ3, γ1) (Var),
〈y, ρ4, σ3, γ1〉 → (α2, σ3, γ1) (Var)

〈i < y, ρ4, σ3, γ1〉 → (0 < α2, σ3, γ1)
(AOp2),

γ |= (0 < α2)
〈while (i < y) s6, ρ4, σ3, γ1〉 � (ρ4, σ3, γ1 ∧ ¬(0 < α2))

(Whf) (Lemma9)

References

1. Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: An operational semantics for
declarative multi-paradigm languages. Electron. Notes Theor. Comput. Sci. 70(6),
65–86 (2002)

2. Bogdanas, D., Rosu, G.: K-Java: a complete semantics of Java. In: POPL 2015, pp.
1–12 (2015)

3. Cimadamore, M., Viroli, M.: A Prolog-oriented extension of Java programming
based on generics and annotations. In: Amaral, V., et al. (eds.) Proceedings PPPJ,
ACM ICPS, vol. 272, pp. 197–202. ACM (2007)

4. Cimadamore, M., Viroli, M.: Integrating Java and Prolog through generic methods
and type inference. In: Wainwright, R.L., Haddad, H. (eds.) Proceedings of the 2008
SAC, pp. 198–205. ACM (2008). https://doi.org/10.1145/1363686

5. Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-662-05138-2

https://doi.org/10.1145/1363686
https://doi.org/10.1007/978-3-662-05138-2

80 J. C. Dageförde and H. Kuchen

6. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The Java® Language
Specification - Java SE 8 Edition (2015). https://docs.oracle.com/javase/specs/
jls/se8/jls8.pdf

7. Hainry, E., Péchoux, R.: Objects in polynomial time. In: Feng, X., Park, S. (eds.)
APLAS 2015. LNCS, vol. 9458, pp. 387–404. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-26529-2 21

8. Hooker, J.N.: Operations research methods in constraint programming (Chap. 15).
In: Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of CP. Elsevier, Amsterdam
(2006)

9. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core calculus
for Java and GJ. ACM Trans. Program. Lang. Syst. 23(3), 396–450 (2001)

10. Kondoh, G., Onodera, T.: Finding bugs in Java native interface programs. In:
ISSTA 2008, p. 109 (2008)

11. Kuchcinski, K.: Constraints-driven scheduling and resource assignment. ACM
Trans. Des. Autom. Electron. Syst. 8(3), 355–383 (2003)

12. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The Java® Virtual Machine
Specification - Java SE 8 Edition (2015). https://docs.oracle.com/javase/specs/
jvms/se8/jvms8.pdf

13. Louden, K.C.: Programming Languages: Principles and Practice. Wadsworth Publ.
Co., Belmont (1993)

14. Majchrzak, T.A., Kuchen, H.: Logic Java: combining object-oriented and logic
programming. In: Kuchen, H. (ed.) WFLP 2011. LNCS, vol. 6816, pp. 122–137.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22531-4 8

15. Moss, C.: Prolog++ - The Power of Object-Oriented and Logic Programming.
International Series in Logic Programming. Addison-Wesley, Boston (1994)

16. Ostermayer, L.: Seamless cooperation of Java and Prolog for rule-based software
development. In: Proceedings of the RuleML 2015, Berlin (2015)

17. Scott, R.: A Guide to Artificial Intelligence with Visual Prolog. Outskirts Press
(2010)

18. Shapiro, E., Takeuchi, A.: Object oriented programming in concurrent Prolog. New
Gener. Comput. 1(1), 25–48 (1983)

19. Stärk, R., Schmid, J., Börger, E.: Java and the Java Virtual Machine - Definition,
Verification, Validation. Springer, Heidelberg (2001). https://doi.org/10.1007/978-
3-642-59495-3

20. Triska, M.: The finite domain constraint solver of SWI-Prolog. In: Schrijvers, T.,
Thiemann, P. (eds.) FLOPS 2012. LNCS, vol. 7294, pp. 307–316. Springer, Heidel-
berg (2012). https://doi.org/10.1007/978-3-642-29822-6 24

21. Van Roy, P., Brand, P., Duchier, D., Haridi, S., Schulte, C., Henz, M.: Logic pro-
gramming in the context of multiparadigm programming: the Oz experience. The-
ory Pract. Log. Program. 3(6), 717–763 (2003)

22. Warren, D.H.D.: An abstract Prolog instruction set. Technical report, SRI Inter-
national, Menlo Park (1983)

https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://docs.oracle.com/javase/specs/jls/se8/jls8.pdf
https://doi.org/10.1007/978-3-319-26529-2_21
https://doi.org/10.1007/978-3-319-26529-2_21
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf
https://doi.org/10.1007/978-3-642-22531-4_8
https://doi.org/10.1007/978-3-642-59495-3
https://doi.org/10.1007/978-3-642-59495-3
https://doi.org/10.1007/978-3-642-29822-6_24

Hypertree Decomposition: The First Step
Towards Parallel Constraint Solving

Ke Liu(B), Sven Löffler, and Petra Hofstedt

Brandenburg University of Technology Cottbus-Senftenberg, Cottbus, Germany
liuke@b-tu.de

Abstract. Parallel constraint solving is a promising way to enhance the
performance of constraint programming. Yet, current solutions for par-
allel constraint solving ignore the importance of hypergraph decomposi-
tion when mapping constraints onto cores. This paper explains why and
how the hypergraph decomposition can be employed to relatively evenly
distribute workload in parallel constraint solving. We present our dedi-
cated hypergraph decomposition method det-k-CP for parallel constraint
solving. The result of det-k-CP, which conforms with four conditions of
hypertree decomposition, can be used to allocate constraints of a given
constraint network to cores for parallel constraint solving. Our bench-
mark evaluations have shown that det-k-CP can relatively evenly decom-
pose a hypergraph for specific scale of constraint networks. Besides, we
obtained competitive execution time as long as the hypergraphs are suf-
ficiently simple.

Keywords: Parallel constraint solving · Hypertree decomposition

1 Introduction

Structural decomposition methods are one of research hot spots both in the
area of relational databases and constraint programming. Many NP-complete
and NP-hard problems can be solved in polynomial time if the corresponding
hypergraph has the bounded hypertree-width, which indicates that the original
intractable problem can be divided into a number of tractable subproblems [1]. In
addition, the tree structure for a constraint network implies that each node of the
tree decomposition can be solved simultaneously, which makes us naturally think
of utilizing parallel computing to solve constraint satisfaction problem (CSP). In
other words, the acyclic structure of constraint networks means that the given
CSP problem is tractable and parallelizable [2–4]. Several decomposition meth-
ods have been developed to convert the cyclic constraint networks to acyclic
ones although these methods apply to different types of graph for the given con-
straint network. For example, join-tree-clustering transforms the primal graph of
the given constraint network into the equivalent acyclic network [5]. Cycle-cutset
decomposition [6] also works on the primal graph by removing the vertexes that
prevent the hypergraph to be acyclic. Some decomposition methods (e.g., hinge
c© Springer Nature Switzerland AG 2018
D. Seipel et al. (Eds.): DECLARE 2017, LNAI 10997, pp. 81–94, 2018.
https://doi.org/10.1007/978-3-030-00801-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00801-7_6&domain=pdf

82 K. Liu et al.

decomposition [7], hypertree decomposition [1,8]), on the other hand, use the
hypergraph as its input, and the output of these methods is at least in accord
with the conditions for hypertree decomposition defined in [8].

Nevertheless, the decomposition methods, which have been proposed in the
literature during the last decades, aim at obtaining as small hypertree width as
possible for the hypergraph, because the smaller the width of a hypertree decom-
position we obtained, the faster the original CSP problem can be solved [1]. More-
over, previous structural decomposition methods, such as det-k-decomp which is
the most general decomposition method so far [9], cannot ensure a relatively even
distribution of constraints based on our observation of results after running det-
k-decomp. The algorithm det-k-decomp only guarantees the greatest node width
of the decomposition tree is k, and fairly often, the width of most nodes is far
less than k. This characteristic of det-k-decomp impedes its application in parallel
constraint solving.

This paper intends to present a new decomposition det-k-CP method with
stochastic search procedure for parallel constraint solving. The goal is to provide
a mapping algorithm for parallel constraint solving. The idea behind det-k-CP
is to utilize the property of dual graph that a redundant arc can be removed
between two nodes of the graph if there is an alternative path that ensures two
nodes still connected. We regard it as the first step towards parallel constraint
solving due to the benefits that come from hypertree structure.

The rest of this paper is organized as follows. The basic definitions used in
this study are presented in Sect. 2. Section 3 describes the new method in detail,
and then analyses the time complexity of det-k-CP. In Sect. 4, we present our
experimental results. Finally, we conclude in Sect. 5.

2 Preliminaries

A constraint network R is a triple (X,D,C), which consists of:

– a finite set of variables X = {x1, . . . , xn},
– a set of respective finite domains D = {D1, . . . , Dn}, where Di is the domain

of the variable xi, and
– a set of constraints C = {c1, ..., ct}, where a constraint cj is a relation Rj

defined on a subset of variables Sj , Sj ⊆ X.

Any constraint network can be graphically represented by a hypergraph. A hyper-
graph H is a tuple (V,E), where V is a set of vertexes and E is a set of hyperedges.
A hyperedge of a hypergraph is composed of an arbitrary number of vertexes,
which makes hyperedges fundamentally different from normal edges in a graph.
Any constraint in a given constraint network corresponds to a hyperedge in
a hypergraph, and the variables of a constraint can be seen as vertexes of a
hyperedge.

A hypertree of a hypergraph H is a triple (T, χ, λ), where T = (VT , ET)
is a tree, χ and λ are labeling functions. We denote a set of variables for
a given node (nodei) in a hypertree by vi. Therefore, vi = χ(nodei) and

Hypertree Decomposition 83

vi ⊆ 2vertexes(H), where vertexes(H) are vertexes of hypergraph H. Similarly, we
denote a set of edges of nodei by ei. Therefore, ei = λ(nodei) and ei ⊆ 2edges(H),
where edges(H) are the hyperedges of hypergraph H. By root(T) we denote the
root of a tree T , for every p ∈ VT , let Tp denote the subtree of T with root p.

The width of a hypertree is the maximum number of hyperedges among the
nodes of it, which is given by hw(T) = max | λ(nodei) |. Hypertree decompo-
sition is a procedure that converts a hypergraph into a hypertree. In order to
demonstrate hypertree decomposition on a given constraint network, assume we
have a simple problem over a set of variables {x1, . . . , x10} ⊆ X modeled by the
following constraints1

• allDifferent1 (x3, x4, x5, x7) • table1(x5, x8, x10)

• allDifferent2 (x1, x4, x6, x9) • table2(x7, x8, x9)

• atLeastNvalues(x1, x2, x3) • arithm1(x5, x6)

• arithm2(x6, x8)

The hypergraph for this constraint network is depicted in Fig. 1, where the vari-
ables xi, i ∈ {1, . . . , 10} are the vertexes, while the edges are represented by
the enclosing ellipses. Figure 2 shows a possible hypertree decomposition of this
hypergraph. Note that the hypertree decomposition (Fig. 2) can also be viewed
as a dual graph for the hypergraph (Fig. 1). The nodes of a dual graph con-
sist of a set of hyperedges of the corresponding hypergraph, and an edge of the
dual graph is due to existing shared variables between two nodes of the dual
graph. Formally, Hdual for a given H can be represented as a tuple (S,E) in
which S = {s1, ..., si, ..., sj} ⊆ edges(H) and ∀e ∈ E = edges(Hdual) : si ∩ sj =
e ⇔ var(si) ∩ var(sj) �= ∅.

Gottlob et al. [1,8] defined four conditions, which must be satisfied by a
hypertree after hypertree decomposition:

1. Every hyperedge of the hypergraph is contained in at least one node of the
hypertree. This can be mathematically expressed as: ∀e ∈ edges(H),∃p ∈
vertexes(T) : e ⊆ χ(p).

2. Nodes of a hypertree that contain the same vertex in the hypergraph form a
subtree of the hypertree. For all v ∈ vertices(H), the set

{p ∈ vertexes(T) | v ∈ χ(p)}
induces a connected subtree of T (This is also called connectedness
property [5]).

3. For any node of the hypertree, the vertexes of χ are included in the vertexes
of λ. ∀p ∈ vertexes(T) : χ(p) ⊆ vertexes(∪λ(p)).

4. For a vertex of a hypergraph in node p of the hypertree, if the vertex is
included in both λ(p) and χ(Tp), where χ(Tp) stands for the subtree of T
rooted at p, this vertex must also be included in the χ(p). ∀p ∈ vertexes(T) :
vertexes(∪λ(p)) ∩ χ(Tp) ⊆ χ(p).

1 The names of the constraints are consistent with the names of constraints used in
the Choco Solver [10].

84 K. Liu et al.

x1 x2 x3

x4

x5 x6

x7
x8 x9

x10

allDifferent1 arithm2 table1 allDifferent2

table2

arithm1

atLeastNV alues

Fig. 1. The hypergraph for the constraint network. The example is based on [11]

{allDifferent1 ,

,

,

,allDifferent2} {x1, x4, x6, x9, x3, x5, x7}

{atLeastNV alues} {x1, x2, x3} {table2, arithm1} {x5, x6, x7, x8, x9}

{arithm2, table1} {x5, x6, x8, x10}

Fig. 2. Hypertree decomposition for the hypergraph of Fig. 1. The example is based
on [11]

3 The Algorithm det-k-CP

In this section, we present our new algorithm det-k-CP which is designed to
decompose a hypergraph for parallel constraint solving. The k of det-k-CP means
the number of nodes in the decomposition tree. Roughly speaking, the target
of det-k-CP is to decompose a given constraint network N to a degenerate tree
in which each internal node has exactly one child so that the solutions of N can be
found in time linear after each node is solved independently. Because an acyclic
constraint network can be solved efficiently [5]. For example, Fig. 3 depicts a
target degenerate decomposition tree with eight nodes decomposed by det-k-CP
for a multi-core processor with eight cores.

Hypertree Decomposition 85

Fig. 3. A constraint network is partitioned into eight parts. An edge between two nodes
is due to the shared variables.

For a given ordering of nodes of a degenerate decomposition tree T gener-
ated by det-k-CP, there is an edge between two nodes because there exists shared
variables between two nodes. Additionally, we only keep the edges between two
adjacent nodes and eliminate the edges between any pair of non-adjacent nodes.2

The mechanism of elimination of det-k-CP, which guarantees the decomposition
tree is equivalent to the original one, is based on the property of which any
edge on a circuit formed by common shared variables of a dual graph can be
removed without changing the set of all solutions for the constraint network [5].
For instance, in Fig. 2, the edge between the root node and the right leaf node
caused by shared variables (x5, x6) is inexistent because there are shared vari-
ables (x5, x6) between the root node and its child node, as well as the right
leaf node and its parent node respectively. The positional relation between two
nodes in T is either adjacent or non-adjacent; thus a pair of nodes in T can
be denoted as (Ni, Nj) for non-adjacent or (Np, Np+1) for adjacent respectively,
where | i − j |≥ 2, 0 ≤ i < j ≤ k and p ∈ {i, ..., j − 1}. Mathematically, a
decomposed graph T after decomposition by det-k-CP must meet the following
two conditions:

∀p ∈ {i, ..., j − 1} : χ(Ni) ∩ χ(Nj) ⊆ χ(Np) ∩ χ(Np+1) (1)
∀Ni ∈ T : ∪χ(Ni) = χ(H), and ∪ λ(Ni) = λ(H) (2)

where the first condition means that the shared variables between any pair of
nodes (Np, Np+1) in the interval [i..j] must contain the shared variables between
(Ni, Nj), whereas the second condition guarantees that the union of vertexes on
each node of T is equal to the set of the vertexes of the original hypergraph H,
and the union of edges on each node of T is equal to the set of the edges of H. In
other words, the decomposition method det-k-CP does not lose any constraint
or variable.

Having these two conditions we can easily validate whether a given decompo-
sition tree is successfully decomposed by det-k-CP. Besides, if a decomposition
tree satisfies the conditions for det-k-CP, it must meet the four conditions defined
in [8] for hypertree decomposition (see Sect. 2).

Proposition 1. A degenerate decomposition tree T of a hypergraph H generated
by det-k-CP is a hypertree decomposition of the hypergraph H.

Proof of Proposition 1. To prove this proposition, we are going to check and
confirm the four conditions of hypertree decomposition one by one.

2 Please note that the verb “eliminate” does not mean an edge is deleted, it means
that we can ignore the join selection for the nodes connected by this edge.

86 K. Liu et al.

i Since det-k-CP does not remove any constraint, as mentioned in the second
condition of det-k-CP, for every constraint e in the hypergraph H, we can
find a node p in the degenerate decomposition tree T , where χ(p) contains e.

ii The second condition of hypertree decomposition ensures that all nodes that
share a common vertex v of H induce a connected subtree of T . To prove it by
contradiction, we assume there is a vertex v in T , where all nodes that contain
v cannot induce a subtree of T . Therefore, in that case, these nodes result
in a circuit which indicates there exist edges induced by a set of vertexes
that cannot be eliminated by an alternative edge. This is contradicted by
the condition 1 of det-k-CP in which the shared variables between any pair
of adjacent nodes must contain the shared variables between non-adjacent
nodes.

iii Because det-k-CP does not remove any variable (vertex), for any node p in
T , χ(p) = (vertexes)(∪λ(p)), which satisfies χ(p) ⊆ (vertexes)(∪λ(p)).

iv For a given node p in T , (vertexes)(∪λ(p)) ∩ χ(Tp) = (vertexes)(∪λ(p)) =
χ(p), which satisfies the fourth condition of hypertree decomposition. �

Algorithm1. We are now going to explain the det-k-CP in more detail. In
order to relatively evenly distribute workloads, line 1 of Algorithm1 sorts the
constraints based on its computational requirements (weight), which depend on
many factors, such as, the time complexity of constraint propagator used by
the constraint solver, the number of variables of the constraint, and the range
of each of these variables. Then, after sorting procedure the constraints are
inserted into an array (array Nodes) with length k in turn in line 5 so that
each node of the array contains the same amount of workload. Algorithm1 runs
into the loop in line 7–13 until a qualified solution is found. Since sometimes a
qualified solution cannot be obtained in one iteration, we use the heuristic for
swap procedure in line 12 of Algorithm1. The heuristic has many choices, for
example, random exchange, switching two nodes that have the fewest and the
most number of constraints, or exchanging nodes based on the permutation in
lexicographic order of the indexes of array Nodes in turn. For instance, if the
length of array Nodes is 4, we might first use the permutation (0, 1, 2, 3), then
(0, 1, 3, 2) and so on.

Algorithm2. Let us now consider the function getPotentialSolution defined by
Algorithm 2, which exhaustively invokes Algorithm3 for all the edges between
non-adjacent nodes. To this aim, the starting point of the non-adjacent edge
(i start) is assigned the third to last index in line 2 of Algorithm2, which should
be the first unconnected node with the last node (with index i len − 1). Then,
it is decremented on each iteration until it reaches the first index of the array
in the outer loop; and the ending point of the non-adjacent edge is initialized as
i end = i start + 2, then the inner loop continues to iterate to the end of the
the array (i len − 1).

Hypertree Decomposition 87

Algorithm 1. det-k-CP(N,k)
Input: A Constraint Network N , and the desired number of nodes k.
Output: A degenerate hypertree with k nodes

1 Set list LN = a list which contains sorted constraints of N based on weight ;
2 Set i size = the size of list LN ;
3 Initialize an array array Nodes with k nodes ;
4 for i ← 1 to i size do
5 add list LN [i] into array Nodes[i%k];
6 end
7 while true do
8 getPotentialSolution(array Nodes);
9 if array Nodes pass test conditions (1) and (2) then

10 break;
11 end
12 Swap nodes in array Nodes;

13 end
14 return array Nodes;

Algorithm 2. getPotentialSolution(array Nodes)
Input: array Nodes
Output: A potential solution

1 Set i len = the length of array Nodes ;
2 Set i start = i len-3;
3 while i start ≥ 0 do
4 for i end ← i start + 2 to i len − 1 do
5 eliminateEdge(i start, i end, array Nodes) ;
6 end
7 Set i start = i start − 1 ;

8 end

Algorithm3. The function eliminateEdge plays an important role in det-k-
CP. For two non-adjacent nodes Ni start and Ni end, Algorithm 3 might add con-
straints to the nodes between Ni start and Ni end so that a potential edge between
Ni start and Ni end could be covered. In line 2 of Algorithm3, list 2Eliminated
is set to all shared variables between non-adjacent nodes Ni start and Ni end.
For each edge, which is caused by shared variables between Ni start and Ni end,
eliminateEdge checks whether or not every edge between adjacent nodes Ni

and Nj , where i is in the interval {istart, ..., iend − 1} and j = i + 1, contains
all variables that are also included in the input edge between nodes Ni start and
Ni end, as shown in line 5 of Algorithm 3.

If an edge between Ni and Nj contains all shared variables that the edge
between Ni start and Ni end has (in line 5), then the for loop runs into the next
iteration for the next edge between Ni+1 and Nj+1; otherwise, line 6 removes
all shared variables of Ni and Nj on list 2Eliminated.

88 K. Liu et al.

Algorithm 3. eliminateEdge(i start, i end, array Nodes)
Input: i start, i end, array Nodes

1 for i ← i start to i end − 1 do
2 Set list 2Eliminated = getSharedVariables(i start, i end, array Nodes);
3 Set j = i + 1 ;
4 Set list SharedOnMainPath = getSharedVariables(i, j, array Nodes);
5 if list SharedOnMainPath.notContainsAll(list 2Eliminated) then
6 list 2Eliminated.removeAll(list SharedOnMainPath);
7 Set list 2beAddedConstraints =

getMinimumSetConstraints4Share(i, array Nodes,
list 2Eliminated);

8 foreach constraint cs ∈ list 2beAddedConstraints do
9 if array Nodes[j] notContained cs then

10 add cs into array Nodes[j];
11 end

12 end

13 end

14 end

The function getMinimumSetConstraints4Share, which will be presented
later in Algorithm 4, returns the minimum number of constraints that cov-
ers all variables on the list list 2Eliminated. In line 8–12, we loop through all
constraints obtained by getMinimumSetConstraints4Share, if the constraint
is not contained in Nj , the constraint will be added into Nj . By doing so, the
edges between non-adjacent nodes Ni start and Ni end can be eliminated. Because
the shared variables between Ni start and Ni end are now covered by all edges
between adjacent nodes Ni and Nj with {istart, ..., iend − 1} and j = i + 1.

Algorithm4. The idea behind this function, shown in line 4–16 of Algo-
rithm4, is that it, in each iteration for each variable in the difference of set
(list 2Eliminated) and (list SharedOnMainPath), searches the constraints
that covers as many variables as possible on (list 2Eliminated); meanwhile, the
constraints themselves contain as few variables as possible. In line 12 of Algo-
rithm4, the covered variables on (list 2Eliminated) are added into the HashSet
variable hashSet IsCovred, which helps avoid rechecking covered variables at
the beginning of the for loop (line 5–7).

So far we have discussed the detailed process of det-k-CP. The reason why
we introduce randomness into the search process to Swap method in line 12 of
Algorithm 1 is that a large number of loops would be incurred if we backtracked
to edges eliminated before but the newly added constraints make the edges
appear again. For instance, in Fig. 3, we added some constraints onto node 4
due to the elimination process for the edge between node 3 and 5, then the
edge between node 4 and 7, which had been removed before, happened to occur
again, and this edge forced us to add new constraints onto node 5 and 6, after

Hypertree Decomposition 89

Algorithm 4. getMinimumSetConstraints4Share(i,array Nodes,list 2Eliminated)

Input: endPoint, array Nodes, list 2Eliminated
Output: A set of constraints that has minimal number of variables to cover the

list 2Eliminated
1 Set list SharedConstraints = add all constraints which covers the variables in

the list 2Eliminated and remove duplicates;
2 Initialize list Result ;
3 Initialize HashSet HashSet IsCovred ;
4 foreach Variables v ∈ list 2Eliminated do
5 if HashSet IsCovred contains v then
6 continue;
7 end
8 foreach Constraint c ∈ list SharedConstraints do
9 add the constraint c′ into list Result, which covers the maximum

number of variables in the list 2Eliminated and the constraint itself
contains minimum number of variables;

10 foreach Variables v′ ∈ c′ do
11 if v′ /∈ HashSet IsCovred then
12 add v′ into HashSet IsCovred;
13 end

14 end

15 end

16 end
17 return list Result;

that the edge between node 3 and 5 occurred again, consequently, we would fall
into repeated elimination process until the worst case happened in which each
node filled up with all the constraints of the given constraint network. Now, we
would like to analyze the time complexity of det-k-CP. If we combine the loops
in Algorithm 2 with the loop in Algorithm3 to form a triple-nested loop, the
total number of iterations for the triple-nested loop can be calculated by the
following recurrence relation:

n3 = 2 (3)
n4 = 3 + 2 + n3 (4)

n5 = 4 + 3 + 2 + n4 (5)
...

nk = (k − 1) + (k − 2) + · · · + 2 + nk−1 = (k2−k−2)
2 + nk−1 (6)

Where nk denotes the number of iterations for the triple-nested loop for k
number of nodes of the target decomposition tree. A recurrence relation for {nk}
can be obtained by considering whenever one node is added to a tree which has
k − 1 nodes; therefore, new non-adjacent nodes are generated, consequently, we
have to eliminate these edges, where the number of these edges can be summed

90 K. Liu et al.

by (k − 1) + (k − 2) + · · · + 2. For instance, as can be seen in Fig. 4, when node
0 is added to the original tree, the number of times of elimination process is
increased by 5. To obtain the explicit formula for this recurrence relation, we
solve it with the initial conditions n3 = 2, n2 = 0 and n1 = 0. The solution of
the recurrence relation is nk = k3−7k+6

6 , which means the number of loops of
the triple-nested loop is exactly k3−7k+6

6 .
At each iteration of the triple-nested loop, from line 2 to 13 of Algorithm3,

the number of executions can be bounded by the number of constraints (Nc)
plus the complexity of method getMinimumSetConstraints4Share, denoted
by O(Nc) + O(getMinimumSetConstraints4Share). The implementation of
getMinimumSetConstraints4Share is bounded by O(Nv · Nc), where Nv is
the number of variables. Thus, Algorithm2 is bounded by O(k

3−7k+6
6 · (Nv ·

Nc +Nc)). Algorithm 1, which can be viewed as the outermost loop of the entire
algorithm, can be bounded by O(k · (Nc − Nc

k)). This is because the loop of
Algorithm 1 eventually stops running when each node is added to contain the
whole constraint network. The overall time complexity is, therefore, O(k · (Nc −
Nc

k) · k3−7k+6
6 · (Nv · Nc + Nc)). Therefore, the asymptotic time complexity is

O(k4 · N2
c · Nv). Note that the runtime may be significantly smaller in practice

since we take into account the worst cases for Algorithms 1 and 3.

Fig. 4. A new node is prepended to a degenerated tree with 3 nodes.

4 Experimental Results

In this section, we present our experimental results of the algorithm det-k-CP
when applied to the benchmark suite provided by Gottlob et al. used in [1].
Note that we do not compare det-k-CP with det-k-decomp because these two
algorithms aim at two different decomposition targets as mentioned before. How-
ever, this should not place an obstacle for us since the hypergraphs in the bench-
marks are extracted from practical industrial constraint satisfaction problems.
All the experiments are set up on an iMac computer having an Intel i7-3770
CPU, 3.40 GHz, with 8 GB 1600 MHz DDR3 and running under macOS Sierra
version 10.12.5. The algorithms are implemented in Java under JDK version
1.8.0 131.

Since the running platform of hardware for det-k-CP will be multi-core pro-
cessors, we choose 4, 8, and 16 for k as the number of nodes for the target

Hypertree Decomposition 91

degenerated decomposition tree. Because all the hypergraphs in the benchmark
suite are decomposable by det-k-CP, we only pay attention to the experiment
data that includes the execution time, the number of constraints on each node
and the variance of the number of constraints among the different nodes, and
as well as the impact of different stochastic strategies on the experiment results.
At current stage, we regard that the variance of the number of constraints is
an important target for parallel constraint solving. However, it will be easy to
switch to the variance of the weight measured by the amount of computation
of each node if we can estimate the amount of computation of a constraint in a
given constraint network in the future.

Table 1 shows the experimental results for det-k-CP of the benchmark suite
from [1]. The symbols ●, ▲, and ■ denote the benchmark packages Daimler-
Chrysler, Grid2D, and ISCAS89 as used in [1], respectively. The number of
vertexes and edges of each original instance is left out here due to lack of space.
For the details on the benchmarks, we refer to [1], Sect. 5.

In Table 1, T represents execution time in ms (unless other specified), and
Min, Max stands for the minimal and maximal number of constraints among
all nodes, respectively. The variance of the number of constraints of all nodes is
denoted σ2. There are three different background colors that indicate three types
of heuristics for the swap procedures for each instance, which are a permutation3,
random exchange, and switching nodes according to the number of constraints
in turn.

Though Table 1 omits some instances from the benchmark suite due to lack
of space, all the instances are decomposable by det-k-CP. Besides, the execution
time of instances is affordable even for the largest instance s5378, which has
2958 constraints and 2993 variables. Nevertheless, for large-scale instances, such
as s5378, grid2d 75 etc. the algorithm det-k-CP does not achieve one principal
goal of decomposition that each node has relativity balanced workload distribu-
tion. The maximal node contains 1220 constraints in overall 2958 constraints,
which is probably impossible to be solved by any single thread constraint solver
for a practical problem based on our user experience of constraint solver.

We do not include small instances such as adder 15, adder 25 etc. from the
benchmark suite because it turns out that these small constraint networks are
solvable for mainstream constraint solver and do not require parallel solving.

The decomposition results for the medium scale instances, such as adder 75,
bridge 75, NewSystem3, NewSystem4, and S953 with a number of constraints
ranging from around 400 to 700, might be suitable for parallel constraint solving.
Because each node for these instances can be solved within a reasonable time
since the maximum number of constraints of these instances is slightly greater
than 200 such as 201 in adder 75 and 210 NewSystem4, and the total number
of constraints for adder 75 and NewSystem4 are 677 and 418, respectively. In
addition to the relatively small variance of these instance indicates the number
of constraints for these instances is not spread out from their mean. As we
mentioned before, whether or not a given constraint network can be solved within

3 The term permutation is explained in Algorithm 1.

92 K. Liu et al.

Table 1. Experimental results for det-k-CP of the benchmark suite from [1].

Hypertree Decomposition 93

a reasonable time does not only depend on the number of constraints, but also
on the time complexity of propagators employed by the constraint solver, the
number of variables of the constraint network and the size of the range of the
variables.

The results in Table 1 show that the method of heuristics has a significant
impact on the results of decomposition. In most cases, the exchange of nodes
by permutation order (first lines, ie. white background color) gets smaller vari-
ances, but there are exceptions, such as bridge 75, NewSystem4. It should be
noted that all instances in the benchmark suite are decomposable by det-k-CP
is because they can be decomposed by det-k-decomp. Recall that in the proof of
Proposition 1, we have shown that if a hypertree decomposition meets the two
conditions of det-k-cp, then it also satisfies the four conditions of det-k-decomp.
Moreover, the width of hypertree as a result decomposed by det-k-CP far out-
weighs the width hypertree as a result decomposed by det-k-decomp. Therefore,
if an instance can be decomposed by det-k-decomp with small width4, it must
be decomposed by det-k-CP with a relatively big width (e.g., 50). As it was
mentioned previously, the extreme cases, where a node or more than one node
of the decomposition tree saturated with the entire constraint network or the
distribution of constraints is relatively unbalanced (e.g.,grid2d 75), result in fail-
ure because the goal of det-k-cp is a relatively even distribution of workload for
parallel constraint solving.

In summary, we can conclude that det-k-CP can decompose a given con-
straint network within a reasonable execution time except for very large instance
(e.g., s5378 with 2958 constraints and 2993 variables) and a big k (e.g., k = 16).
For the application of parallel constraint solving, the algorithm can be applied to
medium scale constraint networks with the number of constraints ranging from
around 400 to 700.

5 Conclusion and Future Work

We have presented the new algorithm det-k-CP to construct a degenerate decom-
position tree for parallel constraint solving, and we have also evaluated det-k-CP
by a benchmark suite from previous research det-k-decomp. Our results have
shown that it is appropriate for det-k-CP to evenly partition a constraint net-
work with around 400 to 700 constraints for a distribution on a given number of
parallel constraint solving cores. However, we believe that there is a lot potential
to improve det-k-CP. For example, the algorithm should take into consideration
an estimate of the amount/complexity of computation for the constraints so
that we could choose eg., constraints with low computation requirement when
adding constraints to another node in Algorithm3. Furthermore, local search
methods such as tabu search can be employed to replace the existing stochastic
strategies in Algorithm 1 in order to obtain more optimized decomposition result.
Besides, for balanced workload distribution, we can add constraints to one node
4 We observed all the instances can be successfully decomposed by det-k-decomp when

the width is 2.

94 K. Liu et al.

from other nodes covering the same variables to preserve the decomposition tree.
Finally, the key indicator of the value of this research depends on whether we can
obtain speedup or even super-linear speedup when using det-k-CP for parallel
constraint solving, which is to be researched in detail.

Acknowledgments. We would like to express our special thanks to Georg Gottlob
and Wolfgang Fischl for their source code of det-k-decomp, especially the benchmark
suite for hypertree decomposition.

References

1. Gottlob, G., Samer, M.: A backtracking-based algorithm for hypertree decompo-
sition. J. Exp. Algorithmics 13, 1 (2009)

2. Gottlob, G., Leone, N., Scarcello, F.: Advanced parallel algorithms for acyclic
conjunctive queries. Technical Report DBAI-TR-98/18 (1998). http://www.dbai.
tuwien.ac.at/staff/gottlob/parallel.ps

3. Gottlob, G., Leone, N., Scarcello, F.: The complexity of acyclic conjunctive queries.
J. ACM (JACM) 48(3), 431–498 (2001)

4. Gottlob, G., Greco, G., Leone, N., Scarcello, F.: Hypertree decompositions: ques-
tions and answers. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, pp. 57–74. ACM (2016)

5. Dechter, R.: Constraint Processing. Morgan Kaufmann, Burlington (2003)
6. Dechter, R., Pearl, J.: The cycle-cutset method for improving search performance

in AI applications. In: Third IEEE Conference on AI Applications, pp. 224–230.
IEEE (1987)

7. Gyssens, M., Paredaens, J.: A decomposition methodology for cyclic databases.
In: Gallaire, H., Nicolas, J., Minker, J. (eds.) Advances in Data Base Theory, vol.
2, pp. 85–122. Plemum Press, New York (1984). https://doi.org/10.1007/978-1-
4615-9385-0 4

8. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decompositions and tractable
queries. In: Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems, pp. 21–32. ACM (1999)

9. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposi-
tion methods. Artif. Intell. 124(2), 243–282 (2000)

10. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC, INRIA
Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2016)

11. Gottlob, G., Leone, N., Scarcello, F.: Robbers, marshals, and guards: game theo-
retic and logical characterizations of hypertree width. J. Comput. Syst. Sci. 66(4),
775–808 (2003)

http://www.dbai.tuwien.ac.at/staff/gottlob/parallel.ps
http://www.dbai.tuwien.ac.at/staff/gottlob/parallel.ps
https://doi.org/10.1007/978-1-4615-9385-0_4
https://doi.org/10.1007/978-1-4615-9385-0_4

Declarative Systems

Declarative Aspects in Explicative Data
Mining for Computational Sensemaking

Martin Atzmueller(B)

Department of Cognitive Science and Artificial Intelligence, Tilburg University,
Warandelaan 2, 5037 AB Tilburg, Netherlands

m.atzmuller@uvt.nl

Abstract. Computational sensemaking aims to develop methods and
systems to “make sense” of complex data and information. The ultimate
goal is then to provide insights and enhance understanding for supporting
subsequent intelligent actions. Understandability and interpretability are
key elements of that process as well as models and patterns captured
therein. Here, declarativity helps to include guiding knowledge structures
into the process, while explication provides interpretability, transparency,
and explainability. This paper provides an overview of the key points and
important developments in these areas, and outlines future potential and
challenges.

Keywords: Computational sensemaking · Data mining
Declarative modeling · Domain knowledge · Explicative data analysis
Knowledge graph · Statistical relational learning

1 Introduction

Computational sensemaking aims to “make sense” in the context of complex
information and knowledge processes. This is enabled using computational meth-
ods for analysis, interpretation, and intelligent decision-support. While the latter
is mostly supported by human-computer interaction techniques, the former two
are supported by data mining approaches, in particular, explicative data mining
methods.

Overall, data mining systems are commonly applied to obtain a set of novel,
potentially useful, and ultimately interesting patterns from (large) data sets [27].
While the resulting patterns are typically interpretable, e.g., in pattern min-
ing, the large result sets of potentially interesting patterns that the user needs
to assess, require further exploration and interpretation techniques. In general,
facilitating the understandability and interpretability of the process as well as its
“products” (e.g., in the form of patterns) need to consider two important aspects:
declarativity, in order to include guiding knowledge structures into the process, as
well as explication in order to provide interpretability, transparency, and explain-
ability. Both declarative as well as explicative approaches work together in that

c© Springer Nature Switzerland AG 2018
D. Seipel et al. (Eds.): DECLARE 2017, LNAI 10997, pp. 97–114, 2018.
https://doi.org/10.1007/978-3-030-00801-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00801-7_7&domain=pdf

98 M. Atzmueller

context, complementing each other. This paper provides an overview of the key
points and important developments in these areas, and outlines future potential
and challenges.

2 Declarative Aspects in Explicative Data Mining

While declarative approaches allow for the incorporation of background knowl-
edge and the guidance of the data mining process, explicative data mining [3]
focuses specifically on obtaining interpretable models and patterns, on trans-
parency on the data mining process, and on explanainable or explanation-aware
mining. In that way, both complement each other quite well, such that declar-
ative aspects can be incorporated into explicative data mining for enhancing
interpretability, transparency, and explainability.

Below, we briefly introduce declarative aspects on data mining, especially
focussing on the modeling of background knowledge and the specification of
knowledge to be incorporated into the data mining process. For that, we
first introduce explicative data mining methods, including exploratory and
explanation-aware approaches. Here, we discuss examples in the context of
pattern mining methods [1,2,4,13,45,94], since pattern mining is a prominent
research direction for obtaining interpretable patterns, enabling a transparent
data mining process. In particular, we discuss the relation to incorporating
prior knowledge, e.g., in the form of knowledge patterns [12] and knowledge
graphs [16,36,92] into the data mining process. This enables hybrid approaches
that incorporate semantic knowledge into the process, e.g., supporting modeling
and explanation methods.

2.1 Explicative Data Mining

Data mining methods are commonly applied to obtain a set of novel, potentially
useful, and ultimately interesting patterns from (large) data sets cf., [27]. This
can be achieved e.g., utilizing exploratory data mining techniques like association
rule mining or subgroup discovery, as sketched above.

However, most common data mining methods and approaches lack impor-
tant aspects, i.e., interpretability, transparency and explainability in order to
be explicative towards its users. Especially considering complicated black-box
models this becomes relevant, e.g., when providing recommendations and filter-
ing. Prominent application examples include, for example, large online social
networks, e.g., when providing posts or news to users, but also in predictive
settings such as user scoring or classification in e-commerce. Here, intransparent
methods and models make it more difficult to spot mistakes and can lead to
biased decisions, e.g., based on incorrect training data; in general, they stretch
the trust humans have (and should rightfully have) in the respective predic-
tions. Then, the potential competitive advantage through better predictions for
humans, for businesses, and for society as a whole comes at the cost of reduced
explanatory power.

