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Abstract. Underwater images present blur and color cast, caused by light
absorption and scattering in water medium. To restore underwater images
through image formation model (IFM), the scene depth map is very important
for the estimation of the transmission map and background light intensity. In this
paper, we propose a rapid and effective scene depth estimation model based on
underwater light attenuation prior (ULAP) for underwater images and train the
model coefficients with learning-based supervised linear regression. With the
correct depth map, the background light (BL) and transmission maps (TMs) for
R-G-B light are easily estimated to recover the true scene radiance under the
water. In order to evaluate the superiority of underwater image restoration using
our estimated depth map, three assessment metrics demonstrate that our pro-
posed method can enhance perceptual effect with less running time, compared to
four state-of-the-art image restoration methods.
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1 Introduction

Underwater image restoration is challenging due to complex underwater environment
where images are degraded by the influence of water turbidity and light attenuation [1].
Compared with green (G) and blue (B) lights, red (R) light with the longer wavelength
is the most affected, thus underwater images appear blue-greenish tone. In our previous
work [2], the model of underwater image optical imaging and the light selective
attenuation are presented in detail.

An image restoration method recovers underwater images by considering the basic
physics of light propagation in the water medium. The purpose of restoration is to
deduce the parameters of the physical model and then recover the underwater images by
reserved compensation processing. A simplified image formation model (IFM) [3–6] is
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often used to approximate the propagation equation of underwater Atmospheric scat-
tering, can be shown as:

Ik xð Þ ¼ Jk xð Þtk xð Þþ 1� tk xð Þð ÞBk ð1Þ

where x is a point in the image, k represents RGB lights in this paper, Ik xð Þ and Jk xð Þ
are the hazed image and the restored image, respectively, Bk is regarded as the
background light (BL), tk xð Þ is the transmission map (TM), which is a function of both
k and the scene–camera distance d xð Þ and can be expressed as:

tk xð Þ ¼ e�b xð Þd xð Þ ¼ Nrer kð Þd xð Þ ð2Þ

where e�b xð Þ can be represented as the normalized residual energy ratio Nrer kð Þ, which
depends on the wavelength of one channel and the water type in reference to [7].

In the IFM-based image restoration methods, a proper scene depth map is the key
for background light and transmission map estimation. Since the hazing effect of
underwater images caused by light scattering and color change is similar to the fog
effect in the air, He’s Dark Channel Prior (DCP) [3] and its variants [4, 8, 9] were used
for depth estimation and restoration. Li et al. [10] estimated the background light by the
map of the maximum intensity prior (MIP) to dehaze G-B channel and used Gray-
World (G-W) theory to correct the R channel. However, Peng et al. [6] found the
previous background light estimation methods were not robust for various underwater
images, and they proposed a method based on the image blurriness and light absorption
to estimate more accurate background light and scene depth to restore color underwater
image precisely.

Learning-based methods for underwater image enhancement have been taken into
consideration in recent years. Liu et al. [11] proposed the deep sparse non-negative
matrix factorization (DSNMF) to estimate the image illumination to achieve image
color constancy. Ding et al. [12] estimated the depth map using the Convolutional
Neural Network (CNN) based on the balanced images that were produced by adaptive
color correction. Although the above methods can obtain the scene depth map and
enhance the underwater image, the deep learning is time consuming. A linear model to
predict the scene depth of hazy images based on color attenuation prior is proposed by
Zhu et al. [13]. This model is trained by supervised learning method and its expression
is as follows:

d xð Þ ¼ h0 þ h1v xð Þþ h2s xð Þþ � xð Þ ð3Þ

where d xð Þ is the scene depth, v xð Þ and s xð Þ are the brightness and saturation com-
ponents, respectively, � xð Þ is a Gaussian function with zero mean and the standard
deviation value r. The model can successfully recover the scene depth map of outdoor
hazed images. Unfortunately, it is not suitable for underwater images. Figure 1 shows
an example image with the false depth map and invalid recovered image.
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In this paper, we reveal underwater light attenuation prior (ULAP) that the scene
depth increases with the higher value of the difference between the maximum value of
G and B lights and the value of the R light. On the basis of the ULAP and annotated
scene depth data, we train a linear model of scene depth estimation. With the accurate
scene depth map, BL and TM are easily estimated, and then underwater images are
restored properly. The details of the scene depth learning model and the underwater
image restoration process are presented in Sects. 2 and 3, respectively. In Sect. 4, we
evaluate our results by comparing with four state-of-the-art image restoration methods
from the perspectives of quantitative assessment and complexity. The conclusion is
shown in Sect. 5.

