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Abstract. Cross-modal information retrieval aims to find heteroge-
neous data of various modalities from a given query of one modality. The
main challenge is to map different modalities into a common semantic
space, in which distance between concepts in different modalities can
be well modeled. For cross-modal information retrieval between images
and texts, existing work mostly uses off-the-shelf Convolutional Neural
Network (CNN) for image feature extraction. For texts, word-level fea-
tures such as bag-of-words or word2vec are employed to build deep learn-
ing models to represent texts. Besides word-level semantics, the seman-
tic relations between words are also informative but less explored. In
this paper, we model texts by graphs using similarity measure based
on word2vec. A dual-path neural network model is proposed for couple
feature learning in cross-modal information retrieval. One path utilizes
Graph Convolutional Network (GCN) for text modeling based on graph
representations. The other path uses a neural network with layers of non-
linearities for image modeling based on off-the-shelf features. The model
is trained by a pairwise similarity loss function to maximize the simi-
larity of relevant text-image pairs and minimize the similarity of irrele-
vant pairs. Experimental results show that the proposed model outper-
forms the state-of-the-art methods significantly, with 17% improvement
on accuracy for the best case.

1 Introduction

For past a few decades, online multimedia information in different modalities,
such as image, text, video and audio, has been increasing and accumulated explo-
sively. Information related to the same content or topic may exist in various
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Fig. 1. Comparison of classical cross-modal retrieval models to our model. (a) Classical
models adopt feature vectors to represent grid-structured multimodal data; (b) Our
model can handle both irregular graph-structured data and regular grid-structured
data simultaneously.

modalities and has heterogeneous properties, that makes it difficult for tradi-
tional uni-modal information retrieval systems to acquire comprehensive infor-
mation. There is a growing demand for effective and efficient search in the data
across different modalities. Cross-modal information retrieval [13,17,20] enables
users to take a query of one modality to retrieve data in relevant content in other
modalities.

The mainstream solution for cross-modal retrieval is to project the features of
different modalities into a common semantic space and measure their similarity
directly. Thus, feature representation is the footstone for cross-modal informa-
tion retrieval. Existing work treats the irregular-structured data (i.e. text, pro-
tein network) as “flat” features in a similar way as modeling grid-structured data
(i.e. image, audio, video). Take text-image retrieval for example. Recent works
[19,22] extract the image features by pre-trained Convolutional Neural Network
(CNN) [8], which can leverage the local information in the grid-structured data
to represent the visual semantics. For text representation, deep models are also
widely applied to extract high-level semantics based on the sequential word
embeddings. CNN-based methods yield competitive results in image-sentence
retrieval. Meanwhile, Recurrent Neural Networks (RNN) gains remarkable mul-
timodal retrieval accuracy. However, these vector-space models treat the input
words as “flat” embeddings for the downstream task. More specifically, they only
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consider the context relations in the text modeling regardless of other important
relations.

Recent research has found that the global semantic relations among words
can provide rich semantics and can effectively promote the text classification
performance [16]. Inspired by their work, we aim to combine deep models to
explore the global word relations in representing the irregular-structured text
data. Such relations are leveraged for enhancing the generalization ability of
text in cross-modal retrieval tasks. In this paper, we propose one of the possible
solutions, that is, representing a text by a structured and featured graph and
learning text features by a graph-based deep model, i.e. Graph Convolutional
Network (GCN) [1,5]. Such a graph can well capture the semantic relations
among words. The GCN model has a great ability to learn local and stationary
features on graphs. Figure 1 shows the comparison of our model to classical cross-
modal retrieval models. Based on this graph representation for texts, we propose
a dual-path neural network, called Graph-In-Network (GIN), for cross-modal
information retrieval.

The main contributions can be summarized as follows:(1)We propose to
model text by graphs using similarity measure based on word2vec, which realizes
cross-modal retrieval between irregular-structured and regular grid-structured
data; (2) The model can jointly learn the textual and visual representations as
well as similarity metric, providing an end-to-end training mode; (3) Experimen-
tal results show the superior performance of our model over the state-of-the-art
methods.