Declarative Aspects in Explicative Data Mining 99

This is particularly important in the light of the European Union’s new Gen-
eral Data Protection Regulation, which will as of this year enforce a “right to
explanation” (providing users the right to obtain an explanation for any algorith-
mic decisions that were made about them). Overall, there will be a major impact
on business, technology, and society. In particular, in the area of data mining,
these developments give rise to major research challenges and a major impact
on the interaction of humans with such algorithms and according technology in
itself, cf., [31].

Explicative data mining [3] is a comprehensive paradigm for interpretable,
transparent and explainable data analysis. Similar to the philosophical process
of explication cf., [19,54] which aims to make the implicit explicit, explicative
data mining aims to model, describe and explain the underlying structure in the
data.

Explicative data mining targets interpretable (and transparent) models uti-
lizing exploratory and explanation-aware methods. These can be constructed
and inspected on different layers and levels. This ranges from pure data summa-
rization to pattern-based exploratory data mining. Furthermore, these features
also provide for different options for including the human in the loop, e.g., using
visualization methods embedded into interactive and semi-automatic approaches
and methods.

Below, we discuss how to include declarative aspects into explicative data
mining, focussing on interpretable models as well as explainable or explanation-
aware approaches. For the former, we focus on how to model and provide expli-
cation knowledge that is then integrated into the data mining process. We take
a pragmatic view, and consider the typical data mining process, e.g., structured
according to the CRISP-DM [20,93] cycle, “as is” – and thus incorporate impor-
tant elements of purely declarative approaches, e.g., [17,18]. We first focus on
exploratory approaches, before we discuss explanation-aware methods.

2.2 Exploratory Data Mining

In the scope of explication, exploratory data mining techniques can provide a
first view on the data in order to detect interesting patterns. Exploratory tech-
niques span from statistical approaches for characterizing a dataset or deter-
mining key (influence) factors, e.g., [29,89] to more refined (semi-)automatic
approaches, e.g., for local pattern detection [43,58,59]. Local pattern detection
aims to discover local models characterizing (or describing) parts of the data
given an interestingness measure, e.g., [43]. In addition, interactive visualization
methods, e.g., [28,30,39,42,76,78,79,82,86] can be applied (or combined with
automatic methods) for further supporting data exploration.

Pattern Mining. Overall, a broadly applicable and powerful set of methods
is provided by the area of pattern mining. Common methods include those for
association rule mining [1] or subgroup discovery, e.g., [2,40,94]. The latter is
at the intersection of descriptive and predictive data mining [45] and can be

100 M. Atzmueller

applied for a variety of different analytical tasks. Essentially, subgroup discov-
ery [2,40,45,94] is an exploratory approach for discovering interesting subgroups
– as an instance of local pattern detection [2,43,48,58,59]. The interestingness is
usually defined by a certain property of interesting formalized by a quality func-
tion. Essentially, subgroup discovery is a flexible method for detecting relations
between dependent (characterizing) variables and a dependent target concept,
e.g., comparing the share or the mean of a nominal/numeric target variable in
the subgroup vs. the share or mean in the total population, respectively. The
interestingness of a pattern can then be flexibly defined, e.g., by a significant
deviation from a model that is derived from the total population. In the sim-
plest case, (see the example above) a binary target variable is considered, where
the share in a subgroup can be compared to the share in the dataset in order to
detect (exceptional) deviations.

More complex target concepts consider sets of target variables. Here, excep-
tional model mining [2,25,47] focuses on more complex quality functions, con-
sidering complex target models, like comparing regression models or graph struc-
tures. Essentially, exceptional model mining tries to identify interesting patterns
with respect to a local model derived from a set of attributes, cf., [23,24]. This can
be extended, e.g., for network analysis and (exceptional) graph mining, e.g., [38].
Below, we introduce and define subgroup models (and patterns), as well as asso-
ciation rules more formally.

Domain Knowledge for Semantic Data Mining. In many domains, a lot
of (semantic) domain knowledge is available in order to support reasoning pro-
cesses. However, in data mining, semantic knowledge is scarcely exploited so far.
Domain knowledge is a natural resource for knowledge-intensive data mining
methods, e.g., [37,70], and can be exploited for improving the quality of the
data mining results significantly. Appropriate domain knowledge can increase
the representational expressiveness and also focus the algorithm on the relevant
patterns. Furthermore, for increasing the efficiency of the search method, the
search space can often be constrained, e.g., [9].

There are several approaches, which show how to effectively provide and
include domain knowledge into data mining approaches, e.g., [9,22,56,57,60,
64,88] thus supporting explicative data mining by providing semantic specifica-
tions. For modeling expected relations for pattern discovery, for example, accord-
ing methods are presented in [7] utilizing Bayesian network formalizations. For
relational data analysis approach, also the comparison of hypotheses with a
semantic data model using Bayesian techniques (first order Markov chains) has
been targeted in [11]. Furthermore, statistical relational learning, e.g., [21,65,71]
combines both probabilistic and complex relational learning approaches, in par-
ticular also enabling complex logic-based methods. Such methods then enable
powerful declarative approaches in order to provide domain knowledge for data
mining.

Declarative Aspects in Explicative Data Mining 101

Easing Knowledge Acquisition Costs. However, knowledge acquisition is
often challenging and costly, a fact that is known as the so-called knowledge
acquisition bottleneck. Thus, an important idea is to ease the knowledge acqui-
sition by reusing existing domain knowledge, i.e., already formalized knowledge
that is contained in existing ontologies or knowledge bases. Furthermore, we
aim to simplify the knowledge acquisition process itself by providing knowledge
concepts that are easy to model and to comprehend.

We propose high-level knowledge, such as properties of ontological objects
for deriving simpler constraint knowledge that can be directly included in the
data mining step, as discussed, e.g., in [8,9]. Modeling such higher-level ontolog-
ical knowledge, i.e., properties and relations between domain concepts, is often
easier for the domain specialist, since it often corresponds to the mental model
of the concrete domain. Below, we outline simple specifications of domain knowl-
edge, before we discuss more complex modeling approaches including integrated
knowledge graphs and statistical relational learning approaches.

Subgroups and Association Rules. Subgroup models [9,41], often provided
by conjunctive rules, describe’interesting’ subgroups of cases, e.g., “the subgroup
of 16–20 year old men that own a sports car are more likely to pay high insurance
rates than the people in the reference population.” Subgroup discovery [2,40,46,
94] is a powerful method, e.g., for (data) exploration and descriptive induction,
i.e., to obtain an overview of the relations between a so-called target concept and
a set of explaining features. These features are represented by attribute/value
assignments, i.e., they correspond to binary features such as items known from
association rule mining [1]. As discussed below, in its simplest case the target
concept is often represented by a binary variable, but can also extend to more
complex target concepts, e.g., considering sets of variables, and their relations.

Formally, a database DB = (I,A) is given by a set of individuals I and a set
of attributes A. For each attribute a ∈ A, a range dom(a) of values is defined. An
attribute/value assignment a = v, where a ∈ A, v ∈ dom(a), is called a feature.
We define the feature space V to be the (universal) set of all features.

Basic elements used in subgroup discovery are patterns and subgroups. Intu-
itively, a pattern describes a subgroup, i.e., the subgroup consists of instances that
are covered by the respective pattern. It is easy to see, that a pattern describes a
fixed set of instances (subgroup), while a subgroup can also be described by dif-
ferent patterns, if there are different options for covering the subgroup’ instances.
In the following, we define these concepts more formally, following an adapted
notation of [12].

Definition 1. A (subgroup) pattern P is defined as a conjunction

P = s1 ∧ s2 ∧ · · · ∧ sn

of (extended) features si ⊆ V , which are then called selection expressions, where
each si selects a subset of the range dom(a) of an attribute a ∈ A.

102 M. Atzmueller

A selection expression s is thus a Boolean function I → {0, 1} that is true if
the value of the corresponding attribute is contained in the respective subset of
V for the respective individual.

Definition 2. A subgroup (extension) IP := ext(P) := {i ∈ I|P(i) = true} is
the set of all individuals which are covered by the pattern P.

The subgroup mentioned above, for example, is described by the rela-
tion between the independent (explaining) variables (Sex = male, Age ≤ 20,
Car = sports car). Furthermore, there is a dependent (target) variable, i.e.,
Insurance Rate = high; this target variable relates to the concept of interest
used in subgroup discovery, which is utilized to estimate the interestingness of a
subgroup using a quality measure. This is captured by the notion of a subgroup
model described below.

In general, the applied quality measure can also be defined using a set of tar-
get variables, or more complex models such as Bayesian networks or topological
graph structures which relates to the area of exceptional model mining [2,25].
In the scope of this paper and our simple example, we focus on simple binary
target variables given by (simple) features as defined above.

An association rule, e.g., [1], is given by a rule of the form PB → PH , where
PB and PH are patterns; the rule body PB and the rule head PH specify sets
of items. For the insurance domain, for example, we can consider an association
rule showing a combination of potential risk factors for high insurance rates and
accidents:

Sex = male ∧ Age ≤ 20 ∧ Car = sports car
→ Insurance Rate = high ∧ Accident Rate = high

A subgroup model is a special association rule, namely a horn clause P → e,
where P is a pattern and the feature e ∈ V is called the target variable. For
subgroup discovery, a fixed rule head is considered.

In general, the quality of an association rule is measured by its support and
confidence, and the data mining process searches for association rules with arbi-
trary rule heads and bodies, e.g., using the apriori algorithm [1]. For subgroup
models there exist various (more refined) quality measures, e.g., [2,40]: Since an
arbitrary quality function can be applied, the anti-monotony property of support
used in association rule mining cannot be utilized in the general case.

The applied quality function can also combine the difference of the confidence
and the apriori probability of the rule head with the size of the subgroup. Since
mining for interesting subgroup patterns is more complicated, usually a fixed,
atomic rule head is given as input to the knowledge discovery process.

Declarative Specifications of Domain Knowledge. As we have pre-
sented in [12], a prerequisite for the successful application and exploitation of
domain knowledge is given by a concise declarative specification of the domain
knowledge. A concise specification also provides for better documentation,

Declarative Aspects in Explicative Data Mining 103

Knowledge

Attributes:

• Attribute
Exclusion

• Attribute
Inclusion

• Attribute
Combination

Constraint Knowledge

Values:

• Value
Exclusion

• Value
Inclusion

• Value
Aggregation

Ontological Knowledge

Values:

• Normality
Information

• Abnormality
Information

• Similarity
Information

Attributes:

• Attribute
Weights

• Ordinality
Information

• Partition Class
Information

Fig. 1. Hierarchy of (abstract) knowledge classes and specific types, cf., [12].

extendability, and standardization. Below, we summarize the approaches pro-
posed in [12] and provide examples of its instantiation in the field of pattern
mining as outlined above.

In contrast to existing approaches, e.g., [70,95] we focus on domain knowledge
that can be easily declared in symbolic form. Furthermore, the presented app-
roach features the ability of deriving simpler low-level knowledge (constraints)
from high-level ontological knowledge. In general, the search space considered
by the data mining methods can be significantly reduced by shrinking the value
ranges of the attributes. Furthermore, the search can often be focused if only
meaningful values are taken into account. This usually depends on the considered
ontological domain.

The considered classes of domain knowledge include ontological knowledge
and (derived) constraint knowledge, as a subset of the domain knowledge
described in [8,9]. Figure 1 shows the knowledge hierarchy proposed in [12], from
the two knowledge classes to the specific types, and the objects they apply to.

Prolog-Based Specifications. For specifying the properties and relations of
the concepts contained in the domain ontology, we utilize Prolog rules as a com-
pact and versatile representation, cf., [12]. Using these rules, we obtain a suitable
representation formalism for ontological knowledge. Using these, we can auto-
matically derive ad-hoc relations between ontological concepts using (simple)
rules.

Essentially, the declarative features of Prolog allow simple and transpar-
ent knowledge specification, integration and advancement: Depending on the
experience of the domain specialist, new knowledge can be added extending the
existing knowledge, new relations can be introduced, and furthermore additional
advanced features like derivation rules can be directly implemented using Pro-
log. In addition, using domain specific languages built on top, e.g., [75,85] the

104 M. Atzmueller

declarativity can even be further enhanced, while also providing an even sim-
pler interface to the domain specialist. Then, this both provides for a concise
specification and also comprehensive overview, documentation and summary for
the domain specialist, which is typically easy to comprehend, to interpret and
to extend.

Below, we focus on selected examples proposed in [12]. For brevity, we focus
on simple examples considering attributes, e.g., using attribute weights, and
attribute inclusion/exclusion constraints, cf., Fig. 1. With these, attributes can
be selected (or excluded) such that they do not occur in patterns constructed
by the applied pattern mining method. In that way, for example, exclusion con-
straints restrict the pattern space. Also, combination constraints inhibit the
examination of specified sets of concepts. In that way, they help to find more
understandable results. For increasing the representational expressiveness and
thus the interpretability of patterns, modifications of the considered attributes
(and their combinations) can be utilized to make the discovered patterns and
models more meaningful for the user. It is easy to see, that the specifications
regarding combinations of attributes, and their explicit exclusion and inclusion
directly map to attribute values, and features, respectively. Then, regarding the
presented pattern mining methods the format of the considered patterns, and
their “building blocks” can be conveniently.

Examples. As outlined above, we summarize some simple examples regarding the
declarative specifications presented in [12], for which we refer to for an in-depth
description and detailed discussion.

As a first example, partition class information, provides semantically distinct
groups of attributes. These disjoint subsets usually correspond to certain problem
areas of the application domain. E.g., in the medical domain such partitions
are representing different organ systems like liver, kidney, pancreas, stomach,
stomach, and intestine. For each organ system a list of attributes is given:

a t t r i b u t e p a r t i t i o n (inner organs , [
[f a t t y l i v e r , l i v e r c i r r h o s i s , . . .] ,
[r e n a l f a i l u r e , n eph r i t i s , . . .] , . . .]) .

Furthermore, attribute weights denote the relative importance of attributes,
and are a common extension for knowledge-based systems [14]. In the car insur-
ance domain, for example, we can state that the attribute Age is more important
than the attribute Car Color, since its assigned weight is higher:

weight (age , 4) .
weight (c a r c o l o r , 1) .

Deriving Constraints. We can construct attribute exclusion constraints using
attribute weights to filter the set of relevant attributes by a weight threshold or
by subsets of the weight space.

Declarative Aspects in Explicative Data Mining 105

Fig. 2. Overview on a framework for mixed-initiative feature engineering and data
mining using knowledge graphs, cf., [13] for a detailed discussion.

dsdk con s t r a in t (exc lude (a t t r i b u t e) , A) :−
weight (A, N) , N =< 1 .

d sdk con s t r a in t (i n c lude (a t t r i b u t e) , A) :−
weight (A, N) , N > 1 .

Partition class information can be used to infer attribute combination con-
straints in order to prevent the combination of individual attributes that are
contained in separate partition classes. Alternatively, inverse constraints can also
be derived, e.g., to specifically investigate inter-organ relations in the medical
domain.

d sdk con s t r a in t (exc lude (a t t r i b u t e p a i r) , [A1 , A2]) :−
a t t r i b u t e p a r t i t i o n (, P) ,
member(As1 , P) , member(As2 , P) , As1 \= As2 ,
member(A1 , As1) , member(A2 , As2) .

Finally, we can use a generic Prolog rule for detecting conflicts w.r.t. these
rules and the derived knowledge (automatic verification):

d sdk con s t r a i n t (e r r o r (i n c l ude ex c l ude (X) , Y) :−
dsdk cons t r a in t (i n c lude (X) , Y) ,
d sdk con s t r a in t (exc lude (X) , Y) .

Knowledge Graphs. A further effective approach for modeling explication
knowledge is given by constructing a knowledge graph cf., e.g., [16,36]: Here,
the data is integrated into a comprehensive knowledge structure capturing the
relations between concepts and their properties in an explicit way, cf., [16,36,72,
92]. Then, this structure can be exploited in order to facilitate data mining, e.g.,
by applying ontologies in the data mining step. However, so far the approaches
only apply a “shallow” coupling, that is, typically there is no deep integration
of knowledge graph and mining approach (Fig. 2).

106 M. Atzmueller

First approaches for integrating knowledge graphs, i.e., based on ontologies
and a set of instance data has been proposed in the area of semantic data min-
ing [66,87,88]. In [87,88] an ontology is used for instantiating pattern elements.
Compared to the approach making use of declarative specifications discussed
above, this makes of the relations modeled in the ontology, in order to connect
different concepts. However, compared to the logic-based approach using the
versatile Prolog representation, no simple specification/declaration of further
processing knowledge like inference and derivation rules is possible. Likewise,
in [66] mainly the instantiation of the knowledge elements is utilized in the min-
ing process.

Typically, the knowledge graph mainly focuses on the structuring of the con-
cepts and their relations, while specific modeling tasks, as well as data character-
istics (e.g., distributions, correlations) are typically not captured. [13] presents
a mixed-initiative approach, for semantic feature engineering using a knowl-
edge graph. In a semi-automatic process, the knowledge graph is engineered and
refined. Finally, the engineered features are provided for data mining. A sim-
ilar approach is applied in [6]. Here, data from heterogeneous data sources is
integrated into a knowledge graph, which then provides the basis for data min-
ing by supporting feature selection, pattern mining, and interpretation in an
integrated way. In particular, the constructed knowledge graph serves as a data
integration and exploration mechanism, such that the modeled relations and
additional information about the contained entities can be utilized by advanced
graph mining methods, that work on such attributed graphs, e.g., [11].

Also, the obtained knowledge graph itself can be applied for providing addi-
tional context regarding the results of the data mining step, e.g., in order to
provide explanations [10,83] as discussed below in more detail.

2.3 Explicative and Explanation-Aware Data Mining

The term explanation has been widely investigated in different disciplines. In this
context, explanation-aware approaches have been a prominent research direction
in artificial intelligence and data science, e.g., [10,44,73,91].

On Explanation. Knowing about kinds of explanations helps with structur-
ing available knowledge and deciding which knowledge further is required for
exhibiting certain explanation capabilities. In [74], Roth-Berghofer and Cassens
outline the combination of goals and kinds of explanations, in the context of
case-based reasoning. In [80], several useful kinds of explanations are discussed
in the context of knowledge-based systems, referring to concept explanations,
purpose explanations, why explanations, action explanations, and how explana-
tions, cf., [10,80] for a detailed discussion.

In the data mining context, concept, why and how explanations are then
particularly useful, since they provide insights into knowledge elements utilized
in modeling, and also in the model itself by explicating model mechanisms and
outcomes. Explanation goals, on the other hand, help to focus on user needs and

Declarative Aspects in Explicative Data Mining 107

expectations towards explanations. They aim at addressing to understand what
and when the system has to be able to explain (something). Sørmo et al. [77] sug-
gest a set of explanation goals addressing transparency, justification, relevance,
conceptualisation, and learning.

Explicative Modeling. Recently, the concept of transparent and explain-
able models has also gained a strong focus and momentum in the data min-
ing and machine learning community, e.g., [15,50,68], also see [32] for a sur-
vey on explaining black box models. Several methods focus on specific model
types, e.g., tree-based models [84] or pattern-based approaches [26] for getting
a better understanding of where a classifier does not work using local pattern
mining techniques. Here, also methods integrating associative classification, i.e.,
based utilizing a set of (class) association rules [5,49,53,81] can be applied for
obtaining interpretable models for explicative data mining. While the methods
sketched above focus on specific modeling methods, there are several approaches
for model agnostic explanation methods, e.g., [67,69]. In particular, general direc-
tions are given by methods considering counterfactual explanation, e.g., [55,90].
Furthermore, other general methods consider data perturbation and randomiza-
tion techniques as well as interaction analysis methods, e.g., [33–35].

In general, for explicative data mining, the transparency of the respective
patterns and models and their explanation-awareness is an important factor for
supporting the user. In particular, if explanations for the complete models, or
parts thereof can be provided, then the acceptance of the patterns and models,
as well as their assessment and evaluation can often be significantly improved,
e.g., [10].

Explanation-Aware Data Mining. The generation of explanations in the
general data mining process is described in [10], the mining and analysis con-
tinuum of explanation. In particular, if explanations for the complete models,
or parts thereof can be provided, then the acceptance can often be significantly
improved, e.g., [10]. As put forward and described in the Mining and Analy-
sis Continuum of Explaining [10] appropriate data representation and abstrac-
tion can facilitate explanation-awareness, also supporting and featuring different
analysis and presentation levels. Then, data and models can be inspected at dif-
ferent levels of detail, from aggregated representations to the original ones in
drill-down fashion combined with appropriate explanation capabilities. Typi-
cally, the user starts on an aggregated view that can be refined subsequently, for
getting insights into the relations in the data and the constructed model, respec-
tively. Here, different dimensions provide distinct view on the explanation space.
Figure 3 provides an overview on the explanation framework and its dimensions.
For a detailed discussion, we refer to [10].

In [4], for example, we consider symbolic representations, i.e., decision tree
models and sequence representations of time series given by the symbolic aggre-
gate approximation (SAX) [51,52] as a convenient data abstraction. In a general

108 M. Atzmueller

process model for explanation-aware data analytics, we investigate this abstrac-
tion together with a decision tree model in the context of feature selection and
assessment, and present a case study in a petro-chemical production context.

Presentation styles

Knowledge containers

Ontological knowledge
(Vocabulary)

Pattern knowledgeInstance knowledge Context knowledge

Transparency

Justification

Relevance

Learning

Explanation Goals

Purpose explanation

How explanation

Why explanation

Concept explanation

Action explanation

Kinds of explanation Level of Details

Privacy

Conceptualisation

Fig. 3. Overview on the explanation dimensions of the mining and analysis continuum
of explanation cf., [10].

Some recent approaches for introducing declarativity in explanation-aware
approaches, include the knowledge-graph-based data mining approach outlined
in [6] which is detailed in [11] regarding the applied pattern mining techniques.
Furthermore, linked open data inspired approaches for interpreting pattern-
based models, e.g., [62,63] and also explanations using linked open data for
recommender systems [61] are first promising starting points in that context.

3 Conclusions

In this paper, we have provided an overview on declarative aspects in explica-
tive data mining, targeting the overall goal of computational sensemaking. We
have discussed the modeling of domain knowledge as well as extended knowl-
edge structuring using knowledge graphs. Furthermore, we have summarized
the paradigm of explicative data mining providing interpretable, transparent
and explainable approaches.

We have introduced explicative data mining as a comprehensive paradigm.
Similar to the philosophical process of explication cf., [19,54] which aims to
make the implicit explicit, explicative data mining aims to model, describe and
explain the underlying structure in the data. In that way, this paves the way

Declarative Aspects in Explicative Data Mining 109

to computational sensemaking which focuses on computational methods and
models for “making sense” of complex data and information. Here, the goal
is to understand structures and processes and to provide intelligent decision
support through analysis and (semantic) interpretation. Therefore, explicative
data mining coupled with declarative approaches is crucial since this can then
both provide the necessary means for comprehensive analysis and giving meaning
to models and results, respectively.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceed-
ings of VLDB, pp. 487–499. Morgan Kaufmann (1994)

2. Atzmueller, M.: Subgroup discovery. WIREs Data Min. Knowl. Discov. 5(1), 35–49
(2015)

3. Atzmueller, M.: Onto explicative data mining: exploratory, interpretable and
explainable analysis. In: Proceedings of Dutch-Belgian Database Day. TU Eind-
hoven, Netherlands (2017)

4. Atzmueller, M., Hayat, N., Schmidt, A., Klöpper, B.: Explanation-aware feature
selection using symbolic time series abstraction: approaches and experiences in a
petro-chemical production context. In: Proceedings of IEEE INDIN. IEEE Press,
Boston (2017)

5. Atzmueller, M., Hayat, N., Trojahn, M., Kroll, D.: Explicative human activity
recognition using adaptive association rule-based classification. In: Proceedings of
IEEE International Conference on Future IoT Technologies. IEEE Press, Boston
(2018, accepted)

6. Atzmueller, M., et al.: Big data analytics for proactive industrial decision support:
approaches & first experiences in the context of the FEE project. atp edition 58(9)
(2016)

7. Atzmueller, M., Lemmerich, F.: A methodological approach for the effective mod-
eling of Bayesian networks. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius,
F., Roth-Berghofer, T.R. (eds.) KI 2008. LNCS (LNAI), vol. 5243, pp. 160–168.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85845-4 20

8. Atzmueller, M., Puppe, F.: A methodological view on knowledge-intensive sub-
group discovery. In: Staab, S., Svátek, V. (eds.) EKAW 2006. LNCS (LNAI),
vol. 4248, pp. 318–325. Springer, Heidelberg (2006). https://doi.org/10.1007/
11891451 28

9. Atzmueller, M., Puppe, F., Buscher, H.P.: Exploiting background knowledge for
knowledge-intensive subgroup discovery. In: Proceedings of 19th International Joint
Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, Scotland, pp. 647–
652 (2005)

10. Atzmueller, M., Roth-Berghofer, T.: The mining and analysis continuum of explain-
ing uncovered. In: Proceedings of AI (2010)

11. Atzmueller, M., Schmidt, A., Kloepper, B., Arnu, D.: HypGraphs: an approach
for analysis and assessment of graph-based and sequential hypotheses. In: Appice,
A., Ceci, M., Loglisci, C., Masciari, E., Raś, Z.W. (eds.) NFMCP 2016. LNCS
(LNAI), vol. 10312, pp. 231–247. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-61461-8 15

https://doi.org/10.1007/978-3-540-85845-4_20
https://doi.org/10.1007/11891451_28
https://doi.org/10.1007/11891451_28
https://doi.org/10.1007/978-3-319-61461-8_15
https://doi.org/10.1007/978-3-319-61461-8_15

110 M. Atzmueller

12. Atzmueller, M., Seipel, D.: Using declarative specifications of domain knowledge
for descriptive data mining. In: Seipel, D., Hanus, M., Wolf, A. (eds.) INAP/WLP-
2007. LNCS (LNAI), vol. 5437, pp. 149–164. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-00675-3 10

13. Atzmueller, M., Sternberg, E.: Mixed-initiative feature engineering using knowl-
edge graphs. In: Proceedings of K-CAP. ACM (2017)

14. Baumeister, J., Atzmüller, M., Puppe, F.: Inductive learning for case-based diag-
nosis with multiple faults. In: Craw, S., Preece, A. (eds.) ECCBR 2002. LNCS
(LNAI), vol. 2416, pp. 28–42. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-46119-1 4

15. Biran, O., Cotton, C.: Explanation and justification in machine learning: a survey.
In: IJCAI 2017, Workshop on Explainable AI (2017)

16. Bizer, C., et al.: DBpedia - a crystallization point for the web of data. Web Semant.
7(3), 154–165 (2009)

17. Blockeel, H.: Data mining: from procedural to declarative approaches. New Gener.
Comput. 33(2), 115–135 (2015)

18. Blockeel, H.: Declarative data analysis. Int. J. Data Sci. Anal., 1–7 (2017)
19. Carnap, R.: Logical Foundations of Probability (1962)
20. Chapman, P., et al.: CRISP-DM 1.0: Step-by-Step Data Mining Guide. CRISP-

DM consortium: NCR Systems Engineering, DaimlerChrysler AG, SPSS Inc. and
OHRA Verzekeringen en Bank Groep B.V (2000)

21. De Raedt, L., Kersting, K.: Statistical relational learning. In: Sammut, C., Webb,
G.I. (eds.) Encyclopedia of Machine Learning, pp. 916–924. Springer, Boston
(2011). https://doi.org/10.1007/978-0-387-30164-8 786

22. Dou, D., Wang, H., Liu, H.: Semantic data mining: a survey of ontology-based
approaches. In: IEEE ICSC, pp. 244–251. IEEE (2015)

23. Duivesteijn, W., Knobbe, A., Feelders, A., van Leeuwen, M.: Subgroup discovery
meets Bayesian networks-an exceptional model mining approach. In: Proceedings
of International Conference on Data Mining (ICDM), pp. 158–167. IEEE, Wash-
ington, DC (2010)

24. Duivesteijn, W., Feelders, A., Knobbe, A.J.: Different slopes for different folks:
mining for exceptional regression models with Cook’s distance. In: Proceedings
of ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 868–876. ACM, New York (2012)

25. Duivesteijn, W., Feelders, A.J., Knobbe, A.: Exceptional model mining. Data Min.
Knowl. Disc. 30(1), 47–98 (2016)

26. Duivesteijn, W., Thaele, J.: Understanding where your classifier does (Not) work
- the SCaPE model class for EMM. In: Proceedings of ICDM, pp. 809–814. IEEE
(2014)

27. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery: an overview. In: Advances in Knowledge Discovery and Data Mining,
pp. 1–34. AAAI Press (1996)

28. Gamberger, D., Lavrac, N., Wettschereck, D.: Subgroup visualization: a method
and application in population screening. In: Proceedings of IDAMAP (2002)

29. Gaskin, C.J., Happell, B.: On exploratory factor analysis: a review of recent evi-
dence, an assessment of current practice, and recommendations for future use. Int.
J. Nurs. Stud. 51(3), 511–521 (2014)

30. Goethals, B., Moens, S., Vreeken, J.: MIME: a framework for interactive visual
pattern mining. In: Proceedings of ACM SIGKDD, pp. 757–760. ACM (2011)

31. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-
making and a “right to explanation”. arXiv preprint arXiv:1606.08813 (2016)

https://doi.org/10.1007/978-3-642-00675-3_10
https://doi.org/10.1007/978-3-642-00675-3_10
https://doi.org/10.1007/3-540-46119-1_4
https://doi.org/10.1007/3-540-46119-1_4
https://doi.org/10.1007/978-0-387-30164-8_786
http://arxiv.org/abs/1606.08813

Declarative Aspects in Explicative Data Mining 111

32. Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., Giannotti, F.: A survey of
methods for explaining black box models. arXiv preprint arXiv:1802.01933 (2018)

33. Henelius, A., Puolamäki, K., Boström, H., Asker, L., Papapetrou, P.: A peek into
the black box: exploring classifiers by randomization. Data Min. Knowl. Discov.
28(5–6), 1503–1529 (2014)

34. Henelius, A., et al.: GoldenEye++: a closer look into the black box. In:
Gammerman, A., Vovk, V., Papadopoulos, H. (eds.) SLDS 2015. LNCS (LNAI),
vol. 9047, pp. 96–105. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
17091-6 5

35. Henelius, A., Puolamäki, K., Ukkonen, A.: Interpreting classifiers through attribute
interactions in datasets. In: Proceedings of 2017 ICML Workshop on Human Inter-
pretability in Machine Learning (WHI 2017) (2017)

36. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and
temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61
(2013)

37. Jaroszewicz, S., Simovici, D.A.: Interestingness of frequent itemsets using Bayesian
networks as background knowledge. In: Proceedings of SIGKDD, pp. 178–186.
ACM (2004)

38. Kaytoue, M., Plantevit, M., Zimmermann, A., Bendimerad, A., Robardet, C.:
Exceptional contextual subgraph mining. Mach. Learn. 106(8), 1171–1211 (2017)

39. Keim, D., Ward, M.: Visualization. In: Berthold, M., Hand, D.J. (eds.) Intelligent
Data Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
48625-1 11

40. Klösgen, W.: Explora: a multipattern and multistrategy discovery assistant. In:
Advances in Knowledge Discovery and Data Mining, pp. 249–271. AAAI Press
(1996)

41. Klösgen, W.: Subgroup discovery. In: Handbook of Data Mining and Knowledge
Discovery. Oxford University Press, New York (2002). Chap. 16.3

42. Klösgen, W., Lauer, S.R.W.: Visualization of data mining results. In: Handbook of
Data Mining and Knowledge Discovery. Oxford University Press, New York (2002).
Chap. 20.1

43. Knobbe, A.J., Cremilleux, B., Fürnkranz, J., Scholz, M.: From local patterns to
global models: the LeGo approach to data mining. In: From Local Patterns to
Global Models: Proceedings of the ECML/PKDD-08 Workshop (LeGo 2008), pp.
1–16 (2008)

44. Kolodner, J.L.: Making the implicit explicit: clarifying the principles of case-based
reasoning. In: Case-based Reasoning: Experiences, Lessons and Future Directions,
pp. 349–370 (1996)

45. Lavrač, N.: Subgroup discovery techniques and applications. In: Ho, T.B., Cheung,
D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 2–14. Springer,
Heidelberg (2005). https://doi.org/10.1007/11430919 2

46. Lavrac, N., Kavsek, B., Flach, P., Todorovski, L.: Subgroup discovery with CN2-
SD. J. Mach. Learn. Res. 5, 153–188 (2004)

47. Leman, D., Feelders, A., Knobbe, A.: Exceptional model mining. In: Daelemans,
W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212,
pp. 1–16. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-
2 1

48. Lemmerich, F., Becker, M., Atzmueller, M.: Generic pattern trees for exhaustive
exceptional model mining. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML
PKDD 2012. LNCS (LNAI), vol. 7524, pp. 277–292. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33486-3 18

http://arxiv.org/abs/1802.01933
https://doi.org/10.1007/978-3-319-17091-6_5
https://doi.org/10.1007/978-3-319-17091-6_5
https://doi.org/10.1007/978-3-540-48625-1_11
https://doi.org/10.1007/978-3-540-48625-1_11
https://doi.org/10.1007/11430919_2
https://doi.org/10.1007/978-3-540-87481-2_1
https://doi.org/10.1007/978-3-540-87481-2_1
https://doi.org/10.1007/978-3-642-33486-3_18

112 M. Atzmueller

49. Li, W., Han, J., Pei, J.: CMAR: accurate and efficient classification based on multi-
ple class-association rules. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) Proceedings of
International Conference on Data Mining (ICDM), pp. 369–376. IEEE Computer
Society (2001)

50. Li, X., Huan, J.: Constructivism learning: a learning paradigm for transparent
predictive analytics. In: Proceedings of SIGKDD, pp. 285–294. ACM (2017)

51. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A symbolic representation of time series,
with implications for streaming algorithms. In: Proceedings of 8th ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 2–11.
ACM (2003)

52. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic rep-
resentation of time series. Data Min. Knowl. Discov. 15(2), 107–144 (2007)

53. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining.
In: Proceedings of SIGKDD, pp. 80–86. AAAI Press, August 1998

54. Maher, P.: Explication defended. Studia Logica 86(2), 331–341 (2007)
55. Mandel, D.R.: Counterfactual and causal explanation: from early theoretical views

to new frontiers. In: The Psychology of Counterfactual Thinking, pp. 23–39. Rout-
ledge (2007)

56. Mitzlaff, F., Atzmueller, M., Hotho, A., Stumme, G.: The social distributional
hypothesis. J. Soc. Netw. Anal. Min. 4(216), 1–14 (2014)

57. Mitzlaff, F., Atzmueller, M., Stumme, G., Hotho, A.: Semantics of user interaction
in social media. In: Ghoshal, G., Poncela-Casasnovas, J., Tolksdorf, R. (eds.) Com-
plex Networks IV. SCI, vol. 476. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36844-8 2

58. Morik, K.: Detecting interesting instances. In: Hand, D.J., Adams, N.M., Bolton,
R.J. (eds.) Pattern Detection and Discovery. LNCS (LNAI), vol. 2447, pp. 13–23.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45728-3 2

59. Morik, K., Boulicaut, J.-F., Siebes, A. (eds.): Local Pattern Detection. LNCS
(LNAI), vol. 3539. Springer, Heidelberg (2005). https://doi.org/10.1007/b137601

60. Morshed, A., Dutta, R., Aryal, J.: Recommending environmental knowledge as
linked open data cloud using semantic machine learning. In: Proceedings of IEEE
ICDEW, pp. 27–28. IEEE (2013)

61. Musto, C., Narducci, F., Lops, P., de Gemmis, M., Semeraro, G.: Linked open data-
based explanations for transparent recommender systems. Int. J. Hum.-Comput.
Stud. (2018)

62. Paulheim, H.: Explain-a-LOD: using linked open data for interpreting statistics.
In: Proceedings of ACM IUI, pp. 313–314. ACM (2012)

63. Paulheim, H.: Generating possible interpretations for statistics from linked open
data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.)
ESWC 2012. LNCS, vol. 7295, pp. 560–574. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30284-8 44

64. Paulheim, H., Fümkranz, J.: Unsupervised generation of data mining features from
linked open data. In: Proceedings of WIMS, p. 31. ACM (2012)

65. Pujara, J., Miao, H., Getoor, L., Cohen, W.: Large-scale knowledge graph identi-
fication using PSL. In: AAAI Fall Symposium on Semantics for Big Data (2013)

66. Rauch, J., Šimůnek, M.: Learning association rules from data through domain
knowledge and automation. In: Bikakis, A., Fodor, P., Roman, D. (eds.) RuleML
2014. LNCS, vol. 8620, pp. 266–280. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-09870-8 20

https://doi.org/10.1007/978-3-642-36844-8_2
https://doi.org/10.1007/978-3-642-36844-8_2
https://doi.org/10.1007/3-540-45728-3_2
https://doi.org/10.1007/b137601
https://doi.org/10.1007/978-3-642-30284-8_44
https://doi.org/10.1007/978-3-642-30284-8_44
https://doi.org/10.1007/978-3-319-09870-8_20
https://doi.org/10.1007/978-3-319-09870-8_20

Declarative Aspects in Explicative Data Mining 113

67. Ribeiro, M.T., Singh, S., Guestrin, C.: Model-agnostic interpretability of machine
learning. In: Proceedings of 2016 ICML Workshop on Human Interpretability in
Machine Learning (2016)

68. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? Explaining the
predictions of any classifier. In: Proceedings of ACM SIGKDD, pp. 1135–1144.
ACM (2016)

69. Ribeiro, M.T., Singh, S., Guestrin, C.: Anchors: high-precision model-agnostic
explanations. AAAI (2018)

70. Richardson, M., Domingos, P.: Learning with knowledge from multiple experts. In:
Proceedings of ICML, pp. 624–631. AAAI Press (2003)

71. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62(1–2), 107–
136 (2006)

72. Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery:
a comprehensive survey. Web Semant. 36, 1–22 (2016)

73. Roth-Berghofer, T., Schulz, S., Leake, D., Bahls, D.: Explanation-aware computing.
AI Mag. 28(4) (2007)

74. Roth-Berghofer, T.R., Cassens, J.: Mapping goals and kinds of explanations to the
knowledge containers of case-based reasoning systems. In: Muñoz-Ávila, H., Ricci,
F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 451–464. Springer, Heidelberg
(2005). https://doi.org/10.1007/11536406 35

75. Seipel, D., Nogatz, F., Abreu, S.: Domain-specific languages in prolog for declar-
ative expert knowledge in rules and ontologies. Comput. Lang. Syst. Struct. 51,
102–117 (2018)

76. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: Proceedings of IEEE Symposium on Visual Languages, Boulder,
Colorado, pp. 336–343 (1996)

77. Sørmo, F., Cassens, J., Aamodt, A.: Explanation in case-based reasoning - per-
spectives and goals. Artif. Intell. Rev. 24(2), 109–143 (2005)

78. Spenke, M.: Visualization and interactive analysis of blood parameters with Info-
Zoom. Artif. Intell. Med. 22(2), 159–172 (2001)

79. Spenke, M., Beilken, C.: Visual, interactive data mining with InfoZoom - the finan-
cial dataset. In: Workshop Notes on Discovery Challenge at the 3rd European Con-
ference on Principles and Practice of Knowledge Discovery in Databases, pp. 15–18
(1999)

80. Spieker, P.: Natürlichsprachliche Erklärungen in technischen Expertensystemen.
Dissertation, University of Kaiserslautern (1991)

81. Thabtah, F.: A review of associative classification mining. Knowl. Eng. Rev. 22(1),
37–65 (2007)

82. Theus, M.: Interactive data visualization using Mondrian. J. Stat. Softw. 7(11),
1–9 (2003)

83. Tiddi, I., d’Aquin, M., Motta, E.: An ontology design pattern to define explana-
tions. In: Proceedings of K-Cap. ACM, New York (2015)

84. Tolomei, G., Silvestri, F., Haines, A., Lalmas, M.: Interpretable predictions of tree-
based ensembles via actionable feature tweaking. In: Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
465–474. ACM (2017)

85. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: an annotated
bibliography. ACM Sigplan Not. 35(6), 26–36 (2000)

https://doi.org/10.1007/11536406_35

114 M. Atzmueller

86. Leeuwen, M.: Interactive data exploration using pattern mining. In: Holzinger, A.,
Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical
Informatics. LNCS, vol. 8401, pp. 169–182. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43968-5 9

87. Vavpetič, A., Lavrač, N.: Semantic subgroup discovery systems and workflows in
the SDM-Toolkit. Comput. J. 56(3), 304–320 (2013)

88. Vavpetic, A., Podpecan, V., Lavrac, N.: Semantic subgroup explanations. J. Intell.
Inf. Syst. 42(2), 233–254 (2014)

89. Velicer, W.F., Eaton, C.A., Fava, J.L.: Construct explication through factor or
component analysis: a review and evaluation of alternative procedures for deter-
mining the number of factors or components. In: Goffin, R.D., Helmes, E. (eds.)
Problems and Solutions in Human Assessment: Honoring Douglas N. Jackson at
Seventy, pp. 41–71. Springer, Boston (2000). https://doi.org/10.1007/978-1-4615-
4397-8 3

90. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual Explanations without
Opening the Black Box: Automated Decisions and the GDPR (2017)

91. Wick, M.R., Thompson, W.B.: Reconstructive expert system explanation. Artif.
Intell. 54(1–2), 33–70 (1992)

92. Wilcke, X., Bloem, P., de Boer, V.: The knowledge graph as the default data model
for learning on heterogeneous knowledge. Data Sci. (Preprint), 1–19 (2017)

93. Wirth, R., Hipp, J.: CRISP-DM: towards a standard process model for data mining.
In: Proceedings of 4th International Conference on the Practical Application of
Knowledge Discovery and Data Mining, pp. 29–39. Morgan Kaufmann (2000)

94. Wrobel, S.: An algorithm for multi-relational discovery of subgroups. In:
Komorowski, J., Zytkow, J. (eds.) PKDD 1997. LNCS, vol. 1263, pp. 78–87.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63223-9 108

95. Zelezny, F., Lavrac, N., Dzeroski, S.: Using constraints in relational subgroup dis-
covery. In: Proceedings of International Conference on Methodology and Statistics,
pp. 78–81. University of Ljubljana (2003)

https://doi.org/10.1007/978-3-662-43968-5_9
https://doi.org/10.1007/978-3-662-43968-5_9
https://doi.org/10.1007/978-1-4615-4397-8_3
https://doi.org/10.1007/978-1-4615-4397-8_3
https://doi.org/10.1007/3-540-63223-9_108

An Approach for Representing Answer
Sets in Natural Language

Min Fang and Hans Tompits(B)

Institute of Logic and Computation, Knowledge-Based Systems Group E192-03,
Technische Universität Wien, Favoritenstraße 9-11, 1040 Vienna, Austria

{fang,tompits}@kr.tuwien.ac.at

Abstract. In recent years, different methods for supporting the devel-
opment of answer-set programming (ASP) code have been introduced.
During such a development process, often it would be desirable to have
a natural-language representation of answer sets, e.g., when dealing with
domain experts unfamiliar with ASP. In this paper, we address this point
and provide an approach for such a representation, defined in terms of a
controlled natural language (CNL), which in turn relies on the annotation
language Lana for the specification of meta-information for answer-set
programs. Our approach has been implemented as an Eclipse plug-in for
SeaLion, a dedicated IDE for ASP.

