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Abstract. Real-time pedestrian detection is very essential for auto
assisted driving system. For improving the accuracy, more and more com-
plicate features are proposed. However, most of them are impracticable for
the real-world application because of high computation complexity and
memory consumption, especially for onboard embedding system in the
unmanned vehicle. In this paper, a novel framework that utilizes recon-
struction sparsity to synthesize the feature map online is proposed for real-
time pedestrian detection for the early warning system of the unmanned
vehicle in real world. In this framework, the feature map is computed
by sparse line combination of the representative coefficient and the fea-
ture response of trained basis which is learned offline. The efficiency of
our method only depends on the dictionary decomposition no matter how
complicated the feature is. Moreover, our method is suitable for most of
the known complicate features. Experiments on four challenging datasets:
Caltech, INRIA, ETH and TUD-Brussels, demonstrate that our proposed
method is much efficient (more than 10 times acceleration) than the state-
of-the-art approaches with comparable accuracy.
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1 Introduction

Recently, the unmanned vehicle, as a new transportation which has the mer-
its of energy saving and environmental protection, is getting more and more
attentions. Meanwhile, its security is the focus of the debate. As we all know,
obstacles identification is one of the core functions of the early warning system
of unmanned vehicle, and how to detect pedestrian as soon as possible in real
world is one of the key problems in obstacle recognition.
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Pedestrian detection is a very important task in computer vision and has
great potential to apply in many fields, such as automatic assisted driving, intelli-
gent traffic management, etc. It is very challenging because of the multiple views,
different illuminations, multiple scales and partial occlusion. To overcome these
problems, many researchers have proposed a lot of complicated features [1–7] to
improve the accuracy of this task, but ignored the efficiency. Take the popular
object detector [4] for example. It will take more than 4 s per image with the
resolution of 352 × 288 and take even more than 30 s per image with the reso-
lution of 1280 × 720 on the 4-core desktop computer. Nowadays with the wide
application of high resolution cameras, this problem is more and more serious
and has become a bottleneck for real-time application.

From the common framework of pedestrian detection, we can see that the
time cost is proportional to the product of two parts. One is the time complexity
of the detector, and the other is the time for probing the object candidates. For
the exhaustive search, such as sliding window technique, there are usually tens
of thousands of probing candidates for pedestrian classification and location. So
many researchers have carried out the work in the above two aspects to improve
the efficiency of the pedestrian detection [8–12]. Felzenszwalb et al. [9] proposed
a cascade part pruning strategy to speed up the deformable part model by more
than ten times. In [8], Yan etal leveraged the low rank constraint on root filter
to get a 2D correlation between root filter and feature map, and used the lookup
table to speed up the HOG extraction. And it was 4 times faster than the current
fastest DPM method with similar accuracy. Besides, many other efforts, called
region proposal, have be done to get the object location candidate prior to object
detection. In [10], Sande et al proposed a hierarchical framework, named selective
search, to generate approximate 2000 regions per image by color segmentation
and the recall was up to 97%. Compared with the exhaustive search, it was much
effective. However, due to the computation complexity of selective search, it is
not very fit for the real-time application. Zitnick [11] proposed a method, named
Edgebox, to gain the region candidates at a lightweight computational cost, but
its recall rate is relatively low. Other approaches are also facing similar problems.
Recently, deep neural network, named deep learning, has become the state-of-
the-art approach in object detection [13,14]. But this kind of methods are too
complex to need auxiliary computation equipment, such as GPU, to complete
the long-term training and testing.

