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Abstract. Hashing methods have been widely used in large-scale image
retrieval. However, the constraints on the hash codes of similar images
learned by the previous hashing methods are too strong, which may
lead to overfitting and difficult convergence. Besides, the binary codes
output by the previous hashing methods are not optimally compatible
with the multi-index approach, which is the most effective method for
Hamming distance query acceleration. In this paper, we propose a novel
Robust and Index-Compatible Deep Hashing (RICH) method to learn
compact similarity-preserving binary codes, which focuses on improv-
ing the retrieval accuracy and time efficiency simultaneously. With the
learned binary codes, we can achieve better results compared with the
state-of-the-arts in retrieval accuracy. Meanwhile, remarkable promo-
tions of the retrieval time efficiency have been made in the Hamming
distance query process.

Keywords: Deep hashing · Image retrieval
Hamming distance query · The multi-index approach

1 Introduction

With the explosive growth of images on the web, much attention has been
devoted to the nearest neighbor search via hashing methods. Mapping image
data onto compact and similarity-preserving binary codes is important for large-
scale image retrieval. In the literature, existing hashing methods can be grouped
into two categories: data-independent methods and data-dependent methods.

In data-independent methods, the hash function is randomly generated which
is independent of any training data. LSH [2] and KLSH [8] are representa-
tive data-independent methods. LSH uses random linear projections to produce
binary codes, and KLSH is a kenelized method for dealing with high-dimensional
and non-linear data. There are also some other variants of LSH [6,13] that have
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been proposed. Due to the limitations of making no use of training data, these
methods are usually difficult to achieve satisfactory performance.

Data-dependent methods try to learn the hash function from training data.
They can be further divided into unsupervised and supervised methods. Unsu-
pervised methods only use the feature information of data points without using
any label information during the learning procedure. ITQ [4] is one of the rep-
resentative unsupervised methods, which iteratively optimizes the projection
matrix of images to minimize the quantization error. In order to deal with the
label information, supervised methods are proposed. SDH [15], KSH [1], MLH
[14] are well known supervised methods. All of them use hand-crafted features
of the training images, which have limitations in capturing the deep semantic
information of images thus limit the retrieval accuracy of the learned codes.

Recently, many deep learning based hashing methods have been proposed.
CNNH [18] and NINH [9] are early approaches adopting neural networks to learn
hash codes. [9,11,12,17,19,20] are also well known methods of this kind. Most
of these deep hashing methods are supervised and the supervised information
is usually based on pair-wise or triplet labels. Due to the outstanding learning
ability of the deep neural networks, they have shown much better performance
than the traditional hashing methods.

However, most of the existing deep hashing methods try to make the hash
codes of similar images exactly the same, which is unreasonable in some cases. As
shown in Fig. 1, two similar images in the semantic space may be very different
in visual, which is a common case in the existing real-world image data sets.
Under this circumstance, forcing the hash codes of similar images to be exactly
the same may lead to overfitting and difficult convergence.

Fig. 1. Two exemplary image pairs from NUS-WIDE. The images in the group (a)
are annotated with a single label. The images in the group (b) are annotated with
multiple labels. Following previous works, both of them are considered as similar pair,
even though they are very different in visual.

Besides, most current deep hashing methods are not compatible with the
multi-index approach [3,5], which is an inverted index based method. The
method splits each code into disjoint but consecutive blocks and creates a sepa-
rate index for each block. In the searching phase, the images whose codes have
no matching blocks with the query code will be filtered out. Consequently, the
candidate images will be checked and ranked. However, the codes generated by
previous deep hashing methods are not distributed uniformly, which will slow
down the Hamming distance query process with multi-index.
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Fig. 2. Overview of the proposed framework. The network consists of 5 convolution
layers and 3 fully connected layers. The last layer is hashing layer (fch), which has k
output nodes.

