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Preface

This volume contains the proceedings of the 12th European Conference on Software
Architecture (ECSA 2018), held in Madrid, Spain, during September 24–28, 2018.
Specifically, these are the proceedings of the main program, i.e., the conference itself.

This edition had the special meaning of an anniversary. ECSA 2018 was not only
the 12th edition of the full-fledged ECSA conference, it was also the 15th installment in
the series if we include the three previous meetings held in the original European
workshop (EWSA 2004 to 2006, held in St. Andrews, Pisa, and Nantes).

It was also the second time that the conference was held in Spain, and also the
second time in Madrid. This was also a commemoration to some extent, as Madrid was
also the location of the first ECSA in 2007. Even the current Program Co-chairs shared
a close relationship with that edition. Back then, Prof. Cuesta was the Organizing
Chair, while Prof. Garlan was one of the keynote speakers— indeed, the first one in the
history of ECSA. Since then, the conference has been celebrated in Paphos, Cam-
bridge, Copenhagen, Essen, Helsinki, Montpellier, Vienna, Dubrovnik, Copenhagen
again, and Canterbury. This rich tradition will continue next year, when the conference
returns to France, for the first time in the historic city of Lille.

ECSA is now the center of a complex ecosystem gathering a number of additional
meetings around the main conference. These included three specific tracks, namely the
industrial track, the posters, tools and demo track, and the Women in Software
Architecture (WSA) track, focusing on diversity. It also included the PhD symposium,
along with a full set of eight co-celebrated workshops and the innovator bootcamp —
three of these were organized for the first time. The contributions of all these meetings
are included in the Companion Proceedings, published in the ACM Digital Library.

This volume, gathering just the papers of the main conference, is published again by
Springer, following a tradition which dates back to its origins in 2004. Every edition
of the ECSA conference, except for the two joint venues, has been published in the
Lecture Notes in Computer Science series, creating a timeline which has already
become a series itself: LNCS 3047, 3527, and 4344; 4758, 5292, 6258, and 6903;
7957, 8627, 9278, 9839, and 10475; and now this volume, LNCS 11048.

For this reason, and honoring this tradition, Springer provided a 1,000 Euro funding
for the 2018 meeting. This was used to bestow the ECSA 2018 Best Paper Award,
which was announced during the Gala Dinner. Also for this reason, Springer itself was
recognized as a Bronze Sponsor for the ECSA 2018 edition.

The 2018 edition was one of the most successful meetings in ECSA’s recent history.
Apart from the interest generated by the many co-located events, the main program
alone attracted more than a hundred abstracts, which finally solidified in 96 submis-
sions; this was downsized to the final number of 86 submissions after several of them
were desk-rejected. Then, each of these was reviewed by our Program Committee (PC);
every paper was reviewed by at least three PC members, and several of the papers had
additional reviews when necessary.



After a thorough and careful process, the PC selected 17 submissions as full papers
and 7 additional ones as short papers. This resulted in a 19,77% acceptance ratio for
full papers and an additional 8,14% acceptance ratio for short papers, taking into
account just the papers which were considered for review. The global figures added up
to a 27,91% ratio, not distinguishing between full and short papers. These calculations
reached a 25,00% ratio when all submissions are considered.

ECSA accepted three kinds of submissions: research, industrial, and educational
papers, both full and short. After the reviewing process, the majority of accepted papers
were still research-oriented: 10 full papers and 3 short ones, encompassing 54,17%
of the accepted submissions. The second biggest subset was that of industry-oriented
papers: 6 full ones and 2 short ones, comprising one third (33,33%) of the published
papers. The remaining 12,50% included 1 full paper and another 2 short ones.

One of the emphases of the ECSA 2018 organization was to stimulate industry
participation: the above figures reflect that. Moreover, one third of the accepted papers,
belonging to the main program, equaled the submissions sent to the co-located industry
track, and were included in the Companion proceedings. These contributions were
presented separately but together, during the conference’s industry day.

Research, industrial, and educational papers are combined in this volume, as they
had exactly the same reviewing process, and the contributions are thematically
grouped. So there is not any indication of their nature either in the table of contents or
in the papers themselves. As already noted, most of the papers are research-oriented.
For information only, the industrial contributions are those beginning with the pages
49, 103, 115, 131, 159, 203, 303, and 336. Again, their aggregation in thematical
groups shows how close research is to the actual practice in our field.

The conference also had three outstanding keynote speakers, which honored our
community with their presence. These were:

• Rick Kazman from Carnegie Mellon University and the University of Hawaii. His
keynote addressed the difficulty of measuring the effects of software architecture, in
the context of estimating (and reducing) the architectural debt.

• Michael Keeling from IBM. His keynote outlined the extreme complexity of any
real-world architecture problem, and how the definition and use of cognitive
landmarks can help to deal with it.

• Siobhán Clarke from the Trinity College at Dublin. Her keynote described how the
changing landscape requires the definition of adaptive systems, and how these
adaptations are to be affected by the corresponding architectural styles.

The abstracts for their keynote addresses are included later in this volume, specif-
ically after this preface.

In spite of being “European” both in name, location, and inspiration, ECSA has
always had an international vocation. Many of the submissions were from Europe, but
papers were received from all continents. After the reviewing process, 83,33% of the
contributions were European in origin, while 12,50% were from America, and the
remaining 4,17% were from Oceania. Contributions were accepted from Germany,
Italy, Sweden, France, Austria, Belgium, Brazil, Denmark, Estonia, Ireland,
the Netherlands, New Zealand, the United States, and Colombia, in descending order.
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The Program Committee itself had an international composition. Again, and as
probably expected, it had a majority of Europeans, which composed 69,49% of the
members; but also 23,73% of the members were American, and 6,78% were from
Oceania. However, the distribution of countries was very different, particularly within
Europe; so that countries with an important presence in the PC did not have a significant
representation in the final program, and vice versa. This just serves as a testimony of the
rigour and independence of the excellent work done by this committee.

This year’s program showed the thematical richness which has always been a
defining feature of ECSA. To a great extent, the conference dealt with the challenges
posed by brand-new technology and the consequence of its presence, as in the case of,
e.g., cyber-physical systems or the Internet of Things. It also studied the effects of
applying new architectural styles, such as the recent surge on microservices, while still
developing the consequences of well-known patterns, such as service-orientation. It
elaborated on hard, long-term goals, such as self-adaptation, while also building up on
everyday domain-specific issues, as in the case of security and data architectures. And
while the classic strategies to deal with knowledge, i.e. design decisions, in the field are
still being refined, it is ultimately defined by its actual practice.

Due to the extent and quality of the research presented in this volume, a virtual
special issue on the Journal of Systems and Software issued an open call for papers,
which specifically targeted extended and refined versions of the better qualified papers
in the ECSA program. The topic of this JSS special issue was defined as “The Next
Generation of Software Architecture,” and had this edition’s Program Co-chairs and
General Chair as its guest editors.

ECSA is currently the only meeting on software architecture which is included in
the CORE 2018 conference ranking, having achieved an A-rank. Now it is also the
eldest research venue in this area, with the current name and acronym; though this is
circumstantial, just while the others are undergoing a change of name and orientation.
In any case, for more than a decade now, it has been recognized as one of the premier
conferences in this branch of software engineering.

Though it has always been present, both in theory and in practice, in the last few
years software architecture has recovered a central position in the field, together with a
renewed popularity and a considerable interest from the industry. The discipline is now
recovering the importance it already had in the first decade of the century – to the
extent that even industrial conferences are already happening.

The research and expertise that our conference has been developing for the last 15
years are now more relevant than ever. Our findings and results, both the classic and the
more recent ones, are now applied in day-to-day operation and practice. Let’s continue
building — and defining — the future of this discipline.

July 2018 Carlos E. Cuesta
David Garlan
Jennifer Pérez
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Measuring and Managing Architecture Debt:
Tales from the Trenches

Rick Kazman

Carnegie Mellon and University of Hawaii, USA

Abstract. In this talk I will present my experiences in transitioning and vali-
dating an automated software architecture measurement system in two large
multinational corporations. I will describe the measures that we employed and
the tool chains that we constructed to automatically calculate these measures.
I will also describe how we got the development teams to accept and apply these
measures through pilot studies, surveys, and constantly adjusting the measures
based on feedback and correlations with productivity measures. This experience
shows that it is critical to guide the development teams to focus on the under-
lying problems behind each measure, rather than on the scores themselves. It is
also critical to both quantify architecture debt and prove to development teams
and management alike that these measures matter, and that we can calculate the
return on investment of paying down the debt.

http://orcid.org/0000-0003-0392-2783


Finding Our Way in the Software Wilderness

Michael Keeling

IBM, USA
http://neverletdown.net

Abstract. Over time, even modestly large or complex software systems can
become an untamed wilderness. Anyone who dares venture into one of these
wild systems can quickly become entangled in the serpentine vines of past
design decisions, sliced by the razor-sharp barbs of hidden assumptions, and lost
in a labyrinth of code and documentation. Software architects can help their
teams navigate this harsh landscape by creating cognitive landmarks that can be
used as reference points and by building trails other designers can follow. In this
talk we’ll explore techniques for creating architectural landmarks in the code, in
documentation, and even in the physical workspace, that your fellow developers
can use to navigate the wilds of your software system.



Exploring Different Architecture Styles
for Adaptive Systems

Siobhán Clarke

Trinity College Dublin, Ireland

Abstract. Modern software encompasses a dizzying range of application types
operating in changing environments. This inherent complexity requires adaptive
execution models operating within a range of architectural styles. Over the last
decade, my team has explored the requirements for, and execution of, adaptation
in a range of application types. We found that we naturally veered towards
different software architecture styles in different circumstances – e.g., decen-
tralised multi-agent systems when autonomous entities were required, or
service-oriented computing when large-scale adaptive composition of beha-
viours was required. In this talk, I share our experiences with different classes of
systems, and discuss open challenges for the research community.

http://orcid.org/0000-0001-5721-9976
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A DSL for MAPE Patterns
Representation in Self-adapting Systems

Paolo Arcaini1(B) , Raffaela Mirandola2 , Elvinia Riccobene3 ,
and Patrizia Scandurra4

1 National Institute of Informatics, Tokyo, Japan
arcaini@nii.ac.jp

2 Politecnico di Milano, Milan, Italy
raffaela.mirandola@polimi.it

3 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
elvinia.riccobene@unimi.it

4 DIGIP, Università degli Studi di Bergamo, Bergamo, Italy
patrizia.scandurra@unibg.it

Abstract. In architecture-based self-adaptation, the adaptation logic is
usually structured in terms of MAPE-K (Monitor-Analyze-Plan-Execute
over a shared Knowledge) control loops dealing with the adaptation con-
cerns of the managed system. In case of large, complex and decentralized
systems, multiple interacting MAPE loops are introduced. Some common
design patterns of interactive MAPE components have been proposed in
the literature; however, a well-defined way to document them and to
express the semantics of their interactions is still missing.

This paper presents a domain-specific language, MAPE Specification
Language (MSL), as modeling front-end to define and instantiate com-
mon patterns of interacting MAPE components when architecting the
adaptation logic of a self-adaptive system. We also provide a semantic
mapping (implemented by a model generator) to transform MSL descrip-
tions of MAPE pattern instances into formal executable models based on
the formalism of self-adaptive Abstract State Machines (ASMs). Such a
mapping provides a link to the modeling back-end of ASMs for formally
specifying and analyzing the behavior of instances of MAPE patterns.

1 Introduction

Modern software systems typically operate in dynamic environments and deal
with highly changing operational conditions; self-adaptation is nowadays consid-
ered [8,10,14] as an effective approach to deal with the increasing complexity,
uncertainty and dynamicity of these systems. Feedback control loops that mon-
itor and adapt managed parts of a software system are widely accepted as the
main architectural solution [6] to realize self-adaptation in software systems.

P. Arcaini—This author is supported by ERATO HASUO Metamathematics for
Systems Design Project (No. JPMJER1603), JST.

c© Springer Nature Switzerland AG 2018
C. E. Cuesta et al. (Eds.): ECSA 2018, LNCS 11048, pp. 3–19, 2018.
https://doi.org/10.1007/978-3-030-00761-4_1
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According to the original definition of Kephart and Chess [14], we refer to these
control schemas as MAPE-K (Monitor, Analyze, Plan, and Execute over a shared
Knowledge) – or simply MAPE – feedback loops.

In case of complex and distributed systems, multiple interacting MAPE loops
with a decentralized control may be introduced to deal with system adaptation.
Some common design patterns of interactive MAPE loops have been proposed
in the literature [20], together with a graphical notation for representing them;
however, a well-defined way to document them and to express the semantics of
their (components) interactions is still missing.

To overcome these limitations, we here propose a domain-specific language,
called MAPE Specification Language (MSL), for architecting self-adaptive sys-
tems by explicitly modeling the interaction pattern among MAPE components.
The aim is to have, at the early design stage, a lightweight formalism for repre-
senting MAPE patterns and their instances as first-class citizens. MSL is to be
intended as a modeling front-end framework for structuring the adaptation logic,
on top of richer and more specific modeling and/or analysis back-end frameworks
(such as: UML-like modeling notations, other ADLs, or formal methods). Start-
ing from a concise and simple definition of an MSL model of a structure of
interactive MAPE loops, the corresponding representation in a target back-end
framework can be obtained using model transformations and then tailored/re-
fined according to the target scope.

MSL adopts the same modeling concepts of the MAPE graphical notation
presented in [20] to express the structure of MAPE components interactions,
and in addition it provides constructs to fix some semantic variations in compo-
nent interactions. MSL has been developed using the grammarware approach of
Xtext, which is combined with the modelware approach of the Eclipse Modeling
Framework (EMF); this allows the automatic generation of a model editor, a
parser, and a basic validator, and it facilitates the development of compilers/-
generators toward other (back-end) frameworks by using principles and tools of
model-driven engineering. The language allows the definition and instantiation
of MAPE patterns in an expressive and concise manner using a textual notation.
The rationale in this decision is that textual notations should scale better than
visual ones with increasing system design size [16].

As a first example of a back-end framework, we here propose that for for-
mal analysis of (instances of) MAPE patterns. To this aim, we adopt a formal
executable description of MAPE loops in terms of self-adaptive Abstract State
Machines (self-adaptive ASMs) [3]. To bring this approach to fruition, we devel-
oped a model generator, called MSL2ASM, that transforms an MSL model into a
self-adaptive ASM model automatically. The aim of this mapping is twofold: (i)
specifying the MSL semantics through a semantic mapping [11] approach, and
(ii) providing a connection with a back-end framework [3] that uses multi-agent
ASMs as the underlying formal model for early simulation and formal analysis
of distributed self-adaptive systems. Indeed, the ASM-based MSL semantics is
executable, i.e., the ASM models obtained from MSL models express and guar-
antee by construction the interaction semantics a user wants to give and can be
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Fig. 1. Aggregate MAPE pattern (left) and an instance of it (right) from [20]

simulated, refined, and verified to provide early feedback about the correct loops
interactions (e.g., absence of interferences) as devised in [3].

Paper Organization. Some background on MAPE patterns for self-adaptation
is given in Sect. 2. The MSL language is presented in Sect. 3, while the semantic
mapping from the MSL to the back-end framework of self-adaptive ASMs is pre-
sented in Sect. 4. Section 5 provides a description of some related work. Section 6
concludes the paper and outlines some future directions of our work.

2 Background on MAPE-Patterns for Self-adaptation

In architecture-based adaptation, the self-adaptive layer (the managing subsys-
tem) is typically conceived as a set of interacting MAPE loops, one per each
adaptation concern. In [20], some recurring structures of interacting MAPE com-
ponents, MAPE patterns, have been defined for designing decentralized adap-
tation solutions, where controllers make independent decisions but have some
kind of interaction. Figure 1 shows an example of such a pattern (the Aggre-
gate MAPE pattern), an instance of this pattern in a configuration, and the key
symbols of the graphical notation adopted in [20].

A MAPE pattern defines the structure of a composite MAPE loop as a set
of abstract groups of MAPE components representing the roles of the feedback
processes and the type of interactions between MAPE components. A pattern
instance describes the structure of the pattern for one particular configuration.
The annotated multiplicity of the interactions between the groups of MAPE
components determines the allowed occurrences of the different groups in the
pattern. Notationally, there are different types of interactions.

– Managing-managed subsystem interactions are those between M components
and the managed subsystem for monitoring purposes, and between E compo-
nents and the managed subsystem for performing adaptations.

– Inter-component interactions are those between different types of MAPE com-
ponents. Typically, M interacts with A, A with P, and P with E.

– Intra-component interactions between MAPE components of the same type,
e.g., interactions between M components.
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Although it is undoubted the importance of MAPE patterns to represent
known design solutions and support their reuse, the semantics of their graphical
representation is often ambiguous and may intentionally leave semantic variation
points (as in UML). Given the MAPE pattern in Fig. 1, elements of ambiguous
interpretation are, for example, the AND/OR semantics of signals when an M
computation of the higher MAPE group is triggered by the M computations of
the lower groups. In MSL, we allow the specification of such semantic variations
and support the designer in fixing the semantics at configuration level.

3 MSL: A DSL for MAPE Patterns Specification

In designing the MSL language, we tried to adhere to the following three proven
principles in software architecture design [17]:

– Separation of concerns : Introduce language abstractions that allow dividing
the adaptation logic into distinct adaptation concerns by structuring it into
different MAPE loops with as little overlap in functionality as possible.

– Principle of Least Knowledge: A MAPE loop/component should not know
about internal details of other MAPE loops/components.

– Minimize upfront design: Introduce language constructs allowing designing
what is necessary, thus to avoid making a large design effort prematurely.

We adopted the same concepts of the graphical notation introduced in Sect. 2
as core concepts of MSL for defining MAPE patterns and their instances. Addi-
tionally, further language constructs were added for modeling semantic variation
points about MAPE component interactions explicitly.

The MSL language has been developed using the grammarware approach of
Xtext combined with the modelware approach of EMF. The Xtext grammar
of the MSL textual notation, together with the running example used in this
paper and introduced below, is available online at [18]. The MSL model editor
can be installed as eclipse plugin1. We introduce the MSL modeling constructs
in Sect. 3.1, while MSL parsing and validation are discussed in Sect. 3.2. The
language operational semantics is given in Sect. 4 in terms of ASMs.

Running Example. An adaptation scenario considering a smart home, inspired
by the case study in [19], is used to illustrate the MSL language. Specifically,
we focus on the heating system that can work on different settings according to
the user needs expressed through adaptation concerns. Hereafter, we consider
the adaptation concern Comfortable Heating (CH): the application monitors the
comfort level of its residents and activates the heating when the temperature is
too low, or switches off the heating when the temperature is too warm.

3.1 MSL Modeling Notation

Pattern Definition. In MSL, a MAPE pattern is defined by introducing
a named element abstract pattern (by the keyword abstract pattern) that
1 The update site is http://fmse.di.unimi.it/sw/msl/updatesite/.

http://fmse.di.unimi.it/sw/msl/updatesite/
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Fig. 2. MAPE pattern definition

declares the managed subsystems’ type, the abstract groups of MAPE compo-
nents, and the type of interactions between MAPE components. Figure 2 reports
the core modeling elements to define a MAPE pattern in terms of abstract groups
of MAPE components, managed subsystems, and their interactions with multi-
plicities. For each element, the corresponding graphical notation adopted in [20]
and the textual notation in MSL are shown. The MSL syntax is intuitive and
self-explanatory2. As an example, Code 1 reports the MSL representation of the
Aggregate MAPE pattern shown in Fig. 1.

All patterns proposed in [20] can be expressed in MSL (see the pattern library
available online at [18]). As another (more complex) example, Code 2 shows the
hierarchical control pattern from [20] (on the left) and its corresponding MSL def-
inition (on the right). This pattern captures a hierarchical distribution control,
where higher-level MAPE components manage subordinate MAPE components
(i.e., the managed subsystems can be managing subsystems themselves).

2 Note that we do not provide keywords to distinguish between intra- and inter- inter-
actions, since they are already characterized by the kind of MAPE components
connected by the interaction.
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abstract pattern AggregateMAPE {
system Sys
group Main {

components M, A, P, E
}
group Interface {

managedSyS Sys
components M, E

}

interaction Interface.M −> Main.M [∗−ALL,1]
interaction Main.E −> Interface.E [1,∗−ALL]
interaction Main.M −> Main.A [1,1]
interaction Main.A −> Main.P [1,1]
interaction Main.P −> Main.E [1,1]

}

Code 1. Aggregate MAPE pattern definition in MSL

abstract pattern
HierarchicalControlMAPE {

system Sys
group Bottom {

managedSyS Sys
components M, A, P, E

}
group Middle {

managedGrp Bottom [∗]
components M, A, P, E

}
group High {

managedGrp Middle [∗]
components M, A, P, E

}

interaction Bottom.M −> Bottom.A [1,1]
interaction Bottom.A −> Bottom.P [1,1]
interaction Bottom.P −> Bottom.E [1,1]
interaction Middle.M −> Middle.A [1,1]
interaction Middle.A −> Middle.P [1,1]
interaction Middle.P −> Middle.E [1,1]
interaction High.M −> High.A [1,1]
interaction High.A −> High.P [1,1]
interaction High.P −> High.E [1,1]

}

Code 2. Hierarchical Control pattern

Semantic Variation Points at Interaction Level. One of the ambiguities of
the MAPE loop representation proposed in [20] is related to the interpretation
of the interactions [1, *], [*, 1], and [*, *] among multiple components of different
MAPE groups. Indeed, it is not clear whether, in order to trigger the interaction,
the communication must be established among all the involved components or
only some of them. Therefore, in MSL, in addition to the standard multiplicity 1,
we allow to specify exactly the intended semantics of * by means of multiplicities
*-ALL, *-SOME, and *-ONE (see interactions in Code 1). When used as starting
multiplicity of the interaction, these multiplicities respectively mean that the
target group must receive the communication from all the interacting groups,
from at least one of them, or from exactly one of them. In a similar way, when
used as target multiplicity of the interaction, they mean that the starting group
must communicate with all the interacting target groups, a non-empty subset of
them, or exactly one of them.

Pattern Instantiation and Configuration. Once defined, in MSL an abstract
MAPE pattern can be instantiated by first defining a concrete pattern (a named
element preceded by the keyword concrete pattern) to rename the roles (the
abstract MAPE groups and managed subsystems) of the abstract pattern for
a certain adaptation concern. Roles renaming is realized by name binding, i.e.,
through identifiers. Then, to effectively instantiate the concrete pattern for a
specific scenario, a configuration (a named element introduced by the keyword
configuration) must be defined. Such a configuration instantiates the concrete
groups of MAPE components and managed subsystems that effectively play the
renamed roles of the concrete pattern and their (concrete) interactions.
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import AggregateMAPE
concrete pattern ComfortableHeatingMAPE

concretizationOf AggregateMAPE {
system Heater : AggregateMAPE.Sys
group MainCH: AggregateMAPE.Main
group IntTemp: AggregateMAPE.Interface

}

configuration ComfortableHeating
instanceOf ComfortableHeatingMAPE {

hs0: ComfortableHeatingMAPE.Heater
hs1: ComfortableHeatingMAPE.Heater

ch : ComfortableHeatingMAPE.MainCH {
components m ch:M, a ch:A, p ch:P, e ch:E

}

h0 : ComfortableHeatingMAPE.IntTemp {
managedSyS hs0
components m h0:M, e h0:E

}
h1 : ComfortableHeatingMAPE.IntTemp {

managedSyS hs1
components m h1:M, e h1:E

}
ch.m ch −> ch.a ch
ch.a ch −> ch.p ch
ch.p ch −> ch.e ch
h0.m h0 −> ch.m ch
h1.m h1 −> ch.m ch
ch.e ch −> h0.e h0
ch.e ch −> h1.e h1

}

Code 3. A MAPE pattern instance in MSL

Running Example. The MSL Code 33 shows a concretization, called
ComfortableHeatingMAPE, of the pattern AggregateMAPE for the adaptation
concern CH. Essentially, there is a concrete MAPE group, IntTemp, that is
responsible for monitoring rooms temperature via sensors and manage the heat-
ing system accordingly. So it plays the role of Interface w.r.t. the heating sys-
tem by providing both a component M and a component E. The group MainCH
has a main sequential MAPE loop. It is responsible for realizing the adapta-
tion concern; therefore, its component M aggregates temperature data from all
temperature sensors through the components M of IntTemp, and then its com-
ponent A decides to increase/decrease the heating or to turn it off. To this last
purpose, components P and E plan adaptation actions and drive the components
E of IntTemp, respectively. To complete the pattern instantiation, a configura-
tion of the concrete pattern is also given in the second part of the MSL Code 3
as introduced by the keyword configuration. In this configuration, there are
two managed systems for the heating (hs0 and hs1), and their interface MAPE
groups (h0 and h1) interacting with one main MAPE group (ch).

3.2 MSL Parsing and Validation

The MSL parser generated automatically by Xtext is complemented by a val-
idator to perform static analysis of MSL models and give informative feedback
to the users. In particular, in addition to standard Xtext validation, we speci-
fied some constraints for pattern matching, i.e., to check whether a given pattern
instance conforms to its pattern. We formalized such constraints in terms of OCL
(Object Constraint Language) formulas (see an example below) over the MSL
metamodel (automatically generated by Xtext), and then implemented them
into the Xtext validator.

– Checking concrete groups in a concrete pattern w.r.t. the abstract pattern:
each concrete pattern must declare one concrete group per abstract group.

3 We allow the definition and instantiation of a MAPE pattern in the same MSL file
with extension .msl, and also the definition of patterns in separate files without
instantiation and their import in order to create a library of patterns.
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Fig. 3. Pattern-driven tooling for modeling and analyzing self-adaptive systems

context Pattern

def: ap: AbstractPattern = self.absPattern

inv: ap.abstractGroups?->forAll(ag:AbstractGroup |

self.groups-->select(g:ConcreteGroup | g.name = ag.name)-->size() = 1)

4 A Back-End Framework for Formal Analysis of MAPE
Patterns

We here propose a mapping from an MSL model of a MAPE pattern (and its
instance) to a self-adaptive ASM [3]. To this aim, we use the semantic map-
ping technique of the ASM-based semantic framework [11], which allows the
specification of the dynamic semantics of metamodel-based languages.

The aim of the proposed mapping is twofold: (i) specifying the language
semantics, and (ii) providing a connection with the ASM-based back-end frame-
work ASMETA4 (ASM mETAmodeling) [2] for formal analysis. The ASMETA
toolset is just an example of all possible target back-end frameworks. Figure 3
shows our high-level view of possible tooling for modeling the adaption layer of a
self-adaptive system using MAPE patterns: the ASMETA back-end allows basic
validation in terms of simulation (either guided or automatized), and verifica-
tion in terms of static analysis and model checking. Specifically, the resulting
(possibly further refined) ASM models can be used, as devised in [3], for early
prototyping of MAPE loop controllers and for verifying properties of distributed
MAPE loops such as non-conflict, minimality, as well as correct interactions.

The model generator MSL2ASM, that automatically translates MSL models
into self-adaptive ASMs, has been developed in Java using a Model-to-Text
(M2T) approach. According to the mapping rules synthesized in Table 1, the
generator visits the MSL ecore metamodel instance – i.e., the abstract syntax
tree (AST) of an MSL model5 – to produce the corresponding ASM model. The
generator can be installed as eclipse plugin together with the MSL editor.

4 http://asmeta.sourceforge.net/.
5 This AST is the EMF ecore model of MSL used as the in-memory objects represen-
tation of any parsed MSL text file.

http://asmeta.sourceforge.net/
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In Sect. 4.1, we briefly recall the formalism of self-adaptive ASMs for MAPE
loops modeling, and in Sect. 4.2 we describe the mapping and exemplify it with
the running application example. In Sect. 4.3, we show some possible uses of the
ASMETA framework for formal analysis of MAPE loops.

4.1 Theoretical Background on Self-adaptive ASMs

ASMs [5] are an extension of FSMs where unstructured control states are
replaced by states comprising arbitrary complex data (i.e., domains of objects
with functions defined on them), and transitions are expressed by transition rules
describing how data (state function values saved into locations) change from one
state to the next. ASM models can be easily read as “pseudocode over abstract
data” which comes with a well defined semantics: at each run step, all transition
rules are executed in parallel by leading to simultaneous (consistent) updates of
a number of locations.

