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Abstract. Depth cues are vital in many challenging computer vision
tasks. In this paper, we address the problem of dense depth predic-
tion from a single RGB image. Compared with stereo depth estimation,
sensing the depth of a scene from monocular images is much more diffi-
cult and ambiguous because the epipolar geometry constraints cannot be
exploited. In addition, the value of the scale is often unknown in monoc-
ular depth prediction. To facilitate an accurate single-view depth predic-
tion, we introduce dilated convolution to capture multi-scale contextual
information and then present a deep convolutional neural network. To
improve the robustness of the system, we estimate the uncertainty of
noisy data by modelling such uncertainty in a new loss function. The
experiment results show that the proposed approach outperforms the
previous state-of-the-art methods in depth estimation tasks.
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1 Introduction

Depth estimation has been investigated for a long time because of its vital role in
computer vision. Some studies have proven that accurate depth information is use-
ful for various existing challenging tasks, such as image segmentation [1], 3D recon-
struction [2], human pose estimation [3], and counter detection [5]. Humans can
effectively predict monocular depth by using their past visual experiences to struc-
turally understand their world and may even utilize such knowledge in unfamiliar
environments. However, monocular depth prediction remains a difficult problem
for computer vision systems due to the lack of reliable depth cues.
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Many studies have investigated the use of image correspondences that are
included in stereo image pairs [6]. In the case of stereo images, depth estimation
can be addressed when the correspondence between the points in the left and
right parts of images is established. Many studies have also explored the method
of motion [7], which initially estimates the camera pose based on the change in
motion in video sequences and then recovers the depth via triangulation. Obtain-
ing a sufficient number of point correspondences plays a key role in the afore-
mentioned methods. These correspondences are often found by using the local
feature selection and matching techniques. However, the feature-based method
usually fails in the absence of texture and the occurrence of occlusion. Owing to
the recent advancements in depth sensors, directly measuring depth has recently
become affordable and achievable, but these sensors have their own limitations
in practice. For instance, Microsoft Kinect is widely used indoors for acquiring
RGB-D images but is limited by short measurement distance and large power
consumption. When working outdoors, LiDAR and relatively cheaper millimeter
wave radars are mainly used to capture depth data. However, these collected data
are always sparse and noisy. Accordingly, there has always been a strong interest
in accurate depth estimation from a single image. Recently, CNNs [8] with pow-
erful feature representation capabilities have been widely used for single-view
depth estimation by learning the implicit relationship between an RGB image
and the depth map. Despite increasing the complexity of the task, the outputs
of deep-learning-based approaches [13–17] showed significant improvements over
those of traditional techniques [10–12] on public datasets.

In this work, we exploit CNNs to learn strong features for recovering the
depth map from a single still image. Given that applying downsampling, upsam-
pling, or deconvolution in a fully convolution network may result in the loss of
many cues in the image boundary for pixel-level regression tasks, we introduce
the dilated convolution [9] to learn multi-scale information from a single scale
image input. Long skip connections are also applied to combine the abstract fea-
tures with image features. To achieve more robust prediction, we further model
the uncertainty in computer vision and proposed a novel loss function to mea-
sure such uncertainty during training without labels. The experimental results
demonstrate that our proposed method outperform state-of-the-art approaches
on standard benchmark datasets [2,21].

2 Related Work

Previous studies have often used probabilistic graphic model and have usually
relied on hand-crafted features. Saxena et al. [10] proposed a superpixel-based
method for inferring depth from a single still image and applied a multi-scale
MRF to incorporate local and global features. Ladicky et al. [11] introduced
semantic labels on the depth to learn a highly discriminative classifier. Karsch
et al. [12] proposed a non-parametric approach for automatically generating
depth. In this approach, the GIST features were initially extracted for the input
image and other images in the database, then several candidate depths that
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correspond to the candidate images were selected before conducting warping
and optimization procedures.

