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Abstract. Based on discriminant canonical correlation analysis of LDA, a new
method of multimodal information analysis and fusion is proposed in this paper.
We process data from two perspectives, single modality and cross-modal. More
specifically, firstly, LDA is utilised to obtain the best projection matrix, this
way, the data in each within-modal can be as centralized as possible. Secondly,
the improved DCCA is used to process the output of first step in order to
maximize within-class correlation and minimize between-class correlation. The
above two steps prove beneficial to obtain the feature with higher discriminating
ability which is essential for the average fusion recognition accuracy improve-
ment. We show state-of-art results or better than state-of-art on widely used
USM benchmarks against all existing results include CCA, LDA, DCCA,
GCCA and KCCA.
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Canonical correlation analysis � Linear discriminant analysis

1 Introduction

Single modality biometric identification technology, such as face recognition [1], the
gesture recognition [2], the iris recognition [3], has plagued researchers with a variety
of formidable challenges over the years. However, multimodal fusion recognition [4, 5]
is a technology that combines multiple biological features and uses fusion algorithms to
recognition. Most recently, the concept has attracted increasing attention for feature set
matching in [6, 7]. Wang et al. [8] proposed dynamic fusion methods that corre-
sponding weights were assigned to each modality. It has strong robustness. Liu et al.
[9] proposed an adaptive multi-feature fusion algorithm. This refer to as infrared object
tracking method based on adaptive multi-feature fusion and Mean Shift (MS), which
can achieve target tracking in complex scene. Liu et al. [10] proposed a new learning
framework for projection dictionary was established to solve the problem of weak
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matching and multimodal information fusion. Zeng et al. [11], from the viewpoint of
fusing appearance statistical features, proposed human target recognition algorithm
based on appearance statistics feature fusion.

According to the fusion of different information, the multimodal biometric fusion
technology can be divided into sensor level fusion [12], feature level fusion [13],
matching-score level fusion [14], and decision level fusion [15]. Among them, feature
level fusion has great advantages. It not only retains more information of original
samples, but also eliminates redundant information between different features. Theo-
retically, the superior fusion performance can be obtained. However, feature level
fusion currently met with many challenges, such as the Curse of dimensionality, the
incompatibility of the feature space, poor correlation between features, and how to
design effective fusion strategy. We hope to solve above problems, so the goal for
mutual utilization and supplement between different features can be achieved. At
present, two well-known and typical feature fusion methods are: serial feature fusion
[16] and parallel feature fusion [17, 18].

Recently, Sun et al. [19] used canonical correlation analysis (CCA) to achieve
feature fusion by maximizing the correlation of two sets of variables in the projection
space. A discriminative canonical correlation analysis (DCCA) algorithm, proposed by
Kim et al. [20], this method can simultaneously maximize the within-class correlation
and minimize the between-class correlation. Generalized canonical correlation analysis
(GCCA) [21] made full use of class label information by minimizing and Constraint the
within-class scatter matrix, so as to improve the discriminating ability of features.
Kernel canonical correlation analysis (KCCA) [22], an extension method of CCA, cast
a light on nonlinear problem, in this way, samples were mapped to kernel space
through kernel functions and extracted features in kernel space. Haghighat et al. [23]
proposed the discriminant correlation analysis (DCA), this work removed the corre-
lation between feature sets of different classes through between-class scatter matrix,
thus realizing the purpose of using class information.

CCA and derivative algorithm had solved some specific problems and gained
exceeding recognition performance. The above performance, however, is achieved at
the cost of not taking into account solving the problem of high dimension and similarity
between different features at the same time. Additionally, it ignored the between-class
relationship of the same modality feature sample. In this paper, we propose an
enhanced fusion algorithm for linear discriminant canonical correlation analysis. The
algorithm is described as follows: Firstly, each modality is treated widthwise, and LDA
is applied to process each modality dataset respectively. In this way, data in each
modality will be more centralized as much as possible. Secondly, the improved DCCA
is used to process the outputs of first step, for the purpose of simultaneously maximize
the within-class correlation and minimize the between-class correlation. The estab-
lishment and solution of the objective function is based on (DMCCA) [24]. The
benefits of the proposed paper are multi-fold: 1, dimension curse problem of feature
fusion is successfully solved: 2, Feature sets of each modality and different modalities
have been well processed. The proposed algorithm simultaneously maximizes the
within-class correlation and minimizes the between-class correlation. More impor-
tantly, the within-class feature is more centralized in each modality.
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2 Related Knowledge-Canonical Correlation Analysis