2 Related Work

Cross-Modal Information Retrieval. The generic solution for cross-modal
retrieval is to learn a common semantic space for different modalities of data
and measure their similarity directly. Traditional statistical correlation analysis
methods, typically like Canonical Correlation Analysis (CCA) [13], aim to max-
imize the pairwise correlations between two sets the data of different modalities.
In order to leverage the semantic information, semi-supervised methods [17,22]
and supervised methods [14,18] are proposed to explore the label information
and achieve great progress. With the advances of deep learning in multimedia
applications, DNN-based cross-modal methods are in the ascendant. This kind
of methods generally construct two subnetworks for modeling data of different
modalities and learn their correlations by a joint layer. Wang et al. [19] uses two
branches of neural networks for learning textual-visual embeddings and realize
effective end-to-end fine-tuning. In this work, we also follow the DNN-based
routine to model the matched and mismatched text-image pairs.

Graph Convolutional Network (GCN). To render the extension of CNN to
irregular graphs, [1] proposes graph convolutional network, which allows convolu-
tions on the graphs to be solved as multiplications in the graph spectral domain.
Besides, [5] further simplifies GCN by a first-order approximation of graph spec-
tral convolutions, resulting in more efficient filtering operations. Based on GCN,
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recent work [6] proposes a novel method for learning a similarity metric between
irregular graphs. A siamese graph convolutional network is introduced for sim-
ilarity matching. Different from our work, the two branches of the model come
from the same image modality and the two branches share weights. Their model
can only handle graph-structured modal data, which can been seen as a special
case of our framework.

3 Methodology

In this section, we introduce a novel dual-path neural network to simultaneously
learn multi-modal representations and similarity metric in an end-to-end mode.
In the text modeling path (top in Fig. 2, that the convolution part is referred
to the blog of GCNs1) contains two key steps: graph construction and GCN
modeling.

Fig. 2. The structure of the proposed model is a dual-path neural network: i.e., text
Graph Convolutional Network (text GCN) (top) and image Neural Network (image
NN) (bottom). The text GCN for learning text representation contains two layers
of graph convolution on the top of constructed featured graph. The image NN for
learning image representation contains layers of non-linearities initialized by off-the-
shelf features. They have the same dimension in the last fully connected layers. The
objective is a global pairwise similarity loss function.

3.1 Text Modeling

Graph Construction: In this work, we represent a text by a featured graph
to combine the strengths of structural information with semantic information
together. Given a set of texts, we extract the most common words, denoted as
W = [w1, w2, ..., wN ], from all the unique words in this corpus and represent
each word by a pre-trained word2vec embedding. For the graph structure, we
construct a k-nearest neighbor graph, denoted as G = (V,E). Each vertex vi ∈ V

1 http://tkipf.github.io/graph-convolutional-networks/.

http://tkipf.github.io/graph-convolutional-networks/
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is corresponding to a unique word and each edge eij ∈ E is defined by the
word2vec similarity between two words:

eij =

{
1 if wi ∈ Nk(wj) or wj ∈ Nk(wi)
0 otherwise

(1)

where Nk(·) denotes the set of k-nearest neighbors by computing the cosine
similarity between word word2vec embeddings. k is the parameter of neighbor
numbers (set to 8 in our following experiments). The graph structure is stored
by an adjacent matrix A ∈ R

N×N . For the graph features, each text document is
represented by a bag-of -words vector and the frequency value of word wi serves
as the 1-dimensional feature on vertex vi. In this way, we combine structural
information of word similarity relations and semantic information of word vector
representation in a featured graph. Note that the graph structure is identical for
a corpus and we use different graph features to represent each text in a corpus.

GCN Modeling: Deep network models have become increasingly popular and
achieved breakthroughs in many text analysis tasks. However, classical deep
network models are defined for grid-structured data and can not be easily
extended to graphs. It’s challenging to define the local neighborhood structures
and the vertex orders for graph operations. Recently, Graph Convolutional Net-
work (GCN) is proposed to generalize Convolutional Neural Network (CNN) to
irregular-structured graphs. In this paper, the text features are learnt by GCN
given the graph representation of a text document.