By exploiting the notion of multi-agent ASM – where each agent executes
its own ASM in parallel with other agents’ ASMs and the agent’s program is the
set of all transition rules of its own ASM –, in [3] we provide the definition of
self-adaptive ASMs as a multi-agent ASM where the set Agents is the disjoint
union of the set MgA of managing agents and the set MdA of managed agents.
Managing agents encapsulate the logic of self-adaptation, while managed agents
encapsulate the system’s functional logic. Still in [3], a MAPE loop (or interactive
MAPE loops) for an adaptation concern adj is defined as:

MAPE (adj ) =
〈
Radj ,

adj−→,K(adj )
〉

(1)

Radj is the set of transition rules, executed by managing agents, modeling the

MAPE computations involved in the control loop;
adj−→ is a relation on Radj and

is used to express MAPE computations interaction (e.g., M infers an A, which
infers a P, which infers an E); K(adj ) is the knowledge (part of the locations
of the self-adaptive ASM) used to keep the information necessary to enact and
coordinate MAPE computations.

By the interaction relation definition, we can express a decentralized and
centralized execution schema (also a mixed schema is possible) among MAPE
computations. In the decentralized schema, rules in Radj are executed by differ-
ent agents, which interact with each other indirectly by sharing locations of the
knowledge K(adj ) – and, therefore, rules are executed in different run steps. In
the centralized schema, rules in Radj are executed by the same managing agent
either indirectly, or directly where each rule invokes the rule it is in interaction
relation with – and, therefore, all rules are executed in one step (waterfall style).

4.2 Mapping MSL Models into Self-adaptive ASMs

We here describe a transformation process from an MSL model to a self-adaptive
ASM. An informal description of the mapping rules is reported in Table 1.
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Table 1. Mapping from MSL models into self-adaptive ASMs

MAPE element ASM construct

Managed system Sys Agent type SysMda with program r Sys modeling its behavior
Managing group Grp Agent type GrpMga with program r Grp modeling its behavior
Component X (X ∈ {M, A, P,
E}) of group Grp

Macro rule r GrpX (called from program r Grp) that models the be-
havior of component X. The rule contains a placeholder <<TODO>> for
indicating that the designer must supply an implementation.

Decentralized interaction
Grp1 .X→Grp2 .Y [m1 ,m2 ]

Functions modeling the interaction among agents of Grp1Mga and
Grp2Mga:
- fromGrp1toGrp2 associating agents of Grp1Mga to agents of Grp2Mga.
The signature is fromGrp1toGrp2: Grp1Mga -> Grp2Mga if m2=1,
and fromGrp1toGrp2: Grp1Mga -> Powerset(Grp2Mga) if m2 ∈ {*-
ALL,*-SOME,*-ONE}.
- fromGrp2toGrp1 associating agents of Grp2Mga to agents of Grp1Mga.
The signature is fromGrp2toGrp1: Grp2Mga -> Grp1Mga if m1 = 1,
and fromGrp2toGrp1: Grp2Mga -> Powerset(Grp1Mga) if m1 ∈ {*-
ALL,*-SOME,*-ONE}.
- sgnGrp1Grp2: Prod(Grp1Mga,Grp2Mga) -> Boolean modeling the
signals exchanged among agents in order to trigger the interaction.

Centralized interaction
Grp.X→Grp.Y [1, 1]

Components rules X,Y of the same group Grp are called in a waterfall
style by the agent of type GrpMga

Variation point semantics of
multiplicity m1 ∈ {*-ALL,*-
SOME,*-ONE} in interaction
Grp1 .X→Grp2 .Y [m1 ,m2 ]

A derived function startGrp2Y: Grp1Mga -> Boolean (read in rule
r Grp2Y) is used to combine the different values of the signals going
from Grp1Mga agents to a single Grp2Mga agent $b; function imple-
mentation depends on the variation point semantics:
*-ALL: (forall $a in fromGrp2toGrp1($b) with sgnGrp1Grp2($a, $b))
*-SOME: (exist $a in fromGrp2toGrp1($b) with sgnGrp1Grp2($a, $b))
*-ONE: (exist unique $a in fromGrp2toGrp1($b)with sgnGrp1Grp2($a,
$b))

Variation point semantics of
multiplicity m2 ∈ {*-ALL,*-
SOME,*-ONE} in interaction
Grp1 .X→Grp2 .Y [m1 ,m2 ]

Rule r Grp1X of agent Grp1Mga sends signals to Grp2Mga agents. The
selected Grp2Mga agents depend on the variation point semantics:
*-ALL: to all associated agents
*-SOME: to a randomly selected subset of agents: chooseone({$a in
Powerset(Grp2Mga)| not(isEmpty($a)): $a})
*-ONE: to a randomly selected agent: chooseone({$a in Grp2Mga:$a})

Concrete interactions in the
configuration section

Declaration of agents, instances of agents types SysMda and GrpMga,
and initialization of interaction functions fromGrp1toGrp2 and
fromGrp2toGrp1

The agents set of the self-adaptive ASM is obtained by creating an agent in
MdA for each managed system and an agent in MgA for each managing group
of a concrete pattern.

The set of rules Radj involved in the MAPE loop is built by creating a rule
r GrpX for each component X of each group Grp.

A decentralized interaction Grp1 .X → Grp2 .Y determines a relation
between rules r Grp1X and r Grp2Y in

adj−→; the correct interaction between
the two rules is obtained by creating, in the knowledge K(adj ), two functions,
fromGrp1toGrp2 and fromGrp2toGrp1, specifying the interacting agents, and a
function sgnGrp1Grp2 modeling the signals the agents use for establishing the
communication. A centralized interaction between components X and Y of the
same group Grp is obtained by directly invoking rule r GrpY from r GrpX.
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The mapping also captures the desired semantics of * multiplicity; a starting
multiplicity of * kind is modeled by means of a formula (used as guard of a com-
ponent rule) that requires that all/some/exactly one signal(s) must be received
by the target agent in order to trigger the interaction. A target multiplicity of
* kind, instead, is modeled by forcing the starting agent to write the signal to
all/some/exactly one target agent(s).

The generated ASM model is already executable as coordination schema of
MAPE components, but with empty implementation (marked by placeholders
<<TODO>>) for component rules in Radj (only standard writing and reading of
signals is added to the model). Therefore, in order to reflect the specific adapta-
tion scenario, the model has to be refined by the designer. The starting point of
this refinement consists in replacing the placeholders with effective ASM rules
specifying the M, A, P, E computations; the effort for this refinement is domain-
specific. Moreover, the designer can also refine the standard implementation of
* multiplicity by selecting the set of agents from/to which the signals must be
received/sent. Backward compatibility between MSL and ASM models is not
currently supported; it is addressed as future work.

Running Example. As mapping example, Code 4 reports the ASM model (in
the AsmetaL notation) generated automatically from the MSL model shown in
Code 3. According to the framework of self-adaptive ASMs presented in Sect. 4.1
(see Eq. 1) and the resulting ASM in Code 4, the MAPE loop for the adaptation
concern CH is defined as MAPE (CH ) =

〈
RCH ,

CH−→,K(CH )
〉
, where

RCH = {r IntTempM,r IntTempE,r MainCHM,r MainCHA, r MainCHP, r MainCHE}
CH−→ = {(r IntTempM,r MainCHM),(r MainCHM,r MainCHA), (r MainCHA,r MainCHP),

(r MainCHP,r MainCHE), (r MainCHE,r IntTempE)}
K(CH ) = {fromIntTempMtoMainCHM, fromMainCHMtoIntTempM,

sgnIntTempMMainCHM, fromMainCHEtoIntTempE,
fromIntTempEtoMainCHE, sgnMainCHEIntTempE}

As an example of refinement, a complete version of the ASM model for the
smart heating application is available online [18]. Code 5 reports an excerpt of
the elements added in the refined model. For example, a monitored function
roomTemp has been added to model the rooms temperature; indeed, in ASMs
monitored functions represent the inputs coming from the environment. More-
over, the refined model also contains a function desiredHeating that models
the adaptation logic (i.e., how the heating should be set). Finally, placeholders of
component rules have been refined. For example, in r IntTempE, the IntTempMgA
agents trigger the actuators of the manged heaters (HeaterMdA agents) by setting
the function setHeatingStatus according to the desired heating.

4.3 Formal Analysis of the ASM Model

As we already said, the resulting ASM models guarantee by construction the
correct loop interaction. However, the designer could have wrongly designed
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asm ComfortableHeating
import StandardLibrary

signature:
//ComfortableHeatingMAPE
domain HeaterMdA subsetof Agent
domain MainCHMgA subsetof Agent
domain IntTempMgA subsetof Agent
derived startMainCHM: MainCHMgA −> Boolean
derived startMainCHA: MainCHMgA −> Boolean
derived startMainCHP: MainCHMgA −> Boolean
derived startMainCHE: MainCHMgA −> Boolean
controlled heaterManagedByIntTemp: IntTempMgA −> HeaterMdA
derived startIntTempM: IntTempMgA −> Boolean
derived startIntTempE: IntTempMgA −> Boolean
//I: IntTemp.M −> MainCH.M [∗−ALL,1]
controlled sgnIntTempMMainCHM: Prod(IntTempMgA, MainCHMgA) −> Boolean
controlled fromIntTempMtoMainCHM: IntTempMgA −> MainCHMgA
controlled fromMainCHMtoIntTempM: MainCHMgA −> Powerset(IntTempMgA)
//I: MainCH.E −> IntTemp.E [1,∗−ALL]
controlled sgnMainCHEIntTempE: Prod(MainCHMgA, IntTempMgA) −> Boolean
controlled fromMainCHEtoIntTempE: MainCHMgA −> Powerset(IntTempMgA)
controlled fromIntTempEtoMainCHE: IntTempMgA −> MainCHMgA
//ComfortableHeating
static hs0: HeaterMdA
static hs1: HeaterMdA
static ch: MainCHMgA
static h0: IntTempMgA
static h1: IntTempMgA

definitions:
function startMainCHM($b in MainCHMgA) =
(forall $a in fromMainCHMtoIntTempM($b) with sgnIntTempMMainCHM($a, $b))

function startMainCHA($b in MainCHMgA) = true
function startMainCHP($b in MainCHMgA) = true
function startMainCHE($b in MainCHMgA) = true
function startIntTempM($b in IntTempMgA) = true
function startIntTempE($b in IntTempMgA) =
sgnMainCHEIntTempE(fromIntTempEtoMainCHE($b), $b)

rule r Heater = skip //<<TODO>>
rule r CleanUp MainCHE = skip //<<TODO>>
rule r CleanUp MainCHM =
forall $a in fromMainCHMtoIntTempM(self) do
sgnIntTempMMainCHM($a, self) := false

rule r CleanUp IntTempE =
sgnMainCHEIntTempE(
fromIntTempEtoMainCHE(self), self) := false

...

rule r MainCHE =
if startMainCHE(self) then
par
skip //<<TODO>>
forall $a in fromMainCHEtoIntTempE(self) do
sgnMainCHEIntTempE(self, $a) := true

r CleanUp MainCHE[]
endpar

endif

rule r MainCHP =
if startMainCHP(self) then
par
skip //<<TODO>>
r MainCHE[]
r CleanUp MainCHP[]

endpar
endif

rule r MainCHA =
if startMainCHA(self) then
par
skip //<<TODO>>
r MainCHP[]
r CleanUp MainCHA[]

endpar
endif

rule r MainCHM =
if startMainCHM(self) then
par
skip //<<TODO>>
r MainCHA[]
r CleanUp MainCHM[]

endpar
endif

rule r MainCH = r MainCHM[]

rule r IntTempM =
if startIntTempM(self) then
par
skip //<<TODO>>
if not sgnIntTempMMainCHM(self
fromIntTempMtoMainCHM(self)) then
sgnIntTempMMainCHM(self,
fromIntTempMtoMainCHM(self)) := true

endif
r CleanUp IntTempM[]

endpar
endif

rule r IntTempE =
if startIntTempE(self) then
par
skip //<<TODO>>
r CleanUp IntTempE[]

endpar
endif

rule r IntTemp =
par
r IntTempM[]
r IntTempE[]

endpar

main rule r mainRule =
forall $a in Agent with true do
program($a)

default init s0:
function sgnIntTempMMainCHM($a in IntTempMgA,
$b in MainCHMgA) = false

function fromIntTempMtoMainCHM($a in IntTempMgA) =
switch($a)
case h0: ch case h1: ch

endswitch

function fromMainCHMtoIntTempM($a in MainCHMgA) =
switch($a)
case ch: {h0, h1}

endswitch
...

agent MainCHMgA: r MainCH[]
agent IntTempMgA: r IntTemp[]
agent HeaterMdA: r Heater[]

Code 4. ASM model of the Comfortable Heating MAPE loop

the system and/or refined the ASM model; therefore, on the refined ASM model,
the designer can perform some validation and verification activities in order to
check that the designed system behaves as expected for the considered adap-
tation scenario. For example, (s)he can simulate the model by means of the
ASMETA simulator in order to observe a MAPE loop execution, as shown in
Fig. 4 for the running case study. In the initial state State 0, the user inter-
acts with the simulator for specifying rooms temperatures, by setting the values
of the locations of the monitored function roomTemp. Starting from State 1,
the ASM evolves autonomously executing all the computations of the MAPE
pattern:
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asm ComfortableHeating ref
import StandardLibrary

signature:
...
//signature added in refinement
enum domain HeatingStatus = {FAIRLY HOT | VERY HOT | OFF}
domain Temperature subsetof Integer
monitored roomTemp: IntTempMgA −> Temperature
controlled desiredHeating: MainCHMgA −> HeatingStatus
controlled setHeatingStatus: HeaterMdA −> HeatingStatus
...

definitions:
...
rule r TriggerActuators Heater($s in HeaterMdA, $b in IntTempMgA) =
setHeatingStatus($s) := desiredHeating(fromIntTempEtoMainCHE($b))

rule r IntTempE =
if startIntTempE(self) then
par
r TriggerActuators Heater[heaterManagedByIntTemp(self), self]
r CleanUp IntTempE[]

endpar
endif

Code 5. Excerpt of the refined ASM model of the Comfortable Heating MAPE loop

– the interaction between the M components of the IntTempMgA agents h0 and
h1 and the MainCHMgA agent ch is triggered by the dispatching and reception
of signals in sgnIntTempMMainCHM (written by IntTempMgA agents in State 1
and read by the MainCHMgA agent in State 2);

– in State 2, the MainCHMgA agent ch performs all its MAPE computations
(all the rules corresponding to the four MAPE components are called in a
waterfall manner);

– the interactions between the E components of the MainCHMgA agent and of the
IntTempMgA agents is triggered by the dispatching and reception of signals in
sgnMainCHEIntTempE (written by the MainCHMgA agent in State 2 and read
by the IntTempMgA agents in State 3);

– in State 3, the IntTempMgA agents inform the managed system that the
heaters of the rooms must be turned on by setting to FAIRLY HOT the actua-
tors setHeatingStatus.

Monitoring phase of the Interface group

Insert a constant in Temperature
of type Integer for roomTemp(h0):
15
...
<State 0 (monitored)>
roomTemp(h0)=15
roomTemp(h1)=16
sensorsActivatedHeater(hs0)=true
sensorsActivatedHeater(hs1)=true
</State 0 (monitored)>

Interaction between the Interface group
and the Main group

<State 1 (controlled)>
...
setHeatingStatus(hs0)=undef
setHeatingStatus(hs1)=undef
sgnIntTempMMainCHM(h0,ch)=true
sgnIntTempMMainCHM(h1,ch)=true
...
</State 1 (controlled)>

Analysis, Planning and Execute phases of
the Main group

<State 2 (controlled)>
...
setHeatingStatus(hs0)=undef
setHeatingStatus(hs1)=undef
sgnIntTempMMainCHM(h0,ch)=false
sgnIntTempMMainCHM(h1,ch)=false
sgnMainCHEIntTempE(ch,h0)=true
sgnMainCHEIntTempE(ch,h1)=true
</State 2 (controlled)>

Interaction between Main and Interface
groups

<State 3 (controlled)>
...
setHeatingStatus(hs0)=FAIRLY_HOT
setHeatingStatus(hs1)=FAIRLY_HOT
sgnIntTempMMainCHM(h0,ch)=false
sgnIntTempMMainCHM(h1,ch)=false
sgnMainCHEIntTempE(ch,h0)=false
sgnMainCHEIntTempE(ch,h1)=false
</State 3 (controlled)>

Fig. 4. Simulation trace (bold titles are not part of the simulation)

Validation is very useful as it can provide a quick feedback about the system
behavior; however, if we want to gain a higher confidence on the correctness of
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the designed system, formal verification should be used. For example, for the
running example, we used the AsmetaSMV model checker of the ASMETA
framework [2] to verify some properties regarding adaptation correctness:

– whenever necessary, the adaptation is performed: if the average temperature
is below 18, the heaters will be turned on. This is captured by the following
Linear Time Logic (LTL) formula6:

G(avgTemp(ch) < 18 implies
F(setHeatingStatus(hs0) != OFF and setHeatingStatus(hs1) != OFF))

– the adaptation is only performed when necessary: if the heaters have been
turned on, an average temperature below 18 has been observed in the past.
This is captured by the following Past LTL formulas:

G(setHeatingStatus(hs0) != OFF implies O(avgTemp(ch) < 18))
G(setHeatingStatus(hs1) != OFF implies O(avgTemp(ch) < 18))

– all possible kinds of adaptation can be executed: the heaters can be turned
both to FAIRLY HOT and VERY HOT. This can be proved by falsifying these
four LTL properties7:

not F(setHeatingStatus(hs0) = FAIRLY HOT)//this is expected to be false
not F(setHeatingStatus(hs0) = VERY HOT)//this is expected to be false
not F(setHeatingStatus(hs1) = FAIRLY HOT)//this is expected to be false
not F(setHeatingStatus(hs1) = VERY HOT)//this is expected to be false

5 Related Work

We give an overview of selected works that are related to notations for modeling
MAPE loops (and patterns) of self-adaptation explicitly and that we identified
as the most relevant to the context of this work.

Contributions in [7,13] exploit the use of a network of Timed Automata
to specify the behavior of MAPE components, and the Uppaal model checker
for property verification. A development methodology, called ENTRUST, sup-
ports the systematic engineering and assurance of self-adaptive systems. In
ENTRUST, a template-based approach to the design and verification of a “spe-
cific family” of self-adaptive systems is used, namely a target domain of dis-
tributed applications in which self-adaptation is used for managing resources for
robustness and openness requirements via adding/removing resources from the
system. In MSL, instead, we clearly elevate MAPE loops to first-class entities for
structuring the adaptation logic of any self-adaptive system in the early design
phases and for fostering (in a broad sense) pattern-oriented modeling.

6 For the semantics of the used temporal logics, we remind the reader to [4].
7 Note that, in order to verify the desired property, we need to find counterexamples for
the properties stating that the heater cannot be turned to FAIRLY HOT and VERY HOT.



A DSL for MAPE Patterns Representation in Self-adapting Systems 17

In [12], a UML profile is proposed to model control loops as first-class entities
when architecting software with UML. The UML profile supports modeling of
interactions between coarse-grained controllers, while the MSL language aims at
modeling finer-grained interactions between the MAPE components. Moreover,
the UML profile does not support pattern modeling for MAPE loops explicitly.

SOTA (State Of The Affairs) [1], tool-supported by the Eclipse plug-in Sim-
SOTA, is a goal-oriented modeling and simulation framework for self-adaptive
systems. SOTA adopts UML activity diagrams as primary notation to model the
behavior of feedback control loops. The framework ACTRESS [15] is grounded
on an actor-oriented component meta-model and provides support for structural
modeling of feedback loops, model well-formedness checking (through structural
OCL or Xbase invariants), and generation of Java-like code for the actor- and
JVM- based runtime platform Akka. Both SOTA and ACTRESS do not support
pattern modeling and do not adopt a formal notation, as self-adaptive ASMs,
for the behavior specification and verification of MAPE components.

CYPHEF (CYber-PHysical dEvelopment Framework) [9] provides a graphi-
cal notation for modeling the control architecture of a cyber-physical system by
MAPE loop patterns. Differently from our approach, CYPHEF does not provide
support for formal verification.

Despite similarities and differences with our approach, all the works men-
tioned above can be used as back-end frameworks to complement and complete
for different purposes the adaptation logic design started in MSL.

6 Conclusion and Future Work

We proposed the textual language MSL for defining and instantiating MAPE
patterns in structuring the adaptation logic of self-adaptive systems. MSL can
be used to model complex composite MAPE loops structures, as all those devised
in [20]. The language provides a textual counterpart of the graphical notation
originally presented in [20] for specifying MAPE patterns, but never developed
and exposing a number of ambiguities. A semantic mapping (and a model gen-
erator) from MSL to self-adaptive ASMs has been also presented. It provides a
connection to the modeling back-end of ASMs for specifying and analysing the
behavior of instances of MAPE patterns formally.

As future work, we want to extend the MSL pattern library (available online
at [18]) with other common patterns of interacting MAPE loops, and the lan-
guage itself to allow composition strategies of patterns instances in the same
design. Moreover, we plan to evaluate the usability and usefulness of the frame-
work on a certain number of case studies. We also plan to extend our framework
in order to support backward compatibility between an MSL model and its ASM
counterpart.
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Abstract. Nowadays, the Internet-of-Things (IoT) enables the engineering of
Software-intensive Systems-of-Systems (SoS), which are opportunistically cre-
ated for achieving specified missions in specific operational environments.
A challenging issue in the architectural design of SoS on IoT is to conceive

concepts and mechanisms for describing how an SoS architecture is able to
create, on the fly, emergent behaviors from elementary IoT systems/devices.
To address this challenge, this paper investigates the theory of self-

organization, which makes possible that, in an SoS, its constituent systems
spontaneously create and maintain a valid SoS architecture enabling the evo-
lutionary development of the required emergent behavior to fulfill the specified
SoS mission. In particular, it describes how SosADL, a formal SoS Architecture
Description Language (ADL), based on the novel p-Calculus for SoS, was
enhanced to support the architectural description of self-organizing SoSs on the
IoT, upwardly causing SoS emergent behaviors at run-time.

Keywords: Software architecture description
Software-intensive System-of-Systems � Self-organization � Emergence
Internet-of-Things � SosADL

1 Introduction

Software-intensive systems are often independently developed, operated, managed, and
evolved. Progressively, communication networks enabled these independent systems to
interact, yielding a new kind of complex system, i.e. a system that is itself composed of
systems, the so-called System-of-Systems (SoS).

SoSs are evolutionary developed from independent systems to achieve missions not
possible to be accomplished by a single system alone [15]. They are architected to produce
emergent behavior, i.e. a behavior that stems from the interactions among constituents,
but that cannot be predicted from behaviors of the constituents themselves [14].

The SoS defining characteristics [15] are: operational independence, managerial
independence, and geographical distribution of the constituent systems; and evolu-
tionary development and emergent behavior of the SoS as a whole.
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Recently, the Internet-of-Things (IoT), by providing a ubiquitous communication
network, has made possible to opportunistically create software-intensive SoSs,
on-the-fly, for achieving a specific mission in a given operational environment by
opportunistically creating appropriate emergent behaviors [33].

Oppositely to usual SoSs, the architect of an SoS on IoT generally does not know at
design-time which are the concrete systems that will become constituents of the SoSs at
run-time. Additionally, the SoS architecture depends not only on the constituents of the
SoS but also on the operational environment where the SoS will operate on the IoT.

Architecturally speaking, two recursive levels of scale can be observed in an SoS:
(i) the SoS as a whole, called the macro-scale; and (ii) the SoS constituents and their
connections organized in an architecture, called the micro-scale.

Knowing that an emergent behavior is a macro-scale property which, in the case of
supervenience [17], the type of emergence suitable for SoS [25], is deducible from the
micro-scale architecture, the research question posed is: how to formally describe (in
terms of concepts and mechanisms) the SoS architecture at micro-scale in order to
spontaneously create the required emergent behavior at macro-scale for fulling the
specified SoS mission on the IoT?

This paper addresses this challenging question, by investigating the theory of self-
organization [30], and conceiving a novel approach based on self-organization as a
mechanism for spontaneously creating concrete software-intensive SoS architectures
on the IoT. The outcome is thereby that some independent IoT systems/devices
themselves will create the required connectivity enabling the production of the required
emergent behaviors for fulling SoS missions. In addition, when compared with man-
made organized SoSs, self-organizing SoSs are more robust and more resilient [29].

In particular, this paper brings contributions beyond the state-of-the-art on the
formalization of self-organizing SoS architectures. It describes how SosADL [20, 24], a
formal SoS Architecture Description Language (ADL), based on the novel p-Calculus
for SoS [21], was enhanced to support the formal description of self-organizing SoS
architectures and presents its application on the IoT.

This paper extends previous published work on SosADL at the IEEE System-of-
Systems Engineering Conference (SoSE) 2016, where the architectural language was
presented in [20] and SoSE 2017, where the features to describe SoS emergent
behaviors were described in [26].

The novelty of this paper regarding these previous publications is the presentation
of a novel architectural formalism for self-organization based on concurrent constraints
and the enhancements of SosADL for describing self-organizing SoS architectures
based on an exogenous architectural approach.

The remainder of this paper is organized as follows. Section 2 presents the prin-
ciples of self-organization and how they can be applied to software architecture.
Section 3 overviews the concepts and constructs of SosADL for supporting self-
organization, enabling emergent behavior. Section 4 presents how SosADL can be
applied to describe self-organizing SoS architectures, demonstrated through an excerpt
of a real application for architecting a Reconnaissance SoS, focusing on the flocking
behavior of a fleet of Unmanned Aerial Vehicles (UAVs). In Sect. 5, we outline the

Formally Describing Self-organizing Architectures for SoS on the IoT 21



implemented toolset as well as the validation of SosADL for supporting self-organizing
SoS architectures. In Sect. 6, we position our proposal for describing self-organizing
architectures of SoSs with related work. To conclude we summarize, in Sect. 7, the
main contributions of this paper and outline future work.

2 Self-organization Principles for Software Architecture

2.1 Phenomenon of Self-organization

Self-organization can be basically defined as the spontaneous creation and preservation
of an emergent arrangement out of local connections between initially independent
constituents [1, 25, 30]. It is spontaneous in the sense that it is not triggered by external
events (it is internally produced). It is in particular resilient, being able to be restruc-
tured when subject to perturbations, attaining new valid self-organizations.

Motivated by the spontaneity and resilience of self-organization, during the last
decade, the engineering of self-organizing systems has attracted increasing attention [29].

The phenomenon of self-organization is largely present in nature, e.g. in an atom, a
molecule, a cell, an organism, and a society [1]. Indeed, we live in a world that exhibits
self-organization at different scales. A snowflake, a flock of birds, a herd of land
animals, a swarm of insects, and a school of fishes are examples of natural systems that
exhibit self-organization. A flock of UAVs, a swarm of robots, and the Web are
examples of artificial systems that similarly exhibit self-organization. Indeed, self-
organization is a general principle that is exhibited in natural and artificial systems.

In particular, Ilya Prigogine showed the universality of the phenomenon of self-
organization on both natural and artificial systems [30]. He developed the fundamental
research that led to the general theory of self-organization, for which he was awarded
the Nobel Prize in 1977, studying open systems that are far from equilibrium, called
dissipative structures. He showed that self-organization is naturally present in far from
equilibrium systems in Physics, in Chemistry, in Biology, in Sociology and in Com-
puting when conditions are present.

Based on the work of Ilya Prigogine, we have proposed the theory of self-
organization for SoS and the principles to adopt it to architect SoSs [25].

2.2 Architectural Perspective of Self-organization

From an architectural perspective, self-organization is the ability of a whole to spon-
taneously arrange its parts in a purposeful (non-random) manner, under appropriate
constraints and without the assistance of an external intervention. It can be defined as
the mechanism that enables an SoS to create, preserve, and evolve its architecture
without external intervention, and in particular, without explicit command and control.

For instance, coming back to natural systems, as Ilya Prigogine demonstrated,
convection within the atmosphere is the result of the self-organization of water
molecules when they reach a critical point obtained by varying imposed constraints
(thereby increasing or decreasing its order).
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Similarly, SoSs are complex systems far from equilibrium when compared to single
systems that are essentially systems near equilibrium [25, 30]. Therefore, self-
organization is reachable in critical points located in the transition space between
disorder and order, far from equilibrium, in the so-called edge of chaos [9, 25]. It is at
an attractor that a valid organization is reached through self-organization [8].