From the above analysis, we can see that the time consumption of feature
extraction is the key for efficient pedestrian detection. Is there an approach
that the time consumption is approximately fixed for most of features? In this
paper, we proposed a framework based on sparse coding to conduct the feature
extraction online by linear combination of features of dictionary atoms extracted
offline. This is based on the assumption that the natural image can be linearly
combined by the patches sparsely. If the feature satisfies the linear superposi-
tion principle, the feature extraction can be synthesized online and the time
consumption is just decided by the image decomposition.
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2 Related Work

Our work is aspired by [15,16]. The core idea in [15] is the shared representations.
And an intermediate representation, called sparselet, for deformable part models
was proposed for multi-class object detection. In this model, sparse coding of part
filters was used to represent each filter as a sparse linear combination of shared
dictionary elements, which are the parameters of the part filter. Reconstruction
of the original part filter responses via sparse matrix-vector product reduces
computation relative to conventional part filter convolutions. The main defect is
the sacrifice of the performance. In [16], sparselet was reformulated in a general
structured output prediction framework leading to larger speedup factors with
no decrease in task performance. We think more deeply about the problem.
Compared with them, our model has smaller granularity and is more general. Our
main contribution is that we first consider the feature response synthesization
for feature extraction for any pedestrian detection framework by sparse coding.
And we demonstrate that the synthesized feature has comparable performance
with fast feature extraction for online pedestrian detection.

Fig. 1. The framework of feature response synthesization for pedestrian detection.

3 Our Framework

In this section, we will introduce the framework in details. Our model is based on
the fact that natural image can be represented by linear combination of redun-
dant bases. There are two stages (offline training and online detecting) in our
framework. According to standard sparse representation, we first learn a repre-
sentative dictionary in the training dataset under the minimum reconstruction
error and sparsity constraint. And then the response matrix is created by con-
ducting the feature extraction operation on the items of the dictionary (the item
is regarded as patches). On the detecting stage, an input image is represented by
the sparse representative vector on the learned dictionary. In the vector, only a
few items are non-zero. And then the feature response synthesization is regarded
as the linear combination of the representative vector and the row items of the
response matrix (shown as Fig. 1).
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What conditions should be satisfied if the feature is fit for our framework? We
think that the linear superposition principle should be satisfied. The principle is
as follows:

f(ax + by) = af(x) + bf(y) (1)

where f(∗) denotes the feature extraction operation. Under certain conditions,
we can relax the restriction of linear superposition. For example, if f(ax) =
anf(x) is satisfied, the feature is still fit for our method.

How many features are fit for our methods? According to the above con-
straints, most of popular features used in pedestrian detection are all suitable,
such as HOG [1], LBP [6], ICF [17], ACF [18]. Because the HOG feature is the
basis of some complex approaches, such as DPM [4], our method can accelerate
many other complex pedestrian detection frameworks which include the above
features.

3.1 Region Proposal

In object detection task, for locating the object, traditional methods scan the
image using multiple win-dows with different scales in the zigzag manner, named
sliding window strategy, and then discriminate whether it include an object or
not in each window. Usually, it will probe more than one million times. So such
exhaustive search strategy is not fit for our real-time applications because it is
very time-consuming. After analysis of such method, we can observe that a large
proportion of probing is in the background. So if the background regions before
scanning can be excluded, the efficiency of the detection will be boosted in a
large margin. Recently, many efforts are made to generate the object candidates
(bounding boxes) for object detection, called region proposal [10,24,25]. Because
the decomposition of the whole image based on the trained dictionary is much
time-consuming, the region proposal is critical for real-time object detection.
After in-depth investigation [24], we take the Edgebox [25] as our region proposal
approach, because it is most efficient under the highest recall rate.

3.2 Dictionary Learning

Given a set of image patches Y = [y1, . . . , yn], the standard unsupervised dictio-
nary learning algorithm aims to jointly find a dictionary D = [d1, . . . , dm] and an
associated sparse code matrix X = [x1, . . . , xn] by minimizing the reconstruction
error as follows.

min
D,X

||Y − DX||2F s.t.∀i, ||xi||0 ≤ K (2)

where xi are columns of X, the zero-norm || · ||0 counts the non-zero entries in
the sparse code xi and K is a predefined sparsity level.

