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Abstract. Retinal vessel segmentation is a fundamental and crucial step
to develop a computer-aided diagnosis (CAD) system for retinal images.
Retinal vessels appear as multiscaled tubular structures that are variant
in size, length, and intensity. Due to these vascular properties, it is dif-
ficult for prior works to extract tiny vessels, especially when ophthalmic
diseases exist. In this paper, we propose a multiscaled deeply-guided neu-
ral network, which can fully exploit the underlying multiscaled property
of retinal vessels to address this problem. Our network is based on an
encoder-decoder architecture which performs deep supervision to guide
the training of features in layers of different scales, meanwhile it fuses
feature maps in consecutive scaled layer via skip-connections. Besides, a
residual-based boundary refinement module is adopted to refine vessel
boundaries. We evaluate our method on two public databases for reti-
nal vessel segmentation. Experimental results show that our method can
achieve better performance than the other five methods, including three
state-of-the-art deep-learning based methods.
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1 Introduction

Retinal vessel is a significant gist for diabetes, glaucoma and arteriosclerosis in
clinical diagnosis. Segmentation of retinal vessels is a fundamental and crucial
step for a CAD system of retinal fundus images. However, segmentation of the
whole vascular trees is not easy. The retinal vasculature is composed of arteries
and veins appearing as elongated features, with their tributaries visible within
the retinal image [1]. Although the intensity profile of the vessel cross-section
could be approximated by a Gaussian or a mixed Gaussian function, local grey
level of blood vessels can vary hugely due to the effect of lighting condition and
retinal pathology. Besides, blood vessel trees are dominated in the multiscaled
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property. Vessel widths are variant in a wide range, from one pixel to several
tens of pixels. The terminal parts of vessels are so tiny that they look similar as
the surrounding background.

Previous methods of retinal vessel segmentation can be divided into two
types. The first type, which we refer to as the model-based method, constructs
a mathematical model for retinal vessels according to the properties including
intensity, shape, gradient and contrast. Examples of this type are the Gaus-
sian kernel-based filter-banks [2,3], the divergence of normalized gradient vector
field [5], kernels based on locally adaptive derivative frames [4] and the active
contour-based method [6]. The second type, which we refer to as the learning-
based method, resolve the retinal vessel segmentation by using a binary clas-
sification framework, where each pixel is classified to be vessels or not. Prior
works obey a classical routine, where the designation of hand-crafted features is
followed by the training of a discriminative classifier. There are researches that
design representative features by using ridges of vessels [7], line operators [8]
and 2-D Gabor wavelet filter-banks [9]. Classical techniques, such as K-nearest-
neighbor classifier [7], support vector machines [8] and Bayesian classifier [9], are
utilized to train classifiers for vessel segmentation. The above-mentioned meth-
ods are highly depended on some pre-defined assumptions, and they are easily
failed when noise, abnormal lighting conditions and retinal pathology exist due
to the mismatching of the assumptions.

In the past several years, deep learning techniques have been extensively
evolved in the field of computer vision. After the deep convolutional neural net-
works (DCNN) exhibit extraordinary performance on the task of image classi-
fication [10-13], they are used to deal with other vision-related tasks, such as
semantic segmentation [14]. The most-widely used DCNN for segmentation is
based on an encoder-decoder architecture [15,16], where feature maps in differ-
ent scaled layers are learnt. Taking advantage of the inherent multiscaled feature
maps can relieve the problem of spatial information loss in DCNN-based meth-
ods. For example, skip-connection is adopted to fuse high-level and low-level
features in previous works [14,16]. Besides, deep-guidance, which supervises the
training of features in different scales, is another technique to exploit multiscaled
information in DCNN-based methods, and it is demonstrated to be very efficient
to extract detailed edges of objects in natural images [19].