Fundamentally, Ilya Prigogine demonstrated that to make self-organization possible
in a complex system, on the one hand the system must be in a state far from equilibrium
and on the other hand we need to be able to vary the order/disorder of the system by
adding or removing constraints, thereby increasing or decreasing order (oppositely,
disorder) in the edge of chaos.

To reach a valid self-organization, it is thereby necessary to reach an attractor and
to reach an attractor it is needed to tie or relax constraints, until the attractor is achieved.

Thereby, for initiating and maintaining self-organization in an SoS that is far from
equilibrium, all what is needed is to apply the appropriate balance of constraints.
Consequently, the ADL for describing self-organizing SoS architectures must be able
to express and manipulate architectural constraints.

3 Self-organization Principles in SosADL

SosADL was conceived to overcome limitations of existing ADLs by providing the
expressive power to describe the architectural concerns of SoSs, and in particular to
enable the description of emergent behaviors in evolutionary architectures [23]
according to different approaches, including self-organization [25].

For architecturally describing a single system architecture, the core concepts are
those of component, connector and configuration. In SosADL, an SoS architecture is
described in terms of abstract specifications of possible constituent systems, mediators,
and their coalitions [20]. The core concepts are hence the one of system to represent the
constituents, the one of mediator to represent the enforced interactions among con-
stituents, and the one of coalition to represent their formation as an SoS.

In SosADL, SoS architectures are represented in abstract terms (as concrete systems
which will become constituents of the SoS are not necessarily known at design-time, as
e.g. on the IoT) [20]. The defined abstract architecture will then be evolutionarily
concretized at run-time, by identifying and incorporating concrete constituent systems
(see [6] for details on the automated synthesis of concrete SoS architectures from
abstract architectures in SosADL).

Based on the theory of self-organization for SoS, our approach for architecting self-
organizing SoSs on the IoT with SosADL is first to specify a coalition and then to
apply constraints to the behavior of its constituent systems in order to eventually attain
an attractor. Semantically, it follows the constraint interpretation of emergence through
self-organization [2].

Indeed, behaviors of the parts (the micro-scale) constrained by their interactions (in
the micro-scale) as well as by coalition policies (also in the micro-scale) cause (upward
causation) the emergent behavior of the whole (at macro-scale) through self-
organization. In fact, it is by constraining the behaviors of the parts that self-
organization is enabled and the emergent behavior is produced.
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Achieving self-organization in SoS is based on the application of constraints to
systems that will participate to the SoS. That is, before the existence of an SoS, the
different candidate systems that will participate in the SoS work independently from one
to another on the IoT. Thereby, no emergent behavior appears. Once constraints are
applied to the identified IoT systems/devices, imposing constrained interactions among
them, the necessary condition to create self-organization possibly holds. It is by applying
suitable constraints that the self-organizing behavior will definitely emerge at an attractor.

More precisely, SosADL was enhanced to support self-organization in a principled
way by two novel features: (i) the mechanism of concurrent constraints and (ii) the
architectural concept of mediator. Therefore, to reach an attractor in a self-organizing
SoS on the IoT, we must add or remove constraints to make the order of the SoS vary.
To manage the degree of freedom of constituent systems in an SoS, SosADL apply
mediators to constrain or relax their behaviors through concurrent constraints. Note that
mediators are explicitly specified through constraints among constituent systems at
micro-scale, where each micro-scale behavior expresses what are the actions to execute
for enforcing constraints.

It is indeed, based on the general theory of self-organization from Ilya Prigogine,
who demonstrated that very simple micro-scale rules can describe highly complex
dissipative macro-scale structures, that we developed this novel architectural approach
for self-organizing SoSs on the IoT supported by SosADL.

Therefore, in our approach following the theory of self-organization for SoS [25], it
is by constraining the behavior of the constituent systems through the creation and
application of mediators regulating their behaviors that we enable the phenomenon of
self-organization which will always appear whenever the appropriate conditions to
reach attractors are met.

To achieve this goal, we designed a novel formal calculus, the p-Calculus for SoS
[21], which generalizes the p-Calculus [18] with the notion of computing based on
concurrent constraints and in particular on the principles of constraint-based calculi [19].

In particular, the p-Calculus for SoS supports the specification of the coalition of
mediated concurrent systems by means of constraints. In an SoS, the constituents can
tell new constraints (i.e. adding constraints to the environment) as well as can ask about
constraints (i.e. determining whether a given constraint can be inferred from the told
constraints to the environment), or by untelling constraints (i.e. removing constraints
from the environment).

Based on the p-Calculus for SoS, in SosADL, a behavior is described by the actions
that it can carry out as well as the constraints that it enforces or copes with. It provides:
(i) a construct for adding a constraint to the local environment; (ii) an
construct for querying if a constraint can be inferred from the local environment; (iii) a

construct to express concurrent composition of behaviors and constraints;
(iv) a construct to restrict the interface that a behavior can use to interact
with others; (v) an construct for removing a constraint from the local
environment.
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4 Describing Self-organizing Architectures in SosADL

For describing self-organizing SoS architectures in SosADL, we declare the micro-
scale behaviors which will determine the emergence of self-organization and imply the
desired macro-scale behavior as well as the related constraints in SosADL, through
supervenience (see [26] for details on how SosADL supports supervenience for
describing emergence).

To present how SosADL can be applied to architecturally describe self-
organization, we will show hereafter an extract of a real SoS that we have designed
in cooperation with its stakeholders, in the framework of the IoT.

Flood Monitoring and Emergency Response addresses the problem of flash floods.
To address this critical problem, we have architected, with SosADL, a Flood Moni-
toring and Emergency Response SoS. In order to fulfill its mission [34], the Flood
Monitoring and Emergency Response SoS must be able to create and maintain several
self-organizing emergent behaviors in different coalitions, such as in the WSN-based
Urban River Monitoring SoS and the UAV-based Reconnaissance SoS [16].

The UAV-based Reconnaissance SoS is formed by Unmanned Aerial Vehicles
(UAVs) deployed from different city councils. Identified UAVs are microcopters with
eight propellers, a camera and a wireless network access point. A fleet of UAVs can be
activated by the gateway of the WSN-based Urban River Monitoring SoS for
accomplishing a reconnaissance mission and can fly autonomously using built-in GPS.

Let us now focus on one of the emergent behaviors of the UAV-based Recon-
naissance SoS: the flocking behavior of the fleet of deployed UAVs.

The intended macro-scale behavior, i.e. flocking, aims to create and maintain a
flock of UAVs through self-organization. A flock is defined as a clustered group of
individuals (called flockmates), moving with a common velocity. In nature, there are
numerous examples of this sort of self-organization, for instance flocks of birds and
schools of fishes. In engineering, it is a common collective behavior applied to engi-
neered systems, including UAVs.

The flocking behavior was originally presented in [32], from which several works
have proposed adaptations for designing flocks of engineered systems [16].

4.1 Describing Behaviors for Enabling Self-organizing SoSs

The macro-scale emergent behavior of flocking is the resultant of three micro-scale
behaviors for flockmates [16, 32] shown in Fig. 1: separation, alignment, and cohesion.

Fig. 1. Separation, alignment, and cohesion micro-scale behaviors
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These three micro-scale behaviors enforce the three constraints that are required for
enabling self-organization, thus making the flocking behavior emerge in attractors:

• Separation behavior (collision avoidance): every flockmate must avoid collisions
with nearby flockmates;

• Alignment behavior (velocity matching): every flockmate must attempt to match
velocity (heading and speed) with nearby flockmates;

• Cohesion behavior (flock centering): every flockmate must attempt to stay close to
nearby flockmates.

The separation micro-scale behavior for collision avoidance, shown in Fig. 1 (left),
moves a flockmate away from other flockmates when their distance becomes shorter
than a predefined threshold (first constraint), independently from the speed.

The alignment micro-scale behavior for velocity matching, shown in Fig. 1 (mid-
dle), matches the flockmate speed and heading with the speed and heading of its
neighboring flockmates (second constraint).

The cohesion micro-scale behavior for flock centering, shown in Fig. 1 (right),
drives a flockmate towards neighboring flockmates (third constraint). Note that, as a
flockmate sees only its neighbors, the cohesion behavior drives a flockmate towards
their center and not toward the center of the whole flock.

These three micro-scale behaviors (alignment, cohesion, and separation) combined
together determine the acceleration vector that drives a UAV. From the UAV view-
point, every micro-scale behavior generates an independent request for a steering
maneuver to be executed by the UAV.

It is worth highlighting that these micro-scale behaviors governing alignment,
cohesion, and separation (enforcing the respective constraints in flocking), also con-
strained by the relative positions of nearby flockmates, has been demonstrated sufficient
to guarantee a suitable self-organization for enabling flocking [32], in line with the
general theory of self-organization from Ilya Prigogine in terms of dissipative struc-
tures [30].

By the application of these three micro-scale behaviors, every UAV in the fleet, will
behave to align and get closer to neighboring UAVs, while avoiding collision. For an
external observer, at the macro-scale level, the UAVs will evolve to form a flock
through self-organization. It is also worth to note that even if there are disturbances in
the flock, the UAVs will smoothly form again a flock through self-organization.

In the architecture description of the UAV-based Reconnaissance SoS with
SosADL, UAVs are declared as constituent systems of the flock and mediators are
deduced according to the position of a UAV and its neighboring UAVs. The coalition
is formed by the participating UAVs interacting under the constraints enforced by
mediators.

In our case study, the UAV-based Reconnaissance SoS deployed in the Monjolinho
river in the metropolitan region of Sao Carlos involves a fleet of identified UAVs
located at different municipalities along the river. When needed, they are commanded
to takeoff and reach an area with high risk of flooding for a reconnaissance mission
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(triggered by the monitoring of the urban river). Along the way and at destination, they
get together for flying in flock, through self-organization, to carry out the reconnais-
sance of the zone of flood. They fly autonomously and form flocks spontaneously.

4.2 Describing Abstract SoS Architectures with SosADL

For achieving the emergent behavior of flocking through self-organization, the archi-
tecture of the UAV-based Reconnaissance SoS needs to be rigorously designed.

In our exogenous SoS architecture description for flocking, first, we will describe
the constituent systems of the SoS, i.e. the UAVs, and next the mediators enforcing the
micro-scale behaviors and inferred constraints required for creating and maintaining
flocks. Then, we will describe the architecture of the SoS as a whole in terms of a
coalition for achieving the macro-scale flocking behavior.

In SosADL, UAVs are declared as constituent systems of the flock. As shown in
Listing 1, is described as a system abstraction: we declare the interface and
capabilities that must have all UAVs participating in the flock, without addressing how
these interfaces and capabilities are implemented.

Listing 1. UAV system declaration in SosADL 

As declared in Listing 1, every UAV holds a gate, named , having
connections to outputting its coordinate in terms of latitude, longitude, and altitude, and
its direction in terms of heading and pitch angles. Next, gate enables to steer
the UAV. Finally, the UAV behavior, named , is declared (not shown for
sake of brevity), perceived as a black box behavior.

Note that connection of gate transmits values of
datatype for determining the location of a UAV in terms of latitude,
longitude and altitude, and that connections and of the
same gate transmit values of datatype for determining the flying direction
of a UAV in terms of heading and pitch. Datatype is equipped with
operations to compute new headings or pitches from current ones, passed in parameter.
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Let us now declare, in SosADL, the mediator which will make possible
the emergence of the flocking macro-scale behavior of the SoS.

As shown in Listing 2, is described as a mediator abstraction: we declare
the duties of the mediated UAV in terms of and and the
behavior among UAVs participating in the flock as . By creating concre-
tions, a mediator will be synthesized for each UAV that participates in the flock.

Before presenting the mediating behavior, let us now describe the three micro-scale
behaviors used during mediation for flocking by declaring behavior abstractions,
respectively named , , and .

In the exogenous approach, for achieving the flocking emergent behavior, these
three required micro-scale behaviors are declared in the behavior part of the media-
tors, as shown in Listings 3, 4 and 5 (oppositely to the endogenous approach pre-
sented in [26], where these micro-scale behaviors are declared as embedded in the
UAVs).

They handle data structures for representing on the one hand the position of
the mediated UAV as well as the positions of the other UAVs in its neighborhood.
Based on relative positions, the mediator decide which maneuvers to apply to the
UAV.
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The micro-scale behavior, shown in Listing 3, gives the capability to
compute, using trigonometry, the minimum angular difference between two UAVs (the
mediated UAV heading and the heading of its nearest flockmate), and turns away from
it following that calculated direction (given by calculated angles) to avoid coalition.

The micro-scale behavior, shown in Listing 4, gives the capability to a
UAV to turn for moving in the same direction that nearby UAVs are moving. Using
trigonometry, it can compute a new heading and a new pitch for the mediated UAV
based on the headings and pitches of the neighbors and then command the UAV to
follow that new direction.

The cohesion micro-scale behavior, shown in Listing 5, gives the capability to
compute, using trigonometry, a new heading and a new pitch for the mediated UAV
(the direction to fly) based on the neighboring bearings (the direction to getting close to
the neighbors). It will thereby move to get closer to neighboring UAVs.
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By the application of these three micro-scale behaviors, commanding the mediated
UAV, every UAV in the fleet, will stepwise behave to align and get closer to neigh-
boring UAVs, while avoiding collision.

Let us now declare the mediating behavior in Listing 6. Once the
behavior receives the position of the mediated UAV (first getting its coordinate, second
getting its heading, and third getting its pitch), the construct asserts the received
position into its local environment, enabling sharing with other mediated UAVs. Next,
the construct is used to ask for the positions of all flockmates that are in the vision
range of the mediated UAV. With the result assigned to hood, the mediator first checks
if there is any. If not, i.e. if no other UAV is in the neighborhood of the mediated UAV,
the mediated UAV continues to fly in the same direction, moving forward. If there are
UAVs in the neighborhood of the mediated UAV, the flocking mediator looks for the
nearest flockmate and check whether it is too close to the mediated UAV. If their
distance is less than a minimum separation value, the behavior applies the

micro-scale behavior. If not, the behavior commands the
mediated UAV applying the micro-scale behavior and then the
micro-scale behavior based on the positions of the neighboring flockmates.

It is worth to note that if there are disturbances in the flock, the UAVs will
smoothly form again a flock based on the flocking mediators.
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Let us now describe the SoS architecture making possible the flocking macro-scale
emergent behavior.

The SoS architecture is described by declaring the constituent systems that can
participate in the SoS, the mediators that can be created and managed for coordinating
the constituent systems and the possible coalitions that can be formed to achieve the
SoS emergent behaviors.

The SoS architecture description, shown in Listing 7, comprises the declaration of a
sequence of constituent systems complying with the system abstraction of UAV (as
declared in Listing 1) and a sequence of mediators conforming with the mediator
abstraction of Flocking (as declared in Listing 2).

Based on these systems and mediator abstractions, the coalition for creating
emergent behavior is declared, as shown in Listing 7. In particular, the coalition of
UAVs is described as a collection of UAVs where each UAV has an associated steering
mediator created in the coalition (with the specified vision range and minimum sepa-
ration distance as parameters). The emergent behavior of the coalition is giving by the
macro-scale behavior created by supervenience from the mediating behaviors, which
apply the micro-scale behaviors.

It is by the application of the mediating behaviors, commanding the UAVs by
applying the defined micro-scale behaviors, that every UAV in the fleet, will stepwise
behave to align and get closer to neighboring UAVs, while avoiding collision. For an
external observer at the macro-scale level, the fleet of UAVs will evolve to form a
flock.

From this abstract SoS architecture, different concrete SoS architectures may be
created based on the identified UAVs for each particular operational environment. For
instance, as mentioned, in the case of flood monitoring of the Monjolinho river, the
fleet of identified UAVs are microcopters located at different cities of the metropolitan
region of Sao Carlos along the river. They are then commanded to takeoff and reach an
area with high risk of flooding for a reconnaissance mission (triggered by the moni-
toring of the urban river). At the destination, they eventually get together for flying in
flock to carry out the reconnaissance of the targeted zone of flood.

Formally Describing Self-organizing Architectures for SoS on the IoT 31



5 Validating Self-organizing Architectures with SosADL

A major impetus behind developing formal foundations for SoS architecture descrip-
tion is that formality renders them suitable to be manipulated by software tools. The
usefulness of providing the p-Calculus for SoS underlying SosADL is thereby directly
related to the tools it provides to support architecture modeling of self-organization, but
also analysis and evolution of self-organizing architectures.

We have developed an SoS Architecture Development Environment, named
SosADL Studio [27, 28], for supporting architecture-centric formal development of
self-organizing SoSs using SosADL.

This toolset is constructed as plugins in Eclipse (http://eclipse.org/). It provides a
model-driven architecture development environment where the SosADL meta-model is
defined in EMF/Ecore (http://eclipse.org/modeling/emf/), with the textual concrete
syntax expressed in Xtext (http://eclipse.org/Xtext/), the graphical concrete syntax
developed in Sirius (http://eclipse.org/sirius/), and the type checker implemented in
Xtend (http://www.eclipse.org/xtend/), after having being proved using the Coq proof
assistant (http://coq.inria.fr/) [28].

Applying model-to-model transformations, SoS architecture descriptions are
transformed to input languages of analysis tools, including UPPAAL (http://www.
uppaal.org/) for model checking, DEVS (http://www.ms4systems.com/) for simulation,
and PLASMA (http://project.inria.fr/plasma-lab/) for statistical model checking.

The constraint solving mechanism implemented to support the , , and
constraint handling constructs are based on the Kodkod SAT-solver (http://

alloy.mit.edu/kodkod/).
Of particular interest for validating self-organizing behavior is the automated

generation of concrete SoS architectures, transformation from SosADL to DEVS, and
the subsequent simulation in DEVS enabling to observe and tune the described self-
organizing emergent behavior of an SoS [27].

For supporting verification of self-organizing SoS architectures, we have conceived
a novel logic, named DynBLTL [31], for expressing correctness properties of evolving
architectures and verifying these properties with statistical model checking [5].

For validating SosADL as well as its accompanying SosADL Studio, we have carried
out a field study of a real SoS for FloodMonitoring and Emergency Response and studied
its concretization in theMonjolinho river, which crosses the city of SaoCarlos, SP, Brazil.
The aim of this field study (of which an extract is presented in this paper) was to assess the
fitness for purpose and the usefulness of, on the one hand, SosADL as a formal SoS
architectural language, and on the other hand, the SosADL Studio as a software envi-
ronment to support the architectural description and analysis of real self-organizing SoSs.

The result of this field study (see [22] for details) shows that SosADL meet the
requirements for modeling SoS architectures and its emergent behaviors, in particular for
self-organizing SoS architectures. As expected, using a formal ADL compels the SoS
architects to study different architectural alternatives and take key architectural decisions
to make possible the emergence of self-organizing behaviors in SoS architectures.

In particular, the result of this field study showed that the different tools integrated
in the SosADL Studio provides the appropriate features for describing and analyzing
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SoS architectures and their emergent behaviors, in particular regarding description,
validation, and verification of self-organizing SoS architectures.

In fact, a key identified benefit of using SosADL Studio was the ability to validate
and verify the studied self-organizing SoS architectures very early in the SoS lifecycle
with respect to its correctness properties, as well as for studying the extreme conditions
in which self-organizing behaviors were not able to satisfy the SoS mission.

6 Related Work

Self-organization, as a mechanism for modeling complex systems, has been extensively
discussed in the literature [29, 38]. In the Computing discipline, different workshops
haven been dedicated to the topic, e.g. [3], and since 2007 a dedicated conference series
has been organized, i.e. the IEEE International Conferences on Self-Adaptive and Self-
Organizing Systems (SASO) [10] targeting foundations and applications of principled
approaches to engineering systems, networks and services based on self-adaptation or
self-organization.

Regarding software architecture, while self-adaptive architectures have been exten-
sively discussed in the community, self-organizing architectures have been much less
addressed, and even when tackled they were often as an adjunct consideration [3, 29].

More recently, the importance of explicitly describing the architecture in the
development of self-organizing systems has been increasingly highlighted in publica-
tions [35]. Predictably, most of the works on the software architecture of self-
organizing systems has been developed in the area of SoS engineering [13]. Self-
organization is indeed of major interest for SoS, as emergent behavior is a foundational
characteristic and self-organization a well-founded mechanism for producing emergent
behavior. Since 2006, more than 30 papers addressing emergence and self-organization
for SoS engineering have been published in the IEEE SoS Engineering (SoSE) pro-
ceedings [11], however none proposed an ADL for describing self-organizing SoS
architectures [13, 23, 35]. In ECSA proceedings, several papers addressed self-adaptive
architectures, but none addressed self-organizing architectures.

Regarding self-organizing SoSs, Häner et al. [7] address the importance of self-
organization for developing large SoSs. It does not provide a formalization of self-
organization for SoS architectures, limiting to apply the self-organization principle in
practice in the domain of natural crisis management. In their work, self-organization is
established on the basis of autonomous and concurrent tasks that are enacted by
choreographies specifying the expected behavior of the set of SoS constituent systems.
It is complementary to our work in the sense that their designed self-organizing SoS
architecture can be formally described with SosADL, in particular supporting the
description and formalization of self-reconfiguration in the choreographies.

Regarding self-organizing flocking architectures, Jaimes et al. [12] present a real-
istic situation where an autonomous fixed-wing UAV and semi-autonomous swarm of
quad-rotor UAVs work together to carry out the surveillance on a given area. This work
demonstrates the practical interest of using a flock of UAVs for surveillance. This kind
of SoS architecture can be straightforwardly described with SosADL, enabling to
analyze its deployment in different environments as well as in different UAV platforms.
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Another thread of related work on SoSs is the one of implementation platforms, in
particular, for the case of the so-called “ensembles” (an SoS that is only composed of
homogeneous systems), e.g. DEECo (Dependable Ensembles of Emerging Compo-
nents) [4] and SCEL (Service Component Ensemble Language) [36]. In this case, SoS
homogeneous architectures described and analyzed with SosADL can be transformed
to implementation models in SCEL or DEECo. SosADL also supports transformation
to service-oriented architectural styles [37] applied to SoS implementation.

In summary, based on the study of the state-of-the-art [23], SosADL enhanced with
concurrent constraints is positioned as a pioneering ADL having the expressive power
to formally describe self-organizing SoS architectures, no existing ADL being able to
express these evolutionary architectures.

7 Conclusion and Future Work

This paper presented the notion of self-organization, briefly introduced the general
theory of self-organization of Nobel laureate Ilya Prigogine on dissipative structures,
applied this theory for SoS, and explained the enhancements of SosADL that support
the rigorous description of self-organizing architectures.

We established that software-intensive SoSs on the IoT are dissipative structures,
far from equilibrium [25] and that, consequently, self-organization provides a spon-
taneous mechanism to find new instable equilibriums again far from equilibrium.

Thereby, as an SoS is a complex system that is far from equilibrium, to support self-
organization, we enhanced SosADL with concurrent constraints, where we substituted
the constructs for manipulating and exchanging values by constructs that manipulates
and exchanges concurrent constraints, i.e. , , and as well as extended
the semantics of and to support the concurrent composition
among systems and the intentional binding between connections of these systems.

In particular, this paper presented the enhancements of SosADL which bring main
contributions beyond the state-of-the-art on self-organizing SoS architectures on the
IoT, grounded on concurrent constraint satisfaction.

In addition, this paper demonstrated how architectural mediators expressed with
SosADL supports exogenous architecture descriptions through an excerpt of a real
application for architecting a UAV-based Reconnaissance SoS, focusing on the
flocking behavior. It provides the first exogenous architectural description of flocking,
all others being based on the endogenous approach, which is not adequate to the IoT.

SosADL has been applied in several case studies and pilots where the suitability of
the language itself and the supporting toolchain has been validated for both self-
organizing architectures and traditional, non-self-organizing ones [22].

On-going and future work is mainly related with the application of SosADL in
industrial-scale projects. Regarding the IoT, they include joint work with IBM for
applying SosADL to architect smart-farms in cooperative settings, and with SEGULA
for applying SosADL to architect SoSs in the naval engineering domain. Description of
real-scale self-organizing SoS architectures, and their validation and verification using
the SosADL toolchain, are main threads of these pilot projects.
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Abstract. Technical systems often rely on redundant platforms. One
way to increase dependability is to define various QoS modes, applied
to different hardware resources. Switching between modes is limited
by resource availability and causes costs for structural changes. Hence,
selecting appropriate system architectures for specific resource sets and
defining cost-efficient mode sequences is challenging. This short paper
proposes an approach to support reconfiguration decisions for vary-
ing modes. We extend our decision graphs for traversing architectures
towards multi-purpose applicability. We optimise reconfigurations within
individual modes while reducing costs of mode changes simultaneously.
Graph-based differentiations lead to most efficient mode sequences, tran-
sition configurations and visualisations. To respect high reconfigurabil-
ity, we particularly inspect impacts of resource faults. For evaluation, we
apply a subsystem of a micro satellite with multiple operational modes.

1 Introduction

Developing technical systems often incorporates grouping of redundant
resources. Each feasible system configuration is evaluated by quality demands
wrt. an operational mode. A multi-purpose system executes tasks in varying
modes and redundancy groups. Due to modes changes and resources faults this
is challenging. Thus, for cost-efficient maintenance, it is essential to identify
relations between modes and optimal transitions. Here, we propose to prioritise
configurations according architectural quality at design time to reduce mainte-
nance costs. Thus, a prioritised reconfiguration space is tailored to modes and
continuously synchronised to resource availability for reducing efforts of manual
exploration.

In previous work, we introduced an architecture-oriented approach to sup-
port reconfiguration decisions, the Deterministic Architecture Relation Graph
(DARG) [10]. Our existing approach is integrated [9] with the concept of Degrees
of Freedom [6] for architecture optimisation to generate quality-accessed config-
urations from large decision spaces.
c© Springer Nature Switzerland AG 2018
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In this short paper, we refine our work towards multi-purpose application.
Thus, an DARG instance is exchanged for each mode change and appropriate
transition configurations are explored. To define a cost-efficient ordering of modes
and efficient transitions, we inspect commonalities and efficient reconfigurations
in intersections of DARG pairs. For evaluation, we apply our approach to a
satellite subsystem with varying resource constellations and multiple modes. For
dependability, the result stability is checked to assure a fault-aware solution.

The remainder of this paper is organised as follows. Section 2 summarises
related work. Our approach is described in Sect. 3 and evaluated in Sect. 4. We
conclude and promote future work in Sect. 5.

2 Related Work

We make use of knowledge from configuration generator to relate alternate solu-
tions with slight differences in resource demands and qualities. Similar to that,
Barnes et al. [1] define relations between architectures on candidate evolution
paths. These paths specify a search-based reconfiguration process from a source
to a user-defined target architecture via a sequence of transient architectures. We
intend to explore such targets automatically. Jung et al. [5] determine policies
to adapt running systems in the cloud. A decision-tree learner that is trained
with feasible system configurations, generated by queuing models, derives these
policies at design time. Close to that, Frey et al. [4] inspect reconfigurations as
deployment options derived by genetic algorithms. The authors define rules at
design time to systematically change the deployment of a system at run time.
Both approaches neither explicitly represent the reconfiguration space nor the
qualitative trade-offs between design options. Our approach preserves knowl-
edge from the configuration generation to prioritise near-optimal candidates.
Malek et al. [8] proposes a more hardware-oriented approach in context of self-
adaptive systems. The authors provide a trade-off model to identify a suitable
deployment architecture. Even though that approach is applicable to distinguish
between configurations, the authors did not integrate a prioritisation of all fea-
sible design alternatives for decision support at run time.

3 Reconfiguration Support for Varying Operation Modes

We extend our work by multi-purpose capabilities to reduce maintenance efforts.