Although the above optimization is NP-hard, greedy algorithms such as
orthogonal matching pursuit algorithm (OMP) [19,26,27] can be used to effi-
ciently compute an approximate solution. In our experiment, we use K-SVD



106 W. Fang et al.

algorithm [19] to train the discriminative dictionary. In addition, we consider
three sparsity inducing regularizers:

(1) Lasso Penalty [28]

RLasso(a) = λ1‖a‖1
(2) Elastic net penalty [29]

REN (a) = λ1‖a‖1 + λ2 ‖a‖22
These regularizers lead to convex optimization problems, and employ a two step
process to get the solution. In the first step, a subset of the activation coefficients
is selected to satisfy the constraint ‖a‖0 ≤ λ0. In the second step, the selection
of nonzero variables is fixed (thus satisfying the sparsity constraint) and the
resulting convex optimization problem is solved.

3.3 Feature Response Synthesization

Feature response synthesization can be regarded as the linear combination of
the representative coefficients and the response of the items of the learned dic-
tionary. Denoting the feature pyramid of an image I as Φ, and I = [P1, · · ·, PN ],
and Dj in D = [D1, · · · ,DK ] is the atom of D (Dictionary), we have Ψ ∗ Pi ≈
Ψ ∗ (

∑
j αijDj) =

∑
j αij(Ψ ∗ Dj), where ∗ denotes the convolution operator.

Concretely, we can recover individual part filter responses via sparse matrix
multiplication (or lookups) with the activation vector replacing the heavy con-
volution operation as shown in Eq. 3.
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For efficient pedestrian detection, the extraction of some features should be
made appropriate adjustments. Take HOG feature for example. It is composed
of concatenated blocks. Each block includes 2× 2 cells, and each cell is the 8× 8
pixels of the image. So the block is 16×16 pixels. The concatenation of histograms
of the blocks has two strategies: overlap and non-overlap. In the overlap manner,
the sliding step width is usually the width of the cell. In the non-overlap manner,
the sliding step width is the width of the block. So the dimension of the feature
of the non-overlap is smaller than that of the overlap. But the performance of
the feature will be lost by nearly 1% [1]. So the standard HOG feature chooses
the overlap manner for better performance. For high acceleration, in this paper,
we choose the non-overlap manner.
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4 Experiments

For evaluating our method, we conduct the experiments on four challenging
pedestrian datasets: Caltech [20], INRIA [1], ETH [21] and TUD-Brussels [22].
The state-of-the-art and classic pedestrian detectors are chosen to test our frame-
work: HOG [1], ChnFtrs [5], ACF [18], HOGLBP [7], LatSvmV2 [4] and Very-
Fast [23]. In the experiments, the training and testing data setting is as same
as in [18]. We first discuss the relation of the performance versus the sparsity
degree, the size of the dictionary, the size of atom. And then we evaluate our
method.

4.1 Dictionary Learning vs Performance

Because our method is based on sparse coding, how to select the parameters
of dictionary learning directly affects the performance of feature reconstruction.
For choosing the best parameters, we conduct some experiments on INRIA Per-
son Dataset and the type of synthesized feature is HOG. INRIA Person Dataset
consists of 1208 positive training images (and their reflections) of standing peo-
ple, cropped and normalized to 64× 128, as well as 1218 negative images and
741 test images. This dataset is an ideal setting, as it is what HOG was designed
and optimized for, and training is straightforward.

Sparsity Level and Dictionary Size. Figure 3 shows the average precision on
INRIA when we change the sparsity level along with the dictionary size using
5 × 5 patches. We observe that when the dictionary size is small, a patch cannot
be well represented with a single codeword. However, when the dictionary size
grows and includes more structures in its codes, the K = 1 curve catches up,
and performs very well. Therefore we use K = 1 in all the following experiments.