1 Introduction

In recent years, the question of providing methods and tools for supporting the
development of answer-set programs has received increased attention in the lit-
erature [2,8]. A feature often desirable in developing answer-set programs is to
have a natural-language representation of the output of such programs, i.e., of
answer sets which represent the solutions of encoded problems. Such represen-
tations are particularly useful, e.g., when dealing with domain experts who are
unfamiliar with answer-set programming (ASP).

In this paper, we address this point and provide an approach for such a
natural-language representation of answer sets. However, for realising a method
like this, it should be clear that information other than the pure ASP code is
required. Somehow, a mechanism which allows to describe what certain ASP
predicates “mean” is required. Such a feature is provided by the annotation lan-
guage Lana (“Language for ANnotating Answer-set programs”) [3] that aug-
ments answer-set programs with additional meta-information. Lana offers lan-
guage constructs for declaring various concepts, like predicates, type informa-
tion, and input and output signatures. These additional annotations can then
be interpreted by independent tools to support the development process, e.g., to
run specialised test cases, to automatically generate a program documentation,
and so on. In fact, Lana, and some of the tools using it, have already been inte-
grated in SeaLion [2], a dedicated integrated development environment (IDE)
for ASP implemented as an Eclipse plug-in.
c© Springer Nature Switzerland AG 2018
D. Seipel et al. (Eds.): DECLARE 2017, LNAI 10997, pp. 115–131, 2018.
https://doi.org/10.1007/978-3-030-00801-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00801-7_8&domain=pdf

116 M. Fang and H. Tompits

Our goal was to create a tool which uses the information provided by Lana
and which generates a more human-readable interpretation of answer sets. For
this purpose, we used the user-specified atom descriptions (given by means of
Lana @atom annotations) and built natural-language-like interpretations for
the answer sets according to the problem instance. In order to parse the atom
descriptions properly and deduce syntactic information from them, our approach
uses descriptions which are formulated in a controlled natural language (CNL).
Our tool, realised as an Eclipse plug-in alongside SeaLion, allows a knowledge
engineer to make further ad-hoc changes to a generated interpretation and even-
tually export it, e.g., in PDF format. This document can then be easily forwarded
to a domain expert for further consideration.

Following Kuhn [15], a CNL is a constructed language resembling a natural
language but being more restrictive concerning lexicon, syntax, and/or seman-
tics while preserving most of its natural properties. In effect, it is essentially a
formal language and can therefore usually be specified by known mechanisms for
specifying formal languages, e.g., in terms of a grammar. The degree of resem-
blance of a CNL to a natural language varies depending on the purpose of the
CNL and the (technical) background of the designated users of this language.
A CNL is often used as a bridge between a highly ambiguous natural language
and a less human-readable formal language, like, e.g., predicate logic or a pro-
gramming language. This type of CNL is referred to as computer-oriented CNL
and is usually employed in applications where some sort of semi-automatic or
automatic processing of user input is necessary in order to translate it into a
more formal representation [21]. Recent instances of general-purpose (i.e., not
restricted to the vocabulary of a specific domain), English-based CNLs are, e.g.,
Attempto Controlled English (ACE) [9,10] and PENG/PENG Light [19,20,24].

Our approach is not the first to employ CNL techniques in the context of
answer-set programming. To wit, Erdem and Yeniterzi [6] developed BioQuery-
CNL, a domain-specific CNL which is used to express biomedical queries over
predefined ontologies. These queries are then in turn translated into answer-set
programs, using the BioQuery-ASP system [4,5]. Likewise, Schwitter [22,23] as
well as Guy and Schwitter [12] discuss methods to solve search problems by rep-
resenting them into a CNL and processing these representations by translations
to ASP.

The paper is organised as follows: We first provide, in Sect. 2, some back-
ground on the ASP annotation language Lana. Then, in Sect. 3, we describe
our proposed CNL for obtaining a natural-language representation of answer
sets and Sect. 4 details the actual translation. Section 5 briefly discusses the
implemented tool and the paper closes with some general remarks in Sect. 6.

2 Background

We assume the reader familiar with the basics of answer-set programming
(ASP) [1]. Briefly, an answer-set program consists of a set of rules of form

a :- b1, . . . ,bn,not c1, . . . ,not cm,

An Approach for Representing Answer Sets in Natural Language 117

where a, b1,. . . , bn, c1,. . . , cm are atoms over a first-order vocabulary and not
denotes default negation. The semantics of such a program, P , is given in terms
of answer sets, which are defined as those models of P which satisfy a certain
fixed-point condition [11]. Prominent solvers for computing answer sets are, e.g.,
clasp [18] and DLV [16].

Fig. 1. An illustration of Lana annotations in a program file.

118 M. Fang and H. Tompits

The annotation language Lana was introduced by De Vos et al. [3] with the
purpose of defining a standardised apparatus for specifying meta-information for
answer-set programs. The formalism of Lana is reminiscent of Java annotations,
with the @ symbol preceding each keyword. Just as some Java annotations (e.g.,
annotations for Javadoc), annotations in Lana have the form of an ASP com-
ment, thus not altering the semantics of the program that it is documenting. If an
ASP solver—in particular its grounding component—supports block-comments,
these can be used instead of the single-line comment marker “%”.1

Lana offers an array of different annotations, of which we only mention a
few. E.g., @block can be used to group certain rules together, i.e., deriving
a more finely-grained structure within a code file. Each block can then declare
predicates using the @atom annotation, and define its input and output signature
with @input and @output, respectively. Other annotations include @assert,
@precon, @postcon, @always, and @never, which define logical conditions
for the answer sets and can be used for testing purposes.

For our use case, we mainly focus on two of the annotations: @atom and
@output. Figure 1 depicts some annotations for illustrating the usage of these
two annotations. As can be seen in this example, @atom annotations are made up
of a predicate name, a comma-separated list of its arguments given as variables
(i.e., an identifier starting with an uppercase character) wrapped in round brack-
ets, and an (optional) sentence describing the semantics of the corresponding
predicate. Lana itself does not define any restrictions for this short description
as it is only considered a comment, i.e., it is used as an informal documentation
of the associated predicate. For our purposes, however, it is necessary to impose
a certain well-defined structure on them.

The @input and @output annotations list the predicates that correspond
to the input and output of a problem instance, respectively. Input predicates
are usually required to encode the problem instance, while output predicates
are relevant for the solution of a particular problem instance. The predicates
are given with their name and their respective arity since it is possible to have
predicates with the same name, in which case they are uniquely identifiable by
the combination of their name and arity.

While in Lana all these annotations are not mandatory, we presume for our
purposes that they are specified by the user, otherwise it would be impossible
to generate a textual, human-readable interpretation of answer sets that would
reflect their intended meaning.

1 E.g., if one uses gringo as grounding component. An additional “*” is then added
to the block-comment marker “%*” in order to distinguish Lana annotations from
normal block comments. Hence, Lana annotations are wrapped in “%**” and “*%”
blocks. We assume this syntax for the examples below.

An Approach for Representing Answer Sets in Natural Language 119

3 A Controlled Natural Language for LANA Atom
Descriptions

We first define the controlled natural language that determines the form of atom
descriptions associated with an @atom annotation. The CNL that we are envis-
aging for the Lana atom descriptions cannot be domain-specific since we are not
restricting the domain of answer-set programs that can use the Lana annota-
tions (e.g., it is possible to encode a combinatoric puzzle as much as a scheduling
problem). Hence, it is impossible to predefine a set lexicon for our CNL as far as
content words are concerned. We can, however, presume a fixed set of function
words (e.g., prepositions) which we incorporate directly into the grammar.

3.1 Preliminary Considerations

Having an open, utterly unconstrained lexicon is unusual for both domain-
specific and general-purpose CNLs. The former would normally have a relatively
small lexicon tailored to its field of application. For the latter, a dynamic lexicon
is more typical, i.e., it would have a compact predefined lexicon with the most
frequently used words of the associated natural language, with the additional
possibility of the user specifying new entries for the lexicon as they go along.
Even though a dynamic lexicon could be used for our purposes, it would compli-
cate the user experience unnecessarily since the user may have to specify further
information about the new lexemes (e.g., identifying their part-of-speech).

The real restriction of our CNL therefore lies in the syntactic structure of its
sentences. Instead of a hundred odd rules (e.g., ACE Codeco has 164 grammar
rules [15]), we constrain our grammar to a very small number of rules. This is
possible because our CNL is, after all, not a general-purpose CNL. We know its
application context (stated below an @atom annotation describing the meaning
of this atom) and its purpose (generating human-readable interpretations of
answer sets) despite being uninformed about the semantics of its individual
words and the domain of the program. By imposing a rigid structure on the
sentences we gain enough structural information about these sentences and their
constituents that we can use for the generation of new sentences, i.e., textual
interpretations, according to the instantiated atoms of each answer set.

This highly syntactic approach is very much different from some of the more
well-known CNLs, which usually map the sentences to some kind of formal logic
representation (e.g., to discourse representation structures [10,24]). We are able
to bypass this step since we are not so much interested in the exact semantics of
the sentences, but rather in the structural relations of its constituents. Indeed, we
use these constituents as “boilerplates” for the generation of our own sentences,
which make up the textual interpretation of answer sets.

Concerning the grammatical structure that we are defining for Lana atom
descriptions, the first general restriction that we make is that each atom descrip-
tion is made up of one sentence only. This way we can avoid difficult problems

120 M. Fang and H. Tompits

such as anaphora resolution.2 The structure of these sentences must be basic
and unambiguously parseable but at the same time flexible enough to allow the
description of many possible predicates. We essentially allow three sentence types
in our CNL, where the defining characteristics are linked to the main verb of the
sentence and its argument structure, i.e., the number and the kind of arguments
it combines with. In traditional grammar, this verb property is referred to as
valency or valence of verbs (cf., e.g., Van Valin [26]).

3.2 Syntactical Structure of the CNL

We now detail the exact constituents each sentence type of our CNL allows and
what each constituent is made up of. Instead of giving a general formal definition
of the syntax of our CNL, which we omit here due to space reasons, we focus on
providing illustrative explanations what valid phrases and sentences our language
admits (for a full specification of the syntax of our CNL, cf. Fang [7]).

For our purposes it is sufficient that we include a fixed set of (more or less)
function words that our parser recognises and which help to structure the input.
In general, function words belong to the closed-word class, i.e., this set of words
typically does not grow larger with time (like, e.g., nouns and adjectives do).
Hence, we could theoretically exhaustively include the set of function words into
our grammar, but to stay in line with our goal to be as restrictive as possible
with the defined grammar without giving up too much expressive power, we
focus on a limited set of function words that seem to cover our applications well
enough. This final set is made up of the following words: is, are, be, has, have, do,
does, must, can, cannot, an, a, A, An, the, The, There, maximally, minimally,
at least, at most, or more, or less, or fewer, to, with, of, for, as, by, at, in, on,
and not. The prepositions are especially important since they help the parser
to unambiguously place prepositional phrases in the sentence (and thus identify
where a noun phrase ends). In the examples below, instances of these words are
underlined.

Central Language Constituents. We first list central language elements of
our CNL.

Variables. We have predefined variables of a specific form: They must start with
an upper-case character, followed by other upper-case characters or numbers 0 to
9. Note that this definition is more restricted than the usual ASP definition for
variables. There is, however, one exception to this simple rule: The symbol “A”
cannot be used to denote a variable since it is a reserved function word (refer-
ring to an indefinite article at the beginning of a sentence). In the subsequent
examples variables are printed in bold.

Noun Phrases (NPs). First of all, we distinguish between noun phrases (NPs)
which contain variables identical to those listed in the @atom signature and noun
2 PENG [24] avoids this problem by disallowing personal pronouns, which are often

contextually ambiguous, and using explicit variable references instead.

An Approach for Representing Answer Sets in Natural Language 121

phrases which do not. Variable-free NPs (NPvar) are made up of an arbitrary
number of words that are not in the set of function words (only the first one
may be a definite or indefinite article). Since the words may be chosen at ran-
dom by the user, they do not necessarily have to be real noun phrases, they can
in fact be adjectival phrases (AdjPs) too (however, we will keep the label NP
because the labelling has little importance). Because there is almost no restric-
tion within a variable-free NP and also because they can be difficult to parse
depending on the surrounding constituents, their availability in our grammar is
very much restricted (details are given further down). Typical NPvar instances
are the following:

(1) a. a ship;
b. battle ships;
c. the best project leader.

Variable-containing NPs (NPvar) are in their most minimalistic form made up
of the variable only. Optionally, they may then contain a definite or an indefinite
article. In their most elaborate form they may additionally contain arbitrary
words between the article and the variable (basically describing the semantics
of the variable) and a post-variable modifier. Possible modifiers are maximally,
minimally, at least, at most, or more, or less, and or fewer. Hence, examples for
variable-containing NPs typically look like the following:

(2) a. E;
b. an employee E;
c. the project leader L;
d. a proficiency level V at least.

However, sometimes the position of the variable and the describing noun may
be reversed (we use NPrev to refer to this special case and NPrev to the comple-
mentary case). This is usually the case if the variable is of type integer. In these
cases, the variable will be instantiated with integer constants in corresponding
answer sets. A modifier is also possible in this type of NP after the last word.
Note that there must be at least one word following the variable in order to
determine the concept described or quantified by the variable. Examples of this
type of NP are the following:

(3) a. N employees;
b. N employees or more.

As an additional feature, we enable the user to specify the plural suffix of
one-word nouns so that this information can also be automatically used in the
interpretation generation process. For instance, consider the following example:

(4) a. N employee(s);
b. project(s) P.

122 M. Fang and H. Tompits

Hence, if desired, one can add the plural suffix “-s” to a noun in brackets.
This addition will especially make sense in NPrev cases. It will then be used in
generated sentences where it is clear that a plural form of the marked noun will
be required. If this additional information is not given by the user, the generation
process will simply stick to the form given.

Prepositional Phrases (PPs). Prepositional phrases (PPs) are a combination of a
preposition and an NP, where the NP can be variable-free or variable-containing.
Hence, a PP is either PPvar or PPvar depending on the NP that they contain.
Prepositions are comprised of the words to, with, of, for, as, by, at, in, and on.
Typical examples are the following:

(5) a. by E;
b. on project P;
c. for N employees at most;
d. as the project leader.

Sentence Types. We next describe our three categories of sentences. Note that
we use a classification of verbs into intransitive (valency 1), transitive (valency 2),
and ditransitive (valency 3) verbs.3 Intransitive verbs come with a subject only,
transitive verbs must have a subject and a direct object (DO), while ditransitive
verbs combine a subject, a DO, and an indirect object (IO), which is normally
realised as an oblique object (i.e., it is inside a preposition phrase) in English.

Sentences with an Intransitive Verb. The main characteristic of sentences with
an intransitive verb is the fact that the verb only requires one argument, which is
in subject position. Hence, we allow for this type of sentences only one NP, which
furthermore must contain a variable. Consequently, a corresponding atom would
have arity one or more. If it does indeed have a higher arity, the remaining
variables must be encoded into PPs. Schematically, such sentences have the
following form:4

(6) NPvar Modal? V1 PP*.

As indicated here, we also allow the addition of a modal verb before the main
verb, which is either can or must. Moreover, the negated version of an acceptable
sentence is also acceptable (the accepted negation strategy depends on the verb
configuration in the sentence). Some examples are the following:

(7) a. [Employee E] works.
b. [Employee E] does not work.

3 Verbs with valency 0 do not have their own term since there is only a small number
of them (predominantly weather verbs). We disregard them for our considerations.

4 In what follows, we use superscripts to denote the valency of the associated verb and
the symbols “?” and “*” refer to BNF syntax customs (i.e., standing for options and
possible repetitions, respectively).

An Approach for Representing Answer Sets in Natural Language 123

c. [N employee(s)] cannot work.
d. [Employee E1] works [with employee E2] [on project P].
e. [N employees] must work [on project P].
f. [Employee E] must not work [on project P].

Note again that the first constituent must be an NP containing a variable.
A variable-free NP in this position will lead to a parsing error.

Sentences with a Transitive Verb. Since a transitive verb requires two arguments,
one in subject position and one in object position, this sentence type requires two
NPs, both of which have to contain a variable corresponding to the associated
atom signature. For the remaining variables declared by the atom, PPs should
be used, which would wrap variable-containing NPs. Schematically, this kind of
sentences have the following form:

(8) NPvar Modal? V2/3 NPvar PP*.

Again, an additional modal verb just before the main verb is possible as well
as the negated version of allowed sentences, like in the following examples:

(9) a. [Employee E] heads [project P].
b. [Employee E] does not head [project P].
c. [Employee E] heads [project P] [with skill S].
d. [A ship T] must occupy [position X] [on day D].
e. [A ship T] must not occupy [position X].

Sentences with a Copula. In linguistics, the term copula is used to refer to a
certain kind of linking verb that connects the subject of a sentence to the subject
complement, the so-called predicative. Informally, a copula can be understood to
be similar to the mathematical “equals” sign, equating its left part to its right
part. The main copula in English is the verb to be. Sentences with a copula allow
the user more freedom with certain constituents. Contrary to the other types, it
is possible to have both a variable-containing and a variable-free NP. In the first
case, the copula can be followed by either an NPvar or an NPvar and optional
PPs. Schematically, such sentences look as follows:5

(10) NPvar Modal? Vcop NP PP*.

In the latter case, however, we have to make sure that the sentence still
contains at least one variable. Since the first NP does not contain one, there
are only two other options: Either there is an NPvar occurring immediately after
the copula, in which case there are no further PPs necessary, or there is only
an NPvar or no NP at all after the copula, in which case there must be at least
one PP at the end of the sentence that contains an NPvar. This is schematically
summarised as follows:
5 By NP we denote the union of NPvar and NPvar. Similarly, PP denotes the union of

PPvar and PPvar.

124 M. Fang and H. Tompits

(11) a. NPvar Modal? Vcop NPvar PP*;
b. NPvar Modal? Vcop NPvar? PPvar PP*.

Let us illustrate schemata (10) and (11) with examples (12) and (13) below,
respectively:

(12) a. [Employee E] is [a project leader].
b. [Employee E] is [project leader] [for project P].
c. [Employee E] must not be [project leader] [for project P].

(13) a. [An employee] is [project leader L] [for project P].
b. [There] are [N project leader(s)] [on project P].
c. [The Planes] are [in airport X] [with identifier Y].
d. [Planes] cannot be [in airport X].
e. [There] must be [planes] [in airport X] [at day T].
f. [There] must not be [project leaders] [for project P].

Observe that by allowing variable-free NPs in the subject position, existential
constructions with there become available.

4 Interpreting Answer Sets

Based on the @atom annotations provided by the Lana language in an ASP
code and the natural-language descriptions of the atoms conforming to the CNL
of the previous section, we can generate adapted sentences that make answer
sets more readable.

Fig. 2. A possible answer set of the program mentioned in Fig. 1

Basic Generation. Let us revisit the example given in Fig. 1. Suppose that
this code forms part of a program that takes facts as input which encode infor-
mation about employees and projects and is supposed to output answer sets
that can be interpreted as possible project assignments. Following the ASP
“guess and check” methodology, there would be a guessing part in the program

An Approach for Representing Answer Sets in Natural Language 125

generating candidate solutions and some rules and constraints which filter out
those candidates which are not proper solutions of the problem instance.

A domain expert is usually only interested in those predicates which encode
the problem solution. Hence, using the @output annotation of Lana, one
can mark the relevant atoms that should be considered for the interpretation-
generation process. If all predicates are relevant, this annotation may be left out
since the default assumption is then that every predicate should be used.

Consider again the example from Fig. 1 and the answer set of the program
mentioned therein depicted in Fig. 2, which has been stripped off of irrelevant
atoms, i.e., atoms that were not marked as @output in the program code.

Using the information provided by the @atom annotation and the atom
description directly below the annotation, we can generate interpretation sen-
tences corresponding to this answer set by simply replacing each variable place
holder in the sentence with the appropriate constant in the answer set atom.
This basic method will generate a new sentence for each instantiated atom in
the given answer set. The result of this naive procedure is as follows:

Employee boris works on project p1 with skill design. (14)
Employee boris works on project p1 with skill marketing. (15)
Employee boris works on project p2 with skill design. (16)
Employee boris works on project p2 with skill marketing. (17)
Employee boris works on project p2 with skill planning. (18)
Employee hans works on project p1 with skill modelling. (19)
Employee lisa works on project p2 with skill design. (20)
Employee lisa works on project p2 with skill modelling. (21)
Employee lisa works on project p2 with skill planning. (22)
Employee peter works on project p1 with skill coding. (23)
Employee peter works on project p1 with skill planning. (24)
Employee sarah works on project p1 with skill coding. (25)
Employee sarah works on project p1 with skill modelling. (26)
Employee sarah works on project p2 with skill modelling. (27)
Employee sarah is project leader for project p1. (28)
Employee lisa is project leader for project p2. (29)

Even though this list of sentences sounds artificial, it is still more human-
readable than the answer set itself, especially if all predicates are shown and
not only the output predicates. Without any filtering, the full answer set is
usually very large since it incorporates the encoded problem instance as well as
all auxiliary predicates in the ASP code (not shown here).

Note that before the sentences are generated, all instantiations of an atom
are sorted alphabetically by the first term. This step is taken because the atoms
in an answer set are in a random order by default.

126 M. Fang and H. Tompits

“Contracting” the Sentences. Up to now we have not really employed the
syntactic information provided by the parser for the atom descriptions. All we
had used so far was the mapping between the variables in the sentences and the
variables given by the @atom signatures.

Let us now consider sentences (14) to (18) of the above interpretation involv-
ing employee Boris. We will illustrate on them how one may make use of the
syntactic information for “contracting” the sentences.

As is easily noticeable, these sentences offer redundant information. This
property was to be expected since we only have one boilerplate sentence for
each atom, which, however, usually has many instantiations in one answer set.
Thus, placing these sentences without modification next to each other is most
probably going to repeat already known information. This repetition is going
to be especially severe if the number of instantiations of an atom is very large.
Consequently, we have to look for procedures to systematically condense the
information contained in the basic sentences so that they may expressed more
concisely.

One Varying Element. The first approach is to focus on sentences which differ
only in one variable. Consider sentences (14) and (15) on the one hand and (16)
to (18) on the other hand. Within each respective group, the sentences differ
only in the last variable, viz. concerning the variable denoting the skill which
is assigned to an employee for a certain project. The best way to summarise
the sentences of this kind of a group is to coordinate the varying elements, i.e.,
the differing skills, while maintaining the constituents that the sentences share,
i.e., the employee and the project. In the first group, the varying constituents
are with skill design and with skill marketing. Knowing that the
constituents have the same PP shells, we can implement the rule that the NPs
within the PPs can be coordinated, the noun phrase between the preposition and
the term being pluralised if possible and only displayed in the first conjunct,
and finally the preposition added in the front. This simple rule results in the
contracted phrase with skills design and marketing. If we proceed as
described, we are able to cut down the number of sentences as follows:

Employee boris works on project p1 with skills
design and marketing.

(30)

Employee boris works on project p2 with skills
design, marketing, and planning.

(31)

Note that whilst the noun skill is used in its singular form in the original
sentences (14) to (18), here the plural form is employed. Recall, as pointed out
in Sect. 3.2, the information what the plural form looks like and on which word
it has to appear can be specified in NP constituents in the atom description. In
instances where the varying elements are grouped into one coordination phrase,
it is usually quite safe to use the plural form (if available).

An Approach for Representing Answer Sets in Natural Language 127

In general, this contraction step can be performed whenever there is a group
of sentences where there is one element (i.e., an instantiated variable) varying
across the board, while all remaining elements stay the same in all sentences of
the group. The preliminary grouping process is crucial for the output: depending
on how the sentences are grouped, the varying element may change. In the
example above, the default grouping was applied so that the varying variable was
the last variable in the sentence. However, a different grouping may be possible,
where the varying variable is, e.g., the first one in the sentence. In this case, we
coordinate the subjects and end up with the verb morphologically agreeing with
the coordinated subjects, i.e., it shows plural morphology. A possible sentence
that would reflect this grouping is the following:

Employee hans and sarah work on project p1 with skill modelling.

Finally, if we take the complete answer set from Fig. 2 and apply the described
contracting process (with the default grouping/sorting order), we get the following
condensed version:

Employee boris works on project p1 with skills design and
marketing.
Employee boris works on project p2 with skills design,
marketing, and planning.
Employee hans works on project p1 with skill modelling.
Employee lisa works on project p2 with skills design,
modelling, and planning.
Employee peter works on project p1 with skills coding
and planning.
Employee sarah works on project p1 with skills coding
and modelling.
Employee sarah works on project p2 with skill modelling.

Employee sarah is project leader for project p1.
Employee lisa is project leader for project p2.

As we can see, taking this measure reduces the number of sentences of the original
interpretation from 16 to 9.

One Identical Element. After the first contraction step, there may still be some
redundancy left, though. In order to address this, we use the topic-rheme dichotomy
(cf., e.g., Halliday [13]) to characterise the information structure of a certain kind of
redundancy: While the topic (“what is being talked about”) stays the same throughout
a group of sentences, the rheme (“what is being said about the topic”) changes in each
sentence. Hence, in sentences (30) and (31) above, the topic is boris and the rheme is
his job assignment on the two projects. In most English sentences the topic corresponds
to the subject of the sentence.

In the described configuration, a second contraction step can be performed thus:
The sentences in such a group can be coordinated, with the common topic functioning
as a common subject for the coordination. Hence, if we condense sentences (30) and
(31) accordingly, we obtain the following:

128 M. Fang and H. Tompits

Employee boris works on project p1 with skills design and
marketing and on project p2 with skills design, marketing,
and planning.

In this example we have taken the constituents that make up the varying rheme
and coordinated them. The coordinated phrases can then be added to the fixed topic
and the associated verb. By applying this contraction to the whole answer set, we can
lower the number of sentences to 7.

By using the structural information provided by the grammar and ultimately by
the parse tree, we are able to identify the borders of constituents easily, which allows
us insert newly generated phrases at the appropriate spots. Also, without the syntactic
tagging, we would not be able to distinguish constituents from non-constituents. This
very basic identification is required in order to specify rules on similar constituents,
i.e., constituent boilerplates where only the term varies.

5 The Eclipse Plug-in

We have implemented our tool as an Eclipse View, called “Lana Interpretation View”,
to be used in connection with the IDE SeaLion for ASP [2]. Using Eclipse’s built-in
repositioning feature, one can have both the Interpretation View of SeaLion and the
Lana Interpretation View side-by-side, as shown in Fig. 3. This way, the user can choose
an answer set in the Interpretation View and directly see the generated interpretation
for it.

The Lana Interpretation View is divided into two main parts: the left part show-
ing the instantiations of the atoms marked as output predicates, and the right part
providing an editor with the generated textual interpretation, which can be edited and
exported.

On the very left there is a list widget containing atoms, which gets refreshed accord-
ing to the selection in SeaLion’s Interpretation View. This widget displays all atoms
which are listed in the @output annotation, together with the name of the block that
they belong to (annotated with @block in the code). The table of terms next to the
list changes its values according to the selection in the list. This table simply displays
all instantiations of the selected atom, allowing the user to get an overview of the terms
and sort them according to their needs.

As already pointed out previously, the sorting order may change the generated
interpretation since it determines the grouping algorithm, which in turn influences the
output of the “contraction” steps. A particular sorting order is given in Fig. 4.

As one can see, the values in the table are sorted by project first, then by skills.
We have marked the groups with rectangles, in which one term varies while all other
terms stay stable across the instantiated atom in the group. This is relevant for the
“one varying element” approach as described in Sect. 4. Since the employee terms are
the “least sorted” element and, thus, the one varying element, they will be coordinated
to reduce the number of sentences.

The other half of the view shows a simple text editor that displays the generated
textual interpretation and another text widget pointing to problems encountered by
the parser. The editor allows the user to make ad-hoc changes to the text if desired.
The buttons on the right implement the export function.

The checkbox Condensed indicates whether the second contraction step has been
applied. Checking the box will lead to a recomputation and the result is shown in

An Approach for Representing Answer Sets in Natural Language 129

Fig. 3. SeaLion’s Interpretation View and Lana Interpretation View next to each
other.

Fig. 4. The atom table with sorted values and with the “contraction groups” marked
with rectangles.

the editor immediately afterwards. The Reparse Code button forces the system to
reparse the code files that were specified for this corresponding program. This is useful
when the feedback text widget indicates parsing errors in particular atom descriptions.
The user is advised to inspect the sentences and check whether they form an acceptable
sentence in our CNL. Once all corrections are made, a reparse should be performed.

6 Conclusion

In this paper, we presented a CNL approach for generating interpretations for answer
sets in which the user can specify meta-information about the predicates used in an
answer-set program. The descriptions in the Lana annotations are restricted according
to the CNL we defined. Such an approach can primarily be useful during the devel-
opment phase of an answer-set program when dealing with domain experts who are
unfamiliar with logical methods. In such a setting, often small answer sets can already
be helpful for detecting modelling errors. The question of dealing with suitable repre-
sentations for large answer sets is challenging and an issue for future research.

130 M. Fang and H. Tompits

Our approach is generic in the sense that it relies only on an answer set and meta-
information about the atoms therein as input. Thus, in principle, it could be used also
for other semantics and methods as well, like relational databases. Indeed, the problem
setting we studied is similar to work in natural language processing for generating text
out of structured data [14]. In the database community, visualisation techniques for
representing relational data are important but such approaches are somewhat com-
plementary to our goals. Likewise distinct to our work are approaches which provide
justifications for the inclusion or non-inclusion of ground atoms in answer sets [17] or
giving explanations why an answer-set program has no answer sets at all [25]. In fact,
such approaches could be used in conjunction with methods like ours providing not only
natural-language interpretations of answer sets but also explanations for obtaining a
particular output.

Another interesting issue for future work is to investigate the question of translating
answer-set programs themselves into natural language. However, this task requires a
more dedicated syntactic and semantic analysis of user-specified sentences.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

2. Busoniu, P., Oetsch, J., Pührer, J., Skocovsky, P., Tompits, H.: Sealion: an eclipse-
based IDE for answer-set programming with advanced debugging support. Theory
Pract. Log. Program. 13(4–5), 657–673 (2013)

3. De Vos, M., Kiza, D., Oetsch, J., Pührer, J., Tompits, H.: Annotating answer-set
programs in Lana. Theory Pract. Log. Program. 12(4–5), 619–637 (2012)

4. Erdem, E., Erdogan, H., Öztok, U.: BioQuery-ASP: querying biomedical ontolo-
gies using answer set programming. In: Proceedings of 5th International
RuleML2011@BRF Challenge, CEUR Workshop Proceedings, vol. 799. CEUR-
WS.org (2011)

5. Erdem, E., Öztok, U.: Generating explanations for biomedical queries. Theory
Pract. Log. Program. 15(1), 35–78 (2015)

6. Erdem, E., Yeniterzi, R.: Transforming controlled natural language biomedical
queries into answer set programs. In: Proceedings of Workshop on Current Trends
in Biomedical Natural Language Processing, pp. 117–124 (2009)

7. Fang, M.: A controlled natural language approach for interpreting answer sets.
B.Sc. thesis, Technische Universität Wien, Institute for Information Systems (2013)

8. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: integrated development environment
for answer set programming. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011.
LNCS (LNAI), vol. 6645, pp. 317–330. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-20895-9 37

9. Fuchs, N.E., Kaljurand, K., Kuhn, T.: Attempto controlled english for knowledge
representation. In: Baroglio, C., Bonatti, P.A., Ma�luszyński, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. LNCS, vol. 5224, pp. 104–124.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85658-0 3

10. Fuchs, N.E., Schwertel, U., Schwitter, R.: Attempto controlled English—not just
another logic specification language. In: Flener, P. (ed.) LOPSTR 1998. LNCS,
vol. 1559, pp. 1–20. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48958-4 1

https://doi.org/10.1007/978-3-642-20895-9_37
https://doi.org/10.1007/978-3-642-20895-9_37
https://doi.org/10.1007/978-3-540-85658-0_3
https://doi.org/10.1007/3-540-48958-4_1
https://doi.org/10.1007/3-540-48958-4_1

An Approach for Representing Answer Sets in Natural Language 131

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proceedings of 5th International Conference and Symposium on Logic Program-
ming (ICLP/SLP 1988), vol. 88, pp. 1070–1080 (1988)

12. Guy, S., Schwitter, R.: The PENG ASP system: architecture, language and author-
ing tool. Lang. Resour. Eval. 51(1), 67–92 (2017)

13. Halliday, M.A., Matthiessen, C.M.: An Introduction to Functional Grammar.
Arnold Publishers, London (2004)

14. Indurkhya, N., Damerau, F.J.: Handbook of Natural Language Processing. CRC
Press, Boca Raton (2010)

15. Kuhn, T.: A survey and classification of controlled natural languages. Comput.
Linguist. 40(1), 121–170 (2014)

16. Leone, N., et al.: The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log. 7(3), 499–562 (2006)

17. Pontelli, E., Son, T.C., El-Khatib, O.: Justifications for logic programs under
answer set semantics. Theory Pract. Log. Program. 9(1), 1–56 (2009)

18. Potassco—The Potsdam Answer Set Solving Collection. http://potassco.
sourceforge.net

19. Schwitter, R.: English as a formal specification language. In: Proceedings of 13th
International Conference on Database and Expert Systems Applications (DEXA
2002), pp. 228–232. IEEE (2002)

20. Schwitter, R.: Working for two: a bidirectional grammar for a controlled natural
language. In: Wobcke, W., Zhang, M. (eds.) AI 2008. LNCS (LNAI), vol. 5360, pp.
168–179. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89378-3
17

21. Schwitter, R.: Controlled natural languages for knowledge representation. In: Pro-
ceedings of 23rd International Conference on Computational Linguistics (COLING
2010), pp. 1113–1121 (2010)

22. Schwitter, R.: Answer set programming via controlled natural language processing.
In: Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS (LNAI), vol. 7427, pp. 26–43.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32612-7 3

23. Schwitter, R.: The jobs puzzle: taking on the challenge via controlled natural lan-
guage processing. Theory Pract. Log. Program. 13(4–5), 487–501 (2013)

24. Schwitter, R., Tilbrook, M.: Dynamic semantics at work. In: Sakurai, A., Hasida,
K., Nitta, K. (eds.) JSAI 2003-2004. LNCS (LNAI), vol. 3609, pp. 416–426.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71009-7 39

25. Syrjänen, T.: Debugging inconsistent answer set programs. In: Proceedings of 11th
International Workshop on Non-Monotonic Reasoning (NMR 2006), pp. 77–83.
Institut für Informatik, Technische Universität Clausthal, Technical report (2006)

26. Van Valin, R.D.: An Introduction to Syntax. Cambridge University Press, Cam-
bridge (2001)

http://potassco.sourceforge.net
http://potassco.sourceforge.net
https://doi.org/10.1007/978-3-540-89378-3_17
https://doi.org/10.1007/978-3-540-89378-3_17
https://doi.org/10.1007/978-3-642-32612-7_3
https://doi.org/10.1007/978-3-540-71009-7_39

Techniques for Efficient Lazy-Grounding
ASP Solving

Lorenz Leutgeb1 and Antonius Weinzierl1,2(B)

1 Knowledge-Based Systems Group, Institute of Information Systems,
TU Wien, Vienna, Austria

lorenz@leutgeb.xyz, weinzierl@kr.tuwien.ac.at
2 Department of Computer Science, Aalto University, Espoo, Finland

Abstract. Answer-Set Programming (ASP) is a well-known and expres-
sive logic programming paradigm based on efficient solvers. State-of-the-
art ASP solvers require the ASP program to be variable-free, they thus
ground the program upfront at the cost of a potential exponential explo-
sion of the space required. Lazy-grounding, where solving and grounding
are interleaved, circumvents this grounding bottleneck, but the result-
ing solvers lack many important search techniques and optimizations.
The recently introduced ASP solver Alpha combines lazy-grounding with
conflict-driven nogood learning (CDNL), a core technique of efficient
ASP solving. This work presents how techniques for efficient propaga-
tion can be lifted to the lazy-grounding setting. The Alpha solver and its
components are presented and detailed benchmarks comparing Alpha to
other ASP solvers demonstrate the feasibility of this approach.