3.1 Baseline Models

Due to space constraints all models [9,10] are summarised here. A resource plat-
form RP defines properties and constraints of resources. Redundancies are rep-
resented by groups. Properties provide value assignments for quality attributes
from the configuration generation. We model configurations as sets of software
components with bindings bind to resources in RP . A configuration has a unique
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id and holds aggregated values val for attributes. An ARG defines an unsorted
reconfiguration space. Its nodes are parametrised by generated configurations
and their bindings to RP . Edges relate configurations via transient nodes or
directly. Changes in resource bindings and reconfiguration costs are annotated as
edge labels. Initially an ARG is ambiguous as labels might be non-deterministic.
To fix that, we adapt Quality Attribute Directed Acyclic Graphs [3] (QADAG)
to describe operational modes as weighted sums with constraints for attributes.
Values for attributes are extracted from ARG nodes. For aggregation, each value
is normalised. The user customises a QADAG wrt. an operational mode by set-
ting weightings and minimal acceptance values. A value drops to 0 if its minimal
acceptance is violated. DARG instances are derived as mode-specific refinements
of the ARG for each QADAG instance by evaluating a utility for all configura-
tion results. Hence, edges are qualitatively definable now. A DARG instance is
an architecture-based model of the reconfiguration space for a specific mode.

3.2 Aligning Changes of Operational Modes and DARG Instances

The interrelationships of multiple QADAG and DARG instances are considered
by deriving optimal orders. Built on existing analysis methods a QADAG is
customised to derive a corresponding DARG instance. The multi-mode analysis
inspects the importance of a configuration within its origin instance and extracts
an optimal order between all instances. Faults are injected to check robustness.

Prioritise Configurations for Mode Transitions. Each configuration in
a DARG instance is rated by its fitness for mode transitions. In addition to
existing indicators, we apply centralities to specify the intra-graph importance
of each node. According to graph size, the inexpensive degree centrality, the
path-oriented closeness centrality or the expensive graph-spanning betweenness
centrality might be applied.

Three transition criteria result to rate reconfiguration abilities. The (1) nor-
malised utility defines the fitness to the mode, the (2) amount of resource bind-
ings bind characterises the degree of redundancies and the (3) centrality cen of
the corresponding node quantises the reconfiguration options wrt. related con-
figurations. The resource amounts and centrality is normalised over all occur-
rences. By setting constant weighting the criteria are prioritised. Each configu-
ration ci is rated by a transition value in its reconfiguration space Di, defined
by tvci,Di

:= w1 ∗ utilityci + w2 ∗ cenci + w3 ∗ |bindci |.

Extracting Optimal Mode Sequences. For extracting optimal mode
sequences, we inspect all transition values of configurations in pairs of DARG
instances. Because of the common ARG, the configurations of DARG instances
intersect, matched by id. Let Ds and Dt be reconfiguration spaces in D, then
Ds ∩id Dt ⇐⇒ ∀ci ∈ Ds, cj ∈ Dt : ciid == cjid is the configuration intersection
of the pair. Although it is unlikely that an intersection is empty, then an ordering
of this pair is infeasible and is done randomly instead. To inspect the transition



40 L. Märtin et al.

values between reconfiguration spaces, we aggregate the values to sums. Due to
asymmetries in the values wrt. the source spaces, we inspect two values per pair.
For the pair of reconfiguration spaces Ds and Dt the transition value sum is
defined by tvsDs∩idDt

:=
(∑|Ds∩idDt|

i=1 tvci,Ds
+ tvci,Dt

)
| ci ∈ Ds ∩id Dt.

To explore all pairs, we permute over D by S ⊂ P(D) with Si ∈ S is an
ordered sequence and |Si| == |D| the permutation size equals the amount of all
DARG instances. All transition value sums in S are inspected for the overall
maximum by tvsmax := max

∑|S|
i=1 (tvsDs∩idDt

∀Ds,Dt ∈ Si) | Si ∈ S.
The highest sum characterises the optimal sequence of all DARG instances

with the set of transition configurations. By backtracking DARG to QADAG
instances, the order of reconfiguration spaces lead to the optimal mode sequence.

Consideration of Resource Faults. Each resource fault reduces the amount
of configurations. If all options in a redundancy group are affected, a config-
uration is invalid. This causes changes in commonalities between reconfigura-
tion spaces as well as centralities within the graphs. Thus, faults have signif-
icant impacts on the selection of transition configurations and optimal mode
sequences. Hence, expected resource faults are injected in DARG instances. The
transition configurations and the optimal sequence are checked for stability in
an iterative process. If a pair of DARG instances is affected by a fault in the
resource platform, it is marked for re-ordering and all transition values are re-
calculated. The ordering might be updated due to the new maximum transition
value sums.

4 Validation

We validate our approach along a subsystem of the TET-1 satellite.

4.1 Application Scenario

TET-1 is designed for verifying experimental hardware. We apply our approach
to the attitude control system (ACS) [7]. The ACS architecture is threefold.
Sensor resources estimate the position and orientation then necessary attitude
changes are predicted and at least required actions are controlled on actuation
resources. Such resource dependencies are represented by components on the low-
est level. To enhance reconfiguration abilities for heterogeneous redundancies, we
relaxed constraints and added sensing variations to the original design. For actu-
ation two groups with reaction wheels (RWS) and magnetic coils (MCS) exist.
Sensing is performed by five groups consisting of star compasses (ASC), sun sen-
sors (CSS), magnetic field sensors (MFS), inertial measurement units (IMU) and
on-board navigation systems (ONS). We model the ACS as variant-rich Palladio
Component Model [2] instance with several degrees of freedom with Palladio
DSE. Our tool AREva1 generates an ARG model and a default QADAG. We
1 AREva tool and validation data, https://www.github.com/lmaertin/areva.

https://www.github.com/lmaertin/areva
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apply three experiments [7] with varying modes: A Li-Polymer battery (N1),
a pico propulsion system (N7) and an infra-red camera (N15). Based on six
quality attributes and data sheets, three QADAG with corresponding DARG
instances are derived for validation. For sake of space, we leave out details.

4.2 Design of Experiment

The exploration is challenging if operational modes vary and faults occur. Thus,
we (1) define optimal mode sequences and (2) approve its fault robustness.

The importance of a configuration in a DARG is vital to define appropriate
transition configurations for sequencing modes. Maximum classification values
for configurations are identified to differentiate pairs of reconfiguration spaces
efficiently. For that, we aggregate transition values within each DARG instance
to rate orders of mode sequences. The maximum sums over all transition values
in intersections of all pairs of reconfiguration spaces are calculated. By ordering
of the sums, an optimal mode sequence is determined.

High reconfigurability is only assured if the mode sequence is robust against
faults. Thus, if a fault affects a valid configuration the corresponding mode
sequence must hold. The impact of faults on the validity of mode ordering is
examined on level of relative changes of transition values. The ordering needs to
be proven as stable. Here, we adapt the previous fault-less measurements to esti-
mate impacts of faults. For that, we inspect the distance of changes in the sums
of transition values. The order of these relative values is checked for compliance
to the recent order of modes. If the maximum changes, the mode sequence is no
longer stable and a re-ordering is initiated.

4.3 Measurements and Explanation

Our measurement are done on basis of our ACS model and the sequence of
expected faults from Table 1. For each experiment, we choose an initial configu-
ration with a high amount of resources to enhance reconfigurability.

(1) Identifying Optimal Mode Sequences. We perform a multi-mode anal-
ysis on basis of DARG instances for each experiment. At first, we explore tran-
sition configurations and optimal mode sequences in a faultless setting. After-
wards, we inject a fault sequence and observe impacts on the initial results. For
both settings, the calculation of the transition values is parametrised to 0.33 for
w1, w2 and w3. We applied all three kinds of centralities. Even though all mea-
surements perform well, we show the results for betweenness due to lack of space.
The analysis calculates individual transition values and explores maximum sums
in six possible orders of intersecting DARG instances. For each order, the tran-
sition value sum consists of sums from two transitions. The order N15→N1→N7
has the highest sum and is the optimal mode sequence when no faults occur. It
is followed by N1→N15→N7 and N7→N1→N15.
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For explanation, we take a deeper look into the amount of transition con-
figurations between a pair of modes and their transition value distribution. A
transition between N1 and N7, and vice versa, has the most transition configura-
tions with 86. N17↔N15 has a sum of 85 and N77→N15 at least 77. Therefore,
mode orders containing transitions between N1 and N7 are more likely to have
higher transition value sums than other transitions if the transition value distri-
butions are similar. This means that reconfigurations due to mode transitions
between N1 and N7 are more effective because the reconfiguration spaces are
more structurally similar than all other combinations. Figure 1 shows the transi-
tion value distribution of the configurations for each mode transition. While the
medians and value ranges for each transition are different, they are still within
similar value ranges. For instance, the transition N15 → N1 provides higher
rated transition configurations in average. Therefore, this transition probably
leads to highly rated configurations to perform the experiment N1 well. The
high amount of transition configurations in both transitions of N15→N1→N7
leads to reduced reconfiguration costs. Additionally, high average transition val-
ues promote appropriate configurations.
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Fig. 1. Transition value distribution per transition direction

(2) Inspecting Fault Robustness. We derived a sequence of faults that effec-
tively harms the ACS wrt. fault analysis methods in Table 1. To examine the
robustness of our results, the changes of transition value sums for each pos-
sible order is shown after fault injection. The initial optimal mode order of
N15→N1→N7 that was calculated under a faultless state is stable for most
of the injected faults. However, when RW1 fails the transition value sum of
N1→N15→N7 beats the original optimal order. After injecting the fault of RW2,
no transition configurations are left and the reconfiguration process stops. Over-
all, the complete failure of the ONS, CSS and the majority of actuation resources
have the biggest impacts on available transition configurations. At the beginning
in particular, the redundancy groups are thinned out. If a group becomes dis-
advantageous or invalid, similar resources from other groups are used. However,
other resources in the affected resource groups already failed before, like the first
GPS Antenna1+LNA1 or the second CSS RearHead2. That is why the fault of
the second GPS LNA2+Antenna2, the CSS RearHead1 and the MC1x led to
the complete failure of their corresponding group.
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Table 1. Fault sequence and impacts on transition value sums

Fault 1→7→15 7→1→15 7→15→1 1→15→7 15→1→7 15→7→1

GPS LNA1+Antenna1 37.33 39.93 37.36 40.03 41.30 37.48

GPS Receiver1 37.24 38.65 36.98 40.26 42.33 37.03

GPS LNA2+Antenna2 10.09 12.31 11.55 12.86 13.02 10.08

MFS Fluxgate1 10.11 12.20 11.61 12.83 13.07 10.12

CSS RearHead2 9.90 12.19 11.61 12.78 12.90 10.12

ASC DPU1 High Res 10.15 12.41 11.63 13.01 13.11 10.13

ASC DPU2 Low Res 10.07 12.21 11.53 12.77 13.04 10.03

CSS Chipset1 High Res 9.88 12.07 11.49 12.65 12.78 10.06

CSS RearHead1 2.15 3.28 2.92 3.11 3.36 2.10

CSS FrontHead2 2.14 3.27 2.93 3.10 3.35 2.10

CSS Chipset2 Low Res 2.13 3.27 2.92 3.11 3.34 2.10

RW1 1.84 2.68 2.60 2.78 2.74 1.81

MC1x 0.58 0.74 0.73 0.76 0.76 0.57

RW2, MC2y, MC2x -, -, - -, -, - -, -, - -, -, - -, -, - -, -, -

Following, we inspect the reasons for the change of the optimal order after
RW1. While the amount of transition configurations has already been heavily
reduced by faults before, transitions of N1↔N7 and N1↔N15 are still more
beneficial from a structural standpoint with 8 and 13 transition configurations
respectively. After the failure of RW1 the transitions of N1↔N15 and N7↔N15
are both equally disadvantageous in terms of structural similarity compared
to N1↔N15 with only 6 transition configurations left. Even though, N15→
N1→N7 overall had more transition configurations than N1→N15→N7, now
both have the same amount. Therefore, the choice of optimal mode order is
completely reliant on the transition value distribution and the highest average.
Figure 2 shows the distribution of transition values per mode transition direction.
The plot shows that the two partial transitions of N15→N1→N7 as well as
N1 →N15 →N7 both are very similar. The first transitions N15 →N1 and
N1→N15 have almost the same high median. The second transitions N15→N7
and N1→N7 both have a similar low median. So both orders are also very similar
in terms of average transition value. The biggest impact on the final result of
ranking N1→N15→N7 higher than N15→N1→N7 is the first transition value
sum, which is sufficient at this point to induce a higher overall sum.

Overall N15→N1→N7 should remain as optimal mode sequence because it is
stable until the 13th fault. Additionally, it provides the best trade-off between the
amounts of similarities between all modes, and thus keeping the reconfiguration
cost low, and the average transition values for each configuration, improving the
experiments by providing alternate configurations with high utilities.
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5 Conclusions

We presented an approach to support maintenance of fault-tolerant technical
systems in multi-purpose setting. By performing pre-calculations at design time,
we generate knowledge for efficient reconfigurations at run time for varying oper-
ational modes. The extended decision model DARG supports mode transitions
and guides architectural changes by mode sequences. We evaluated our tool-
supported approach on a satellite subsystem and proven fault robustness of
results. Because of extensive efforts in processing the reconfiguration space, we
settled our approach at design time and build upon static data for quality pre-
dictions. Consequently, the results might have a lack of precision.

In on-going research, we are doing an empirical study with experts from
space industry to explore possible integrations of the approach in the develop-
ment process. Further improvements are possible by integrating runtime data to
continuously update the DARG. Here, the computational efforts and delays for
reconfiguration at runtime need to be respected to justify our analyses against
traditional explorations.
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Abstract. Architecture-based adaptation equips a software-intensive
system with a feedback loop that enables the system to adapt itself at
runtime to changes to maintain its required quality goals. To guarantee
the required goals, existing adaptation approaches apply exhaustive ver-
ification techniques at runtime. However these approaches are restricted
to small-scale settings, which often limits their applicability in practice.
To tackle this problem, we introduce an innovative architecture-based
adaptation approach to solve a concrete practical problem of VersaSense:
automating the management of Internet-of-Things (IoT). The approach,
called MARTAS, equips a software system with a feedback loop that
employs Models At Run Time and Statistical techniques to reason about
the system and adapt it to ensure the required goals. We apply MARTAS
to a building security case system, which is a representative IoT system
deployed by VersaSense. The application comprises a set of IoT devices
that communicate sensor data over a time synchronized smart mess net-
work to a central monitoring facility. We demonstrate how MARTAS
outperforms a conservative approach that is typically applied in practice
and a state-of-the-art adaptation approach for different quality goals,
and we report lessons learned from this industrial case.

Keywords: Architecture-based adaptation · Self-adaptation
Feedback loop · Internet-of-Things · Automated management

1 Introduction

Handling change is an increasingly important challenge for software engineers.
Change can manifest itself in different forms, ranging from market-driven evo-
lution of products to uncertainties a system faces during operation (e.g., sudden
c© Springer Nature Switzerland AG 2018
C. E. Cuesta et al. (Eds.): ECSA 2018, LNCS 11048, pp. 49–67, 2018.
https://doi.org/10.1007/978-3-030-00761-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00761-4_4&domain=pdf


50 D. Weyns et al.

changes in the environment or dynamics in the availability of resources). Our par-
ticular focus in this paper is on the ability of software systems to handle changes
at runtime autonomously. A prominent approach to deal with runtime change
is so called architecture-based adaptation [11,14,16,21,29]. Architecture-based
adaptation equips a software system with an external feedback loop that collects
data of the system and its environment that was difficult or impossible to deter-
mine before deployment. The feedback loop uses the collected data to reason
about itself and to adapt itself to changes in order to provide the required qual-
ity goals, or gracefully degrade if needed. A typical example is a self-managing
Web-based client-server system that continuously tracks and analyzes changes in
load and available bandwidth and dynamically adapts the server configuration
to provide the required quality of service to its users, while minimizing costs [11].

Over the past two decades, researchers and engineers have put extensive
efforts in understanding how to engineer self-adaptive systems [6,8,18,19,23]. In
recent years, the particular focus of research has been on how to provide assur-
ances for the quality goals of self-adaptive systems that operate under uncer-
tainty [4,19]. According to [27], after a relatively slow start, research in the field
of self-adaptation has taken up significantly from 2006 onwards. The field is now
– according to the Redwine and Riddle model [22] – following the regular path of
maturation and is currently in the phases of internal and external enhancement
and exploration. Self-adaptation techniques have found their way to industrial
applications, a prominent example is cloud elasticity [9,10]. However, there is a
broad agreement – at least in the research community – that self-adaptation can
contribute to solving many practical problems that originate from the continuous
change that systems are exposed to during operation.

Architecture-based adaptation is one prominent approach to realise self-
adaptation. In this approach, the external feedback loop is realised by differ-
ent interacting components that share runtime models. These models include
an architectural model of the managed system that allows the feedback loop to
reason about different system configurations and adapt the system to realise
the adaptation goals. Other prominent complementary approaches to realise
self-adaptation are self-aware computing [15], self-organisation [7], and control-
based software adaptation [24]. The focus of state-of-the art approaches for
architecture-based adaptation that aim at providing assurances for the qual-
ity goals are primarily based on applying formal techniques [4,19,30]. Some
approaches employ formal methods to provide guarantees by construction. More
recently, the use of probabilistic models to handle uncertainties at runtime has
particular gained interest. These models are used during operation to verify prop-
erties using model checking techniques to support decision-making for adapting
the system. However, these approaches use exhaustive verification, which is very
demanding in the resources and time required to make adaptation decisions.
Hence, these approaches are restricted to small-scale settings, which often limits
their applicability in practice. This is particularly the case for resource con-
strained systems and large-scale IoT setups.
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To tackle the limitations of current formal approaches for architecture-based
adaptation, we propose MARTAS, a novel approach that combines Models At
RunTime And Statistical techniques to realise adaptation. We validate MARTAS
for a building security monitoring system, which is a representative case of IoT
applications developed by VersaSense, a provider of industrial IoT solutions.
The test results show that MARTAS outperforms a conservative approach that
is typically used in practice as well as a state-of-the-art adaptation approach
that uses exhaustive verification.

The remainder of this paper is structured as follows. In Sect. 2, we explain the
basic principles of architecture-based adaptation. Section 3 introduces the IoT
application that we use for the evaluation of this research. In Sect. 4, we present
MARTAS, the novel approach for architecture-based adaptation that combines
formal models with statistical techniques at runtime to make adaptation deci-
sions. In Sect. 5, we evaluate MARTAS for a real-world IoT system deployment.
Section 6 discusses related work. In Sect. 7, we highlight lessons learned, and we
draw conclusions in Sect. 8.

2 Architecture-Based Adaptation in a Nutshell

Self-adaptation and architecture-based adaptation in particular can be consid-
ered from two angles: (1) the ability of a system to adapt in response to changes
in the environment and the system itself [6]; the “self” prefix indicates that the
system adapts with minimal or no human involvement [2], and (2) the feedback
loop mechanisms that are used to realize self-adaptation that explicitly separate
the part of a system that deals with the domain concerns (goals for which the
system is built) from the part that deals the adaptation concerns (the way the
system realizes its goals under changing conditions).

In architecture-based adaptation, the feedback loop system maintains an
architectural model of the managed system, possibly extended with relevant
aspects of the environment in which the system operates. This model is kept up
to date at runtime and used to make adaptation decisions, in order to achieve
the goals of the system. Using a model at an architectural level provides the
required level of abstraction and generality to deal with the self-adaptation prob-
lem [16,28].

An architecture-based adaptive system comprises two key building blocks: a
managed system and a managing system. The managed system comprises the
application code that realizes the system’s domain functionality. The managing
system manages the managed system; that is, the managing system comprises the
adaptation logic that deals with one or more adaptation goals. The adaptation
goals represent concerns about how the managed system realises the domain
functionality; they usually relate to software qualities of the managed system.
Adaptation goals can be subject of change themselves.

A typical approach to structure the software of the managing system is by
means of a so-called Monitor-Analyzer-Planner-Executer + Knowledge feedback
loop (MAPE-K in short). The Knowledge that is shared among the MAPE
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components contains various types of runtime models, including models of rep-
resentative parts of the managed system and the environment, models of the
qualities that are subject to adaptation, and other working models that are
shared among the MAPE components. The Monitor collects runtime data from
the managed system and the environment and uses this to update the content
of the Knowledge, resolving uncertainties (e.g., the interference of the links in
an IoT network is tracked to update the relevant runtime models). Based on the
current knowledge, the Analyzer determines whether there is a need for adapta-
tion of the managed system using the adaptation goals. If adaptation is required,
the Planner puts together a plan that consists of a set of adaptation actions that
are then enacted by the Executor that adapts the managed system as needed.

An example state-of-the-art approach that provides guarantees at runtime for
the adaptation goals is QoSMOS (Quality of Service Management and Optimisa-
tion of Service-based systems) [3]). QoSMOS models a service-based application
as a Discrete Time Markov Chain. The feedback loop employs this formal model
to identify the service configurations that satisfy the Quality of Service (QoS)
goals using a model checker. The result of the analysis is a ranking of the con-
figurations based on the required QoS requirements. The best option is used to
reconfigure the service-based system to guarantee the adaptation goals. QoSMOS
is a representative state-of-the-art approach that uses exhaustive verification to
make adaptation decisions. Due to the state explosion problem (the number of
states of the models grows exponentially with the model size, hence also the
resources and time required for verification), such approaches are restricted to
small-scale settings, which often limits their applicability in practice. MARTAS
aims at contributing to tackle this challenging problem.

3 IoT Application

In this section, we describe a building security monitoring application that we
use throughout the remainder of the paper for illustration and to evaluate MAR-
TAS. We start with introducing the problem context. Then, we give an overview
of the application setting. The section concludes with explaining the challenge
VersaSense faces with the management of this kind of IoT applications.

3.1 Problem Context

VersaSense is a provider of wireless IoT products for industrial sensing and
control systems. The company employs an in-house developed IoT technology
known as Micro Plug and Play (MicroPnP) [20], which includes a suite of ultra-
low power wireless IoT devices (motes), a wide range of sensors and actuators,
and management either as a cloud integration service or as a dedicated appliance.
The company uses an 802.15.4e wireless mesh network (SmartMesh IPTM) for
short range factory scenarios and a Long Range low power star network (LoRa1)

1 https://www.lora-alliance.org/; https://www.semtech.com/technology/lora.

https://www.lora-alliance.org/
https://www.semtech.com/technology/lora.
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for applications that require multi kilometer range. VersaSense provides IoT
solutions directly to industry in the areas of surveillance, facility management,
manufacturing, consumer goods, and precision agriculture.

The solutions developed by VersaSense support substantial automation,
including automatic identification of sensing and actuation peripherals, installa-
tion of their drivers, and static network configuration. However, the management
of deployed IoT applications, and in particular handling interference in network
connections and sudden changes in traffic load remains a challenge. This is a
major impediment to ensuring high quality of service (e.g., multi-year battery
lifetimes and high levels of reliability).

The typical approach to tackle this challenge is either by over-provisioning
(e.g., power settings are set to maximum and duplicate packets are sent to par-
ents) and/or by hand-tuning the network settings. While this conservative app-
roach may achieve good reliability (low packet loss), it is suboptimal in energy
consumption. Furthermore, this approach requires manual interventions for net-
work maintenance that are costly and error prone. In a joint R & D effort between
VersaSense and imec-DistriNet we studied and developed an innovative self-
adaptation solution to tackle this challenging problem.

3.2 IoT Application

To build a solution that automates the management of IoT applications in an
efficient way, VersaSense deployed an IoT application at the Computer Science
Campus of KU Leuven using their state-of-the-art technology. This application
is a representative case for a medium-scale IoT facility/factory developed by
VersaSense. Figure 1 shows a schematic overview of the application that is set
up as a smart mesh network with 15 motes that are equipped with different
types of sensors. The network uses time synchronized communication with com-
munication slots fairly divided among the motes.

Motes are strategically placed to provide access control to labs (RFID sen-
sors), to monitor the movements and occupancy status passive infrared sensors)
and to sense the temperature (heat sensors). The sensor data is relayed from
the motes to the IoT gateway that is deployed at a central monitoring facility.
Communication in the network is organized in cycles, each cycle comprising a
fixed number of communication slots. Each slot defines a sender and receiver
mote that can communicate.

The domain concern for the IoT network is to relay sensor data to the gate-
way. The adaptation concerns are to ensure reliable and energy-efficient commu-
nication. The VersaSense stakeholders defined the adaptation goals as follows:
(1) the average packet loss over a given time period should not exceed a required
threshold, (2) the average latency of packets should be below a given fraction of
the cycle time, (3) the energy consumed by the motes should be minimized to
optimize the lifetime of the network.

Achieving these goals is challenging due to two primary types of uncertainty:
(1) network interference and noise due to factors such as weather conditions and
the presence of other WiFi signals in the neighborhood; interference affects the
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Fig. 1. IoT system deployed by VersaSense at the computer science campus in Leuven

quality of communication which may lead to packet loss; (2) fluctuating traffic
load that may be difficult to predict; e.g., packets produced by a passive infrared
sensor are based on the detection of motion of humans, which may be difficult
to anticipate.

Two factors determine the critical qualities: the power settings of the motes
used for communication (from 0 for min power to 15 for max power) and the
distribution of the packets sent by each mote over the links to its parents (e.g.,
for two parents: 0% to one parent and 100% to the other, 20/80, . . . 100/0).
Operators can set the power settings and the distribution of packets of the
motes in the network via an interface.

The user interface also offers access to sensor data based on user defined
properties. These include the traffic load generated by motes, the energy con-
sumed by the motes, the Signal-to-Noise (SNR) ratio of the communication links
(SNR represents the ratio between the level of the signal used for communica-
tion and the level of the noise from the environment. Lower SNR implies higher
interference, resulting in higher packet loss.), and statistical data about the QoS
of the overall network for a given period.

3.3 Challenge

The general challenge we aim to tackle in this joint R & D effort is the following:

How to automate the maintenance of smart mess IoT networks to ensure
the required quality goals in the face of uncertain operating conditions?

For the evaluation of MARTAS, we defined the following concrete quality
requirements that need to be realised regardless of possible network interference
and fluctuating load of packets generated in the network:



Architecture-Based Adaptation to Automate the Management of IoT 55

R1: The average packet loss over 24 h should not exceed 10%;
R2: The average packet latency over 24 h should not exceed 5% of the cycle

time;
R3: The energy consumed by the motes should be minimized.

When architecture-based adaptation is applied, these quality requirements
become the adaptation goals.

4 MARTAS: Novel Approach to Architecture-Based
Adaptation

We now present MARTAS, the novel approach to architecture-based adaptation
that combines formal models with statistical techniques at runtime to make
adaptation decisions. We start with a general overview of MARTAS. Then we
show how we instantiated the approach to realise the adaptive IoT application.

4.1 Decision Making with Formal Models and Statistical Techniques

The key driving requirements for MARTAS are the following: (i) the approach
should provide guarantees for the adaptation goals with sufficient confidence
(sufficient is defined by the stakeholders), and (ii) the approach should make
adaptation decisions efficiently, paving the way to apply it to system settings at
an increasing scale.

The central idea of MARTAS is to equip a MAPE loop with a separate run-
time quality model for each adaptation goal. Each quality model takes care of
one adaptation concern of the system (e.g. a stochastic automaton that models
the packet loss of a network). Quality models can capture different uncertain-
ties that are represented as model parameters (e.g. interference of network links
or the traffic generated by motes). These parameters are monitored at runtime
to update the runtime models. The adaptation goals are modeled as a set of
rules that are used to select configurations that comply with the required adap-
tation goals (e.g., packet loss < 10%, minimize energy consumption). To make
an adaptation decision, the MAPE loop estimates the qualities for the different
configurations that are considered for adaptation (i.e., the adaptation options).

To that end, the MAPE loop uses runtime statistical model checking
(RSMC). RSMC combines runtime simulation with statistical techniques to esti-
mate the qualities of each adaptation option with a required level of confidence.
By combining the estimated qualities per adaptation option with the adapta-
tion goals of the system, the MAPE loop can then select the best configuration
to realize the adaptation goals. RSMC offers an efficient verification approach
compared to exhaustive approaches; it also allows balancing the confidence of
the verified quality properties with the time and resources that are needed to
compute them. MARTAS’ modularity (separate definition of quality models and
adaptation goals) also provides flexibility, paving the way for on-the-fly updat-
ing/changing models and goals.
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Figure 2 shows a blueprint architecture of MARTAS.
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Fig. 2. Blueprint architecture of MARTAS

The approach works as follows:

1. The monitor tracks uncertainties and relevant properties of the managed
system and the environment in which the system is deployment;

2. The collected data is used to update the corresponding runtime models;
3. The monitor triggers the analyser;
4. The analyser reads the adaptation options from the knowledge repository.