Given a text, we define its input graph feature vector by Fin and denote the
output feature vector after graph convolution by Fout. In order to keep the filter
K-localized in space and computationally efficient, [1] proposes a approximated
polynomial filter defined as gθ =

∑K−1
k=0 θkTk(L̃), where Tk(x) = 2xTk−1(x) −

Tk−2(x) with T0(x) = 1 and T1(x) = x, L̃ = 2
λmax

L − IN and λmax denotes the
largest eigenvalue of L. L is the normalized graph Laplacian for the input graph
structure. The filtering operation can then be written as Fout = gθFin. In our
model, we use the same filter as in [1]. For the graph representation of a text
document, the ith input graph feature fin,i ∈ Fin is the word frequency of vertex
vi. Then the ith output feature fout,i ∈ Fout is given by:

fout,i =
K−1∑
k=0

θkTk(L̃)fin,i (2)

where we set K = 3 in the experiments to keep each convolution at most 3-steps
away from a center vertex. Our text GCN contains two layers of graph convo-
lutions, each followed by Rectified Linear Unit (ReLU) activation to increase
non-linearity. A fully connected layer is successive with the last convolution
layer to map the text features to the common latent semantic space. Given a
text document T , the text representation ft learnt by the text GCN model Ht(·)
is denoted by ft = Ht(T ).
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3.2 Image Modeling

For modeling images, we adopt a neural network (NN) containing a set of
fully connected layers (bottom in Fig. 2). We have three options of initializ-
ing inputs by hand-crafted feature descriptors, pre-trained neural networks, or
jointly trained end-to-end neural networks. In this paper, the first two kinds of
features are used for fair comparison with other models. The input visual features
are followed by a set of fully connected layers for fine-tuning the visual features.
Similar to text modeling, the last fully connected layer of image NN maps the
visual features to the common latent semantic space with the same dimension
as text. In experimental studies, we tune the number of layers and find that
only keeping the last semantic mapping layer without feature fine-tuning layers
can obtain satisfactory results. Given an image I, the image representation fimg

learnt by the model from image NN Himg(·) is represented by fimg = Himg(I).

3.3 Objective Function

Distance metric learning is applied to estimate the relevance of features learned
from the dual-path model. The outputs of the two paths, i.e. ft and fimg, are
in the same dimension and combined by an inner product layer. The successive
layer is a fully connected layer with one output score(T, I), denoting the similar-
ity score function between a text-image pair. The training objective is a pairwise
similarity loss function proposed in [7], which outperforms existing works in the
problem of learning local image features. In our research, we maximize the mean
similarity score u+ between text-image pairs of the same semantic concept and
minimize the mean similarity score u− between pairs of different semantic con-
cepts. Meanwhile, we also minimises the variance of pairwise similarity score for
both matching σ2+ and non-matching σ2− pairs. The loss function is formally by:

Loss = (σ2+ + σ2−) + λ max(0,m − (u+ − u−)) (3)

where λ is used to balance the weight of the mean and variance, and m is
the margin between the mean distributions of matching similarity and non-
matching similarity. u+=

∑Q1
i=1

score(Ti,Ii)
Q1

and σ2+=
∑Q1

i=1
(score(Ti,Ii)−u+)2

Q1
when

text Ti and image Ii are in the same class. While u−=
∑Q2

j=1
score(Tj ,Ij)

Q2
and

σ2−=
∑Q2

j=1
(score(Tj ,Ij)−u−)2

Q2
when Tj and Ij are in different classes. We sequen-

tially select Q1 + Q2 = 200 text-image pairs from the training set for each
mini-batch in the experiments.

4 Experimental Studies

4.1 Datasets

Experiments are conducted on four widely used benchmark datasets. Each
dataset contains a set of text-image pairs. dataset (Eng-Wiki for short) [13]



Modeling Text with GCN for Cross-Modal Information Retrieval 229

contains 2,866 image-text pairs divided into 10 classes. Each image is repre-
sented by a 4,096-dimensional vector extracted from the last fully connected
layer of VGG-19 model [15]. Each text is represented by a graph with 10,055
vertices. NUS-WIDE dataset consists of 269,648 image-tag pairs We select
samples in the 10 largest classes as adopted in [22]. For images, we use 500-
dimensional bag-of-features. For tags, we construct a graph with 5,018 vertices.
Pascal VOC dataset consists of 9,963 image-tag pairs belonging to 20 classes.
The images containing only one object are selected in our experiments as [14,18]
For the features, 512-dimensional Gist features are adopted for the images and
a graph with 598 vertices is used for the tags. TVGraz dataset contains 2,594
image-text pairs [10]. We choose the texts that have more than 10 words. Each
image is represented by a 4,096-dimensional VGG-19 feature and each text is
represented by a graph with 8,172 vertices.

