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Abstract. In an initial attempt to systematize the research field of
architectural threat analysis, this paper presents a comparative study
of two threat analysis techniques. In particular, the controlled experi-
ment presented here compares two variants of Microsoft’s STRIDE. The
two variants differ in the way the analysis is performed. In one case,
each component of the software system is considered in isolation and
scrutinized for potential security threats. In the other case, the analysis
has a wider scope and considers the security threats that might occur
in a pair of interacting software components. The study compares the
techniques with respect to their effectiveness in finding security threats
(benefits) as well as the time that it takes to perform the analysis (cost).
We also look into other human aspects which are important for industrial
adoption, like, for instance, the perceived difficulty in learning and apply-
ing the techniques as well as the overall preference of our experimental
participants.

Keywords: Empirical study · Secure software · Threat analysis
STRIDE

1 Introduction

After decades of research and knowledge transfer in the field of “security by
design”, the software-intensive industries have absorbed the idea that security
needs to be addressed throughout the software development lifecycle. Building
Security In Maturity Model (BSIMM) [12] collects statistics from 95 compa-
nies and gauges their level of adoption with respect to several secure software
development techniques. According to the report, security-specific code analy-
sis techniques have successfully found their way into the industrial practice, as
two thirds of the surveyed companies adopt them routinely. In this respect, the
availability of well-known automated tools has helped significantly. Architectural
threat analysis is another important pillar of building more secure software and
the above-mentioned BSIMM report mentions that about one third of the sur-
veyed companies use architectural threat analysis techniques, like Microsoft’s
STRIDE [20], attack trees [19], Trike [16], CORAS [11], PASTA [24], threat
patterns [2], to cite a few.
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Working in collaboration with our industrial partners from the automotive
industry, we noticed that Microsoft’s STRIDE is well-known and often used. In
particular, our partners use the so-called STRIDE-per-element version. In this
version, each component of the software system is considered in isolation and
scrutinized for potential security threats. However, practitioners advocate for
a threat analysis technique that allows them to analyze end-to-end scenarios
where several components interact (e.g., to provide a given functionality). In
this respect, the STRIDE-per-interaction variant could be more appropriate, as
in this variant the analysis has a slightly wider scope and considers the security
threats that might occur in a pair of interacting software components. On the
other hand, there are also truly end-to-end analysis techniques, like for instance
the one proposed by Tuma et al. [23]. From our perspective, it is interesting to
study how these alternative techniques differ across the spectrum (analysis of
isolated components vs analysis of pair-wise interactions vs analysis of end-to-
end scenarios) in terms of performance. In essence, which approach to threat
analysis produces more results in a faster way? Consequently, this study focuses
on the differences between the analysis of isolated components and the analysis
of pair-wise interactions. In current work, we are also comparing the analysis of
isolated components with the analysis of end-to-end scenarios.

In the latest publication by Shostack [20] describing Microsoft’s STRIDE,
the author describes two variants that are dubbed ‘STRIDE per element’ (anal-
ysis of isolated components) and ‘STRIDE per interaction’ (analysis of pair-
wise interactions). A more detailed description of the two is provided in Sect. 2.
In our study, we divide our participants (110 master students) into two treat-
ment groups (Element vs Interaction), each using one of the two variants
of STRIDE to analyze the architectural design of an Internet-of-Things system.
For replication purposes of this study, we have created a companion web-site [1],
where all the material used during the experiment is available. The study ana-
lyzes and compares the effectiveness of the two variants in unearthing security
treats (benefits) as well as the time that it takes to perform the analysis (cost).
We also look into other human aspects which are important to adoption, like
the perceived difficulty in learning and applying the techniques as well as the
overall preference of our participants.

The rest of the paper is organized as follows. Section 2 provides a primer
on the STRIDE variants. Section 3 describes the experiment and states the
research hypotheses. Section 4 presents the results, while Sect. 5 discusses them.
The threats to validity are listed in Sect. 6. Section 7 discusses the related work
and Sect. 8 presents the concluding remarks.

