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Abstract. Current most GAN-based methods directly generate all
channels of a color image as a whole, while digging self-supervised infor-
mation from the correlation between image channels for improving image
generation has not been investigated. In this paper, we consider that a
color image could be split into multiple sets of channels in terms of
channels’ semantic, and these sets of channels are closely related rather
than completely independent. By leveraging this characteristic of color
images, we introduce self-supervised learning into the GAN framework,
and propose a generative model called Self-supervised GAN. Specifically,
we explicitly decompose the generation process as follows: (1) gener-
ate image channels, (2) correlate image channels, (3) concatenate image
channels into the whole image. Based on these operations, we not only
perform a basic adversarial learning task for generating images, but also
construct an auxiliary self-supervised learning task for further regular-
izing generation procedures. Experimental results demonstrate that the
proposed method can improve image generation compared with represen-
tative methods and possess capabilities of image colorization and image
texturization.
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1 Introduction

Recently increasing attention has been paid to building unsupervised learning
models for image generation and representation learning. In general, there are
two types of unsupervised learning approaches: (1) a discriminative framework
with self-supervised proxy tasks for learning representations; (2) a generative
framework for generating data and learning representations [26].

Considering expensive human annotation and plenty of free unlabeled data,
self-supervised learning methods directly dig supervised information from the raw
data. Based on data characteristics, all of these methods will construct various
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proxy tasks to learn meaningful representations. In computer vision domains both
temporal and spatial clues have been proven to be informative signals for con-
structing proxy tasks, such as egomotion [1], unsupervised object tracking [23],
spatial arrangement [7,18], transformations [8], and context-based reconstruction
[20]. Besides, the correlation between image channels is also another important
clue, such as colorization [3,4,6,13,14,27] and cross-channel prediction [28].

Fig. 1. Image generation by Self-supervised GAN.

Since images are high dimensional with complex patterns, various generative
methods have been proposed for achieving better performance of image gen-
eration based on the GAN [9] framework. Among them, some methods try to
leverage the inherent attributes of images, and focus on improving the archi-
tectural design of GAN. For example, [21] exploits the advantages of CNN in
image applications, and [5,25,26] design more elaborate network architectures
by exploiting structure/style formation [26], multiscale representation [5], and
background/foreground composition [25], respectively.

In this paper we expect to incorporate adversarial learning and self-
supervised learning into a generative model, and leverage their advantages for
improving the performance of image generation. For this purpose, we propose a
generative model called Self-supervised GAN (denoted as SSGAN ). Specifically,
we exploit one of the most basic characteristics of color images as follows: (1) a
color image is composed of multiple channels which can be grouped into specific
sets based on channels’ semantic; and (2) these sets of channels have a close rela-
tionship. To simplify the following discussion, we focus on the case where a color
image is generally split into the following two components: intensity and color.
Considering the above characteristic of color images, as illustrated in Fig. 1, the
generation process can be decomposed into the following procedures to generate
the whole image: (a) generate two sets of channels; (b) transform from one set
to the other set; (c) concatenate these two sets to form the whole data.

Based on these operations, we could combine adversarial learning and self-
supervised learning together. Except for performing the adversarial learning
task for image generation, we also construct the self-supervised learning task
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where different sets of channels predict each other using true data to further
improve generation. Viewed from another perspective, most of the existing meth-
ods directly generate all channels of color images as a whole, and only exploit
self-supervised information from true/fake data. Compared with these methods,
our proposed method could further dig more self-supervised information from
the correlation between image channels. Overall, the main contributions of this
work are as follows:

– By leveraging the relationship between color image channels, we propose a
generative model which can well incorporate adversarial learning and self-
supervised learning and improve the performance of image generation.

– Except for performing image generation, the proposed model also possesses
capabilities of image colorization and image texturization.

In the experiments we conduct both qualitative and quantitative evaluation
on the benchmark dataset, and compare the proposed method with several rep-
resentative methods. The experimental results verify the effectiveness of our
method.