In this paper, we introduce a novel framework based on deep learning model,
named Robust and Index-Compatible Deep Hashing (RICH). An overview of
the proposed framework is illustrated in Fig. 2. Through the proposed archi-
tecture, images are first encoded into real-valued feature vectors. Then each
vector is converted to a hash code by a hash layer (fch). After that, these hash
codes are used in a dual-margin based hashing loss that aims to preserve simi-
larity between images and an index-compatible loss that aims to minimize the
number of the matching blocks between the binary codes of dissimilar images.
The contributions of this study can be summarized as follows: (1) We present a
novel CNN based framework for learning hash functions to improve the retrieval
accuracy and time efficiency simultaneously. (2) A loss function is elaborately
designed to guide the learning of the neural network. With the proposed loss
function, the learned hash functions are more scalable and robust to different
data sets. Besides, the hash codes output by RICH are more compatible with the
multi-index approach. (3) Extensive experiments demonstrate that the proposed
method gains better retrieval accuracy and more robust performance than pre-
vious methods. Meanwhile, the retrieval time is also significantly reduced when
adopting the multi-index approach.

2 The Proposed Approach

Suppose that we have a training set of N images {xi}Ni=1. Our goal is to learn
the nonlinear hashing function H : x → h ∈ {−1, 1}k mapping each image to
k-bit binary code. Accordingly, our deep hash function is defined as:

h (x) = sign (f(x)) (1)

where f(x) indicates the output of layer fch. Therefore, k-bit binary codes can
be obtained through k such hash functions h (x) = [h1 (x) , h2 (x) , ..., hk (x)]. To
encourage the fch layer representation to be optimal for hash coding and can
be better applied to the multi-index approach, the loss function is elaborately
designed.
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2.1 Dual-Margin Based Loss Term

Our first goal is to make the codes of similar images close in the Hamming
space, while the codes of dissimilar images far away from each other. Meanwhile,
different from previous methods, we no longer make the codes of similar images
exactly same. To achieve the goal, we propose a dual-margin based loss term as:

Lhashing =
1
2

∑

sij∈S

{sij max (Dh(h(xi) · h(xj)) − m0, 0)

+ (1 − sij)max (m1 − Dh(h(xi) · h(xj)), 0)}
(2)

where sij = 1 indicates xi and xj are similar and sij = 0 implies xi and xj are
dissimilar. Dh(h(xi) · h(xj)) denotes the Hamming distance between two codes,
and m0 > 0,m1 > 0 are margin threshold parameters. In the case of sij = 1,
which means xi, xj are similar images, the first term will punish them only when
their Hamming distance exceeds the threshold m0. In the case of sij = 0, only the
second term takes effects, and it will punish dissimilar images mapped to close
binary codes when their Hamming distance falls below the margin threshold m1.

However, it is intractable to directly optimize the Eq. (2), due to the binary
constraints on h(x) and discrete Hamming distance (i.e. Dh(·)) computing. As
implied in previous methods [11], we replace the Hamming distance by Euclidean
distance. Meanwhile, in order to reduce the error of quantization, we also impose
a regularizer on the real-valued network outputs to approach the desired discrete
values (−1/+1). Thus, the complete dual-margin based loss term is rewritten
as:

Lhashing =
1
2

∑

sij∈S

{
sij max

(||f(xi) − f(xj)||22 − m0, 0
)

+ (1 − sij)max
(
m1 − ||f(xi) − f(xj)||22, 0

)}

+ λ

N∑

i=1

(|||f(xi)| − 1||1)

(3)

where f(x) is the continuous output vector of the hash layer. || · ||1 is the L1-
norm of vector, and || · ||22 is the Euclidean-norm. | · | is the element-wise absolute
value operation, and 1 is a vector of all ones. λ is a trade-off parameter that
controls the strength of the regularizer. Note that the higher-order norms of the
regularizer are also applicable. We choose the L1-norm on account of its less
computational cost, which is beneficial for accelerating the training process.