2 Treatments

STRIDE is a threat analysis approach developed to help people identify the types
of attacks their software systems are exposed to, especially because of design-
level flaws. The name itself is an acronym that stands for the threat categories
of Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service
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and Elevation of Privilege. For the definition of threat categories, we refer the
reader to the documentation of STRIDE [20].

Fig. 1. A high-level DFD of the experimental object.

The analysis is based on a graphical representation of the system architecture
as a Data Flow Diagram (DFD). As shown in Fig. 1, a DFD represents how
information moves around in a software-based system. The diagram consists of
processes (active entities), data flows (exchanged info), external entities (e.g.,
users or 3rd parties), data stores (e.g., file system) and trust boundaries.

The first step in applying the STRIDE methodology is to create a DFD using
the available system documentation. The second step is a systematic exploration
of the DFD graph in order to identify the threats. The two STRIDE variants
differ in how this exploration is carried out.

STRIDE per Element. Using this approach, the analyst visits every element
in the diagram (e.g., starting in the top-left corner). For each element type,
STRIDE advises looking into a subset of threat categories. To this aim, STRIDE
provides a table mapping element types to threat categories. For instance, the
Sensor in Fig. 1 is an external entity, therefore according to STRIDE, the analyst
should look into Spoofing and Repudiation threats. For each pair of element type
and threat category STRIDE also provides a catalog of example threats that can
be used for inspiration by the analyst. With reference to the Sensor, one provided
example threat for spoofing a hardware device is IP spoofing.

STRIDE per Interaction. This technique adopts an approach of systematically
visiting the interactions in a DFD. Interactions are patterns of DFD elements
connected via data flows. The analyst has to first identify the interactions. For
instance, “Sensor sends sensor data to Gateway” is a match for the above-
mentioned interaction. For each type of interaction STRIDE again advises look-
ing into a subset of threat categories and provides a catalog of example threats.
For example, when an external entity is passing input to a process, the analyst
is advised to look into Spoofing and Repudiation threats. If there is no logging
in place, the Gateway is able to deny having received sensitive information from
the Sensor.
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3 The Experiment

This section presents the design of a controlled experiment, conducted with
participants in an academic setting.

3.1 Experimental Object

As depicted in Fig. 1, the Home Monitoring System (HomeSys) is a system for
remote monitoring of residential homes. The purpose of this system is to provide
necessary tools for customers to automatically receive and manage notifications
about critical events in their homes. The system consists of a smart home gate-
way which communicates with sensors and actuators and a cloud system which
collects data from the gateways and offers a dashboard to the customers. Sensors
are analog or digital hardware devices that produce measurements and send them
to the gateway. This system includes sensors that detect temperature, humidity,
smoke, etc. Actuators are hardware devices that can receive commands from
the gateway, like for instance, taking a picture, activating a buzzer or flicking
a switch. The gateway is a hardware device which relays measurements to the
cloud (via a 3G or WiFi network) and manages the actuators in the residency.
The HomeSys cloud is a software system that communicates with the gateways
and provides services for the customers, as well the operators of the system.

The system documentation (about 30 pages) includes (1) the description of
the problem domain with scenarios, (2) the requirements of the system and (3)
a hierarchical architectural description documented in UML. For instance, the
documentation includes a UML deployment diagram. The complete description
of the system is available with the experimental material [1]. The participants
worked on the HomeSys system throughout the entire course before entering the
experiment. Therefore, they were very familiar with the object of the experiment
and had enough knowledge about the system to understand the problem and
complete their task.

3.2 Participants

The participants of this study are 110 first-year master students of Software
Engineering, attending a course on “Advanced Software Architecture”, taught
by the experimenters. In order to gather sufficient data, we have repeated the
experiment for two consecutive academic years (2016 and 2017). The partici-
pants performed the assigned tasks in teams. Each year, the participants were
randomly grouped into teams of about 4 students and assigned one analysis
techniques (i.e., treatment groups). In total, we have assigned 14 teams to the
Element and 13 teams to the Interaction treatment.

We have collected information with a short questionnaire before the study
took place to investigate the background of the participants. As shown in Table 1,
it included questions about participants’ work experience and perceived familiar-
ity with task-related concepts. Most participants have had previous experience
in software development outside the university and consider to have adequate
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Table 1. Answers to the entry questionnaire.

