)

Check for
updates

Software Migration and Architecture
Evolution with Industrial Platforms:
A Multi-case Study

Konstantinos Plakidas'®) Daniel Schall?, and Uwe Zdun'

1 Software Architecture Research Group, University of Vienna, Vienna, Austria
{konstantinos.plakidas,uwe.zdun}@univie.ac.at
2 Siemens Corporate Technology, Vienna, Austria
daniel.schall@siemens.com

Abstract. The software industry increasingly needs to consider archi-
tecture evolution in the context of industrial ecosystem platforms. These
environments feature a large number third-party offerings with a high
variety and complexity of design and technology options. The software
architects working on platform migration and in-platform evolution sce-
narios in such environments require support to find and utilize optimal
offerings, ensure design compatibility with various technical and non-
technical constraints, and optimize architectures. Based on a multi-case
study of three industrial cases, we have derived an architecture knowl-
edge model that provides a basis for supporting software architects in
platform migration and in-platform evolution scenarios.

1 Introduction

A common scenario in modern software industry practice is the migration and
architectural evolution of legacy systems, usually developed inside a single orga-
nization, to cloud platforms. This evolution process typically aims to utilize the
various offerings of these platforms, as well as incorporating third-party products
from related software ecosystems or integrating devices as part of the Internet of
Things (IoT). Unlike the familiar contours of in-house development, architects
find themselves confronted with a new production environment that offers a
large number and variety of offerings and deployment options, and that is highly
dynamic. As a result, industrial platform migration and in-platform evolution is
an increasingly challenging undertaking [9].

For the software architects involved in this process, this presents three major
challenges: the discovery of a new target environment’s parameters (e.g., avail-
able technologies, offerings, and constraints); the restructuring and optimization
of an application for the target environment; and the subsequent management
of its structure across a lifecycle that can span several platforms and deploy-
ment configurations. In each case, the architect’s decisions are heavily dependent
on context—best practices for a specific application domain, available products

© Springer Nature Switzerland AG 2018
C. E. Cuesta et al. (Eds.): ECSA 2018, LNCS 11048, pp. 336-343, 2018.
https://doi.org/10.1007/978-3-030-00761-4_22


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00761-4_22&domain=pdf

Software Migration and Architecture Evolution with Industrial Platforms 337

and technologies, relevant regulations, desired qualities, and so on. All these
constantly change over time and across different use cases and platforms.

Ideally, this context should be captured as knowledge, kept up-to-date, and
made available for use by the architects during the decision process. While there
are several approaches in the literature on capturing knowledge about archi-
tecture evolution decisions [2], they have not yet found widespread adoption
in practice, and the community is actively researching on how to make them
more lightweight and easier to use [8]. In practice, the evolution process is labor-
intensive, error-prone and time-consuming, especially in an enterprise-level appli-
cation that involves multiple teams, constraints, and features developed over
longer periods of time.

This study aims to contribute towards filling this gap by providing a light-
weight and reusable approach that enables architects to perform an exploratory
analysis of their options in a structured manner. The focus lies not on detailed
implementation, but on providing “just enough architecture” [3] for the broad
outlines and main design decisions of a project—e.g., programming languages,
technologies, architectures—that once taken are “costly to change” [8]. Based on
three industrial system cases demanding significant architectural evolution, we
performed a multi-case study to derive elements and relationships of an archi-
tecture knowledge model, which was then used to support software architects in
platform migration and in-platform evolution scenarios.

The paper is structured as follows: Sect. 2 discusses related work. Next, Sect. 3
introduces our research method and the three industrial cases. Sect.4 describes
our approach, and Sect. 5 discusses the results and concludes the paper.