2.2 Index-Compatible Loss Term

As we mentioned before, making the generated codes better applied to the multi-
index approach is our second goal. However, there is a drawback of the previous
deep hashing methods that the codes they generate is not uniformly distributed.
Therefore, the majority of the codes have exactly the same value in some blocks.
As shown in Fig. 3, all the codes have the same value in block2, which will make
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Fig. 3. Q is the hash code of the query image. B1 and B2 are the codes of images similar
to the query image, while B3 and B4 are the ones dissimilar to the query image.

all the dissimilar images contained in the candidate sets when adopting the
multi-index approach.

To address this problem, for corresponding blocks of the codes between dis-
similar image pairs, we push them a certain distance away from each other. The
index-compatible loss term is designed as follows:

Lindex =
1
2

∑

sij∈S

(1 − sij)
b∑

t=1

max
(
m2 − ||f t(xi) − f t(xj)||22, 0

)
(4)

where f t(x) denotes the t-th block of the hash layer (fch) outputs of image x,
and m2 is a margin threshold parameter.

Integrating the index-compatible loss with the dual-margin based loss, we
can get the objective loss function of RICH:

LRICH = Lhashing + αLindex (5)

where α > 0 is a trade-off parameter between Lhashing and Lindex.

2.3 Optimization

By substituting Eqs. (3) and (4) into Eq. (5), we rewrite the overall loss function
of RICH as follows:

LRICH =
1
2

∑

sij∈S

{
sij max

(||f(xi) − f(xj)||22 − m0, 0
)

+ (1 − sij)max
(
m1 − ||f(xi) − f(xj)||22, 0

)}

+
α

2

∑

sij∈S

(1 − sij)
b∑

t=1

max
(
m2 − ||f t(xi) − f t(xj)||22, 0

)

+ λ

N∑

i=1

(|||f(xi)| − 1||1)

(6)

Next, we can employ back-propagation algorithm with mini-batch gradi-
ent descent method to train the network. So the gradients of Eq. (6) w.r.t
f(xi), f(xj)∀i, j need to be computed. Since the max operation and the absolute
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value operation is non-differentiable at some certain points, we use subgradients
instead, and define subgradients to be 1 at these points. In order to express
clearly, we have a separate calculation on the gradients of the regularizer.

∂Lhashing

∂f(xi)
= (f(xi) − f(xj))(sijIdis>m0 − (1 − sij)Idis<m1) + δ(f(xi))

∂Lhashing

∂f(xj)
= (f(xj) − f(xi))(sijIdis>m0 − (1 − sij)Idis<m1) + δ(f(xj))

∂Lindex

∂f t(xi)
= (1 − sij)(f t(xi) − f t(xj))I||ft(xi)−ft(xj)||22<m2

∂Lindex

∂f t(xj)
= (1 − sij)(f t(xj) − f t(xi))I||ft(xi)−ft(xj)||22<m2

(7)

where

δ(x) =

{
1, −1 ≤ x ≤ 0 or x ≥ 1
−1, otherwise

(8)

where dis denotes the Euclidean distance ||f(xi) − f(xj)||22. And we use the
function Icondition = 1 to indicate condition is true, and Icontidion = 0 when
condition is false. With the computed subgradients over mini-batches, the rest
of the back-propagation can be done in standard manner.

3 Experiments

3.1 Evaluation Setup

We conduct extensive experiments on two widely-used benchmark datasets,
CIFAR-10 and NUS-WIDE.

CIFAR-10 is a public image dataset, which consists of 60,000 32×32 images
belonging to 10 categories. We randomly select 100 images per class (1,000
images in total) as the test query set, 5000 images per class (50,000 images
in total) as the training set.

NUS-WIDE contains 269,648 multi-label images collected from Flickr. The
association between images and 81 concepts are manually annotated. Following
[11,20], we use the images associated with the 21 most frequent concepts, where
each of these concepts associates with at least 5,000 images, resulting in a total
of 195,834 images. Generally, if two images share at least one same label, they are
considered similar, and dissimilar otherwise. We randomly select 2,100 images
(100 images per class) for testing queries and the rest is used for training.