Questions and answers [%]

1. Do you have any working experience in software development outside the university?

Yes (63) No (37)

2. How would you describe your working experience outside the university?

Profit (39) Non-profit (8) Both (27) NA (26)

3. How would you rate your level of expertise as a programmer?

Very insufficient (1) Limited (17) Adequate (58) Advanced (24)

4. How would you rate your level of familiarity with software design, including the use of UML?

Very insufficient (2) Limited (33) Adequate (63) Advanced (2)

5. How would you rate your level of expertise in security?

Very insufficient (16) Limited (65) Adequate (16) Advanced (3)

knowledge about software design and programming. A large majority of the
participants are able to use UML, which is relevant as the study object is docu-
mented in such language. The course does not require background knowledge of
information security, hence the participants consider to have limited expertise
in this area, as expected.

3.3 Task

The teams were presented with the same task on the same experimental object.
The task was divided into two sub-tasks: participants were asked to (1) build
a DFD based on the provided architectural documentation and (2) analyze the
DFD according to the assigned technique.

During the training, participants were provided with guidelines for creating
the DFD. First, they had to create a DFD by mapping the nodes from a given
deployment diagram into DFD elements. Second, the participants had to use the
rest of the documentation (e.g., component and sequence diagrams) to refine the
DFD and identify the data flows. The details of training are available online [1].

The second sub-task required a systematic analysis of the DFD according to
the techniques described in Sect. 2. The analysis results had to be documented in
a report and submitted electronically. The report had to contain a list of iden-
tified threats and corresponding descriptions. Threat descriptions were made
according to a provided template (available online [1]). The purpose of the tem-
plate is to simplify and standardize the analysis of the reports. Note that the
task has been performed during a supervised lab session. In the lab, the teams
were instructed to keep an informal log of the identified threats (lab notes).
The preparation of the official report had to be done after the supervised lab.
However, we have monitored that the reports did not contain more threats with
respect to the work done in the lab (e.g., by taking snapshots in the lab). The
snapshots taken during the lab were compared with the final report to capture
any threats identified outside the supervised lab. We have not recorded any
discrepancies between the snapshots and the reported threats.
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Finally, we asked the teams to keep track of the time they spent. To this aim,
the teams were instructed to use an online time-tracking tool (www.toggl.com)
and submitted their time-sheets electronically at the end of the supervised lab.

3.4 Execution of the Study

The experiment is positioned at the end of a course on software architecture. The
topic covered in the experiment aligns with the course content. Participation in
the study contributes to the teaching objectives of the course, hence participants
were highly motivated. For more details about the experimental material please
refer to the companion web site [1].

Entry Questionnaire. A few weeks before the beginning of the study, the par-
ticipants have been asked to fill in a brief questionnaire about their knowledge
and background (see Sect. 3.2).

Training. As part of training for the experiment, the participants attended 2
lectures (mandatory 4 h of training). In the first lecture (2 h) the participants
got an introduction to secure design and the use of the DFD notation. The
lecture also included a practical exercise on how to build a DFD for a system
of similar size as HomeSys. For the second lecture (2 h) participants were split
according to their assigned treatment group. Each group received a dedicated
lecture explaining the philosophy of STRIDE specific to their treatment group.
In addition, participants received only documentation specific to their treatment
group. This was done in order to limit the problem of treatment diffusion. An
overview of the HomeSys documentation was also given in the second lecture.
The students were more than familiar with the system, but the experimenters
wanted to be sure that they would be able to navigate the documentation without
hiccups. Finally, in a lab session preceding the experiment, the participants were
familiarized with the time-keeping tool.

Supervised Lab. The experiment took place in one lab session of 4 h. The session
was supervised by the authors and two teaching assistants. At the beginning of
the lab, the authors explained the experimental protocol to the participants, e.g.,
by summarizing the task, mentioning all the provided material, and reminding
the participants about the time-tracking tool. Each team was provided with a
printed copy of task description, the relevant book chapters, and the documen-
tation of HomeSys. The teams performed the assigned task and kept track of
their work by writing lab notes.