1 Introduction

Answer-Set Programming (ASP) is an expressive logic programming paradigm
where non-monotonic rules are used to formalize problem descriptions. The
semantics of such rules are given in terms of answer sets, which represent solu-
tions to the specified problem (see [4] for a detailed introduction). For example
the following rules encode that for each node N of a graph a color C can be
chosen or not be chosen.

chosenColor(N,C) ← node(N), color(C),not notChosenColor(N,C).
notChosenColor(N,C) ← node(N), color(C),not chosenColor(N,C).

Rules allow to easily encode complex problems like graph coloring. Finding the
answers to such a problem, however, is hard and requires advanced techniques.

ASP solvers are traditionally based on a two-phase computation. First, the
variables are removed from the input program by grounding and second, the

This work has been supported by the Austrian Science Fund (FWF) project P27730
and the Academy of Finland, project 251170.

c© Springer Nature Switzerland AG 2018
D. Seipel et al. (Eds.): DECLARE 2017, LNAI 10997, pp. 132–148, 2018.
https://doi.org/10.1007/978-3-030-00801-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00801-7_9&domain=pdf
http://orcid.org/0000-0003-0391-3430

Techniques for Efficient Lazy-Grounding ASP Solving 133

ground program is solved by highly optimized algorithms for propositional prob-
lems. Prominent such ground-and-solve systems are DLV [11] and Clingo [5].
Unfortunately, the ground program is in the worst case exponential in the size
of the non-ground program. This makes many real-world programs too big to fit
in memory and is therefore referred to as the grounding bottleneck of ASP.

Lazy-grounding on the other hand interleaves the grounding and solving
phases and thus overcomes the grounding bottleneck (cf. GASP [13], AsPeRiX
[10], and Omiga [3]). Due to this interleaving, such solvers explore the (expo-
nential) search space differently from CDNL-based solvers, making them very
inefficient at solving problems that are trivial for ground-and-solve ASP sys-
tems. The Lazy-MX system [2] for the language of FO(ID) follows a different
approach and achieves lazy-grounding with efficient solving, but it is restricted
to (some) subclass of ASP and requires manual translation.

The recently introduced ASP solver Alpha [15] combines CDNL-based search
procedures with lazy-grounding to get the best of both worlds: fast search space
exploration and avoidance of the grounding bottleneck at the same time.

Example 1. Consider the following program which selects from a domain at most
one element:

dom(1). . . . dom(12). sel(X) ← dom(X),not nsel(X).
← sel(Y), sel(X),X �= Y. nsel(X) ← dom(X),not sel(X).

Adding to this program one rule that forms a large cross-product over selected
elements is enough to exhibit the grounding bottleneck.

p(X1,X2,X3,X4,X5,X6)← sel(X1), sel(X2), sel(X3), sel(X4), sel(X5), sel(X6).

For solvers like Clingo, the amount of required memory increases dramatically
when domain elements are added to dom. A domain size of 20 already requires
several gigabytes of memory to ground, while the same program can be solved
by lazy-grounding almost immediately and without such memory consumptions.

Blending lazy-grounding and CDNL solving is challenging for a number of
reasons. First, usual CDNL solvers guess truth assignments for atoms while lazy-
grounding solvers guess whether rules satisfying certain conditions fire or not.
Second, atoms may only become true due to a rule that fires and must not
become true due to constraints, since, e.g., the constraint ← not a. is no justifi-
cation for a being true. Therefore unit-propagation on nogoods may not simply
set atoms to true. Introducing must-be-true as a third truth value fixes this prob-
lem, but requires intricate adaptions on the data structures for unit-propagation.
Specifically, the two-watched-literals schema for nogoods is no longer sufficient
due to it functioning only with two truth values. A solution to the first challenge
is described in [15] (including details why a translation to two-valued search faces
severe unresolved problems). Here, we provide first an overview to that solution
and are otherwise concerned with the second challenge.

134 L. Leutgeb and A. Weinzierl

The contributions (after preliminary Sect. 2) of this work are as follows:

– presenting the novel architecture of the Alpha ASP solver (in Sect. 3) followed
by an overview of the Alpha approach for blending lazy-grounding and CDNL-
based search,

– an enhancement of the two-watched literals schema to obtain efficient prop-
agation performance in the presence of a third truth value and nogoods that
are extended with heads (in Sect. 4), and

– benchmarks of the resulting ASP solver Alpha (in Sect. 5), showing impressive
improvements but also directions for future work (in Sect. 6).

2 Preliminaries

Let C be a finite set of constants, V be a set of variables, and P be a finite
set of predicates with associated arities, i.e., elements of P are of the form p/k
where p is the predicate name and k its arity. We assume each predicate name
occurs with exactly one arity. The set A of (non-ground) atoms is then given
by {p(t1, . . . , tn) | p/n ∈ P, t1, . . . , tn ∈ C ∪ V}. An atom at ∈ A is ground if no
variable occurs in it; the set of variables occurring in at is denoted by vars(at).
The set of all ground atoms is denoted by Agrd . A (normal) rule is of the form:

at0 ← at1, . . . , atk,not atk+1, . . . ,not atn.

where each at i ∈ A is an atom, for 0 ≤ i ≤ n. For such a rule r the
head, positive body, negative body, and body are defined as H (r) = {at0},
B+(r) = {at1, . . . , atk}, B−(r) = {atk+1, . . . , atn}, and B(r) = {at1, . . . , atn},
respectively. A rule r is a constraint if H (r) = ∅, a fact if B(r) = ∅, and ground
if each at ∈ B(r) ∪ H (r) is ground. The variables occurring in r are given by
vars(r) =

⋃
at∈H (r)∪B(r) vars(at). A literal l is positive if l ∈ A, otherwise it is

negative. A rule r is safe if all variables occurring in r also occur in its positive
body, i.e., vars(r) ⊆ ⋃

a∈B+(r) vars(a).
A program P is a finite set of safe rules. P is ground if each r ∈ P is.

A (Herbrand) interpretation I is a subset of the Herbrand base w.r.t. P , i.e.,
I ⊆ Agrd . An interpretation I satisfies a literal l, denoted I |= l if l ∈ I for
positive l and l /∈ I for negative l. I satisfies a ground rule r, denoted I |= r
if B+(r) ⊆ I ∧ B−(r) ∩ I = ∅ implies H (r) ⊆ I and H (r) �= ∅. Given an
interpretation I and a ground program P , the FLP-reduct P I of P w.r.t. I is
the set of rules r ∈ P whose body is satisfied by I, i.e., P I = {r ∈ P | B+(r) ⊆
I ∧B−(r) ∩ I = ∅}. I is an answer set of a ground program P if I is the subset-
minimal model of P I ; the set of all answer sets of P is denoted by AS (P).

A substitution σ : V → C is a mapping of variables to constants. Given
an atom at the result of applying a substitution σ to at is denoted by atσ;
this is extended in the usual way to rules r, i.e., rσ for a rule of the above
form is at0σ ← at1σ, . . . ,not atnσ. Then, the grounding of a rule is given by
grd(r) = {rσ | σ is a substitution for all v ∈ vars(r)} and the grounding grd(P)
of a program P is given by grd(P) =

⋃
r∈P grd(r). Elements of grd(P) and

Techniques for Efficient Lazy-Grounding ASP Solving 135

grd(r) are called ground instances of P and r, respectively. The answer sets of
a non-ground program P are given by the answer sets of grd(P).

CDNL-based ASP solving takes a ground program, translates it into nogoods
and then runs a SAT-inspired (i.e., a DPLL-style) model building algorithm to
find a solution for the set of nogoods. Following established notation, a Boolean
signed literal is of the form Tat and Fat for at ∈ A. A nogood ng = {s1, . . . , sn}
is a set of Boolean signed literals si, 1 ≤ i ≤ n, which intuitively states that
a solution cannot satisfy all literals s1 to sn. For example, the nogood ng =
{Ta,Fb} states that it cannot be the case that a is true and b is false at the same
time. Nogoods are interpreted over assignments, which are sets A of Boolean
signed literals, i.e., an assignment is a (partial) interpretation where false atoms
are represented explicitly. A solution for a set Δ of nogoods then is an assignment
A such that {at | Tat ∈ A} ∩ {at | Fat ∈ A} = ∅, {at | Tat ∈ A} ∪
{at | Fat ∈ A} = A, and no nogood is violated, i.e., ∀ng ∈ Δ : ng �⊆ A.
A solution thus corresponds one-to-one to an interpretation that is a model
of all nogoods. For more details and algorithms, see [5–7]. The complement of
a Boolean signed literal s, denoted s, is Ta = Fa and Fa = Ta. Also note
that CDNL-based solvers for ASP employ additional checks to ensure that the
constructed model is supported and unfounded-free, but these checks are not
necessary in the approach presented.

Lazy-grounding, also called grounding on-the-fly, is built on the idea of a
computation, which is a sequence (A0, . . . , A∞) of assignments starting with
the empty set and adding at each step heads of applicable rules (cf. [3,8,13]).
A ground rule r is applicable in a step Ak, if its positive body already has
been derived and its negative body is not contradicted, i.e., B+(r) ⊆ Ak and
B−(r) ∩ Ak = ∅. Observe that finding applicable ground rules, i.e., finding a
non-ground rule r and a grounding substitution σ such that rσ is applicable, is
the task of the (lazy) grounder. A computation (A0, . . . , A∞) then has to satisfy
the following conditions besides A0 = ∅, given the usual immediate-consequences
operator TP :

1. ∀i ≥ 1 : Ai ⊆ TP (Ai−1) (the computation contains only consequences),
2. ∀i ≥ 1 : Ai−1 ⊆ Ai (the computation is monotonic),
3. A∞ =

⋃∞
i=0 Ai = TP (A∞) (the computation converges), and

4. ∀i ≥ 1 : ∀at ∈ Ai \ Ai−1,∃r ∈ P such that H (r) = at and ∀j ≥ i − 1 :
B+(r) ⊆ Aj ∧ B−(r) ∩ Aj = ∅ (applicability of rules is persistent through
the computation).

It has been shown that A is an answer set of a normal logic program P iff there
is a computation (A0, . . . , A∞) for P such that A = A∞ [9,12]. Observe that A
is finite, i.e., A∞ = An for some n ∈ N, because C,P, and P are finite.

3 The Alpha Approach

Architecture. Alpha is a combination of lazy-grounding and CDNL-search to
obtain an ASP solver that avoids the grounding bottleneck and shows good
search performance. On an abstract level, Alpha achieves this by utilizing a

136 L. Leutgeb and A. Weinzierl

Grounder

Parser

Lazy-Grounding

Solver
Nogood
Storage

Assignment

Conflict
Resolution

Decision
Heuristic

partial Assignment
Answer Set

Nogoods

Choice
Atoms

Program

Fig. 1. Architecture of the Alpha system. Data flow is indicated by arrows. Grounder
(left) and CDNL-based solver (right) interact cyclically for lazy-grounding.

grounder component and a solver component, where the solver is a modified
CDNL-search algorithm, but both components interact cyclically in the style of
lazy-grounding ASP systems. The architecture of the Alpha solver is depicted
in Fig. 1. The grounder is composed of a parser and a semi-naive grounder that,
given a partial assignment, computes all ground rules that potentially fire, trans-
forms the ground rules into nogoods, and sends these to the solver. The solving
component is a modified CDNL solver trying to find a satisfying assignment to
the set of nogoods presented. It contains a nogood store for unit-propagation on
nogoods, conflict resolution implementing conflict-driven nogood learning follow-
ing the first-UIP schema to learn new nogoods, and a decision heuristic. The most
important difference to an ordinary CDNL solver is that guessing is restricted
to atoms representing applicable ground rules, i.e., rules whose positive body is
satisfied in the current assignment. By that, Alpha prevents unfounded sets from
becoming true, thus the assignments constructed by the solver are guaranteed to
be unfounded-free. Another difference is that the partial assignments of Alpha
contain truth values true, false, and must-be-true where the latter indicates that
an atom must be true (e.g. due to a constraint) but no firing rule derives/justifies
the atom yet.

Core Algorithm. The remainder of this section provides a summary of the Alpha
algorithm and its fundamentals while full details can be found in [15]. The Alpha
algorithm at a glance is given by Algorithm1 which is similar to the main algo-
rithm of CDNL solvers. There is one loop in which the search space is explored
and each iteration begins with propagation from the already derived knowl-
edge. If a conflict occurs, it is analyzed in line (a) and a new nogood is derived
following the first-UIP schema for conflict-driven learning. In (b) the grounder is
requested to derive new nogoods from the assignment derived so far. This is the

Techniques for Efficient Lazy-Grounding ASP Solving 137

Algorithm 1: The Alpha Algorithm (simplified).
Input: A (non-ground) program P .
Output: The answer sets AS(P) of P .

Initialize AS = ∅, assignment A, and nogood storage Δ.
Run lazy grounder, obtain initial nogoods Δ from facts.
while search space not exhausted do

Propagate on Δ extending A.
if there exists conflicting nogood then

(a)Analyze conflict, learn new nogood, and backjump.

else if propagation extended A then
(b)Run lazy grounder w.r.t. A and extend Δ.

(c)else if exists an applicable rule then
Guess as chosen by heuristic.

(d)else if exists unassigned atom then
Assign all unassigned atoms to false.

(e)else if no atom in A assigned to must-be-true then
AS ← AS ∪ {A}
Add enumeration nogood and backtrack.

(f)else
Backtrack.

return AS

lazy-grounding part and it is usually absent in CDNL solvers. In (c) a heuristic
decides which atom to guess on. This way of guessing has been newly developed
for Alpha and it ensures that the atom guessed on corresponds exactly to an
applicable ground rule, i.e., the positive body of the ground rule is already in the
assignment and the negative body is not (yet) contradicted by the assignment.
When (d) is reached, the interplay of propagation, grounding, and guessing has
reached a fixpoint: there are no more applicable ground rule instances and noth-
ing can be derived by propagation or from further grounding. However, there
may still be some atoms with unassigned truth value, because the guessing is
restricted and does not guess on all atoms. Therefore in (d) all unassigned atoms
are explicitly assigned to false and the propagation at the beginning of the follow-
ing iteration ensures that no nogood is violated. Finally, in (e) the solver checks
whether there is an atom assigned to must-be-true but could not be derived by
some rule firing to become true. If there is no must-be-true, the current assign-
ment corresponds to an answer set and it is recorded as such. If the check fails,
the current assignment is no answer set and backtracking occurs in (f).

In order to represent rules using nogoods, Alpha introduces the notion of a
nogood with head, that is, a nogood ng = {s1, . . . , sn}i with one distinguished
negative literal si, 1 ≤ i ≤ n, such that si = Fa for some a ∈ A. The head of
a nogood is denoted by hd(ng) = si. The head literal, intuitively, captures the
idea of the head of a logic programming rule: if the nogood is unit on the head,
it is assigned to true and not just must-be-true.

138 L. Leutgeb and A. Weinzierl

The full representation of a rule by nogoods is as follows: let r be a rule and
σ be a substitution such that rσ is ground, let the positive body be B+(rσ) =
{a1, . . . , ak} and the negative body be B−(rσ) = {ak+1, . . . , an} while the head is
H (rσ) = {a0}, then the nogood representation is given by the following nogoods:

{Fβ(r, σ),Ta1, . . . ,Tak,Fak+1, . . . ,Fan}1, {Fa0,Tβ(r, σ)}1,
{Tβ(r, σ),Fa1}, . . . , {Tβ(r, σ),Fak}, {Tβ(r, σ),Tak+1}, . . . , {Tβ(r, σ),Tan}

The new atom β(r, σ), intuitively, represents the body of the ground rule
rσ. Notice that the first and second nogood each has a head (as indicated by
the subscript 1, the head is the first literal). Despite similarities, this nogood
representation differs from the one used by Clingo: first, Alpha uses nogoods
with heads and second, there are no nogoods establishing support of ground
atoms, because that would require full grounding.

Example 2. Consider from Example 1 the rule r as follows:

sel(X) ← dom(X),not nsel(X).

From an assignment A where dom(3) holds, i.e., Tdom(3) ∈ A, the grounder
generates the substitution σ : X �→ 3 for r and it introduces the new atom
β(r, 3) representing the body of the ground rule rσ. It then yields the following
nogoods:
n1 : {Fβ(r, 3),Tdom(3),Fnsel(3)}1 n2 : {Tβ(r, 3),Fdom(3)}
n3 : {Tβ(r, 3),Tdom(3)} n4 : {Fsel(3),Tβ(r, 3)}1
Nogoods n1 to n3 establish that β(r, 3) holds if and only if the body of the ground
rule holds. Nogood n4 ensures that the head atom is true whenever β(r, 3) holds.
Observe that n1 and n4 have their first literal indicated as head, i.e., the solver
will not set them to must-be-true but to true whenever the nogood is unit and all
other positively occurring literals are true. This enables the nogoods to represent
rules in the presence of two truth values, must-be-true and true.

4 Efficient Propagation: 3-Watched-Literals

This section provides details on efficient propagation realized in Alpha. Our app-
roach extends the state-of-the-art propagation technique from SAT and CDNL-
based ASP solving known as the two-watched literals (2WL) schema (cf. [1]).
A direct use of 2WL in lazy-grounding ASP solving, however, is not possible
due to such solvers using must-be-true as a third truth value requiring special
treatment. Since must-be-true allows propagation to true, but no other truth
value may be changed once it is assigned, this requires a different propagation
mechanism than 2WL, which is designed for propagation to true and false only.

Formally, propagation is the task of identifying nogoods that are unit, i.e.,
nogoods violated except for one yet unassigned literal whose truth value then
is set in order to avoid violating the nogood, and subsequently assigning this

Techniques for Efficient Lazy-Grounding ASP Solving 139

unassigned literal. In Alpha, a nogood with head may propagate to the truth
value true, false, and must-be-true while a nogood without head may only prop-
agate to false and must-be-true. Subsequently, there are two notions of being
unit: weakly-unit and strongly-unit. Formally, an assignment A in Alpha is
over truth values T, F, and M; the Boolean-projection AB maps M to T,
i.e., AB = {Ta | Ta ∈ A or Ma ∈ A} ∪ {Fa | Fa ∈ A}. Given a nogood
ng = {s1, . . . , sn} and an assignment A: ng is weakly-unit under A for s if
ng \ AB = {s} and s /∈ AB; ng is strongly-unit under A for s if ng is a nogood
with head, ng \ A = {s}, s = hd(ng), and s /∈ A. By this definition a nogood
with head is strongly-unit only if all its positively occurring literals are assigned
to true. Also note that only a nogood with head can be strongly-unit and if a
nogood is strongly-unit, it also is weakly-unit.

Propagation is the least fixpoint of the immediate unit-propagation, i.e.,
propagate(A) = lfp

(
ΓΔ(A)

)
s.t. for a set Δ of nogoods and an assignment A:

ΓΔ(A) = A ∪ {Ta | ∃δ ∈ Δ, δ is strongly-unit under A for s = Fa}
∪ {Ma | ∃δ ∈ Δ, δ is weakly-unit under A for s = Fa}
∪ {Fa | ∃δ ∈ Δ, δ is weakly-unit under A for s = Ta}

In order to compute the propagation efficiently, we extend the concept of
two-watched literals to our setting where nogoods may have a head literal and
a nogood can be unit in two different ways. Two-watched literals, intuitively
is based on the following observations: if a nogood δ contains more than two
literals s1, s2, s3 ∈ δ that are unassigned in some assignment A and one of these,
say s3, becomes assigned in A′ ⊃ A, then δ is still not unit. Hence for as long
as there are at least two unassigned literals, the nogood need not be checked for
being unit. Therefore each nogood only requires two of its unassigned literals to
be watched for being assigned in order to detect when the nogood is unit.

For our setting where a nogood may be weakly-unit or strongly-unit, intu-
itively, two-watched literals are required twice, 2WL for each type of being unit.
Since the literal that will be propagated by a strongly-unit nogood always is
the head literal of the nogood, it need not be watched explicitly. Therefore,
three watches are sufficient. These watches are organized such that each atom
is assigned one list per polarity and unit-type. Notice that each nogood requires
only three watches but for each atom there are four types of watches.

Definition 1. A watch structure W for an assignment A and a set of nogoods
Δ is a mapping W : A → Δ4 of atoms to quadruples of lists (sets) of nogoods in
Δ. For a watch structure W , each atom a ∈ A is associated a quadruple of lists

W (a) =
(
watch+(a),watch−(a),watch+

α (a),watch−
α (a)

)
.

The list watch+(a) (resp. watch−(a)) contains all nogoods δ where a watch is on
a positive literal Ta ∈ δ (res. negative literal Fa ∈ δ) for detecting whether δ is
weakly-unit. The list watch+

α (a), resp. watch−
α (a), contains all nogoods δ where a

watch is on a positive literal Ta ∈ δ, resp. negative literal Fa ∈ δ, for detecting
whether δ is strongly-unit.

140 L. Leutgeb and A. Weinzierl

A visualization of this data structure is given in Fig. 2.
For convenience, in the following we denote for a signed literal s = Xa by

watch(s) the list watch+(a) if X ∈ {T,M} and watch−(a) otherwise. Similarly,
watchα(s) denotes watch+

α (a) if a X ∈ {T,M} and watch−
α (a) if X = F.

Atoms
a1

a2

...

δ1 δ′
1

. . .

δ2 δ′
2

. . .

δ3 δ′
3

. . .

δ4 δ′
4

. . .

watch+

watch−

watch+
α

watch−
α

Fig. 2. Data structure for accessing watched nogoods.

In order to obtain correctly watched literals also after backtracking and sub-
sequent assignments (where some assigned atoms may become unassigned and
subsequently being propagated), the watches for satisfied nogoods have to point
at those literals that were assigned in the highest decision level.

Given an assignment A and an atom a, we denote by dlw(A, a) the decision
level on which a is assigned to must-be-true or false in A. Similarly, dls(A, a)
denotes the decision level at which a is assigned to true or false in A. Further-
more, for a signed literal s = Xa with X ∈ {F,T,M}, we denote by at(s) the
atom of the literal, i.e., at(s) = a.

Intuitively, the watches of a nogood have to point at either (1) two unassigned
literals, or (2) one of these literals atoms is assigned such that the nogood is
satisfied and the other literal is either unassigned or assigned at an equal-or-
higher decision level. The latter condition ensures that if backtracking removes
the satisfying assignment then the second watched literal is guaranteed to be
unassigned, i.e., even in case of backtracking the nogood is guaranteed to be
either satisfied or contain two unassigned and watched literals.

Definition 2. Let δ be a nogood and A be an assignment, then s, s′ ∈ δ are
potential watches if one of the following holds.

(i) at(s) and at(s′) are both unassigned in A.
(ii) The atom of s is complementary assigned, i.e., s ∈ AB, and either s′ is

unassigned in A or dlw(A, at(s′) ≥ dlw(A, at(s)).

For a nogood with head there is only one watch, which is not the head itself,
and it obeys a similar condition; the main difference being that an atom assigned
to must-be-true is treated like it were unassigned.

Techniques for Efficient Lazy-Grounding ASP Solving 141

Definition 3. Let δ be a nogood with head and A be an assignment, then sα ∈ δ
with hd(δ) �= sα is a potential α-watch if one of the following holds.

(i) at(sα) is unassigned in A, assigned to must-be-true in A, or sα is comple-
mentary assigned in A.

(ii) dls(A, at(sα))≥ dls(A, at(hd(δ))) and the head is true, i.e., Tat(hd(δ))∈ A.

Example 3. Consider the assignment A = {Mc,Fd} with dlw(A, c) ≤ dlw(A, d),
i.e., Mc was assigned at lower decision level than Fd, and the nogoods δ1 =
{Fa,Tb,Tc,Fd,Fe}1, δ2 = {Fc,Fd}, and δ3 = {Fa,Tc}1, where δ1 and δ3
are nogoods with a head. For δ1 any two literals from {Fa,Tb,Fe} are potential
watches since they are all unassigned and any literal in {Tb,Tc,Fe} is a potential
α-watch. The nogood δ2 has the potential watches Fc and Fd since A assigns
c complementary to its occurrence in δ2 and d has higher decision level than c.
Since δ2 has no head, there is no potential α-watch. For δ3 the literal Tc is a
potential α-watch since c is assigned must-be-true in A, but δ3 has no potential
watches, intuitively, because δ3 is weakly-unit under A and propagates Fa.

Intuitively, a watch structure is consistent for an assignment and a set of
nogoods, if each nogood is watched correctly.

Definition 4. A watch structure W for a set of nogoods Δ is consistent with
an assignment A if for each nogood δ ∈ Δ there exist potential watches s, s′ and,
for δ being a nogood with head, a potential α-watch sα such that δ ∈ watch(s),
δ ∈ watch(s′), and δ ∈ watchα(sα) all hold.

Example 4 (continued). Let A be the same as in Example 3 and let Δ = {δ1, δ2}.
One watch structure W consistent with Δ and A is as follows:

W (a) =
(∅, {δ1}, ∅, ∅) W (b) =

({δ1}, ∅, {δ1}, ∅)
W (c) =

(∅, {δ2}, ∅, ∅)

W (d) =
(∅, {δ2}, ∅, ∅) W (e) =

(∅, ∅, ∅, ∅)

Thus W watches δ1 on Fa, Tb, and α-watches it on Tb. Furthermore, it watches
δ2 on Fc and Fd while there exists no α-watch for δ2 since it has no head. W is
consistent because all watched literals in W are also potential (α-)watches in A.
Note that for Δ′ = {δ1, δ2, δ3} and A there exists no consistent watch structure
since δ3 has no potential watches (it is weakly-unit in A).

Computing propagate(A) is possible using Algorithm2 where a watch struc-
ture W consistent with the current assignment A and set of nogoods Δ is main-
tained. Notice that the algorithm receives as input a set Σ of new assignments,
i.e., assignments done by Algorithm 1 outside of propagation (for example by
guessing or backtracking). Intuitively, Algorithm2 iterates over all new assign-
ments (including those it derives itself during propagation) until all new assign-
ments have been processed. For each new assignment the two lists of watched
nogoods fitting to the polarity of the assignment are considered, e.g., if Fd is
a new assignment then only nogoods δ with Fd ∈ δ are considered. Each of
those lists is then checked whether one of its nogoods is violated, weakly-unit, or

142 L. Leutgeb and A. Weinzierl

Algorithm 2: propagate
Input: An assignment A, a set Σ of new assignments, and a watch structure W

consistent with A and Δ.
Output: An (extended) assignment A′ or a pair of extended assignment A′ and

a violated nogood d.

A′ ← A
while Σ �= ∅ do

Σ ← Σ \ {Xa} for some Xa ∈ Σ. // Process each new assignment.

(Δ, Δα) ←
{(

watch+(a),watch+
α (a)

)
if X ∈ {T,M}, and(

watch−(a),watch−
α (a)

)
otherwise.

foreach δ ∈ Δ do // Propagation to M,F.
if δ is violated then

return (A′, δ)
else if δ is weakly-unit for s then

Let s′ = Mb if s = Fb and s′ = Fb otherwise.
A′ ← A ∪ {s′}
Σ ← Σ ∪ {s′}

Remove δ from Δ. // Update ordinary watches.

Let s, s′ be potential watches of δ
watch(at(s)) ← watch(at(s)) ∪ {δ}
watch(at(s′)) ← watch(at(s′)) ∪ {δ}

foreach δ ∈ Δα do // Propagation to T.

if δ is strongly-unit then
A′ ← A ∪ {Tat(hd(δ))}
Σ ← Σ ∪ {Tat(hd(δ))}

Remove δ from Δα. // Update alpha watch.

Let s be a potential α-watch of δ
watchα(at(s)) ← watchα(at(s)) ∪ {δ}

return A′

strongly-unit. If one of the latter two is the case, a new assignment is recorded.
Afterwards, the watch structure is adapted such that consistency (with regard
to the currently processed assignment) is restored. The following holds:

Proposition 1. Let W be a watch structure W for a finite set of nogoods Δ
that is consistent with an assignment A and let A′ ⊇ A be a larger assignment
with Σ = A′ \ A. Then, Algorithm2 running on A,Σ, and W returns either

1. a pair (A′′, δ) such that A′′ contains only consequences of A′ and Δ and δ ∈ Δ
is violated by A′′, or

2. an assignment A′′ = propagate(A′) and the modified watch structure is con-
sistent with A′′ and Δ.

Proof (sketch). First, observe that the outermost loop of Algorithm 2 terminates
after finitely many iterations, because at each iteration one element of Σ is

Techniques for Efficient Lazy-Grounding ASP Solving 143

removed and there are only finitely many elements that can be added to Σ since
Δ is finite and each δ ∈ Δ contains only finitely many literals. Second, note
that the assignment A′ is extended by a signed literal Ta,Ma, or Fa only if
this literal is implied by a weakly- or strongly-unit nogood δ ∈ Δ. Hence every
assigned literal in A′ is a logical consequence of A′ and Δ. Third, it holds that
as long as no nogood is violated, every assignment s added to A′ leads to all
watches, that are no longer consistent with the extended assignment, becoming
treated in subsequent iterations of the outermost loop, because whenever A′

is extended so is Σ and the outermost loop stops only when Σ = ∅ or if some
nogood is violated by A′. Next, we distinguish on the return value of Algorithm2:

1. Algorithm 2 returns a pair (A′′, δ). Then, A′′ contains only consequences of
A′ and Δ by the second observation above and δ ∈ Δ is violated by A′′ as
checked by the algorithm.

2. Algorithm 2 returns an assignment A′′. Then, the outermost loop terminated
due to Σ = ∅, i.e., every watch that was inconsistent with A′′ and Δ has been
replaced with a potential watch again. Furthermore, assignments to other
than the watched literals have no influence on the watched ones continuing
to be potential watches. Thus, the watch structure is consistent.
It remains to show that A′′ = propagate(A′). From the second observation
above follows that A′′ ⊆ propagate(A′), thus it only remains to show that
every assignment s ∈ propagate(A′) is contained in A′′. Towards contradic-
tion, let S ⊆ propagate(A′) with S ∩ A′′ = ∅ be the largest set of assignments
missing in A′′. Pick s ∈ S such that s is directly implied by unit-propagation
on some δs ∈ Δ and A′′. Since propagate(A′) = lfp(ΓΔ(A′)) induces a well-
ordering on assignments, where the order is based on being directly implied
by unit-propagation, it follows that such a “smallest” s ∈ S and δs ∈ Δ exist.
Consequently, δs is unit under A′′ for s. This directly contradicts that the
watch structure W is consistent after Algorithm 2 finished. Hence, no such s
exists, S = ∅, and therefore A′′ = propagate(A′). ��

5 Evaluation

We evaluated the Alpha solver on four benchmarks, that exercise different
parts of a solver, comparing Alpha to the lazy-grounding solvers Omiga [3] and
AsPeRiX [10] as well as to Clingo [7]. All benchmarks were performed on a
Linux machine with two 12-core AMD Opteron 6176 SE CPUs and 128 GB
RAM. The timeout for each run was 300 s and the memory limit 8 GB. The
HTCondor system (cf. http://research.cs.wisc.edu/htcondor) was used for load
distribution to minimize runtime variations for different runs. Since Java restricts
itself to use only parts of the available system memory, the JVM was instructed
that 8 GB of RAM are available and that it can use up to 3.5 GB for heap
allocations, i.e., Java was called with the following command-line arguments
-XX:MaxRAM=8000M -Xmx3500M. We report the average runtimes in seconds on
10 randomly generated instances for each benchmark problem, except for one
benchmark where only one instance per size exists. The compared solver versions

http://research.cs.wisc.edu/htcondor

144 L. Leutgeb and A. Weinzierl

Table 1. Grounding explosion benchmark results. Instance size is the overall number
of constants in the domain. Shown is runtime in seconds; out of memory by memout.

Instance size Alpha Omiga AsPeRiX Clingo

8 1.37(0) 0.42(0) 5.54(0) 1.74(0)

10 1.48(0) 0.43(0) 0.02(0) 7.00(0)

12 1.46(0) 0.44(0) 0.02(0) 22.47(0)

14 1.64(0) 0.47(0) 0.02(0) 56.39(0)

16 1.60(0) 0.51(0) 0.03(0) 145.28(0)

18 1.64(0) 0.45(0) 0.03(0) Memout

20 1.83(0) 0.46(0) 0.05(0) Memout

500 2.19(0) 1.41(0) 1.06(0) Memout

1000 2.30(0) 1.66(0) 2.21(0) Memout

were: Clingo version 5.2.0, AsPeRiX version 2.5, Omiga built from source using
Git commit 037b3f9 and Alpha from source using Git commit a65421f.

Ground Explosion. This is the program of Example 1, i.e., given some domain,
select exactly one element from the domain and derive a new atom containing
the selected element six times. Table 1 shows the runtimes for domain sizes from
8 up to 1.000 where each solver is requested to compute 10 answer sets.

All lazy-grounding ASP solvers compute the answer sets within seconds for
all instances, while Clingo runs out of 8 GB memory with a domain of size
18 already. Comparing Alpha with Omiga and AsPeRiX one can observe that
Alpha is slower than the other two. This is likely due to Alpha maintaining
the data structures of a CDNL solver while Omiga and AsPeRiX use a more
direct representation of rules. One surprising result is that AsPeRiX takes more
than 5 s for the instance with domain of size 8, which is much higher than for
larger instances. A closer investigation revealed that AsPeRiX needs a lot of time
to detect when no more answer sets exist, which only shows in this particular
instance where there exist less than the requested 10 answer sets. Requesting 14
answer sets from AsPeRiX for the instance with domain size 12 already results
in a timeout. Alpha, in contrast, does not exhibit the same problem.

Cutedge Benchmarks. This problem was first introduced in [3] and is as follows:
given a graph G = (V,E), choose one edge e ∈ E and compute reachability
on the graph G′ where e is cut, i.e., G′ = (V,E \ {e}). This problem is hard
for ASP systems that are based on grounding the program upfront, while it is
significantly easier for lazy-grounding ASP solvers. This problem was run on
graphs with 100 to 500 vertices and 3.000 to 125.000 edges and the solvers
instructed to compute 10 answer sets each. The results are given in Table 2. As
expected, Clingo is only able to solve small instances and starting from graphs
with 12.000 edges Clingo always hits the timeout. Surprisingly, Clingo hits the
timeout and does not run out of memory within 300 s. Further testing showed

Techniques for Efficient Lazy-Grounding ASP Solving 145

Table 2. Cutedge benchmark results. Instance is number of vertices/average percent-
age of edge being present. Shown is the average runtime in seconds over 10 instances
with number of timeouts in parentheses.

Instance size Alpha Omiga AsPeRiX Clingo

100/30 12.59(0) 4.25(0) 0.78(0) 27.64(0)

100/50 11.87(0) 6.22(0) 1.79(0) 79.50(0)

200/30 22.90(0) 13.46(0) 13.29(0) 300.00(10)

200/50 45.95(0) 24.20(0) 35.18(0) 300.00(10)

300/10 16.92(0) 10.08(0) 8.54(0) 291.35(4)

300/30 59.58(0) 32.36(0) 72.09(0) 300.00(10)

500/10 62.46(0) 32.01(0) 70.38(0) 300.00(10)

500/30 300.00(10) 122.16(0) 300.00(10) 300.00(10)

500/50 300.00(10) 215.01(0) 300.00(10) 300.00(10)

Clingo running out of memory when given more time. Table 2 further shows that
Alpha is comparable to AsPeRiX and both are slower than Omiga. This may be
rooted in the fact that Omiga uses a Rete network for efficient grounding while
Alpha uses a semi-naive grounding procedure similar to that of AsPeRiX.

Graph Colorability. This problem is inspired by the problem with the same name
from the ASP competition. The task is to color a given graph with 5 available
colors. This problem poses no grounding problem but requires efficient search
procedures. The benchmark was run on randomly generated instances with 10
to 1.000 vertices and 40 to 4.000 edges between two randomly selected nodes,
i.e., no further structure was imposed. For each setting 10 random graphs were
constructed. The average runtimes in seconds is reported in Table 3.

As expected, this benchmark is very easy for Clingo, while the lazy-grounding
solvers Omiga and AsPeRiX struggle for all but the trivial instances. AsPeRiX
performs better than Omiga, solving instances with 100 vertices and 200 edges.
Such graphs are very sparse, however, and nearly each coloring yields an answer
set. For less-trivial instances with more edges per vertex, like those with 30 ver-
tices and 120 edges, Omiga and AsPeRiX time out on nearly all of them. Alpha
is able to solve also the harder instances where search is non-trivial. Comparing
Alpha with Clingo we observe that there still is a significant gap in terms of
search performance. This is rooted in the fact that Clingo employs numerous
efficient search techniques (heuristics, nogood forgetting, nogood minimization,
etc.) that are largely lacking in Alpha. There is some progress on implementing
heuristics in Alpha (cf. [14]), but due to the specifics of lazy-grounding (restricted
guessing, etc.) the techniques of Clingo cannot be adapted directly.

In order to more precisely compare the lazy-grounding solvers, Table 4 shows
their runtimes on graphs with a fixed number of 50 vertices and an increasing
number of edges. Omiga has timeouts even for 50 edges while AsPeRiX is able

146 L. Leutgeb and A. Weinzierl

Table 3. Graph 5-colorability benchmark results. Instance is number of ver-
tices/number of edges. Shown is the average runtime in seconds over 10 instances
with number of timeouts in parentheses.

Instance size Alpha Omiga AsPeRiX Clingo

10/40 1.41(0) 14.33(0) 31.10(1) 0.02(0)

20/80 1.53(0) 234.93(6) 128.79(4) 0.02(0)

30/120 1.59(0) 300.00(10) 230.23(7) 0.03(0)

40/160 2.54(0) 300.00(10) 217.17(7) 0.04(0)

50/200 2.31(0) 300.00(10) 300.00(10) 0.04(0)

100/400 4.24(0) 300.00(10) 300.00(10) 0.06(0)

400/1600 22.54(0) 300.00(10) 300.00(10) 0.45(0)

1000/4000 119.94(0) 300.00(10) 300.00(10) 2.66(0)

Table 4. Graph 5-colorability benchmark on graphs with 50 vertices varying edges.
Instance is number of vertices/number of edges. Shown is the average runtime in sec-
onds over 10 instances with number of timeouts in parentheses.