4.2 Evaluation and Implementation

To evaluate the performance of our model, we conduct experiments for cross-
modal retrieval tasks, i.e. text-query-images and image-query-texts. The mean
average precision (MAP) and precision-recall (PR) curves [13] are used to eval-
uate the performance of all the algorithms on the four datasets. For all the
datasets, we randomly select matched and non-matched text-image pairs and
form 40,000 positive samples and 40,000 negative samples for training. The
ground truth labels are binary denoting whether the pairs are from the same
class or not. We train the model for 50 epochs with mini-batch size 200. We
adopt the dropout ratio of 0.2, learning rate 0.001 with an Adam optimisation,
and regularisation 0.005. m and λ are set to 0.6 and 0.35, respectively. In the
semantic mapping layers of both text and image paths, the reduced dimensions
are set to 1,024, 500, 256, 1,024, 1,024 for Eng-Wiki, NUS-WIDE, Pascal, and
TVGraz, respectively.

4.3 Experimental Results

(1) Comparison with State-of-the-Art Methods. We compare our pro-
posed GIN with a number of state-of-the-art models. The MAP scores of all
the methods on the five benchmark datasets are shown in Table 1. All the other
models are well cited work in this field. Since not all the papers have tested these
four datasets, for fair comparison, we compare our model to methods on their
reported datasets with the same preprocessing conditions. From Table 1, we can
have the following observations:

First, GIN outperforms all the compared methods over the four datasets for
the text-query-image task. On the Eng-Wiki, Pascal, NUS-WIDE, and TVGRaz
datasets, the MAP scores of GIN are about 35.70%, 17.14%, 12.9%, and 1.3%
higher than the second best results, respectively. It’s obvious that no matter
for the rich text or for the sparse tags, our model gains superior performance
than other models. The reason is that the proposed model effectively keeps the
inter-word semantic relations by representing the texts with graphs, which has
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Table 1. MAP score comparison of text-image retrieval on four given benchmark
datasets.

Method Text query Image query Average Dataset

CCA [13] 0.1872 0.2160 0.2016 Eng-Wiki

SCM [13] 0.2336 0.2759 0.2548

TCM [11] 0.2930 0.2320 0.2660

LCFS [18] 0.2043 0.2711 0.2377

LGCFL [3] 0.3160 0.3775 0.3467

ml-CCA [12] 0.2873 0.3527 0.3120

GMLDA [14] 0.2885 0.3159 0.3022

GMMFA [14] 0.2964 0.3155 0.3060

AUSL [22] 0.3321 0.3965 0.3643

JFSSL [17] 0.4102 0.4670 0.4386

GIN (ours) 0.7672 0.4526 0.6099

CCA [13] 0.2667 0.2869 0.2768 NUS-WIDE

LCFS [18] 0.3363 0.4742 0.4053

LGFCL [3] 0.3907 0.4972 0.4440

ml-CCA [12] 0.3908 0.4689 0.4299

AUSL [22] 0.4128 0.5690 0.4909

JFSSL [17] 0.3747 0.4035 0.3891

GIN (ours) 0.5418 0.5236 0.5327

CCA [13] 0.2215 0.2655 0.2435 Pascal

CDFE [9] 0.2211 0.2928 0.2569

BLM [14] 0.2408 0.2667 0.2538

GMLDA [14] 0.2448 0.3094 0.2771

GMMFA [14] 0.2308 0.3090 0.2699

CCA3V [2] 0.2562 0.3146 0.2854

LCFS [18] 0.2674 0.3438 0.3056

JFSSL [17] 0.2801 0.3607 0.3204

GIN (ours) 0.4515 0.3170 0.3842

CM [10] 0.4500 0.4600 0.4550 TVGraz

SM [10] 0.5850 0.6190 0.6020

SCM [13] 0.6960 0.6930 0.6945

TCM [11] 0.7060 0.6940 0.6950

GIN (ours) 0.7196 0.8188 0.7692

been ignored by other methods that only word frequency or context information.
Such inter-word relations are enhanced and more semantically relevant words are
activated with the successive layers of graph convolutions, resulting in better
generalization ability for un-seen text data.
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Fig. 3. Precision-recall curves on the four datasets.

Second, the MAP score of GIN for the image-query-text task is superior to
most of the compared methods. GIN ranks the second best on Eng-Wiki and
NUS-WIDE, the third best on Pascal and the best on TVGraz and Chi-Wiki.
Since GIN uses off-the-shelf feature vectors for image view, it’s normal that
the performance is comparable with state-of-the-art results. Different from the
observations on other datasets, the improvement for image-query-text is greater
than that for text-query-image. The reason is that, for the image view, the
compared algorithms represent images by bag-of-features with SIFT descriptors
while we utilize 4096-dimensional CNN features, which are proved to be much
more powerful than the hand-crafted feature descriptors. GIN achieves the best
average MAP over all the competitors, especially outperforming the second best
method JFSSL by 17.13% on Eng-Wiki.