Report. The participants were given about a week to write a report documenting
the threats they had found during the lab. To this aim, they used their lab notes.
Each report contained a figure of the DFD and a list of identified threats, where
each threat was documented according to a provided template [1]. In particular,
each threat is described with a title, a position in the DFD where the threat
is located, a threat category (STRIDE), required attacker capabilities, and a

www.toggl.com
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detailed description of the threat itself. The participants were also asked to
document their assumptions about the system.

Exit Questionnaire. At the end of the lab session, the participants were asked
to fill in an exit questionnaire. Access to the questionnaire was open for a week
after the lab session had finished, during which time a few reminders were sent
by email. As discussed later, this questionnaire is meant to validate some exper-
imental assumptions (e.g., the participants understood the task and were ade-
quately prepared to carry it out) and to collect additional information about the
treatments (e.g., the perceived difficulty of the tasks).

3.5 Measures

We have collected the measure of effort (in minutes) spent by each team on both
sub-tasks (DFD creation and threat analysis).

We have also collected the measure of true positives (TP ), false positives
(FP ) and false negatives (FN). True positives are reported threats that are
assessed as correct by the experimenters in light of the analyzed DFD and the
security assumptions made by the team. False positives are wrong or unrealistic
threats reported by the team. Finally, false negatives are threats that are present
in the analyzed system but had gone unnoticed by the team.

In order to record the correct threats a “ground truth” has been created by
the first author. Incidentally, we decided to let the teams produce their DFD as
this activity is an integral part of threat analysis in practice. Ergo, the teams
have analyzed slightly different DFDs. A ground truth was built for each team
to ensure a correct evaluation. For each report, the ground truth was used to
identify the correct, incorrect and overlooked threats. In particular, a threat is
considered correct if (1) it is identified at the correct location, (2) it is correctly
categorized, (3) it has some impact on system assets, (4) the description of
the threat agent is correct and (5) the description provided by the team is
realistic from a security perspective and does not contradict their assumptions.
Oftentimes the teams reported the same threat more than once, using a different
title. A threat (either correct or incorrect) that is identified more than once
is marked as a duplicate. Note that duplicated threats are intentionally not
considered as TP or FP .

3.6 Hypothesis

We have adopted a standard design for a comparative study of one independent
variable with two values, i.e., the two treatments of Element and Interaction.
Our study investigates three dependent variables: productivity, precision, and
recall. In this study we define the productivity (Prod) of a team as the number
of correct threats (TP ) per time unit. For each team, precision (P ) is the per-
centage of correctly identified threats out of the total number of reported threats
(TP/(TP +FP )). Recall (R) is the percentage of correctly identified threats out
of the total number of existing threats (TP/(TP + FN)).
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We use the Wilcoxon statistical test to determine whether there is a statistical
difference in the three dependent variables across the two treatment groups.
Accordingly, the null hypotheses are as follows:

HProd
0 : There is no statistically significant location shift between the average

productivity of the two treatment groups.
HP

0 : There is no statistically significant location shift between the average
precision of the two treatment groups.
HR

0 : There is no statistically significant location shift between the average
recall of the two treatment groups.

4 Results

In this section, we present the results of the study and answer to research ques-
tions. All statistical tests have been performed using the two-sample Wilcoxon
test of independence with a level of significance equal to 0.05.

4.1 True Positives, False Positives, and False Negatives

Figure 2 reports the number of TP , FP and FN per treatment group. We
have observed slightly better averages for the Element group, compared to the
Interaction. Namely, the TP is higher (Element: 14.3, Interaction: 11.6),
the average number of FP is lower (Element: 14.2, Interaction: 15) and
the average number of FN is also lower (Element: 8.8, Interaction: 11.8).
However, the analysis shows that there are no significant differences between the
amount of TP , FP and FN across treatments groups.
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Fig. 2. Average time per sub-task and total time of treatment groups (left) and true
positives, false positives, and false negatives (right).

The average number of TP , FP and FN per threat category is depicted in
Fig. 3. Overall, both treatment groups visibly focused less on Repudiation and
Elevation of Privilege threats compared to other threat categories. A statisti-
cal analysis shows that there are significant differences between the TP of the
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Fig. 3. The mean number of identified threats for per element (top) and per interaction
treatment (bottom).

