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Abstract. In video coding, the percentage of zero-quantized coefficients,
denoted by q, is directly determined by the quantization algorithm adopted. q-
domain rate distortion (RD) modeling is widely employed to optimize the
implementation algorithm for customizable modules such as rate control and
mode decision etc. How to calculate or estimate q according to quantization
algorithm is the first step task for q-domain RD modeling. There are two typical
quantization algorithm, soft-decision quantization such as dead-zone, and soft-
decision quantization such as rate distortion optimized quantization (RDOQ).
RDOQ is more frequently employed in the latest video encoders compared with
deadzone quantization due to its inspiring coding performance. In HDQ based
video encoder, q can be easily obtained by simply rounding. However, it is
computation-intensive to calculate q in video encoder with RDOQ, in which
complicated trellis search is employed. This paper focus on developing esti-
mation model for quickly estimating q for RDOQ based video coding. The
contribution of this article is as follows: First, this paper develops the q model
adaptively according to an adaptive deadzone offset model, which is modeled by
imitating the behavior of RDOQ. Second, an accurate q model is adaptively
built offline as function of weighted SATD (sum of absolute transformed dis-
tortion) denoted by WSATD, quantization step size q, and average WSATD/q
estimated from ensemble. The weight in WSATD is adaptively determined
according to the adaptive offset to simulate the behavior pattern of RDOQ as
much as possible. Experimental results verify that the proposed model can
quickly and accurately predict the q results of RDOQ with moderate imple-
mentation complexity. The proposed q model can be employed to estimate the
percentage of zero quantized coefficients which can be used for fast all-zero
detection and q domain rate distortion modeling in RDOQ based HEVC video
encoder.
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1 Introduction

In video coding, the rate-distortion (R-D) function model is widely employed for rate
control and mode decision. Several R-D models for DCT-based video coding have
been proposed in the literature [1]. Accurately calculating R and D will cost video
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encoder high computation complexity especially in the latest HEVC coders with
computation-intensive RDOQ and CABAC entropy codec. Developing fast estimation
model for R and D had attracted intensive research interests in the past twenty years.
Quantization directly determine the coding distortion and rate consumption. Thus,
some works explore rate distortion models as function of quantization parameter. Some
works explore the relationship between RD models with the percentage of zero-
quantized coefficients denoted by q. q-domain modeling or q-domain modeling are two
typical rate distortion modelling methods. Relatively, q-domain modeling can more
accurately describe the microcosmic characteristics of CABAC in terms of accurate R
estimation. Several works had also verified that q has a critical effect on the coding bit
rate R, especially at low bit rates [2].

On the other hand, there are great amounts of blocks are quantized to all-zero in the
latest HEVC standard, especially at low bit applications. In the latest standard, rate
distortion optimization is applied in quantization. In RDO based quantization, quan-
tization consumes high computation complexity due to that the quantizer need to
evaluate the distortion and rate for all possible candidate results and select an optimal
result in the sense of rate distortion optimization. If we can do all zero block
(AZB) detection before using RDO, we can reduce the HEVC coding burden. In the
past two decades, there are several AZB detection algorithms reported in the literature
[3]. From the viewpoint of target quantization algorithm, these AZB decision algorithm
were usually designed for video encodes with HDQ, for example dead-zone quanti-
zation, in which RD optimized RDOQ is not supported [3]. Thus, we can establish a q
model for RDOQ to indirectly implement all-zero block decisions before using RDO.

q model is used to estimate the percentage of zero-quantized coefficients, and thus
it is highly related with the quantization algorithm adopted in video encoder. There are
two typical quantization algorithms in prevailing video encoders, hard-decision
quantization (HDQ) such as deadzone and soft-decision quantization (SDQ) such as
rate distortion optimized quantization (RDOQ). In HDQ based video encoder, q can be
easily obtained by simply rounding. However, RDOQ can achieve superior coding rate
distortion performance compared with HDQ. It is computation-intensive to calculate q
in video encoder with RDOQ, in which complicated trellis search is employed. Thus, it
is meaningful to develop q model for RDOQ based video coding.