The set of adaptation options is determined by the different configurations
that can be selected to adapt the current configuration. An adaptation
option has a placeholder for each quality property that is subject to adap-
tation;

5. For each adaptation option, the analyser estimates the expected qualities
that are subject to adaptation. To that end, the analyser employs the statis-
tical model checker that simulates the corresponding quality model with the
settings of the adaptation option using a verification query in order to deter-
mine the expected quality with sufficient confidence (details are presented
below).

6. The analyser updates the adaptation options with the verification results,
i.e., it adds the estimated qualities to the placeholders for each adapta-
tion option; it then determines whether the current configuration is able to
achieve the adaptation goals;

7. If the current configuration is not able to achieve the adaptation goals the
analyser triggers the planner;
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8. The planner ranks the adaptation options by applying the adaptation goals
to the different adaptation options and determines the best configuration;

9. The planner generates a plan for the best adaptation option;
10. The planner triggers the executor;
11. The executor executes the plan;
12. That is, the executor executes the adaptation actions to adapt the managed

system.

In step 5, MARTAS employs RSMC. The central idea of RSMC is to check
the probability p ∈ [0, 1] that a model M satisfies a property ϕ, i.e., to check
PM (ϕ) ≥ p by performing a series of simulations. RSMC applies statistical
techniques on the simulation results to decide whether the system satisfies the
property with some degree of confidence. To verify a quality property it has to be
formulated as a verification query. We use two types of queries: probability esti-
mation (p = Pr[bound](ϕ)) and simulation (simulate N [≤ bound]{E1, ..., Ek}).
For a probability estimation query the statistical model checker applies statisti-
cal techniques to compute the number of runs needed to produce a probability
estimation p for expression ϕ of the quality model with an approximation inter-
val [p − ε, p + ε] and confidence (1 − α) for a given time bound. The values of
ε and α that determine the accuracy of the results can be set for each query.
For a simulation query, the value of N determines the number of simulations
the model checker will apply in time bound to return values for state expres-
sions E1, ..., Ek of the quality model. For this type of query, the designer has
to determine how many runs are needed to obtain a required accuracy. In our
current research, we use the relative standard error of the mean (RSEM) as a
measure to determine the accuracy of the simulation queries. The standard error
of the mean (SEM) quantifies how precisely a simulation result represents the
true mean of the population (and is thus expressed in units of the data). RSEM
is the SEM divided by the sample mean and is expressed as a percentage. E.g.,
an RSEM of 5% represents an accuracy with a SEM of plus/minus 0.5 for a
mean value of 10. In our current research, we rely on offline experiments only to
compute the number of simulations required for a particular accuracy.

Note that the different adaptation goals applied in step 8 may not be com-
pletely independent, e.g., optimizing one of the goals may affect some other goals.
In such cases, the order in which the goals are applied to the adaptation options
may provide a means to determine the priority of goals.

4.2 Applying MARTAS to the IoT Application

We now show how we instantiated MARTAS to realise the adaptive IoT appli-
cation. We start with an overview of the concrete architecture. Then we illus-
trate the runtime quality models that we used to estimate energy consumption
together with the verification query. The evaluation and lessons learned are pre-
sented in the next sections.

To solve the problem of optimising and reconfiguring the IoT network, Ver-
saSense and imec-DistriNet applied the innovative architecture-adaptive solution
to the case. Figure 3 gives an overview of the layered architecture of the approach.
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Fig. 3. MARTAS solution for the IoT application

The bottom layer consists of the managed system with the network of motes
and the gateway. The middle layer comprises a client that runs on a dedicated
machine. This client offers an interface to the IoT network via a probe and an
effector. The probe can be used to monitor the IoT network (status of motes and
links, data about the packet loss, the energy consumption, latency of the network,
etc.) and the effector adapts the mote settings (power settings of the motes,
distribution of packets sent to parents, etc.). The network engine collects data of
the network in a repository and performs analyses on the data. In manual mode,
an operator can access the IoT network via the client to track its status and
perform reconfigurations manually. Reconfigurations include changing the power
settings per communication link and changing the routing of packets by adapting
the distribution of packets sent to parents. In the architecture-based adaptive
solution, the top layer is added to the system that automatically adapts the
configuration such that the adaptation goals of the IoT network are guaranteed.

The monitor uses the probe to track the traffic load and network interferences
as well as the quality properties of interest. This data is used to update a set of
models in the knowledge repository, including a model of the IoT system with
the relevant aspects of the environment, and a set of quality models, one for each
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adaptation goal. As an example, Fig. 4 shows the energy model that is specified
as a set of timed automata.

The energy model is used by the statistical model checker to estimate the
expected energy consumption per adaptation option (recall that the set of adap-
tation options is determined by the range of power settings of the motes for each
outgoing link and the distribution of packets sent to parents). To that end it
uses the following query:

simulate 1[<= 30]Gateway . avgEnergyConsumption

Fig. 4. Quality model used in the IoT application to predict energy consumption

This query performs 30 simulations to compute the expected average energy
consumed for the next cycle. This number of simulations provides an RSEM of
0.5%, which was determined using offline experiments.

When the query is invoked, the model parameters for the adaptation option
that is verified are set using the data collected by the monitor; e.g., the probabil-
ity that each mote will generate traffic is set using the pTraffic(moteID parame-
ter, for motes with multiple parents, the distributions of packets sent to parents
are set, etc. The model is then simulated to determine its expected energy con-
sumption. The automaton on the left represents a mote. The automaton is eval-
uated for each mote in the network in the order they communicate packets (time
synchronised). When a mote gets its turn (turn[moteID]), the probability that it
will send packets is determined based on its recently observed traffic load (pTraf-
fic(moteID). The mote then sends the packets in its queue to its parents one by
one (sendPackets(packets)), i.e., the packets it received from children and the
locally generated packets. As soon as the queue is empty (sendQ=EMPTY )
the mote returns to the idle state. An idle mote can receive packets at any
time (receivePackets(packets)). The automaton on the right shows the model for
the gateway. When the gateway gets its turn, it computes the average energy
consumption that was required to communicate packets in the cycle (avgEner-
gyConsumption).
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When the different quality estimates are determined for all the adaptation
options, the analyser updates the adaptation options, i.e., it adds the values for
packet loss (pl), latency (lat), and energy consumption (eng) to the placeholders
of the adaptation options (adap opt i(pl,lat,eng), see Fig. 4. The planner is then
triggered to plan an adaptation if required. The planner starts by selecting the
best adaptation option based on the quality properties determined during anal-
ysis. The planner then checks whether this option is: (i) in use, implying that no
adaptation is required, (ii) no valid configuration is found, in this case a failsafe
strategy is applied (i.e., the network is reconfigured to a default setting), (iii)
a better option is found that can achieve the adaptation goals. If adaptation is
required, the planner creates a plan consisting of steps, where each step either
adapts the power setting of a mote for a link (e.g., pwm1 sets the power setting
of mote 1) or it adapts the distribution of packets sent over a link to a parent
of a mote (e.g., distl7 2, sets the percentage of packets send by mote 7 over the
link to mote 2). As soon as the plan is ready, the executer enacts the adaptation
steps via the effectors.

Central to the novelty of MARTAS are two concepts that work in tandem:
(i) a distinct runtime quality model for each adaptation goal, and (ii) the use of
statistical model checking at runtime that performs a series of simulations and
uses statistical techniques to estimate the qualities of the different adaptation
options using the quality models. Compared to exhaustive model checking, sta-
tistical model checking is very efficient in terms of verification time and required
resources. The tradeoff is that the results are not exact, but subject to a level of
accuracy and confidence. The engineer can set this level, but higher confidence
requires more time and resources.

5 Evaluation

We now evaluate MARTAS using the IoT application. We compare the novel
approach with a conservative approach that is typically used in practice. Then
we compare MARTAS with a state-of-the-art adaptation approach that uses
exhaustive verification.

5.1 Comparison with Conservative Approach

We used the IoT application with 15 motes that is described in Sect. 3.2 (see
also Fig. 1) to compare MARTAS with a conservative approach that uses over-
provisioning to deal with uncertainties (maximum power setting and all packets
are sent to all parents). Each mote consists of: (1) a Raspberry Pi that is respon-
sible for sensing, local processing, and network management operations, and (2)
a LoRa module2 that deals with the radio communication. The gateway runs on
a regular server machine.

As explained in Sect. 3.2, to adapt the IoT system, the power settings of
the motes can be set from 0 to 15 (min to max power), and the distribution of
2 http://ww1.microchip.com/downloads/en/DeviceDoc/50002346C.pdf.

http://ww1.microchip.com/downloads/en/DeviceDoc/50002346C.pdf.
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packets sent over the links to multiple parents can be set in steps of 20%. This
resulted in an adaptation space of in total 256 possible configurations.

We evaluated the packet loss, latency, and energy consumption of the IoT
network for both approaches over a period of 24 h. The IoT system was configured
with a cycle time of 570 s, i.e., 9.5 min, hence a period of 24 h consists of 153
cycles. Each cycle comprises 285 slots of 2 s. For each link, 40 slots are allocated
for communication between the motes. During the first 8 min of the cycle the
motes can communicate packets upstream to the gateway. The next half second
is slack time and during the remaining 1 min the gateway can communicate
adaptation packets downstream to the motes. Each mote can generate up to 10
packets per cycle, depending on the type of sensor deployed and the conditions
in the environment. The size of the queue is set to 60. Packets from children
that arrive when the queue is full are discarded. The values for SNR are based
on the actual conditions of the wireless communication. For the evaluation of
MARTAS we used verification queries with an approximation interval of 1% and
confidence of 90%, and simulations queries with a relative standard error of the
mean of 0.5%. Figure 5 shows the test results.

Fig. 5. Test results for conservative approach versus MARTAS

The boxplots show that the average energy consumption of MARTAS is
significantly better compared to the conservative approach (p value< 0.000),
and the same applies for latency (p < 0.000). For the packet loss, both
approaches have similar results and realize the adaptation goal (mean of paired
differences is 1.4%). Finally, the mean time required to realise adaptation is
45.7s [44.5 . . . 48.5], which is only a fraction of the available adaptation time
(8 min) for this setting. In conclusion, the test results demonstrate a substantial
added value of applying self-adaptation, compared to the conservative approach
that is typically used in practice.

5.2 Comparison with a State-of-the-Art Adaptation Approach

To compare MARTAS with runtime quantitative verification – RQV [3], a state-
of-the-art adaptation approach that uses exhaustive verification, we used a sim-
ulation of the same IoT application setup used in the previous experiment3. We
3 The simulator: https://people.cs.kuleuven.be/∼danny.weyns/software/DeltaIoT/.

https://people.cs.kuleuven.be/~danny.weyns/software/DeltaIoT/
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compare the packet loss and energy consumption of the IoT network, and the
adaptation time for both approaches over a period of 12 h, corresponding to 76
cycles. For the interference of links and the packets generated by the motes of
the simulated system, we used profiles based on data that we collected from
the physical deployment over a period of one week. For RQV, we translated the
automata model for packet loss to a Discrete Time Markov Chain, and the model
for energy consumption to a Markov Decision Process model. For runtime verifi-
cation we used the PRISM model checker [17] with the default settings. Figure 6
shows the test results.

Fig. 6. Test results for MARTAS versus RQV

The boxplots show that the average energy consumption of MARTAS is
sightly better compared to RQV (mean of 12.70 for MARTAS versus 12.79
for RQV, i.e., an energy saving of 4%). MARTAS achieves substantially bet-
ter results for packet loss (mean of 5.45% versus 9.11%). The results for the
adaptation time (that is primarily used for verification of adaptation options)
show that MARTAS only uses a fraction of the available 8 min to select an adap-
tation option (43s [30 . . . 46]). RQV on the other hand consumes all the available
time to select an adaptation option (508s (8m 28s) [787s . . . 529s]4). Moreover,
the boxplot most right of Fig. 6 reveals that within the available time of 8 min
RQV was able to verify only a fraction of the available adaptation options (9
[6 . . . 12]). Testing the scalability of MARTAS in simulation (by increasing the
number of motes and their connectivity) showed that the approach scales up to
similar types of networks with 25 motes. In conclusion, MARTAS achieves bet-
ter results compared to a state-of-the-art adaptation approach for all quality
requirements, while it requires only a fraction of the available adaptation time.
On the other hand, the results confirm the limitations of a state-of-the-art adap-
tation approach based on exhaustive verification in terms of the time it requires
to make adaptation decisions.

6 Related Work

Various leading ICT companies have invested significantly in the study and appli-
cation of self-adaptation techniques [14], including initiatives such as IBM’s
4 RQV could complete the ongoing verifications that were started within 8 min.
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Autonomic Computing, Sun’s N1, HP’s Adaptive Enterprise, and Microsoft’s
Dynamic Systems. These efforts have resulted in industrial applications, such
as automated server management, cloud elasticity and automated data center
management. These efforts are often based on control-based adaptation solu-
tions. For architecture-based adaptation on the other hand, there is still little
understanding about the validity and tradeoffs of incorporating it into real-world
software-intensive systems [5].

A number of recent R & D efforts have explored the application of
architecture-based adaptation in practical applications. Georgas and Taylor [12]
present a domain-independent approach for building adaptive robotic systems
and discuss two case studies. Asadollahi et al. [1] apply the StarMX framework to
self-manage an internet commerce environment that simulates the activities of a
business oriented transactional web server. Happe et al. [13] argue for hierarchi-
cally structured models to manage self-healing and self-adaptation and discuss
different viewpoints on this in the context of a robotic case. Cámara et al. [5]
apply architecture-based adaptation to an industrial middleware to monitor and
manage highly populated networks of devices. Van Der Donckt et al. [26] inves-
tigated a novel cost-benefit adaptation schema for different QoS requirements
and evaluated this approach on a real world IoT deployment. Recently, da Silva
et al. [25] apply architecture-based techniques to role-based access control for
business processes. While these related efforts apply architecture-based adap-
tation to practical applications, the only related effort that targets guarantees
for the compliance of the systems with the adaptation goals is [25]. Overall,
this paper contributes to existing efforts by applying a novel architecture-based
adaptation approach in a different but important emerging domain: automation
of the management of IoT networks.

7 Experiences and Lessons Learned

To conclude we report the results of a semi-structured interview we performed
with two members of the technical staff of VersaSense. The aim was to get further
insights in the experiences of the company with the self-adaptive solution. The
interview was structured around six key questions. We summarise the main
outcome of the interview.

Q1: What do you consider the most important benefits of the self-adaptive solu-
tion? Business and economical benefits, in particular: (i) removing manual inter-
ventions reduces costs to manage IoT deployments; (ii) being able to handle
changes whenever they occur faster, (iii) achieving more optimal configurations
in which the self-adaptive system is in the driver seat, avoiding conservative and
sub-optimal configurations with as a result longer system lifetime (energy) and
better customer experience; (iv) being able to offer 24/7 service to customers,
without interruption.

Q2: What are potential risks of the self-adaptive solution and how could
these risks be mitigated? Replacing experienced human interventions by
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self-adaptation requires trust and faith in the outcome the automated decision
making. For IoT applications that are subject to very frequent changes, the over-
head cost of self-adaptation may be an issue. E.g., when a system is optimized for
a particular range of situations, and the operational context frequently changes,
the system has to continuously adapt itself to accommodate new changes. A tra-
ditionally over-provisioned manually configured system might be able to accom-
modate more situations without the overhead of having to adapt itself at every
change. A mitigation strategy could be finding a good balance between (1) a
super-optimized self-adaptation policy for a particular situation, and (2) a less
optimized policy that can accomodate more situations. Furthermore, good sys-
tem monitoring, in combination with predicting patterns/trends of potential
changes beforehand, might allow to determine a more optimal self-adaptation.

Q3: What are the most significant experiences gained from deploying and trialing
the self-adaptive approach? The benefits of adaptation were already visible for
small IoT deployments. The risks for the company are limited as the approach
can be added as an add-on module so it can be tested in a controlled proof-
of-concept setup. It will be particularly interesting to investigate now how the
adaptive approach will scale towards bigger deployments with different applica-
tion features and quality requirements.

Q4: Why do you think the adaptation approach presented in the paper is inno-
vative or valuable for others. MARTAS is one of the first solutions that applies
self-adaptation in the context of the new domain of IoT. It is one of the first solu-
tions that actually applies automated management in the context of an existing
IoT deployment.

Q5: Do you see a broader applicability of the proposed solution for your business?
As IoT deployments and applications continue to grow in scale (i.e. number of
assets being monitored and controlled by IoT devices), heterogeneity (types of
devices and technologies involved), and complexity (i.e. application features and
quality requirements), manual maintenance will require more and more efforts
and become increasingly error-prone. We will investigate how the proposed solu-
tion can translate to other types of existing IoT applications, and how it can be
integrated to the rest of the elements inside the infrastructure spanning from IoT
devices towards cloud. Applying the proposed approach to automatically ensure
optimal quality levels while keeping the entire system operating flawlessly, will
certainly be a game-changer in this field.

Q6: What are your main lessons learned from this R &D effort? This interesting
experiment showed how cutting-edge R & D efforts can be integrated with exist-
ing products and solutions. This may lead to improved products and additional
competitive services that can be offered to customers. Solving the problem of
automating the management of IoT deployments required the combined exper-
tise from researchers and engineers from different areas: software architectures,
adaptation, IoT system engineering.
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8 Conclusions

Architecture-based adaptation is a well-studied approach to mitigate uncertain-
ties of software-intensive systems that are difficult to anticipate before deploy-
ment. The interference of the network links in an IoT system or the traffic
generated by the motes are concrete examples of uncertainties that VersaSense
faces that drove the research presented in this paper. However, existing adapta-
tion approaches to handle uncertainties and provide guarantees for the required
adaptation goals apply exhaustive verification techniques at runtime, which often
limits their applicability in practice. To tackle this problem, we presented MAR-
TAS, an innovative architecture-based adaptation approach to solve VersaSence
problem: automating the management of Internet-of-Things (IoT). This novel
approach equips an IoT application with a feedback loop that employs runtime
models and statistical techniques to reason about the system and to adapt it to
ensure the required goals. We applied MARTAS to a building security monitoring
system, which is a representative case for a class of IoT applications deployed
by VersaSense, and we demonstrated how MARTAS outperforms the current
manual approach and a state-of-the-art approach for different quality goals. The
main benefits of automating the management of IoT deployments are reduced
costs, handle changes whenever they occur faster, achieve more optimal con-
figurations, longer system lifetimes and better customer experience. The main
risks are the need for trust in the automated decision making and potentially
substantial overhead costs in settings that are subject to very frequent changes.
These risks could be mitigated by balancing the quality optimality adaptation
can achieve with the range of situation the approach can accommodate. This
R & D effort demonstrated that solving a self-adaptation problem in practice
required the combined expertise from researchers and engineers.
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28. Weyns, D., Iftikhar, U., Söderlund, J.: Do external feedback loops improve the
design of self-adaptive systems? A controlled experiment. In: International Sym-
posium on Software Engineering of Self-Managing and Adaptive Systems. SEAMS
2013 (2013)

29. Weyns, D., Malek, S., Andersson, J.: FORMS: unifying reference model for formal
specification of distributed self-adaptive systems. ACM TAAS 7(1), 8:1–8:61 (2012)

30. Weyns, D., et al.: Perpetual assurances for self-adaptive systems. In: de Lemos, R.,
Garlan, D., Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-Adaptive Sys-
tems III. Assurances. LNCS, vol. 9640, pp. 31–63. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-74183-3 2

https://people.cs.kuleuven.be/danny.weyns/papers/2017HSE.pdf
https://doi.org/10.1007/978-3-319-74183-3_2
https://doi.org/10.1007/978-3-319-74183-3_2


IoT Architectural Styles

A Systematic Mapping Study

Henry Muccini and Mahyar Tourchi Moghaddam(&)

University of L’Aquila, 67100 L’Aquila, Italy
{henry.muccini,mahtou}@univaq.it

Abstract. IoT components are becoming more and more ubiquitous. Thus, the
necessity of architecting IoT applications is bringing a substantial attention
towards software engineering community. On this occasion, different styles and
patterns can facilitate shaping the IoT architectural characteristics. This study
aims at defining, identifying, classifying, and re-designing a class of IoT styles
and patterns at the architectural level. Conforming a systematic mapping study
(SMS) selection procedure, we picked out 63 papers among over 2,300 candidate
studies. To this end, we applied a rigorous classification and extraction frame-
work to select and analyze the most influential domain-related information. Our
analysis revealed the following main findings: (i) facing by various architectural
styles that attempted to address various aspects of IoT systems, cloud and fog are
discerned as their most important components. (ii) distributed patterns are not
widely discussed for IoT architecture, however, there is foreseen a grow specially
for their industrial applications. (iii) starting from the last few years on, there is
still a growing scientific interest on IoT architectural styles. This study gives a
solid foundation for classifying existing and future approaches for IoT styles
beneficial for academic and industrial researchers. It provides a set of abstract IoT
reference architectures to be applicable on various architectural styles.

Keywords: IoT � Software architecture � Styles � Patterns
Systematic mapping study

1 Introduction

It is foreseen that 26 billion devices by 2020 and 500 billion devices by 2030 will be
connected to the Internet [1, 2] and business to business spending on IoT technologies,
apps and solutions will reach 267 billion dollars by 2020 [3]. Another estimation says
that the IoT has a potential economic impact of $11 trillion per year by 2025, which
would be equivalent to about 11% of the world economy [4]. Such predictions are a
matter of encouragement for companies to invest on IoT based applications and to
build their pillars on IoT in order to achieve their desired value creation and sustained
competitive advantage. Along with a suitable degree of maturity regarding technologies
and solutions applied on the identification, connectivity, and computation of IoT
components, a slope up over architectural concerns is further apparent. Hence, a role of
the academic community might be providing a set of standard architectures to assure
the efficiency and quality of IoT hardware and software components in practice.
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Our attention goes to one specific pillar of software architecture, that is, architec-
tural styles and patterns for engineering IoT applications. Such a focus is driven by a
concrete need: since our team is involved in the design and implementation of IoT-
based urban security systems, we have been looking for architectural styles and pat-
terns driving the way IoT components shall be combined together. Since we found a
dispersed body of knowledge on the subject, we decided to run this study.

The goal of this research is not only to classify and identify the domain state of the
art, but also to redesign a class of IoT architectural patterns according to the philosophy
and granularity of software architectures. In order to tackle this goal, a well-established
systematic mapping study has been performed. The primary studies have been chosen
based on an accurate inclusion and exclusion criteria and a deep analysis.

The main contributions of this study are: (i) Addressing to an up to date state of the
art class for IoT architectural styles and patterns, which can be used as a future research
reference. (ii) Providing a sustainable map to be used as a framework to learn and
evaluate architectural styles, patterns, and descriptions. (iii) Identifying current char-
acteristics, challenges and publication trends with respect to IoT architectures
approach. (iv) Classifying IoT architectures according to their specific computation and
communication attributes.

The audience of this study are both research and industry communities interested to
improve their knowledge and select a suitable architectural style for their IoT system.

This paper is structured as follows. Section 2 motivates the need for this study.
Section 3 reveals the design of this systematic study. Section 4 presents a taxonomy on
IoT architectures and provides background. Sections 5, 6, 7 and 8 elaborate on the
obtained results whilst Sect. 9 runs a number of horizontal analysis over the results and
discusses the obtained results. Section 10 analyses threats to validity and Sect. 11
closes the paper and discusses future works.

2 Motivation

This section discusses the motivation that this research arose from and argues the
potential scientific value of it. Thus, an extensive search has been performed in Sub-
sect. 2.1 to discover the related existed systematic reviews. Subsection 2.2 gives a
concise reasoning upon the necessity for a systematic mapping study on IoT Archi-
tectural styles.

2.1 Existing Mapping Studies Related to IoT Architectures

Toward learning the already conducted systematic studies (literature review (SLR) and
SMS) related to this research topic, we performed a manual search using the following
search string:

(“systematic mapping study” OR SMS OR “systematic literature review” OR SLR
OR “Literature Review” OR LR) AND (IoT OR “Internet of Things” OR “Internet-of-
things” OR “Internet of Everything” OR “Internet-of-everything”) AND (“software
architecture” OR “system architecture” OR architecture).
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Subsequently, in order to best organize the search, following inclusion and
exclusion criteria are determined.

Inclusion Criteria: (i) Studies performed a systematic literature review or mapping
study on architectural solutions, methods, styles, patterns or languages specific for IoT
and IoE; (ii) Studies written in English language and available in full-text; (iii) Studies
subject to peer review.

Exclusion Criteria: (i) Studies that are focusing only on architecture or only on IoT
(and IOE); (ii) Studies that are NOT secondary (systematic literature reviews and
mapping studies); (iii) Studies in the form of tutorial papers, editorials, etc.

Further, a multi-stage search and selection process has been performed based on
three authentic databases: the ACM Digital Library, ISI Web of Science, andWiley Inter
Science. We initially found a total number of 317 papers and after impurity removal,
merge and duplication removal, the selection process applied on 214 remaining studies.
After all, we did not find any systematic study on the topic. However, a slightly related
study with different objective and scope has been chosen to be compared with our
research. The search and selection procedure can be find at the following link: https://
www.dropbox.com/s/bxri9gv91sv5ttu/DE.ECSA-IoT.Style.xlsx?dl=0.

The research [5] conducted a systematic survey that purposed on categorizing the
challenges arise from cloud-based software systems architecture. Strengths: The paper
is well-structured and follow a clear methodology and research questions, concluded by
a framework for future researches. Why it is different from our work: the paper [5] tries
to discover the related literature on software architecture of cloud-based systems; it is
merely a review and they do not conclude it with proposing any architecture pattern; it
is not specifically related to IoT. Our objective is instead to propose different styles and
patterns for IoT architecture, applicable on all IoT domain solutions, whether based on
cloud or not.

2.2 The Need for a SMS on IoT Architectural Styles

This research complements the existing studies regarding the IoT architectures with
introducing a literature-based classification of its styles and patterns. So far, a large
body of knowledge has been proposed in both IoT systems and software architecture
styles, however, a lack of harmonizing and integrating them together is undeniable.

Although the IoT has been introduced more than one decade ago, the research and
industry communities are still trying to define its different aspects effectively. Trying to
discover the impact of existing literature on proposing a new set of IoT architectures,
we identify, describe, and classify different styles to help the community to choose the
best architecture for their IoT models.

3 Research Method

The goal of this research is formulated based on the Goal-Question-Metric perspectives
[6] as follow:

Purpose—to propose a class of IoT architectures
Issue—with identifying, describing, and classifying different styles and patterns
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Object—based on existing IoT architecture approaches
Viewpoint—from the research and industry viewpoints.

3.1 Search Strategy

To achieve the aforementioned goal, we arranged for a set of questions along with their
rationale:

• RQ1. What sort of architectural styles can be used in order to model an IoT
system? This research question aims at categorizing different types of IoT archi-
tecture styles in detail.

• RQ2. How IoT architectures can be categorized based on their distribution level?
This research question aims at classifying the IoT architectures based on their
intelligent edge and element collaboration.

• RQ3. How scientific publications on IoT architectural styles evolved over time?
What strategy they used to structure their research? This research question aims at
identifying and classifying the interest of researchers in IoT architectural styles and
their various characteristics over time.

• RQ4. What type of evidence (evaluation or assurance) is provided by existing
literature on IoT architectural styles? This question reviews whether the primary
studies guaranteed their functionality through a kind of validation or not.

Furthermore, an optimum search strategy is expected to provide effective solutions
to the following questions: which, where, what, and when [7].

Which Approaches? The search strategy consists of two phases: (i) an automatic
search on academic database; and (ii) a snowballing. The first step has been performed
using a search string (Listing 1) followed by the selection criteria applied on the set of
results. Then a snowballing procedure on the included results of the automatic search
has been applied in order to structure the final set of primary studies. In the course of
snowballing, if a paper considered to be included, snowballing has been applied iter-
atively and the procedure ended when no new papers have been found. The snow-
balling has been performed starting from the 30 primary studies resulting from the
automatic search, leading to the final set of 63 primary studies.

Where to Search? The electronic databases that we used for the automatic search
(ACM, IEEE, ELSEVIER, SPRINGER, ISI Web of Science, and WILEY Inter Sci-
ence) are known as the main source of literature for potentially relevant studies on
software engineering [8].