Denial of Service (p-value = 00.02) and Tampering (p-value = 00.007) threat
categories across treatments. For the Denial of Service threat category, the
Element treatment group identified on average more TP (statistically signifi-
cant, p-value = 00.02) and less FN (not significant). For the Tampering threat
category, the Element treatment group identified on average less FN , more
TP (statistically significant, p-value = 00.007), and less FP . This might be due
to the two methods providing different mapping tables (from DFD to threat
categories [20]). The Interaction has a lower rate of mappings to the Denial
of Service threat category (8/72 = 11% vs 3/20 = 15%). We have also com-
puted the recall when the Denial of Service threats are removed. The results
stay similar to what is reported in Fig. 4, i.e., the median recall is not “driven”
by the Denial of Service category. Incidentally, there is a similar situation in the
mappings for the Tampering category (3/72 = 4% vs 3/20 = 15%). Identified
threats from other categories do not differ across treatment groups.

4.2 RQ1: Productivity

As shown in Fig. 2, the average time spent by the teams performing STRIDE per
element is 3.5 h, whereas the average time spent per teams performing STRIDE
per interaction is 3.95 h (not statistically significant). There is a noticeable dif-
ference between time spent on the sub-tasks, with the analysis time being dom-
inant. When looking at differences across the treatments, the Element group
was on average faster in performing both sub-tasks (not statistically significant).
It is interesting to notice, that even though both treatments followed the same
guidelines for DFD creation, the Interaction group created on average DFDs
with more elements (discussed in Sect. 5).

The overall productivity of a technique depends on the amount of correctly
identified threats (TP ). The average productivity of the Element group is
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4.35 TP/h1. The Interaction group turned out to be less productive (3.27
TP/h). However, the difference is not statistically significant and, hence, the
null hypothesis HProd

0 cannot be discarded.
As a possible explanation for lower productivity of the Interaction treat-

ment, we highlight that the documentation of the STRIDE per interaction vari-
ant is more complex with regard to mapping threats to interactions. As men-
tioned by Shostack, “STRIDE-per-interaction is too complex to use without a
reference chart handy” [20]. Such a reference chart was available to the partici-
pants, yet the complexity might still have been too high.

4.3 RQ2: Precision

Figure 4 presents the precision (i.e., the correctness of analysis) of the two treat-
ment groups as an aggregate (left-hand side) and across each individual threat
category (right). Overall, the mean precision is 0.60 for both treatment groups.
Therefore, null hypothesis HP

0 cannot be rejected. We have also analyzed the dif-
ferences in precision within threat categories. There is a statistically significant
difference in the precision of Tampering threats (Element: 0.58, Interaction:
0.81, p-value = 00.027). A difference can also be observed for the Denial of Ser-
vice category (not statistically significant).
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Fig. 4. Precision (left) and recall (right) aggregated across threat categories.

4.4 RQ3: Recall

Shostack states that the “STRIDE-per-interaction leads to the same number of
threats as STRIDE-per-element” [20]. Yet in our study, the number of reported
threats was higher for the Element treatment, especially the number of FP
(see Fig. 2). Figure 4 presents the recall (i.e., completeness of analysis) of the
two treatment groups as aggregate (left-hand side) and across each individual
threat category (right). The average recall for the Element treatment is 0.62,
whereas the average recall of the Interaction is 0.49. The difference is sta-
tistically significant (p-value = 0.028). Therefore, null hypothesis HR

0 can be

1 Scandariato et al. [18] reported an average productivity of 1.8 TP/h.
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rejected. We have also analyzed the differences within each threat category and
found a statistically significant difference in the recall of the Denial of Service
category (Element: 0.55, Interaction: 0.34, p-value = 00.014). One possible
explanation relates to the fact that the Element group tends to create smaller
DFDs, as discussed in Sect. 5. Alternatively, the difference could be linked to the
fact that the threat examples in the documentation are more extensive in case of
the Element treatment and the documentation of the Interaction treatment
is more complex to navigate (as mentioned in Sect. 4.2). These are interesting
hypotheses for future studies.