2 Scene Depth Model Based on ULAP

2.1 Underwater Light Attenuation Prior

On account of little information about underwater scenes, restoring a hazed underwater
image is a difficult task in computer vision. But, the human can quickly recognize the
scene depth of the underwater image without any auxiliary information. When we
explore a robust background light estimation, the farthest point in the depth map
corresponding to the original underwater image is often considered as the background
light candidate. With the light attenuation underwater, depending on the wavelength
where the energy of red light is absorbed more than that of green and blue lights, the
most intensity difference between R light and G-B light is used to estimate the back-
ground light [9, 10]. The rule motivates us to conduct experiments on different
underwater images to discover an effective prior for single underwater image
restoration.

After examining a large number of underwater images, we find the Underwater Light
Attenuation Prior (ULAP), that is the difference between the maximum value of G-B
intensity (simplified as MVGB) and the value of R intensity (simplified as VR) in one
pixel of the underwater image is very strongly related to the change of the scene depth.
Figure 2 gives an example with a typical underwater scene to show the MVGB, VR and
the difference vary along with the change of the scene within different depths.
As illustrated in Fig. 2(a), we select three regions as the test data from the close scene to
the far scene and show the corresponding close-up patches in the right side. It is observed

Fig. 1. An overview of Zhu et al.’s method. (a) Original underwater image; (b) Estimated depth
map where the whiter the father; (c) Restored image.
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in the left histogram of Fig. 2(b), in the close region, the MVGB and VR is relatively
moderate and the difference is close to zero; In the middle histogram of Fig. 2(b), the
MVGB in the moderately-close region increases while with the farther depth of the
scene, the VR decreases at the same time, producing a higher value of the difference.
Furthermore, in the utmost scene, the component of the red light remains nothing much
due to the significant attenuation, the MVGB improves remarkably, and the difference is
drastically higher than that in other patches in the right histogram of Fig. 2(b). In all,
when the scene goes to a far region, the MVGB increase and the VR decreases, which
leads to a positive correlation between the scene depth and the difference between
MVGB and VR.

2.2 Scene Depth Estimation

Based on the ULAP, we define a linear model of the MVGB and VR for the depth map
estimation as follows:

d xð Þ ¼ l0 þ l1m xð Þþ l2v xð Þ ð4Þ

Where x represents a pixel, d xð Þ is the underwater scene depth at point x, m xð Þ is
the MVGB, v xð Þ is the VR.

Fig. 2. The scene depth is positively correlated with the difference between MVGB and VR.
(a) Original underwater image; (b) Three close-up patches of the close scene, moderately-close
scene, relatively-far scene and their corresponding histograms, respectively.

Fig. 3. The process of generating the training samples. (a) Original underwater images;
(b) Coarse depth maps; (c) Refined depth maps by the guided filter [14].
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The Training Data. In order to learn the coefficients l0, l1 and l2 accurately, we
need relatively correct training data. In reference with the depth map estimation pro-
posed by Peng et al. [6], we computed the depth maps of different underwater images
based on the light absorption and image blurriness. 500 depth maps of underwater
images were gained following by [6], and some maps exist obvious estimation errors
(e.g., a close-up fish is white in the depth) were discarded. Hence 100 fully-proper
depth maps are well-chosen by the final manual selection. The process of generating
the training samples is illustrated in Fig. 3. Firstly, for the 500 underwater images, the
depth map estimation method is used to obtain the corresponding depth maps with the
same size, and then 100 accurate depth maps from the above maps are ascertained as
the final training data. Secondly, the guided filter [14] is used to refine the coarse depth
maps and the radius of the guided filter is set as 15 in this paper. Finally, 100 accurate
depth maps verified by manually-operated selection according to the perception of the
scene depths. The prepared dataset has a total of 24 million points of depth information,
which are called reference depth maps (RDMs).

Coefficients Learning. Based on the reference depth maps (RDMs), Pearson corre-
lation analysis for the MVGB and VR is firstly run. The range of Pearson correction
coefficient (PCC) is [−1, 1], and the PCC close to 1 or −1 indicates a perfect linear
relationship and the value closes to 0 demonstrates no relations. The PCC values of the
MVGB and VR are 0.41257 and −0.67181 (a� 0:001), respectively. We can readily
see that there is a tight correlation between RDMs and the MVGB, and between RDMs
and the VR. Therefore, the proposed model in (4) is reasonable.