Instance size Alpha Omiga AsPeRiX Clingo

50/50 1.88(0) 290.47(9) 0.24(0) 0.03(0)

50/100 2.05(0) 300.00(10) 0.45(0) 0.03(0)

50/200 2.31(0) 300.00(10) 300.00(10) 0.04(0)

50/300 74.39(2) 300.00(10) 300.00(10) 0.07(0)

50/500 168.76(4) 300.00(10) 300.00(10) 0.04(0)

to handle 100 edges. With more than 100 edges Alpha is the only lazy-grounding
solver that returned the requested answer sets in time.

Reachability. This benchmark is comprised of a simple positive program com-
puting reachability in a large graph. The task is: given some start vertex of a
graph, compute the set of all vertices reachable from the start vertex. The tests
were run on 10 randomly generated graphs for each instance size, with 1.000 and
10.000 vertices and 4.000 to 80.000 edges. Since the resulting ASP program con-
tains no negation, Clingo only uses its intelligent grounder while the solver has
no work left to do. The benchmark therefore compares the speed (and overhead)
of lazy-grounding with a highly-optimized grounder. Table 5 shows the results:
on large instances, Alpha is the fastest of all lazy-grounding solvers while for
smaller instances Omiga and AsPeRiX are faster. The optimizations for solving
purely positive programs in Clingo make it the fastest here.

Summary. We observe that Alpha is comparable in speed to the other lazy-
grounding solvers for problems where lazy-grounding avoids the grounding bot-
tleneck. In addition to that, Alpha provides much better search performance,

Techniques for Efficient Lazy-Grounding ASP Solving 147

Table 5. Reachability benchmark results. Instance size is number of vertices/multiple
of edges of the random graph.

Instance size Alpha Omiga AsPeRiX Clingo

1000/4 2.13(0) 1.21(0) 0.77(0) 0.11(0)

1000/8 3.19(0) 1.63(0) 2.57(0) 0.21(0)

10000/2 10.95(0) 7.82(0) 31.11(0) 0.52(0)

10000/4 13.06(0) 22.55(0) 130.00(0) 1.09(0)

10000/8 16.62(0) 56.93(0) 300.00(10) 2.27(0)

making search-intense problems solvable using lazy-grounding. There are, how-
ever, many efficient solving techniques not yet available since each must be
checked and adapted for not relying on the knowledge of all ground instances
(e.g. for program simplification). Thus Alpha is slower than state-of-the-art ASP
solvers on problems where grounding is not an issue. For ASP programs where
grounding is problematic, however, Alpha is the best choice as it provides a good
compromise between grounding performance and solving performance. Alpha is
freely available at: https://github.com/alpha-asp/Alpha.

6 Conclusion

We presented the novel ASP solver Alpha which combines lazy-grounding and
CDNL-search to obtain a system that is both, avoiding the grounding bottleneck
and efficiently exploring the search space. An overview of Alpha and its architec-
ture was given. To provide an efficient propagation the well-known two-watched
literals schema was enhanced to 3-watched literals in order to cope with nogoods
being unit in two distinct ways. Benchmarks show that Alpha is on-par with
other lazy-grounding solvers on problems where grounding is an issue, while it
provides a significant improvement for problems where search is dominating. Due
to its recency, Alpha lacks several optimizations for search, making it noticeably
slower than Clingo. Contrary to Clingo, however, Alpha does not suffer from the
grounding bottleneck. Topics for future work are forgetting of learned nogoods,
and using dependency information like strongly-connected-components.

References

1. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amster-
dam (2009)

2. de Cat, B., Denecker, M., Bruynooghe, M., Stuckey, P.J.: Lazy model expansion:
interleaving grounding with search. J. Artif. Intell. Res. 52, 235–286 (2015)

3. Dao-Tran, M., Eiter, T., Fink, M., Weidinger, G., Weinzierl, A.: OMiGA: an open
minded grounding on-the-fly answer set solver. In: del Cerro, L.F., Herzig, A.,
Mengin, J. (eds.) JELIA 2012. LNCS (LNAI), vol. 7519, pp. 480–483. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33353-8 38

https://github.com/alpha-asp/Alpha
https://doi.org/10.1007/978-3-642-33353-8_38

148 L. Leutgeb and A. Weinzierl

4. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Tes-
saris, S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2 2

5. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A conflict-driven
answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72200-7 23

6. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set
enumeration. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 136–148. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72200-7 13

7. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: from
theory to practice. Artif. Intell. 187, 52–89 (2012)

8. Lefèvre, C., Beatrix, C., Stephan, I., Garcia, L.: ASPeRIX, a first-order forward
chaining approach for answer set computing. In: TPLP, pp. 1–45, January 2017

9. Lefèvre, C., Nicolas, P.: A first order forward chaining approach for answer set
computing. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI),
vol. 5753, pp. 196–208. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04238-6 18

10. Lefèvre, C., Nicolas, P.: The first version of a new ASP solver. In: Erdem, E.,
Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 522–527.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04238-6 52

11. Leone, N., et al.: The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log. 7, 499–562 (2002)

12. Liu, L., Pontelli, E., Son, T.C., Truszczyński, M.: Logic programs with abstract
constraint atoms: the role of computations. In: Dahl, V., Niemelä, I. (eds.) ICLP
2007. LNCS, vol. 4670, pp. 286–301. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-74610-2 20

13. Palù, A.D., Dovier, A., Pontelli, E., Rossi, G.: GASP: answer set programming
with lazy grounding. Fundam. Inform. 96(3), 297–322 (2009)

14. Taupe, R., Weinzierl, A., Schenner, G.: Introducing heuristics for lazy-grounding
ASP solving. In: PAoASP (2017, to appear)

15. Weinzierl, A.: Blending lazy-grounding and CDNL search for answer-set solving. In:
Balduccini, M., Janhunen, T. (eds.) LPNMR 2017. LNCS (LNAI), vol. 10377, pp.
191–204. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61660-5 17

https://doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.1007/978-3-540-72200-7_23
https://doi.org/10.1007/978-3-540-72200-7_23
https://doi.org/10.1007/978-3-540-72200-7_13
https://doi.org/10.1007/978-3-540-72200-7_13
https://doi.org/10.1007/978-3-642-04238-6_18
https://doi.org/10.1007/978-3-642-04238-6_18
https://doi.org/10.1007/978-3-642-04238-6_52
https://doi.org/10.1007/978-3-540-74610-2_20
https://doi.org/10.1007/978-3-540-74610-2_20
https://doi.org/10.1007/978-3-319-61660-5_17

The Syllogistic Reasoning Task:
Reasoning Principles and Heuristic

Strategies in Modeling Human Clusters

Emmanuelle-Anna Dietz Saldanha1(B), Steffen Hölldobler1,2,
and Richard Mörbitz1

1 International Center for Computational Logic, TU Dresden, Dresden, Germany
{dietz,sh}@iccl.tu-dresden.de, richard.moerbitz@tu-dresden.de
2 North-Caucasus Federal University, Stavropol, Russian Federation

Abstract. It seems widely accepted that human reasoning cannot be
modeled by means of classical logic. Psychological experiments have
repeatedly shown that participants’ answers systematically deviate from
the classical logically correct answers. Recently, a new computational
logic approach to modeling human syllogistic reasoning has been devel-
oped which seems to perform better than other state-of-the-art cognitive
theories. We take this approach as starting point, yet instead of trying
to model the human reasoner, we aim at identifying clusters of reason-
ers, which can be characterized by reasoning principles or by heuristic
strategies.

1 Introduction

In recent years, a new cognitive theory based on the Weak Completion Semantics
(WCS) has been developed. It has its roots in the ideas first expressed by Sten-
ning and van Lambalgen [12], but is mathematically sound [5], and has been
successfully applied to various human reasoning tasks. An overview can be found
in [4]. Hence, it was natural to ask whether the WCS is competitive in syllogistic
reasoning and how it performs with respect to the cognitive theories evaluated in
the meta-analysis by Khemlani and Johnson-Laird [7]. Syllogisms are one of the
oldest kinds of logical argument that date back to Aristotle. They are especially
important in the field of Psychology, as they can be easily understood, yet they
are sophisticated enough to require non-trivial reasoning. According to [7], an
established theory for human syllogistic reasoning is a necessary step towards a
unified cognitive theory of reasoning.

A syllogism consists of two premises and a conclusion. The syllogistic reason-
ing task is then: given the two premises, what conclusions are valid? Consider
the following pair of syllogistic premises:

All a are b. Some c are not b. (AO3)

The premises can be interpreted as quantified statements. In first-order logic
(FOL), some c are not a follows from these premises. However, according to [7],
c© Springer Nature Switzerland AG 2018
D. Seipel et al. (Eds.): DECLARE 2017, LNAI 10997, pp. 149–165, 2018.
https://doi.org/10.1007/978-3-030-00801-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00801-7_10&domain=pdf

150 E.-A. Dietz Saldanha et al.

Table 1. The moods and their formalization.

Mood FOL Short

Affirmative universal ∀X(a(X) → b(X)) Aab

Affirmative existential ∃X(a(X) ∧ b(X)) Iab

Negative universal ∀X(a(X) → ¬b(X)) Eab

Negative existential ∃X(a(X) ∧ ¬b(X)) Oab

Table 2. The four figures.

Premise 1 Premise 2

Figure 1 a-b b-c

Figure 2 b-a c-b

Figure 3 a-b c-b

Figure 4 b-a b-c

the majority of participants in experimental studies either concluded some c
are not a or answered that no valid conclusion follows. Yet, these two responses
exclude each other, i.e., it is unlikely that the participants who answered no valid
conclusion are the same ones who answered some c are not a, and vice versa.

The possible quantifiers and figures of the premises are shown in Tables 1
and 2: Each premise can have one of four quantifiers called moods. The entities
can appear in four different orders called figures. Thus we can abbreviate the
example from above which consists of moods A and O and figure 3 with AO3.

In [8], cognitive principles under the WCS for modeling the logical form of
the representation of quantified statements in human reasoning are identified.
The approach achieved a match of 89% with respect to the conclusions given by
the participants and based on the data reported in [7]. This result stands out,
as the best of the twelve other state-of-the-art cognitive theories achieved only
a match of 84%.

While reasoning with conditionals, humans seem to take certain assumptions
for granted which, however, are not stated explicitly in the task description. As
psychological experiments show, these assumptions seem not to be arbitrary but
instead are systematic in the sense that they are repeatedly made by partici-
pants. Furthermore, some assumptions appear in various experiments, whereas
other assumptions are only made in very few experiments or only by some par-
ticipants. In order to identify and structure these assumptions, we view them
as principles that are either applied or ignored by the participants who have
to solve the task. As starting point, we take the syllogistic reasoning approach
presented in [8]. However, a drawback of this approach is that only the match-
ing with respect to the aggregated data is considered, i.e., the approach models
the human reasoner. However, the above example and other examples such as
cases of the Wason selection task reported in [9], serve as indication that the
human reasoner does not exist, but instead we might better search for clusters
of human reasoners. These clusters might be expressed by principles, i.e., some
clusters might apply some principles that are not applied by other clusters. We
also take into account the assumption that some humans do not reason at all
to solve syllogistic reasoning tasks. We believe that they use heuristic strate-
gies [13,14] and present a way to combine them within the WCS.

The paper is structured as follows: In Sect. 2 we present the principles for
the representation of quantified statements, motivated by findings from cognitive

The Syllogistic Reasoning Task 151

science and philosophy of language. The WCS and the encoding of quantified
statements within this approach are introduced in Sects. 3 and 4. In Sect. 5, the
clusters and heuristics are discussed and an overall evaluation of the WCS is
presented. In Sect. 6, we give an overview of our implementation of computing
the conclusions that are drawn depending on the applied principles.

2 Principles About Quantified Statements

Eight principles for developing a logical form of quantified statements are pre-
sented. They originate from [1,8] except of the principles in Sects. 2.5 and 2.8.

2.1 Quantified Statements as Conditionals (conditionals)

Independent of the quantifiers mood, we formalize any relation between two
objects of a quantified statement by means of a conditional such that the
first object is the antecedent and the second object is the conclusion in
the conditional. For instance, the statement All a are b is expressed as
∀X(a(X) → b(X)).

2.2 Licenses for Inferences (licenses)

Given the quantified statement all a are b, a license for this inference can then
be expressed by all a that are not abnormal, are b [12]. Given the previous for-
malization of this statement as ∀X(a(X) → b(X)), we extend this conditional by
conjoining a(X) together with an abnormality predicate: ∀X(a(X) ∧ ¬ab(X) →
b(X)). Further, nothing is abnormal with respect to X, i.e., ¬ab(X) is assumed.

2.3 Existential Import and Gricean Implicature (import)

Humans understand quantifiers differently due to a pragmatic understanding of
the language. For instance, in natural language, humans normally do not quantify
over things that do not exist. Consequently, all a implies some a exists. This
appears to be in line with human reasoning and has been called the Gricean
implicature [3]. It corresponds to what sometimes in literature is also called
existential import.

2.4 Unknown Generalization (unknownGen)

Humans seem to distinguish between some y are z and some z are y, as the
results reported by [7] show. Nevertheless, if we would represent some y are z
by ∃X(y(X) ∧ z(X)) then this is semantically equivalent to ∃X(z(X) ∧ y(X))
because conjunction is commutative in FOL. Likewise, humans seem to distin-
guish between some y are z and all y are z. Accordingly, if we only observe that
an object o belongs to y and z then we do not want to conclude both, some y
are z and all y are z. In order to distinguish between some y are z and all y

152 E.-A. Dietz Saldanha et al.

are z, we introduce the following principle: If we know that some y are z, then
there must not only be an object o1, which belongs to y and z but there must
be another object o2, which belongs to y and for which it is unknown whether
it belongs to z.

2.5 Deliberate Generalization (deliberateGen)

If all of the principles introduced so far are applied to an existential premise,
the only object about which an inference can be made is the one resulting from
the existential import principle. This is because the abnormality introduced by
the licenses for inferences principle and according to the unknown generalization
principle has to be false for the object introduced by existential import, but it is
unknown for other objects. There is, however, evidence that some humans still
draw conclusions in such circumstances [7]. We believe that they do not take into
account abnormalities regarding objects that are not related to the premise.

2.6 Converse Premise (converse)

Although there seems to be some evidence that humans distinguish between
some y are z and some z are y (see the results reported in [7]) we propose
that premises of the form Iab imply Iba and vice versa. If there is an object
which belongs to y and z, then there is also an object which belongs to z and y.
Similarly, we apply this principle for the E mood.

2.7 Search Alternative Conclusions to NVC (searchAlt)

Our hypothesis is that when participants are faced with a NVC conclusion (no
valid conclusion), they might not want to accept this conclusion and proceed
to check whether there exists unknown information that is relevant. This infor-
mation may be explanations about the facts coming either from an existential
import or from unknown generalization. We use only the first as source for obser-
vations, as they are used directly to infer new information.

2.8 Contraposition (contraposition)

In FOL, a conditional statement of the form ∀(X)(a(X) → b(X)) is logically
equivalent to its contrapositive ∀(X)(¬b(X) → ¬a(X)). This contraposition also
holds for the syllogistic moods A and E. There is evidence in [7] that some of
the participants make use of this equivalence when solving syllogistic reasoning
tasks. We believe that when they encounter a premise with the mood A (e.g.,
all a are b), then they might reason with the contrapositive conditional as well.

The Syllogistic Reasoning Task 153

3 Weak Completion Semantics

3.1 Contextual Logic Programs

Contextual logic programs are (data) logic programs extended by the truth-
functional operator ctxt, called context [2]. Contextual (logic) program clauses are
expressions of the forms A ← L1∧. . .∧Lm∧ctxt(Lm+1)∧. . .∧ctxt(Lm+p) (called
rules), A ← � (called facts), A ← ⊥ (called negative assumptions)1 and A ← U
(called unknown assumptions), where A is an atom and the Li with 1 ≤ i ≤ m+p
are literals. A is called head and L1 ∧ . . .∧Lm ∧ ctxt(Lm+1)∧ . . .∧ ctxt(Lm+p) as
well as �,⊥ and U, standing for true, false and unknown respectively, are called
body of the corresponding clauses. A contextual program, denoted by P, is a finite
set of contextual program clauses. gP denotes the set of all ground instances of
clauses occurring in P. A is defined in gP iff gP contains a rule or a fact with
head A. A is undefined in gP iff A is not defined in gP. The set of all atoms that
are undefined in gP is denoted by undef(P). The definition of A in gP is defined
as def(A,P) = {A ← Body | A ← Body is a rule or a fact occurring in gP}. ¬A
is assumed in gP iff gP contains a negative assumption with head A, gP does
not contain an unknown assumption with head A, and def(A,P) = ∅. We omit
the word contextual when we refer to programs, if not stated otherwise.

3.2 Three-Valued �Lukasiewicz Logic Extended by ctxt Connective

We consider the three-valued �Lukasiewicz logic together with the ctxt connec-
tive, for which the corresponding truth values are �, ⊥ and U, meaning true,
false and unknown, respectively. A three-valued interpretation I is a mapping
from the set of logical formulas to the set of truth values {�,⊥,U}, repre-
sented as a pair I = 〈I�, I⊥〉 of two disjoint sets of atoms: I� = {A |
A is mapped to � under I} and I⊥ = {A | A is mapped to ⊥ under I}. Atoms
which do not occur in I� ∪ I⊥ are mapped to U. The truth value of a given for-
mula under I is determined according to the truth tables in Table 3. I(F) = �
means that a formula F is mapped to true under I. A three-valued model M
of P is a three-valued interpretation such that M(A ← Body) = � for each
A ← Body ∈ gP. Let I = 〈I�, I⊥〉 and J = 〈J�, J⊥〉 be two interpretations.
I ⊆ J iff I� ⊆ J� and I⊥ ⊆ J⊥. I is the least model of P iff for any other
model J of P it holds that I ⊆ J .

3.3 Integrity Constraints

A set of integrity constraints IC consists of clauses of the form U ← Body,
where Body is a conjunction of literals and U denotes the unknown. Hence, an
interpretation maps an integrity constraint to � iff Body is either mapped to U or
⊥. Given an interpretation I and a set of integrity constraints IC, I satisfies IC
iff all clauses in IC are true under I.
1 Under WCS, the negative assumption will become A ↔ ⊥ and, hence, A has to

be false. This can, however, be overwritten by other rules and facts (defeating the
assumption).

154 E.-A. Dietz Saldanha et al.

Table 3. The truth tables for the connectives under the three-valued �Lukasiewicz logic
and for ctxt(L). L is a literal, �, ⊥, and U denote true, false, and unknown, respectively.

F ¬F
� ⊥
⊥ �
U U

∧ � U ⊥
� � U ⊥
U U U ⊥
⊥ ⊥ ⊥ ⊥

∨ � U ⊥
� � � �
U � U U
⊥ � U ⊥

← � U ⊥
� � � �
U U � �
⊥ ⊥ U �

↔ � U ⊥
� � U ⊥
U U � U
⊥ ⊥ U �

L ctxt(L)

� �
⊥ ⊥
U ⊥

3.4 Forward Reasoning: Least Fixed Point of ΦP

For a given P, consider the following transformation: 1. For each ground atom A
which occurs as head of a clause in gP, replace all clauses of the form A ←
Body1, . . . , A ← Bodym occurring in gP by A ← Body1 ∨ . . .∨Bodym. 2. Replace
all occurrences of ← by ↔. The obtained ground set of equivalences is called the
weak completion of P or wcP. Consider the following semantic operator, which is
due to Stenning and van Lambalgen [12]: Let I = 〈I�, I⊥〉 be an interpretation.
ΦP(I) = 〈J�, J⊥〉, where

J� = {A | A ← Body ∈ def(A,P) and Body is true under 〈I�, I⊥〉}
J⊥ = {A | def(A,P) �= ∅ and

Body is false under 〈I�, I⊥〉 for all A ← Body ∈ def(A,P)}.

[5] showed that the weak completion of non-contextual programs always has a
least model under �Lukasiewicz logic, which can be obtained as the least fixed
point of ΦP . However, for programs with the ctxt operator this property only
holds if the programs do not contain cycles [2]. In this paper, let MP denote the
least fixed point of ΦP . We define P |=wcs F iff MP(F) = �.

3.5 Backward Reasoning: Explanations by Means of Abduction

An abductive framework 〈P,A, IC, |=wcs〉 consists of a program P, a set A
of abducibles, a set IC of integrity constraints, and the entailment relation
|=wcs. The set of abducibles is A = {A ← � | A ∈ undef(P)} ∪ {A ←
⊥ | A ∈ undef(P) and ¬A is not assumed in gP}. Let 〈P,A, IC, |=wcs〉 be an
abductive framework and the observation O a set of literals. O is explainable in
〈P,A, IC, |=wcs〉 iff there exists an E ⊆ A, such that P ∪ E |= L for all L ∈ O
and P ∪ E satisfies IC. E is then called explanation for O given P and IC. We
restrict E to be minimal, i.e. there does not exist any other explanation E ′ ⊆ A
for O such that E ′ ⊆ E .

Among the minimal explanations, it is possible that some of them entail a
certain formula F while others do not. There exist two strategies to determine
whether F is a valid conclusion in such cases. F follows credulously, if it is
entailed by at least one explanation. F follows skeptically, if it is entailed by all
explanations. Due to previous results on modeling human reasoning [4], skeptical
abduction seems to be adequate.

The Syllogistic Reasoning Task 155

Here, observations, are specified as OP = {A | A ← � ∈ def(A,P)}. Usu-
ally, this set is further restricted by considering only facts that result from the
application of certain principles. The idea is to find an explanation for each
observation A ∈ OP after the fact A ← � has been removed from gP.

3.6 Encoding of Quantified Statements

Negation by Transformation (transformation). The logic programs we con-
sider do not allow heads of clauses to be negative literals. A negative conclu-
sion ¬p(X) is represented by introducing an auxiliary formula p′(X) together
with the clause p(X) ← ¬p′(X) and the integrity constraint U ← p(X) ∧ p′(X).
This is a widely used technique in Logic Programming. Applying the prin-
ciple licenses introduced in Sect. 2.2, the first clause is extended to p(X) ←
¬p′(X) ∧ ¬abnpp(X) and the assumption abnpp(X) ← ⊥ is added.

No Derivation Through Double Negation (doubleNeg). A positive con-
clusion can be derived from double negation using two conditionals under the
WCS. It appears to be the case that humans do not reason in such a way (see
[7]). Hence, we block them with the help of abnormalities.

4 Quantified Statements as Logic Programs

Based on the principles and encoding aspects presented in Sects. 2 and 3.6, we
encode the quantified statements into logic programs. The programs are specified
using the predicates y and z and depend on the figures shown in Table 2, where yz
can be replaced by ab, ba, cb, or bc. Here, all principles regarding a premise are
applied. However, we will later assume different clusters of reasoners, some of
which do not apply certain principles (see Sect. 5). The clauses associated with
principles that are not applied are removed for such clusters.

4.1 All y Are z (Ayz)

All y are z is represented by PAyz, which consists of the following clauses:

z(X) ← y(X) ∧ ¬abyz(X). (conditionals & licenses)
abyz(X) ← ⊥. (licenses)

y(o) ← �. (import)
abyz(X) ← ctxt(z′(X)). (contraposition & licenses & deliberateGen)

y′(X) ← ¬z(X) ∧ ¬abzy(X). (contraposition & conditionals & licenses)
abzy(X) ← ⊥. (contraposition & licenses)

y(X) ← ¬y′(X) ∧ ¬abnyy(X). (contraposition & transformation & licenses)

As contraposition has been applied, we have to add the integrity constraint
U ← y(X) ∧ y′(X). We obtain MPAyz

= 〈{y(o), z(o)}, {abyz(o)}〉. Remember
that we want to construct pairs of syllogistic premises. Sometimes, if a premise
of A mood is combined with a premise of E or O mood (see Sects. 4.2 and 4.4),

156 E.-A. Dietz Saldanha et al.

then z′(X) appearing in the body of the fourth clause becomes the negation
of z(X). Otherwise, any ground instance of z′(X) is unknown and, consequently,
ctxt(z′(X)) is false in this case. The necessity of the fourth clause and the usage
of the ctxt operator is discussed in the example presented in Sect. 5.2.

4.2 No y Is z (Eyz)

No y is z is represented by PEyz, which consists of the following clauses:

z′(X) ← y(X) ∧ ¬abynz(X). (transformation & licenses)
abynz(X) ← ⊥. (licenses)
z(X) ← ¬z′(X) ∧ ¬abnzz(X). (transformation & licenses)
y(o1) ← �. (import)
abnzz(o1) ← ⊥. (licenses & doubleNeg)
y′(X) ← z(X) ∧ ¬abzny(X). (converse & transformation & licenses)
abzny(X) ← ⊥. (converse & licenses)
y(X) ← ¬y′(X) ∧ ¬abnyy(X). (converse & transformation & licenses)
z(o2) ← �. (converse & import)
abnyy(o2) ← ⊥. (converse & licenses & doubleNeg)

The integrity constraints U ← z(X) ∧ z′(X) and U ← y(X) ∧ y′(X) must be
added. Iterating ΦPEyz

we obtain MPEyz
= 〈{y(o1), z′(o1), z(o2), y′(o2)

}
,

{abynz(o1), abnzz(o1), z(o1), abzny(o2), abnyy(o2), y(o2)}〉.

4.3 Some y Are z (Iyz)

Some y are z is represented by PIyz, which consists of the following clauses:

z(X) ← y(X) ∧ ¬abyz(X). (conditionals & licenses)
abyz(o1) ← ⊥. (unknownGen & licenses)

y(o1) ← �. (import)
y(o2) ← �. (unknownGen)

abyz(X) ← ctxt(z′(X)). (licenses & deliberateGen)
abyz(o2) ← U. (licenses & deliberateGen)

y(X) ← z(X) ∧ ¬abzy(X). (converse & conditionals & licenses)
abzy(o3) ← ⊥. (converse & licenses & unknownGen)

z(o3) ← �. (converse & import)
z(o4) ← �. (converse & unknownGen)

abzy(X) ← ctxt(y′(X)). (converse & licenses & deliberateGen)
abzy(o4) ← U. (converse & licenses & deliberateGen)

We obtain MPIyz
= 〈{y(o1), y(o2), z(o1)}, {abyz(o1)}〉. One should observe that

abyz(o2) is an unknown assumption in PIyz and, hence, MPIyz
(z(o2)) = U.

The Syllogistic Reasoning Task 157

4.4 Some y Are Not z (Oyz)

Some y are not z is represented by POyz which consists of the following clauses:

z′(X) ← y(X) ∧ ¬abynz(X). (conditionals & transformation & licenses)
abynz(o1) ← ⊥. (unknownGen & licenses)

z(X) ← ¬z′(X) ∧ ¬abnzz(X). (transformation & licenses)
y(o1) ← �. (import)
y(o2) ← �. (unknownGen)

abnzz(o1) ← ⊥. (doubleNeg & licenses)
abnzz(o2) ← ⊥. (doubleNeg & licenses)

We have to add the integrity constraint U ← z(X)∧z′(X) and obtain MPOyz
=

〈{y(o1), y(o2), z′(o1)}, {abynz(o1), abnzz(o1), abnzz(o2), z(o1)}〉.

4.5 Entailment of Conclusions from Pairs of Syllogistic Premises

Based on the applied principles of the previous section, we specify when MP
entails a conclusion, where yz is to be replaced by ac or ca.
Ayz (all) P |= Ayz iff there exists an object o such that P |=wcs y(o) and for

all objects o we find that if P |=wcs y(o) then P |=wcs z(o).
Eyz (no) P |= Eyz iff there exists an object o1 such that P |=wcs y(o1) and for

all objects o1 we find that if P |=wcs y(o1) then P |=wcs ¬z(o1) and there
exists an object o2 such that P |=wcs z(o2) and for all objects o2 we find that
if P |=wcs z(o2) then P |=wcs ¬y(o2).

Iyz (some) P |= Iyz iff there exists an object o1 such that P |=wcs y(o1)∧z(o1)
and there exists an object o2 such that P |=wcs y(o2) and P �|=wcs z(o2) and
there exists an object o3 such that P |=wcs z(o3) ∧ y(o3) and there exists an
object o4 such that P |=wcs z(o4) and P �|=wcs y(o4).

Oyz (Some Are Not) P |= Oyz iff there exists an object o1 such that P |=wcs

y(o1) ∧ ¬z(o1) and there exists an object o2 such that P |=wcs y(o2) and
P �|=wcs ¬z(o2).

NVC When no previous conclusion can be derived, no valid conclusion holds.

4.6 Accuracy of Predictions

We have nine different answer possibilities for each of the 64 pairs of syllogistic
premises: Aac, Eac, Iac, Oac, Aca, Eca, Ica, Oca and NVC. For every pair of
syllogistic premises, we define two lists of length nine for the predictions of the
WCS and for the participants’ answers, where the first element represents Aac,
the second element represents Eac, and so forth. When Aac is predicted under
the WCS (or the majority’s conclusions) for a given pair of syllogistic premises,
then the value of the first element of this list is a 1, otherwise it is a 0, and the
same holds for the other eight elements in the list. Given

comp(i) =
{

1 if both lists have the same value for the ith element

0 otherwise

the matching percentage of this pair of syllogistic premises is then computed by∑9
i=1 comp(i)/9.

158 E.-A. Dietz Saldanha et al.

5 Clusters and Heuristics

We understand clusters of human reasoners in terms of principles or heuristics.
Each cluster is a group of humans that applies the same principles or heuristics.
When identifying such clusters, e.g., among the participants in [7], the principles
or heuristics used by a single cluster should lead to a significant answer for the
pair of syllogistic premises in question. As the answers of all participants have
been accumulated in the meta-analysis, the combined answers of all clusters
should exactly correspond to the significant answers for that pair of syllogistic
premises.

5.1 Basic Principles

Basic principles are assumed to be applied by all reasoners, regardless of any
cluster. These are conditionals, licenses, import, and unknownGen. Note that they
are not necessarily applicable to every pair of syllogistic premises: unknownGen
may only be used for premises with an existential mood.

5.2 Advanced Principles and Clusters

Advanced principles are assumed by some but not all humans, making them
the starting point for clusters. Advanced principles considered in this paper are
converse, deliberateGen, contraposition, and searchAlt, but there may exist more.
When two individuals differ in the sense that one applies such a principle and
the other one does not, we assume that they belong to different clusters.

As an example, consider AO3 introduced in Sect. 1. According to the encoding
described in Sect. 4, PAO3,basic represents the logic program for AO3, where only
the basic principles are applied:

b(X) ← a(X) ∧ ¬abab(X). b′(X) ← c(X) ∧ ¬abcnb(X). c(o3) ← �.
abab(X) ← ⊥. c(o2) ← �. abnbb(o2) ← ⊥.
a(o1) ← �. b(X) ← ¬b′(X) ∧ ¬abnbb(X). abcnb(o2) ← ⊥.

abnbb(o3) ← ⊥.

We obtain

MPAO3,basic = 〈 { a(o1) , b(o1), c(o2) , c(o3) , b′(o2)},

{abab(o1), abab(o2), abab(o3), abcnb(o2), abnbb(o2), abnbb(o3)}〉.
The highlighted atoms are relevant for conclusions: NVC follows. Note that
abab(oi) is false for all oi, 1 ≤ i ≤ 3. If additionally contraposition is used,

PAO3,contra = PAO3,basic ∪ {a′(X) ← ¬b(X) ∧ ¬abba(X), abba(X) ← ⊥,
a(X) ← ¬a′(X) ∧ ¬abnaa(X), abab(X) ← ctxt(b′(X))},

is considered that has another clause where abab(X) is in the head. We obtain

MPAO3,contra = 〈 { a(o1) , abab(o2), b(o1), c(o2) , c(o3) , a′(o2), b′(o2)},

{ a(o2) , abab(o1), abab(o3), abcnb(o2), abnba(o1), abnba(o2),
abnba(o3), abnbb(o2), abnbb(o3), b(o2), a′(o1)}〉.

The Syllogistic Reasoning Task 159

Again, the relevant atoms are highlighted. MPAO3,contra entails the conclusion Oca:
As c(o2) is true, b′(o2) is true, therefore ctxt(b′(o2)) is true. This in turn makes
abab(o2) true, and accordingly b(o2) has to be false. But then, a′(o2) can be
derived true, which finally makes a(o2) false.

One should observe that b′(o1) is unknown in MPAO3,contra . Hence, ctxt(b′(o1))
is false and, consequently, abab(o1) is false as well. Together with a(o1) being
true we obtain that b(o1) is true. The latter is needed to correctly implement
the first premise, all a are b, in AO3. Without the ctxt operator, b′(o1) would be
unknown and, consequently abab(o1) as well as b(o1) would be unknown as well
violating the premise all a are b.

Assuming two clusters of people whose reasoning process differs in the appli-
cation of the contraposition principle, we unite the conclusions predicted for
the clusters and obtain {Oca,NVC}. These are exactly the significant answers
reported in [7].

In order to represent the principles leading to a conclusion, multinomial pro-
cessing trees (MPTs) [11] are used. They have been suggested for modeling
cognitive theories because they represent cognitive processes as probabilistic
procedures, thus being able to predict multiple answers and even their quantita-
tive distribution [10]. We set the latent states (inner nodes) of the MPTs to the
decisions whether to use certain principles and put the corresponding conclu-
sions in the leaves. The MPT for AO3 based on the clustering described above
is presented in Fig. 1. The parameter pcontraposition models the probability that
an individual applies the contraposition principle and, therefore, belongs to the
corresponding cluster. It can be trained from experimental data with algorithms
like expectation-maximization [6]. Note that the MPT in Fig. 1 is not complete
in the sense that it cannot predict all possible conclusions for AO3. This issue is
addressed below.

Basic principles

No contraposition Contraposition

NVC Oca

1 − pcontraposition pcontraposition

Fig. 1. The MPT for AO3.

5.3 Heuristic Strategies

Some theories suggest that some humans do not reason at all to solve syllogistic
reasoning tasks, but rely on heuristics such as the atmosphere bias [14] or the
matching bias [13]. Such heuristics are simple rules that state what conclusions
are likely depending on certain features of the premises, e.g., mood or figure.

160 E.-A. Dietz Saldanha et al.

Some of the participants’ answers presented in [7], that are given by a small
amount of people (less then 5%), but also some significant ones, are not (yet)
explainable by the WCS. A plausible explanation for that is that these people
simply guess or use one of the heuristics mentioned below (educated guess).

A generative approach to model this behavior can be based on MPTs. The
MPT for a random guess can lead to all nine conclusions. MPTs for a particular
heuristic strategy only take into account the valid conclusions under the corre-
sponding theory. For the atmosphere bias, universal and affirmative conclusions
are excluded when one of the premises is existential or negative, respectively.
In the case of identical moods, the conclusion must have this mood as well. For
the matching bias, the following order from the most to the least conservative
quantifier is defined on moods:

E > O = I > A.

A conclusion may not be answered if it is less conservative than one of the
premises with respect to that order. We have also observed biased conclusions
in the data of [7] that may be explained by the following heuristic strategy: F
or almost all pairs of syllogistic premises with Fig. 1, Xac is answered, while the
answer Xca is not given at all, where X is the least conservative mood from the
premises that is still allowed under the matching strategy (O is preferred over I).

As an alternative to generating the answers given by a cluster of guessers
using MPTs, the following inverse process can be considered: predictions of the
WCS that are not in accordance with a particular heuristic strategy are not given
by a cluster using that strategy. In the filtering approach, these conclusions are
suppressed in the predictions. If no conclusion remains, NVC is answered instead.
As it is likely that some participants do not use logic [13], such clusters must be
modeled under the WCS by using the generative or the filtering approach. As a
consequence, MPTs can construct a prediction for all answer possibilities.

5.4 A Clustering Approach

Based on the principles and heuristic strategies described above, the partici-
pants of [7] have been partitioned into three reasoning clusters and two clusters
applying heuristic strategies:

1. Basic principles, searchAlt, and converse for I.
2. Basic principles, converse for I and deliberateGen.
3. Basic principles, converse for I, E, and contraposition for A.
4. Matching strategy.
5. Biased conclusions in figure 1.

Abduction was only used in one cluster because of the computational effort it
requires. Although it would be interesting to model this principle for different
clusters, the impact would be very small. This is because converse is the only
advanced principle that adds existential imports, which we currently consider as
atoms for observations. According to the results of [8], abduction has the same

The Syllogistic Reasoning Task 161

results independent of whether only the converse I mood or both the converse I
and E mood are used. The matching strategy was implemented using the filtering
approach. The biased conclusions in figure 1 heuristics was implemented using
the generative approach such that its prediction overwrites the answers of other
clusters, except NVC.

Table 4. Comparison of the WCS with other cognitive theories. The participants’
answers are highlighted.

Participants PSYCOP Verbal Models Mental Models Conversion WCS

AO3 Oca Oca Oca Oca Oca Oca
NVC Ica Iac NVC NVC Oac NVC NVC

Overall 100% 77% 84% 78% 83% 92%

5.5 Evaluation

We evaluate the predictions of the WCS based on the clustering approach
described in Sect. 5.4. For that, we combine the answers of all clusters and
compared them with both the data of humans and the predictions of other
cognitive theories presented in [7]. In that study, the results of six psychological
experiments on syllogistic reasoning were aggregated and compared with twelve
well-known cognitive theories. In Table 4, it can be seen that the WCS predicts
the same answers for AO3 as the majority of humans, but some other theories
fail to do so. For the overall evaluation, the accuracy is computed as described
in Sect. 4.6. Here the WCS clearly stands out against the other theories, but to
be fair, we must also admit that we compare a relatively new theory to the best
theories of 2012. The WCS predicts the participants’ answers in [7] correctly for
32 out of the 64 pairs of syllogistic premises. For 20 cases there is one incorrect
prediction, for 11 cases there are two and for one case there are three mismatches.
The overall match between the predictions of the WCS and the answers of the
participants is 92%.

6 Implementation

The goal of our implementation is to automate the process of evaluating a cer-
tain clustering. This is crucial, because as stated above, the number of possible
clusterings grows exponentially with the number of principles. We want to be
able to evaluate new candidates for an optimal clustering as fast as possible.

We have developed a modular, declarative implementation, which consists
of two parts: An implementation of the ΦP operator to compute the least fixed
point of a given program P, and a framework that generates logic programs from
an abstract representation of principles and evaluate the entailed conclusions.

162 E.-A. Dietz Saldanha et al.

6.1 Computing the Least Fixed Point of ΦP

The least fixed point of ΦP is computed in Prolog. The implementation receives
a program P – written in Prolog – as input and processes it in two phases. The
output is an interpretation 〈I�, I⊥〉 of wcP represented as two lists correspond-
ing to I� and I⊥. The input program P is first grounded to obtain gP and,
secondly, computes the least fixed point of ΦP starting with the empty inter-
pretation 〈∅, ∅〉. Recall that ΦP operates directly on gP. The context operator
is implemented such that contextual logic programs can be handled. However,
there is a problem: if a contextual logic program P contains a cycle, then the least
fixed point of ΦP may not exist. Consider the following quantified statements:

All a are b. No b is c. (AE1)

Assume that additionally to the basic principles we apply for each quantified
statement the advanced principles converse, deliberateGen, and contraposition.
The corresponding program consists of the following clauses:

b(X) ← a(X) ∧ ¬ abab(X) .

abab(X) ← ⊥.

a(o1) ← �.

abab(X) ← ctxt(b′(X)).

a′(X) ← ¬b(X) ∧ ¬abba(X).

abba(X) ← ⊥.

a(X) ← ¬a′(X) ∧ ¬abnaa(X).

c′(X) ← b(X) ∧ ¬abnbc(X).

b(o2) ← �.

abnbc(X) ← ⊥.

c(X) ← ¬ c′(X) ∧ ¬abncc(X).

abncc(o2) ← ⊥.

b′(X) ← ¬ c(X) ∧ ¬abncb(X).

abncb(X) ← ⊥.

b(X) ← ¬b′(X) ∧ ¬abnbb(X).