In this paper, we leverage the latest progress on deep learning for the seg-
mentation of retinal vessels on fundus images. We propose a DCNN-based archi-
tecture that can fully exploit the multiscaled property of retinal vessels to ensure
accurate segmentation especially for tiny vessels. Deep-guidance is adopted in
our encoder-decoder based network to guarantee the training of features in spe-
cific scales, meanwhile skip-connections integrate feature maps between consecu-
tively high- and low-scaled layers to exhaustively utilize multiscaled information.
Besides, a residual-based boundary refinement module [17] is utilized to ensure
clear vessel boundaries. We evaluate the propose DCNN-based method on two
public datasets, Digital Retinal Images for Vessel Extraction(DRIVE) [7] and
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High-Resolution Fundus (HRF) [18], and compare it with other retinal vessel
segmentation methods.
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Fig. 1. Architecture of the proposed network

2 Related Works

Deep learning has been applied for the segmentation of retinal vessels in several
previous works. Liskowski et al. firstly utilize deep learning techniques to segment
vessels on retinal fundus images in [20], where several convolutional layers are
followed by fully-connected layers to classify each pixel as vessels or not. Deep-
guided convolutional neural networks are adopted in the works [21,22], and a
conditional random filed reformulated by a recurrent neural network is added to
hold interactions between pixels [22]. Recently, Maninis et al. propose a DCNN-
based method to segment vessels and optic discs simultaneously [23].
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Compared with these methods, the proposed network is mainly different in
two aspects. First, we integrate both deep-guidance and skip connections into
our network architecture in order to exhaustively exploit multiscaled information
of vessels. Second, a residual-based network module is adopted to learn context
information for refinement of vessel boundaries. Such carefully designed network
architecture ensures our method to be efficient to extract retinal vessels, even
for tiny vessels on pathological images.

3 Approach

Compared to databases in computer vision, medical databases usually have much
fewer images. For example, there are only several tens of fundus images in the
two widely-used public databases for the evaluation of retinal vessel segmenta-
tion. Considering the few amount of data, we choose to develop a patch-based
DCNN method instead of an image-based DCNN method that are widely-used
in computer vision and usually requires huge numbers of images for training.

As we notice that multiscale is one of the dominate features for retinal vessels
on fundus images, we propose a novel network architecture that can learn and
integrate multiscaled information to improve the accuracy of retinal segmenta-
tion. Inspired from the ideas in the HED network that is originally proposed for
edge extraction [19], we utilize the technique of deep-guidance in our network
to ensure the training of more representative feature maps on specific scales. To
comprehensively take advantage of information embedded in different scales, we
adopt skip connections, which is introduced in U-Net [16], to mix feature maps
in consecutively high- and low-level scales. Additionally, a boundary refinement
module is integrated into our network to sharpen boundaries of vessels for more
accurate segmentation results. The details of the proposed patch-based DCNN
method are described in this section.

3.1 Network Architecture

The network architecture is illustrated in Fig. 1. The backbone of our network
is based on an encoder-decoder architecture. The encoder part gradually gener-
ates feature maps in three different stages by using convolution blocks (details
are shown by Fig.1(b)) that is followed by downsampling. Each convolution
block is composed by two convolutional layers, and downsampling halves spatial
resolution. Feature maps in each stage have a certain spatial resolution, which
correspond to a specific scale.

Skip Connections are adopted in the decoder part that gradually recover
spatial resolution for accurate segmentation. High-level feature maps are
expanded twice in spatial resolution and concatenated with consecutively low-
level feature maps. Then, the concatenated features are passed into a convolution
block that is composed by two convolutional layers to generate the final feature
maps. By using such a kind of network structure, feature maps in two consecutive
scales are integrated together.
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Deep Guidance is adopted to supervise the training of feature maps for a
specific spatial scale. Feature maps on each scale are connected outside to a clas-
sifier through a side-output and boundary refinement module. The side-output
module is composed by a convolutional and deconvolutional layer (Fig.1(c))
to calculate score maps that have the same spatial resolution with the input.
Though such a network structure, feature maps on each scale are trained with
the guidance from a specific loss function.

Boundary Refinement is a residual model based structure whose details
are shown by Fig. 1(d). In our network, this module is connected to score maps
in side-output paths to ensure vessel boundaries on each scale to be sharper.
Besides, it is also utilized in the fusion path that integrate score maps of all
scales to achieve optimal vessel segmentation results.

