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Abstract. Images shared on the Internet are often compressed into a small size,
and thus have the JPEG artifact. This issue becomes challenging for task of low-
light image enhancement, as the artifacts hidden in dark image regions can be
further boosted by traditional enhancement models. We use a divide-and-
conquer strategy to tackle this problem. Specifically, we decompose an input
image into an illumination layer and a reflectance layer, which decouple the
issues of low lightness and JPEG artifacts. Therefore we can deal with them
separately with the off-the-shelf enhancing and deblocking techniques. Quali-
tative and quantitative comparisons validate the effectiveness of our method.
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1 Introduction

With the advance of photographing devices, people always prefer images with clear
content details and few artifacts. Nevertheless, this is not always the case in various
real-world situations. For example, people nowadays enjoy taking photographs and
share them on the Internet. In this process, the quality of an image can be affected by
many factors. In the stage of photograph shooting, poor lightness conditions (e.g.
nighttime) and amateur shooting skills (e.g. back light) often bring in a dark visual
appearance ((e.g. Fig. 1(a))). In the stage of photograph distribution, images are often
unintentionally compressed or resized into a smaller size by social network software
like WeChat or QQ. Many high-frequency image details can be filtered out in this
process and JPEG artifacts (or called block artifacts) are therefore introduced. In this
context, for these compressed low-light images, an image enhancement model is
expected to have the abilities of lightness enhancement and block removal [1].

However, conventional image enhancement methods [2–5] are limited due to the
following reasons. First, these methods are not equipped with the artifact-removing
ability. When we directly apply the off-the-shelf low-light enhancement methods on
them, the JPEG artifacts can be unnecessarily amplified (e.g. Fig. 1(b)). Furthermore,
JPEG artifacts usually hide in the image regions of low contrast, which makes the
enhancement task more challenging. For example, compared with the original clean
image, the hidden JPEG artifacts are not visually obvious in the compressed images
(e.g. Fig. 1(a)).
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(a) A visual comparison between low-light images without (first row) and with (sec-
ond row) JPEG artifacts (Q=60). We use these six compressed low-light images as 

our experimental data.

(b) Enhanced results directly based on state-of-the-art low-light enhancement methods 
(e.g. MF [12] and LIME [5]), and our method (better with a bright screen display).

(c) Enhanced results based on the technical roadmaps of deblock-enhance, enhance-
deblock, and our method (better with a bright screen display).

Fig. 1. An illustration of our research background.
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Intuitively, we can simply adopt the technical roadmap of deblock-enhance or
alternatively enhance-deblock to tackle this problem. However, both of them are still
limited. As shown in Fig. 1(c), the deblock-enhance roadmap tends to produce over-
smoothed final results, while the enhance-deblock roadmap has difficulties in removing
the unnecessarily boosted JPEG artifact. In this paper, we propose a novel framework
that simultaneously enhances the lightness and removes the JPEG blocks well (Fig. 2).
The key element is to decompose the input image into the illumination layer and the
reflectance layer. In this way, the low lightness and JPEG artifact can be well separated,
which avoids the risk of artifact-boosting. Our research is highlighted in the proposed
framework that well enhances compressed low-light images. Experimental results
demonstrate the superior performance over other related methods both qualitatively and
quantitatively.

2 Related Works

In recent years, many low-light image enhancement methods have been proposed. We
can divide the enhancing methods into the single-source group and the multi-source
group. The former refers to the methods with a single input image for enhancement,
while the later uses multiple images as inputs.

As for single-source low-light image enhancement methods, we further divided into
the histogram-based ones and the Retinex-based ones. As the histogram of a low-light
image is heavily tailed at low intensities, the histogram-based methods are targeted on
reshaping the histogram distribution [2, 6]. Since an image histogram is a global
descriptor and drops all the spatial information, these methods are prone to produce
over-enhanced [2] or under-enhanced [6] results for local regions. The Retinex-based
models assume that an image is composed of an illumination layer representing the
light intensity of an object, and a reflectance layer representing the physical charac-
teristics of the object’s surface. Based on this image representation, the low-light
enhancement can be achieved by adjusting the illumination layer [3, 7, 8]. Differently,
Guo et al. [5] propose a simplified Retinex model for the task of low-light image
enhancement. Instead of the intrinsic decomposition, they directly estimate a piece-
smooth map as the illumination layer. In general, the visual appearance of these single-
source methods’ results heavily depends on a properly chosen enhancing strength.