Consider the highlighted atoms: Note the cycle b′ > c > c′ > b > abab > b′ where
A > B if A is an atom in the head of a rule and B is an atom that occurs in the
body of that rule. As b′ is an argument of the context operator and is part of the
cycle, this program does not admit a least fixed point. When modeling clusters,
we must ensure that the logic program resulting from the applied principles do
not contain such cycles. This is guaranteed for the clusters given in Sect. 5.4.

6.2 Computing the Predictions for a Cluster of Reasoners

The evaluation of a cluster is written in Haskell. A run consists of four phases:

1. Generate program P of the pair of syllogistic premises using the principles.
2. Call the Prolog implementation to compute the least fixed point of ΦP .
3. Extract the conclusions entailed by the least fixed point of ΦP .
4. Compare the conclusions with the participants’ answers and output score.

The Syllogistic Reasoning Task 163

The Haskell program contains definitions of datatypes for all entities occurring in
the programs, i.e., truth values, atoms, literals, and clauses. These entities are
built recursively on each other and have functions for conversion into Prolog.
Principles are implemented as functions that return their corresponding clause
representation. The source code of the unknownGen principle is as follows:

unknownGen = Principle {
apply = \m f -> m == MI || m == MO,
clauseRep = \ y z prf -> [clause (atom y) [top] (prf ++ "ug")]

}

where the first line states that the principle is applied to negative moods (I and O)
and the second line states that the clause has the form y(prfug) ← �, where
prf is an identifier for objects of the clause. Using this abstraction, clusters are
written as lists of ‘principle functions’ and are thus valid Haskell source code
by themselves. As an example, consider the definition of the basic cluster which
uses the basic principles and the converse principle for mood I:

basicCluster = Cluster {
principles = basicPrinciples ++ map converseI basicPrinciples,
...

}

Here, basicPrinciples is defined as list of principles (those we called basic in
Sect. 5.1). Of course, one consequence is that the user of our implementation has
to be familiar with Haskell. However, there are two main advantages of using
Haskell source code as a representation. Firstly, many principles are part of a
certain subset of the pair of syllogistic premises (e.g., the unknown generalization
principle is used for all premises with an existential mood). These connections
can be modeled precisely and without redundancy in source code. This can
be seen in the example above, where converseI is implemented as a function
that takes a principle as argument and returns the corresponding principle for
the converse premise. Secondly, because Haskell is a compiled language, the
representation of the pair of syllogistic premises itself is compiled. Therefore, a
representation is automatically checked and the program does not crash due to
an error, which would not be the case if e.g., a string representation was used.

The Prolog representation of the program results from a function converting
sets of clauses to a string and is written into a file. Then, the Prolog imple-
mentation of the previous program is called to compute the least fixed point
of ΦP , which is again written to a file. After completion that file is parsed and
the conclusions are extracted with respect to the definitions given in Sect. 4.5.
Our heuristic filters—implemented as post-processing functions—are applied to
these conclusions. This process is done for all 64 pairs where the conclusions are
compared with the participants’ answers and the score of the cluster is computed.

Until now, we have only described the evaluation of a single cluster, although
a clustering consists of the combined answers of all clusters. For this purpose, a
list of clusters is specified, where the program computes the predictions for each
cluster, combines them, and compares the results with the participants’ answers.

164 E.-A. Dietz Saldanha et al.

7 Conclusions

We have successfully extended the approach in [1,8] by introducing two new
principles and by applying a clustering approach to model individual differences
in human reasoning. This takes into account that some people may not reason at
all, but guess or apply heuristic strategies. The clustering presented in Sect. 5.4
is currently the best one but possibly not the optimal one. However, due to the
combinatorial explosion,2 it is difficult to find the global optimum. Furthermore,
programs based on certain principles considered for some moods, might not have
a least fixed point, as they contain cycles with respect to the ctxt operator. This
must be taken into account when selecting the principles for a clustering. Finally,
we have applied multinomial processing trees to model that different principles
lead to different conclusions. This information is lost if the data containing the
predictions for all clusters is aggregated. If we would have more insight about the
patterns participants opted for, we could model single pair of syllogistic premises
by multinomial process trees instead of fitting them to the overall results.

Future work might allow us to identify and understand why humans within a
cluster come to certain conclusions. Accordingly, if it is known which principles
they apply, it should be possible to predict their answers.

References

1. Costa, A., Dietz Saldanha, E.-A., Hölldobler, S.: Monadic reasoning using weak
completion semantics. In: Hölldobler, S., Malikov, A., Wernhard, C. (eds.) Pro-
ceedings of the Young Scientist’s Second International Workshop on Trends in
Information Processing (YSIP2) 2017, pp. 45–54. CEUR Workshop Proceedings
(2017)

2. Dietz Saldanha, E.-A., Hölldobler, S., Pereira, L.M.: Contextual reasoning: usually
birds can abductively fly. In: Balduccini, M., Janhunen, T. (eds.) LPNMR 2017.
LNCS (LNAI), vol. 10377, pp. 64–77. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-61660-5 8

3. Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Syntax and
Semantics, vol. 3. Academic Press (1975)

4. Hölldobler, S.: Weak completion semantics and its applications in human reason-
ing. In: Furbach, U., Schon, C. (eds.) Proceedings of the Workshop on Bridging the
Gap between Human and Automated Reasoning on the 25th International Confer-
ence on Automated Deduction, CEUR Workshop Proceedings, vol. 1412, pp. 2–16.
CEUR-WS.org. (2015)

5. Hölldobler, S., Kencana Ramli, C.D.P.: Logic programs under three-valued
�Lukasiewicz semantics. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS,
vol. 5649, pp. 464–478. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-02846-5 37

6. Hu, X., Batchelder, W.H.: The statistical analysis of general processing tree models
with the em algorithm. Psychometrika 59(1), 21–47 (1994)

2 For n principles, there are up to 2n possible clusters. Additionally, it is unknown if
the current set of principles is already complete.

https://doi.org/10.1007/978-3-319-61660-5_8
https://doi.org/10.1007/978-3-319-61660-5_8
https://doi.org/10.1007/978-3-642-02846-5_37
https://doi.org/10.1007/978-3-642-02846-5_37

The Syllogistic Reasoning Task 165

7. Khemlani, S., Johnson-Laird, P.N.: Theories of the syllogism: a meta-analysis.
Psychol. Bull. 138, 427–457 (2012)

8. Costa, A., Dietz Saldanha, E.-A., Hölldobler, S., Ragni, M.: A computational logic
approach to human syllogistic reasoning. In: Gunzelmann, G., Howes, A., Tenbrink,
T., Davelaar, E.J. (eds.) Proceedings of the 39th Annual Conference of the Cog-
nitive Science Society, Austin, TX, 2017, pp. 883–888. Cognitive Science Society
(2017)

9. Ragni, M., Dietz, E.-A., Kola, I., Hölldobler, S.: Two-valued logic is not sufficient
to model human reasoning, but three-valued logic is: a formal analysis. In: Schon,
C., Furbach, U. (eds.) Proceedings of the Workshop on Bridging the Gap between
Human and Automated Reasoning co-located with 25th International Joint Con-
ference on Artificial Intelligence IJCAI, CEUR Workshop Proceedings, vol. 1651,
pp. 61–73. CEUR-WS.org. (2016)

10. Ragni, M., Singmann, H., Steinlein, E.-M.: Theory comparison for generalized
quantifiers. In: CogSci (2014)

11. Riefer, D.M., Batchelder, W.H.: Multinomial modeling and the measurement of
cognitive processes. Psychol. Rev. 95(3), 318–339 (1988)

12. Stenning, K., van Lambalgen, M.: Human Reasoning and Cognitive Science. A
Bradford Book. MIT Press, Cambridge (2008)

13. Wetherick, N.E., Gilhooly, K.J.: ‘Atmosphere’, matching, and logic in syllogistic
reasoning. Curr. Psychol. 14(3), 169–178 (1995)

14. Woodworth, R.S., Sells, S.B.: An atmosphere effect in formal syllogistic reasoning.
J. Exper. Psychol. 18(4), 451 (1935)

Functional and Logic Programming

Concolic Testing of Functional
Logic Programs

Jan Rasmus Tikovsky(B)

Institut für Informatik, CAU Kiel, 24098 Kiel, Germany
jrt@informatik.uni-kiel.de

Abstract. In the last years, concolic testing, a technique combining con-
crete and symbolic execution for the automated generation of test cases,
has gained increasing popularity. Concolic testing tools are initialized
with expressions on concrete input data. But instead of just evaluat-
ing them, they additionally collect symbolic information along specific
execution paths. This information can be used to systematically com-
pute alternative inputs exploring yet unvisited paths. In this way, test
cases can be generated covering all branches of a given program. The
first concolic testing tools have been developed for imperative languages
analyzing code at a very low level. Recently, there have been also some
approaches investigating the concolic execution of declarative languages.
In this work, we discuss the application of concolic testing to the func-
tional logic language Curry. More precisely, we present ccti, a concolic
interpreter which is adapted for the automated generation of test cases
for both purely functional and non-deterministic programs.

1 Introduction

There are several methods to verify the correctness of programs. Among these
formal program verification has the most significant relevance. But as proving
the correctness of programs is a rather difficult and time consuming task, testing
has become the most established approach to ensure the reliability of software.
In fact, program testing itself became a wide area of research over the last decade
resulting in various approaches.

In general, we distinguish between testing in the large and testing in the
small. The former includes the testing of complete systems as well as the veri-
fication of interfaces between larger components, while the latter is directed to
minor parts of programs like one module or even only a single function.

Furthermore, regarding the consideration of source code, software testing
can be divided into two categories, namely black-box and glass-box testing. As
the name implies, tests of the former category treat the software to be tested
like a black box ignoring its concrete implementation completely and deduc-
ing test cases from specifications. Random testing and property-based testing,
falls within this category. Property-based testing uses random input data to
produce results which are then matched with previously specified properties.

c© Springer Nature Switzerland AG 2018
D. Seipel et al. (Eds.): DECLARE 2017, LNAI 10997, pp. 169–186, 2018.
https://doi.org/10.1007/978-3-030-00801-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00801-7_11&domain=pdf

170 J. R. Tikovsky

QuickCheck [5] for Haskell or QuviQ QuickCheck1 for Erlang are examples of
property-based testing libraries for functional languages. But also purely logic
languages like Prolog and functional logic languages like Curry provide tools for
property testing, namely PrologCheck [2] and CurryCheck [11].

Glass-box testing, on the other hand, works on the source code level. By
the selection of input data, execution paths are followed through the code to
determine appropriate outputs. Often this process is repeated until certain code
coverage criteria are met. Since glass-box testing is a systematic approach, it
is well-suited for automation. Examples of glass-box testing include test case
generation based on symbolic execution. In this process, a program is interpreted
using symbolic values for inputs instead of concrete data producing constraints
on those symbols for all conditional branches in the program. Applying constraint
solvers, these so called path constraints can be solved to compute actual input
data driving execution along the associated path.

In the last years, a combination of concrete and symbolic execution, called
concolic execution, has gained more and more popularity. We explain the basic
idea behind concolic testing with the following example program.

nthElem [] _ = Nothing

nthElem (x : xs) n | n == 0 = Just x

| n > 0 = nthElem xs (n - 1)

List. 1. Selection of the n-th element of a list

The listing shows the definition of a Curry function to select the n-th element of
a polymorphic list. This definition distinguishes three different cases via pattern
matching and guards: If the given list is empty, Nothing is returned. Considering
a non-empty list either the first list element is returned or the function is called
recursively depending on whether the index is 0 or a positive integer number.

The objective of automated testing tools is to find enough test cases to fully
cover every branch of a function at least once. For the given example two test
cases would be sufficient, i.e., one using an empty list and one using a list with
at least two elements and an index greater than 0 and smaller than the length
of the list.

For this purpose, concolic testing tools start with some concrete inputs. While
evaluating a function call with these inputs, concolic testing tools additionally
collect symbolic information describing the branch decisions which are made
along that execution path. These decisions are also denoted as path constraints,
since input data has to satisfy them to drive execution along that path.

Concolic testing tools aim at negating such path constraints systematically
and solving them to produce inputs which drive evaluation along alternative exe-
cution paths. Repeating this process automatically generates test cases covering
all program branches.

For instance, during the concrete execution of “nthElem [42] 0”, we addi-
tionally consider the symbolic expression nthElem xs n with xs and n being sym-
bolic variables. The concrete expression can be evaluated to Just 42 by applying

1 http://www.quviq.com/products/erlang-quickcheck/.

http://www.quviq.com/products/erlang-quickcheck/

Concolic Testing of Functional Logic Programs 171

the second rule of nthElem. During pattern matching, a branch decision is made
constraining the symbolic variable xs to a non-empty list. Furthermore, the eval-
uation of the first guard of the second rule constrains the symbolic variable n to
be equal to 0. By negating these constraints, we receive constraints associated
with alternative execution paths. For example, the negation of the first path
condition constrains xs to be the empty list, thus, driving execution along a dif-
ferent execution path, namely the one represented by the first rule of nthElem.
This process is repeated until all paths of the associated symbolic execution tree
have been visited and, thus, all branches of nthElem are covered.

The first concolic testing tools were developed for imperative languages.
Examples include DART [10] and CUTE [18] for C, and jCUTE [17] for Java.
Recently, concolic execution has found its way into declarative programming
languages. For the functional language Erlang there are two tools which apply
a program instrumentation to collect symbolic information, namely [9] and [16].
Moreover, in [14] and [15] a method for concolic testing in Prolog is presented.
Regarding the functional logic language Curry, Fischer and Kuchen [8] discuss
an approach which uses narrowing to generate test cases from uninstantiated
function arguments systematically.

In this work, we propose ccti (Curry Concolic Testing Interpreter)2, a tool for
automated concolic execution of Curry programs. To the best of our knowledge,
concolic testing so far has not been applied to functional logic programs. We
present an augmented semantics for Curry’s simplified core language FlatCurry
which enables the additional collection of symbolic information during concrete
evaluation. This symbolic information is used to generate path constraints. By
negating these constraints systematically and applying an SMT solver, namely
Z3 [6], we produce input data directing the execution to yet unexplored program
paths. Furthermore, we present a simple search strategy for the selection of the
path constraint to be negated next. Although ccti ’s search interface supports the
implementation of different coverage criteria, in this work we focus on branch
coverage.

Our work is based on approaches applying concolic testing to purely func-
tional languages and demonstrates that some of the ideas proposed in these
approaches can be applied to functional logic languages as well. For instance, we
also use a simplified core language which facilitates the identification of program
branches, and thus the collection of path constraints. Moreover, ccti provides
a search strategy to explore alternative, yet unvisited execution paths which
is very similar to the one presented in [9]. In contrast to the concolic testing
tools for purely functional languages mentioned above, we use an interpretation-
rather than an instrumentation-based approach. This is due to the fact that the
combination of non-deterministic computations and sharing of common subex-
pressions in Curry complicates the implementation of a semantics-preserving
code instrumentation. Contrary to the narrowing-based approach presented in
[8], ccti enables the generation of test cases for programs including primitive
types like integers or floats. While narrowing on those primitive types can only

2 https://www-ps.informatik.uni-kiel.de/∼jrt/forschung/ccti.html.

https://www-ps.informatik.uni-kiel.de/~jrt/forschung/ccti.html

172 J. R. Tikovsky

be applied by using alternative, data constructor-based representations of inte-
gers and floats, we can simply reuse their original representation by applying
suitable theories of the SMT solver.

The rest of this paper is structured as follows: In Sect. 2 we describe the
functional logic language Curry and its simplified core language FlatCurry.
Section 3 gives a brief introduction to satisfiability modulo theories (SMT) and
the SMT-LIB library. The general idea of concolic testing of FlatCurry programs
is explained in Sect. 4. Afterwards, we present a variant of the natural seman-
tics of FlatCurry programs augmented for concolic testing. In Sect. 5 we take
a closer look at the search algorithm applied to investigate the symbolic infor-
mation which has been collected during concolic execution. Section 6 presents
parts of the implementation of ccti. Finally, we discuss the applicability of ccti
considering some practical examples in Sect. 7 before we conclude in Sect. 8.

2 Curry

Curry is a declarative programming language integrating well-known features
from functional programming, like higher-order functions and lazy evaluation, as
well as elements of logic programming, like non-determinism and computations
with partial information. We will give only a short overview here. For a detailed
introduction we refer to [13].

Curry’s syntax is very similar to that of the functional programming language
Haskell. Curry supports the declaration of algebraic data types via the keyword
data. Identifiers of types and data constructors start with an uppercase letter,
whereas variable and function names usually begin with a lowercase letter.

For instance, the Maybe type representing optional values in Curry which we
used in List. 1 is defined as follows.

data Maybe a = Nothing | Just a

Functions are defined via rules and pattern matching. In contrast to Haskell,
Curry supports the definition of non-deterministic operations by specifying over-
lapping rules. The following listing shows the definition of an operation which
inserts an element in a list at an arbitrary position.

insertND x [] = [x]

insertND x (y:ys) = x : y : ys

insertND x (y:ys) = y : insertND x ys

Consider the expression “insertND 42 [1,2]”. Evaluating this expression in
a Curry system will yield three non-deterministic results, namely [42,1,2],
[1,42,2] and [1,2,42]. Rather than specifying overlapping rules, one can also
use Curry’s choice operator “?” in order to define non-deterministic operations.
The choice operator is predefined as follows

x ? _ = x

_ ? y = y

Concolic Testing of Functional Logic Programs 173

Apart from non-deterministic operations Curry also enables computations
with partial information by using free variables in expressions instead of standard
input values.3

For instance, the expression “let x free in not x” is reduced to the results
{x=False} True and {x=True} False by binding the free variable x appropriately.

Due to the support of non-determinism and partial data structures, Curry
uses an alternative evaluation mechanism compared to Haskell, namely needed
narrowing [3]. Basically, needed narrowing corresponds to lazy evaluation using
unification instead of pattern matching for the passing of parameters. In case
an argument of a function which is required for further evaluation contains a
free variable, this variable is bound to a constructor term so that evaluation can
continue.

Furthermore, there is a core language of Curry named FlatCurry which pro-
vides a simplified representation of programs. Due to its simplicity, it is common
practice to implement analysis tools and transformations for FlatCurry rather
than for full Curry. An abstract representation of the syntax of FlatCurry pro-
grams is depicted in Fig. 1 where sequences of objects o1, . . . , on are denoted by
on. For the sake of simplicity, we assume in the following that literals and literal
pattern like numbers or characters are represented as nullary constructors and
constructor pattern, respectively.

Fig. 1. The FlatCurry representation of programs

A FlatCurry program consists of a sequence of function definitions. Every
function is specified by a single rule consisting of pairwise different variables
xn on its left-hand side and an expression on its right-hand side.4 Any pattern
matching in the original Curry program has been made explicit by the use of
case expressions with pairwise distinct constructor patterns.

All case expressions include a unique identifier id. Additionally, all local
function declarations have been lifted to the top level in FlatCurry.

3 Note that variables need to be explicitly declared as free.
4 Note that higher-order applications are represented in FlatCurry using a predefined

operator named apply.

174 J. R. Tikovsky

FlatCurry is not only the basis for the implementation of analysis tools but
also for the description of Curry’s semantics. In Sect. 4 we consider the opera-
tional semantics of FlatCurry which was originally presented in [1], revised by
Hanus and Peemöller in [12] and augmented by us for concolic testing.

3 Satisfiability Modulo Theories

In this section we give a brief overview of satisfiability modulo theories (SMT)
and its dedicated solvers. Moreover, we present SMT-LIB, a library providing
common standards and benchmarks for the comparison of SMT solvers.

3.1 General Overview

An SMT problem [7] is a decision problem which can be represented as first-
order logic formulas containing special predicate symbols with additional inter-
pretations. These interpretations are predefined by so called theories which can
be applied during modelling and solving of SMT problems. For instance, there
are theories for integer and real arithmetic, but also for uninterpreted functions,
arrays, bit-vectors and recursive datatypes. Hence, an SMT instance is a general-
ization of a Boolean satisfiability (SAT) instance including additional predicates
from various underlying theories.

There is a wide range of applications for SMT solving, for example software
verification, constraint solving, planning and software testing - to mention only a
few. There are also many SMT solvers implementing various APIs and providing
different built-in theories. In this work, we focus on the Z35 solver developed by
Microsoft [6]. Z3 is an efficient, open-source SMT solver supporting the SMT-
LIB standard. We primarily chose Z3, because, in addition to basic types like
integers, it provides a theory for the definition of algebraic data types which
have just recently been added to the SMT-LIB standard.

3.2 SMT-LIB

As mentioned above, SMT-LIB6 is a library which aims at facilitating research
in the SMT sector. Among other things, it provides descriptions of background
theories, benchmarks for the comparison of SMT solvers, as well as a standard-
ized input and output language for such solvers [4]. When we refer to SMT-LIB
in the following, this input and output language is meant.

An SMT-LIB script is a sequence of commands describing an SMT prob-
lem. For instance, the declare-const command declares a constant of given type
(respectively sort). Z3 internally maintains a stack of declarations and formu-
las provided by the user. In order to add a formula to this stack, we can use
the assert command. As mentioned before, a formula is a first-order formula

5 https://github.com/Z3Prover/z3.
6 http://smtlib.cs.uiowa.edu/index.shtml.

https://github.com/Z3Prover/z3
http://smtlib.cs.uiowa.edu/index.shtml

Concolic Testing of Functional Logic Programs 175

including predicate symbols like < or + with additional interpretations. With the
command check-sat we can ask the solver to check the satisfiability of the cur-
rent formulas on the stack. If the formulas are satisfiable, Z3 will answer with
sat, otherwise with unsat. In case Z3 can not determine the satisfiability of a
formula, it will return unknown. If a formula is satisfiable, i.e., there is an interpre-
tation for the user-declared constants, which makes the asserted formulas true,
then we can retrieve the whole interpretation or only single bindings using the
commands get-model and get-value, respectively.

In addition to these commands, Z3 also supports the declaration of poly-
morphic algebraic data types via the command declare-datatype.7 After their
declaration, the type and value constructors can be used like any predefined sort
or value.

We conclude this section with a small SMT-LIB script demonstrating some
of the commands above. Reconsidering the example from the introduction with
the initial call “nthElem [42] 0”, we demonstrate the representation of path
constraints in SMT-LIB. As mentioned above, during concolic execution we do
not only consider the concrete call but also a symbolic one, namely “nthElem
xs n”. While evaluating the given expression, the variables from the symbolic
call are constrained by the branch decisions made along the concrete execution
path. The path constraints for the given call can be represented by the formula
xs = y : ys ∧ n = 0, where xs, y, ys and n are symbolic variables and : is the
constructor for non-empty lists. In order to compute input data which drives
the evaluation along an alternative execution path, we can negate a particular
path constraint and try to solve the resulting formula with the SMT solver. For
instance, we can negate the first constraint of the example above and represent
the resulting formula in SMT-LIB as follows.

1 (declare-datatype List (par (A) ((nil)

2 (cons (head A) (tail (List A))))))

3 (declare-const xs (List Int))

4 (declare-const n Int)

5 (assert (and (forall ((y Int) (ys (List Int))) (not (= xs (cons y ys))))

6 (= n 0)))

List. 2. Representation of path constraints in SMT-LIB

The first two lines show the declaration of a type representing polymorphic
lists in SMT-LIB. In contrast to Curry, data type declarations in SMT-LIB also
include selector definitions for the arguments of constructors like head. Lines 3
and 4 include the necessary constant declarations for the model. The SMT-LIB
formula representing the negated path constraint is depicted in lines 5 and 6.
Note that we need to universally quantify the arguments of the cons constructor
in the formula in order to receive an alternative constructor binding for xs.
Otherwise, Z3 will just bind xs to a non-empty list with more elements.

7 Note that we present the syntax of the declare-datatype command as it is specified
by the SMT-LIB standard version 2.6. At the moment of writing, version 2.6 had
just been released and Z3 still used an alternative syntax for the declaration of data
types.

176 J. R. Tikovsky

If we ask Z3 to check the satisfiability of this problem and return a binding
for xs and n, if possible, it will yield sat and the answer ((xs nil) (n 0)).

4 Concolic Interpretation of FlatCurry Code

In this section we describe the concolic interpretation of FlatCurry programs.
First, we explain at which points of evaluation symbolic information has to be
traced and which information is required for the generation of path constraints.
Then, we present an operational semantics for FlatCurry programs which enables
the tracing of this information during evaluation.

4.1 Tracing of Symbolic Information

As we have sketched in the introductory example in Sect. 1, the basic idea of
concolic testing is to evaluate a program using concrete input data and collect
symbolic information at the same time. This symbolic information corresponds
to the branch decisions made along a concrete execution path.

Recall that Curry programs use (overlapping) rules and pattern matching for
case distinctions. In FlatCurry programs, overlapping rules and pattern match-
ing have been made explicit by the use of non-deterministic choices and case
expressions, respectively. As non-deterministic choices and case expressions are
the only kinds of branches included in FlatCurry programs, these expressions are
the ones of interest for the collection of symbolic information during evaluation.

First, we take a look at purely functional programs. Reconsider the introduc-
tory example in List. 1. In the following listing the FlatCurry representation of
nthElem is depicted. Note that guards are transformed to case expressions with
the respective conditions as arguments.

nthElem xs n = case1 xs of

[] → Nothing

y:ys → case2 n == 0 of

True → Just y

False → case3 n > 0 of True → nthElem ys (n - 1)

False → failed

We assume that the concolic execution starts with the call “nthElem [42] 0”.
The case expressions in the program demand their arguments to be evaluated to
head normal form, so that a matching branch can be selected. Thus, first [42]

is reduced to head normal form selecting the second branch of case1. Next, the
head normal form of n == 0 is computed selecting the first branch of case2 and
yielding the result Just 42.

In order to reproduce this specific execution path for nthElem, we maintain
a symbolic variable for every branch decision made along this path and store
this variable together with the selected constructor. For branch decisions which
involve comparison operators on numerical literals, e.g. n == 0, we save the con-
straint associated with the chosen branch. In addition, we always store the case

Concolic Testing of Functional Logic Programs 177

identifier and the index of the selected branch.8 This information is needed dur-
ing search to keep track of already visited branches. Hence, we receive the follow-
ing symbolic trace for the given example: [(case1, 2/2, xssym ,(:)),(case2,
1/2, nsym = 0)].

Before we conclude this subsection, we take a look at a non-deterministic
program. Below the FlatCurry representation of insertND is shown.

insertND x xs = case1 xs of [] → [x]

y:ys → (x : y : ys) ? (y : insertND x ys)

We consider the call “insertND True [False]”, which evaluates to the non-
deterministic results [True,False] and [False,True]. Regarding the collection
of symbolic information in such programs, two approaches are possible: On the
one hand, we could generate traces including non-deterministic branch decisions.
In that case we would receive a trace which selects the second branch of case1

followed by a non-deterministic choice between an empty trace and one select-
ing the first branch of case1 for the example considered above. On the other
hand, we could encapsulate any non-determinism by constructing a search tree
during evaluation. The non-deterministic choices occuring in the program would
correspond to the branches of this tree and its leaves would include the various
non-deterministic results as well as the respective symbolic trace. Afterwards,
we could explore this search tree collecting all possible traces in a list.

Since the interpreter, on which we based the implementation of ccti, already
supported encapsulation of non-determinism, we chose the latter approach.
Hence, the following list of traces is computed for the given example:

[[(case1, 2/2, xssym1, (:))]

, [(case1, 2/2, xssym1, (:)),(case1, 1/2, xssym2, [])]]

For programs including free variables in case expressions we apply narrowing
during evaluation to consider all possible bindings for these variables and trace
the branch decisions resulting from these bindings accordingly. Note that all
traces resulting from a non-deterministic computation or a narrowed free variable
are considered during the search for alternative execution paths.

4.2 Augmented Semantics for Concolic Execution

We conclude this section with a description of an augmented operational
semantics for FlatCurry enabling the collection of symbolic information during
evaluation.

The semantics for concolic execution presented below addresses normalized
FlatCurry. During normalization of a FlatCurry program, constructor and func-
tion calls are flattened as well as case expressions. For this purpose, we introduce
let bindings for the arguments of calls and case expressions, e.g. the function call
“not False” is flattened to the expression “let x1 = False in not x1” where x1

is a fresh variable.
8 Note that in the actual implementation further information is collected which is

required for the transformation of FlatCurry to SMT-LIB and vice versa.

178 J. R. Tikovsky

We use the following definitions and notations in the presentation of the
semantics for concolic execution of normalized FlatCurry programs:

1. V is a set of variables.
2. Exp is a set of FlatCurry expressions.
3. The symbol “free” denotes a free variable.
4. A heap is a partial mapping from variables to either FlatCurry expressions

or to the special symbol “free”: Heap = V → {free} � Exp
5. The empty heap is denoted by [].
6. Γ [x] represents the value a variable x is bound to in a heap Γ .
7. Γ [x �→ e] corresponds to a heap Γ ′ with Γ ′[x] = e and Γ ′[y] = Γ [y] for all

y �= x.
8. A value is either a free variable which is bound in the associated heap or a

constructor applied to a sequence of variables: V alue ::= x | c(xn)
9. A symbolic trace T is a list of SymInfo objects.

10. A SymInfo object is a tuple consisting of a case identifier, a branch number,
a symbolic variable and the identifier of a FlatCurry constructor.

11. The operation ++ concatenates two lists.

The operational semantics (also referred to as the natural semantics) of nor-
malized FlatCurry uses a heap structure to represent the sharing of expressions
and computes a value for a given FlatCurry expression. In addition to this struc-
ture we use a symbolic trace to collect and pass symbolic information during
evaluation. This trace is extended whenever a branch decision has been made.

The individual evaluation steps of the natural semantics are formalized using
the inference rules depicted in Fig. 2. The inference rules of the semantics include
judgements of the form Γ, T : e ⇓ Δ,Υ : v which can be read as “the FlatCurry
expression e under the heap Γ and with incoming symbolic trace T evaluates to
value v, the (possibly modified) heap Δ and the (possibly extended) trace Υ”.

Apart from the rules (Select) and (Guess), the augmented semantics is equiv-
alent with the FlatCurry semantics presented in [12] except for the fact that
symbolic traces are additionally passed through the judgements. Below we give
a short description for every rule and explain the modifications to the rules
(Select) and (Guess) which are required for concolic execution.

(Value) A value can not be further evaluated and, thus, is directly returned.
(VarExp) If a variable which is bound to an expression in the current heap is

evaluated, the associated expression is evaluated to a value and returned.
Furthermore, the heap is updated correspondingly to enable the sharing of
subexpressions.

(Fun) Flattened function calls are further evaluated by evaluating the right-
hand side of the function. For that reason, we assume that the program
P is a global parameter of the calculus. In order to prevent name clashes,
we apply a renaming substitution σ whenever new variables are introduced
during evaluation.

Concolic Testing of Functional Logic Programs 179

(Let) The bindings of a let expression are renamed and then added to the heap.
After that, the main expression of the let e is evaluated with respect to the
bindings.

(Or) For the evaluation of non-deterministic choices one subexpression is chosen
non-deterministically to be further evaluated.

(Free) Similar to ordinary let expressions logic variables are renamed and added
to the heap. Then, the evaluation continues with the main expression e.

(Select) In case the inspected expression of a case expression is reducible to a
constructor-rooted term, the right-hand side of the corresponding case alter-
native is selected and further evaluated. In addition the trace is extended
with symbolic information binding the symbolic variable associated with the
case expression to the chosen constructor.

(Guess) If the argument of a case expression evaluates to a free variable. One
of the case alternatives is non-deterministically chosen. The free variable is
bound to the corresponding pattern and any variables inside this pattern
are bound as free. Moreover, depending on the selected alternative the sym-
bolic variable associated with the case expression is bound to the respective
constructor.

Fig. 2. Natural semantics for concolic execution of normalized FlatCurry programs

180 J. R. Tikovsky

5 Search Strategy

In the previous section we described the collection of symbolic traces during
the evaluation of a FlatCurry expression. A single trace corresponds to a path
through the associated symbolic execution tree and the symbolic information
derived from a single case expression corresponds to a node of this tree. To pro-
duce new test cases, we have to search for unexplored paths through that tree.
Hence, we need to select a node with unvisited branches and negate the path
constraint associated with that node. If there is a solution for the resulting con-
straints, new input data which will drive execution along one of these branches
can be computed.

A naive strategy - similar to the one presented in [9] - is to choose the
first node with unvisited branches which is closest to the root of the symbolic
execution tree. This strategy which basically corresponds to a breadth-first-like
search with branch coverage is currently used in ccti.

The general search algorithm of ccti is depicted in Fig. 3. Basically, two data
structures are used during search: On the one hand, there is a priority queue Q
storing the nodes of the symbolic execution tree in a strategy-defined order. The
naive strategy mentioned above can be implemented by using a priority function
preferring the node with the lowest depth in the tree. On the other hand, we
maintain a map of all case expressions M including still unvisited branches.
Note that we provide a generic interface for the implementation of the search so
that both data structures can be easily replaced to implement alternative search
strategies and coverage criteria.

The central function of the search is searchLoop. It evaluates the function
to be tested f with the given inputs in yielding potentially non-deterministic
results res and a list of symbolic traces Tss. The inputs and the results form
a new test case which is added to the set of test cases T . By calling process
the traces are processed to update the priority queue and the case map with the
information collected during the previous evaluation. More precisely, for every
SymInfo object (cid, bnr, x, c) included in a trace, the queue is extended with
information on the case identifier cid, the associated symbolic variable x and
the set of path constraints C using enqueue. This set includes all constraints
associated with the path leading from the root of the symbolic execution tree
up to that particular node. visit marks the selected branch bnr as visited and
adds the chosen FlatCurry constructor c to the set of known constructors for a
particular cid. Before processing further SymInfo objects of the trace, the set of
path constraints is extended with the constructor decision made in the current
SymInfo object by applying constr.

While the priority queue Q is not empty, we dequeue the next entry
(d, cid, x, C) from the queue. In order to compute input data driving execu-
tion along an alternative branch of the case expression identified by cid, we have
to generate an appropriate path constraint. Hence, we select the set of already
known constructors for that case expression from the case map and constrain
the associated symbolic variable x to be different than any known constructor
by calling getCons and noneOf, respectively. Next, we extend the set of path

Concolic Testing of Functional Logic Programs 181

constraints with the new constraint and call solve to apply the SMT solver. In
case the constraints are satisfiable, the resulting model is translated into valid
FlatCurry inputs with toFCY and a new iteration of the concolic search is
started. In case the constraints are not satisfiable or the solver can not deter-
mine their satisfiability, we proceed with the search considering constraints along
a different path.

Fig. 3. Basic search algorithm of ccti

6 Implementation

This section gives a brief overview of the implementation of ccti which is com-
pletely implemented in Curry. The concolic execution part of ccti is implemented
by a FlatCurry interpreter implementing the augmented operational semantics
of FlatCurry presented in Sect. 4.2. In this section we focus on the integration
of SMT in Curry.

As explained before, we want to apply SMT solvers to compute alternative
inputs from the information included in a symbolic trace. Hence, we need to
transform the path constraints, i.e., the constructor decisions made along an
execution path, into an SMT-LIB formula.

In Sect. 3.2 we demonstrated how to model path constraints for our run-
ning example in SMT-LIB (see List. 2) by declaring corresponding SMT-LIB

182 J. R. Tikovsky

types for the types used in the considered Curry program and representing
path constraints as simple relational formulas on constructor terms and integers,
respectively.

To simplify the translation of path constraints we provide some libraries
in Curry. Among these are a representation of SMT-LIB scripts as abstract
data types, a pretty printer and a parser to send String representations of the
scripts to the SMT solver and parse its responses. Moreover, an interface to call
SMT solvers via Curry as well as a transformation library to convert FlatCurry
expressions to SMT-LIB terms and vice versa are provided.

When we run ccti on a Curry module, the module and all its dependent mod-
ules are parsed to FlatCurry.9 To prepare for a type-safe translation of FlatCurry
constructor calls to corresponding SMT-LIB terms, the transformation library
then builds up bidirectional maps mapping both FlatCurry type and value con-
structors to their associated sort or term on SMT-LIB side. Furthermore, a
corresponding SMT-LIB declaration for all data types occuring in the program
is generated.

We also construct a type environment mapping the symbolic variables occur-
ing in the trace to their FlatCurry type and SMT-LIB sort, respectively. On the
one hand, this information is required for the declaration of variables in SMT-
LIB. On the other hand, it is needed to transform possible results found by the
solver into type correct FlatCurry expressions. Note that these results corre-
spond to alternative input data for the function to be tested and, thus, their
FlatCurry representation is required to start the next iteration of the concolic
execution.

We conclude this section taking a look at another example for the generation
of an SMT-LIB script. Reconsidering our running example let us assume that
we call ccti with the initial call “nthElem [] 0” this time. The concolic execution
of this call produces a symbolic trace which constrains the list argument to be
an empty list. If we try to model this path constraint in SMT-LIB, there is a
problem: nthElem is defined on polymorphic lists and the example call does not
specify a type for the list elements. Nevertheless, that type information has to be
determined for the translation, because SMT-LIB does not allow the declaration
of polymorphic constants. Hence, during translation of FlatCurry types to SMT-
LIB sorts, all occurrences of type variables are instantiated with a monomorphic
type. With regard to the generation of test cases, it seems reasonable to use a
type for instantiation which includes more than one value but is also simple.
For this reason, we use Curry’s Ordering type, which is equivalent to the one in
Haskell, whenever polymorphic types need to be instantiated.

Reconsidering the example call of nthElem from above, the resulting path
constraint is represented in SMT-LIB as shown below and running Z3 with this
script yields the answer ((xs (cons lt nil))).

9 Note that we actually use a variant of FlatCurry called TypedFlatCurry which corre-
sponds to FlatCurry with the exception that expressions are additionally annotated
with type information.

Concolic Testing of Functional Logic Programs 183

(declare-datatype Ordering ((lt) (eq) (gt))

(declare-datatype List (par (A) ((nil)

(cons (head A) (tail (List A))))))

(declare-const xs (List Ordering))

(assert (not (= xs nil)))

7 Application of ccti

In this section we want to take a closer look at the usage and applicability of
ccti regarding some practical examples. Note that this work is still in progress.
Hence, we only discuss the general applicability of our approach.

Currently, ccti expects a Curry module to include a main function calling
the function to be tested with user-specified inputs in order to initiate the con-
colic execution. For the future, we plan to support concolic testing of multiple
functions in a single run of ccti as well as a random-based generation of initial
input data.

