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Abstract. Deep learning technology has been introduced into many mul-
timedia processing tasks, including multimedia retrieval. In this paper,
we propose a deep residual net (ResNet) based compact feature represen-
tation improve the content-based image retrieval (CBIR) performance.
The proposed method integrates ResNet and hashing networks to con-
vert the raw images into binary codes. The binary codes of images in
query set and that of the database are compared using Hamming dis-
tance for retrieval. Comprehensive experiments are executed on three pub-
lic databases. The results show that the proposed method outperforms
state-of-the-art methods. Furthermore, the impact of the deep convolu-
tional network (DCNN)’s depth on the performance is investigated.
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1 Introduction

With the huge accumulation of digital images and videos in the society, the
demand of searching such kind of data is also increasing [8]. Traditional multi-
media search engines usually use the surrounding meta data, such as titles and
tags or manually annotated keywords as the index to retrieval the multimedia
data, named keyword-based retrieval [18]. The main drawback of such kind of
retrieval technology is the inconsistence between the textural information and
visual content of multimedia data. So the content-based multimedia retrieval is
proposed and makes great progress in the past decades [13]. In content-based
multimedia retrieval, semantic gap is a challenging problem, which refers to the
difference between the low level representations of images and the higher level
concepts used by human beings to describe the images. To narrow this gap,
extensive efforts have been made both from the academic and industry commu-
nities [9,10,17].

Over the past few years, deep learning has been witnessed as one of the most
promising technology in computer vision as their outstanding performance in
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a series of vision related tasks, such as image classification [19], face recogni-
tion [29], image segmentation [27] and so on. Since the successful application of
AlexNet [12] in computer vision, the instinct idea to get better feature represen-
tation is to use deep convolution neural networks (DCNN). For example, AlexNet
contains 8 learned layers, VGGNet [21] has 19 learned layers and GoogLeNet [22]
consists of 22 learned layers. However, going deeper means that training such
network will become more difficult. Thus deeper but easy to be trained DCNN
is proposed, namely, ResNet [6]. Inspired by these successful DCNN, deep learn-
ing has already been introduced into content-based image retrieval (CBIR) [2].
However, it is instinct to ask: whether using very deep DCNN will improve the
performance of image retrieval, especially for large scale image database?

In order to answer the above question, we use a very deep DCNN, ResNet
for image retrieval. However, features extracted by ResNet are high-dimensional,
thus they are not compatible with large scale image database if they are used
directly for retrieval. So the proposed method constitutes a framework for con-
verting the raw images into binary codes for effectively large scale image retrieval.
To do so, the raw images are firstly input into the ResNet to get the deep fea-
tures. And then the deep features are converted into binary codes by a DCNN
based hashing network. In summary, the contributions of this work are twofold:

(1) We investigate a new framework that could convert the raw images into
binary codes for large scale image retrieval. This framework integrates ResNet
and DCNN based hashing network.

(2) Extensive experiments are conducted for comprehensive evaluations of
the proposed framework, especially with different depth of the DCNN.

The reminder of the manuscript is structured as follows: Sect. 2 describes
the proposed framework, followed by the experiment results in Sect. 3. Finally,
conclusion and perspectives are given in Sect. 4.

2 Proposal

The framework of our method is shown in Fig. 1. The inputs are the pixels of the
raw image and the corresponding label information of the image (for training
only) and the output are the binary codes of the images. Such codes could be used
for image retrieval by comparing the Hamming distances between the query’s
codes and the codes of the gallery images. The proposed framework includes two
kinds of DCNN. Deep Residual Network (ResNet) [6] is used to convert the raw
images into deep features and hashing neural network (HNN) is used to convert
the deep feature into binary codes. We name our proposal as ResHNN. Details
will be explained in this section.

2.1 ResNet

ResNet won the 1st place on the ILSVRC 2015 classification task and is proved to
be easily optimized. And it gains improvement from increased depth [6]. ResNet
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is composed by many stacked “Residual Units” and each unit could be expressed
in the following form:

yi = h(xi) + F (xi,Wl)

xi+1 = f(yi) (1)

where xi and xi + 1 are input and output of the i-th unit, and F is residual
function. h(xi) is an identity mapping and f is a ReLU function [7]. The core
idea of ResNet is to learn the additive residual function F with respect to h(xi),
with a key choice of using an identity mapping h(xi) = xi. This is realized
by attaching an shortcut connection that performs identity mapping and their
outputs are added to the outputs of the stacked layers. The residual unit we
used is as shown in Fig. 1. More details could be found in [6,7].
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Fig. 1. The framework of transferring images into compact feature representation