2 Related Work

Software architecture is expected to support the evolution of software systems
to keep pace with the shifts in their technical and business environment [2,13].
Accordingly, correct understanding and representation of the architecture are
fundamental for a systematic evolution process [13]. Research has produced a
large number of patterns and architectural styles, which serve to address recur-
ring design problems [7]; this has been extended to cover new paradigms such as
cloud-based architectures [4,10] or microservices [6,16]. Nevertheless, research
in the field is still far off from the ideal of “capturing architectural knowledge
in a single [...] handbook, which codifies knowledge to make it widely avail-
able” [8], as the various approaches are isolated and fragmented. While valuable
on their own, in practice many of the approaches require much input from the
stakeholders and result in a “collection of documents.” This is an overhead that
people usually prove unwilling to invest in, especially if the value of the outcome
is unclear. Our approach is intended to be a more light-weight alternative with
regard to discovery and management of offerings which limits the decisions taken
during the architecting process to only the relevant set of constraints. The deci-
sion space is limited to manageable proportions by providing only compatible
options and their driving forces and consequences.



338 K. Plakidas et al.

3 Study Design

The work reported in this paper follows a multi-case study research method. We
followed the available guidelines for such case studies in industry [17] for the
design of our study. The research questions we defined for this study are:

— RQ1: to investigate the minimal set of elements and relationships required
by software architects to sufficiently represent and specify a software system
at a relatively high abstraction level suitable for brownfield development

— RQ2: to investigate the minimal set of elements and relationships required
to represent the contexts of in-platform evolution and platform migration

— RQ3: to investigate how the models resulting from RQ1 and RQ2 can be
used to support architectural decisions.

The overall objective was to limit the effort in modelling (compared to exist-
ing methods such as [2]). The model must be detailed enough to represent the
case study context, while generic enough to avoid overfitting. The main facili-
ties offered by the model would be the management of knowledge, by creating
a central knowledge model that can be used to represent any software product,
and more importantly the exploitation of that knowledge, by exploiting the links
between elements in a knowledge repository to select subsets based on specific
criteria. This would allow the architect to browse for “suitable” offerings (i.e.,
having a desired set of functional and non-functional attributes) for each step of
the evolution process; if such were not found, or were not available, the model
should be able to provide suggestions for adaptation of existing offerings, or the
development of new ones, by exploiting the knowledge base.

In our prior work, we performed a set of comprehensive studies of the liter-
ature on software architecture decision making [12], quality attributes in such
decisions [12], and in software ecosystems [14]. In addition, for this work we
exploratively studied the practitioner literature on migration practices and pat-
terns in cloud and IoT platforms (e.g., [1,4,11,15]). As a result we (1) hypothe-
sised a minimum necessary set of model elements and relations. Next we defined
(2) a case study protocol template used for all cases (see [17]) and (3) sought cases
among industrial software systems with sufficiently complex migration and evo-
lution scenarios. We then (4) selected three systems for which we could gain access
to detailed documentation and key stakeholders: a Geospatial Analytics System,
a Water Management System, and an Edge-Cloud Analytics System. For space
reasons, we can not report on them in detail. A case study protocol and detailed
model description can be found in a technical report'. For each case we first con-
sulted the available documentation and plans for migration, and then consulted
architects of the system to close any gaps in our understanding. We used coding
techniques and the constant comparison method borrowed from Grounded The-
ory [5] to code the qualitative data for context elements and relations. After the
data had been coded in the first case, we formally modelled the whole case using
the resulting model, then applied the same method to the second system (and

! http://doi.org/10.5281/zenodo.1288459.


http://doi.org/10.5281/zenodo.1288459

Software Migration and Architecture Evolution with Industrial Platforms 339

after that in the same manner the third system) and thereby iteratively refined
the codes, model elements, and relations. Next, we re-modelled the first system
(and after that the second and the third system) with the resulting model and
resolved any arising inconsistencies. The result is (5) a semiformal model for
platform migration and in-platform evolution, and three derived case models.

4 Migration and Architecture Evolution

4.1 Evolution Attributes and Process

An application can be considered as comprising its concrete realization (architec-
ture, software components, etc.), and an associated set of attributes (functional
and non-functional requirements, etc.) and constraints (dependencies, licenses,
legal limitations, etc.) that provide a context that describes and governs its func-
tion and usage. The two facets are interdependent: the introduction of a new
software component affects the attributes, and predetermined attributes and
constraints can affect which components are compatible in a design situation.