Fig. 2. The flowchart of our method.
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Low-light image enhancement methods based on multiple sources can relief the
issue of choosing the enhancing parameter, as they adopt the technical roadmap of
multi-source fusion. In principle, larger dynamic range can be captured for an imaging
scene with multiple images of different exposures. Then these images are fused based
on a multi-scale image pyramid [9] or a patch-based image composition [10]. In many
cases, however, multiple sources are not available and only one low-quality input
image is at hand. To address this challenge, a feasible way is to artificially produce
multiple initial enhancements and then fuse them. Ying et al. [12] propose a method
simulating the camera response model and generate multiple intermediate images of
different exposing levels. Different from [11], multiple initial results with different
enhancing models are generated and taken as the fusion sources in [12].

Although all the above methods well address the problem of dark image appear-
ance, they are not equipped with the function of artifact removal. To the best of our
knowledge, there are few works that concentrate on the enhancement of compressed
low-light images. Li et al. [1] propose to decompose an image into the structure layer
and a texture layer. The former layer is for the contrast enhancement; while the later
one is for the JPEG block removal. Our method resembles the backbone of [1] but
distinguishes itself in the technical details. First, we use a totally different image
representation model (illumination-reflectance vs. structure-texture). Second, our
enhancement model is also different from the one adopted in [1] (fusion-based vs.
histogram-based).

3 Proposed Method

3.1 Overall Framework

Our technical roadmap is to separately solve the low lightness issue and the JPEG
artifact issue. The proposed framework is shown in Fig. 2. We first convert the RGB
input image into the HSV space. Then the V channel V of the input image S is firstly
decomposed into two components (Sect. 3.2), i.e. the illumination layer I and the
reflectance layer R. Then we perform low-light enhancement on the illumination layer
(Sect. 3.3), and perform the JPEG artifact removal on the reflectance layer (Sect. 3.4).
Finally, the output image is obtained by re-combining the refined I0 and R0:
Voutput ¼ I0 � R0. By replacing the refined Voutput with the original V, the final output
image Soutput can be obtained by converting the HSV representation back into the RGB
representation. In another word, we keep the color information of S unchanged during
the whole process.

3.2 Image Decomposition

We decompose the input image V into the illumination layer I and the reflectance layer
R. Since we only have an observed image S at hand in real-world applications, the
decomposition is an ill-posed task. Additionally, for our task, we further aim to
decouple the low lightness and the JPEG artifact.
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To meet the above demands, we use an image decomposition model by jointly
considering shape, texture and illumination priors [8]. We minimize the following
target function:

E I;Rð Þ ¼ V� I � Rk k22 þ g1Es Ið Þþ g2Et Rð Þþ g3El Ið Þ ð1Þ

Here the first term represents the data fidelity, and the rest terms encode the three
priors. The first prior is constructed as:

Es Ið Þ ¼ ux rxIk k22 þ uy ryI
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The minimization of Es leads to the extracted I that is consistent with the image
structures of V. The second prior is constructed as:

Et Rð Þ ¼ vx rxRk k22 þ vy ryR
�� ��2

2 ð4Þ

vx ¼ rxRj j þ eð Þ�1; vy ¼ ryR
�� ��þ e
� ��1 ð5Þ

The minimization of Et preserves fine details of V for the extracted R. The third
prior is constructed as

El Ið Þ ¼ I� Bk k22 ð6Þ

where B is the maxRGB matrix:

B pð Þ ¼ max
c2 R;G;Bf g

Sc pð Þ ð7Þ

The element in B represents the possible maximum brightness of a pixel. Through the
optimization, the obtained I is forced to be consistent with the brightness distribution.
An alternative optimization strategy is then applied to solve the optimal I and R.

In summary, the first prior Es and the third prior Et enforce the illumination layer to
be structure–aware and illumination-aware; the second prior Et focuses on preserving
as many texture details and block artifacts as possible for the reflectance layer. The
examples in Fig. 3 validate the effectiveness of the chosen decomposition model.
Specifically, we observe that the decomposed R contains almost all the block artifacts.