2.2 HNN

The hashing layer is based on Nonlinear Discrete Hashing [3], which uses a
multi-layer neural network to obtain the compact binary codes through nonlinear
transformations. Let X = [x1, x2, . . . , xn] ∈ Rn×d denote the training set with n
samples, where each sample xi ∈ Rd(1 ≤ i ≤ n) is a data point of d dimension.
Assuming the m-th layer consists of u(m) units, the output of each layer is
computed as:

h(1)(xi) = s(xiW
(1) + c(1)), i = 1, · · · , n (2)

h(m)(xi) = s(h(m−1)(xi)W (m) + c(m)), i = 1, · · · , n (3)

where s(·) is a nonlinear activation function such as the tanh function, and
the projection matrix W (m) and the bias vector c(m) are the parameters to be
learned for the m-th layer of the network.

And for a I-layer network, we could have the output in the form of:

F (x) = h(I)(x) ∈ Ru(I)
(4)

where the mapping F : Rd → Ru(I) is a parametric nonlinear function deter-
mined by {W (m), c(m)}Im=1. We treat the sign of the output of the network as



740 C. Bai et al.

the binary code of these n samples and put the binary code of all the samples
together as:

B = sgn(F (X)) ∈ {−1,+1}(n×r) (5)

Specifically, we treat the 0 as +1. The formula is as follows:

sgn(b) =
{

1, b ≥ 0
−1, b < 0 (6)

The goal is to find a binary matrix that minimizes the value of loss function.
The formula is as follows:

arg min
B

Q = Q(L,B) + Q(B,X) (7)

where Q(L,B) means the difference between the predicted labels through the
hash code matrix B and the ground truth labels of all samples, and the Q(B,X)
means the information loss caused by transforming to binary code. Denoting the
classifier weight matrix as C, the first term Q(L,B) can be considered as:

QC(L,B) = ||L − CBT ||2F (8)

where the L is the ground truth label of the samples and || · ||F means the
Frobenius norm.

Q(B,X) measures the discrepancy between the binary codes and the data
samples including the quantization loss term and the similarity preserving term

Q
(I)
F (B,X) = ‖B − F (I)‖2F

+ α

n∑
i=1

n∑
j=1

Sij‖F (I)(i, :) − F (I)(j, :)‖2F

s.t.B ∈ {−1, 1}n×r, BTB = nIr (9)

where S is the similarity matrix. To reduce the redundancy of information,
BTB = nIr is added. But the problem of constraint makes optimization difficult,
so a real-valued matrix Y is introduced in Ω = {Y ∈ R

n×r‖Y TY = nIr}
approaching to B. So the Eq. 10 is introduced to substitute the independent
constraint.

QI(B) = ‖B − Y ‖2F (10)

We notice that the loss function Eq. 7 only considers the outputs of the top
layer of the network, but the hidden layers are not included. So the companion
loss function is introduced as follows:

QF (B,X) = Q
(I)
F (B,X) +

I−1∑
m=1

α(n)h(Q(m)
F − τm) (11)

where h(x) = max(x, 0) and Q
(m)
F =

∑n
i=1

∑n
j=1 Sij‖F (m)(i, :) − F (m)(j, :)‖2F ,

m = 1, 2, . . . , I − 1.
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In consideration of all the mentioned above, the overall function is defined
as follow:

arg min
B,P,{F(m)}I

m=1,Y
= QC + λ1QI + λ2QF + λ3QR

s.t.B ∈ {−1, 1}n×r (12)

where QR = ‖C‖2F +
I∑

m=1
‖W (m)‖2F +

I∑
m=1

‖cm‖2F contains the regularizer to

control the scales of the parameters.
Since the above joint optimization problem is non-convex and difficult to

solve. Sub-optimal problems with respect to one variable while keeping other
variable fixed is used. So we could iterate each variable of optimal solution in
sub-optimal problem one by one. And this problem could be solved by Singular
Value decomposition (SVD) and Gram-Schmidt process. More details could be
found in [3].

3 Experiments

In this section, we conduct experiments on three datasets: MNIST [4],
CIFAR10 [11], and SUN379 [26], to evaluate the performance of the proposal
and try to answer the question we posed in the introduction.