The canonical correlation analysis was proposed by Hotelling et al. [25] in 1936. The
object of CCA is to capture the correlations between two sets of variables. The methods
are based on singular value decomposition for both representations. The details are as
follows: let x 2 Rp�1; y 2 Rq�1 be two sets of zero-mean random variables, the CCA is
to find a pair of projection directions wx and wy, such that the linear correlations
between the projections onto these basis vectors are mutually maximized:
X1 ¼ wT

x x; Y1 ¼ wT
y y, then X1, Y1 is the first pair of canonical variables. It needs to

satisfy the canonical property that the first projection is uncorrelated with the second
projection, etc. All the correlation features of x and y are extracted. The criterion
function is defined as follows:

argmax
wx;wy

wT
x � Cxy � wy s:t:wT

x Cxxwx ¼ 1;wT
y Cyywy ¼ 1 ð1Þ

Where Cxx; Cyy are the within-sets covariance matrices of X and Y respectively, Cxy

represents the between-set covariance matrix (note that Cyx ¼ CT
xy). The way to solve

these problems can be referred to [26] for detail. In the aspect of fusion, according to
the theory of canonical correlation analysis of Sun et al. [27], the method of con-
catenation or summation is put forward to fuse the feature vectors. The method is called
FFS-1(F1) and FFS-2(F2), respectively.

Feature layer fusion strategy FFS-1: Z1 ¼
X�

Y�

 !
¼ WT

x X

WT
y Y

 !

Feature layer fusion strategy FFS-2: Z2 ¼ X� þ Y� ¼ WT
x XþWT

y Y

3 Fusion Algorithm

In order to tackle the problem that covariance irreversibility caused by the number of
samples is smaller than the number of dimensions. The traditional feature fusion
method such as proposed in [28], which adopt method in two stages way, PCA + CCA.
However, this method ignores that PCA may cause the loss of feature information, and
ignores the discriminative information between samples as well. Motivated by the ideas
of this combination. By this, algorithm is based on the dimension reduction method of
LDA [29] to find the projection of the best separation class. In this paper, not only the
problem of covariance irreversible is solved, but also achieves better results for each
modality and cross-modal data sets.

3.1 Linear Discriminate Analysis

The main contribution of LDA is the idea that by finding a better projection vector
space for high-dimensional data sets, so the distances within-class become smaller and
the distances between-classes become larger in the projected space. Let’s assume that
the samples can be divided into C separate groups, where ni columns belong to the ith
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class N ¼PC
i¼1 ni

� �
. Suppose that X ¼ X1; X2 � � �XNf g denote a matrix, contains N

training feature vectors. Let Xi ¼ Rd denote a feature vector. ui is the means of the Xi

vectors in the ith class, u is the global mean of the entire sample set.
The within-class scatter matrix is defined as

SW ¼
XC

i¼1
Si ¼

XC

i¼1

X
Xi2Wi

Xi � uið Þ Xi � uið ÞT ð2Þ

The between-class scatter matrix is defined as

SB ¼
XC
i¼1

ni ui � uð Þ ui � uð ÞT ð3Þ

Therefore, a criterion function can be established:

J Wð Þ ¼ WTSBW
WTSWW

ð4Þ

By constraining the denominator WTSWW ¼ 1, the objective function is maxi-
mized to find the optimal value. The Lagrangian multiplier method is employed and
then Eq. (4) is converted to find the eigenvalue of S�1

W SBW ¼ kiW to solve the
problem.