Fig. 2. The patch size vs detection performance on Caltech pedestrian dataset.
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Patch Size and Dictionary Size. Next we investigate whether our synthesized
features can capture richer structures using larger patches. Figure 2 shows the
average precision as we change both the patch size and the dictionary size. While
3 × 3 codes barely show an edge, 7 × 7 codes work much better. However, 9 × 9
patches, may be too large for our setting and do not perform well.

Fig. 3. The sparsity vs detection performance on Caltech pedestrian dataset.

Regularizer. With K = 1, one can also use different regularizers to learn a dic-
tionary. Figure 4 compares the detection accuracy with Lasso penalty vs Elastic
net penalty on 7 × 7 patches. The Elastic net penalty is better because it include
more constraints to learn discriminative representation.

Fig. 4. The regularizer vs detection performance on Caltech pedestrian dataset.
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In the following experiments, we set the size of the dictionary, the sparsity
degree to be 600, 1 respectively. We set the size of the atom of the dictionary to
be 7 × 7 for better performance.

4.2 Performance Comparison

We just pay attention to whether the performance is lost and the degree of
performance loss. As shown in Table 1, we can see the performance comparison
between the original detector and the corresponding synthesized detector. As can
be seen from the table, the performance degradation is very small, about one
percent. Why is the synthesis method a little worse than the original method?
We think there are at least two reasons. One is that our method is based on
reconstruction error minimum and sparsity constraints, which cause the loss
of the discriminative information for pedestrian detection. The other is that
we slightly modified the original feature extraction, such as HOG in the non-
overlap manner. Compared to high speedup, we think this slight performance
degradation is worth.

Table 1. Missing rates of pedestrian detectors (origin vs synthesizer) on four challeng-
ing datasets. “origin” denotes the original detector, and “synthesizer” stands for the
synthesized feature by our framework.

Detectors INRIA [1] Caltech [20] TUD-Brussels [22] ETH [21]

Origin Synthesizer Origin Synthesizer Origin Synthesizer Origin Synthesizer

HOG [1] 46 48 68 69 78 78 64 65

ChnFtrs [5] 22 23 56 57 60 61 57 58

ACF [18] 17 18 43 45 50 51 50 52

HOGLBP [7] 39 40 68 68 82 83 55 56

LatSvmV2 [4] 20 23 63 64 70 71 51 52

VeryFast [23] 16 17 53 54 61 62 55 56

4.3 Speed Comparison

The speed of the detector is more important than performance in the real-world
applications. In this section, we will show the speed comparison of the above
origin detectors and the corresponding synthesized detectors. Because the speed
of the detector depends on the resolution.

We just do the statistics and analysis on the INRIA dataset because the
results on the other datasets are the same as that on this dataset. The resolution
of the image is 640 × 480 in INRIA testing set. As shown in Table 2, accelera-
tion of the synthesized detector is very obvious. Take the detector HOGLBP [7]
for example. The speedup ratio is up to 2000. The speed of original veryfast
detector [23] is 50 fps because it is accelerated by GPU. But the speed of our
synthesized detector is 110 fps. From the table, experiment results confirm our
conjecture that the runtime of our synthesized detector depends on the decom-
position of the image based on the dictionary.
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Table 2. Speed comparison of pedestrian detectors (origin vs synthesizer) on INRIA
person dataset. The unit of speed is the frame of per second.

Detectors INRIA [1]

Origin Synthesizer

HOG [1] 0.23 96.5

ChnFtrs [5] 16.4 121.2

ACF [18] 31.9 125.4

HOGLBP [7] 0.06 120.4

LatSvmV2 [4] 0.6 108.5

VeryFast [23] 50 110.2

5 Conclusion

In this paper, we proposed a novel framework of feature extraction based on
sparse representation. And we give the constraint condition that the feature
should satisfy in our framework. At last, we conduct enough experiments on four
challenging datasets to evaluate our method. Experiment results demonstrate
our method is efficient for pedestrian detection task. In the future, we will seek
the efficient dictionary learning method and consider to add the classification
error into dictionary learning to add the distinctive information.
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