3.3 Low-Light Enhancement

We enhance the illumination layer I by using a fusion framework proposed in [8]. As
we only have I at hand, we have to artificially produce several fusion sources.
By noticing that the extracted I has already been piece-wisely smooth and detail-free,
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we can simply apply the global contrast enhancement models. For producing the first
fusion source I1, we first use a nonlinear intensity mapping:

I1 pð Þ ¼ 2
p
arctanðkI pð ÞÞ ð8Þ

k ¼ 1�mean Ið Þ
mean Ið Þ þ 10 ð9Þ

Then the enhancement result based on the well-known CLAHE method [3] is taken as
the second fusion source I2. In case of over- or under-enhancement, we choose the
original I as the third fusion source I3, which plays the role of regularization in the
fusion process.

We construct pixel-level weight matrices. We first consider the brightness of
Ik k ¼ 1; 2; 3ð Þ:

Wk
B pð Þ ¼ exp� Ik pð Þ � bð Þ2

2r2
ð10Þ

where b and r represent the mean and standard deviation of the brightness in a natural
image in a broadly statistical sense. They are empirically set as 0.5 and 0.25, respec-
tively. When the pixel intensities are far from b, it means that they are possibly over- or
under exposed, and the weights should be small. Second, we consider the chromatic
contrast by incorporating the H and S channels of S:

Wk
C pð Þ ¼ Ik pð Þ � 1þ cos aH pð Þþuð Þ � S pð Þð Þ ð11Þ

where a and u are parameters to preserve the color consistency, and empirically set as 2
and 1.39 p. This weight emphasizes the image regions of high contrast and good colors.

Fig. 3. Examples of the image decomposition results.
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By combining these two weights together and normalizing it, we can obtain the weights
for each fusion source:

Wk pð Þ ¼ Wk pð Þ
P

k Wk pð Þ ð12Þ

Wk pð Þ ¼ Wk
B pð Þ �Wk

C pð Þ ð13Þ

To ensure a seamless fusion, we use multi-scale technique based on image pyra-
mids. We first build Laplacian pyramids Ll Ikf g for all the fusion sources. By building
Gaussian pyramids Gl Wk

� �
for the weight matrices, we can fuse fIkg at various

scales:

L0
l ¼

X
k
Gl Wk
� �

Ll Ikf g ð14Þ

At last, the enhanced illumination layer I0 can be obtained by collapsing the fused
pyramid.

3.4 JPEG Artifact Removal

Since the JPEG artifact is divided from the illumination layer I, we can conduct the
deblocking in the reflectance layer R. We adopt a simple but effective deblocking
model in [1]:

min
R0 pð Þ

X
p
R0 pð Þ � R pð Þð Þ2 þ l

X
p02N pð Þ rR0 p0ð Þð Þ2 ð15Þ

In this model, the first fidelity term restricts the refined R0 from going too far from
the original R. The second term is specifically designed for eliminating block edges
that are introduced by JPEG compression. By considering the specific pattern of JPEG
blocks, we choose a specific neighboring system N pð Þ for each location p: p0 2 N pð Þ
refers to pixel positions along the border edges of each 8� 8 image patch. By this
setting, the optimization process of Eq. 15 concentrates on the JPEG blocks, and tries
to preserve the original image structures. The parameter l acts as a balancing weight
between the two terms, and is empirically set as 0.5.

4 Experiments

In this section, we validate our method with qualitative and quantitative comparisons.
The experimental images are shown in Fig. 1(a), of which the compression strength is
set as Q = 60. The MATLAB codes were run on a PC with 8G RAM and 2.6G
Hz CPU.