What to Search? Following some test executions and refinements, the search string
has been finalized as shown in Listing 1. We tried to codify the string in a way to be
best adapted to specific syntax and criteria of each selected electronic data source.

Listing 1. Composed Search String
(IoT OR "Internet of Things" OR "Internet-of-things" OR IoE OR "Internet of Everything" OR "Internet-
of-everything") AND (Architecture OR "Software Architecture") AND (patterns OR styles)
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Further, we combined all studies into a single dataset, after removal of impurities
and duplicates.

When and What Time Span to Search? We did not consider publication year as a
criterion for the search and selection steps. Thus, all studies coming from the selection
steps, until February 2018, were included regardless of their publication time.

3.2 Selection Strategy

A multi-stage selection process (Fig. 1) has been designed to give a full control on the
number and characteristics of the studies coming from different stages.

As it is shown in Fig. 1, we are not mentioning Science Direct since we did not
achieve any result on that. Furthermore, we used “Software Engineering” as a
refinement criterion for Springer engine as it led to over 183,000 results that were
potentially outside of our intended research area. We did not use Google Scholar since
it may generate many irrelevant results and have considerable overlap with ACM and
IEEE; nevertheless, we used Google Scholar in the forward snowballing procedure.
Hence, we considered all the selected studies and filtered them according to a set of
well-defined inclusion and exclusion criteria (Table 1).

Data Extraction. This step is aimed at identifying, collecting, and classifying data
from the selected primary studies (the list is available on online data extraction file) to
answer the research questions. To this end, a detailed classification framework has been
designed to structure the extracted data. Indeed, designing an effective classification
framework needs a comprehensive analysis of the primary studies’ content. Further-
more, the IoT standards and formal software architecture classifications supported us
through categorizing the data extraction. The systematic process that we followed for
this phase consists of collecting and clustering the keywords of primary studies.

Fig. 1. Search and selection process
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Data Synthesis. The data synthesis activity involves collating and summarizing the
data extracted from the primary studies [9] with the main goal of understanding,
analysing, and classifying current research on IoT architectures. The data synthesis has
been structured of following two phases. Vertical analysis: (i) analysis of extracted data
individually to track the trends and collect information of each study with respect to the
research questions; (ii) analysis the discrete extracted data as a whole to reason about
potential patterns and trends. Horizontal analysis: (i) analysis of extracted data to
explore possible relations across different dimensions and facets of the research. (ii)
using contingency tables analysis to cross-tabulate and group the data and made
comparisons between two or more concepts of the classification framework.

Study Replicability. A replication package is provided to tackle the page limits of a
conference paper: (https://www.dropbox.com/s/bxri9gv91sv5ttu/DE.ECSA-IoT.Style.
xlsx?dl=0). The package is available as an excel file with different sheets that include
all necessary information such as primary studies, data extraction, keywording and
clustering, snowballing, primary studies distribution, validity examination and etc.

4 Background and Taxonomy

4.1 Reference Definition of IoT

This section provides some various definitions of IoT mostly derived from our primary
studies, then suggest a reference definition for the purpose of this work.

According to P5 [10], the Internet of Things comprises large numbers of smart
devices at the network edge that may have to collaborate and interact with each other in
real time. P54 [11] defines IoT as an environment in which objects (devices) are given
unique identifiers and the ability to transfer data over a network without having human-
to-human or human-to-computer interaction. From another view (P32) [12], IoT could
be specified as a worldwide network of interconnected entities. As stated in P21 [13]
IoT is an ecosystem that interconnects physical objects with telecommunication

Table 1. Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

Studies proposing, leveraging, or analysing
architectural solutions, methods, techniques,
or styles and patterns, specific for IoT and
IoE

Studies that, while focusing on IoT, do not
explicitly deal with their architecture (e.g.,
studies focussing only on technological
aspects, inner details of IoT)

studies subject to peer review (e.g., journal
papers, papers published as part of
conference proceedings, workshop papers,
and book chapters)

Secondary or tertiary studies (e.g., systematic
literature reviews, surveys, etc.)

Studies written in English language and
available in full-text

Studies in the form of tutorial papers,
editorials, etc. because they do not provide
enough information
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networks, joining the real world with the cyberspace and enabling the development of
new kinds of services and applications.

All aforementioned definitions have their focus on the networking aspect of IoT,
whilst the following two definitions emphasize on its computational environment too.
IoT is a construction paradigm of computational systems where the objects around us
will be in the network in order to extend the capabilities of the environment (P16) [14].
The Internet of Things is a technological revolution that represents the future of
computing and communications (P34) [15].

IoT can be considered as the future evaluation of the Internet that realizes machine-
to-machine (M2M) learning. Thus, IoT provides connectivity for everyone and every-
thing (P48) [16]. P9 [17] focuses on IoT objectives that are: Convergence, Communi-
cation, Connectivity, Content, Computing, and Collections. In the Cluster of European
Research Projects report, IoT is defined as an integrated part of the future Internet, which
ensures that ‘things’ with identities can communicate with each other [18].

From our point of view, IoT is: the internal/external communication of intelligent
components via internet in order to improve the environment through proving smarter
services.

4.2 Taxonomy

By analyzing the primary studies under such a dimension, a set of representative
concepts have been identified as shown in Fig. 2. The taxonomy shows various
architectural concerns on IoT systems. The focus of this study goes to the architectural
styles and distribution patterns in the following sections, hence, the remaining features
are briefly addressed here.

Reference Architectures. An IoT reference architecture shall provide a uniform basis
to understand, compare and evaluate different IoT solutions. Among our primary
studies, (15/63) papers try to develop a kind of IoT reference architecture. For instance,
P61 [19] introduces an abstract IoT reference architecture with an abstract view on the
components of IoT and their possible connections, in order to ensure a broad appli-
cability. However, a number of more extendable, scalable and flexible IoT reference
architectures are presented as architectural platforms.

Architectural Platforms. Most of IoT platforms are cloud- based and open-source.
Amazon web service IoT platform (AWS) dominates the consumer cloud market. AWS
provides multiple data processing services (Amazon S3, Amazon DynamoDB, AWS

Fig. 2. IoT architectures taxonomy
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Lambda, Amazon Kinesis, Amazon SNS, Amazon SQS). However, the core logic of
the platform is located within the Message Broker, Thing Registry, Thing Shadows,
Rules Engine, and the Security & Identity component, and hence, they are encom-
passed by the IoT Integration Middleware [19]. Microsoft Azure IoT Hub is another
example. Its reference architecture is composed of core platform services and
application-level components to facilitate the processing needs across three major areas
of a typical IoT solution: (i) device connectivity, (ii) data processing, analytics, and
management (iii) presentation and business connectivity [20]. There are other platforms
such as OpenMTC, FIWARE, and SiteWhere, that can be find over selected primary
studies.

Architecture Activities. The architecture activities variables have been extracted from
Li et al. [21] paper. Most discussed activities in architectural level are analysis (32/63)
and understanding (30/63) a kind of IoT architecture. This denotes that each study tries
to define its own IoT architecture to address a specific problem. However, (19/63)
studies reused a special style of architecture that was mostly layered architecture.
Evaluation (22/63), description (18/63), synthesis (14/63) are among the superlative
used activities but impact analysis (11/63), implementation (10/63), recovery (9/63),
and maintenance (8/63) are rarely discoursed.

Quality Attributes. The standard used to categorize quality attributes comes from ISO
25010 tied with some specific IoT attributes derived from the primary studies key-
wording. The architectural style of an IoT system can have effect on quality attributes
but does not guarantee all of them. The most recognized quality attributes that are
supposed to be satisfied with a proper IoT architecture are scalability (45/63), security
(43/63), interoperability (38/63), and performance (37/63). Scalability is an essential
attribute as IoT should be capable to perform at an acceptable level with this scale of
devices. Furthermore, security gains a high concern in an IoT system, in which dif-
ferent components and entities are connected to each other through a network. Inter-
operability helps heterogenous components of IoT to work together efficiently. Privacy
(32/63), availability (28/63), mobility (26/63), reliability (24/63), resiliency (12/63),
and evolvability (9/63) are positioned in the lower degree of concern. Resiliency, that is
effective handling the failures and is a critical aspect, is not addressed vastly through
primary studies but has a huge capacity to be studied in future researches.

5 Architectural Styles (RQ1)

The primary studies used one or more overlaid style(s) to design their software
architecture. However, among the various IoT architectural styles, layered architecture
(34/63) was the clear winner as reported in Table 2. In the Layered View the system is
viewed as a complex heterogeneous entity that can be decomposed into interacting
parts [22].

The primary studies designed their layered architecture in different ways, ranged
from 3 to 6 layers. As shown in Fig. 3, a three-layer IoT architecture is composed of the
perception layer, processing and storage layer, and application layer.
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The perception layer consists of the physical objects and sensor devices (P48) [16]
in order to identify and collect environmental information and bring them to the virtual
space. The Processing and storage layer is in charge of analysing and storing the data
gathered by sensors. Various techniques such as cloud computing, ubiquitous com-
puting, database software and intelligent processing are being used to best handle the
collected information. The application layer provides the service requested by cus-
tomers (P63) [23] ranging from agriculture to smart healthcare.

Table 2. Architectural styles

Architecture style #studies Studies

Layered 34 P1, P3, P4, P7, P12, P17, P18, P20, P21, P25, P26, P27,
P33, P34, P35, P39, P41, P42, P43, P44, P45, P48, P49,
P50, P52, P53, P54, P55, P57, P58, P59, P61, P62, P63

Cloud based 32 P1, P2, P5, P6, P8, P9, P10, P11, P15, P16, P20, P21, P24,
P26, P28, P29, P32, P33, P40, P44, P45, P48, P51, P52,
P55, P56, P57, P58, P60, P61, P62, P63

Service oriented 15 P3, P9, P13, P14, P16, P19, P22, P23, P26, P28, P37, P38,
P51, P55, P63

Microservices 6 P6, P13, P16, P19, P46, P47
Restful 5 P22, P29, P30, P37, P43
Publish/subscribe 3 P10, P27, P31
Information
Centric
Networking

2 P14, P18

Fig. 3. Layered IoT architecture
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Four-layer IoT architecture has one more substrate on the top, that is called busi-
ness layer. This layer is responsible for the handling of entire IoT system. By creating
the business models according to dynamic value propositions, this layer designs the
roadmap of IoT system. To build a five-layer IoT architecture, a network layer can be
added to transfer information from perception to processing layer. The transmission
medium can be wired or wireless and technology can be 3G, UMTS, Wi-Fi, Bluetooth,
infrared, ZigBee, etc. depending upon the sensor devices (P48) [16]. A number of
studies brought an adaptation layer into the IoT architecture to make it six-layer. This
layer is positioned between perception and network layers. This layer is an adapter that
facilitate interoperability of IoT heterogenous devices.

Cloud-based architecture (32/63) that has a cloud as the core of their computational
part has the second position. Capability of processing and storing big amount of data
and providing contextual information, is making cloud computing as an inseparable
part of IoT. Fog Computing is a significant extension to cloud environment. Few
studies (7/63) addressed fog, as it is a new cloud computing paradigm. Fog brings
virtualized cloud services to the edge of the network to control the devices in the IoT
(P5) [10].

Cloud architecture is characterized by its various services towards providing an IoT
system. As mentioned in P1 [24], Infrastructure as a Service (IaaS), provides virtual-
ized computing resources. The physical machines and virtual machines are stored in the
IaaS, and the task of the engines in the IaaS is to mine the data. Data Storage as a
Service (DSaaS) provides data storage and information retrieval by a database man-
ager. Platform as a Service (PaaS) provides the tools to work with the machines in the
cloud. Software as a Service (SaaS) provides resources to the users for interpretation
and visualization of data in the cloud. Fog is positioned between cloud and IoT devices
and facilitates the devices to communicate with cloud and provides them processing,
storage, and networking services.

Service oriented architectures (SoA) (15/63) put the service at the centre of their
IoT service design. In fact, the core application component makes the service available
for other IoT components over a network. SOA consists of following three elements.
A service provider that is the primary engine underlying the services. A service broker
that describes the location of the service and ensures its availability. A service con-
sumer or client that asks the service broker to locate a service and determine how to
communicate with that service [25].

Microservices (6/63) and the SOA approach in the IoT have the same goal, that is
building one or multiple applications from a set of different services (P19) [26].
A microservice is a small application which can be deployed independently, scaled
independently, tested independently and which has a single responsibility [27]. Liter-
ally, the microservice architecture approach utilizes the SoA together with knowledge
of software virtualization to overtake the architecture quality limitations like scalability.
In this style, an application is built by the composition of several microservices.

Restful (5/63) is underlying architecture organization style of the Web and provides
a decoupled architecture, and light weight communication between service producer
and service consumers, that is suitable for cloud-based APIs. Restful has its essence on
creating loosely coupled services on the Web so that it can be easily reused. It further
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has advantages for a decentralized and massive-scale service system align well the field
of pervasive computing [28].

In Publish/subscribe architectural style (3/63) publisher sends a message on a
specific topic, regardless of receiver, and a subscriber can subscribe and receive the
same topic asynchronously. The system is generally mediated by a number of brokers
which receive published messages from publishers and send them to subscribers.

Information Centric Networking (ICN) (2/63) instead, makes the information as a
base of the device communication. ICN matches the application pattern of IoT systems
and provides an efficient and intelligent communication paradigm for IoT [29].

6 Distribution Patterns (RQ2)

On the other hand, IoT distribution patterns classify the architectures according to edge
intelligence and elements collaboration (P32) [12]. The IoT architecture patterns are
classified as: centralized, collaborative, connected intranets, and distributed based on a
layered architectural style (Fig. 4).

Centralized. In this pattern, the perception layer provides data for the central pro-
cessing and storage component to be provided as services in the next layer. Connecting
to this central component is mandatory to use the IoT service. The central component
can be a server, cloud, or a fog network connected to cloud.

Collaborative. Here a network of central intelligent components can communicate in
order to form and empower their services.

Connected Intranets. In this pattern, sensors provide data within a local intranet to be
used locally, remotely, and centrally. The advantage is that if the central component
fails, local service is still in access. The disadvantage is that there is no fully distributed
framework to facilitate the communication among components.

Distributed. Here all components are fully interconnected and capable to retrieve,
process, combine, and provide information and services to other components towards
the common goals.

Table 3 shows the distribution patterns that are used by the primary studies. Most
of studies used centralized pattern (51/63) followed by collaborative (10/63), fully
distributed (4/63) and connected intranets (2/63) patterns. Distributed patterns are not
widely discussed for IoT architecture, however, there is foreseen a grow specially for
industrial applications.

Towards our objectives, we present a three and four layered architecture that are
composed of the following layers (Fig. 4). Perception: represents the physical sensors
and actuators of the IoT that aim to collect information. Processing and Storage: is the
central IoT component that stores and analyses the data gathered by perception com-
ponents to be in access of other entities for their application purposes. Application:
determines the class of services provided by IoT. Business: manages the IoT system for
its specific goal, by creating business models derived from the information of appli-
cation layer. The styles are described as follow:
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7 Publication Trend (RQ3)

In this section the publication evolution on IoT architectural styles are presented. To
this end, publication year, venue, type and strategy are extracted and discussed below.

Publication Year. Figure 5 shows the distribution of IoT architectural styles litera-
ture. It noticeably indicates that the number of papers grows by time and there are few
papers published before 2014. This result confirms the scientific interest and research
necessity on IoT architecture issues in the last few years.

Table 3. IoT distribution patterns

Distribution
patterns

#studies Studies

Centralized 51 P1, P2, P5, P6, P7, P9, P10, P11, P12, P13, P14, P16, P17, P18,
P19, P20, P21, P22, P23, P24, P27, P28, P29, P31, P32, P33,
P34, P35, P37, P38, P40, P41, P42, P43, P44, P46, P47, P48,
P49, P50, P51, P53, P54, P55, P56, P57, P59, P60, P61, P62,
P63

Collaborative 10 P3, P8, P15, P25, P26, P32, P36, P45, P51, P58
Connected
intranets

4 P4, P32, P39, P58

Distributed 2 P32, P52

Fig. 4. IoT architectural patterns
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Publication Type. The most common publication type is conference paper (35/63),
followed by journal (21/63), book chapter (4/63) and workshop paper (3/63). Such a
high number of conference and journal papers may point out that architecting IoT is
maturing as a research topic despite its still relatively young.

Publication Venues. From the extracted data we can notice that research on IoT
architecture is spread across many venues, spanning different research areas such as
telecommunications, software engineering, cloud computing, security, etc. This can be
figured out as an indication, which IoT architectural styles area is perceived today as
orthogonal with respect to many other research areas, rather than a specific research
topic.

Research Strategies. To learn the dispersion of research strategy across primary
studies, we take advantage of well-known research approaches proposed by Wieringa
et al. in [30]. Solution proposal (39/63) is the most common strategy, followed by
philosophical papers (17/63). Considering the IoT as a novel concept, it is justifiable
that most of studies try to provide their own solution for architecting it. Evaluation
research (16/63) is the third most common strategy highlighting the efforts through
industrializing the conducted studies. Validation (10/63) comes afterward, to show the
degree of evidence provided by researches. Experience (2/63) and opinion (1/63)
research strategies are also used but rarely.

8 Provided Evidence (RQ4)

Empirical Method. Lots of primary studies did not provide any type of evaluation to
validate their work (26/63). However, the other empirical methods are used as follows:
Experiments (13/63), illustrative examples for evaluation (13/63), case studies (12/63),
and prototype (10/63).

Assurance. Concerning assurances, (15/63) studies provide some level of evidence for
claims using experimental results and (10/63) of the studies use simulation. Few studies

Fig. 5. Distribution of primary studies by type of publication
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used emulation (3/63), formal method (3/63) and consistency checking (2/63) to assure
their study functionality. However, in most of studies (41/63), no assurance is provided
at all.
These results confirm that the evidence provided by studies is often obtained from
experiments, and application of the researches results to toy examples.

9 Horizontal Analysis and Discussion

This section reports the results orthogonal to the vertical analysis presented in the
previous sections. For the purpose of this section, we cross-tabulated and grouped the
data, we made comparisons between pairs of concepts of our classification framework
and identified perspectives of interest.

9.1 Architectural Styles VS IoT Distribution Patterns

Here the question is, “Which architectural style is more often used for different IoT
distribution patterns?” As shown in Table 4, (26/63) studies used the centralized
layered architecture and again (26/63) based the centralized architecture on a cloud
component. 4 over 11 studies that used collaborative pattern, presented their archi-
tecture in a layered style, whilst (7/11) made it based on cloud. The attention on cloud
confirms the close relation between IoT and DevOps culture, and the necessity of
developing a software computational core for such a system.

However, there is a clear research shortcoming on IoT distributed patterns devel-
opment. The level of distribution has a direct impact on quality attributes satisfaction.

9.2 IoT Elements vs Quality Attributes

“What quality attributes need to be best satisfied for each main element of IoT?”
Previous paragraph investigated on deciphering the best software architectural style for
IoT. A software architectural style over another, exposes a set of specific quality
attributes for the IoT system. Moreover, the wisdom of various IoT elements over the
architecture is crucial to design a quality-oriented system. Six main elements of

Table 4. Styles vs distribution patterns

IoT distr. patterns IoT styles
Layered Cloud

based
SOA Micro

service
Restful Pub/sub ICN

Centralized (#: 58) 26 26 12 6 4 3 2
Collaborative (#: 11) 4 7 3 - - - -
Connected intranets (#:
4)

3 2 - - - - -

Distributed (#: 2) 1 2 - - - - -
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IoT [23] along with their relevant primary studies count are: communication (55/63),
sensing (55/63), computing (39/63), service (30/63), identification (27/63), and
semantics (22/63). However, we made this horizontal analysis to learn what quality
attributes should be focused on for each IoT element. Scalability is the most respected
feature for identification element. To improve the scalability of this element, a certain
design choice of identification devices can be made. Security is also in the center of
attention for IoT elements, despite, interoperability is strongly tied with security and
privacy in IoT.

9.3 Distribution Patterns vs Quality Attributes

Which IoT quality attributes should particularly be assured to design an appropriate
IoT pattern? To answer, the horizontal analysis shows that other than security, scal-
ability, and interoperability that are most respected; IoT distribution patterns are
strongly addressing the IoT system’s performance. Regarding the rapid development
and extension of devices in the edge of the network, performance of IoT should be
maintained in an appropriate level. Performance highly depends on the data storage and
application logic distribution among edge and central servers. Fog computing is
introduced to improve performance level tied with the response time.

10 Threats to Validity

According to Petersen et al. [31], the quality rating for this systematic mapping study
assessed and scored as 73%. This value is the ratio of the number of actions taken in
comparison to the total number of actions reported in the quality checklist. The quality
score of our study is far beyond the scores obtained by existing systematic mapping
studies in the literature, which have a distribution with a median of 33% and 48% as
absolute maximum value. However, the threats to validity is unavoidable. Below we
shortly define the main threats to validity of our study and the way we mitigated them.

External Validity: In our study, the most severe threat related to external validity may
consist of having a set of primary studies that is not representative of the whole
research on IoT architectural styles. We mitigated this potential threat by (i) following a
search strategy including both automatic search and backward-forward snowballing of
selected studies; (ii) defining a set of inclusion and exclusion criteria. Along the same
lines, gray and non-English literature are not included in our research as we want to
focus exclusively on the state of the art presented in high-quality scientific studies in
English.

Internal Validity: It refers to the level of influence that extraneous variables may have
on the design of the study. We mitigated this potential threat to validity by (i) rigor-
ously defining and validating the structure of our study, (ii) defining our classification
framework by carefully following the keywording process, (iii) and conducting both
the vertical and horizontal analysis.
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Construct Validity: It concerns the validity of extracted data with respect to the
research questions. We mitigated this potential source of threats in different ways. (i)
performing automatic search on multiple electronic databases to avoid potential biases;
(ii) having a strong and tested search string; (iii) Complementing the automatic by the
snowballing activity; (iv) rigorously screen the studies according to inclusion and
exclusion criteria.

Conclusion Validity: It concerns the relationship between the extracted data and the
obtained results. We mitigated potential threats to conclusion validity by applying well
accepted systematic methods and processes throughout our study and documenting all
of them in the excel package.

11 Conclusion

In this paper we present a systematic mapping study with the goal of classifying and
identifying the domain state-of-the-art and redesign a class of IoT architectural styles
respecting the philosophy and granularity of architectural patterns. Starting from over
2,300 potentially relevant studies, we applied a rigorous selection procedure resulting
in 63 primary studies. The results of this study are both research and industry oriented
and are intended to make a framework for future research in IoT architectural styles
field. As a future work, we will assess the potential integration of existing research to
an industrial level of IoT.
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Abstract. The rapid proliferation of the Internet of Things (IoT) is
changing the way we live our everyday life and the society in general.
New devices get connected to the Internet every day and, similarly, new
IoT services and applications exploiting them are developed across a
wide range of domains. The IoT environment typically is very dynamic,
devices might suddenly become unavailable and new ones might appear.
Similarly, users enter and/or leave the IoT environment while being inter-
ested in fulfilling their individual needs. These key aspects must be con-
sidered while designing and realizing IoT systems.

In this paper we propose ECo-IoT, an architectural approach to enable
the automated formation and adaptation of Emergent Configurations
(ECs) in the IoT. An EC is formed by a set of things, with their ser-
vices, functionalities, and applications, to realize a user goal. ECs are
adapted in response to (un)foreseen context changes e.g., changes in
available things or due to changing or evolving user goals. In the paper,
we describe: (i) an architecture and a process for realizing ECs; and (ii)
a prototype we implemented for (iii) the validation of ECo-IoT through
an IoT scenario that we use throughout the paper.

Keywords: Internet of Things · Emergent configurations
Self-adaptive systems · Software architecture

1 Introduction

The rapid proliferation of the Internet of Things (IoT) is changing the way we
live and work. New things, (smart) connected objects and devices with their
services, functionalities, and applications become available everyday. Leveraging
such things, new IoT systems are continuously developed providing new types of
services and applications in various fields such as home automation, transporta-
tion and health-care to mention a few [7,12].
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The context of IoT systems continuously changes as things, which are pos-
sibly resource-constrained and mobile, can join at anytime or become suddenly
unavailable. The high dynamicity of the context makes it hard, if not impossible,
to fully specify at design time which things constitute IoT systems, which things
contribute to perform what tasks, and in which order. Therefore, to enable the
IoT, it should be possible to automatically form IoT systems based on dynami-
cally discovered things and adapt the systems in response to emergent user needs
and unforeseen context changes. To meet the aforementioned requirements, we
exploit the concept of Emergent Configurations (ECs) to engineer IoT systems.
The term EC refers to a set of things that connect and cooperate temporarily
to achieve a user goal. A thing is any (smart) connected object or device, with
its functionalities and services or applications [2,5].

A concrete use case that we use throughout the paper is the smart meeting
room scenario presented in [2]. Imagine a person who enters an unknown smart
meeting room and intends to deliver a presentation. The smart room is equipped
with several things including light and temperature sensors, curtains and light
actuators, a smart screen, and a smart projector. The user expresses her/his goal
to deliver a presentation e.g., via an application installed on her/his smartphone.
The goal is interpreted and a set of suitable things are automatically chosen to
form an EC which satisfies it. For instance, the EC constituents could be the
smartphone, the smart projector, the light sensor and the curtains actuator.
The smartphone connects and streams the presentation to the projector which
illustrates it while curtains are closed automatically due to the high light levels
detected by the light sensor. Suppose that, during the presentation, the projector
turns off suddenly. The failure is automatically detected and the user is proposed
to continue the presentation using the available smart screen.

ECo-IoT consists of: (1) a process which enables the automated formation
and adaptation of ECs in response to dynamic context changes; (2) an archi-
tecture which enables the realization of ECs and refines the abstract architec-
ture presented in [2]. We also present a first prototype implementing both the
architecture and the process and validate the feasibility of ECo-IoT through the
smart meeting room scenario. In this paper, we assume that: (i) the user goal
specification and interpretation process is already performed and correctly ter-
minated, i.e., we take as input a decomposed goal (we plan to investigate this
as future work); (ii) ECs are formed, enacted and adapted within well-defined
spatial boundaries: ECs goals are achieved within locations e.g., room, building.
Consequently, the number of things involved in forming and adapting an EC is
not expected to be massive. This notably mitigates the well-known IoT scalabil-
ity problem [12]. (iii) ECs are realized to achieve goals within non-critical time
constraints: we envision that ECs are realized within the timescale of seconds;
(iv) ECs are formed and enacted at runtime: ECs are realized to achieve user
goals expressed at runtime; (v) ECs constituents share a context ontology.

The remainder of this paper is organized as follows. Section 2 discusses
related works. Section 3 presents an overview about ECs. Section 4 introduces the
ECo-IoT approach. Section 5 presents the prototype implementation. Section 6
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presents an experiment which validates the feasibility of the approach. Finally,
Sect. 7 concludes the paper and outlines future work directions.

2 Related Work

In the context of architectures, a number of works have been proposed. The
IoT-A project presented a service-based reference model architecture for the
IoT [8]. The architecture we propose in this paper is compliant with the IoT
reference architecture and refines the process management and the service orga-
nization layers presented in the reference architecture functional view. Kramer
et al. [11] proposed an architectural reference model to support automatic
(re)configuration of self-managed systems. The model relies on a set of pre-
defined plans to achieve system goals. When new goals are introduced, new
plans are generated in a timely consuming process. Aura is an architectural
framework designed to enable users to continue their tasks in mobile contexts
where they can move between different environments and to adapt progressing
computations apropos the dynamic availability of services [22]. User tasks are
precompiled at design time and appropriate services are (re-)assigned at runtime.
Another architecture which adopts a similar approach is SIA, a service oriented
architecture designed to enable the integration of the IoT in enterprise services
[18]. In SIA, business processes are modelled at design time using an extended
version of BPEL which allows dynamic assignment of services during the pro-
cesses execution. Although services can be (re)assigned at runtime, specifying
execution flows at design time limits systems flexibility as updating execution
flows automatically, in response to unforeseen context changes or emergent user
needs, is not supported in both Aura and SIA. Dar et al. [10] proposed a high
level service oriented architecture designed to enable adaptive service composi-
tion for the IoT. The reconfiguration of the composed services is performed at
design time through user interfaces. Thus, automated adaptations in response
unforeseen context changes are not supported.