2 Related Work

2.1 Adversarial Learning

Generally GAN-based methods focus on improving two factors of GAN: the
architectural design and the train criteria, since these factors have a great influ-
ence on the performance of image generation. For the architectural design, [21]
propose to stabilize GAN by applying architecture guidelines of CNN. By fur-
ther exploiting the inherent attributes of images, [5,26] cascade multiple GANs
and adopt a multi-scale strategy, and [24,25] analyze the image formation and
decompose image generation into cascaded procedures. Besides, [11,15] design
symmetrical architectures to model the cross-domain relationship of two image
domains by coupling two GANs in parallel and in cross-linked respectively. For
the train criteria, [16] adopts the least squares loss instead of the cross entropy
loss used by GAN, and [19] further extends GAN in the f -divergences estimation
framework. Differently, [29] rephrases the adversarial learning of GAN from the
perspective of an energy-based model. Besides, [2,10] propose to measure the
distribution discrepancy using Earth-Mover distance. Instead of weight clipping
using by [2,10,17] penalizes the norm of the discriminator’s gradient for enforc-
ing a Lipschitz constraint. Overall these GAN-based methods can improve the
training stability of models and the performance of image generation.

2.2 Self-supervised Learning

All of the self-supervised methods will leverage discriminative proxy tasks to
learn representations well transferred to downstream tasks. By learning repre-
sentations invariant to transformations, [1] predicts the transformation between



Self-supervised GAN for Image Generation by Correlating Image Channels 81

a pair of adjacent frames, [23] considers a pair of identically tracked patches
from successive frames to make their distance in the latent representation space
more closer, and [8] generically forms a set of surrogate classes by applying
vast image transformations to images. Considering the spatial arrangement of
image patches, [7] predicts the relative position of two image patches, [18] solves
the jigsaw puzzle composed of a set of object’s patches, and [20] proposes the
context-encoder to reconstruct the image region from its contextual region with
an adversarial regularization. Some works focus on the problem of image coloriza-
tion based on the regression model [4,6] or the classification model [13,14,27].
Furthermore, [3] improves the image diversity of colorization via leveraging con-
ditional adversarial learning, and [28] proposes a split-brain auto-encoder by
splitting the whole image into multiple channels and performing cross-channel
prediction tasks.

3 Preliminary for Adversarial Learning

The GAN framework is an approach for estimating generative models via an
adversarial learning process. Specifically, its network architecture is composed
of a generator G and a discriminator D. Its objective is to make D to correctly
differentiate between the true data and the generated data, and propel G to
well capture the data distribution. Considering the training difficulty of the
original GAN, we use SNGAN [17] as the baseline model since it shows better
generation performance and training stabilization. Formally, the value function
and the spectral normalization term adopted by SNGAN are as follows:

Lgan = Ex∼px(x)[log(D(x))] + Ez∼pz(z)[log(1 − D(G(z)))],

SN(W l) := W l/σ(W l) where W l ∈ θ,
(1)

where px(x) and pz(z) are the true data distribution and the prior noise distribu-
tion, respectively. θ := {W 1, ...,Wn} is the parameter set of the discriminator’s
layers, n is the number of layers, and σ(·) is the spectral norm of a matrix. More
details about the spectral normalization can refer to [17].

4 Self-supervised GAN

In this section we introduce the proposed generative model in detail, and focus on
the following aspects: network architecture, adversarial learning for image gener-
ation, self-supervised learning for generation regularization, and model training.

4.1 Network Architecture

To perform the basic adversarial learning task and the auxiliary self-supervised
learning task, we design an elaborate network architecture as shown in Fig. 2.
Specifically, this architecture consists of two types of components for generation



82 S. Qian et al.

and discrimination, and all components are parameterized by deep neural net-
works. Among them, S1 ◦ G and S2 ◦ G are generators for two sets of channels,
where G is the shared part for both sets, and S1 and S2 are the splitting parts
for each set. Since there are two types of cross-channel prediction: (1) predicting
the color component from the intensity component; (2) predicting the intensity
component from the color component, we design two transformers T12 and T21

for predicting one set from the other set. C is a concatenator for combining two
sets to form the whole data. D1, D2 and Dx are discriminators for the first set
of channels, the second set of channels and the whole data, respectively.

Fig. 2. The network architecture of SSGAN.