Hence, this paper proposes q model for RDOQ based video coding. Firstly, we
formulate q as functions of quantization step size, weighted SATD (sum of absolute
transformed difference) and the mean ofWSATD. By accurately measuring the adaptive
deadzone offset estimated from the DCT coefficient distribution parameter Ʌ, we define
an adaptive weight model for weighted SATD to obtain the adaptive offset d and apply
it to the weight model. Then, the three-dimensional q model is constructed using
statistical curve fitting method from ensemble. The q model is developed individually
in the cases of different types of TU blocks. The proposed model can quickly and
accurately predict the q results of RDOQ.

This paper is organized as follows. Problem formulation and motivation analysis
are given in Sect. 2. The proposed q model is given in Sect. 3. Section 4 gives the
experimental results. Section 5 concludes the whole paper.
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2 Problem Formulation and Motivation

2.1 RDOQ and q Model

q model is used to estimate the percentage of zero-quantized coefficients, and thus it is
highly related with the quantization algorithm adopted in video encoder. There are two
typical quantization algorithm, soft-decision quantization such as dead-zone, and soft-
decision quantization such as rate distortion optimized quantization (RDOQ). In HDQ
based video encoder, the quantization result zi is adjusted using a rounding deadzone
offset f described as follows:

zi ¼ floor
jcij
q

þ f

� �
ð1Þ

where floor(.) is a direct integer operation, ci is the DCT coefficient, and q is the
quantization step size. In deadzone HDQ, q can be easily obtained by simply rounding.

In RDOQ, several candidate quantization results are determined according to the
results of HDQ. Then, rate distortion optimization is employed to further refine the
optimal quantization result from three candidate results. In RDOQ, inter-coefficient
correlation is taken into consideration by joint rate distortion optimization with context
adaptive binary arithmetic coding (CABAC). Suppose there are N coefficient in the
current transform block, and there are m candidate quantization results preselected for
further refinement. For a specific coefficient ci, its candidate results are li1, li2,…, lim
which are centered about the result of HDD obtained with fixed rounding offset f = 0.5.
RDOQ checks all candidates to select an optimal result li using RDO described [4] as
follows.

li ¼ argmin
k¼1�m

D ci; likð Þþ k � R likð Þþ
XN
j¼iþ 1

D cj; lj
� �þ k � R lj

� �( )
ð2Þ

where D(ci, lik) and R(lik) are the coding distortion and rate when ci is quantized to lik,
and k is the Lagrangian multiplier, and �lj is the initial center of all candidates, i.e. the
HDQ quantization result of the j-th coefficient in the current block. As shown in the
above equation, inter-coefficient influence is considered in RDOQ. The backward inter-
coefficient rate propagation is taken into consideration to optimally determine a specific
coefficient’s quantization result.

In general, trellis search is employed to solve this dynamic programming problem.
In HEVC video codec reference model (HM), simplified trellis search is implemented
to alleviate the heavy computation of the full trellis search. Nevertheless, the compu-
tation is still relatively high. As a result, it is computation-intensive to calculate q in
video encoder with RDOQ, in which complicated trellis search is still desired instead of
simple rounding. Since RDOQ can achieve superior coding rate distortion performance
compared with HDQ, thus, it is meaningful to develop q model for RDOQ based video
coding.
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2.2 Analysis on RDOQ Based q Model

In order to develop q model, we need to build a function between q and some char-
acteristic parameters which characterize the block and are relatively easy to be obtained
for reasonable model computation complexity.

First, the sum of absolute transformed distortion denoted by SATD is usually
employed to describe the current block’s characteristics. In addition, it is also easy to
obtain due to that it is available after mode decision. SATD was widely employed to
develop the RD models in traditional works. In this work, we also tend to explore the
relationship between q and SATD. In video coding, SATD is defined as follows.

SATD ¼
X
i

jcij ð3Þ

where ci is the DCT coefficient. We can conclude that SATD is directly proportional to
the amplitudes of all DCT coefficients as shown in Eq. (3).

We cannot directly apply SATD into q model building. In terms of q modeling,
there is nonlinear relationship between SATD and q. For example, if one coefficient is
larger than the optimal zero-quantized threshold, it is quantized to non-zero coefficient.
However, increasing the coefficient intensity do not change a certain coefficient’s
contribution to q of the current block. In other words, if | ci | is larger than the optimal
zero-quantized threshold, no matter how large | ci | is, the contribution of the current
coefficient is stable.

What if we change the SATD definition accounting for the above nonlinearity in
terms of q contribution? This paper tends to adopt weighted SATD to alleviate the
nonlinearity extent between SATD and q. We propose a weight model according to the
intensity of ci to approximate a linear relationship between weight SATD and q.