Recent studies have employed CNNs to solve the depth prediction problem.
Eigen et al. [13] utilized two network stacks to regress depth. The first local
network makes a coarse depth prediction for the global contents, while the other
network refines the prediction locally. Liu et al. [15] combined CNN with con-
tinuous CRF in a unified framework. Wang et al. [16] jointly addressed depth
prediction and semantic segmentation by using a common CNN. They proposed
a two-layer hierarchical CRF model to refine the coarse network output. Laina
et al. [17] proposed a fully convolutional network and introduced a robust loss
function called berHu loss. Some unsupervised approaches have also been intro-
duced recently to address the challenges in obtaining a large number of dense
and reliable depth labels, especially in outdoor scenes. Garg et al. [18] treated
depth estimation as an image reconstruction problem and proposed the use of
photometric loss. Given that the loss is not completely differentiable, they per-
formed a first-order Taylor expansion to linearize the results in warp images.
Based on [18], Godard et al. [19] considered the left-right disparity consistency
constraint and dealt with the warp image by bilinear interpolation.

In this paper, we construct a fully convolutional network for monocular depth
prediction. To maintain additional feature information, we apply dilated convo-
lution to enlarge the receptive field without reducing the resolution of the fea-
ture maps. Afterward, we implement low-level and high-level information fusion
by using long skip connections. Unlike the previous CNNs that are unable to
represent, or model uncertainty as probability distributions by using CRF, our
network can accurately estimate uncertainty as the model attenuation.

3 Approach

3.1 Network Architecture

We adopt a deep fully convolutional network with an encoder-decoder architec-
ture for single-view depth estimation (see Fig. 1). This network is constructed
based on ResNet [4], which performs well in image classification. We remove the
last average pooling layer and fully connected layer of the original version. In this
way, we discard most of the network parameters and successfully train our model
on the current hardware. As low-resolution feature maps contain less boundary
information, we employ dilated convolution to expand the receptive field while
maintaining the features within an appropriate size. The key components of the
decoder part are the two up-sampling layers that are used to recover image reso-
lution. To achieve a higher depth accuracy, we choose the up-projection module
proposed in [17] as our up-sampling layer. This module comprises an unpooling
layer (which increases the spatial resolution of the feature map) and two convo-
lution layers with residual learning. We concatenate the corresponding feature
maps from the encoder and decoder parts by skip connections. Eventually, a
convolution is applied to generate the depth prediction.
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Fig. 1. Model architecture. We use convn,s to denote a n × n convolution with stride s,
and same notation is employed to max pooling pooln,s. Let k* be feature maps and @r
be the dilation rate. Residual blocks (res1, res2, res3, res4) consist of three convolutions
with kernel size 1 × 1, 3 × 3, 1 × 1 and xm is the number of blocks. We replace the
convolution by dilated convolution in res3 x6 and res4 x3.

Dilated Convolution. Dilated convolution has been recently proposed to over-
come the reduced feature resolution problem caused by the successive pooling
and down-sampling layers. Dilated convolution is a regular convolution with a
kernel that is dilated by inserting zeros between non-zero values. Compared with
standard convolution, dilated convolution can effectively increase the receptive
field without increasing the number of parameters. Multi-scale contextual infor-
mation is also extracted from the original resolution. A dilated convolution is
defined as

(F ∗n k)(p) =
∑

s+nt=p

F(s)k(t), (1)

where F : Z2 → R is a discrete function, n is the dilation rate, ∗n is an n-dilated
convolution, and Ωr = [−r, r]2 ∩ Z

2. Let k : Ωr → R be a discrete filter of size
(2r + 1)2.

3.2 Loss Function with Uncertainty Learning

Two major types of uncertainty can be modeled in deep learning. First, epistemic
uncertainty, also known as systematic uncertainty, describes the uncertainty over
the model parameters. Second, aleatoric uncertainty, also called statistical uncer-
tainty, represents the inherent noise in the inputs and cannot be decreased no
matter how much data are provided. We specifically focus on modelling aleatoric
uncertainty, since epistemic uncertainty can be mostly eliminated by using large
amounts of data.

To learn aleatoric uncertainty, we measure the variance of noise from the
input RGB images. Compared with previous CNNs for depth prediction where
the noise parameter σ is replaced by a fixed weight decay, our scheme assumes
that the noise is variable for different inputs, since the depth for textureless
regions is highly ambiguous. For a predicted depth map ỹ and the corresponding
ground truth y, the variance is learned as loss attenuation and we define the new
loss as

L =
1
n

n∑

i

σ̃−2
i ‖yi − ỹi‖22 + log σ̃2

i , (2)
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where i indexes the n pixels over the image, and σ̃2
i denotes the variance for

pixel i. This loss consists of two components: a residual regression term and an
uncertainty regularization term.