PPP

Off-the-shelf products

Attributes

Realization

Evolution Aims

Attributes
g

Realization

Attributes

Realization

onstrain
==
y

Legac
Application Target Environment

Target Application

Fig. 1. Element sets involved in a software migration process (simplified). The target
application results from a set of decisions trying to fulfil the attributes and constraints
of the evolution aims while remaining compatible with the target environment. Legacy
components, target environment offerings and off-the-shelf products are available for
use as long as they satisfy these constraints.

Software evolution can then be described as the transformation of the spe-
cific realization with specific attributes of a Legacy Application L into a new
realization with its own attributes, the Target Application T . The latter is often
deployed in a new Target Environment £, as in the specific case of software
migration. As shown in Fig.1, 7 results from a mix of different element sets.
The coonstraints will result from those carried over from L, the constraints of £,
and whatever additional constraints our Evolution Aims A dictate. In addition,
A and £ provide a minimum set of attributes, that the application must realize.



340 K. Plakidas et al.

The evolution process is then a search for components and configurations (real-
ization) that are compatible with both the attributes and constraints sets of 7.
Depending on the context, this idealized view has to be modified: some of the
sets may be empty, A may be minimally described, £ may be insufficiently doc-
umented, etc. The relative experience and preferences of architects are also an
unknown factor. As a result, the problems and choices that may emerge during
the transformation process can not be anticipated beforehand.

Consequently, our focus has been reduced to a minimal core: a single evo-
lution step, either moving (importing) the component from one environment
to another, or adapting it (refactoring) to satisfy specific requirement(s). In a
migration context, moving effectively copies a component from L, or from some
list of O, and imports it into a new environment (7 as deployed in £). The pres-
ence of the import results in a set of mismatches with the constraints, attributes,
and existing state of 7, setting off a sequence of adaptation steps in what is in
essence an experimentation cycle. If a satisfactory solution to each mismatch is
found (or it is considered an affordable trade-off), the next component import
from L takes place, gradually building up 7. If the mismatches of a specific
import cannot be resolved, then alternative equivalent elements can be imported
and tested from the offerings of £ or 0. The context of each adaptation deci-
sion is thus limited to the imported component and its immediate operational
environment, and a concurrent adaptation of both the implementation and the
attributes takes place, resulting in the final 7.

4.2 Migration Scenarios and Model Attributes

Based on the finding from the previous sections, we examined three systems,
each representing scenarios typically encountered in industry:

— Migrating a legacy monolithic system into a cloud platform, given a set of
business, technical, and legal constraints

— Re-architecting a legacy monolithic system into a cloud-deployed
microservice-based architecture

— Requirement-based dynamic selection and allocation of system components
on a cloud-edge platform.

The three systems, as well as the resulting detailed model itself, are presented
in more detail in the technical report (see footnote 1); here we only present
an overview. The model comprises a generic domain knowledge representation
model which includes five sets (Capabilities, Applications, Architecture, Technol-
ogy, Constraints), and a software description model using the elements defined in
the former to provide a concrete definition of software products. The main goal
of our model is to limit the possible options presented to the architect to man-
ageable levels. The selection of suitable solutions, which lies at the root of the
trial-and-error approach described above, is carried out by matching individual
attributes, either for compatibility (e.g., compatible interfaces or licenses, writ-
ten in a programming language supported by &) or to discover alternatives (e.g.,



Software Migration and Architecture Evolution with Industrial Platforms 341

products with the same functionality). The latter process can require traversing
of the domain knowledge type hierarchy (e.g., the various categories of data bases
or file systems for persistent storage functionality), or of the versions of a specific
product (e.g., the versions of an ecosystem platform and packages supported).