For the following examples we applied the search algorithm presented in
Sect. 5 using branch coverage, i.e. execute every program branch at least once.
Applying ccti to our running example with the initial call “nthElem [42] 0”
produces four test cases. Among these is also one resulting in a failure, because
our implementation of nthElem does no handle negative indices. The minimum
number of three test cases (including the one with the failure) is generated, if
we call ccti with a list with at least two elements and an index greater than 0.

data Nat = IHi | O Nat | I Nat

add IHi y = succ y

add (O x) IHi = I x

add (O x) (O y) = O (add x y)

add (O x) (I y) = I (add x y)

add (I x) IHi = O (succ x)

add (I x) (O y) = I (add x y)

add (I x) (I y) = O (add (succ x) y)

succ IHi = O IHi

succ (O x) = I x

succ (I x) = O (succ x)

List. 3. Addition of binary numbers

For a more complex example, we consider the implementation of an addition
operation on a representation of binary numbers in Curry, which is depicted in
List. 3. Calling ccti with the initial call “add IHi IHi”, generates nine test cases.
These test cases cover all branches, but, in fact, even six test cases would be
sufficient for full coverage. This minimum number of test cases is found by ccti,
if we use “add IHi (I (O IHi))” to initialize the concolic execution.

184 J. R. Tikovsky

We conclude this brief case study considering our running example for a non-
deterministic operation, namely insertND. Calling ccti with “insertND True []”,
the following two test cases will be produced.10

insertND True [] = {[True]}

insertND True [False] = {[True, False], [False, True]}

Finally, we take a look at an example showing a limitation of branch coverage.
List. 4 shows a definition of an operation to compute all permutations of a list.

perm [] = []

perm (x:xs) = insertND x (perm xs)

List. 4. Permutation of lists

Considering the initial call “perm [False]” we receive the single test case
perm [False] = [False]. This test case covers both rules of perm but only the
first rule of insertND. Branch coverage makes no difference between different calls
of a function. A branch is already covered when an arbitrary call of a function
selects that particular branch. Thus, in our example, it is sufficient, if the non-
empty list branch of perm is visited in either of the two calls, i.e. the top-level call
of perm or the recursive one. Since our initial call already covers the non-empty
list branch when the top-level call of perm is evaluated, ccti does not consider
this branch for the recursive call, when using branch coverage. For that reason,
the recursive call of perm can only result in an empty list, and thus the second
and third rule of insertND are never tested.

For full coverage of insertND, ccti needs to produce an input list for perm with
at least two elements. To compute such a list, we need to reconsider all branches
in the recursive call of perm, even if they already have been visited in the top-
level call, i.e. different calls of the same function have to be covered, separately.
This approach corresponds to the function coverage criterion discussed in [8].
Using a prototypical implementation of function coverage with ccti yields three
additional test cases, a redundant one, one with an empty input list and one with
a two elemented input list. Hence, with function coverage perm and insertND are
fully covered.

8 Conclusions and Future Work

In this work, we have presented ccti, a tool for concolic testing of Curry programs.
We have extended the operational semantics of FlatCurry - a simplified core
language of Curry - to collect the necessary information for concolic testing
during evaluations. ccti is based on a FlatCurry interpreter implementing this
semantics. Applying an external SMT solver integrated in Curry, we compute
input data for the exploration of alternative execution paths. In contrast to the
narrowing-based test case generation, path constraints on literals can be mapped
directly to SMT by using suitable theories of the solver.

10 Note that we use a set notation to represent multiple non-deterministic results.

Concolic Testing of Functional Logic Programs 185

ccti provides support for the implementation of alternative search strategies
and coverage criteria. Although the achievement of full program coverage highly
depends on the coverage criterion, first applications of ccti show that our app-
roach is applicable for the automated generation of test cases of functional logic
programs.

For future work, we plan to further evaluate the applicability of ccti when
using different strategies and coverage criteria to perform concolic execution
on more complex programs. Another interesting aspect might be to transfer
the ideas from this interpreter-based approach to an instrumentation-based one.
This might be possible by instrumentalizing TypedFlatCurry programs before
compilation.

References

1. Albert, E., Hanus, M., Huch, F., Oliver, J., Vidal, G.: Operational semantics for
declarative multi-paradigm languages. J. Symbolic Comput. 40(1), 795–829 (2005)

2. Amaral, C., Florido, M., Santos Costa, V.: PrologCheck – property-based testing
in prolog. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 1–17.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07151-0 1

3. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM 47(4),
776–822 (2000)

4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: Version 2.5. Techni-
cal report, Department of Computer Science, The University of Iowa (2015). www.
SMT-LIB.org

5. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: International Conference on Functional Programming (ICFP
2000), pp. 268–279. ACM Press (2000)

6. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

7. de Moura, L., Dutertre, B., Shankar, N.: A tutorial on satisfiability modulo theo-
ries. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 20–36.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73368-3 5

8. Fischer, S., Kuchen, H.: Systematic generation of glass-box test cases for functional
logic programs. In: Proceedings of the 9th ACM SIGPLAN International Confer-
ence on Principles and Practice of Declarative Programming (PPDP 2007), pp.
63–74. ACM Press (2007)

9. Giantsios, A., Papaspyrou, N.S., Sagonas, K.F.: Concolic testing for functional
languages. In: Proceedings of the 17th International Symposium on Principles and
Practice of Declarative Programming, 14–16 July 2015, Siena, Italy (2015)

10. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
In: Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation, 12–15 June 2005, Chicago, IL, USA (2005)

11. Hanus, M.: CurryCheck: checking properties of curry programs. In: Hermenegildo,
M.V., Lopez-Garcia, P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 222–239.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63139-4 13

https://doi.org/10.1007/978-3-319-07151-0_1
www.SMT-LIB.org
www.SMT-LIB.org
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-73368-3_5
https://doi.org/10.1007/978-3-319-63139-4_13

186 J. R. Tikovsky

12. Hanus, M., Peemöller, B.: A partial evaluator for Curry. In: Proceedings of the 28th
Workshop on (Constraint) Logic Programming (WLP 2014) Proceedings of the
23rd International Workshop on Functional and (Constraint) Logic Programming,
15–17 September 2014, Wittenberg, Germany (2014)

13. Hanus, M. (ed.): Curry: An Integrated Functional Logic Language (vers. 0.9.0)
(2016). http://www.curry-language.org

14. Mesnard, F., Payet, E., Vidal, G.: Concolic testing in logic programming. TPLP
15(4–5) (2015)

15. Mesnard, F., Payet, É., Vidal, G.: On the completeness of selective unification in
concolic testing of logic programs. In: Hermenegildo, M.V., Lopez-Garcia, P. (eds.)
LOPSTR 2016. LNCS, vol. 10184, pp. 205–221. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63139-4 12

16. Palacios, A., Vidal, G.: Concolic execution in functional programming by program
instrumentation. In: Falaschi, M. (ed.) LOPSTR 2015. LNCS, vol. 9527, pp. 277–
292. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27436-2 17

17. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 38

18. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for C. In:
Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. ACM (2005)

http://www.curry-language.org
https://doi.org/10.1007/978-3-319-63139-4_12
https://doi.org/10.1007/978-3-319-63139-4_12
https://doi.org/10.1007/978-3-319-27436-2_17
https://doi.org/10.1007/11817963_38

Declarative XML Schema Validation
with SWI–Prolog
System Description

Falco Nogatz(B) and Jona Kalkus

Department of Computer Science, University of Würzburg, Am Hubland,
97074 Würzburg, Germany

falco.nogatz@uni-wuerzburg.de,

jona.kalkus@stud-mail.uni-wuerzburg.de

Abstract. Xml Schema is a well–established mechanism to define the
structure and constrain the content of an Xml document. While this
approach taken by itself is declarative, currently available tools for Xml
validation are not. In this paper we introduce an implementation of
an Xsd validator in Swi–Prolog, made publicly available as the pack-
age library(xsd). Our approach is based on flattening the Xsd and Xml
documents into Prolog facts. The top–down validation makes great use
of Prolog’s backtracking and unification capabilities. To ensure the com-
pliance to the Xsd standard and to support the test–driven development,
we have created a test framework based on the Test Anything Protocol
and Swi–Prolog’s quasi–quotations.

Keywords: Xml Schema · Xsd · Xml · Swi–Prolog · Validation
Quasi–quotation

1 Introduction

The Extensible Markup Language (Xml) [1] is one of the most used data formats
to store and exchange structured data. Especially in the context of web services,
Xml documents are often used for data transfer and as configuration files. These
use cases emphasise the importance for tools that ensure an expected format of
the used Xml documents.

One approach to specify the structure and content of Xml documents is to
use an Schema Definition (Xsd) [2]. It is used to specify the allowed ele-
ments in an Xml document, their data types, and additional rules the document
has to comply with. While every Xml document has to be well–formed, i.e. it
has to follow the general syntax rules for Xml, Xsd is used to ensure validity in
terms of conformity according to the specified data types and rules.

Version 1.0 of the Xsd specification was originally published in 2001, a sec-
ond edition followed in 2004. Since then, a great number of tools to validate
Xml documents against a given Xsd has been published. In 2012, the Xsd 1.1

c© Springer Nature Switzerland AG 2018
D. Seipel et al. (Eds.): DECLARE 2017, LNAI 10997, pp. 187–197, 2018.
https://doi.org/10.1007/978-3-030-00801-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00801-7_12&domain=pdf

188 F. Nogatz and J. Kalkus

specification [3] became a W3C Recommendation. It introduces new, significant
features like the ability to define assertions based on XPath [4] expressions and
conditional type assignments. Although completely backward compatible, these
new features require the handling of expressive, declarative rules which can often
not be easily added to existing tools, because they are mostly based on imper-
ative programming languages. Therefore, the number of Xsd validators which
support the most recent Xsd 1.1 standard is still limited. Three of the most pop-
ular tools with support for Xsd 1.1 are: Apache Xerces2 Java1, Oxygen Xml
Editor2, and Saxon Xslt3.

Swi–Prolog [5] already has good support for Xml. Together with Prolog’s
built–in backtracking and unification abilities, this makes it a good target plat-
form for a new, extensible Xsd validation software. In this paper, we present
an approach to process Xml and Xsd files using Swi–Prolog. The validation
module library(xsd) unfolds a given Xml and its Xsd into a knowledge base
representing the documents as Prolog facts. This way it is possible to define
declarative Prolog rules that ensure the schema properties for all instance nodes
that can be unified, resulting in a validation where the Xml nodes are processed
in a top–down manner.

To ensure the compliance to the Xsd standard, our implementation comes
with a test framework based on the Test Anything Protocol (Tap) [6]. It makes
great use of Swi–Prolog’s quasi–quotations [7] to directly embed example Xml
documents into Prolog source code as an external domain–specific language.

Our Xsd validator is available as a package for Swi–Prolog and listed in
its package list at http://www.swi-prolog.org/pack/list?p=xsd. It can be easily
installed using pack install(xsd) and used similar to built–in libraries by call-
ing use module(library(xsd)). The validator is published under MIT License
as open source at https://github.com/jonakalkus/xsd.

The remainder of this paper is organised as follows. In Sect. 2 we introduce
the work with Xsd and Xml files in Swi–Prolog and present possible represen-
tations in Prolog. In Sect. 3, the validation process is described. The embedding
of Xml into Swi–Prolog using quasi–quotations is presented along with the test
framework in Sect. 4. Finally, we conclude with a summary and discussion of
future work in Sect. 5.

2 On the Integration of Xml in SWI–Prolog

Prolog is well–known for processing natural language. However, Prolog is also
an excellent language to work with data given in a formal language. Swi–Prolog
is already widely used to process Xml documents. Recently, the integration
with semantic data given as Rdf/Xml [8] in Prolog has been an emerging field
of research, resulting in great support for Rdf/Xml in Swi–Prolog [9,10] and
1 http://xerces.apache.org/ [accessed 12 March 2018], Apache License 2.0.
2 https://www.oxygenxml.com/ [accessed 12 March 2018], proprietary license.
3 http://www.saxonica.com/ [accessed 12 March 2018], Xsd 1.1 support in Saxon
Enterprise Edition 9.5, proprietary license.

http://www.swi-prolog.org/pack/list?p=xsd
https://github.com/jonakalkus/xsd
http://xerces.apache.org/
https://www.oxygenxml.com/
http://www.saxonica.com/

Declarative XML Schema Validation with SWI-Prolog 189

decent semantic web frameworks like Cliopatria [11]. Their success depends on
stable and fast Rdf/Xml parsers.

2.1 A Motivating Example

As a motivating example, we will consider a small Xsd, as shown in Fig. 1.
Following the formal description of the Xsd language [2], it mainly consists of
descriptions of elements, simple and complex types, and attributes. We assume
basic knowledge about Xsd here and provide only a short, informal description.
The Xsd characterises Xml documents with a single root node <person>, and
<name> and <email> child nodes. The example document given in Fig. 2 is valid
against this Xsd, while the second Xml given in Fig. 3 is not valid because of
its missing <email> node and the wrong value abc for the attribute no of the
data type id.

Fig. 1. Example Xsd

Fig. 2. Valid Xml

Fig. 3. Non–valid Xml

The aim of library(xsd) is to identify the Xml of Fig. 2 as valid,
and the Xml of Fig. 3 as invalid. It provides a single predicate
xsd validate(+XSD,+XML) which succeeds only for XML documents that are valid
according to the given XSD.

2.2 Parsing Xml with library(sgml)

Xml is an application profile of the Standard Generalized Markup Language
(Sgml) [12] and therefore just a subset of Sgml. As a result, it is possible
to use an Sgml parser to load Xml files in Prolog. The first Sgml parser for
Swi–Prolog was created by Anjo Anjewierden and was based on the SP parser4.
Today’s versions of Swi–Prolog come with a faster Sgml parser implemented
as a C–library [10,13]. Both Sgml parsers share the same output format and a
4 http://www.jclark.com/sp/ [accessed 12 March 2018].

http://www.jclark.com/sp/

190 F. Nogatz and J. Kalkus

similar interface. Since Xsd is an application of Xml, the Sgml parser can be
used for both input file formats.

The Sgml parser can be used in Swi–Prolog after loading the module
library(sgml), which by default is bundled with Swi–Prolog. It provides a pred-
icate load structure(+Source,-Out,+Options) to load structured files like
Sgml,Html, orXml. Most importantly we use the options (i) dialect(xmlns),
to read in the given files as XML documents using the built–in namespace han-
dling, and (ii) keep prefix(true), to store the namespace’s URI along with the
node’s type. The latter option requires Swi–Prolog of at least version 7.3.26.

2.3 Nested Term Representations

Swi–Prolog’s built–in Sgml parser returns a nested list. Each node is represented
by a Prolog term of the form

element(ns(Prefix,URI):Type,Attributes,Children).

For instance, the Xsd of Fig. 1 generates the following term:

element(ns(xs,’http://www.w3.org/2001/XMLSchema’):schema,
[xmlns:xs=’http://www.w3.org/2001/XMLSchema’],
[element(

ns(xs,’http://www.w3.org/2001/XMLSchema’):element,
[name=seq], [...]), ...])

Seipel et al. have transformed this data structure into a more convenient form
called field notation [14]. It is based on association lists and triples of the form

Type:Attributes:Children

and integrates a declarative query mechanism called FnQuery [15].
In library(xsd), we use a top–down validation approach, where the valida-

tor simultaneously traverses the Xsd and Xml document, beginning with the
<xs:schema> resp. root node. At first sight, the nested term representation looks
like a good data structure for this approach using tree traversal. However, inXsd
it is possible to define types globally (like the simple type id in Fig. 1) which
are usually referenced by other elements which are not necessarily part of the
same Xml sub–document. The same applies for named element references using
<xs:element ref="..." />. Therefore, element types and names would have
to be stored globally.

2.4 Xml Flattening

The nested term can be avoided by flattening : the contained elements are
asserted as facts with a unique identifier. Based on the identifier it is possi-
ble to retrieve, for example, the parent node, all siblings, or any descendant.
In addition to this, globally defined types and named elements can be easily
accessed.

Declarative XML Schema Validation with SWI-Prolog 191

In [16], Nogatz et al. introduced xsd2json, a tool that translates an Xsd
into an equivalent Json Schema using Prolog and Constraint Handling Rules
(Chr) [17]. To represent the Xsd as Chr constraints, a similar flattening step
has been applied. The flattening implemented in library(xsd) is for the most
part an adapted version, which asserts Prolog facts instead of generating Chr
constraints. It can be separately used as xml flatten(+XML,?Handle) in the
sub–package library(xsd/flatten). If not provided, it returns a unique identi-
fier Handle to reference an already flattened Xml file. This handle is part of
every asserted fact to distinguish multiple loaded Xml files. In the code exam-
ples in this paper, we use xsd as the handle of a loaded Xsd document, and xml
for the loaded Xml document.

The asserted facts are similar5 to the Chr constraints generated by xsd2json:

– node(Handle, ID, Namespace, Type)
For each Xml node a new node/4 predicate is asserted, only holding its
Namespace and Type.

– node attribute(Handle, ID, Attribute, Value)
For each Xml attribute a new node attribute/4 is asserted, holding the
attribute’s name and value.6

– text node(Handle, ID, Text)
If an element’s child is simply a text and no nested Xml, a text node/3 is
asserted with its Text.

The node’s unique identifiers ID are generated inductively: (i) the root
node has an ID of [0], and (ii) the ID of all other nodes is of the form
[Position|Parent ID], with Position starting from 0 and being incremented
for every sibling. This way an element’s siblings, ancestors, and descendants can
be retrieved by simple unifications based on the element’s identifier.

For instance, the flattening of the Xsd of Fig. 1 generates the following
node/4 and node attribute/4 facts:

?- xml_flatten(’file.xsd’,xsd), listing([node/4,node_attribute/4,text_node/4]).

node(xsd, [0], ns(xs, ’http://www.w3.org/2001/XMLSchema’), schema).
node(xsd, [0, 0], ns(xs, ’http://www.w3.org/2001/XMLSchema’), element).
node(xsd, [0, 0, 0], ns(xs, ’http://www.w3.org/2001/XMLSchema’), complexType).
node(xsd, [1, 0], ns(xs, ’http://www.w3.org/2001/XMLSchema’), simpleType).
node(xsd, [0, 1, 0], ns(xs, ’http://www.w3.org/2001/XMLSchema’), restriction).
% ... and 5 other node/4
node_attribute(xsd, [0], xmlns:xs, ’http://www.w3.org/2001/XMLSchema’).
node_attribute(xsd, [0, 0], name, person).
node_attribute(xsd, [1, 0], name, id).
node_attribute(xsd, [0, 1, 0], base, ’xs:int’).
% ... and 9 other node_attribute/4

5 xsd2json is in active use and maintained. It is available as open source at
https://github.com/fnogatz/xsd2json (MIT License). Because of recent improve-
ments, the constraint functors have been slightly changed compared to [16].

6 Xml attributes in general do not have any namespaces. For special attributes like the
declaration of the namespace prefix xs in xmlns:xs=". . . ", this is handled separately.

https://github.com/fnogatz/xsd2json

192 F. Nogatz and J. Kalkus

Because the Xsd of Fig. 1 does not contain an Xml node with only text content,
no text node/3 fact is asserted.

3 Top–Down Validation by Simultaneous Tree Traversals

To validate an Xml against its Xsd both documents are traversed simultane-
ously. The document’s nodes are validated step–by–step, beginning with its root
node with the unique identifier of [0], followed by its descendants [0,0], [1,0],
and so on. The number of Xml and Xsd nodes which are involved in a single
validation step varies: a single Xml element might require several alternative
Xsd nodes (e.g., in case of <xs:choice> definitions); then again several Xml
elements can be specified by a single Xsd node (e.g., in case of <xs:element
maxOccurs="unbounded">).

We expect that both the Xsd and Xml are well–formed; the Xsd
is expected to strictly follow the Xsd specification. The main predicate
xsd validate/2 uses the predicate validate(+S Handle,+D Handle) of the
sub–package library(xsd/validate), which can also be used on its own.

The rules on how to validate a given Xml node are stated using the predi-
cate validate(+D Handle,+D ID,?Vals,+S Handle,+S ID). Given the two cur-
rent positions in the Xml and Xsd trees, specified by the appropriate pair
(Handle,ID), we have implemented rules to confirm its validity. The additional
argument Vals is an internal counter which is used to ensure, among others, the
correct number of elements in a <xs:sequence> with respect to the minOccurs
and maxOccurs properties. For common selections we provide predicates like
child(+Handle,?ID,?Child), which returns a child of the node with the given
ID, and vice versa.

Complex Type Validation. The validation process starts at the root nodes
of the Xml and Xsd document, given by their D Handle resp. S Handle. So
validate/2 is simply implemented as follows:

validate(S_Handle, D_Handle) :-
validate(D_Handle, [0], 1, S_Handle, [0]).

library(xsd) has only a single rule that can be applied for this initial goal
validate(xml,[0],1,xsd,[0]):

validate(D_Handle, D_ID, 1, S_Handle, S_ID) :-
node(S_Handle, S_ID, ns(_, ’http://www.w3.org/2001/XMLSchema’), schema),
child(S_Handle, S_ID, S_Child),
node(S_Handle, S_Child, ns(_, ’http://www.w3.org/2001/XMLSchema’), element),
validate(D_Handle, D_ID, 1, S_Handle, S_Child).

It reads as follows: The currentXml position is valid if theXsd is a <xs:schema>
node containing a <xs:element> child node which is valid, too. This is correct
according to the Xsd specification as there can be various root nodes defined
in the Xsd. They have to be handled as alternatives, i.e. there must be at least
one that is valid. If there is one, Prolog’s backtracking mechanism will find the
appropriate S Child and continues the validation at this point.

Declarative XML Schema Validation with SWI-Prolog 193

Rules that handle the validation of complex types contain validate/5 pred-
icates in the rule’s body to recursively validate all the contained elements. The
following more complex source code example demonstrates how to validate a
single element:

validate(D_Handle, D_ID, Vals, S_Handle, S_ID) :-
node(S_Handle, S_ID, ns(_, ’http://www.w3.org/2001/XMLSchema’), element),
attribute(S_Handle, S_ID, minOccurs, Min),
attribute(S_Handle, S_ID, maxOccurs, Max),
between(Min, Max, Vals), validate_element(D_Handle, D_ID, S_Handle, S_ID),
forall(between(Vals+1, Max, Next),

(get_nth_sibling(D_Handle, D_ID, Next, Next_ID),
validate(D_Handle, Next_ID, S_Handle, S_ID))).

A <xs:element> node is only valid if it is allowed at this position according
to the minOccurs and maxOccurs properties set in the Xsd’s attribute/4. In
addition, the element must be valid itself, i.e. of the correct type, etc. In the last
part, all sibling nodes referenced by the same Xsd position are ensured to be
valid, too.

The attribute/4 is a wrapper for the asserted node attribute/4 predicate.
It takes into account default values according to the Xsd specification. If, e.g.,
a minOccurs is set explicitly in the Xsd document via node attribute/4, it is
returned by attribute/4, otherwise the default value of 1 is used.

Simple Type Validation. The leaves of an Xml document tree are mostly
formed by elements of simple types. library(xsd) provides the sub–package
library(xsd/simpletype), which validates Xsd types like xs:int, xs:string, etc.
It also considers constraining facets like <xs:minInclusive>. For pattern–based
restrictions as they are used by <xs:pattern>, or Xsd’s xs:date and xs:time
data types, we make use of Swi–Prolog’s library(regex)7.

Backtracking. In the tool xsd2json as presented in [16], Nogatz et al. also
flattened a given Xsd in order to translate it into an equivalent Json Schema.
Instead of asserting Prolog facts, the node, node attribute, and text node
terms are propagated as Chr constraints. The Xsd document is later trans-
lated using a tree traversal, too. However, the Xsd validation in library(xsd)
makes great use of backtracking which would not be possible in Chr which is a
committed–choice language. E.g., when validating elements and sequences with
overlapping minOccurs and maxOccurs, there is often not just a single rule which
could be applied. There are also Xsd elements which define alternatives explic-
itly, e.g., in <xs:choice>, or the constraining facet <xs:enumeration>. These
alternatives are directly supported by Prolog’s built–in backtracking mechanism.

Performance Improvements Using Memoisation. Prolog’s backtracking
technique allows a compact definition of the validation rules. However, once the
backtracking has to be done, part of the already inferred knowledge gets dis-
carded, even though there are some sub–goals which might occur identically in

7 https://github.com/mndrix/regex [accessed 12 March 2018], The Unlicense.

https://github.com/mndrix/regex

194 F. Nogatz and J. Kalkus

later computations again. This behaviour can be observed especially forXsd doc-
uments with nested <xs:sequence> or <xs:choice> nodes with high maxOccurs
properties.

We implemented a wrapper which stores already computed validations in a
dynamic predicate xsd table(Original Call,Valid). If validate tabled/5
is called with arguments that have been checked before, its result
Valid={true,false} is returned immediately:

:- dynamic xsd_table/2.
validate_tabled(D_Handle, D_ID, Vals, S_Handle, S_ID) :-

(xsd_table(validate(D_Handle, D_ID, Vals, S_Handle, S_ID), Valid) ->
!, call(Valid) % still trigger backtracking if invalid

; validate(D_Handle, D_ID, Vals, S_Handle, S_ID) ->
asserta(xsd_table(validate(D_Handle, D_ID, Vals, S_Handle, S_ID), true))

; asserta(xsd_table(validate(D_Handle, D_ID, Vals, S_Handle, S_ID), false)),
!, false). % trigger backtracking

This memoisation technique is possible only because an Xml fragment is valid
against a given Xsd fragment independently of its surrounding elements. The
triple (D ID,Vals,S ID) is unique and it is not possible to be valid once and
invalid later, or vice versa. In edge cases with many nested <xs:sequence> or
<xs:choice> nodes, this saves up to 98% of the computation time.8

Compared to the traditional tabling implementations in Prolog [18,19], this
technique also stores failing computations. Swi–Prolog’s current tabling imple-
mentation only stores goals which can be inferred. It is therefore not possible to
use its library(tabling) to both store failing goals as well as retain Prolog’s back-
tracking semantics, since call(false) will prevent the addition of any tabled
predicate.

4 Test Framework Using Quasi–Quotations and TAP

library(xsd) has been developed in a test–driven approach. Currently its compli-
ance to the Xsd standard is ensured by more than 350 tests. Their definitions
and the provided test framework take more than three times the lines of code as
the core library. It has been used in a continuous integration environment using
the Travis CI 9 service.

We have implemented a test framework based on the Test Anything Proto-
col (Tap) [6]. The Swi–Prolog package library(tap)10 generates a Tap–conform
text output. This interface is supported by a wide range of tools for running,
rendering and analysing the test results.

The test framework is based on normal Xsd and Xml documents. Xsd doc-
uments can be directly used. Since a single Xsd should test only a small, specific
8 library(xsd) provides the options ’without-tabling’(Bool) and profile(Bool).
The example in /test/example/choice minmax returns: without memoisation 0.55s
with 3,628,657 inferences; with memoisation 0.01s with 50,370 inferences (Swi–
Prolog 7.7.5).

9 https://travis-ci.org/ [accessed 12 March 2018].
10 https://github.com/mndrix/tap [accessed 12 March 2018], The Unlicense.

https://travis-ci.org/
https://github.com/mndrix/tap

Declarative XML Schema Validation with SWI-Prolog 195

aspect of the validator, it is possible to define various test cases for each Xsd,
e.g., satisfactory and failing documents. To place all Xml test documents in a
single Prolog file, we have used quasi–quotations [7]. They had been added to
Swi–Prolog in version 6.3.17 and are a good mean to embed external domain–
specific languages into Swi–Prolog without any modification [20,21]. This way
the Xml can be easily annotated directly from within Prolog. The example Xml
of Fig. 3, which should be recognised as non–valid, is embedded into the Prolog
source code of our test framework using the following snippet:

’missing email node’(fail): {| xml ||
<person no="abc">
<name>John Doe</name>

</person> |}

5 Conclusion and Future Work

In this work, we have presented a declarative approach for Xsd validation in
Swi–Prolog. Due to its backtracking and unification mechanisms, Prolog suits
very well for implementing an Xsd validator which processes the Xsd and Xml
document simultaneously in a top–down manner. We have presented an alter-
native Xml representation in Prolog. It is based on three dynamic predicates
which are asserted for the given nodes. This flattening results in a non–nested
representation that can be easily queried. With the help of the presented induc-
tive rule to generate new unique identifiers, it is simple to find all ancestors,
descendants and siblings of a given Xml node using unification.

The library(xsd) is available at https://github.com/jonakalkus/xsd and pub-
lished under MIT License. It requires Swi–Prolog of at least version 7.3.26.
Because it has been developed in a test–driven approach, it provides a decent
test framework with currently more than 350 tests. Although not yet feature–
complete, this covers the bigger part of Xml Schema 1.0.11

To support features of the not yet widely adopted Xsd 1.1 standard,
library(xsd) currently misses support for XPath expressions. Although Swi–
Prolog provides a library(xpath), it is not compatible with our flattened repre-
sentation of the Xml documents.

The current implementation only uses the memoisation technique presented
in Sect. 3 as a first optimisation. Although the presented approach with Prolog’s
backtracking is very flexible, it is not optimal: given anXsd which only defines an
unbounded sequence of repeating elements, we would expect that its execution
time is linear to number of Xml nodes. But due to the backtracking in finding
both the possible elements as well as possible schema rules, this is not the case as
of yet.12 To achieve a better performance, the given Xsd file should be analysed

11 A list of currently supported Xsd features can be found at https://github.com/
jonakalkus/xsd/blob/master/FEATURES.md [accessed 12 March 2018].

12 The example in /test/example/sequence unbounded* returns: Xsd with 200 lines
of code in 0.11s with 281,288 inferences; 400 lines of code in 0.71s with 1,042,288
inferences (Swi–Prolog 7.7.5).

https://github.com/jonakalkus/xsd
https://github.com/jonakalkus/xsd/blob/master/FEATURES.md
https://github.com/jonakalkus/xsd/blob/master/FEATURES.md

196 F. Nogatz and J. Kalkus

in advance to create an individual validator. This generated Prolog program can
then be used to validate Xml files according to the Xsd.

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language (XML). World Wide Web J. 2(4), 27–66 (1997)

2. Fallside, D.C., Walmsley, P.: XML schema part 0: primer second edition. W3C
Recommendation (2004)

3. Gao, S., Sperberg-McQueen, C.M., Thompson, H.S., Mendelsohn, N., Beech, D.,
Maloney, M.: W3C XML schema definition language (XSD) 1.1 part 1: structures.
W3C Candidate Recommendation (2009)

4. Clark, J., DeRose, S., et al.: XML path language (XPath) version 1.0 (1999)
5. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theor. Pract.

Log. Program. 12(1–2), 67–96 (2012)
6. Specification of the Test Anything Protocol. https://testanything.org/tap-

specification.html. Accessed 12 Mar 2018
7. Wielemaker, J., Hendricks, M.: Why it’s nice to be quoted: quasiquoting for pro-

log. In: Proceedings of 23rd Workshop on Logic-based Methods in Programming
Environments (WLPE) (2013)

8. Beckett, D., McBride, B.: RDF/XML syntax specification (revised). W3C recom-
mendation 10(2.3) (2004)

9. Wielemaker, J., Schreiber, G., Wielinga, B.: Prolog-based infrastructure for RDF:
scalability and performance. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC
2003. LNCS, vol. 2870, pp. 644–658. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-39718-2 41

10. Wielemaker, J., Huang, Z., Van Der Meij, L.: SWI-Prolog and the web. Theor.
Pract. Log. Program. 8(3), 363–392 (2008)

11. Wielemaker, J., Beek, W., Hildebrand, M., van Ossenbruggen, J.: Cliopatria: a
SWI-Prolog infrastructure for the semantic web. Semant. Web 7(5), 529–541 (2016)

12. Goldfarb, C.F., Rubinsky, Y.: The SGML Handbook. Oxford University Press,
Oxford (1990)

13. Wielemaker, J.: SWI-Prolog SGML/XML parser. SWI, University of Amsterdam,
Roetersstraat 15, 1018 (2005)

14. Seipel, D.: Processing XML-documents in prolog. In: Workshop on Logic Program-
ming (WLP) (2002)

15. Seipel, D., Baumeister, J., Hopfner, M.: Declaratively querying and visualizing
knowledge bases in Xml. In: Seipel, D., Hanus, M., Geske, U., Bartenstein, O.
(eds.) INAP/WLP-2004. LNCS (LNAI), vol. 3392, pp. 16–31. Springer, Heidelberg
(2005). https://doi.org/10.1007/11415763 2

16. Nogatz, F., Frühwirth, T.: From XML schema to JSON schema: translation with
CHR. In: Proceedings of the 11th International Workshop on Constraint Handling
Rules (2014)

17. Frühwirth, T.: Theory and practice of constraint handling rules. J. Log. Program.
37(1), 95–138 (1998)

18. Swift, T., Warren, D.S.: XSB: extending prolog with tabled logic programming.
Theor. Pract. Log. Program. 12(1–2), 157–187 (2012)

19. Desouter, B., Van Dooren, M., Schrijvers, T.: Tabling as a library with delimited
control. Theor. Pract. Log. Program. 15(4–5), 419–433 (2015)

https://testanything.org/tap-specification.html
https://testanything.org/tap-specification.html
https://doi.org/10.1007/978-3-540-39718-2_41
https://doi.org/10.1007/978-3-540-39718-2_41
https://doi.org/10.1007/11415763_2

Declarative XML Schema Validation with SWI-Prolog 197

20. Nogatz, F., Seipel, D.: Implementing GraphQL as a query language for deductive
databases in SWI-Prolog using DCGs, quasi quotations, and dicts. In: Proceedings
30th Workshop on Logic Programming (WLP) (2016)

21. Seipel, D., Nogatz, F., Abreu, S.: Domain-specific languages in prolog for declar-
ative expert knowledge in rules and ontologies. Comput. Lang. Syst. Struct. 51,
102–117 (2018). https://doi.org/10.1016/j.cl.2017.06.006

https://doi.org/10.1016/j.cl.2017.06.006

plspec – A Specification Language
for Prolog Data

Philipp Körner(B) and Sebastian Krings

Institut für Informatik, Universität Düsseldorf, Universitätsstr. 1,
40225 Düsseldorf, Germany

p.koerner@uni-duesseldorf.de, krings@cs.uni-duesseldorf.de

Abstract. In general, even though Prolog is a dynamically typed lan-
guage, predicates may not be called with arbitrarily typed arguments.
Assumptions regarding type or mode are often made implicitly, without
being directly represented in the source code. This complicates identi-
fying the types or data structures anticipated by predicates. In conse-
quence, Covington et al. proposed that Prolog developers should imple-
ment their own runtime type checking system.

In this paper, we present a re-usable Prolog library named plspec. It
offers a simple and easily extensible DSL used to specify type and struc-
ture of input and output arguments. Additionally, an elegant insertion
of multiple kinds of runtime checks was made possible by using Prolog
language features such as co-routining and term expansion. Furthermore,
we will discuss performance impacts and possible future usages.

Keywords: Prolog · Runtime checks · Type system
Data specification

1 Introduction

In general, even though Prolog is a dynamically typed language, predicates may
not be called with arbitrarily typed arguments. Assumptions regarding type or
mode are often made implicitly, without being directly represented in the source
code. In general, calling a predicate with an unintended argument might lead to
stack overflows, infinite loops or any kind of undesired behavior. This complicates
identifying the types or data structures anticipated by predicates.

For instance, assume you want to call a Prolog predicate in a newly acquired
library. Documentation reveals that it implements the desired functionality, yet
the call fails. The cause is ambiguous: it could be that the input was as intended,
but no solution exists. Another possibility is that the input is unintended, but
a call to a transformation predicate beforehand would have solved the issue.

Ideally, available documentation can be used to resolve any ambiguities.
However, documentation in natural language has its limits: it cannot convey
the entirety of information precisely and often gets outdated when changes are

c© Springer Nature Switzerland AG 2018
D. Seipel et al. (Eds.): DECLARE 2017, LNAI 10997, pp. 198–213, 2018.
https://doi.org/10.1007/978-3-030-00801-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00801-7_13&domain=pdf
http://orcid.org/0000-0001-7256-9560
http://orcid.org/0000-0001-6712-9798

plspec – A Specification Language for Prolog Data 199

made to the code. As an example, consider the following excerpt taken from the
documentation of member/2 as implemented in SWI-Prolog [21]:

“member(?Element, ?List) is true if Element occurs in the List.”
One issue is that behavior is entirely undefined in case the second argument

is not a list. In consequence, one cannot distinguish between failures such as
member(a, [b,c,d]), where the second argument is a list but does not contain
the element a, and member(a, a), where the second argument is not a list.

In its current implementation, the predicate succeeds even if the second argu-
ment is not a proper list, i. e., a list not terminated by []. In consequence, a
call such as member(a, [a,b|x]) is successful. Judging by the documentation
alone, it remains unclear whether this is intended.

To overcome the limitations of documentation and to gain automatic verifi-
cation, Covington et al. proposed that Prolog programmers should implement
their own ad-hoc runtime type system [3]. Instead, we argue that by making use
of Prolog language features, a simple and easily extensible DSL can be shipped
as a reusable library called plspec.

The library is open source and freely available under MIT license. It can be
downloaded from the GitHub Repository found at https://github.com/wysiib/
plspec. It has been tested with both SWI Prolog and SICStus Prolog.

plspec is heavily influenced by clojure.spec [5], which was recently added to
Clojure. The motivation for clojure.spec is similar to the one for plspec. Both
languages are dynamically typed, often rendering it hard to identify which data
should be passed to functions and what values are returned. Additionally, nested
data structures can be large and confusing to inspect without tool support. Both
libraries enable describing data based on construction out of small and simple
building blocks. clojure.spec utilizes functions as building blocks, while plspec
maintains a database of specifications described by Prolog terms.

In Prolog, we can insert runtime checks in order to distinguish between fail-
ures due to the absence of solutions and failures caused by malformed input data.
Furthermore, we can check whether variables are bound to invalid values inside
of the called predicate. These kinds of errors might be hidden if the predicate
fails later on due to unrelated reasons. Finally, we can add guarantees that if a
predicate was called in a certain way and succeeds, variables will be bound to
data in a specific format.

Note that plspec is more than a simple type checker for Prolog’s type system.
Rather, it can be seen as an additional optional [2] dependent type system:

– plspec does not change the semantics of annotated Prolog programs, as long
as specifications are implemented correctly and the program adheres to them.
In case specifications are violated, an error handler is called in addition.

– plspec’s annotations are entirely optional. In particular, one can only partially
annotate predicates.

– Specs may be instrumented in order to take into account runtime values. In
this case, plspec specifications define a system of dependent types.

https://github.com/wysiib/plspec
https://github.com/wysiib/plspec

200 P. Körner and S. Krings

In the following, we will focus on how plspec’s annotations can be instru-
mented for different types of runtime checks, including traditional contracts [12]
by specifying pre- and postconditions as well as invariants on variables.

2 Usage and Semantics

Our goal is to associate predicates with information regarding type, form and
mode of arguments, most importantly what a valid argument looks like.

In order to describe data, we use so-called specs. A spec is either defined
by a programmer by registering it via an interface predicate, a combination of
multiple existing specs or one of following built-ins.

2.1 Built-in Specs

We implemented most predicates that can be used to examine terms as atomic
specs. These are float, integer, number, atomic, atom, var, nonvar and
ground. To verify that a term matches its spec, we call the built-in Prolog
predicates with the same name, ensuring that these specs bear the common
meaning and are easy to understand. Additionally, we add any to describe any
Prolog term.