We use both deep learning based hashing methods and traditional hashing
methods for thorough comparison. Five deep hashing methods: DSH [11], DHN
[20], DPSH [10], NINH [9] and CNNH [18]. For fair comparison, we implement
the DSH and DHN with the same AlexNet network structures. Most of other
results are directly reported from previous works. Traditional hashing methods
consists of SH [16] and ITQ [4], both of them use the CNN feature.
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We implement RICH based on the open source Caffe1 framework, and employ
the AlexNet [7] neural network architecture, finetune convolutional layers and
fully-connected layers that were copied from the pre-trained model. We use the
mini-batch stochastic gradient descent with 0.9 momentum. The quantization
penalty parameter λ and trade-off parameter α are chosen by cross-validation
from 10−5 to 102 with a multiplicative step-size 10. For the dual margin param-
eter m0, we empirically set m0 = 4 for CIFAR-10 and m0 = 8 for NUS-WIDE,
which means we allow that there exists 1/2 different bits between the codes of
similar image pairs in CIFAR-10/NUS-WIDE. We set another margin parameter
m1 = 2k, which is the same as [11]. That means we expect at least half of the
binary codes between dissimilar images to be different. For the parameters in
the index-compatible loss term, we split codes to k

2 blocks, then we set m2 = 4,
which means we try to make each block of dissimilar codes share at least one
distinct bit. The multi-index approach is implemented with Lucene-6.4.22, which
is a high-performance and full-featured text search engine library.

We mainly evaluate the retrieval accuracy and retrieval time efficiency of
RICH and other methods. Following [10,11,20], we use the mean Average Pre-
cision (mAP) to measure the retrieval accuracy. For NUS-WIDE, following the
previous work [10], we calculate the mAP values within the top 5000 returned
neighbors. To evaluate the time efficiency, we calculate the overall time of the
Hamming distance query process.

3.2 Comparison of Retrieval Accuracy

The mAP results are reported in Table 1, which shows that the proposed RICH
method substantially outperforms all the comparison methods.

As shown in Table 1, most of the deep hashing methods perform better than
the traditional hashing methods, validating the advantage of learning image
representations over using hand-crafted features. Furthermore, DSH achieves
a better performance on CIFAR-10 than DPSH, but on NUS-WIDE, DSH is
inferior to DPSH. It indicates that they are not robust enough on different data
sets. However, RICH performance better on both CIFAR-10 and NUS-WIDE,
validating its robustness. We attribute this approvement to the proposed dual-
margin based loss term which can effectively prevent overfitting.

To further verify the effectiveness of the proposed dual-margin based loss
term, we compare RICH with RICH*. As listed in Table 1, the mAP results of
RICH* is obviously lower than RICH, which proves that the dual-margin based
loss term can improve the retrieval accuracy. Furthermore, the promotion on
NUS-WIDE is more significant, which means the dual-margin based loss is more
effective on multi-label images data.

1 http://caffe.berkeleyvision.org/.
2 https://lucene.apache.org/.

http://caffe.berkeleyvision.org/
https://lucene.apache.org/
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Table 1. Comparison of mAP w.r.t. different number of bits on NUS-WIDE and
CIFAR-10. RICH* is a variant of RICH when m0 = 0.