The more attributes are matched, the narrower the resulting option set. In
practice there are usually mismatches which have to be resolved either by resort-
ing to close analogues, or to integrating solutions (e.g., Enterprise Integration
Patterns or specific plugins and extensions) which can be used to “bridge” the
operational environment of the component with the requirements being pur-
sued. Using this matching approach, a component can be adapted to its new
environment. Its external attributes (e.g., its functionality, external interfaces,
implementation languages) then become attributes of the composite system.
Conversely, since the only thing required to use a component are its external
attributes (interfaces, functionality, constraints), placeholder components can be
defined, whose exact implementation is left undefined. This means that a place-
holder can either be dynamically instantiated by using one of multiple compatible
solutions (e.g., a placeholder “SQL database”), be implemented by some third
party to specification (“compatibility by design”), or can represent a wrapper
for an otherwise non-compatible component.

Finally, the model provides concrete architectural guidance by associating
attributes and constraints, as well as technologies or applications, with specific
architecture patterns and strategies, as well as by indicating the (in)compatibility
between patterns. From practical experience with using the model during the
microservice-based re-architecting, we realized that the more inexperienced users
are overwhelmed by the breadth of architectural options, showing that thearchi-
tecture perspective on its own is unsuitable as an entry point to the design pro-
cess, and that it had to be refined through combination with other constraints
and attributes. This led to the creation of architecture templates, represent-
ing common configurations of patterns in combination with components types,
functionalities, and constraints.

5 Discussion and Conclusions

Based on the data from a comprehensive literature study and practitioner
reports, software evolution of three industrial case scenarios, and interaction with
key stakeholders of these projects, we have derived a model for easing software
architecture evolution decisions. The scenarios were used to evolve the model,
as well as test and validate its functionality. Perforce, such a model operates on
a number of assumptions that may not always exist in practice. We assume that
a common language between stakeholders exists, so that the same term (e.g., a
Capability or Pattern) will be commonly understood and used in the same way.
Likewise, we assume that the descriptions provided to populate the knowledge
repository and instanciate our models are accurate and up-to-date. A further
problem, which is common to such approaches, is the analysis of the impact of,
and tradeoffs between, multiple quality attributes. These are hard to quantify,



342 K. Plakidas et al.

and vary with context. Thus we can only present a rough ranking of attribute
importance and impact, but it is left to the architect to evaluate them. Likewise,
the cumulative impact of the individual decisions can only be assessed at the end
of the evolution process. The model can support, but not replace the architect.
Factors such as personal preferences, past experience, and existing commitments
to some technology, can not be anticipated. Nevertheless, our experience work-
ing with the model shows that it provides a number of benefits. It creates a
common, centrally managed, knowledge repository, which provides a consistent
reference model and a framework that links software products, software archi-
tecture aspects, business requirements and constraints, and technologies, and
allows the easy discovery of interrelations.

The model is also extensible, as new elements, domains, and views can be
added easily, while maintaining the same structure. The recursive structure
which the software description supports means that a variety of offerings can
be represented and recomposed at will, with varying levels of detail depending
on the context: from a basic template to a complete description. The ability to
define templates enforcing consistency in certain key areas is fundamental for
industrial ecosystems, and can be used to provide architectural guidance. Fur-
thermore, although developed in the context of software migration, we believe
that the model is in practice generalizable for all cases of architecture evolu-
tion from greenfield to brownfield, which has much the same requirements and
involves the same elements.

Using the model first requires populating the knowledge repository. Though
this process can be assisted by tools, it still represents a considerable investment
of time and effort. This is an inherent disadvantage of all such approaches, but we
believe that the resulting benefits, once this repository is established, outweigh
the investment, especially from the view of a keystone organization that has to
manage large collections of offerings, and ensure a minimum level of consistency
and compliance among the various participants within an ecosystem. The model
has the advantage of needing only a high-level description of its elements and
features to work; it does not require a full-fledged architecture reconstruction.
The full and accurate description of individual components can be deferred to
a later time, if and when necessary for their further decomposition. We also
expect that, in the context of large ecosystems, software products will share
many common elements, encouraging frequent reuse of the generated models, or,
analogous to our architecture templates, the creation of prototype applications
or application modules. Working directly with the model is often not practical,
as the number of attributes involved grows geometrically; this was most clearly
seen in the WMS scenario, where the large pattern set had to be structured in
pre-defined combinations to become usable. It is therefore our future research
plan to realize a web-based decision support tool for the model.