3.2 Network Training

Our network are directly trained from a set of patch-pairs, which are denoted
by S = {(Xn,Yn),n = 1,..., N}, where X,, = {$§n)7j =1,...,]X,|} is an

image patch and Y,, = {yjn),j =1,..., |X,L|},y§”) € {0,1} is the correspond-
ing ground truth of segmentation. For simplicity, we denote all parameters of
convolution blocks in the backbone as W. In this paper, our network has three
side-output paths, each of which is associated with a side-output module, bound-
ary refinement module and a classifier. If parameters of all modules are denoted
as w = (W), w® w®) the objective function of side-output paths can be
represented by Eq. 1.

3
Loiae(W,w) = o LD, (W, w(®) (1)
i=1
where Lg;q. denotes the loss function for side-output paths. As the distributions
of vessel or non-vessel pixels in patches are highly unbalanced, we adopt the
following class-balanced cross-entropy loss function to calculate Eq. 1.
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(W, wl)=—5 Z log Pr(y; = 1|X; W,w")
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—(1=p) > log Pr(y; = 0|X; W,w")
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where 8 = |Y_|/|Y4] and 1 — 3 = |Y4|/|Y|. |Y4| and |Y_| denote the vessel and
non-vessel ground truth label sets, respectively.

The predicted score maps on each scale is fused together by a fusion-path that
includes a convolutional layer, boundary refinement module and a classifier. We
denote parameters of all these modules as h, and calculate fusion-path loss func-
tion Ljyyse(W, w, h) by using class-balanced cross-entropy. Putting everything
together, we minimize the following objective function via standard stochastic
gradient descent.

(2)

L = Lgiqe (Wa W) + quse (Wa w, h) (3)
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3.3 Implementation

We implement the proposed network by using public Keras library with the back-
end of Tensor-Flow. The network is initialized randomly and directly trained on
image-patches that are cropped from retinal images. Hyper-parameters include
learning-rate (0.01), mini-batch size (32), drop-out rate (0.2) and side-output
loss parameter «; (1).

Our network takes 48 x 48 image-patches as input and predict segmentation
probability maps of the same resolution. When the network is used to segment
a retinal image, a sliding window manner is operated on the image with a stride
of 8 pixels, and average probability is calculated in overlapped regions.

4 Experiments

4.1 Data, Preprocessing and Evaluation Protocol

We evaluate our proposed method on two publicly available datasets, which are
DRIVE [7] and HRF [18]. The DRIVE database includes 40 fundus images, 33 of
which have nearly no-sign of diabetic retinopathy. The rest 7 images only show
mild diabetic retinopathy. The HRF database contains 45 images including 15 for
healthy patients, 15 for diabetic retinopathy and 15 for glaucomatous patients.

In experiments, all fundus images are processed by the following prepro-
cessing: (1) color images are converted to grey-scale images. (2) a histogram
equalization routine called CLAHE [24] is operated on all gray-scale images. (3)
gamma correction is performed.

We choose 20 images in DRIVE and 30 images in HRF as the training set,
and the rest images in two databases as testing set. In order to get image patch
pairs for training, 48 x 48 image patches are randomly cropped from the training
set to train deep neural networks. Finally, we obtain 200,000 patches in DRIVE
and 240,000 patches in HRF for the training. We evaluate different methods on
the testing set by calculating the area under curve (AUC) for receiver operating
characteristic (ROC) and precision and recall curve (PR).

4.2 Network Ablation

In this subsection, we evaluate the proposed method by gradually adding the
network modules mentioned in Sect.2. Here, we compared 4 different kinds of
network architecture by evaluating the AUC of ROC and PR on DRIVE and
HRF databases. The comparison results are given in Table 1. The four kinds of
networks are denoted as (1) SCN, which only includes the skip-connections but
no deep guidance or boundary refinement, (2) DSN, which only has the deep
guidance without the other two network modules (3) MDGN, which exploits
multiscaled information by skip-connections and deep guidance but boundary
refinement is not used (4) MDGN-BR, which is the proposed network architec-
ture using all techniques mentioned in Sect. 2.
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Table 1. Experiments of network ablation.