Furthermore, one can describe non-scalar data using recursive specs. The
spec list(X) is matched if and only if the value is a (potentially empty) list
of elements satisfying the spec X. Lists with a fixed length can be described via
tuple(X), where X is a list of specs which describe the element in that position.
As an example, tuple([integer, atom]) is matched by the value [3, a], but
neither [a, 3] nor [3, a, b].

Compound terms can be described via compound(X), where X is a compound
term with the functor the term shall have. Its arguments have to be specs that
describe what kind of data should be contained in that position of the term. For
example, compound(foo(atom, var)) is matched by foo(bar, X).

Finally, specs can be combined with so-called connectives. So far, built-ins
are and(X) and one_of(X), where X is a list of specs. In the case of and, all specs
have to be matched. For one_of, it is sufficient if at least one spec is fulfilled.

2.2 Instrumentation

Currently, plspec allows instrumentation of specs in three ways:

– Preconditions ensure that upon entry of a predicate, a given spec is matched.
– Invariants ensure that at all times during execution, a spec is matched or can

still be fulfilled in case the argument is not ground.
– Postconditions ensure that if a predicate was called in a certain way, upon

successful exit a second spec is matched.

plspec – A Specification Language for Prolog Data 201

Preconditions are a way to overcome the problems presented in Sect. 1. The
idea is that all valid combinations of arguments to a predicate should be enu-
merated by the developer. In Prolog, there are multiple ways to call a predicate
regarding instantiation of variables. However, with preconditions the developer
can clearly state which calls were considered during implementation and testing.

In consequence, when using specs we can be sure that a failure of a predi-
cate with a fulfilled precondition is intended behavior and, analogously, if the
precondition is violated it is a type error.

In order to define a precondition, the interface predicate spec_pre/2 is used.
Apart from the predicate, it takes a list of specs as an argument which can
be understood as the argument vector passed to the predicate. It is allowed to
specify multiple preconditions with the semantics that at least one precondition
has to be matched. Otherwise, the error handler is called. For preconditions, the
value a predicate is called with is passed to the predicate implementing the spec.

:- plspec:spec_pre(even_pred/1, [integer]). % the precondition
:- enable_spec_check(even_pred /1). % instrumenting it

% for runtime checks
even_pred(X) :-

0 is X mod 2.

?- even_pred (0).
true % intended success

?- even_pred (1).
false % intended failure

?- even_pred(_).
! plspec: no precondition was matched in even_pred /1
! plspec: specified preconditions were: [[integer]]
! plspec: however , none of these is matched by: [_G1322]
ERROR: Unhandled exception: plspec_error

Fig. 1. An example for preconditions

An example is shown in Fig. 1. We define a predicate even_pred/1 that suc-
ceeds if the parameter is an even integer and fails for odd integers. In particular,
the meaning of the spec is that only integer values are valid parameters. Other-
wise, no guarantees are made whether there is correct behavior in this call, may
it be failure or throwing an exception.

Thus, if we pass a variable to the annotated predicate, we do not get an
exception from is/2 that the arguments are not sufficiently instantiated but
rather a print and an exception from plspec. This standard error handler can be
replaced by a custom one, for example one that calls trace in order to start the
debugger at this particular point in the program.

Invariants have a more sophisticated semantic: intuitively, they specify the data
structures a predicate should work with. As soon as variables are bound to a
value, they are checked as far as possible according to the spec. If the binding
involves other variables, their check will be delayed until they get bound.

202 P. Körner and S. Krings

When a variable is bound to anything that cannot satisfy the spec
anymore, the error handler will be called. One can specify invariants via
spec_invariant/2. Again, the second argument is a list of specs with the same
interpretation as above, i.e., for invariants the spec predicate is only called with
ground values.

:- plspec:spec_invariant(invariant_violator /1, [atomic]).
:- enable_spec_check(invariant_violator /1).
invariant_violator(X) :-

X = [1], X == [2]. % fail in a sophisticated way
invariant_violator(a).

?- invariant_violator(a).
true.

?- invariant_violator(_).
! plspec: an invariant was violated in invariant_violator /1
! plspec: the spec was: atomic
! plspec: however , the value was bound to: [1]
ERROR: Unhandled exception: plspec_error

Fig. 2. An example for invariant violations

This allows uncovering the kind of programming error shown in Fig. 2: there,
we call the predicate invariant_violator with an anonymous variable. In the
first rule, it will be bound to the list [1]. However, the specification of the
argument to invariant_violator says that it should be atomic if bound. Since
[1] is neither a variable nor atomic, the error handler is called.

If we would not specify this invariant, the first rule would fail since [1] is
not equal to [2]. Thus, Prolog would backtrack into the second rule and bind
the variable to the atomic value a. The invalid binding of X to [1] could not be
determined without reading the source code. In particular, unit tests could never
expose this issue. This kind of programming errors might trigger unintended co-
routines whose effects might be hard to pinpoint.

Invariants are implemented by making use of co-routines. Thus, if the Prolog
implementation does not support this feature, only pre- and postconditions are
available. If the application itself uses co-routines, the effect depends on the
execution order. However, as long as these co-routines do not fail beforehand, it
has no influence on plspec.

Postconditions specify that if a certain condition held upon entry of a predi-
cate, a second condition is implied on success. As for preconditions, the resulting
value is used in order to call the predicate implementing the spec.

In particular, this allows to specify a promise that variables will be bound
to values of a specified type. No promise is made if the predicate fails since no
variables are bound then.

In plspec, one can use one or more instances of spec_post/3 for postcondi-
tions. Apart from the predicate, it takes two lists of specs understood as argu-
ment vectors. The semantics is that if the first list of specs matches when the
predicate is called, the second list of specs has to match if the predicate succeeds.

plspec – A Specification Language for Prolog Data 203

:- spec_post(my_member /2, [any , var], [any , list(any)]).
:- spec_post(my_member /2, [var , list(int)], [int , list(int)]).
my_member(H, [H|_]).
my_member(E, [_|T]) :-

my_member(E, T).

Fig. 3. An example for postconditions

:- defspec(tree(X), one_of ([compound(node(tree(X),X,tree(X))),
atom(empty)])).

Fig. 4. A Spec for a tree of a given type

In Fig. 3, we define two postconditions for an implementation of the member
predicate. The first postcondition guarantees that if the predicate succeeds and
the first argument was a variable, then it will be bound to a list. A different
promise is made in the second precondition: if now the first parameter of the call
is a homogeneous list of type int, the second one is a variable and the predicate
succeeds, then the variable will be bound to a value of type int. In case not
postcondition matches, e.g., for my_member(1,[1,2]), nothing is checked.

3 Implementation

Specifications which are readable and easy to understand are useful for docu-
mentation purposes without any additional code being executed. In this section,
we will explain how we maintain the spec database, how specs are validated and
how we instrument the annotations described in Sect. 2 for runtime checks.

3.1 Maintenance and Addition of Specs

Specs are stored in Prolog’s fact database. For simplicity, we distinguish between
different kinds of specs that are handled separately. The reason for this is that
they have different roles. Since plspec was designed with extensibility in mind,
users can define specs themselves and add them to plspec dynamically.

In the following, we present the reason for distinguishing between different
kinds of specs and present each of them. Built-in specs are implemented in the
same way users could implement them without modifying plspec’s source code.

Aliasing. defspec/2 allows defining new specs via composing existing ones. The
first argument is an alias for the resulting spec, while the second argument con-
sists of other specs. Recursive specs are allowed. However, they should consume
at least one bit of information of a term in order to avoid infinite loops.

A built-in alias for integer is int. In the database, they are stored as a
dynamic fact that maps the alias to the composition of specs. If an alias is
encountered by the verification predicate, it just looks up its definition and
continues with that spec.

204 P. Körner and S. Krings

Newly defined specs might also be compound terms which pass information,
e. g., inner specs, to the other specs in form of variables. As an example, Fig. 4
shows how to define a spec for a tree of elements of a given type. A tree is
defined to be either the atom empty or a compound term with the functor node
and three arguments: the first and last argument are trees of the same type,
whereas the middle argument is any value of the given type.

Valid values for tree(int), a tree of integers, include node(empty,1,empty)
and empty. Neither node(empty,not_an_integer,empty), where the middle
value is not of the given type, nor tree(empty,1,empty), where the functor
does not match, are valid.

Verification via Predicates. Another option is to implement a spec via a
predicate that succeeds if a value is valid and fails otherwise. This can be achieved
with defspec_pred/2, where the first argument is the new spec and the second
is the predicate used for validation, possibly with some arguments specified.

Again, new specs might be compound terms and pass information to the
predicate. The value that should be checked will always be appended as last
argument to the predicate call.

Note that this implementation of specs is only suitable for values that are
bound in a single unification step. Otherwise, another mechanism should be used
as shown below. As an example, we can reuse the predicate even_pred/1 from
Fig. 1 which tests whether an integer is even or not. In order to use this predicate
as a spec, it can be defined by :- defspec_pred(even, even_pred).

Then, every time the spec even is used, even_pred/1 is called with the value
as argument. If it fails, the value is considered invalid. Since even_pred/1 was
annotated earlier, it will throw an exception if the value is not an integer.

Regarding built-ins, most atomic specs like integer or nonvar are imple-
mented this way. When such a spec is encountered in plspec, the predicate is
simply called with the current value.

Thus, this predicate should not have any side-effects or bind variables used
in the passed term which might fire additional co-routines. In fact, checking
specifications at runtime should not interfere with the execution of the annotated
program in any way. In order to ensure this, we copy each term before using it
to check a plspec annotation. If the spec predicate succeeds, the original term is
compared to its copy. If a variable was bound, an error message will be printed.

Recursive Spec Predicates. The third way to define specs is more involved.
If a value is not bound in a single unification step but rather “consumes”
only some part of the value, an appropriate spec can be registered by calling
defspec_pred_recursive/4.

Recursive specs can be implemented based on a predicate verifying a part
of the property, the “consumption” mentioned above. Afterwards, it hands back
control to plspec and exposes new specs and variables that should be checked.

This predicate is the second argument to defspec_pred_recursive/4. It will
be called with all arguments directly wired in the spec definition. Additionally,

plspec – A Specification Language for Prolog Data 205

the value is passed to the predicate. The last two arguments to that predicate
are two variables. The first variable should be bound to a list of specs and the
second variable to a list of values which might still be variables themselves. plspec
will take these values and check them against the returned specs.

The third argument to defspec_pred_recursive/4 is a predicate which
merges the results of those checks. The basic operations and as well as or already
are implemented and can be used. If a property like “exactly m out of n specs
shall be true” is desired, this predicate has to be implemented by the user.

Finally, the fourth and last argument is the merge predicate which is called
for invariant checks. It has to account for the fact that values might not be fully
instantiated yet. In plspec, this predicate is implemented using co-routines in
order to wait for further instantiation of the data to be verified. and_invariant
as well as or_invariant are already implemented.

Internally, we implemented the checks for compound terms, lists and tuples
like this. The functor of a compound term is immediately checked. Following, the
specs of its arguments and the current values are returned because they might
involve variables that are bound later.

As an example, consider the spec list(int) and the value [1,X|T]. A given
list is deconstructed as far as possible in order to check the outer spec, i. e.,
the value is actually is a list. Then, the inner spec int is repeated for all ele-
ments. Here, we check that both 1 and X are integers. Since X is a variable, this
check is handled by a co-routine that fires once X is bound. In presence of non-
instantiated tails, the outer spec is kept and delayed until further instantiation.
This means, a co-routine is set up that recursively checks that T also matches
the spec list(int). The spec tuple(_) is implemented similarly. In both cases,
the resulting specs need to be merged with and.

Connectives. Connectives are specs that do not consume any part of a value.
While they are implemented exactly like the recursive specs above, they are
stored separately. Many connectives might have infinite equivalent specs, e. g.,
int is the same as or([int]) and or([int, int]). Thus, connectives are
avoided when enumerating possible specs for a value.

These kind of specs are registered by calling defspec_connective/4, where
arguments and semantics exactly match those of defspec_pred_recursive/4.
As above, built-in examples are one_of as well as and, which allow specifying
at least one or all specs have to match a value. one_of is implemented with or
as the merge predicate.

3.2 Instrumenting Specifications for Runtime Checks

In order to insert runtime checks for the properties specified in plspec annota-
tions, we make use of term expansion, i.e., source-to-source transformation.

Since annotations can also function as plain documentation, the user can
explicitly state which predicates should be expanded by inserting runtime checks

206 P. Körner and S. Krings

1 my_member(A, B) :-
2 ([[var, list(any)], ...]=[] -> true
3 ; plspec_some(spec_matches([A, B], true), [[var, list(any)], ...])
4 -> true
5 ; error_handler_pre(my_member/2, [A, B], [[var, list(any)], ...])),
6 ([[any, list(any)]]=[C]
7 -> lists:maplist(plspec:invariant_check(my_member/2), C, [D, [E|F]])
8 ; true),
9 [A, B]=[D, [E|F]],

10 plspec:which_posts([[any, var]], [[any, list(any)]], [D, [E|F]], G, H),
11 my_member(D, F),
12 lists:maplist(plspec:check_posts([D, [E|F]]), G, H).

Fig. 5. Expanded recursive rule

utilizing the given annotations. We will explain the term expansion on the exam-
ple of the second, recursive rule of our my_member/2 predicate shown in Fig. 3.

Consider Fig. 5: in lines 2–5, we check whether any precondition is specified.
If there is at least one precondition, the plspec_some call will check whether at
least one precondition is satisfied and an error is thrown. If no precondition was
satisfied, no check will be performed. The check will simple try to conform each
spec with each value the predicate was called with.

Afterwards, specified invariant checks are set up in lines 6–8. Note that there
is no call to an error handler yet. Instead, the check and potential error handling
happens inside of co-routines which will be described in more detail later.

The unification with the head of the rule happens in line 9. Note that A and
B in line 1 are fresh variables. Otherwise, if the arguments do not unify with the
head, we would not have an opportunity to catch potential errors there.

In line 10, the premises of the implications stated for postconditions are
verified. Conclusions of the postconditions and whether they hold are checked
again in line 12. The error handling for postconditions is not shown here because
it is part of the check_posts predicate. Between these two steps that verify the
postcondition, the original goal remains in line 11. This ensures the correct values
are used for both parts of the postcondition.

3.3 Co-routining for Invariants

Invariants are violated as soon as variables are bound to incorrect values. This
can be checked by setting up a number of co-routines.

defspec pred is a special case of defspec_pred_recursive: it consumes
the entire value in one go without producing new values. The trade-off is that
values for this kind of spec must be bound in a single step. Otherwise, the co-
routine that blocks until the value is not a variable anymore fires on a partially
instantiated term and fails. On the other hand, blocking until a value is ground
does not catch errors where partial instantiation is undesired. This allows easy
implementations because no internal structure of a term has to be exposed.

On the other hand, defspec_pred_recursive produces new specs and new
values. For example, one can bind a variable to a compound term with a given
functor but bind its arguments later on. These arguments as well as their

plspec – A Specification Language for Prolog Data 207

and_invariant([], [], _, true).

and_invariant([HSpec|TSpec], [HVal|TVal], Location, R) :-

setup_check(Location, ResElement, HSpec, HVal),

and_invariant(TSpec, TVal, Location, ResTail),

both_eventually_true(ResElement, ResTail, R).

both_eventually_true(V1, V2, Res) :-

when((nonvar(V1); nonvar(V2)),

(V1 == true -> freeze(V2, Res = V2)

; nonvar(V1) -> Res = V1

; V2 == true -> freeze(V1, Res = V1)

; nonvar(V2) -> Res = V2)).

Fig. 6. An implementation of and based on co-routines

corresponding specs have to be exposed to plspec, that will set up new co-
routines on them in return. This way, all invalid bindings of variables can be
accounted for.

The tricky part is that results of subterms usually only propagate one at a
time. If the third argument of a compound term is bound incorrectly, but the
first argument remains a variable, plspec has to immediately fail. Otherwise, the
first variable might not be bound at all and the error would go unnoticed.

Thus, a second merge predicate able to deal with co-routines is required. An
implementation merging the results with the connective and is shown in Fig. 6.

The predicate setup_check will set up co-routines in the same way as the
original spec did, using the exposed structure of terms. If the check succeeds,
ResElement is bound to true or, otherwise, an error term containing a reason.

The connective is chained between the results. For example, if the term
foo(1, a, X) is matched against compound(foo(int, atom, var)), the pred-
icate int(1), atom(a), var(X) is formed. Each of the three calls is set up indi-
vidually using its own co-routine. As soon as one fails, the entire formula is false
and all co-routines are terminated by unifications in both_eventually_true.

Analogously, in order to implement or, a single true suffices in order for the
formula to be true and to terminate all co-routines that were set up on the other
disjuncts. Additionally, it has to be propagated when all disjuncts fail in order
to throw an error. However, it is enough to check all alternatives only when we
can determine all of them. Because we only want to raise an error if the entire
disjunction evaluates to false but one alternative cannot be evaluated yet, we
can understand non-termination as “still possible”.

4 Performance Impact

Since specs are checked at runtime, naturally there is an overhead. In this section,
we discuss which predicates should be annotated by measuring the performance
impact caused by the runtime checks. As a first example, we consider member/2
that succeeds if the second argument is a list containing the first argument.

208 P. Körner and S. Krings

member(Element, [Element|_Tail]). member_entry(Element, List) :-

member(Element, [_Head|Tail]) :- member(Element, List).

member(Element, Tail).

Fig. 7. Definition of member/2

:- spec_pre(member/2, [any, one_of([var, list(any)])]).

:- spec_invariant(member/2, [any, list(any)]).

:- spec_post(member/2, [any, any], [any, list(any)]).

Fig. 8. Possible specs of member/2

:- spec_pre(reverse/3, [list(any), list(any), var]).

:- spec_pre(reverse/3, [var, list(any), list(any)]).

:- spec_invariant(reverse/3, [list(any), list(any), list(any)]).

:- spec_post(reverse/3, [list(any), list(any), var],

[list(any), list(any), list(any)]).

reverse(L, Rev) :-

reverse(L, [], Rev).

reverse([], Acc, Acc).

reverse([H|T], Acc, Rev) :- !,

reverse(T, [H|Acc], Rev).

Fig. 9. Annotated version of reverse

In Fig. 7, the definition of member/2 is shown. Additionally, we define a pred-
icate member_entry/2 that wraps the member/2 predicate. One could argue,
that valid calls to member/2 should have a list as a second argument. While it
is totally sound that the predicate just fails if the second argument is not a list,
in most cases such a call indicates a programming error somewhere in the code.

Thus, we add annotations to member/2 and, analogously, to member_entry/2
as shown in Fig. 8. The spec_pre directive allows that the element might be of
any type, but the second argument is either a variable or a proper list. Secondly,
spec_invariant ensures that if the second argument is bound, it still has to be
possible for it to become a proper list. Lastly, spec_post guarantees that if the
predicate succeeded for any input, the second argument will be a proper list.

We consider three benchmark configurations: first, the predicate is not anno-
tated with a spec. Second, a spec is applied to the entry point, but not the
recursion. Third, the spec is checked in each recursion step.

These calls are made to member/2 with an integer Index and a list of integers
ranging from 1 to N , and to reverse/2 with the same list and a variable.
Additionally, we benchmarked calls to reverse with an accumulator that is
implemented and annotated as in Fig. 9. For the entry level benchmark, we only
annotate reverse/2, dropping the second spec in each of the argument vectors.
Each run is repeated ten times and the median runtime is given. All benchmarks

plspec – A Specification Language for Prolog Data 209

Table 1. Runtimes and inference count of multiple kinds of annotations

Program Index Runtime (msecs) Inferences

len=100 len=1000 len=2500 len=100 len=1000 len=2500

member 50 0 0 0 51 51 51

100 0 0 0 101 101 101

500 0 0 0 103 501 501

1000 0 0 0 103 1001 1001

2500 0 0 0 103 1003 2501

member-entry 50 0 7 18 5224 50224 125224

100 0 7 19 5274 50274 125274

500 0 7 20 3944 50674 125674

1000 0 7 18 3944 51174 126174

2500 0 5 18 3944 38144 127674

member-recur 50 37 462 1168 254317 3077617 7783117

100 61 890 2310 352621 6010892 15441392

500 53 3583 11447 284214 23807092 71037592

1000 48 4939 20756 284214 31877371 126357842

2500 52 3994 29653 284214 25339314 197818621

reverse 0 0 0 103 1003 2503

reverse-entry 1 15 34 10250 101150 252650

reverse-recur 214 23549 174418 1171905 113417205 707292705

were run on an Intel(R) Core(TM) i7 CPU running at 2.60 GHz. We used SWI
Prolog version 7.6.4 and configured it to use increased stack size by starting it
with the parameters -G200g -T40g -L4g. Benchmarks were run sequentially to
avoid issues due to scheduling or hyper-threading.

Table 1 depicts the results of the benchmarks. Columns show the length of
the list split by runtime of the query as well as amount of inferences. For the
member predicates, lookups of different indices are benchmarked in each row.
The programs “member” and “reverse” stand for the original predicates without
annotations, whereas the suffix “entry” and “recur” distinguish between the
annotation at entry-level and recursion-level respectively.

As depicted in Table 1, for both member and reverse, the amount of addi-
tional inferences and runtime is roughly constant (but large) if only the entry
level is annotated.

However, if the specs are checked in every single recursion step, for member,
the overhead quickly grows linearly in the length l of the list as well as linearly
in the index i that is looked up, causing a quadratic overhead of i ∗ l.

The overhead for reverse actually grows quadratic in the size of l. This is
because in every step, the entire list without its head is validated against the spec
again. We can clearly see that this becomes very slow even if list size increases
moderately and such instrumentation should be avoided.

210 P. Körner and S. Krings

Since this overhead is enormous, recursive predicates should not be anno-
tated. Instead of checking the same property again and again, one can annotate
an invariant on entry level. Then, the performance impact is less noticeable.

5 Related Work

The idea of integrating runtime checks based on annotations into Prolog is not
new. In [18], the authors present the library type check that implements an
optional Mycroft-O’Keefe type system [14] for SWI and YAP Prolog. In com-
parison to plspec, type check supports type variables as well as static type
checks. However, mode annotations are not enforced. Thus, it is not possible to
ensure that variables are instantiated before or after a call to a predicate and
the semantics for (runtime) type checking is similar to invariants in plspec.

On the other hand, annotating pre- and postconditions has, for instance,
been suggested in [9]. In contrast to our approach, the authors extend the usual
notion of pre- and postconditions by annotations attached to the Prolog ports
for fail and redo. In consequence, they work closer to the execution model of
the underlying Prolog interpreter. Furthermore, the author provides the calling
context, e. g., the parent predicate, to the specification under test. This allows for
more fine-grained reasoning. Our approach on the other hand provides checking
of invariants at any point of Prolog execution by means of co-routines.

The work around assertion checking in CiaoPP [17], uses abstract interpre-
tation to try to discharge assertions at compile time. Assertions which cannot
be checked statically are performed at runtime, using program transformation.
To our knowledge, CiaoPP only supports Ciao Prolog. While plspec requires co-
routining for its full functionality, pre- and postconditions work with any Prolog
implementation that supports term expansion.

A different approach to testing has been followed in [13]. In contrast to our
approach, the authors do not focus on the introduction of runtime checks into
Ciao Prolog, but rather try to unify unit testing and runtime checking. This way,
only one kind of annotation is needed for different testing purposes. We extend
upon this work by the introduction of invariance annotations and the ability to
use connectives as discussed in Sect. 3.1. So far, we have not evaluated if we can
extract unit tests from our annotations, but intend to do so.

Documentation of Prolog code has been considered in [20], where the authors
introduce PlDoc, a documentation format used for literate programming. The
corresponding Prolog package has since been included in SWI Prolog. Instead of
integrating documentation into the Prolog code itself, the LATEX package pl [15]
embeds code into the documentation. Using the package, a single source file can
be run both by any LATEX binary and a Prolog interpreter.

Aside of Prolog, other declarative logic programming languages feature com-
parable systems. Mercury [19] includes a type system [4,7] together with a set
of mode annotations [16]. However, the type system implemented in Mercury
differs from the one we suggested: Though it supports higher-order functions, it
neither allows types to be defined by a predicate nor to define a union of two

plspec – A Specification Language for Prolog Data 211

types. In contrast to plspec, Mercury allows for type variables to be used. This
makes it possible to specify, for instance, that the output of a function will have
the exact same type as the input, regardless of the type itself.

Similar annotations to those in plspec can be found in Erlang’s type specifi-
cation language [8]. These are used, e. g., in the program analyzer Dialyzer [11].
In Erlang, it is only possible to create new types by defining a union of two
existing types, which may be pre-defined or an atomic singleton like the number
42 or the atom foo. As discussed in Sect. 3.1, plspec allows to define a type for
all values that fulfill a given predicate.

Furthermore, Erlang allows specifying types for higher-order functions which
plspec does not support. Function specifications in Erlang can be regarded as pre-
and postconditions in plspec. Just like Mercury, Erlang supports type variables.

6 Future Work

While plspec is capable of exposing real errors in real world Prolog applications,
several improvements to the library should be made:

– The default error messages have room for improvement. Whenever possible,
the smallest subterm that makes a spec invalid should be included separately.
This allows developers to identify faster and easier what went wrong.

– We can imagine adding further annotations. For example, it can be desired
that co-routines are terminated when a certain predicate succeeds or that
predicates must never fail given their precondition is fulfilled.

– In Sect. 4, we found that checking annotations of recursive predicates is very
slow. If we added static analysis or used gradual typing, most of that overhead
could be avoided. For example, a meta-interpreter that makes use of plspec’s
annotations could be employed for static type checking.

– Support for type variables should be integrated into the specification lan-
guage, increasing both expressiveness and value for documentation.

Apart from documentation and runtime checks, there are several applications
that could benefit from these annotations and may be subject of future research.

In order to reduce the burden on programmers and increase applicability, it
is desirable that for existing code, one does not have to write specs by hand.
Due to the logical and declarative nature of Prolog, we can easily find matching
specs to a given value by calling the verification predicate with a variable for
the spec. While this allows us to generate a spec for a given value, it is not yet
possible to generate a spec that matches all elements in a series of data.

If this functionality existed, one can think further: with additional tool sup-
port, specs as well as entire contracts could be inferred, for example, simply by
running unit tests that contain only calls which are known to be valid.

Furthermore, some of these annotations could be re-usable for a partial eval-
uator such as logen [10]. An issue with logen is that even though its binding-
time analysis already generates annotations, usually its user has to improve them

212 P. Körner and S. Krings

manually. Some information that plspec covers, e. g., how predicates are intended
to be called, might reduce the manual work required.

Another area is data generation based on a spec. We could use our annota-
tions to generate arbitrary data featuring a certain structure or other properties.

This could be achieved by linking plspec to existing test frameworks for Prolog
such as [1]. The authors follow an approach to test case generation and shrinking
similar to Erlang’s QuickCheck [6]. However, we would regard test failures as
failing predicates if a spec is matched. In consequence, we would not describe
actual output values in terms of input values.

Besides, often predicates only transform data into a different structure.
With annotations that precisely describe different data structures passed to and
returned from a predicate, it might be feasible to both repair incorrect and
synthesize new programs solely based on plspec’s annotations.

Finally, plspec could make use of existing annotations, for example mode or
meta-predicate annotations. They could be converted directly into our format.

7 Conclusion

In this paper, we presented the library plspec. It provides a DSL that can be
used to document Prolog predicates in a way that is straightforward. This DSL
is easily extensible without getting involved with internal implementation details
and flexible enough to suit the needs of a broad range of Prolog programs.
Furthermore, these annotations can be used in order to quickly and effortlessly
enable runtime checks if required.

While the performance hit might be too big for recursive predicate, we argue
that, firstly, most checks suffice to be made at the entry level because of the
recursive implementation of specs for recursive data. Furthermore, invariants
are powerful enough to catch incorrect bindings at a deeper recursion level.
Secondly, it suffices to annotate interface predicates in real programs. Usually,
these are not implemented recursively but call auxiliary predicates, thus avoiding
unnecessary runtime checks. Lastly, plspec is a tool intended to catch errors
during development. Our runtime checks should not be deployed as production
code and if so, only very carefully.

References

1. Amaral, C., Florido, M., Santos Costa, V.: PrologCheck – property-based testing
in prolog. In: Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 1–17.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07151-0 1

2. Bracha, G.: Pluggable type systems. In: OOPSLA Workshop on Revival of
Dynamic Languages (2004)

3. Covington, M.A., Bagnara, R., O’Keefe, R.A., Wielemaker, J., Price, S.: Coding
guidelines for prolog. Theory Practice Logic Program. 12(6), 889–927 (2012)

4. Dowd, T., Somogyi, Z., Henderson, F., Conway, T., Jeffery, D.: Run time type
information in mercury. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp.
224–243. Springer, Heidelberg (1999). https://doi.org/10.1007/10704567 14

https://doi.org/10.1007/978-3-319-07151-0_1
https://doi.org/10.1007/10704567_14

plspec – A Specification Language for Prolog Data 213

5. Hickey, R.: clojure.spec - Rationale and Overview (2016). https://clojure.org/
about/spec

6. Hughes, J.: QuickCheck testing for fun and profit. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 1–32. Springer, Heidelberg (2006). https://doi.org/10.1007/
978-3-540-69611-7 1

7. Jeffery, D.: Expressive type systems for logic programming languages. Dissertation,
Department of Computer Science and Software Engineering, The University of
Melbourne (2002)

8. Jimenez, M., Lindahl, T., Sagonas, K.: A language for specifying type contracts
in erlang and its interaction with success typings. In: Proceedings of the 2007
SIGPLAN Workshop on ERLANG, ERLANG 2007, pp. 11–17. ACM (2007)

9. Kulaš, M.: Annotations for prolog – a concept and runtime handling. In: Bossi, A.
(ed.) LOPSTR 1999. LNCS, vol. 1817, pp. 234–254. Springer, Heidelberg (2000).
https://doi.org/10.1007/10720327 14

10. Leuschel, M., Craig, S.J., Bruynooghe, M., Vanhoof, W.: Specialising interpreters
using offline partial deduction. In: Bruynooghe, M., Lau, K.-K. (eds.) Program
Development in Computational Logic. LNCS, vol. 3049, pp. 340–375. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-25951-0 11

11. Lindahl, T., Sagonas, K.: Detecting software defects in telecom applications
through lightweight static analysis: a war story. In: Chin, W.-N. (ed.) APLAS
2004. LNCS, vol. 3302, pp. 91–106. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30477-7 7

12. Mandrioli, D., Meyer, B.: Design by contract. In: Advances in Object-Oriented
Software Engineering, p. 1 (1991)

13. Mera, E., Lopez-Garćıa, P., Hermenegildo, M.: Integrating software testing and
run-time checking in an assertion verification framework. In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 281–295. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02846-5 25

14. Mycroft, A., O’Keefe, R.A.: A polymorphic type system for prolog. Artif. Intell.
23(3), 295–307 (1984)

15. Neugebauer, G.: pl-Literate Programming for Prolog with (1996). https://
www.ctan.org/pkg/pl, version 3.0

16. Overton, D.: Precise and expressive mode systems for typed logic programming
languages. Dissertation, Department of Computer Science and Software Engineer-
ing, The University of Melbourne (2003)

17. Puebla, G., Bueno, F., Hermenegildo, M.: Combined static and dynamic assertion-
based debugging of constraint logic programs. In: Bossi, A. (ed.) LOPSTR 1999.
LNCS, vol. 1817, pp. 273–292. Springer, Heidelberg (2000). https://doi.org/10.
1007/10720327 16

18. Schrijvers, T., Santos Costa, V., Wielemaker, J., Demoen, B.: Towards typed pro-
log. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp.
693–697. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-
2 59

19. Somogyi, Z., Henderson, F.J., Conway, T.C.: Mercury, an efficient purely declara-
tive logic programming language. In: Proceedings ASCS, pp. 499–512 (1995)

20. Wielemaker, J., Anjewierden, A.: PlDoc: Wiki style Literate Programming for
Prolog. CoRR, abs/0711.0618 (2007)

21. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-prolog. Theory Practice
Logic Program. 12(1–2), 67–96 (2012)

https://clojure.org/about/spec
https://clojure.org/about/spec
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/10720327_14
https://doi.org/10.1007/978-3-540-25951-0_11
https://doi.org/10.1007/978-3-540-30477-7_7
https://doi.org/10.1007/978-3-540-30477-7_7
https://doi.org/10.1007/978-3-642-02846-5_25
https://www.ctan.org/pkg/pl
https://www.ctan.org/pkg/pl
https://doi.org/10.1007/10720327_16
https://doi.org/10.1007/10720327_16
https://doi.org/10.1007/978-3-540-89982-2_59
https://doi.org/10.1007/978-3-540-89982-2_59

Author Index

Achuthan, Krishnashree 20
Atzmueller, Martin 97

Dageförde, Jan C. 64
Dietz Saldanha, Emmanuelle-Anna 149

Fang, Min 115
Frühwirth, Thom 37

Hofstedt, Petra 81
Hölldobler, Steffen 149

Jayaraman, Bharat 20

Kalkus, Jona 187
Kannimoola, Jinesh M. 20
Körner, Philipp 198
Krings, Sebastian 198
Kuchen, Herbert 64

Leutgeb, Lorenz 132
Liu, Ke 81
Löffler, Sven 81

Mörbitz, Richard 149

Nogatz, Falco 187

Pedro, Vasco 3

Roque, Pedro 3

Tikovsky, Jan Rasmus 169
Tompits, Hans 115

Weinzierl, Antonius 132
Wolf, Armin 53

	Preface
	Organization
	Contents
	Constraints
	Constraint Solving on Hybrid Systems
	1 Introduction
	2 CSPs Concepts
	3 Related Work
	4 Solver Architecture
	5 Results and Discussion
	6 Conclusion and Future Work
	References

	Run-Time Analysis of Temporal Constrained Objects
	1 Introduction
	2 Related Work
	3 Temporal Constrained Objects
	4 Run-Time Analysis
	4.1 Run-Time Visualization
	4.2 Run-Time Error Detection
	4.3 Run-Time Verification

	5 Conclusions and Further Work
	References

	Implementation of Logical Retraction in Constraint Handling Rules with Justifications
	1 Introduction
	2 Preliminaries
	2.1 Abstract Syntax of CHR
	2.2 Operational Semantics of CHR

	3 CHR with Justifications (CHRJ)
	3.1 CHR with Justifications for Logical Retraction
	3.2 Previous Implementation

	4 Optimizing the Implementation
	4.1 New Improved Implementation
	4.2 Worst-Case Time Complexity

	5 Experiments
	5.1 Dynamic All-Pair Shortest Paths

	6 Conclusions
	References

	The Proportional Constraint and Its Pruning
	1 Motivation and Overview
	2 Related Work
	3 The Proportional Constraint
	4 Alternative Modeling of the Proportional Constraint
	5 Run-Time Comparison
	6 Conclusion
	References

	An Operational Semantics for Constraint-Logic Imperative Programming
	1 Introduction
	2 Language Concepts
	3 A Non-deterministic Operational Semantics of Muli
	3.1 Semantics of Expressions
	3.2 Semantics of Statements

	4 Example Evaluation
	5 Discussion
	6 Related Work
	7 Conclusions and Future Work
	References

	Hypertree Decomposition: The First Step Towards Parallel Constraint Solving
	1 Introduction
	2 Preliminaries
	3 The Algorithm det-k-CP
	4 Experimental Results
	5 Conclusion and Future Work
	References

	Declarative Systems
	Declarative Aspects in Explicative Data Mining for Computational Sensemaking
	1 Introduction
	2 Declarative Aspects in Explicative Data Mining
	2.1 Explicative Data Mining
	2.2 Exploratory Data Mining
	2.3 Explicative and Explanation-Aware Data Mining

	3 Conclusions
	References

	An Approach for Representing Answer Sets in Natural Language
	1 Introduction
	2 Background
	3 A Controlled Natural Language for LANA Atom Descriptions
	3.1 Preliminary Considerations
	3.2 Syntactical Structure of the CNL

	4 Interpreting Answer Sets
	5 The Eclipse Plug-in
	6 Conclusion
	References

	Techniques for Efficient Lazy-Grounding ASP Solving
	1 Introduction
	2 Preliminaries
	3 The Alpha Approach
	4 Efficient Propagation: 3-Watched-Literals
	5 Evaluation
	6 Conclusion
	References

	The Syllogistic Reasoning Task: Reasoning Principles and Heuristic Strategies in Modeling Human Clusters
	1 Introduction
	2 Principles About Quantified Statements
	2.1 Quantified Statements as Conditionals (conditionals)
	2.2 Licenses for Inferences (licenses)
	2.3 Existential Import and Gricean Implicature (import)
	2.4 Unknown Generalization (unknownGen)
	2.5 Deliberate Generalization (deliberateGen)
	2.6 Converse Premise (converse)
	2.7 Search Alternative Conclusions to NVC (searchAlt)
	2.8 Contraposition (contraposition)

	3 Weak Completion Semantics
	3.1 Contextual Logic Programs
	3.2 Three-Valued Łukasiewicz Logic Extended by ctxt Connective
	3.3 Integrity Constraints
	3.4 Forward Reasoning: Least Fixed Point of P
	3.5 Backward Reasoning: Explanations by Means of Abduction
	3.6 Encoding of Quantified Statements

	4 Quantified Statements as Logic Programs
	4.1 All y Are z (Ayz)
	4.2 No y Is z (Eyz)
	4.3 Some y Are z (Iyz)
	4.4 Some y Are Not z (Oyz)
	4.5 Entailment of Conclusions from Pairs of Syllogistic Premises
	4.6 Accuracy of Predictions

	5 Clusters and Heuristics
	5.1 Basic Principles
	5.2 Advanced Principles and Clusters
	5.3 Heuristic Strategies
	5.4 A Clustering Approach
	5.5 Evaluation

	6 Implementation
	6.1 Computing the Least Fixed Point of P
	6.2 Computing the Predictions for a Cluster of Reasoners

	7 Conclusions
	References

	Functional and Logic Programming
	Concolic Testing of Functional Logic Programs
	1 Introduction
	2 Curry
	3 Satisfiability Modulo Theories
	3.1 General Overview
	3.2 SMT-LIB

	4 Concolic Interpretation of FlatCurry Code
	4.1 Tracing of Symbolic Information
	4.2 Augmented Semantics for Concolic Execution

	5 Search Strategy
	6 Implementation
	7 Application of ccti
	8 Conclusions and Future Work
	References

	Declarative XML Schema Validation with SWI–Prolog
	1 Introduction
	2 On the Integration of Xml in SWI–Prolog
	2.1 A Motivating Example
	2.2 Parsing Xml with library(sgml)
	2.3 Nested Term Representations
	2.4 Xml Flattening

	3 Top–Down Validation by Simultaneous Tree Traversals
	4 Test Framework Using Quasi–Quotations and TAP
	5 Conclusion and Future Work
	References

	plspec – A Specification Language for Prolog Data
	1 Introduction
	2 Usage and Semantics
	2.1 Built-in Specs
	2.2 Instrumentation

	3 Implementation
	3.1 Maintenance and Addition of Specs
	3.2 Instrumenting Specifications for Runtime Checks
	3.3 Co-routining for Invariants

	4 Performance Impact
	5 Related Work
	6 Future Work
	7 Conclusion
	References

	Author Index