Second, there is an intrinsic relationship between q and the quantization step size
q. In general, the larger q is, the more coefficients are quantized to zero. There is
proportional relationship between q and q. By jointly taking WSATD and q into con-
sideration, we employWSATD/q denoted by v to build a relationship among q,WSATD
and q. Suppose we apply a weight factor wi for the coefficient ci, we can then define the
composite parameter v as follows.

v ¼
X
i

wi � ci
q

ð4Þ

Where ci is the DCT coefficient, wi is the weight factor, and q is the quantization step
size. Here, how to adaptively determine the weight factor wi is one important problem.

Third, in our simulation, we find that the scatter results of (q,v) samples are not
convergent enough to use a close-form function to formulate it. RDOQ uses compli-
cated trellis search to deal with inter-coefficient influence. It is not enough to accurately
describe q only according to v. Therefore, we need to introduce another parameter to
develop more accurate three-dimensional q-model to imitate the behavior pattern of the
optimal RDOQ.
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By statistical analysis on the q-v samples, we found that the average of v estimated
from a sliding window in the case of the same q, denoted by x, also have a regular and
obvious functional relationship with q. v can measure the ensemble characteristics from
the viewpoint of large sample analysis. Consequently, this paper will take the x (av-
erage v) as the third parameter for developing the q model. Figure 1 below shows the
framework of the proposed q model.

3 The Proposed q Model

3.1 WSATD with Deadzone Offset Adaptive Weight

Judging whether one DCT coefficient is quantized to zero or not accurately is the key to
building the weight model for WSATD as analyzed in Sect. 2. The quantization
determines the weight directly in terms of SATD weighting. In HDQ, whether or not ci
is quantized to zero can be determined by simple rounding according to deadzone offset
f. However, in the RDOQ, it is computation-intensive to determine whether ci is
quantized to zero or not accurately.

In our previous work, we had made in-depth research to model an adaptive
deadzone offset d to improve the deadzone HDQ. By imitating the behavior pattern of
RDOQ using statistic analysis, the offset d mode is modeled as function of quantization
parameter, quantization remainder, and the DCT coefficient distribution parameter Ʌ.
This model is built offline, a three-dimension table is given offline. With this model, d
can be simply estimated by simple table lookup [5]. Based on Laplacian model, the
distribution of DCT coefficients Ʌ can be estimated as follows.

K ¼ 1
n

Xn
i¼1

jcij ð5Þ

where ci represents the DCT coefficient and n represents the number of statistical
coefficients.

In general, the larger SATD is, the higher probability that coefficients are quantized
to nonzero, and the smaller q is. Aiming at develop WSATD which is inversely pro-
portional to q, this work proposes a weight model to adaptively adjust the contribution
to WSATD according to coefficient the intensity |ci|. If one coefficient ci is quantized by
RDOQ to zero, its contribution to WSATD is also close to zero. If one coefficient ci is
quantized to non-zero by RDOQ, its contribution to WSATD is identical regardless of
its intensity |ci|. Intuitively, the larger |ci| is, the smaller the corresponding weight wi is.

Fig. 1. Framework of the proposed q model
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That is, |ci| and wi approximately comply with negative exponential function. This
paper adopts the adaptive weight model shown as follows.

wi ¼ e�ð cij j�bÞ=a ð6Þ

where ci represents the DCT coefficient, and wi is the resulting weight. We can control
the slope and centroid of the functional curve according to the |ci| by employing two
control parameters a and b.

In order to quickly determine wi, we can pre-judge whether ci is quantized to zero in
the case of RDOQ according to ci. On one hand, according to the principle of HDQ,
coefficients whose |ci| are within the range [0, (1 − f)q) are quantized by HDQ to zero,
and these coefficients are also quantized to zero ones by RDOQ. On the other hand, for
the coefficients whose |ci| are within the range [(1 − f)q, q), the coefficients are
quantized to nonzero by HDQ, they may be quantized to zero or nonzero coefficients
by RDOQ. In general, if one TU only contain m possible nonzero coefficients with
intensity [(1 − f)q, q), the current block may be quantized to all-zero block by RDOQ
in the sense of rate distortion optimization due to that quantizing all coefficients to zero
will save some coding bits. We have observed some sample blocks that are quantized
to all-zero by RDOQ although some coefficients are quantized to nonzero by HDQ.
The typical m is given in Table 1 in the cases of different TU blocks with different
block size.