Methods DRIVE HRF

ROC |PR ROC |PR
SCN 0.9717 |0.8895 |0.9727 |0.8577
DSN 0.9747 |0.8999 |0.9707 | 0.8609
MDGN 0.9786 | 0.9090 |0.9766 | 0.8802
MDGN-BR | 0.9793 | 0.9104 | 0.9770 | 0.8805

From Tablel, it can be seen that the AUC of ROC and PR for both SCN
and DSN are relatively low. SCN includes skip-connections for integrating fea-
ture maps in different scales, however there is no network structure to ensure
that feature maps in each scale can be learnt optimally. Thus, it is not able to
fully exploit multiscaled information by only using skip-connections. A similar
situation happens when only deep guidance is adopted in DSN, which only has
network structures to supervise the learning of feature maps in different scales
but no structures to fuse them. By utilizing both skip-connections and deep

(a) Original image

(d) DSN

(e) Proposed

Fig. 2. Examples of probability map (or score map) for vessel segmentation on DRIVE

database
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(a) Original image

(d) DSN (e) Proposed

Fig. 3. Examples of probability map (score map) for vessel segmentation on HRF
database

guidance, network performance can be highly improved, as shown by MDGN
in Table1l. AUC values of both ROC and PR can be further improved when
boundary refinement module is adopted, which demonstrates the efficiency of
such a network module utilized in our proposed method.

Figures2 and 3 give an example of vessel-like probability map for the
databases of DRIVE and HRF respectively. It can be seen that the proposed
method can give higher probability scores for tiny vessels, which visually demon-
strates that our network can exhaustively exploit multiscaled information to
improve the performance of vessel segmentation. Besides, we also notice that our
method is robust to retinal pathology. Compared with DRIVE, HRF includes
more cases with severe retinal pathology, which usually degrades performance
of vessel segmentation methods. Due to pathological effect, severe short-tubular
artifacts exist in the results of SCN and DCN, as shown by the left bottom
part in Fig.3(c) and (d). However, our method is not much affected by retinal
pathology and less artifacts exist in our result (Fig. 3(e)).

4.3 Comparison with Other Methods

We compare the proposed network with other methods in this subsection. Table 2
gives the comparison results. Here, we implement two state-of-the-art deep
learning-based methods, which are widely used in computer vision and denoted
as HED [19] and FCN [14] respectively. We adopt the pre-trained VGG net-
work [11] as the backbones for both of them, and then finely turn network param-
eters on retinal images. From Table 2, it can be seen that the two deep-learning
based method achieve relatively low performances. Both of them take the whole
retinal images as the input, however, DRIVE and HRF include only several tens
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Table 2. Comparison with different kinds of methods.

Methods DRIVE HRF
ROC PR |ROC |PR
HED [19] 0.9662 | 0.8728 |0.9511 | 0.8022
FCN [14] 0.9558 | 0.8494 | 0.9464 | 0.7815
LADF [4] 0.9636 | — 0.9608 | —
DCNN-FC [20] | 0.9720 |- - -
Line [8] 0.9633 |- - -
DRIU [23] - 0822 |- -
Proposed 0.9793  0.9104 0.9770 0.8805

of retinal images, which are not enough for training. Although fine-turning of a
pre-trained network on few images can give relative good segmentation, that can
not relieve the full power of the network. This is also the reason why we choose
patch-based DCNN method in this paper.

The evaluation quantities for the other 4 methods in Table2 are directly
copied from the original papers. DCNN-FC is the first work that utilizes deep
convolutional neural network for retinal segmentation [20], which adopts stacked
convolutional and fully-connected layers to classify pixels. LADF [4] takes advan-
tage of locally adaptive derivative frames to design an optimal filter to extract
retinal vessels. Line [8] extracts features by using line operator and trains K-
NN classifier for pixel classification. DRIU [23] uses a base network architecture
on which two set of specialized layers are trained to solve both the retinal ves-
sel and optic disc segmentation. Compared with these methods, the proposed
method achieves the highest AUC values for both ROC and PR in the two public
databases. These results demonstrate the efficiency of the proposed method for
retinal vessel segmentation.

5 Conclusion

In this paper, we propose a novel DCNN-based network to segment retinal vessels
from fundus images. In order to exhaustively exploit multiscaled information on
retinal images, skip connections and deep guidance are utilized in our network
to ensure better learning of features in different scales and fusion of them for
vessel segmentation. Besides, boundary refinement module is adopted to make
sharper vessel boundaries. By using these techniques, the proposed method out-
performed other retinal segmentation methods on the public DRIVE and HRF
databases.
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