The precision-recall (PR) curves of image-query-text and text-query-image
are plotted in Fig. 3. For JFSSL, we show its best MAP after feature selection
(see Table 7 in [17]). Since JFSSL hasn’t reported the PR curves corresponding to
the best MAP, we use its reported PR curves in [17]. For the text-query-image
task, it’s obvious that GIN achieves the highest precision than the compared
methods with almost all the recall rate on the four benchmark datasets. For the
image-query-text task, GIN outperforms other competitors with almost all the
recall rate on Eng-Wiki. For NUS-WIDE dataset, GIN is only inferior to AUSL
and LGCFL. For Pascal dataset, GIN is just slightly inferior to JFSSL. On the
whole, GIN is comparable with state-of-the-art methods for the image-query-text
task.

(2) Comparison with Baseline Models. Besides our proposed model, we
implement another four baseline models to evaluate the influence of the varia-
tion in text features and image features on the retrieval performance. All the
experiments are conducted on the Eng-Wiki dataset. The retrieval performance
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Table 2. Comparisons of MAP with baseline methods w.r.t different text and image
features.

Text features Image features Text query Image query Average

LSTM fixed VGG-19 0.62 0.42 0.52

CNN fixed VGG-19 0.36 0.30 0.33

GCN fixed VGG-19 0.75 0.43 0.59

GCN fixed ResNet-50 0.66 0.39 0.53

GCN CNN-5 0.28 0.27 0.28

of MAP is given in Table 2. Our proposed model GIN is based on GCN text fea-
tures and VGG-19 image features. First, we fix the image features of VGG-19 and
change the text features by LSTM [21] and CNN [4], respectively. The first three
models in Table 2 shows the retrieval performance. It’s obvious that GIN out-
performs other models especially for the text retrieval task, which indicates the
power of GCN in semantic representation of texts. The MAP of LSTM is inferior
to GCN while CNN performs the worst. Then we fix the text features of GCN and
change the image features by ResNet-50 and CNN with five convolution layers
(CNN-5), respectively. Particularly, CNN-5 is trained end-to-end with our pro-
posed model. We obtain the same conclusion that GIN performs the best. The
model using ResNet-50 is slightly worse than using VGG-19. CNN-5 performs the
worst because that shallow convolutional networks are detrimental to high-level
image feature representation. What’s more, the training process of GIN is 5 times
faster than CNN+VGG-19 and 8 times faster than LSTM+VGG-19.

4.4 Parameters Analysis

We conduct several experiments on the Eng-Wiki datasets to explore how param-
eters, i.e. m and λ in the loss function, affect the cross-modal retrieval perfor-
mance. In Table 3, we range the value of m from 0.4 to 0.6 and range λ from 0.25

Table 3. Experiments on the influence of the parameters m and λ.

m λ Text Query Image Query Average

0.40 0.35 0.553 0.384 0.469

0.50 0.35 0.622 0.463 0.543

0.60 0.35 0.808 0.460 0.634

0.70 0.35 0.643 0.473 0.558

0.80 0.35 0.606 0.448 0.527

0.60 0.25 0.788 0.441 0.615

0.60 0.30 0.795 0.450 0.623

0.60 0.40 0.791 0.452 0.621
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to 0.4 and show the model’s MAP scores. From the results we can see that the
model is not much sensitive to λ in the range of 0.25 to 0.4. On the contrary, the
range of m has obvious impact on the final cross-modal retrieval performance.
The average MAP scores range from 0.47 to 0.63 when varying the value of λ.
In general, 0.35 for λ and 0.6 for m are the relative best settings for our model.

5 Conclusion

In this paper, we propose a novel cross-modal retrieval model named GIN
that takes both irregular graph-structured textual representations and regular
vector-structured visual representaions into consideration to jointly learn cou-
pled feature and common latent semantic space. A dual path neural network
with graph convolutional networks and layers of nonlinearities is trained using
a pairwise similarity loss function. Extensive experiments on five benchmark
datasets demonstrate that our model considerably outperform the state-of-the-
art models. Besides, our model can be widely used in analyzing heterogeneous
data lying on irregular or non-Euclidean domains.
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