Hussein et al. [14] proposed a model-driven approach to enable IoT systems
to adapt at runtime. A set of system states and adaptation triggers are mod-
elled at design time based on anticipated context changes. When an adaptation
is triggered, the system is switched from one state to another based on the
designed models. Ciortea et al. [1] proposed an agent-based approach for com-
posing goal-driven IoT mashups. IoT things are modelled offline as agents or
artefacts according to their capabilities. Agents rely on predefined plans which
specify how their goals are achieved. In cases where goals cannot be achieved
individually, agents interact and cooperate, in a network like system called STN,
to compose IoT mashups which achieve the goals. Marrella et al. [15] presented
SmartPM, a framework for enabling automated adaptation of processes using
situation calculus and AI planning. Processes are defined by designers using a
graphical editor. Events and exceptions which disrupt the processes enactment
are automatically detected and recovery procedures are automatically gener-
ated to adapt faulty processes. Seiger et al. [21] proposed another framework for
enabling workflow-based Cyber-physical Systems to self adapt. The framework
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utilizes the MAPE-K loop notion to automatically adapt workflows in response
to detected failures. Relying on predefined plans in [1], process (or workflows) in
[15,21] or models of possible system states and adaptation triggers in [14] limit
systems flexibility as it is hard to foresee at design time IoT systems constituents
in dynamic and mobile contexts.

The MobIoT is a service-oriented middleware designed to address the het-
erogeneity, interoperability and scalability in mobile IoT contexts [19]. User
requests are achieved by applying an ontological-based composition approach
which exploits the notation of probabilistic registration and lookup mechanisms.
The approach addresses specific types of requests related to real world mea-
surement in the physics and chemistry domains. Mayer et al. [20] proposed an
approach to achieve user goals by dynamically composing service-based IoT
mashups. IoT things are described by means of semantic services. User goals
are described in a machine understandable way and can be expressed via a user
interface. Given the semantic description of the user goal and a list of services,
a plan which comprises a set of services is generated to achieve the goal. The
proposed approach supports adaptation apropos the dynamic availability of ser-
vices. Compared to our approach, we consider additional intrinsic contextual
properties of IoT things including connectivity status, operational status (i.e.,
on/off) and if they rely on batteries. In addition, exploiting the notion of events,
our approach possesses more effective reasoning capabilities about performed
adaptations.

3 Emergent Configurations Background

In [2], we presented an abstract architecture for ECs describing how they are
automatically formed and adapted. In this section, we first overview the proposed
architecture, then refine it by presenting the ECo-IoT. The abstract architecture,
illustrated in Fig. 1, comprises a set of components. The User Agent (UA) is an
application running on one of the existing smart devices (e.g., smartphone) and

Fig. 1. A high level architecture for realizing ECs
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used to enable users to interact with the system. The Emergent Configuration
Manager (ECM) is responsible for automatically forming ECs to achieve user
goals (if possible) and for adapting ECs in response to runtime context changes.
The Thing Manager (TM) is responsible for discovering and registering avail-
able IoT things, monitoring their statuses and reporting any changes to the
ECM. Finally, a set of (IoT) things which, following indications of the ECM,
communicate and collaborate to realize ECs. The ECM comprises the following
subcomponent:

(i) Goal Manager : is responsible for interpreting user goals and forming ECs
which achieve them;

(ii) Adaptation Manager : is responsible for adapting ECs in response to context
changes. ECs are adapted by executing the Monitor-Analyze-Plan-Execute
plus Knowledge (MAPE-K) loop -better described in Sect. 4.1;

(iii) Context Manager : is responsible for maintaining ECs context;
(iv) Enactment Engine: is responsible for enacting ECs by commanding or

requesting ECs constituents to perform functionalities in specific orders;
(v) System Knowledge Base: is the container of the context of ECs.

In this paper, we mainly focus on the realization of the ECM component while
the realization of the TM and UA are planned for future works.

4 The ECo-IoT Approach

In this section, we present the ECo-IoT approach for realizing ECs. More specif-
ically, we present a process and a refined architecture developed to enable the
automatic formation and adaptation of ECs.

4.1 The ECo-IoT Process

Figure 2 shows the ECo-IoT process1 for enabling the automated formation and
adaptation of ECs. The EC formation process starts with a user interacting
with the goal manager (via the user agent) to express her/his goal by sharing
a goal description. The goal manager expects that the shared description com-
prises (at least) a goal type (e.g., deliver presentation) and spatial boundaries
(e.g., a specific room). After analyzing the goal description, the goal manager
requests the context manager to provide the semantic knowledge about the goal
type and the context of the specified spatial boundaries including, for instance,
available things and their capabilities. In cases where the goal type or the spatial
boundaries are not known to the context manager, the goal interpreter engages
in a complex process which involves interactions with the user to better analyze
her/his goal description. It also interacts with the user to identify e.g., her/his

1 For presentation purposes, in Fig. 2, we omit some details. The process is modelled
using the standard Business Process Model and Notation (BPMN) http://www.
bpmn.org.

http://www.bpmn.org
http://www.bpmn.org
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Fig. 2. ECs formation and adaptation process

preferences (when applicable). Based on the goal interpretation and the retrieved
context, the goal manager tries to generate a plan which achieves the user goal
when enacted. The user is informed whether or not the requested goal is achiev-
able. If a plan is found, the goal manager forms an EC and forwards it to the
context manager which updates knowledge base. Afterwards, the goal manager
sends the EC to the user agent which illustrates needed info to the user (e.g.,
EC constituents). Then, the user agent requests the enactment engine to enact
the EC. The user goal interpretation and ECs enactment processes are out of
the scope if this paper and planned for future works.

To enable the automated adaptation of ECs, the EC adaptation process
exploits the notion of Monitor-Analyze-Plan-Execute plus Knowledge (MAPE-
K) loop adopted from the field of Self-adaptive Systems. In general, ECs are
adapted due to: (i) changes in available things and their status; (ii) evolving user
goals. Several components monitor various parts of the context. The thing man-
ager continuously monitors available things and their status. It mainly monitors
things connectivity status, operational status (i.e., on/off), locations and bat-
tery levels (when applicable). The thing manager periodically reports detected
changes to the context manager which updates the knowledge base. The con-
text manager continuously monitors the context and analyzes if context changes
affect any running EC. If an EC is affected, the context manager generates events
about the detected changes and updates the knowledge base. In this paper, we
consider the following types of events: (1) an IoT thing is disconnected; (2) an
IoT thing is no longer situated within the spatial boundaries of an EC which
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comprises it; (3) an IoT thing is running out of battery. As can be noted, these
events model only the loss of IoT things. We plan to consider events which model
the availability of new things and evolving user goals in our future work.

The adaptation manager continuously monitors events in the knowledge base.
When an event is detected, the adaptation manager analyzes it and decides
a proper adaptation procedure. Based on the detected event type, adaptation
procedures can be reactive or proactive. Reactive adaptations procedures are
applied in response to events of type (1) and (2), while proactive adaptations are
applied in response to events of type (3). An example of a reactive adaptation is
to propose the user to continue the presentation using an available smart screen
after the sudden loss of the used smart projector. An example of a proactive
adaptation is to propose the user to switch to an available laptop to stream the
presentation as the battery level of the used smartphone is less than a specific
threshold and expected to turn off soon. The number of proactive events that
can be generated about a thing battery level is configurable in order not to
overwhelm the user with many messages. The goal manager then tries to find a
new plan that maintains the achievement of the user goal. If a plan is found, the
goal manager proposes the adaptation to the user and asks for her/his approval.
If the user accepts the proposal, the goal manager forms a new version of the EC,
changes the status of the former version and links both ECs via the event which
triggered the adaptation process. The status of an EC is ready for execution
when it is newly formed, in execution when it is being enacted, adapted in
case it is adapted, enacted successfully in case it achieves the goal and failed in
case it cannot be adapted to maintain the goal achievement. The EC versioning
subprocess enables the reasoning about all performed adaptations. The process
then continues as described in EC formation process.

4.2 A Refined Architecture for Realizing ECs

Figure 3 illustrates a refined architecture based on the abstract architecture and
the ECs realization requirements formulated in [2]. The architecture also com-
plies with the well known architectural design principles such as separation of

Fig. 3. A refined architecture for realizing ECs
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concerns and modularity. In the following, we describe in more details the ECM
subcomponents which we mainly focused on for the realization of ECs in this
paper.

4.3 Managers Components

Goal Manager. This component comprises five subcomponents responsible for
forming ECs which achieve user goals when enacted. The User Agent Manager is
responsible for interacting with the User Agent. The Goal Interpreter is respon-
sible for analyzing goals descriptions in the context of their spatial boundaries.
The Planner is responsible for generating (if possible) plans which achieve the
goals when enacted. It supports the system to cope with dynamic (unforeseen)
context changes and to utilize heterogeneous IoT things. Generated plans com-
prise a set of actions (i.e., tasks) which might have different complexity levels
based on the autonomy of available things. The Context2PDDL Translator is
responsible for generating files needed for the planning process by translating
goals interpretations and the context of identified spatial boundaries to the Plan-
ning Domain Definition Language (PDDL) [6].

The EC Internal Manager is responsible for updating the user agent manager
about ECs formation and adaptation processes, instantiating ECs when plans
are found by the planner, maintaining their statuses and versioning them when
they are adapted.

Context Manager. This component comprises three subcomponents respon-
sible for maintaining and reasoning about ECs context. The Context Parser
is responsible for receiving and parsing information about available things and
their statuses. This information is forwarded to the Knowledge Base Adminis-
trator which is responsible for manipulating the knowledge base. The Reasoning
Engine comprises two subcomponents, the Semantic Reasoner and the Rule-
based Engine. The semantic reasoner is responsible for querying the context
ontology and inferring semantic knowledge. The rule-based engine is responsible
for monitoring the KB and generating events when the conditions of the rules
defined in the rules repository are met.

Adaptation Manager. This is an event-based component which comprises two
subcomponents responsible for adapting ECs in response to context changes.
The Event Monitor is responsible for detecting events created by the reasoning
engine. The Event Handler is responsible for analyzing how detected events
affect running ECs and for triggering proper adaptation processes when needed.

4.4 Knowledge Base Component

Context Ontology. This component contains the semantic representation of
ECs context. The context of IoT systems can be represented by various means
such as graphical based modelling, markup scheme based modelling, key-value
based modelling and ontology based modelling to mention a few [3]. Ontologies
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are composed of a set of concepts represented by classes, relations represented by
properties and concept instances represented by individuals. They are considered
among the most suitable techniques to maintain systems contexts [3,23]. Reasons
for this include: their expressiveness, representation of shared understanding
of knowledge among involved parties and the availability of several tools and
reasoning engines which support their usage [3,17,24]. Figure 4 illustrates the
main classes of the ECs context ontology.

Fig. 4. Main classes of the ECs context ontology

The owl:Thing class is the superclass for all classes in the ontology. The IoT-
Thing class models the types of IoT things supported by the system. It has three
subclasses, Sensor, Actuator and SmartDevice. The Service class models exter-
nal services which can be consumed by the system. For instance, a service which
can be used to convert a presentation to a format supported by a smartphone.
The User class models system users. The Goal class models the types of goals
which are supported by the system. The exploration of this class is out of the
scope of this paper and is planned for future works. The Capability class models
the types of functionalities provided by things types. Functionalities types are
modelled as subclasses e.g., senseLightLevel. The Event class models specific
types of events in the context of ECs. It has three subclasses GoalBasedEvents,
AvailabilityEvents and UnavailabilityEvents. The UnavailabilityEvents class has
three subclasses which model the events described in Sect. 4.1. The GoalBasedE-
vents and AvailabilityEvents classes model respectively events related to evolving
user goals and the availability of new things. The exploration of these classes
is planned for future works. The GeographicalSpace class models available loca-
tions. The structure of this class is adopted from the SOUPA space ontology [4].

The ontology also comprises object properties which model the following
relations: (1) users have goals and locations; (2) IoT things have capabilities and
locations; (3) services have capabilities; (4) IoT things are connectable; (5) IoT
things are connected; (6) Geographical spaces have sub spaces. The ontology also
comprises a set of data properties which model: (1) things operational status;
(2) things connectivity status; (3) if a thing relies on batteries or not; (4) a thing
battery level when applicable; (5) capabilities preconditions and effects written
in the PDDL language; (6) timestamps of triggered events.

Our approach requires that a developer models offline the mentioned context
ontology. However, note that several parts of the knowledge (e.g., things individ-
uals, locations, battery levels, connectivity statuses, etc.) can be automatically
populated from the data sent by the thing manager with the support of an IoT
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platform. For instance, the Amazon AWS-IoT platform2 supports the manage-
ment and runtime monitoring of registered things. Geographical spaces (i.e.,
locations) can be populated automatically by consuming services in a smart
building. Still, developers need to extend the ontology when introducing new
types of things and defining things capabilities.

EC Repository. This component is a container of active and archived ECs.
An EC comprises a user goal and its’ spatial boundaries, a set of things and
capabilities, the plan generated to achieve the goal, the EC version and status.

Rules repository. This component comprises business rules which are appli-
cation specific and generic rules which are required to realize ECs. An example
of a business rule is to lower light levels in a room if a presentation is ongoing
via a projector. An example of a generic rule is that two things are connectable
if they have Wifi capabilities.

5 Prototype Implementation

In this section, we present some implementation3 details about the prototype we
developed to validate the feasibility of ECo-IoT. The prototype is implemented in
Java (version 1.8) and integrates the OWLAPI (version 5.1.3)4 with the JavaFF
planner (version 2.1.5)5. The context ontology is represented by OWL [16] and
the EC repository is realized by a relational PostgreSQL database.

5.1 The Knowledge Base

The Context Ontology. Let us consider that “room19” is a smart meeting
room which contains a set of IoT things. Tables 1 and 2 illustrate (partially)
how the available things are modelled in the context ontology. As capabilities
preconditions and effects are modelled in PDDL, they are explored in Sect. 5.4.
We created an individual of the user class and set the user location to “room19”.

Table 1. Representation of some object properties in the context ontology

Individual Individual class hasCapability Capability class hasLocation

smart projector a SmartProjector illustrate presentation a IllustratePresentation room19

smart screen b SmartScreen illustrate presentation b IllustratePresentation room19

smart phone c SmartPhone stream presentation c StreamPresentation room19

laptop d Laptop stream presentation d,

illustrate presentation d

StreamPresentation,

IllustratePresentation

room19

2 https://aws.amazon.com/iot/.
3 The prototype code is available at https://github.com/iotap-center/eco-iot.
4 http://owlapi.sourceforge.net.
5 http://personal.strath.ac.uk/david.pattison/#software.

https://aws.amazon.com/iot/
https://github.com/iotap-center/eco-iot
http://owlapi.sourceforge.net
http://personal.strath.ac.uk/david.pattison/#software
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Table 2. Representation of some data properties in the context ontology

Individual Individual class isConnected hasStatus reliesOnBattery hasBatteryLevel

smart projector a SmartProjector True False False N/A

smart screen b SmartScreen True False False N/A

smart phone c SmartPhone True True True 20%

laptop d Laptop True False True 60%

5.2 The Context Manager

To enable the ECM to receive status updates about available things from the
thing manager, we implemented the context parser component based on the
Publish/Subscribe model and subscribed it to topics defined at the simulated
thing manager. The KB administrator utilizes the OWLAPI to maintain the
knowledge represented in the context ontology.

To dynamically generate events, we implemented a thread which periodically
checks the EC context ontology for new changes in the status of available things
(see Sect. 4.1). We plan to integrate a rule-based engine to enable the dynamic
manipulations of rules at runtime. This will enable developers and end users to
define business rules at runtime to better configure their smart environments.

5.3 The Adaptation Manager

In this first prototype implementation, the event monitor is implemented as a
thread which continuously checks if new events are created in the KB. The event
handler implements the part of adaptation process which handles the events
detected by the event monitor.

5.4 The Goal Manager

In the implemented prototype, we integrated the JavaFF planner which is an
open source planner based on [9]. The JavaFF planner requires two PDDL files to
generate a plan, namely, the domain file and the problem file. For the prototype,
we have manually defined both files. We plan to implement the Context2PDDL
component to automatically generate these files. The domain file comprises three
basic parts, namely, types, predicates and actions. Types represent the hierarchy
of information structure in the planning domain. More specifically, they are the
translation of the classes hierarchy in the context ontology. For instance, as
illustrated below, smart devices, sensors and actuators are sub-types of the type
IoT-Thing.

(:types ... smartDevice sensor actuator − IoT−Thing ...

Predicates are the result of translating data and object properties. For instance,
as illustrated below, the ontology data property hasStatus is translated to the
hasStatus predicate in the domain file. The symbol ? is used to declare a variable
(e.g., ?t) of the type which directly follows it (e.g., IoT-Thing).
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(: predicates ... (hasStatus ?t − IoT−Thing ?st − status) ...

Finally, actions represent the translation of things capabilities modelled in the
ontology. We recall that capabilities data properties are already specified in
strings that are described in PDDL. As illustrated in below, actions are described
by parameters, preconditions and effects. Parameters of a capability are rep-
resented by variables. Preconditions specify the conditions needed to perform
actions. For example, it is only possible to turn on a thing if it is already turned
off. Effects represent changes in the state of the world if actions are executed
successfully. For instance, executing successfully the action defined below results
in turning on a specific IoT thing.

(: action turnThingOn

:parameters (?thing − IoTThing)

:precondition (hastatus ?thing off)

:effect (hastatus ?thing on))

)

The planning problem file comprises three basic parts, namely, objects, initial
states and desired states. As illustrated below, objects represent instances of the
types defined in the domain file. The set of instantiated objects in the problem
file is the same set of individuals in the context ontology.

(: objects ... smart projector a − smartProjector ...

The initial state of the world is a set of predicates representing a particular
situation. As illustrated below, the status of the smart projector a object is
false meaning that the smart projector is turned off.

(:init ...( hasStatus smart projector a false )...

Desired states are described by means of predicates which specify desired changes
in the state of the world. Desired states represent the translation of goals inter-
pretations. The desired state in the smart meeting room scenario is illustrated
below. The EC internal manager is implemented to perform its responsibility
described in Sect. 4.1.

(:goal (illustrate smartProjector1 presentation1 ))

6 Experimenting ECo-IoT

In this section we validate the feasibility of our approach by putting in action the
prototype we implemented. We recall that we already realized a number of the
ECo-IoT components in this first prototype, as shown in Fig. 3. The additional
effort is planned for future work. This means that here we validate the feasibility
of ECo-IoT while gaining initial insights about the performances of a subset of it.
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6.1 Forming ECs

We assume that the user has expressed her/his goal to be “deliver a presentation
in room19” and that the goal is received by the goal manager which derived the
goal type (i.e., deliver a presentation) and the spatial boundaries (i.e., room19).
In the current implementation, the goal interpretation process is prespecified and
is dedicated to run the smart meeting room scenario. The goal manager queried
context manager about the (capabilities of) things which are situated in room19.
The context manager responded with the set of individuals presented in the
Tables 1 and 2. We envision that the output of the goal interpretation correlates
decomposed goals with available capabilities. More specifically, to specify which
of the existing devices can store a presentation file, can stream it and which of
them can illustrate it.

To specify where the presentation file is stored, the goal interpreter interacted
with the user through the user agent manager and the user agent. In addition,
it asked the user about the preferred device to stream and illustrate the pre-
sentation by highlighting possible options. In the current implementation, the
user interacted with the goal interpreter through the console. The user selected
her/his smartphone as the source of the presentation and the available smart
projector as the preferred illustration device. Based on that, the plan illustrated
below was generated to achieve the user goal. First, the thing manager turns
the projector on and connects it to the user smartphone. Then, the smartphone
streams the presentation to the smart projector which illustrates it. The forma-
tion process then continued as described in Sect. 4.1.

( turn on thing smart projector a )
( connect things smart phone c smart projector a )
( stream presentation presentation1 smart phone c smart projector a )
( illustrate presentation smart projector a presentation1 )

6.2 Adapting ECs

To simulate the enactment of the EC formed in Sect. 6.1, we updated manu-
ally the system knowledge base simulating the supposed execution of the gen-
erated plan. For instance, we changed the status of smart projector a to be
true meaning that the smart projector is turned on. As already mentioned, this
process will be automated when the thing manager and the enactment engine
are realized. Then, we published two messages to the context manager to trig-
ger reactive and proactive adaptation processes. We illustrate one scenario per
each category. The first message stated that smart projector a is disconnected.
The message was received by the context manager which generated an event
that was detected by the adaptation manager. In response, the adaptation man-
ager triggered the adaptation process which generated a plan that substitutes
smart projector a with smart screen b. The adaptation was proposed to the user
(via a printed message on the console) and the EC was versioned properly after
the user accepted the proposal.
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The second message stated that the battery level of smart phone c is 12%
which was less than the configured threshold to trigger the proactive adapta-
tion process. The context manager automatically created an event which was
detected by the adaptation manager. The adaptation manager triggered the
proactive adaptation process as described in Sect. 4.1. The user was proposed
to switch to laptop d to continue the presentation. The user accepted the pro-
posed adaptation by communicating via the console and the EC was versioned
properly.

6.3 Discussion

The dynamicity of IoT contexts and the involvement of the human in the loop
require ECs to be responsive. Designing ECs to be goal-oriented, supports meet-
ing this requirement. Indeed, specifying the goal spatial boundaries notably miti-
gates the well-known scalability issue in the IoT [12]. The implemented prototype
presents an evidence about the feasibility of the ECo-IoT approach. Although
some components are not implemented yet, they do not seem to require intensive
resources for performing their responsibilities. The semantic model of the context
ontology, having the goal ontology defined, is expected to reduce the complex-
ity of the goal interpretation process. Although it is required that the context
ontology be modelled by developers, several parts of the operational (dynamic)
knowledge can be populated automatically as described briefly in Sect. 4.4. From
a user perspective, we envision that the user needs only to express her/his goal
without being concerned about how available things can achieve it. In addi-
tion, the goal interpretation process should not overwhelm the user with many
requests. We plan to investigate these aspects in our future work.

In Sect. 5.4, we explained the mapping between the PDDL files structures
and the context parameters. The process of translating context to PDDL is not
expected to be computationally complex as we do not expect to deal with a huge
number of things due to goals spatial boundaries and to the responsiveness of
the context retrieval process (see below). The process of creating events is not
complex either, as it creates events when rules preconditions are met. Likewise,
the process of detecting events is not complex as it is not more than continuously
querying the KB for new events. The process of enacting ECs may impose some
complexity in cases where ECs aim to achieve contradicting goals, when ECs
compete on available resources or when ECs are formed, enacted or adapted in
uncertain contexts.

The fast retrieval of the context contributes to the responsiveness of the sys-
tem. Therefore, we conducted an experiment to evaluate the knowledge retrieval
process when the number of individuals in the context ontology increases.
Figure 5a illustrates the response time of a query which retrieves an increas-
ing number of fully specified things situated within specific spatial boundaries.
Things were automatically instantiated, specified and persisted. As can be noted,
it is evident that the KB administrator scales well when the number of individ-
uals in the ontology increases.
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Fig. 5. Performances of the KB administrator and the planner

The planner is another key component which is involved whenever an EC
is formed or adapted. AI planning is well known for being a resource intensive
process [13]. Therefore, we conducted an experiment to evaluate how the planner
performs in a smart room that has 200 IoT things which possess 800 capabili-
ties on average. Note that these numbers do not represent an upper bound or
a limitation of the approach. To setup the experiment, the planning domain
file was automatically generated. To simulate realistic conditions, several initial
states were declared, many generated actions were complex with respect to their
preconditions and effects and goals were achievable by multiple possible plans.
Figure 5b illustrates that the planer responds in the order of a few seconds when
generated plans comprise up to 24 actions. All experiments were conducted on
a dual-core CPU running at 2.7 GHz, with 16 Gb memory.

In the future, we expect to have some additional computational complexity
from the components to be developed. In order to mitigate the complexity, we
plan to work on proposing intelligent and efficient goal interpretation techniques
that reduce, as much as possible, domain and problem spaces of AI planning
processes.

7 Conclusion and Future Work

New things get continuously connected and embedded everywhere. This gives
to the Internet of Things (IoT) an increasingly important role in all aspects
of our society. Devising concrete architectures and approaches is then a needed
enabler to support the effective use of IoT systems. In this paper, we presented
the ECo-IoT approach to enable the automated formation and adaptation of
Emergent Configurations while dealing with realistic IoT scenarios including
runtime changes. We also described our first prototype for the validation of
ECo-IoT in terms of its feasibility and performances of some key components.

Some future directions we plan to investigate include: devising a suitable goal
language; exploring (intelligent) processes and techniques for effective and effi-
cient goal interpretation; investigating automated mechanisms supporting rule-
based reasoning; handling situations where concurrent ECs compete on available
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resources or aim to achieve contradicting goals; proposing mechanisms to enable
the automated adaptation of ECs in response to evolving user goals and the
availability of new things; devising mechanisms to enable the formation, enact-
ment and adaptation of ECs in uncertain contexts. Additionally, we aim at:
extending the prototype by implementing e.g., a thing manager exploiting an
IoT platform, rule engine, a Context2PDDL translator, a goal interpreter, and
an enactment engine; conducting trade off analysis among existing IoT deploy-
ment models to support decision making about the ECo-IoT deployment; and
performing a more extensive evaluation.
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Abstract. Designing Industrial IoT (IIoT) systems enforces new sets
of architectural decisions on software/system architects. Although a rich
set of materials for architecting enterprise software systems exist, there is
a lack of reference documents on architectural decisions and alternatives
that architects face to design IIoT systems. Based on our experience in
designing IIoT systems in various domains such as process automation,
discrete manufacturing and building automation, we provide a catalogue
of architectural decisions, their impacts on the quality attributes of sys-
tems, and technology options to realize each design alternative.

Keywords: IIoT systems · Architecture design · Cloud platform

1 Introduction

In designing software systems, including Industrial IoT (IIoT) systems, archi-
tects face various design alternatives, which have different impacts on the desired
quality attributes of the target system. Unlike enterprise software systems [1],
there is a lack of reference documents on architectural decisions and alternatives
that architects face when designing IIoT systems. There have been however sev-
eral attempts to define reference architectures [2–4] and design patterns for IoT
systems [5]. Although in these reference architectures and patterns, certain archi-
tectural decisions are already made, architects still face several alternatives and
decisions to derive concrete architectures from them and to realize the patterns.
This paper presents a set of architectural decisions, which we collected based
on our experience in five IIoT projects in the domains of process automation,
building automation and IIoT platforms.

As depicted in Fig. 1, in this paper we consider three layers in IIoT systems:
Asset, Platform and Application. Assets are constituents of an IIoT system,
which must interact with each other and with the rest of the system towards
fulfilling the system’s goals. These are physical devices such as motors and con-
trollers, as well as software entities such as an application running on a robot.

S. Malakuti was partially supported by German Federal Ministry of Education and
Research in the scope of the BaSys 4.0 project (01—S16022).
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Fig. 1. Three layers in IIoT systems

A core part of an IIoT system is
the platform on which it is built. The
IIoT platform can be extracted as com-
mon services/components that are inde-
pendent of a specific application. This
may include communication paradigms,
APIs, security concepts, data mod-
els, cloud environments and even hard-
ware components such as communication
gateways.

Various applications such as data analytics and predictive maintenance appli-
cations can be developed on top. A special class of applications in industrial sys-
tems is the engineering tools, which will be considered in this paper. These tools
offer features to, for example, define the structure of a plant, define location of
devices, configure devices, etc.

Fig. 2. The catalogue of architectural decisions



A Catalogue of Architectural Decisions for Designing IIoT Systems 105

Figure 2 depicts parts our catalogue of architectural decisions, which will be
explained throughout the paper. This table depicts design alternatives, their
positive and negative impacts on various quality attributes and possible imple-
mentation options. Figure 3 shows the dependencis among the decisions.

Fig. 3. Dependencies among design alternatives

2 Architectural Decisions for the Asset Layer

2.1 Representation of Assets in Information Models

The assets in IIoT systems must be connected to the cyber world to be accessed
and manipulated by applications running in the cyber world. This indicates the
need for an information model for the assets, which maintains various informa-
tion about them, and is used as an interface to access and communicate with
the assets. Various terms such as digital twins and administration shell are being
used to refer to such information models [6]. While designing the information
model of an asset, an architect must make the following decisions.