3.2 Linear Discrimination Canonical Correlation Analysis

By the 3.1 algorithm, thereby achieving between-class is centralized and the effects of
within-class are decentralized. Due to the difference in the dimension of the two modal
samples, the two Training sets are normalized. Next, the algorithm of 3.2 is to establish
correlations between the samples of the two modalities. The purpose is to maximize the
similarities of a pairs of sets of within-class while minimizing the correlations between-
class. X ¼ X1;X2; � � �XCð Þ; Y ¼ Y1; Y2 � � � YCð Þ are training sets of two modalities,
where Xi 2 Rp�ni; Yi 2 Rq�ni, each class has ni samples, N represents the total number
of training samples, X and Y have C = (W1,W2; . . .;W c) class samples, and subsam-
ples of each class can be represented as Yi ¼ y1; y2; � � � ; ynið ÞXi ¼ x1; x2; � � � ; xnið Þ,
xi 2 Rp�1; yi 2 Rq�1. The correlation of category Wi in sample space X and sample
space Y can be expressed as:

CWXY ;i ¼ Xi Yið ÞT ð5Þ

CBXY ;i;j ¼ Xi Yj
� �T ð6Þ
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The within-class correlation matrix is expressed as:

CWXY ¼
XC
i¼1

CWXY ;i ¼
XC
i¼1

Xi Yið Þ
T

ð7Þ

The between-class correlation matrix is expressed as:

CBXY ¼
XC
i¼1

XC
j¼1;j6¼i

CBXY ;i;j ¼
XC
i¼1

XC
j¼1;j6¼i

Xi Yj
� �T

¼
XC
i¼1

XC
j¼1

Xi Yj
� �T �

XC
i¼1

Xi Yið ÞT

¼
XC
i¼1

Xi

 ! XC
j¼1

Yi

 !T

�
XC
i¼1

Xi Yið ÞT

ð8Þ

The criterion function model can be established as:

J W ;Vð Þ ¼ max
W ;V

WT ~CXYVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WTCXXW

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VTCYYV

p s:t:WTCXXW ¼ 1;VTCYYV ¼ 1 ð9Þ

Among them, Cxx;Cyy are the within-sets covariance matrixes of X and Y,
respectively, where ~CXY ¼ CWxy � gCBxy; g[ 0ð Þ. From the above equation, by
adjusting the size of g, so that ~CXY makes certain trade-offs between within-class and
between-class. The above problem becomes that under the constraint condition, the
maximum projection vector W, V of the criterion function is obtained.

L W ;Vð Þ ¼ WT ~CXYV � k1ðWTCXXW � 1Þ � k2ðVTCYYV � 1Þ ð10Þ

Where k1; k2 is a Lagrangian multiplier and the derivation of W and V respectively,
and then obtained:

@L
@W

¼ ~CXYV � k1CXXW ¼ 0 ð11Þ

@L
@V

¼ ~CT
XYW � k2CYYV ¼ 0 ð12Þ

Multiply WT ;VT by (11), (12) above, and then convert (11), (12) to (13):

WT ~CXYV ¼ k1WTCXXW ¼ k1
WT ~CXYV
� �T¼ k2VTCYYV ¼ k2

�
ð13Þ
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From the constraints,k1 ¼ k2 ¼ k; ~CYX ¼ ~CT
XY can be obtained, CXX ;CYY is rever-

sible, then (13) can be converted to:

~CXYV ¼ kCXXW
~CT
XYW ¼ kCYYV

�
)

C�1=2
XX

~CXYC�1
YY

~CYXC
�1=2
XX

� �
C1=2
XX W

� �
¼ k2 C1=2

XX W
� �

C�1=2
YY

~CYXC�1
XX

~CXYC
�1=2
YY

� �
C1=2
YY W

� �
¼ k2 C1=2

YY W
� �

9=
; ð14Þ

At this point, finding a maximizing projection vector for a criterion function is
converted to solve generalized characteristic equations of formula (14). The matrix
required to solve the eigenvalue decomposition (EVD) is a square matrix and singular
value decomposition (SVD) [30] is a decomposition method applicable to any matrix,
so this paper uses SVD decomposition for Eq. (15). Let