As analyzed above, if ci is quantized to non-zero by RDOQ, different |ci| intensities
contribute to final q identically. Using this property, we propose heuristic way to
determine the control parameters a and b to obtain accurate WSATD for q modeling.
We need to deterministic control points (|ci|,wi) for parameter selection. On one hand,
suppose a coefficient with intensity (1 − d)q have the normalized contribution 1 for
WSATD estimation and q. As a result, ((1 − d)q, 1) is used as one control point. On the
other hand, suppose that the maximal of |ci| is cmax, a corresponding minimal weight
wmin is supposed to be determined. The coefficient with maximal |ci| is supposed to
contribute the same degree with the coefficient with intensity (1 − d)q. As a result,
another control point (cmax, wmin) is derived according to cmax*wmin = (1 − d)q. As a
result, we can derive a and b according to Eq. (6) using the above two control points.
a and b vary dynamically according to the TU block, resulting in accurate weight
model wi.

Table 1. m numerical statistics

TU type m Total blocks ALL-zero blocks Percentage Non-zero blocks Percentage

4 � 4 2 159173 132871 83.48% 26302 16.52%
8 � 8 3 108598 100647 92.68% 7951 0.72%
16 � 16 6 140682 135398 96.24% 5284 3.76%
32 � 32 6 26594 26445 99.44% 149 0.056%
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3.2 q Model

As analyzed in Sect. 2, q has an intrinsical functional relationship with v and x. This
work determines a three-dimensional q model (denoted by q-x-v) via surface fitting.
How to accurate estimate x online is the first task here. In order to achieve fast q
estimation, we need to build a model to estimate the averaged v, i.e. x.

Suppose that the percentage of zero-quantized coefficients in the case of HDQ is
denoted as q′. Using RDO to determine the optimal quantization result, only very few
coefficients with nonzero-quantized HDQ results are finally quantized to zero coeffi-
cients. As a result, q′ is basically identical with q in general. Supposed that the
averaged v in the case of identical q′ is denoted as x′. Similarly, x′ is usually identical
with x. As a result, we can estimate x according to x′ instantly due to that x′ can be
easily obtained online.

In terms of x-x′ function modeling, we need to clean the samples collected. The
first case is that x in the case of certain q may not exist. In this case, we need to remove
the corresponding x′ sample in the case of the corresponding q′ (whether or not the
mean exists). The second case is that x′ in the case of certain q′ may not exist. In this
case, we need to determine x in the case of corresponding q with x′ (if x exists). There
is high correlation between q′ and x′, as a result we can develop modeling x′-q′. Two
function models x′-q′ and x-x′ can be obtained by curve fitting respectively:

x0 = g(q0Þ ð7Þ

where q′ is the percentage of zero-quantized coefficients by HDQ based pre-
quantization, x′ is the mean of v in the case of identical q′. There is a monotonically
decreasing function of the second order between x and x′, and this function can be
formulated as follows.

Fig. 2. Fitting curves and scatter plots between x-x′
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x ¼ f ðx0Þ ð8Þ

Where x′ is the mean of v in the case of identical q′, x is the mean of v in the case of
identical q. Figure 2 shows the fit curve and scatter plot results between x and x′.

According to Fig. 2, we can derive the following conclusions. When the TU block
type is 4 � 4 and 8 � 8, we can accurately predict x according to Eqs. (7) and (8).
For other types of TU blocks, Eqs. (7) and (8) cannot accurately predict x sometimes.
In order to ignore these outlier samples, we employ the estimated x′ to replace x for q-
x modeling. Finally, the function model q-x is obtained by curve fitting. Figure 3
below shows the fit curve and sample scatter results.

Through Figs. 2 and 3, we can derive the parameter x of the q model, which can be
obtained by x′-q′ and x-x′ models online. q-x has a high functional correlation. With
the estimated x, we then finally establish a three-dimensional q model by surface
fitting, which is implemented online. As shown in the following formula (9).

q ¼ f ðx; vÞ ð9Þ

The three-dimensional q model is a polynomial with respect to the one order of v and
the third order of x.

