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Abstract. The bag-of-visual-words (BoVW) method has been proved
to be an effective method for classification tasks in both natural imaging
and medical imaging. In this paper, we propose a multilinear extension of
the traditional BoVW method for classification of focal liver lesions using
multi-phase CT images. In our approach, we form new volumes from
the corresponding slices of multi-phase CT images and extract cubes
from the volumes as local structures. Regard the high dimensional local
structures as tensors, we propose a K-CP (CANDECOMP/PARAFAC)
algorithm to learn a tensor dictionary in an iterative way. With the
learned tensor dictionary, we can calculate sparse representations of each
group of multi-phase CT images. The proposed tensor was evaluated
in classification of focal liver lesions and achieved better results than
conventional BoVW method.

Keywords: Multi-phase CT · Tensor analysis · Sparse coding
Image classification · Focal liver lesion

1 Introduction

Liver cancer is one of the leading causes of death worldwide. Early detection of
liver cancers by analysis of medical images is a helpful way to reduce death due to
liver cancer. High-definition medical images produced by modern medical imag-
ing devices provide more detailed descriptions of tissue structures and thus facil-
itate more accurate diagnoses. High-definition medical images and large unorga-
nized medical datasets, however, post challenges to doctors from the viewpoint
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of analysis and review. Computer-aided diagnosis (CAD) systems will assist doc-
tors by characterizing the focal liver lesion (FLL) images.

Based on clinical observations, different types of liver lesions exhibit different
visual characteristics at various time points after intravenous contrast injection.
To capture the visual feature transitions of liver tumors over time, multi-phase
contrast-enhanced computer-tomography (CT) scanning is generally employed
on patients who are thought to have liver problems. In the multi-phase contrast-
enhanced CT scan procedure, four phases of images are obtained: noncontrast-
enhanced (NC) phase images are obtained from scans before contrast injection,
arterial (ART) phase scanned 25–40 s after contrast injection, portal venous (PV)
phase 60–75 s after contrast injection, and delayed (DL) phase scanned 3–5 min
after contrast injection.

Characterization of FLLs, including classification and retrieval, has attracted
considerable research interest recently. Mir et al. [1] first presented texture analy-
sis in liver characterization, which illustrated the importance of gray-level distri-
bution for distinguishing normal and malignant tissue. Yu et al. in [2] developed
a content-based image retrieval system to differentiate among three types of hep-
atic lesions by using global features derived from a nontensor product wavelet
filter and local features based on image density and texture. Roy et al. [4] used
four types of features, that is, density, temporal density, texture, and temporal
texture, which are derived from four-phase medical images, to retrieve the most
similar images of five types of liver lesions. Shape feature was adopted in [5] in
combination with density and texture features for retrieving five types of FLLs.
Comparing to low-level features introduced above, the middle-level feature bag-
of-visual-words (BoVW) has been proved to be considerably more effective for
classifying and retrieving natural images. Diamant et al. [8] learned BoVW repre-
sentation of the interior and boundary regions of FLLs for classifying three types
of FLLs from single-phase CT images. A variant of BoVW called bag of tempo-
ral co-occurrence words (BoTCoW) was proposed by Xu et al. [9]. In BoTCoW,
BoVW was applied to temporal co-occurrence images, which were constructed
by connecting the intensities of multi-phase images, to extract temporal features
for retrieving five types of FLLs from triple-phase CT images. After a common
codebook learning procedure, Diamant et al. [11] proposed a visual word selec-
tion method based on mutual information to select more meaningful visual words
for each specific classification task. In addition to these variants and enhanced
versions of BoVW based on the hard-assignment mechanism, Wang et al. [12]
learned sparse representations of local structures, which is a soft-assignment
BoVW method, of multi-phase CT scans for FLL retrieval. Research on learning
high-level features by deep learning methods, in particular using the convolu-
tional neural networks (CNNs), is growing rapidly. [13] surveyed the use of deep
learning methods in medical image analysis tasks, such as image classification,
object detection, segmentation, registration. Due to the difficulties in collect-
ing professional marked medical images, current medical image databases are
always too small for deep learning methods. Most of current approaches use pre-
trained CNNs to extract feature descriptors from medical images. We have not



698 J. Wang et al.

yet seen many applications of deep learning methods in medical image feature
extraction, especially in classification of focal liver lesions. To our knowledge,
Bag-of-Visual-Words is still the state-of-the-art method in this field.

However, the conventional vector-based BoVW methods, as mentioned above,
analyze the multi-phase images separately, in which the temporal co-occurrence
information is neglected. In this study, we explore a multilinear generalization of
the soft-assignment BoVW, that is, the tensor sparse representation approach,
for joint analysis of multi-phase CT images and apply the proposed method for
classification of four classes of focal liver lesions.