In practice, we predict s̃i := log σ̃2
i and

L =
1
n

n∑

i

exp (−s̃i)‖yi − ỹi‖22 + s̃i. (3)

The loss in Eq. 3 has a better numerical stability than that in Eq. 2 by avoiding
division by zero.

The L1 = ‖y− ỹ‖1, L2 = ‖y− ỹ‖22, and berHu loss [17] were separately tested
in the experiment, and the results revealed that L1 outperformed the others
in estimating monocular depth. An explicit quantitative analysis is shown in
Sect. 4. Therefore, we adopt the L1 norm instead of L2 norm as the residual
term described in Eq. 3 during training.

4 Experiments

In this section, we perform with a quantitative analysis to test our proposed
method. and then compare the performance of this method with other start-
of-the-art models on two popular datasets, namely, NYU Depth v2 [21] and
Make3D [2].

4.1 Experimental Setup

For the following analysis and evaluation, we implement our architecture by
using Tensorflow, and train on a single NVIDIA GeForce GTX 1080Ti with
11GB memory. The weights of the network are initialed by the ResNet-50 model
that is pre-trained on ImageNet data [23]. In all experiments, batch size and
weight decay are set to 16 and 10−4, respectively. We train the network for
approximately 15 epochs on NYU Depth v2 and 20 epochs on Make3D. The
starting learning rate is 0.001 and halved every 5 epochs. As for the initial
values of the log variances, we set s = 0.0.

4.2 Datasets

The NYU Depth v2 dataset [21] contains 120 K unique RGB-D images taken
from 464 different indoor scenes with a Kinect camera. We use 249 scenes for
training and the other 215 scenes for testing according to the official train/test
split. We sample equally spaced frames from each raw training sequence and
obtain approximately 12 K RGB-D pairs. The missing depth values are filled
in by using the toolbox provided by Silberman et al. [21]. To increase the size
and variability of the training set, we perform a data augmentation similar to
that in [13], and get roughly 96 K pairs. Following [17], the original frames are
downsampled by half and then center-cropped to 304 × 228. For testing, we use
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Table 1. Quantitative analysis of proposed architectures on the official test set of NYU
Depth v2. For rel, rms, and log10, a lower is better, for δ1, δ2 and δ3, a higher is better.
Results in bold are best.

Architecture Loss rel rms log10 δ1 δ2 δ3

Baseline berHu 0.128 0.573 0.055 0.801 0.950 0.985

Ours (dilated convolution) berHu 0.122 0.565 0.052 0.805 0.953 0.986

Ours (long skip connections) berHu 0.118 0.560 0.050 0.814 0.955 0.988

Ours (full) berHu 0.115 0.556 0.049 0.816 0.956 0.988

Ours (full) L2 0.130 0.572 0.054 0.799 0.950 0.985

Ours (full) L1 0.113 0.553 0.049 0.817 0.956 0.988

Ours (full) L1+uncertainty 0.110 0.552 0.048 0.820 0.958 0.989

Table 2. Performance comparison with state-of-the-art methods on the NYU Depth
v2 dataset. The values are originally reported by the authors in their respective papers

Method rel rms log10 rms(log) δ1 δ2 δ3

Li et al. [26] 0.232 0.821 0.094 - 0.621 0.886 0.968

Liu et al. [15] 0.230 0.824 0.095 - 0.614 0.883 0.971

Wang et al. [16] 0.220 0.745 0.094 0.262 0.605 0.890 0.970

Eigen et al. [13] 0.215 0.907 - 0.285 0.611 0.887 0.971

Roy et al. [24] 0.187 0.744 0.078 - - - -

Eigen and Fergus [14] 0.158 0.641 - 0.214 0.769 0.950 0.988

Laina et al. [17] 0.127 0.573 0.055 0.195 0.811 0.953 0.988

Xu et al. [25] 0.121 0.586 0.052 - 0.811 0.954 0.987

Ours 0.110 0.550 0.048 0.173 0.820 0.958 0.989

Table 3. Performance comparison with state-of-the-art methods on the Make3D
dataset. The values are originally reported by the authors in their respective papers

Method rel rms log10

Liu et al. [20] 0.335 9.49 0.137

Liu et al. [15] 0.314 8.60 0.119

Li et al. [26] 0.278 7.19 0.092

Laina et al. [17] 0.176 4.46 0.072

Xu et al. [25] 0.184 4.38 0.065

Ours 0.165 4.35 0.063
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654 images from the labeled part of the dataset. The predictions are resized to
640 × 480 via bilinear interpolation to evaluate the performance of the model.