Fig. 3. Fitting curves and sample scatter results

Fig. 4. Fitting surfaces and sample scatter results
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Figure 4 gives the corresponding fitted surfaces and sample scatter results. Figure 4
are intensively shown from two angles of view for better understanding.

From the results in Fig. 4, we can draw the following conclusions. On one hand,
the proposed q model can accurately predict the q results of RDOQ. Compared with
the percentage of zero-quantized coefficients by HDQ, the prediction results obtained
by the proposed model is very close to the actual q samples. In order to evaluate the
accuracy of the proposed q model, we also report the estimated error ratio. The
resulting estimation error ratios are given in Fig. 5, in which the histogram results of
the prediction error are given.

4 Experimental Result

The proposed q model can quickly and accurately predict the q results of RDOQ. In
order to evaluate the model accuracy of q model, we take the q results of RDOQ as the
comparison anchor and investigate the estimation error of the proposed q model rel-
ative to the results of RDOQ. Here, we compare the simple q model estimated from
simple deadzone HDQ with the proposed q model. The estimation error results of two
q models are given in Table 2. There simulation results in the cases of different QP and
TU block size are given.

According to the results in Table 2, we can draw the following conclusions. In the
cases of different TU blocks, the proposed q model established off-line can quickly and
accurately predict the q results of RDOQ, and the error results are usually smaller than
0.01. Comparatively, in the case of HDQ based q model, a great amount of samples
suffer from estimation error larger than 0.01, and some samples have estimation error
ratio close to 0.2. In terms of computational complexity, only an additional curve and
surface fitting are desired. The additional complexity of proposed model is moderate.

Fig. 5. Error frequency histogram
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5 Conclusion

In video encoder, the percentage of zero-quantized coefficients q is useful for rate
distortion model building and all-zero block detection. Developing fast q estimation
model plays important role in rate distortion optimization for video coding. This paper
proposes a fast q model for RDOQ based video coding. An accurate q model is
adaptively built offline as function of weighted SATD, quantization step size, and
average WSATD/q estimated from ensemble. Experimental results verify that the pro-
posed model can quickly and accurately predict the q results of RDOQ with moderate

Table 2. q estimation error results of the two models compared with RDOQ

QP BasketballPass BasketballDrill
TU type Error (HDQ) Error (model) TU type Error (HDQ) Error (model)

32 4 � 4 0.35 0.05 4 � 4 0.25 0.04
8 � 8 0.2 0.01 8 � 8 0.15 0.01

16 � 16 0.13 0.005 16 � 16 0.06 0.005
32 � 32 0.1 0.001 32 � 32 0.06 0.001

37 4 � 4 0.25 0.05 4 � 4 0.25 0.05
8 � 8 0.2 0.01 8 � 8 0.15 0.01

16 � 16 0.1 0.005 16 � 16 0.06 0.005
32 � 32 0.1 0.001 32 � 32 0.05 0.0009

QP BQMall Johnny
TU type Error (HDQ) Error (model) TU type Error (HDQ) Error (model)

32 4 � 4 0.25 0.03 4 � 4 0.25 0.04
8 � 8 0.15 0.006 8 � 8 0.15 0.009

16 � 16 0.1 0.001 16 � 16 0.05 0.003
32 � 32 0.08 0.0009 32 � 32 0.05 0.0009

37 4 � 4 0.25 0.02 4 � 4 0.2 0.04
8 � 8 0.15 0.006 8 � 8 0.1 0.007

16 � 16 0.06 0.0001 16 � 16 0.03 0.003
32 � 32 0.05 0.0005 32 � 32 0.04 0.0004

QP FourPeople KristenAndSara
TU type Error (HDQ) Error (model) TU type Error (HDQ) Error (model)

32 4 � 4 0.2 0.04 4 � 4 0.2 0.03
8 � 8 0.15 0.01 8 � 8 0.1 0.01

16 � 16 0.06 0.005 16 � 16 0.04 0.003
32 � 32 0.03 0.001 32 � 32 0.03 0.0009

37 4 � 4 0.2 0.03 4 � 4 0.2 0.03
8 � 8 0.1 0.01 8 � 8 0.1 0.01

16 � 16 0.025 0.001 16 � 16 0.04 0.003
32 � 32 0.022 0.001 32 � 32 0.03 0.001
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implementation complexity. The proposed q model can be employed to optimized all-
zero block detection and rate distortion model building.
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