2 Tensor Sparse Representation of Multi-phase Medical
Images

2.1 Tensor Codebook Learning by the Proposed K-CP Algorithm

First, we introduce the notations used throughout this paper. A vector is denoted
by a lowercase boldface letter, for example, x . A matrix is denoted by an upper-
case boldface letter, for example, X . A tensor is denoted by a Lucida Calligraphy
letter, for example, X. We define tensor multiplication in a way similar to that
in [14].

Given a set of tensor training samples Y, we proposed a K-CP method to learn
tensor codebook D. Implementation of the proposed K-CP method comprises two
iterated stages: calculation of sparse coefficients, assuming that the codebook is
fixed, and codeword update based on the calculated sparse coefficients.

The first stage can be solved easily by using the tensor generalization of
Orthogonal Matching Pursuit (OMP) algorithm. The OMP algorithm is a greedy
algorithm that finds sparse coefficients of vector-based signals using a given code-
book, whose codewords (atoms) are also vectors. In tensor OMP, given a collec-
tion of samples Y = [Y1,Y2, ...,YN ], where Yi ∈ R

I1×I2×...×IM , i = 1, 2, ..., N,
is an M th-order tensor and Y ∈ R

I1×I2×...×IM×N is an (M + 1)th-order tensor.
Suppose a codebook D comprises of K tensor codewords Dk ∈ R

I1×I2×...×IM .
Then, D is a (M + 1)th-order tensor. The tensor OMP can be formulated as
follows:

i = 1, 2, ..., N min
x i

|| Yi − D×̄(M+1)x i ||22 ,

s.t. ||x i ||0 � T,∀i
(1)

where a column vector x i in X represents a combination of the codewords that
approximates a sample Yi, and T is a sparsity measure.

In the codeword update stage, each tensor codeword is updated individually.
To update codeword Dk, we first find the row vector xT

k in X , in which each
entry corresponds to the coefficient of a sample in Y to Dk. Then, we define the
approximation error without using codeword Dk as follows:

Ek = Y −
K∑

j �=k

Dj ◦ xT
j (2)
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The total reconstruction error can be written as follows:

|| Y − D ×(M+1) X ||2 = || Ek − Dk ◦ xT
k ||2 (3)

Our aim is to find the optimal Dk that well approximates the reconstruction
error Ek in Eq. (3), which can be solved easily by applying CP decomposition
on Ek.

CP (CANDECOMP/PARAFAC decomposition) decomposes a P th-order
tensor D into a sum of rank-one tensors [14].

D ≈
R∑

r=1

λr(d1
r ◦ d2

r ◦ ... ◦ dP
r ) (4)

where ◦ denotes the outer product. We suppose the vector dp
r is normalized to

unit length, and the weight of each rank-one tensor is λr.
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However, applying CP on Ek directly would fill the coefficient vector xT
k ,

which means that the sparsity would be destroyed. Therefore, we construct a
constraint vector ωk = (i|1 ≤ i ≤ N,xT

k �= 0) that captures the nonzero entries
of xT

k . According to ωk, we must restrict Ek and xT
k to ER

k and xR
k , respectively.

By applying CP to ER
k with a rank-one tensor component, Dk can be updated

by using the decomposition result and the coefficient vector xT
k can be updated

by zero-padding the weight λ, as in Eq. (4)
The process of applying the CANDECOMP/PARAFAC (CP) decomposition

to the reconstruction residual tensor is executed K times to update each of the
K tensor codewords in each iteration. Thus this method is called K-CP method.

The above two stages are iterated until a pre-specified reconstruction error is
achieved or the maximum iteration number is reached. The details of the K-CP
method for overcomplete tensor codebook learning are given in Algorithm 1.

2.2 FLL Classification Using Tensor Sparse Representations of
Spatiotemporal Structures

For each patient in the dataset, there are triple-phase (NC/ART/PV) CT
images, which is explained in detail in Sect. 3.1. Based on the structure of the
dataset, spatiotemporal features are extracted by using the BoVW models, in
which codebooks are learned by the proposed tensor sparse coding method.

To capture the temporal feature of multi-phase CT images, corresponding
slices from triple-phase CT images were center-aligned according to the tumor
masks and stacked to form three-layer volumes. By this operation, the tem-
poral co-occurrence information is transformed into spatial information in the
third dimension of the constructed volumes. A spatiotemporal codebook can be
learned by applying our proposed method on the tensor training samples, which
are local descriptors extracted from three-layer volumes. Spatiotemporal feature
of each medical case can be then calculated by summarizing the representations
of local descriptors using mean pooling method. Spatiotemporal feature of a
query case can also be calculated based on the learned spatiotemporal codebook

Fig. 1. Learning spatiotemporal features via the proposed tensor sparse coding method
from multi-phase images
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under the same mechanism. Features of the query and cases in the dataset were
fed into a support-vector machine (SVM) classifier with a Radial basis function
(RBF) kernel to predict the possible class that the query case may belong to.
The workflow is shown in Fig. 1.