As our task is to enhance the low lightness and suppress the JPEG artifact, we first
use two baseline models for comparison. Baseline 1: remove the artifact at first and
then enhance the low lightness. Baseline 2: enhance the low lightness at first and then
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remove the artifact. For the fairness of the comparison, we use the methods mentioned
in Sects. 3.3 and 3.4 to achieve the lightness enhancement and the artifact suppression,
respectively. We also compare our method with the most related one proposed in [1]
and term it as ECCV14. Its parameters are empirically set as the default values as in
[1]. As for our methods, since the framework of our method is open for the choice of
image enhancement models, we choose two kinds of them. The first is the one men-
tioned in Sect. 3.3, and we term it as Ours-MF. The second is the simple gamma
correction process, and we term it as Ours-GC. Here we simply set the enhancement
parameter c as 1=2:2 according to [8]. As for the image decomposition stage of Ours-
GC and Ours-MF, we follow [8] to set g1 ¼ 0:001, g2 ¼ 0:0001, g3 ¼ 0:25, and
e ¼ 0:01.

We first present the visual comparison in Fig. 4. From the two examples, we have
the following observations. First, we observe the lost image details in the results of
Baseline 1 and ECCV14. The reason is that the image details hidden in the darkness
are vulnerable to the JPEG removal process, and many of them are unnecessarily
removed. In contrary, the artifact removal of our method is applied on the decomposed
reflectance layer that extracts the image contents at various scales in advance. Second,
Baseline 2 well preserves the image details, but removes much fewer block artifacts
than Ours-MF and Ours-GC. Since Baseline 2 firstly enhances the input image, the
originally weak block edges hidden in the darkness are unnecessarily boosted, which
brings difficulty for the following suppression step. Our methods do not have this

Fig. 4. Qualitative comparison between our methods and the counterparts.
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problem due to the well-separated image layers. Third, by comparing the two versions
based on our framework, we can see that Ours-MF achieves better results than Ours-
GC in terms of the lightness condition.

We also quantitatively evaluate all the above methods with two metrics proposed in
[13, 14]. The results are shown in Tables 1 and 2, in which the bold/underline numbers
indicate the best/second best results among all the methods, respectively. From
Table 1, we can see that Ours-MF and Ours-GC generally achieve better performance
than other three methods in terms of removing JPEG artifacts. From Table 2, Ours-MF
generally has the best performance in terms of image contrast. Differently, the per-
formance of Ours-GC is less competitive than ECCV14. The reason is that the gamma
correction model only imposes a global non-linear transform on the lightness layer.
Based on the qualitative and quantitative comparison, Ours-MF achieves the best
performance, and validates the effectiveness of our idea of decoupling the low lightness
issue and the JPEG artifact issue at the beginning. In a word, all the above results
validate the effectiveness of each part of our proposed framework.

5 Conclusions

In this paper, we propose an image enhancement method for compressed low-light
images. Based on image decomposition, low lightness and JPEG artifact are separated
into two decomposed layers, which can be well addressed by off-the-shelf enhancing

Table 1. Quantitative comparison based on the metric measuring the block effect [13]

Input Baseline1 Baseline2 ECCV14 Ours-MF Ours-GC

1 0.2109 0.0383 0.0296 0.0276 0.0119 0.0366
2 0.1975 0.0307 0.0216 0.0165 0.0037 0.0045
3 0.1900 0.0735 0.0472 0.0180 0.0064 0.0074
4 0.1941 0.0503 0.0407 0.0232 0.0150 0.0133
5 0.1894 0.0284 0.0171 0.0110 0.0021 0.0034
6 0.1268 0.0445 0.0195 0.0171 0.0043 0.0038
Average 0.1848 0.0443 0.0293 0.0189 0.0072 0.0115

The bold font means the best result

Table 2. Quantitative comparison based on the metric measuring the image contrast [14]

Input Baseline1 Baseline2 ECCV14 Ours-MF Ours-GC

1 7.6885 7.1351 7.0683 6.0436 5.8170 7.6696
2 6.3567 4.7280 4.0690 4.6849 3.3641 4.3921
3 7.1700 5.3822 3.8854 3.5243 3.1429 3.7367
4 6.3027 5.0812 4.8454 4.3957 4.2165 4.9111
5 6.4311 2.9499 2.9322 2.5457 3.1349 3.1649
6 7.2752 3.8666 3.9664 3.5832 4.1252 5.3496
Average 6.8707 4.8571 4.4611 4.1296 3.9668 4.8707

The underline font means the second best result
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techniques. Visual and quantitative comparisons demonstrate the effectiveness of our
method. We plan to improve our method by introducing saliency detection [15, 16].
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