H ¼ C�1=2
XX

~CXYC
�1=2
YY , �W ¼ C1=2

XX W , �V ¼ C1=2
YY V , then (14) becomes the following form:

HHT �W ¼ k2 �W
HTH �V ¼ k2 �V

ð15Þ

It can be seen that �W ¼ C1=2
XX W and �V ¼ C1=2

YY V are the feature vectors of HHT and
HTH, respectively, and singular value decomposition H ¼ PKQT is performed on H,
where K ¼ diag k1; k2; � � � ; krð Þ; P ¼ p1; p2; � � � ; prð Þ; Q ¼ q1; q2; � � � qrð Þ, r ¼ rank
~CXY
� �

. HHT and HTH have common non-zero eigenvalues, the column vector of P is

the eigenvector corresponding to the eigenvalue k2 of HHT , and the column vector of Q
is the eigenvector corresponding to the eigenvalue k2 of HTH.Then, the maximum
solution of the criterion function model is obtained:

W ¼ C�1=2
XX

�W
V ¼ C�1=2

YY
�V

)
ð16Þ

The resulting W, V is the standard function projection vector. Therefore, the feature
set X�; Y� is obtained, where X 0; Y 0 are the feature sets obtained in the first time, and the
projection matrix Wx;Wy is as follows:

X� ¼ WTX 0 ¼ WTWT
x0X ¼ WXX

Y� ¼ VTY 0 ¼ VTWT
y0Y ¼ WYY

�
ð17Þ

3.3 The Flow of the Algorithm

(1) Enter the two sets of centered training feature sets X and Y, and the category label
information.

(2) According to the algorithm in Sect. 3.1, the LDA algorithm is used for the two
feature sets, the projection matrix Wx0 ;Wy0 is obtained.
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(3) According to the algorithm in Sect. 3.2, similarity processing is performed on the
processed data sets of the two modalities. The projection matrix W, V is obtained
from the criterion function in 3.2.

(4) According to the fusion strategy of Part 2, the test samples are classified and
identified by using the nearest neighbor classifier.

4 Simulation Experiment

To verify the validity of algorithm in this paper, the database used for the USM
database is the finger vein database, the open palm print database and the finger
database of Hong Kong Polytechnic University, and the multi-feature handwritten data
sets. Among them, the mean LBP method was used to extract finger veins and palm
veins features. The finger feature is calculated by histogram of gradients (HOG) for
detecting the contour image of finger vein. In this paper, we utilized the mean clas-
sification accuracy (MCA) [31] to evaluate the performance of the fusion algorithm,
which is defined as follows:

Let’s assume that the N samples as the testing subsets, while truth class labels are
f�y1;�y2; . . .; yNg and the predicted class labels are f�y1;�y2; . . .; yNg.

MCA ¼ N1

N
ð18Þ

Where Ni denotes the number of samples with an error not greater than k between the
predicted category label and the real category label, parameter k is set to 1.

4.1 Experiment 1

Multi-feature hand-written data sets are multimodal datasets in the UCI dataset,
including 0 to 9 total 10 hand-written digital features, 200 samples in each category,
2000 samples in total. Each sample contains 6 features, which are morphological
features (mfeat_mor), Zernike moment features (mfeat_zer), KL expansion coefficients
(mfeat_kar), Fourier coefficients (mfeat_fou), contour correlation features (mfeat_fac),
and pixel averaging (mfeat_pix). If you select any two features as fusion feature sets,
there are 15 combinations. Randomly select 100 samples for each class as the training
sets. The remaining samples are used as the testing sets. The nearest neighbor method
is used for classification. The testing process repeats 20 cycles independently, and the
average of 20 results is used as the final performance measure. Table 1 provides the
recognition rate in single modality. Table 2 is based on the FFS-1(denote F1) and FFS-
2 (denote F2) feature fusion strategies.