4.5 Exit Questionnaire

In summary, the two treatments displayed a statistically significant difference
only with respect to recall, with the Element group reporting more complete
results (13% better). It is also important to appreciate how the two variants
are perceived by the participants. This could have an impact on the successful
adoption of the technique and, hence, become a deciding factor beyond the
performance indicators investigated in the three research hypotheses.

To this aim, we asked the participants to fill in a questionnaire at the end
of the experiment. Due to space limitations, the questions and the answers are
not shown here. They are available on the companion web-site [1] under the
“Questionnaires” tab. To investigate differences across the treatment groups, we
have performed a Cochran-Mantel-Haenszel test (similar to the Chi-square test)
with a level of significance equal to 0.05.

In general, participants from both treatment groups agreed about having
a clear understanding of the task, though they were sufficiently prepared and
were familiar with the experimental object. Overall the task was not too dif-
ficult, while the first sub-task of creating the DFD was perceived easier than
the second sub-task of analyzing the DFD (for both treatments). According
to the documentation, “STRIDE per element is a simplified approach designed
to be easily understood by the beginner” [20]. This implies that STRIDE per
interaction is perceived by Microsoft as the technique to be used in production.
However, according to our results, the techniques are the same (i.e. per element
is not simpler than per interaction) in terms of productivity and precision. Con-
cerning the learnability, the teams from both treatment groups agreed that the
techniques they used were easy to understand and learn (no significant differ-
ences). Although the teams were given sufficient time to carry out the task, both
treatment groups perceived the techniques as lengthy and tedious.

The participants from both treatment groups mostly believed that 50–75% of
their identified threats were correct. This is a fairly accurate estimation according
to the observed precision in this study (0.6). Interestingly, participants were
slightly less confident about the completeness of their analysis. The aggregate
recall over all teams (regardless of the treatment group) is 0.5 and only less
than half of the participants (47.7%) have this perception. Finally, participants
generally liked the technique they used but were not especially fond of it either.
No significant differences were observed across treatments.
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5 Discussion

DFD. The participants followed precise guidelines for DFD creation [1]. As
such, the created DFDs have limited variability as well as consistent quality,
e.g., we did not find many mistakes in the DFDs. In this study, we have made
a deliberate choice to minimize the influence of the DFD creation (common
to both treatments) and focus on the alternative techniques of analyzing the
DFD (the key difference between the treatments). Figure 5 depicts the number
of DFD elements in the models created by the teams. On average, the teams
created DFDs with about 26 data flows, 6 processes, 4 data stores, 3 external
entities, and 3 trust boundaries. A few differences can be noted. On average,
we observed a smaller number of DFD elements in the Element group (37.4)
compared to the Interaction group (41.9). This difference is consistent across
the different element types, yet not statistically significant.
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Fig. 5. The average number of DFD elements (DF=data flows, PN=process nodes,
DS=data stores, EE=external entity, TB=trust boundaries) (left) and the average
number of duplicated threats (right).

Mistakes. As reported in Fig. 5, the teams sometimes reported several threats
more than once. Duplicated threats are considered to slow down the analysis
process, especially during threat prioritization. Note that the results about pro-
ductivity (see Sect. 4.2) are not affected by duplicates, as they were discarded.

Most commonly, threats are duplicated due to (i) threat ‘fabrication’ or (ii) a
misuse of the reduction technique. We consider threat fabrication as mistakenly
identifying threats in order to achieve complete coverage of the STRIDE category
mapping table. Proposed by STRIDE, threat reduction is a technique that aims
towards minimizing the number of DFD elements that have to be analyzed.
In particular, the reduction enables coupling the elements of the same type in
order to analyze them at once. In other words, the threats identified for one
DFD element may apply to other elements of the same type.

About 30% of all reported threats were duplicated. Of those, the major-
ity belonged to the Element group (65%). The mean number of duplicated
threats identified by the Element teams is bigger (6) than the Interaction
teams (5) (not statistically significant). However, there is a significant differ-
ence in the amount of Tampering duplicates across treatments (Element: 6.27,
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Interaction: 1.67, p-value = 0.042). Incidentally, we also observed more Spoof-
ing duplicates in the Interaction treatment. A possible explanation for fewer
duplicates in the Interaction group is that the notion of interaction patterns
might lend itself useful to a correct use of the reduction technique.