Table 1. Retrieval performance on MNIST with 16, 32 and 64 bit length of binary
codes

Method mAP (%) Precision@500 (%)

16 32 64 16 32 64

LSH [1] 15.81 25.41 32.78 28.08 38.56 48.39

SMLSH [25] 31.68 38.28 43.42 41.93 49.16 55.14

ITQ [5] 38.11 42.13 43.63 54.35 60.15 62.03

SPLH [24] 48.67 49.38 48.71 59.69 60.57 63.06

CCA-ITQ [5] 58.61 60.34 62.51 67.95 69.37 71.42

FastH [15] 95.04 96.19 96.71 93.60 94.67 95.27

SDH [20] 92.28 93.74 94.81 91.45 92.07 92.88

DeepH [16] 70.91 74.10 76.34 76.75 79.13 81.55

NDH [3] 94.64 95.88 96.29 93.82 94.81 94.99

SSDH [28] - 98.20 - - 98.50 -

ResHNN-50 98.01 98.03 98.07 98.60 98.62 98.63
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3.1 Databases

MNIST: It is a handwritten digit dataset consisting of 70000 images with the
size of 28×28. Each image is associated with a digit from 0 to 9 and represented
as a 784-dimensional gray-scale feature vector by concatenating all pixels [3].
It’s a simple dataset, so we extract a 256 dimensional feature vector by ResNet
for each image. Following the same setting in [24], 1000 images with 100 images
per class are randomly selected from original test set to form the query set, and
use the remaining 69000 images as gallery database.

CIFAR10: It is a set of 60000 manually labeled color images. They are from 10
classes, and each class has 6000 images. Each image is with the size of 32 × 32.
ResNet is used to extract a 1024 dimensional feature vector for each image.
Similar to the MNIST, we use 1000 images consist of 100 images per class from
original test set as query set and construct the gallery database with the remain-
ing images.

SUN397: This dataset contains 108754 images which are classified into 397 cat-
egories. It is bigger and more complex than the two mentioned above databases,
it could be a challenge to retrieve semantic neighbors. Each image is represented
by a 2048 dimensional feature vector extracted by ResNet. Following the same
protocol of the referred methods, 8000 images are randomly sampled as query
images and the remaining images are left to form the gallery database.

3.2 Evaluation Metric

All experiments are repeated 10 times and the averaged values are took as the
final result. Two metrics are used to measure the performance of different meth-
ods: precision at N samples and mean Average Precision (mAP). Given top
N returned samples, precision at N samples is calculated as the percentage of
relevant retrieved images:

Precision@N =
∑N

k=1 rel(k)
N

(13)

where rel(k) = 1 if k-th image is a relevant retrieved image, otherwise, rel(k) = 0.
The mean Average Precision (mAP) presents an overall measurement of the
retrieval performance by computing the area under the precision-recall curve,
which delivers good discrimination and stability. It is calculated as follows:

AveP =
∑N

k=1(P (k) × rel(k))
number of relevant images

,

MAP =

∑Q
q=1 AveP (q)

Q
(14)
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where k is the rank in the sequence of retrieved documents, N is the number of
retrieved images, P (k) is the precision at cut-off k in the list, and rel(k) is equal
to 1 if the item at rank k is a relevant image, otherwise, it is equal to 0 [23]. Q
is the number of the queries.

Fig. 2. Top 14 retrieved images from SUN397 dataset by different number of layers of
ResNet with 128 bits binary codes. The results of ResHNN-50 are shown in the first
three rows, the results of ResHNN-101 are shown in the middle three rows, and the
results of ResHNN-152 are shown in the last three rows. The irrelevant images are
marked by red circle. (Color figure online)

3.3 Results and Analysis

Result on MNIST: The training set used for hashing net is with the size of
5000 images by selecting 500 images from each class. The ResNet and HNN are
trained separately and the depth of the ResNet we used in this database is 50.
For the HNN, we take the tanh function as the nonlinear activation function and
initialize the biases c(m) to be 0. Each element of W (m) is uniformly sampled from
the range

[
−

√
6

row(m)+col(m) ,
√

6
row(m)+col(m)

]
, where row(m) is the number of

rows of W (m) and col(m) is the number of columns of W (m). The numbers R and
L are set as 5 and 3. And we set α(1) and α(2) as 20, α(3) as 100, τ (1) and τ (2)

as 1000, λ1 as 1e−3, λ2 and λ3 as 1e−5, learning rate η as 1e−3. And the same
setting is adopted for all the other datasets. The experimental results are shown
in Table 1. The results are compared on hash code with lengths of 16, 32, and
64 bits. As MNIST is a simple handwrite characters dataset, a lot of methods
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could achieve good performance, so does ResHNN. As the performance achieved
in this database is quiet high, the impact of depth of the DCNN is difficult to
estimate, so we did not conduct further experiments on it.