Acknowledgments. This work was partially supported by FFG project DECO (no.
864707) and Austrian Science Fund (FWF) project ADDCompliance.



Software Migration and Architecture Evolution with Industrial Platforms 343

References

10.

11.

12.

13.

14.

15.

16.
17.

New whitepapers on cloud migration: Migrating your existing applications
to the AWS cloud, November 2010. https://aws.amazon.com/blogs/aws/new-
whitepaper-migrating-your-existing-applications-to-the-aws-cloud/

Capilla, R., Jansen, A., Tang, A., Avgeriou, P., Babar, M.A.: 10 years of software
architecture knowledge management: practice and future. J. Syst. Softw. 116, 191—
205 (2016)

Fairbanks, G.H.: Just Enough Software Architecture. Marshall & Brainerd, Singa-
pore (2010)

Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P.: Cloud Computing
Patterns. Springer, Berlin (2014). https://doi.org/10.1007/978-3-7091-1568-8
Glaser, B., Strauss, A.: The Discovery of Grounded Theory. Aldine, Piscataway
(1967)

Gupta, A.: Microservice design patterns, April 2015. http://blog.arungupta.me/
microservice-design-patterns/

Harrison, N.B., Avgeriou, P., Zdun, U.: Using patterns to capture architectural
decisions. IEEE Softw. 24(4), 38—45 (2007)

Hohpe, G., Ozkaya, 1., Zdun, U., Zimmermann, O.: The software architect’s role
in the digital age. IEEE Softw. 33(6), 30-39 (2016)

Hwang, J., Huang, Y.W., Vukovic, M., Anerousis, N.: Enterprise-scale cloud migra-
tion orchestrator. In: 2015 IFIP/IEEE International Symposium on Integrated Net-
work Management (IM), pp. 1002-1007, May 2015

Jamshidi, P., Pahl, C., Chinenyeze, S., Liu, X.: Cloud migration patterns: a multi-
cloud service architecture perspective. In: Toumani, F., et al. (eds.) ICSOC 2014.
LNCS, vol. 8954, pp. 6-19. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-22885-3_2

Jamshidi, P., Pahl, C., Mendonga, N.C.: Pattern-based multi-cloud architecture
migration. Softw.: Pract. Exp. 47(9), 1159-1184 (2017)

Lytra, I.: Supporting reusable architectural design decisions. Ph.D. thesis, Univer-
sity of Vienna (2015)

Medvidovic, N., Taylor, R.N., Rosenblum, D.S.: An architecture-based approach to
software evolution. In: Proceedings of the International Workshop on the Principles
of Software Evolution, pp. 11-15 (1998)

Plakidas, K., Schall, D., Zdun, U.: Evolution of the R software ecosystem: metrics,
relationships, and their impact on qualities. J. Syst. Softw. 132, 119-146 (2017)
Reinfurt, L., Breitenbiicher, U., Falkenthal, M., Leymann, F., Riegg, A.: Internet
of Things patterns. In: Proceedings of the 21st European Conference on Pattern
Languages of Programs, pp. 5:1-5:21. ACM, New York (2016)

Richardson, C.: Microservices.io. http://microservices.io/

Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples. Wiley, Hoboken (2012)


https://aws.amazon.com/blogs/aws/new-whitepaper-migrating-your-existing-applications-to-the-aws-cloud/
https://aws.amazon.com/blogs/aws/new-whitepaper-migrating-your-existing-applications-to-the-aws-cloud/
https://doi.org/10.1007/978-3-7091-1568-8
http://blog.arungupta.me/microservice-design-patterns/
http://blog.arungupta.me/microservice-design-patterns/
https://doi.org/10.1007/978-3-319-22885-3_2
https://doi.org/10.1007/978-3-319-22885-3_2
http://microservices.io/

	Software Migration and Architecture Evolution with Industrial Platforms: A Multi-case Study
	1 Introduction
	2 Related Work
	3 Study Design
	4 Migration and Architecture Evolution
	4.1 Evolution Attributes and Process
	4.2 Migration Scenarios and Model Attributes

	5 Discussion and Conclusions
	References