Make3D [2] is an outdoor scene dataset that consists of 534 RGB-D pairs,
which are separated into 400 training images and 134 test images. Due to the
limitations of the hardware, we resize the original images from 1704 × 2272 to
345 × 460. During training, RGB images are halved again. We also augment the
training data with offline transformations and obtain about 15k samples. Given
that the laser scanner has a maximum range of 81 m, we only compute the error
for those pixels with a ground-truth depth less than 70 m.

Fig. 2. Qualitative results on the NYU Depth v2 dataset. For fair comparison, all depth
predictions shown in color are scaled equally (blue is close and red is far). (Color figure
online)

4.3 Evaluation Metrics

To objectively evaluate the performance of our depth estimation model, we use
the following metrics:

– mean absolute relative error (rel): 1
N

∑
i

|yi−ỹi|
yi

;

– root mean square error (rms):
√

1
N

∑
i (yi − ỹi)

2;

– root mean square log error (rms(log)):
√

1
N

∑
i (log yi − log ỹi)

2;
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– mean log10 error (log10):
1
N

∑
i | log yi − log ỹi|;

– δj : percentage of ỹi s.t. max( ỹi

yi
,yi

ỹi
) < 1.25j .

Where yi and ỹi are the ground-truth depth and predicted depth at pixel indexed
by i, and N is the number of pixels.

Fig. 3. Qualitative results on the Make3D dataset. We estimate depth for all pixels in
the color maps.

4.4 Results

Architecture Evaluation. In this section, we analyze the effects of different
architectures and loss functions on depth estimation performance. The quantita-
tive results are shown in Table 1. For an ablation study, we train a baseline net-
work composed of ResNet and up-sampling layers on the NYU Depth v2 dataset
(row 1 in Table 1). To demonstrate the effectiveness of dilated convolution, we
replace the last two down-sampling regular convolutions with 3 × 3 dilated con-
volutions and obtain better results (row 2 in Table 1). Table 1 also shows that
long skip connections added to the baseline network can significantly improve
the depth estimation performance (row 3, 4). Obviously, multi-scale contextual
information fusion is beneficial to depth regression. Moreover, we compare the
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L1, L2, and berHu loss functions with our proposed architecture. Rows 4 to 6 in
Table 1 show that L1 is greater than both L2 and berHu. We further combine
the L1 loss with uncertainty learning and achieve the best result as shown in
row 7.

Comparison with the State-of-the-Art. Table 2 compares the performance
of our method and that of several state-of-the-art approaches on the NYU Depth
v2 dataset. Due to the use of dilated convolution, long skip connections, and
heteroscedastic uncertainty, our method outperforms other approaches on all
metrics. The quantitative results in Fig. 2 illustrate that the proposed model
accurately estimates the depth in textureless regions (e.g., walls) and image
edges. To demonstrate the generalization ability of the proposed model, we also
compare its performance with that of previous related works on the Make3d
dataset. Table 3 shows that our model outperforms the other state-of-the-art
methods. Additional quantitative examples are provided in Fig. 3.

5 Conclusion

In this paper, we propose a novel approach for solving the monocular depth
estimation problem. We introduce a deep residual network with dilated convolu-
tion and long skip connections that can aggregate multi-scale contextual infor-
mation and generate a detailed depth map. By modelling the input-dependent
aleatoric uncertainty as learned attenuation, we reduce the effect of noisy data
and improve the accuracy of the depth estimation. The experimental results on
two benchmark datasets demonstrate that our proposed method outperforms
the other state-of-the-art approaches.

Depth information is beneficial for addressing various computer vision prob-
lems. In our future work, we plan to examine the application of our depth model
to other tasks, such as object detection, semantic segmentation, and simultane-
ous localization and mapping.
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