Table 1. Average classification accuracy in single modality

Single modality fac fou kar mor pix zer

MCA 0.944 0.823 0.967 0.422 0.967 0.809
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From Tables 1 and 2, it can be seen that under the double modality, the MCA of the
proposed method is higher than that in the single modality. Under the combinations of
13 features situation, we show that our approach performs better than single modality.
However, the fusion recognition accuracy is only slightly lower than single modality in
combinations of two features situation. Firstly, the processing of features makes the two
modal data more centralized. Secondly, cross modal maximizes the within-class sample
correlation between two modalities. The above two steps prove beneficial to the
improvement of recognition accuracy. From Table 2, it can be seen that the recognition
performance is better than the existing algorithms whether in series or parallel way.

From the analysis of the algorithm in Table 3 in Sects. 3.1 and 3.2, this illustrates
the reasonableness of the 3.1 algorithm that make the data more centralized in advance.
A large of experiments show that put the 3.1 algorithm into the standard function of
algorithm 3.2 directly can’t achieve double standard effect at the same time. Therefore,
in Table 3, the recognition rate of the combination algorithm in the above manner is
also better than the recognition rate of single algorithm. The Sect. 3.1 algorithm
improves the performance of the Sect. 3.2. The combination of the two algorithms
shows the rationality and effectiveness of the proposed algorithm.

4.2 Experiment 2

The datasets we use are finger vein library provided by the USM database, palm print
database and finger database of Hong Kong Polytech University. However, there are no
multimodal databases with multiple biometric features from the same user. Taking into

Table 2. Average classification accuracy of the F1 and F2 under cross- modal

Multi-feature
fusion

MCA

CCA DCCA GCCA DCA KCCA ELDCCA
F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

fac + fou 0.85 0.89 0.84 0.91 0.97 0.97 0.94 0.90 0.70 0.69 0.98 0.98
fac + kar 0.91 0.93 0.92 0.93 0.97 0.95 0.96 0.96 0.48 0.47 0.98 0.98
fac + mor 0.89 0.93 0.91 0.94 0.95 0.96 0.92 0.86 0.41 0.49 0.98 0.98
fac + pix 0.83 0.84 0.81 0.85 0.96 0.96 0.96 0.94 0.65 0.67 0.98 0.98
fac + zer 0.92 0.94 0.92 0.93 0.97 0.95 0.90 0.88 0.60 0.62 0.98 0.97
fou + kar 0.88 0.87 0.87 0.88 0.96 0.96 0.94 0.90 0.72 0.78 0.97 0.96
fou + mor 0.75 0.77 0.74 0.75 0.51 0.49 0.76 0.56 0.52 0.47 0.85 0.84
fou + pix 0.70 0.75 0.69 0.79 0.93 0.93 0.95 0.89 0.81 0.86 0.97 0.96
fou + zer 0.79 0.81 0.80 0.80 0.84 0.84 0.84 0.81 0.69 0.64 0.86 0.85
kar + mor 0.93 0.95 0.93 0.95 0.92 0.90 0.81 0.48 0.68 0.64 0.97 0.97
kar + pix 0.77 0.86 0.79 0.85 0.96 0.90 0.95 0.94 0.70 0.68 0.94 0.94
kar + zer 0.94 0.93 0.94 0.95 0.96 0.93 0.76 0.83 0.67 0.66 0.96 0.95
mor + pix 0.69 0.77 0.67 0.77 0.91 0.90 0.93 0.93 0.27 0.26 0.97 0.97
mor + zer 0.81 0.81 0.80 0.81 0.74 0.74 0.73 0.66 0.36 0.30 0.84 0.82
pix + zer 0.79 0.87 0.76 0.84 0.94 0.87 0.88 0.96 0.80 0.73 0.96 0.94
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account the independence of biometric feature, so we choose the single modal feature
of each user in compromise.64 users were selected in total, each user’s single modality
image consist of 6 samples, 3 training samples and the remaining 3 as testing samples.
The nearest neighbor method is leveraged to feature classification. The test process was
repeated 20 times independently and the average results were taken as the final per-
formance metric.