To train the model, we take the ratio of training and testing dataset as 7:3 and use
10-fold cross validation. The best learning result is l0 ¼ 0:53214829, l1 ¼
0:51309827 and l2 ¼ �0:91066194. Once the values of the coefficients have been
determined, this model will be used to generate the scene depths of single underwater
images under different scenarios.

Fig. 4. The process of generating the training samples. (a) Original underwater images;
(b) Coarse depth maps based on our method; (c) Refined depth maps.

682 W. Song et al.



Estimation of the Depth Map. As the relationship among the scene depth map d xð Þ,
the MVGB and VR has been established and the coefficients have been learned, the
depth maps of any underwater images can be obtained by Eq. (4). In order to check the
validity of the assumption, we collected a large database of underwater images from
several well-known photo websites, e.g., Google Images, Filck.com, and computed the
underwater scene depth maps of each test images. Some of the results are shown in the
Fig. 4. For different types of input underwater images, the corresponding estimated
coarse depth maps and the refined depth maps are shown in the Fig. 4(a)–(c),
respectively. As can be seen, the estimated depth maps have brighter color in the
regions within the farther depth while having lighter color in the closer region as
expected. After obtaining the correct depth map, the background light estimation and
the transmission maps for RGB lights are rather simple and rapid.

3 Underwater Image Restoration

3.1 Background Light Estimation

The background light BL in the Eq. (1) is often estimated as the brightest pixel in an
underwater image. However, the assumption is not correct in some situations, e.g., the
foreground objects are brighter than the background light. The background light is
selected from the farthest point of the input underwater image, i.e., the position of the
maximum value in the refined depth map corresponding the input underwater image is
the background light candidate value. But directly select the farthest point as the final
background light, some suspended particles can interrupt the valid estimation result.
After generating an accurate depth map, we firstly remove the effects of suspended
particles via selecting the 0.1% farthest point, and then select the pixel with the highest
intensity in the original underwater image. An example to illustrate the background
light estimation method is shown in Fig. 5.

Fig. 5. An example to illustrate the global background light estimation algorithm. (a) Original
image; (b) The result of searching for the 0.1% farthest pixels in the refined depth map; (c) The
brightest intensity of the 0.1% farthest pixels corresponding to the original image.
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3.2 Transmission Map Estimation for Respective R-G-B Channel

The relative depth map cannot be directly used to estimate the final TMs for R-G-B
channel. To measure the distance from the camera to each scene point, the actual scene
depth map da is defined as follows:

da xð Þ ¼ D1 � d xð Þ ð5Þ

where D1 is a scaling constant for transforming the relative distance to the real
distance, and in this paper, the D1 is set as 10. With the estimated da, we can calculate
the TM for the R-G-B channel as:

tk xð Þ ¼ Nrer kð Þda xð Þ ð6Þ

In approximately 98% of the world’s clear oceanic or coastal water (ocean type I),
the accredited ranges of Nrer kð Þ in red, green and red lights are 80%–85%, 93%–97%,
and 95%–99%, respectively [7]. In this paper, we set the Nrer kð Þ for R-G-B light is 0.83,
0.95 and 0.97, respectively. Figure 6(c)–(e) gives an example of TMs for the RGB
channels of a blue-greenish underwater image based on Eqs. (5)–(6). Figure 6(c)–(e)
gives an example of TMs for the RGB channels of a blue-greenish underwater image
based on Eqs. (5)–(6).

Now that we have the BLk and tk xð Þ for the R-G-B channel, we can restore the
underwater scene radiance Jk with the Eq. (7). A lower bound and an upper bound for
tk xð Þ empirically set to 0.1 and 0.9, respectively.

Jk xð Þ ¼ 1
min max tk xð Þ; 0:1ð Þ; 0:9ð Þ Ik xð Þ � BLkð ÞþBLk ð7Þ

Figures 6(f) and 7(f) show some final results recovered by our proposed method.

4 Results and Discussion

In this part, we compare our proposed underwater image restoration method based on
underwater light attenuation prior against with the typical image dehazing method by
He et al. [3], the variant of the DCP (UDCP) by Drew et al. [8], the image restoration
based on the dehazing of G-B channel and the correction of R channel [10], and Peng
et al.’s method [6] based on both the image blurriness and light absorption. In order to

Fig. 6. The processing of underwater image restoration (a) Original image; (b) The refined depth
map; (c) The estimated red transmission map; (d) The estimated green transmission map; (e) The
estimated blue transmission map; (f) The restored image. (Color figure online)
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demonstrate the outstanding performance of our proposed method, we present some
examples of the restored images and introduce quantitative assessments and complexity
comparison in this section.