3 Experiments and Results

3.1 Multi-phase Medical Dataset

A multi-phase medical dataset was constructed with the help of radiologists to
evaluate the performance of the proposed method. The dataset comprises four
types of FLLs collected from 111 medical cases. For each medical case, triple-
phase (NC/ART/PV) CT images were collected, with spacing of (0.5 − 0.8) ×
(0.5−0.8)×(5/7) mm3. The size of a CT slice was fixed to 512×512 pixels, while
the number of CT slices was set depending on the region scanned (full body or
only the abdomen). All tumors in each CT image were manually marked by an
experienced medical doctor. In our experiments, however, only the major tumor,
that is, the tumor with the largest volume, was considered. As a result, 111 FLLs
were selected for use in our experiments, including 38 lesions of the cyst class, 19
cases of focal nodular hyperplasia (FNH), 26 cases of hepatocellular carcinoma
(HCC), and 28 cases of hemangioma (HEM). Examples of the four types of FLLs
are shown in Fig. 2.

Fig. 2. Examples of each lesion type on 3 phases. Rows are images belong to same
contrast phase, while columns are images from same lesion: cyst, FNH, HCC, HEM

3.2 Evaluation Method

Considering the constructed small dataset, the leave-one-out cross-validation
method is used in performance evaluation. The classification accuracy are cal-
culated for quantitative measurement, shown as follows:

Accuracy = TP/(TP + FP ) (5)
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where, TP is number of correct classified cases, FP represents the number of
miss classified cases. (TP +FP ) is the total number of cases in the corresponding
FLL type.

Fig. 3. Comparing classification performance by the proposed tensor sparse represen-
tation and the conventional sparse representation method using sing-/multi-phase CT
images

3.3 Experimental Results

We compared the classification performance of the proposed tensor sparse repre-
sentation method with the conventional sparse representation method over both
single-/multi-phase medical images, as shown in Fig. 3. We used PV phase images
in the single-phase experiments as most of related works do, since most liver
lesion types can be visualized clearly on PV phase images. It’s interesting that
both the two methods got exactly the same results using single-phase images.
The accuracy is more significantly improved, however, by the proposed tensor
sparse representation method than the conventional one when using multi-phase
images, which emphases that the proposed method is more effective in capturing
the temporal information from multi-phase images. The detailed classification
result of the proposed method is shown in Table 1. Due to the clear texture
features and temporal enhancement features of Cyst and FNH, they are much
easier to be classified from the others when using the temporal co-occurrence
information captured by the proposed tensor sparse representation method.

A comparison of the performance of the proposed method with those of the
state-of-the-art methods is given in Table 2. As mentioned in previous sections,
considerable research effort has been invested to exploring variants and enhanced
versions of the BoVW model for FLL characterization. Most of he state-of-the-art
methods are based on the BoVW framework. Table 2 shows a comparison of the
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proposed method with a few other BoVW models. The proposed tensor sparse
coding method outperforms the other methods by preserving spatiotemporal
features captured from multi-phase CT images, especially for FNH that shows
significant different contrast enhancement features in different phases.

Table 1. The performance of the proposed method

FLL type Cyst FNH HCC HEM Accuracy (%)

Cyst 36 0 0 2 94.74

FNH 0 18 1 0 94.74

HCC 0 2 24 0 92.31

HEM 1 1 1 25 89.29

Table 2. Compare the classification accuracy (%) of the proposed method with those
of state-of-the-art methods

Methods Cyst FNH HCC HEM Averaged

Dual dictionary BoVW [8] 72.09 67.75 96.08 40.00 74.00

BoVW-MI [11] 93.23 90.53 66.67 68.00 79.80

TextureSpecific BoVW [10] 79.16 94.12 80.39 69.24 80.13

BoTCoW [9] 95.83 82.35 84.32 84.61 87.42

The proposed method 94.74 94.74 92.31 89.29 92.79

4 Conclusion

In this paper, we proposed the K-CP method to learn tensor sparse representa-
tions of multi-phase medical images. We learned tensor codebooks by using the
proposed method and builded BoVW models for extracting spatial features and
temporal co-occurrency of multi-phase medical images. Experiments of applying
the proposed method on focal liver lesion classification showed that the pro-
posed method achieved more significant improvement from single-phase to multi-
phase images than conventional sparse representation method and the proposed
method outperforms the state-of-the-art methods in this task.
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