Interestingly, we observed that most teams correctly identified more outsider
threats than insider threats. Very often, the reported insider threats were just
unrealistic and assessed as false positives.

Analysis Focus. Overall (including duplicated threats and FP ), both treat-
ment groups have focused their analysis on ‘border’ elements of the system,
as well as the data flows that pierce through trust boundaries. The reports of
the Element treatment group contain more threats to processes, external enti-
ties, and data stores compared to threats to data flows. In contrast, the reports
of the Interaction treatment group contain more threats to data flows com-
pared to threats to other types of DFD elements. In general, all teams were more
likely to identify correct threats to the data flows crossing a trust boundary. This
confirms the usefulness of using trust boundaries to focus the attention of the
analyst. However, there is a lack of precise guidelines for how and where trust
boundaries should be placed, as our teams showed uncertainties in this regard.
The teams were more likely to falsely identify threats (FP ) to processes and data
stores. The participants found the most commonly known threats (e.g., phish-
ing, SQL injection, stealing for credentials or account). Coincidentally, these
are more commonly identified on data flows. Correctly identifying a Tampering
threat to a data store within system boundaries would mean finding a way to
by-pass the system access control or even overcome obstacles like file-locking
or other system defenses. This kind of threat requires correct assumptions and
more security background. Unfortunately, most teams did not document many
(if any) assumptions.

6 Threats to Validity

The time spent for performing the task was measured by the participants them-
selves. To mitigate this threat, we have continuously reminded the participants
to pause and continue measuring time during breaks. The amount of work that
was reported was consistent with the reported time, which indicates that this
is a minor concern. The use of student participants instead of professionals is a
potential issue threatening the generalization of results. This kind of population
sampling is sometimes referred to as convenience sampling [25]. It is considered
controversial due to certain drawbacks [3]. However, studies have shown [6,15,17]
that the differences between the performance of professionals and graduate stu-
dents are often limited. The experiments were conducted by using teams of
3–5 students, which threatens the generalization of results to a single analyst.
Nonetheless, the state-of-the-art [7,20,22] advises sound-boarding the analysis
with a team of experts in the industrial setting as well. This is what happens in
the medium-to-large companies we collaborate with. Finally, the results of this
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study may be influenced by the experimental object and in turn, may not be
applicable to a system of different complexity or from a different domain.

Possible mistakes might have been made during the assessment of the reports
and during the creation of the ground truth. In order to avoid over-loading the
participants and make them tired, the supervised experiment was performed in
a span of 4 h. Additional time was given for documenting the identified threats
outside the supervised lab. The teams were not monitored after the experiment
has ended, however, we have made sure that the final report included only the
threats in the lab notes (e.g., by taking snapshots in the lab).

7 Related Work

McGraw conducted a study including 95 well-known companies [12]. The study
analyzes the security practices that are in place in the companies. The BSIMM
model does not mention STRIDE per se, rather it highlights the importance of
threat analysis. Microsoft has not published evidence of the effectiveness of the
STRIDE variants analyzed in this paper. Guidelines, best practices, and short-
comings are discussed, yet there is no evidence about how the two approaches
differ in terms of performance [20].

Scandariato et al. [18] have analyzed a previous version of STRIDE-per-
element and evaluated the productivity, precision, and recall of the technique
in an academic setting. The purpose of their descriptive study was to provide
an evidence-based evaluation of the effectiveness of STRIDE. Our study, on
the other hand, provides a comparative evaluation (by means of a controlled
experiment) of the two latest approaches for STRIDE. Also, our study has a
larger number of participants and uses a larger object. We remark that our
study has some discrepancies with respect to the observed productivity (4.35 in
our study vs. 1.8 threats per hour), precision (0.6 vs. 0.81), and recall (0.62 vs.
0.36). However, a direct comparison is not entirely possible, as the two studies
use different versions of STRIDE-per-element (our being the most up-to-date).