4.2 Adversarial Learning for Image Generation

As shown in Fig. 2, given a noise sample z ∼ pz(z) we can generate two splitting
channels (xs1 and xs2) and two transformed channels (xt2 and xt1), and con-
catenate these channels into four types of the whole data (xss, xst, xts and xtt).
Overall, they are given by

xs1 = S1 ◦ G(z), xs2 = S2 ◦ G(z), xt2 = T12(xs1), xt1 = T21(xs2);
xss = C(xs1, xs2), xst = C(xs1, xt2), xts = C(xt1, xs2), xtt = C(xt1, xt2).

(2)

By generating and concatenating image channels, we can build three types of
generative models — GM1, GM2 and GMx, as shown in Table 1. These models
are responsible for the following adversarial learning tasks respectively: learning
the distributions of (1) the first set of channels, (2) the second set of channels,
and (3) the whole data. Following SNGAN, the corresponding value functions of
these models are as follows:

L1 = E[log(D1(x1))] + E[log(1 − D1(x∗1))],
L2 = E[log(D2(x2))] + E[log(1 − D2(x∗2))],
Lx = E[log(Dx(x))] + E[log(1 − Dx(x∗∗))],

(3)

where x∗1 and x∗2 denote the generated channels; x∗∗ denotes the concatenated
whole data; x1 and x2 are two sets of channels from the true whole data x. For
simplicity, the spectral normalization term of each model is ignored here.
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Table 1. Three types of generative models.

Generative model Components

Generation Discrimination

GM1 S1 ◦ G; T21 ◦ S2 ◦ G D1

GM2 S2 ◦ G; T12 ◦ S1 ◦ G D2

GMx S1 ◦ G; S2 ◦ G; T12 ◦ S1 ◦ G; T21 ◦ S2 ◦ G Dx

4.3 Self-supervised Learning for Generation Regularization

Except for adversarial learning for image generation, we further introduce a
self-supervised learning task to improve image generation. This task performs a
cross-channel prediction by only exploiting true data. Specifically, we split the
true data x into x1 and x2, reuse transformers T12 and T21 as cross-channel
predictors, and generate two predicting sets of channels — T12(x1) and T21(x2).
The corresponding loss functions of cross-channel predictors are as follows:

LT12 = E[�(T12(x1), x2)] and LT21 = E[�(T21(x2), x1)], (4)

where �(m,n) = ‖m − n‖p measures the reconstruction error of two image chan-
nels based on the Lp norm, and we set L1 in this paper.

4.4 Model Training

Considering the proposed network architecture and two types of learning tasks,
we can train the proposed model in two stages: (1) train these components
(S1 ◦ G, S2 ◦ G for generation; D1, D2, Dx for discrimination) and transformers
(T12, T21) independently; and (2) train all components jointly. When jointly
training all components, it should be noted that some components are affected
by multiple value functions. Hence, we should balance the above value functions.

5 Experiments

We evaluate the proposed SSGAN on the benchmark dataset CIFAR [12], and
provide both quantitative and qualitative evaluation. Specifically, we focus on
the following aspects: image generation, inspecting the effect of self-supervised
learning and channel prediction. For quantitative evaluation of the generation
performance, we adopt the inception score (denoted as IS ) [22]. We choose the
RGB and Lab color spaces, where the RGB color space is used for the baselines
and the Lab color space is used for the SSGAN. Briefly speaking, a whole Lab
image could be divided into the intensity channel L and the color channels ab
in the SSGAN.

Besides, some key configurations of experimental implementation are listed
as follows. (1) Network architecture: we follow the CNN architectures [17].
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(2) Optimizer: we use Adam optimizer for optimization with learning rate
(α = 0.0001) and the first and second order momentum parameters (β1 = 0.5
and β2 = 0.999) [17]. (3) Model Training: to balance the above value functions,
we set the coefficient of LT∗ as 10 by experience, so that both the adversar-
ial learning task and the self-supervised learning task can contribute to model
learning.

5.1 Image Generation

In the SSGAN we can generate four types of the whole image — xss, xst, xts

and xtt. To compare their performance of image generation, we show four types
of generated image samples and list their ISs. In Fig. 3 we can observe that there
is not obvious difference between image samples of xss and xst in terms of visual
perception, but image samples of xts and xtt are inferior than those of xss and
xst in terms of texture and detail (for a better view by zooming in). Further,
from Table 2 we can see that the IS of xst is the highest, and the ISs of xss

and xst are higher than those of xts and xtt. Both results indicate that the first
type of cross-channel prediction is beneficial to image generation, however the
second type of cross-channel prediction does not have a positive effect on image
generation.