Figures 1 and 2 refers to the combination of vein and finger shape. Serial and
parallel strategies are adopted respectively. The recognition rate of each algorithm is
obtained by setting different feature dimensions, and then the recognition results are
compared with the existing algorithms. Figures 3 and 4 is the combination of finger
veins and palmprint. In the same spirit, do as operations of Figs. 1 and 2 did. The
conclusions can be drawn from Figs. 1 to 4: the algorithm proposed in this paper is
more robust than the existing method. According to the following figure, the recog-
nition rate of some algorithms improved with the increase of the feature dimension,
while others fluctuate greatly. The reason for the decline is that redundant information
is added to the feature dimension, which does harm to the acquisition of information,
worst of all, and the recognition accuracy. In this paper, the recognition accuracy
improves steadily.

Tables 4 and 5 shows the comparison between our algorithm and CCA and their
improved methods in hand features. It can be seen from the above table that our
algorithm has shown outstanding results on hand biometrics. This also fully demon-
strates that a projection matrix can’t simultaneously achieve data within-modal more

Table 3. Uses the F1 and F2 to combine the average classification accuracy of the proposed
algorithm

Multi-feature fusion MCA

Algorithm
3.1

Algorithm
3.2

ELDCCA

F1 F2 F1 F2 F1 F2

fac + fou 0.973 0.973 0.924 0.944 0.983 0.984
fac + kar 0.974 0.971 0.921 0.931 0.983 0.980
fac + mor 0.975 0.975 0.915 0.952 0.986 0.986
fac + pix 0.979 0.961 0.834 0.852 0.982 0.981
fac + zer 0.978 0.974 0.930 0.956 0.983 0.979
fou + kar 0.957 0.956 0.946 0.957 0.975 0.968
fou + mor 0.932 0.814 0.829 0.829 0.851 0.842
fou + pix 0.933 0.937 0.700 0.805 0.979 0.965
fou + zer 0.814 0.818 0.849 0.854 0.869 0.850
kar + mor 0.960 0.955 0.937 0.952 0.979 0.970
kar + pix 0.949 0.916 0.782 0.855 0.948 0.947
kar + zer 0.958 0.924 0.949 0.949 0.968 0.957
mor + pix 0.941 0.936 0.715 0.776 0.970 0.970
mor + zer 0.789 0.780 0.808 0.806 0.841 0.829
pix + zer 0.958 0.935 0.806 0.861 0.965 0.945
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centralized and maximum correlation between cross-modal. Table 5 show the results
obtained from different feature combinations, using serial and parallel feature fusion
strategies respectively. The original feature and the double standard effect are pre-
served. We can see that the recognition performance has been greatly improved. More
importantly, the connection between single modal data has not been destroyed. This
combination has achieved outstanding classification performance.

Fig. 1. Average classification accuracy
of finger veins and finger outline using
the FFST-1

Fig. 2. Average classification accuracy of
finger veins and finger outline using the
FFST-2

Fig. 3. Average classification accuracy of
finger veins and palm prints using the
FFST-1

Fig. 4. Average classification accuracy of
finger veins and palm prints using the
FFST-2

Table 4. The average classification accuracy of the F1 and F2 under cross-modal

Multi-feature fusion MCA

CCA DCCA GCCA DCA KCCA ELDCCA

F1 F2 F1 F2 F1 F2 F1 F2 F1 F2 F1 F2

Finger Vein + Contour 0.77 0.65 0.77 0.77 0.97 0.97 0.27 0.29 0.76 0.61 0.99 0.99
Finger Vein + Palm 0.93 0.90 0.93 0.91 0.26 0.25 0.93 0.93 0.94 0.91 0.97 0.98
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5 Conclusions

In this paper, a canonical correlation analysis algorithm based on linear discriminant
analysis is proposed. In order to improve the effect of feature layer fusion, firstly, this
article replaces the correlation analysis of image set classes in DCCA with the corre-
lation analysis between samples. It can simultaneously maximize the within-class
correlation and minimize the between-class correlation. At the same time, in order to
extract feature sets with higher discriminative ability, LDA is adopted to make Samples
in the same class for each modality as concentrat as possible. Results demonstrated,
that in the USM database, the palmprint open database, the finger database and the
multi feature handwritten data set of Hong Kong Polytech University, the algorithm is
superior to other internationally popular comparison methods.
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