Result on CIFAR10: Similar as the setting of experiments on the MNIST
dataset, the training set is constructed with 5000 images with 500 images per
category. We compare the results in different depth of the ResNet with 50, 101
and 152 to evaluated their impacts on feature extracting and hashing. Results are
shown in Table 2. It is obviously that our method ResHNN outperforms referred
methods obviously in different kinds of bit length, both in the aspect of mAP and
Precision@500 and ResHNN-152 is the best. And with the ResNet going deeper,
the retrieval performance improves slightly. We believe that the reason is that
deeper networks could extract features from images more efficiently, which is
preserved in our hash layers.

Table 2. Retrieval performance on CIFAR-10 with 16, 32 and 64 bit length of binary
codes

Method mAP (%) Precision@500 (%)

16 32 64 16 32 64

LSH [1] 12.63 13.70 14.62 15.32 17.23 19.36

SMLSH [25] 14.96 16.41 16.98 17.82 19.75 20.36

ITQ [5] 15.57 15.80 16.57 19.91 21.04 22.53

SPLH [24] 17.08 19.38 21.21 21.22 26.39 29.34

CCA-ITQ [5] 16.21 16.02 16.49 24.63 24.44 26.77

FastH [15] 27.94 33.09 36.55 37.74 43.13 46.84

SDH [20] 29.21 29.22 32.67 39.08 39.62 42.15

DeepH [16] 24.04 25.96 27.53 32.45 34.09 36.85

NDH [3] 33.75 35.93 37.90 43.58 46.67 48.24

LPMH [14] 67.54 72.17 73.59 - - -

SSDH [28] - 81.20 - - 82.80 -

ResHNN-50 93.04 93.31 93.68 92.81 92.98 93.40

ResHNN-101 93.69 94.32 94.46 93.45 94.10 94.28

ResHNN-152 94.16 94.65 94.92 93.87 94.35 94.74

Result on SUN397: In order to verify whether the proposed ResHNN works
well under large and complex conditions, more experiments were conducted in
SUN397 database. As this database is a larger collection, we evaluate the impacts
of the different number of the layers of ResNet also, with respects of 50, 101 and
152. Results are shown in Table 3. We notice that the proposed ResHNN could
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Table 3. Retrieval performance on SUN397 with 48, 64 and 128 bit length of binary
codes respectively

Method mAP (%) Precision@2000 (%)

48 64 128 48 64 128

ITQ [5] 5.16 5.58 6.73 6.14 6.43 6.98

SPLH [24] 1.27 1.89 0.99 2.90 3.33 2.65

CCA-ITQ [5] 7.22 6.38 6.08 6.21 5.90 5.56

FastH [15] 2.71 4.98 8.28 2.90 3.90 5.22

SDH [20] 9.87 9.65 11.85 7.57 7.81 8.52

DeepH [16] 9.31 9.73 8.32 7.54 7.52 6.76

NDH [3] 11.39 12.96 13.86 7.81 8.32 9.05

ResHNN-50 9.96 10.41 16.61 6.67 7.01 9.36

ResHNN-101 10.12 11.32 18.95 6.74 7.44 10.09

ResHNN-152 10.23 11.67 19.58 6.96 7.70 10.26

achieve the comparable performance with referred methods, and outperforms
in long length of bits. Furthermore, the increase of the depth of the ResNet
could trigger the obvious improvements on the retrieval with the longer length
of binary codes. This could be explained by the fact that the deeper of the
DCNN layers, the more information of the visual content of the image could be
extracted, and with the longer of the length of the binary codes, such information
could be preserved better. The examples of retrieval results with different layers
of ResNet are shown in Fig. 2. The wrong returned images are marked by red
circles.

4 Conclusion and Perspective

In this paper, we propose a ResNet based compact feature representation for
image retrieval, namely, ResHNN, which integrates Residual net and hashing
neural networks to generate the binary code for CBIR. Extensive experimental
results on three widely used public databases demonstrate the superiority of the
proposed ResHNN. Furthermore, we explore the impact of ResNet’s depth on
the performance. The impacts of the different deep features and different hashing
method will be discovered further.
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