A privacy oriented analysis methodology (LINDDUN [4]) has been evaluated
with 3 descriptive studies [26]. LINDDUN is inspired by STRIDE and is com-
plementary to it. Both techniques start from a representation of a system, which
is described as a DFD. Similarly, the authors assess the productivity, precision
(correctness) and recall (completeness) of the technique, as well as its usability.

Labunets et al [10] have performed an empirical comparison of two risk-
oriented threat analysis techniques by means of a controlled experiment with
students. The aim of the study was to compare the effectiveness and perception
of a visual technique with a textual technique. The main findings were that the
visual method is more effective for identifying threats than the textual one, while
the textual method is slightly more effective for eliciting security requirements.

The work of Karpati, Sindre, Opdahl, and others provide experimental com-
parisons of several techniques. Opdahl et al. [14] measure the effectiveness, cov-
erage and the perception of the techniques. Karpati et al. [8] present an experi-
mental evaluation of MUC Map diagrams focusing on identification of not only
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vulnerabilities but also mitigations. Finally, Karpati et al. [9] have experimen-
tally compared MUCs with mal-activity diagrams in terms of efficiency.

Diallo et al. [5] conducted a descriptive comparison of MUCs, attack trees,
and Common Criteria [21]. The authors have applied these approaches to the
same problem and discuss their observations about the individual technique’s
strengths and weaknesses. An interesting evaluation of the reusability of threat
models (MUC stubs and MUC Maps diagrams, both coupled with attack trees)
is presented by Meland et al. [13]. The authors conducted an experiment includ-
ing seven professional software developers. The study suggests that overall, the
productivity is improved by reusing threat models for both techniques.

8 Conclusion

This study has presented an empirical comparison of two variants of a popular
threat analysis technique. The comparison has been performed in-vitro by means
of a controlled experiment with master students. As presented in Sect. 4, this
work provides reproducible analysis and observations about the effectiveness of
applying both techniques, in terms of productivity, precision and recall. In sum-
mary, with the type of population used in this study (non-experts), our study
observed better results with the STRIDE-per-element variant. For instance,
STRIDE-per-element yielded 1 additional threat per hour in terms of productiv-
ity, with no consequences on the average correctness of the results (i.e., same pre-
cision). The proponents of STRIDE have claimed that “STRIDE-per-interaction
leads to the same number of threats as STRIDE-per-element” [20]. However, in
this study, we have observed a statistically significant higher level of completeness
in the results returned by the teams using STRIDE-per-element. This is possi-
bly influenced by the tendency of the STRIDE-per-interaction group to create
larger DFD models, which might not be necessarily needed. Another explanation
is related to the more complex documentation in the case of the Interaction
treatment. As security budgets are quite tight in companies, knowing that one
variant might be more productive is a useful piece of information.

This work calls for future studies about the effectiveness of the threat analysis
variants, especially with more expert analysts. In particular, we are planning a
case study in two companies where the local, per-element analysis is compared
to a global, end-to-end analysis. Furthermore, it would be beneficial to study
the effect on the importance (in terms of risk) of the discovered threats, as well
as the quality of the of security requirements that are derived from them.
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25. Wohlin, C., Höst, M., Henningsson, K.: Empirical research methods in software
engineering. In: Conradi, R., Wang, A.I. (eds.) Empirical Methods and Studies
in Software Engineering. LNCS, vol. 2765, pp. 7–23. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45143-3 2

26. Wuyts, K., Scandariato, R., Joosen, W.: Empirical evaluation of a privacy-focused
threat modeling methodology. J. Syst. Softw. 96, 122–138 (2014)

https://doi.org/10.1007/978-3-319-72817-9_4
https://doi.org/10.1007/978-3-319-72817-9_4
https://doi.org/10.1007/978-3-540-45143-3_2

	Two Architectural Threat Analysis Techniques Compared
	1 Introduction
	2 Treatments
	3 The Experiment
	3.1 Experimental Object
	3.2 Participants
	3.3 Task
	3.4 Execution of the Study
	3.5 Measures
	3.6 Hypothesis

	4 Results
	4.1 True Positives, False Positives, and False Negatives
	4.2 RQ1: Productivity
	4.3 RQ2: Precision
	4.4 RQ3: Recall
	4.5 Exit Questionnaire

	5 Discussion
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	References