Methods NUS-WIDE CIFAR-10

16-bits 32-bits 48-bits 64-bits 16-bits 32-bits 48-bits 64-bits

RICH 0.7867 0.7950 0.8177 0.8291 0.8801 0.8892 0.9062 0.9080

RICH* 0.7598 0.7680 0.7694 0.7740 0.8796 0.8839 0.9047 0.9082

DSH 0.7499 0.7602 0.7604 0.7631 0.8538 0.8831 0.9042 0.9065

DHN 0.8153 0.8178 0.8237 0.8215 0.8652 0.8792 0.8921 0.8890

DPSH 0.7752 0.7940 0.8120 0.8253 0.7206 0.7440 0.7570 0.7621

NINH 0.6866 0.7130 0.7155 0.7241 0.5662 0.5580 0.5810 0.5986

CNNH 0.6154 0.6255 0.6080 0.6098 0.4839 0.5090 0.5220 0.5534

ITQ+CNN 0.4235 0.4334 0.4607 0.4303 0.2436 0.2550 0.2610 0.2630

SH+CNN 0.3662 0.3560 0.3834 0.3405 0.1612 0.1610 0.1610 0.1620

3.3 Comparison of Time Efficiency

In general, the multi-index approach consists of two phases: searching phase
and checking phase. In the searching phase, the binary code of the query image
is first splitted into blocks, then we search the multi-index to identify all the
binary codes that contain at least one matching block. In the checking phase,
we rank the candidate images according to the Hamming distance between the
binary codes of the candidate images and query image. We calculate the overall
time of these two phases. Note that all the binary codes are stored in memory.

Fig. 4. Comparison of the query time w.r.t. different number of bits on NUS-WIDE
and CIFAR-10.

The comparison result is presented in Fig. 4. With the binary codes learned
by RICH, the overall query time is significantly reduced comparing to other
methods. To be specific, there is a 29.5%–37.7% reduction of the total query
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time on CIFAR-10. For NUS-WIDE, there is a 22.3%–47.5% reduction. We
attribute this improvement to the reduction of the candidate images. We cal-
culate the size of the candidate images of different method, and the results are
shown in Table 2. We can see that the size of the candidate images are sig-
nificantly reduced with the codes generated by RICH. Specifically, there is a
43.35% reduction on NUS-WIDE and 21.80% reduction on CIFAR-10.

Table 2. Comparison of Recall and the size of candidate images on NUS-WIDE and
CIFAR-10 with 32 bits.

Methods NUS-WIDE CIFAR-10

≥1 ≥2 ≥3 ≥4 #candidates – #candidates

DSH 0.9985 0.9994 0.9998 0.9999 188741 0.9999 49762

DHN 0.9978 0.9993 0.9997 0.9999 188447 0.9999 49951

RICH 0.9679 0.9888 0.9909 0.9999 106841 0.9999 38942

In Table 2, we further record the recall rate. On CIFAR-10, both the com-
parison methods and RICH achieve a recall rate of almost 100%, which means
that almost no similar images are filtered out in the searching phase. On NUS-
WIDE, “≥n” indicates the recall rate of similar images sharing no less than n
same labels. Note that with the increasing number of the sharing labels between
the database images and the query image, the recall rate increases, which means
that the images with higher similarity to the query images are less likely to be
filtered out.

Fig. 5. Distribution of the codes generated by DSH (left) and RICH (right), with 32
bits on NUS-WIDE. The three blocks are randomly selected. The x-axis shows all
the possible values of each block, and Y-axis shows the number of images. For the
third block, most of the codes generated by DSH are valued “00” which is a extremely
non-uniform distribution.

We further visualize the distribution of the codes generated by DSH an RICH.
As shown in Fig. 5, the codes output by RICH are more uniform than the ones
learned by DSH, which verifies the effectiveness of the index-compatible loss
term.
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4 Conclusion

In this paper, we propose a robust and index-compatible deep hashing method
for accurate and fast image retrieval, named RICH. A loss function is elabo-
rately designed, which consists of a dual-margin based loss term and an index-
compatible loss term. With the learned codes, both the retrieval accuracy and
the time efficiency are significantly improved. We attribute the improvement of
retrieval accuracy to the relaxation of constraints on similar image pairs, and
that of the time efficiency to the more uniform distribution of the codes. Exten-
sive experiments validate the effectiveness of the proposed method.
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