Figure 7(a) shows four raw underwater images with different underwater charac-
teristics in terms of color tones and scenes from our underwater images datasets. In
Fig. 7(b), the DCP has no or little work on the test images due to incorrect depth map
estimation. This indicates the direct application of the outdoor image dehazing is not
suitable to the underwater image restoration. Figure 7(c) shows that the UDCP fails to
recover the scene of the underwater images and even bring color distortion and error
restoration. As shown in the Fig. 7(d)–(f), although all the methods can remove the
haze of the input images, the color and contrast of Fig. 7(d–e) are not as good as those
of Fig. 7(f) because the underwater light selection attenuation is ignored when esti-
mating transmission maps or background light. As shown in Fig. 7(f), our image
restoration method can effectively descatter and dehaze different underwater images,
improves details and colorfulness of the input images and finally produce a natural
underwater images.

4.1 Quantitative Assessment

Considering the fact that the clear underwater image presents better color, contrast and
visual effect, we rely on three non-reference quantitative metrics: ENTROPY, under-
water image quality measure (UIQM) [15] and the Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE) [16] to assess the restored image quality. Table 1 lists
the average scores of the three metrics on the recovered 100 low-quality underwater
images and notes that the best results are in bold. Entropy represents the abundance of
information. An image with higher entropy value prevents more valuable information.
The UIQM is a linear combination of colorfulness, sharpness and contrast and a larger
value represents higher image quality. The highest values of both ENTROPY and
UIQM values mean that our proposed method can recover high-quality underwater
images and reserve a lot of image information. The BRISQUE quantifies possible

Fig. 7. (a) Original images with a size of 600� 400 pixels; (b) He et al.’s results; (c) Drew
et al.’s results; (d) Li et al.’s results; (e) Peng et al.’s results; (f) Our results.

A Rapid Scene Depth Estimation Model 685



losses of naturalness in an image due to the presence of distortions. The BRISQUE
value indicates the image quality from 0 (best) to 100 (worst). The lowest value of the
BRISQUE obtained by our proposed method indicates the restored underwater image
achieves natural appearance.

4.2 Complexity Comparison

In this part, we compare running time of our proposed method with other methods
(maps refined by the guided filter [14]), including He et al. [3], Drew et al. [8], Li et al.
[10] and Peng et al. [6], processed on a Windows 7 PC with Intel(R) Core(TM) i7-
4790U CPU@3.60 GHz, 8.00 GB Memory, running on Python3.6.5. When an
underwater image with the size m� n is refined by the guided filter with the radius r,
the complexity of our proposed underwater image restoration method is O m� n� rð Þ
after the linear model is used to estimate the depth map. In the Fig. 8, the running time

Table 1. Quantitative analysis in terms of ENTROPY, UIQM and BRISQUE.

Method ENTROPY UIQM BRISQUE

He et al. [9] 6.1252 1.9296 33.5317
Drew et al. [8] 6.3714 2.6425 32.9704
Li et al. [10] 6.8031 3.3072 34.2450
Peng et al. [6] 6.7529 3.4514 30.1825
Ours 7.2398 3.9884 28.9147

Fig. 8. The processing time (/s) of our proposed method (blue bar) with the different sizes of the
input underwater images comparison with He et al. (brown bar), Drew et al. (green bar), Li et al.
(red bar), Peng et al. (gray bar). (Color figure online)
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(RT) is the average time (/s) of 50 underwater images with different sizes (/pixels).
The RT of other compared methods improves significantly as the size test image
becomes larger. Even though an underwater image is the size of 1200� 1800 pixels,
the RT of our method is lower than 2 s. In our method, the most time is used to obtain
three transmission maps for respective RGB lights.

5 Conclusion

In this paper, we have explored the rapid and effective model of depth map estimation
based on the underwater light attenuation prior within underwater images. After the
linear model is created, the BL and the TMs for R-G-B light are smoothly estimated to
restore the scene radiance simply. Our proposed method can achieve better quality of
the restored underwater images, meanwhile it can save a mass of consumption time due
to the depth map estimation using the linear model based on the ULAP, which further
simplifies the deduction of the background light and transmission maps for R-G-B
channel. The experimental results prove that our method can be well-suitable for
underwater image restoration under different scenarios, faster and more effective to
improve the quality of underwater images, according to the best objective evaluations
and the lowest running time.
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