Fig. 3. Four types of image samples generated on CIFAR.

Table 2. Inception scores of four types of the whole image.

Type Concatenation of (* intensity, * color) Inception score

xss (splitting, splitting) 7.44 ± 0.09

xst (splitting, transformed) 7.70 ± 0.09

xts (transformed, splitting) 6.86 ± 0.07

xtt (transformed, transformed) 6.41 ± 0.08

To compare SSGAN with other methods, we also show image samples gener-
ated by these methods and list their ISs. In Fig. 4 images generated by SNGAN
and SSGAN are clearer than those by other methods, while there is not obvious
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difference between SNGAN and SSGAN in terms of visual perception. However,
from Table 3 we can see that the IS of SSGAN improves almost 0.28 compared
with the baseline SNGAN. Besides, SSGAN performs better than other methods
which directly generate RGB images as a whole.

Fig. 4. Image samples generated by contrast methods and SSGAN on CIFAR.

Table 3. Inception scores of several representative methods and SSGAN.

Method Inception score

Real Images 11.24 ± 0.12

DCGAN 6.16 ± 0.17

WGAN 6.41 ± 0.11

WGAN-GP 6.68 ± 0.06

SNGAN 7.42 ± 0.08

SSGAN 7.70 ± 0.09

5.2 Effect of Self-supervised Learning

In order to evaluate the effectiveness of introducing self-supervised learning, we
perform the experiment in which the self-supervised learning for transformer
regularization is ignored. In other words, LT12 and LT21 will be not used for
model updating. Here we mainly consider the generated whole image xst and
the first type of cross-channel prediction as described in Sect. 4.1. We present
the ISs of xst with/without self-supervised learning, and show image samples
which consist of the original images and their reconstructed images based on
cross-channel prediction. From Table 4 we can see that the IS of xst with self-
supervised learning is higher than that of xst without self-supervised learning.
As shown in Fig. 5 reconstructed images without self-supervised learning (the
left pair) fail to infer the color component from the intensity component, while
reconstructed images with self-supervised learning (the right pair) can better
predict the color component. These again indicate that the first type of cross-
channel prediction is beneficial to image generation.
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Table 4. The effect of self-supervised learning.

Self-supervised Inception score of xst

Without 7.41 ± 0.07

With 7.70 ± 0.09

Fig. 5. Reconstructions based on predicting the color component from the intensity
component. Each pair consists of the original image and its reconstruction.

5.3 Cross-Channel Prediction

Since we introduce a self-supervised learning task which performs cross-channel
prediction, we could reconstruct a color image if only its intensity component
or its color component is provided. In other words, the transformers T12 and
T21 of SSGAN also can be used for image colorization and image texturization,
respectively.

We illustrate some examples of image colorization and image texturization in
Fig. 6. Specifically, the left subfigure includes original images, the middle subfig-
ure includes reconstructed images based on predicting the color component from
the given intensity component, and the right subfigure includes reconstructed
images based on predicting the intensity component from the given color com-
ponent. So the middle subfigure and the right subfigure correspond to image
colorization and image texturization, respectively. By comparing original images
with two types of reconstructed images, we can see that the transformer T12 can
infer realistic colors, while T21 can not predict very fine texture. Viewed from
another perspective, it indicates that when performing cross-channel prediction
task, the second type is more difficult to the first type. This maybe explain the
inferior generation performance of xts and xtt.

Fig. 6. Reconstructions based on cross-channel prediction.
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6 Conclusion

In this work we propose a generative model called Self-supervised GAN for
improving image generation by introducing self-supervised learning into the
GAN framework. Considering that channels of a color image are tightly cor-
related, we leverage this inherent attribute of color images and explicitly decom-
pose image generation into multiple procedures. Based on the decomposition of
image generation, the correlation between image channels as the self-supervised
signal is dug for improving image generation. Hence, except for performing the
basic image generation task in the adversarial learning framework, we also build
an auxiliary cross-channel prediction task to regularize generation procedures in
the self-supervised learning framework. Experimental results demonstrate that
the proposed method can improve image generation compared with representa-
tive methods, and show capabilities of image colorization and image texturiza-
tion.
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