Information Model Content. The following decisions exist:

Standardized vs. Proprietary Information: The content of information
models is in general domain- and application-specific; nevertheless, there are var-
ious proposals to standardize the content, which can be adopted by architects
as means to increase the interoperability of the information models. Automa-
tionML [7] is an example. If the adopted standards are not expressive enough
to define desired information, their functional suitability for a system reduces.
To overcome this problem, companion standards may be proposed to extend the
existing standards.

Raw vs. Semantically Augmented Information: Even if information is
represented based on some standards, due to the multiplicity of industrial stan-
dards, it is necessary to ensure that the semantics/meaning of the information
is known in a machine-readable form. This would help to increase the interoper-
ability of IIoT systems. The information can be augmented with semantic tags,
and/or ontologies can be adopted to define the semantics of the information. The
information provided by eCl@ss [8] or semantic ontologies in format of OWL can
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be used as the source for semantic tags. For example, by tagging an information
item with the eCl@ss classification number 0173-1#02-BAA036#009, we indi-
cate that the information item represents the maximum operating temperature
of a temperature transmitter.

Information Acquisition. Two alternatives are considered for populating the
content of information models:

Manual vs. (Semi-) Automatic: The content might be provided manually, for
example, during the engineering process. This would require suitable engineering
tools for IIoT systems (see Sect. 4). Alternatively, it might be possible to (semi)
automatically infer the content of information models. For this, discovery and
network scanning mechanisms must be adopted to discover assets on the IIoT
network and scan their information. Various technologies such as UPnP [9] can
be adopted for this matter.

Depending on the desired functionality of an IIoT system, both manual and
(semi) automatic information acquisition might be needed, otherwise the func-
tional suitability of the system will be influenced. For example, design and sim-
ulation models of a sensor are added manually, and its live parameters might be
acquired after its installation by scanning network.

Information Deployment. An architect must decide which part of informa-
tion must be deployed on which target. The key prerequisite to have flexible
deployment is to support modularity in information models, so that information
pieces can be deployed separately. The three following alternatives are distin-
guished for deployment targets, which are not mutually exclusive.

Embedded in Assets: If assets are physical devices, depending on their com-
putation power and the complexity of their information models, the information
models might be embedded alongside their other business objects; e.g. via a
container-based architecture such as using Docker containers. Delivering assets
with embedded information models, which comply with industry standards, help
to increase the interoperability of the assets. However, if it is the only supported
way of deploying the information models, it may reduce the functional suitabil-
ity of the systems in scenarios where complex information models are required.
Besides, depending on the adopted network architecture, it may also reduce the
security of systems because the assets must be directly accessible; i.e. the security
boundaries are at the level of the assets.

On Edge: IIoT systems may also contain many legacy assets, whose internal
architecture does not support embedded information models. Here, the alterna-
tive for making such assets interoperable with other IIoT assets is to deploy the
information models on-premise on a server/gateway (e.g. OPC UA server [10]).
Such a server acts as the standardized communication gateway, using which the
assets are connected to IIoT systems; hence, interoperability requirements are
fulfilled. Even if IIoT systems only consist of IIoT-compatible assets with embed-
ded information models, on-premise gateways are still a promising solution to
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increase the security of the systems by bringing the security boundaries at the
edge level.

On Cloud: Information models might also be deployed on external clouds. This
is normally the way to expose information outside a premise. As for the on-
premise alternative, cloud-based deployment might be needed to fulfill desired
functionality of IIoT systems, e.g. remote monitoring, and helps to improve the
security of the systems. This alternative might have negative impact on the
performance of the systems because of network communications.

3 Architectural Decisions for the Platform Layer

3.1 Discovery Mechanisms

A core responsibility of an IIoT platform is to ensure that assets as well as their
information models can be found efficiently. Therefore, a discovery mechanism
is an important component in such a platform.

Manual vs. Automatic Asset Discovery On-premise: Assets can be made
known in IIoT systems by manually configuring their connections. This may help
to improve the interoperability of the assets because one may easily add addi-
tional hacks to make the assets discoverable. Manual discovery reduces the main-
tainability and efficiency of the systems because the (re-)configuration activity
must be done manually. These problems can be overcome by adopting an auto-
discovery mechanism as it is facilitated by some protocols such as UPnP [9].

Manual vs. Automatic Cloud Endpoint Discovery: When a regional cloud
gateway is not available due to network issues, a discovery mechanism needs to
provide an alternative for the edge gateway to send its data to. In cloud-based
scenarios, manual configuration and discovery of cloud endpoints reduces the
maintainability and efficiency of the systems, because of large number of assets
that have to be configured. Besides, the availability of the systems reduces,
because the necessary fallback mechanisms to cope with the cases that an end-
point is down are not by default in place.

3.2 Communication Aspects

Communications Towards Edge. The following alternatives exist:

Generic vs. Domain-specific Protocols: On the edge level, modern pro-
tocols such as OPC UA [10] support multiple communication paradigms, i.e.
client/server and publish/subscribe. This enables architects to choose the best
suiting combination for the specific environment where communication takes
place. Additionally, domain-specific communication protocols (e.g., Modbus)
may need to be taken into account to support the installed bases. When adopting
generic protocols, we may run into compatibility issues if assets do not support
the adopted protocols. On the other hand, due to their generality, the main-
tainability and interoperability of the target system will improve. In contrary,
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domain-specific protocols are tailored and optimized for a specific domain; hence
they deliver better performance, while compromising maintainability and inter-
operability because one has to deal with many protocols in an IIoT system.

Communications Toward the Cloud. The following alternatives exist:

Message-oriented vs. Transaction-oriented: It mostly makes sense to
choose a firewall-friendly message-based protocol to be able to route the traffic
securely and efficiently towards the cloud. For an IIoT system that is mostly
about sending messages out towards the cloud, a combination of a secured chan-
nel via WebSockets [11] as transport channel with a tunneling of a message
based protocol such as MQTT [12] or AMQP [13] seems a good fit. Alterna-
tively, OPC UA using its publish/ subscribe model might also be used for such
communication paths.

Although message-oriented protocols offer better scalability and perfor-
mance, they may fall short in providing the desired functionality of a system.
It is because they are mainly focusing on ‘sending’ message and one has to
offer workaround to emulate scenarios where ‘receiving’ responses are needed.
For more interactive communications, traditional HTTP(S) request/response
paradigms should be used.

3.3 Cloud-Level Interoperability

Larger IIoT systems might consist of multiple cloud-based IIoT systems that
must interact with each other. Cloud-level interoperability is studied from two
perspectives: (a) interface-level, and (b) information-level.

Interface-Level Interoperability. Two alternatives are distinguished:

Standardized vs. Specific Interfaces: Easily accessible, yet at the same
time controllable interfaces need to be provided to other clouds. This can either
be based on standards (e.g. OPC UA) or at least easily discoverable state-of-the-
art REST interfaces which allow for a technology-independent implementation of
the corresponding connectors. Adhering to specific interface standards improves
the interoperability of systems, but may also limit the possibility to implement
certain functionality of the systems if the standards are not expressive enough.

Information-Level Interoperability. When exchanging data, it must be pos-
sible to identify what the data is about and how various data sources relate to
each other. Two alternatives exist to make the information models of cloud-based
IIoT systems map-able to each other:

Common Model vs. Peer Mapping: Mapping of the information models can
be achieved by either mapping to a common intermediate model definition (e.g.
using OPC UA) or by providing custom mappings between peer clouds. The
former increases the interoperability, but may negatively affect the functionality
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of the systems because the common model may not be expressive enough to
define desired information models. Custom mappings resolve these issues with
the price of reduced interoperability.

4 Architectural Decisions for Engineering Tools

4.1 User Experience and Mobility

Desktop-based vs. Web-based: With respect to usability and functional
suitability, desktop-based engineering tools offer advantages over web-based tools
because they can offer more complex features such as richer functionality for 3D
modelling. Web-based tools on the other hand reduce the load of installation.

Mobile vs. PC-based: An architect may strive for the mobile-based engineer-
ing and configuration of IIoT devices. Since IIoT devices usually have a large
set of correlated parameters, mobile-based configuration becomes very complex
and complicates engineering tasks on more constrained mobile devices. Hence,
mobile-based engineering have limited functional suitability and useability, but
are easier to install, e.g. through App stores. Architects may define an abstrac-
tion over all configuration parameters (e.g., NAMUR NE131 Core Parameters
[14]) to enable simple, but important engineering tasks on a mobile device, while
leaving the full engineering capabilities to a richer desktop application.

4.2 Open Data Models

In an IIoT system, there may be an increased desire to seamlessly access engi-
neering data from heterogeneous devices, possibly from different vendors. This
can for example help 3rd parties to implement services for predictive mainte-
nance and production optimization.

Standardized vs. Proprietary Data Models: If engineering data adhers to
industry standards, it will be feasible to exchange the engineering data across
heterogeneous devices; hence, improving interoperability while increasing the
complexity to map proprietary models to standards. In some cases, device ven-
dors consider engineering data as intellectual property and there is a keen interest
to protect the underlying business models by keeping the data in a proprietary
format. Architects can plan to support export functions from internal data struc-
tures to open data format such as AutomationML [7] and eCl@ss [8].

4.3 Configuration Capabilities

An essential task in commissioning IIoT systems is to configure devices with nec-
essary parameters. Due to the large number of parameters, this task is inherently
complicated and is nowadays performed manually to a large extent.
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Manual vs. (Semi-)Automatic Configuration: With more and more
devices directly accessible over the Internet, it is possible to automate many
formerly manual engineering task. For example, an engineer may no longer need
to enter network addresses from a paper-based list, but instead simply scan the
local network for IIoT devices. (Semi-)automatic configuration capabilities of
an engineering tool improves the efficiency and maintainability of the engineer-
ing tasks because users must not deal with configuring many parameters. On
the other hand, it may reduce the functional suitability if it is not possible to
customize parameterizations of devices.

5 Related Work and Conclusion

To the best of our knowledge, there is no similar work on defining a catalogue
of architectural decisions for IIoT systems. There are, however, various refer-
ence architectures proposed [2–4]. Since they are reference architectures, certain
architectural decisions are already made. This is in contrary to our work, which
elaborates on design alternatives and their impacts on quality attributes of soft-
ware. Based on this catalogue, an architect may design a reference or a technical
architecture for his system of interest. In [5] various patterns for IoT systems
are introduced, where no discussion is provided on architectural decisions and
alternatives to realize the patterns. Our design catalogue can be used as com-
plementary to these patterns. Regardless of domain for which an IIoT system
is designed, our proposed catalogue helps architects to have a consolidated view
on relevant architectural decisions. In future, we would like to extend this cata-
logue to cover more aspects of IIoT systems, for example, by considering other
applications such as predictive maintenance.
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Abstract. Continuous software engineering aims at orchestrating engi-
neering knowledge from various disciplines in order to deal with the rapid
changes within the ecosystems of which software-based systems are part
of. The literature claims that one means to ensure these prompt responses
is to incorporate virtual prototypes of the system as early as possible in
the development process, such that requirements and architecture deci-
sions are verified early and continuously by means of simulations. Despite
the maturity of practices for designing and assessing architectures, as well
as for virtual prototyping, it is still not clear how to jointly consider the
practices from these disciplines within development processes, in order
to address the dynamics imposed by continuous software engineering.
In this regard, we discuss in this paper how to orchestrate architecture
drivers and design specification techniques with virtual prototypes, to
address the demands of continuous software engineering in development
processes. Our proposals are based on experiences from research and
industry projects in various domains such as automotive, agriculture,
construction, and medical devices.

Keywords: Continuous engineering · Architecture drivers
Architecture design · Architecture simulation · Virtual prototypes

1 Introduction

The emerging notion of Continuous Engineering [1] refers to orchestrations of
practices like Continuous Integration (CI) and Continuous Deployment (CD) [2],
and aims at improving architecture drivers such as Time-to-Market (TTM) and
reacting faster to market demands that might range from a mobile phone soft-
ware update to the incorporation of a new feature in a vehicle [2].
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In the software engineering world, the so-called Continuous Software Engi-
neering is about orchestrating unlocked engineering knowledge to enable contin-
uous verification, and build software products by means of strategic reuse [1–3].
This approach enables a holistic perspective on software production processes,
regardless of whether these take place in a unique software organization or in a
smart ecosystem [3].

Continuous software engineering practices are already being implemented
in the industry. For example, Tesla is efficiently reacting to customer require-
ments requested on social networks. In a particular case, a Tesla car owner sent
a recommendation via Twitter directly to Teslas CEO Elon Musk, suggesting
moving the car seat back and raising the steering wheel when the car is parked.
Elon Musk answered twenty-four minutes later via Twitter, saying that the fea-
ture would be included in the next software update1. The requested feature was
released by Tesla less than two months later. The implications of this case on
the engineering departments are tremendous, and the realization of such immedi-
ate responses is only possible by incorporating continuous engineering practices
into the development processes, ranging from market and product monitoring
to architecture analysis, redesign, verification, and deployment. The literature
discusses that, in continuous software engineering, the classical V model is no
longer sequential but is rather based on iterative executions of activities onf
the left side of the V (Decomposition and Definition) and its on the right side
(Integration and Validation) [3]. To enable these dynamics, the existence of exe-
cutables of the system is necessary as early as possible. This enables to verify
the requirements and the correspondent architecture strategies early and contin-
uously [3]. The literature claims that one means to achieve this is to use virtual
prototypes [3,4], which correspond to executable architecture models that enable
simulations of the architecture against the requirements before the actual system
implementation.

Despite these discussions, it is still unclear how to properly orchestrate state-
of-the-art and state-of-the-practice techniques for dealing with architecture-
significant requirements and architecture design, virtual prototypes, and the
particularities imposed by continuous software engineering. In this regard, this
paper presents means for realizing this orchestration, which have been continu-
ously developed according to experiences acquired in several research and indus-
try consultancy projects. The remainder of this paper is organized as follows:
In Sect. 2 we discuss the state-of-the-art and the state-of-the-practice of contin-
uous software engineering and virtual prototypes from the architecture perspec-
tive. In Sect. 3 we present our approach and in Sect. 4 we present an experience
report of industrial practices. Finally, we conclude and discuss the future works
in Sect. 5.

1 https://www.inc.com/justin-bariso/elon-musk-promises-to-implement-customer-
suggestion.html.

https://www.inc.com/justin-bariso/elon-musk-promises-to-implement-customer-suggestion.html
https://www.inc.com/justin-bariso/elon-musk-promises-to-implement-customer-suggestion.html


Enabling Continuous Software Engineering for Embedded Systems 117

Business

Continuous Integration

Development Operations

Continuous Deployment

Continuous Delivery

Continuous Testing

Continuous Security

Continuous Compliance

Continuous Evolution
Virtual Prototyping

Continuous Use

Continuous Trust

Continuous Run-Time
Monitoring

BizDev DevOps

Continuous Planning

Continuous Budgeting

Continuous Experimentation and Innovation = Continuous Improvement

Fig. 1. General overview on continuous engineering activities (adapted from [2]).

2 State-of-the-Art and State-of-the-Practice

2.1 Continuous Software Engineering at a Glance

Continuous engineering emerged because of the need for a more holistic app-
roach for dealing with the rapid changes within an ecosystem that software-
based systems are inserted into [2,3]. There is a common misunderstanding that
continuous software engineering is a synonym for continuous integration or con-
tinuous delivery. However, as discussed by Fitzgerald and Stol [2], these two
practices are only two aspects of the continuous software engineering notion.
Additionally, continuous software engineering incorporates aspects intrinsically
related to business strategy, development and operations. As shown in Fig. 1,
these other aspects include continuous planning, continuous deployment, con-
tinuous evolution, continuous trust and continuous experimentation. Therefore,
they also refer to continuous engineering as Continuous*. Figure 1 also depicts
software engineering trends such as DevOps and BizDev, whose concepts and
practices provide appropriate interfaces between the different groups of activi-
ties, like Business Strategy and Development. The only item depicted in Fig. 1
that is not discussed by Fitzgerald and Stol [2] is Virtual Prototyping. The inte-
gration of this aspect to properly address architecture activities in continuous
engineering is the key aspect discussed in this paper.

2.2 Architecture Practices and Continuous Software Engineering

Architecture activities are not properly considered in the continuous engineering
research agenda of Fitzgerald and Stol [2]. The only part where architecture is
mentioned is in the description of Continuous Evolution. Here it is stated that the
architecture activities in continuous software engineering shall be explored more
deeply. In this regard, our research has shown that discussions by the scientific
communities on how to consider practices from the architecture discipline in
the continuous software engineering world are still scarce. The existing works
on this topic published in conference proceedings and journals are limited to
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investigating the appropriateness of architecture styles for continuous delivery
such as microservices architectures [5], and do not deal with how to reconsider
the architecture practices and methods for continuous software engineering.

A commonly referenced book on continuous software engineering is entitled
Continuous Software Engineering [1], written by Jan Bosch. It has one chapter
on the Role of Architects in Agile Organizations. However, the focus is on the
agile architecture process, and not on the key aspects that compose continuous
software engineering as discussed in Sect. 2.1.

To the best of our knowledge, the book by Cathleen Shamieh, an IBM limited
edition on continuous software engineering [3] is the only reference that provides
pointers to where the architecture discipline should head for addressing the needs
of continuous software engineering. The author claims that the whole dynamics
imposed by this new trend demands architecture models that go beyond the mis-
sion of systematically representing and communicating the system; it can also be
used to be executed against the high volume of requirements before the actual
implementation of the system. These models are referenced in the literature as
virtual prototypes [4], and have been widely used for continuous system veri-
fication not only of software- based systems, but also of heterogeneous models
(which comprise electronics, mechanics, and hydraulics), and also software, as
will be discussed in Subsect. 2.3.

In this regard, this paper is also motivated by the lack of discussion in the
literature on proper methods to deal with architecture activities like specifica-
tion and evaluation of architecture drivers and design in continuous software
engineering.

2.3 Virtual Prototyping

Virtual Prototypes (VPs) are the key for enabling continuous integration for
embedded systems, because they allow Shift Left, i.e. performing the concurrent
development of steps that are usually serial and Frontloading of testing, i.e.,
testing the system already in advance to detect conceptual problems that cannot
be foreseen in the planning phase [4]. VPs can range from the simulation of high
level models to the detailed simulation of processors and other components in
Electronic Control Units (ECUs). However, for VPs there exists a challenging
trade-off between a fast simulation and accurate simulation, which has to be
considered wisely for the beneficial usage in the development flow.

In the remainder of this subsection we will discuss the state-of-the-practice
of VPs and the benefits that VPs brings to the engineering of software-based
products. In Sect. 3 we will discuss how VPs can be used to enhance architecture
activities in continuous software engineering.

Nowadays, companies have to deal with complex hardware architectures such
as heterogeneous multi-core systems. For instance, the transition from hun-
dreds of distributed Electronic Control Units (ECUs) to a dozen consolidated
domain controllers is a current trend in the automotive domain [6]. Platforms
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Fig. 2. Advantages of virtual prototyping

like Audi’s zFAS2 and NVIDIA’s Xavier3 illustrate how powerful GPUs, custom
SoCs, microcontrollers, and FPGAs are integrated on a single domain controller,
in order to perform sensor fusion, processing and decision making on a single
Printed Circuit Board (PCB). Companies are under constant pressure to adapt
to these emerging trends and deliver their products quickly because there are
many competitors on the market. Traditional design-flow procedures have a per-
formance problem due to the high complexity of modern systems. Therefore,
new tools and approaches for system design are needed to fulfill these require-
ments. For example, in the past, embedded software was developed after the
hardware had been provided by a supplier. To master this situation of complex
hardware/software and the pressure with respect to time-to-market, cost and
engineering efforts, a new idea has emerged over the last years: the idea of par-
allel development of hardware and embedded software by means of VPs (often
denoted as Shift Left [4]).

Virtual hardware prototypes are high-speed, fully functional software models
of physical hardware systems, which are used for embedded software development
before the actual hardware is available. Here, industry focuses mainly on virtual
prototypes based on SystemC and Transaction Level Modeling (TLM) to have
very realisitc hardware models that can be used to develop and test hardware-
near software like operating systems or bare-metal firmware. VPs provide visibil-
ity and controllability across the entire system which makes the products easier
to test: There are helpful and powerful debugging mechanisms for VPs, which
are almost inconceivable for a real hardware system. For example, in traditional
embedded software development, the programmer is limited to JTAG interfaces
or has to use a logic analyzer for debugging. With VPs the hardware, software,
tool-chain, and debugging tools are located on the developers desktop PC and
the developer can easily observe all internal registers, variables and signals. This
leads to a higher quality of the product and a lower supporting effort [4]. Figure 2
shows the fusion of hardware development, software development, and testing
which leads to a decreased TTM, less effort, better quality, less costumer sup-
port, and, finally, to reduced costs.

Industry reports from Bosch, Hitachi, and General Motors indicate the fol-
lowing advantages and improvements achieved by using virtual prototypes [4]:

2 https://www.tttech.com/markets/automotive/projects-references/audi-zfas/.
3 https://blogs.nvidia.com/blog/2018/01/07/drive-xavier-processor/.

https://www.tttech.com/markets/automotive/projects-references/audi-zfas/
https://blogs.nvidia.com/blog/2018/01/07/drive-xavier-processor/
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(i) visibility and controllability across the entire system; (ii) quick correction of
specification errors prior to implementation; (iii) early exploration of the archi-
tecture design space; (iv) development and collaboration in worldwide locations;
(v) no more physical hardware dependency on the supply chain; (vi) improve-
ment of development cycles by 30% to 50%; (vii) reuse of (parts of) the prototype
for future work;(viii) start of software development 9 to 12 months before hard-
ware availability; (ix) identification and correction of software bugs with hours
rather than days; (x) integration of new software on first silicon within a day;
and (xi) delivery of more competitive products up to six months faster. Exam-
ples of tools and models for VPs are provided by Synopsys4, ARM5, gem5 [7],
and DRAMSys [8], and VPs case studies can be found in [9].

The notion of virtual prototypes as discussed in Sect. 3 is a key means for
addressing architecture activities in continuous software engineering.

3 Architecture Practices for Continuous Software
Engineering of Embedded Systems with Virtual
Prototypes

In this section we discuss how architecture VPs shall be considered to enable con-
tinuous software engineering of embedded systems6. In this regard, this section
discusses a restructuring of the traditional V-Model (cf. Sect. 3.1), how to deal
with the specifications of architecture drivers (cf. Sect. 3.2) and architecture
design (cf. Sect. 3.3), the simulation environments for co-simulations of architec-
ture specification (cf. Sect. 3.4), and what architecture aspects shall be subject
to which continuous verification and validation techniques (cf. Sect. 3.5).

3.1 From the V-Model to the II-Model

The whole dynamics imposed by continuous software engineering demands
rethinking the V-Model as it is (Fig. 3a) [3]. We claim that the V-Model shall no
longer correspond to a ordered sequence of activities, but rather enable different
possible iterations and even parallel executions of V-Model tasks, as depicted in
Fig. 3b. We call this the II-Model.

The II-Model brings together the left and the right side of the V-Model. The
connection of Specification and Design with Integration and Testing shall happen
continuously, and the different X-in-the-Loop (XiL) aspects depicted in Fig. 3b
correspond to architectural virtual prototypes that enable the continuous and
integrated verification of different system properties at the architecture levels
(ranging from the overall system functional behavior to hardware specifics like
capacity of communication buses). The idea is to reduce the distance between
requirements, design, implementation, and maintenance with XiL practices.

4 https://www.synopsys.com/verification/virtual-prototyping.html.
5 https://developer.arm.com/products/system-design/fast-models.
6 http://www.ovpworld.org/about continuous integration.

https://www.synopsys.com/verification/virtual-prototyping.html
https://developer.arm.com/products/system-design/fast-models
http://www.ovpworld.org/about_continuous_integration
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Fig. 3. Virtual prototypes enable continuous engineering of embedded systems

Virtual Prototypes Along the II-Model: Architectural virtual prototypes
based on XiL as depicted in Fig. 3b are key aspects to be considered in con-
tinuous software engineering because of the precise and fast feedbacks provided
by architecture simulation techniques [4]. More specifically, different simulation
techniques should be used for different levels of abstractions of the architecture,
as depicted in Fig. 3b, and detailed as follows:

– RiL (Requirements in the Loop): aims at verifying system requirements
regarding completeness, consistency, and robustness by means of larger sim-
ulation scenarios [10]. RiL focuses on quality properties that require the exe-
cution of the system or its parts, like functional appropriateness and quality
requirements like performance. It demands a rather complete formal specifica-
tion of the relevant system properties as executable models on an appropriate
abstraction level, like the abstract description of the input-output-behavior
of a new function in the system. The systematic modeling and the automated
model-based evaluation on the requirements level enables the earliest possible
detection of specification issues through intensive system validation.

– MiL (Model in the Loop): aims at verifying in early stages of the devel-
opment process whether the architecture strategies described with functional
and logical architecture models [11] are adequate for addressing specific
requirements. Examples of these are Simulink models. At this stage, no hard-
ware or software elements are taken into consideration, but only the interac-
tion between the functional and logical architecture elements.

– SiL (Software in the Loop): aims at verifying to which extent the imple-
mented software realizes the functional and logical architecture specifications.
Examples of these are architecture specifications of software components,
packages, classes, interfaces, and other elements like the ones proposed by
the Fraunhofer Embedded Modeling Profile [11]. One of the challenges with
SiL verifications in the embedded domain is that, in the case of implementa-
tion in the C programming language, for instance, the code is compiled for the
host PC instead of the target micro-controller [4]. In this regard, industrial
reports from Bosch, Hitachi and General Motors provide evidence that this
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may introduce differences in terms of precision, e.g., due to different architec-
ture and data types as well as other problems related to resource limitations
on the microcontroller (memory, processing power) [4].

– vHiL (Virtual Hardware in the Loop): aims at considering virtual hard-
ware in order to verify the adequacy of software deployment and the functional
realization of dedicated hardware functions. vHiL has proven its contribution
to the automotive industry in terms of efficacy and efficiency [4]. The evo-
lution in building virtual prototypes of vHiL has led to simulation models
for example in SystemC/TLM, that are very close to the real hardware, and
enables more and heterogeneous tests to be conducted earlier in the develop-
ment process.

– HiL (Hardware in the Loop): aims at verifying the tests performed in the
vHiL on real hardware. In the case of high accurate vHiL virtual prototypes,
HiL tests may consume less time, because critical hardware challenges have
already been identified.

The execution of these different simulations will enable the achievement of con-
tinuous software engineering because precise verification can already be done at
the architecture level, considering the existence of architecture models that rep-
resent the software and hardware entities composing the product. In the case of
systems that comprise mechanical and hydraulic parts, the proper abstraction of
these properties will enhance the accuracy of integrated simulations at the archi-
tectural level. Actually, the possibility to combine virtual prototypes of different
architecture levels makes it possible to build set-ups with completely simulated
products in a vHiL, enabling verification and validation without physical hard-
ware. In this regard, considering the existence of robust virtual prototypes of
the software and hardware, different tests and deployment strategies can be
conducted at the architecture level, which improves not only TTM, but also the
quality of the products, which is the key goal of continuous software engineering.
Proper simulation at the architecture level might lead to less faulty products,
which, in the case of the automotive industry, might decrease the number of
recalls. In 2016, for instance, recalls caused a loss of $22.1 billion in claims and
warranty accruals by OEM and suppliers7.

The Enterprise Architecture Inputs for the II-Model: Beyond the XiL
activities, it is important to consider the speed at which the market changes,
and how the organization shall react to these changes at the enterprise level.
Aspects like Business Drivers, Market Analytics, Operational Procedures, and
Constraints, known as architecture drivers [12], have to be monitored contin-
uously and will continuously feed the engineering process, demanding different
interaction possibilities in the II-Model in order to address market and enter-
prise demands faster. These inputs from the enterprise level provide means to
jointly exploit assets like engineering data together with reusable components,

7 https://www.cnet.com/roadshow/news/automotive-recalls-cost-22-billion-in-2016/.

https://www.cnet.com/roadshow/news/automotive-recalls-cost-22-billion-in-2016/
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depending on the concrete demand, like, for example, quick fixes, position of
new products in the market ahead of the competitor, combined analysis of pro-
duction costs and return on investment, amongst others. It shall also integrate
the marketing analytics knowledge aspect, which is fundamental to comprehend
and assess the feasibility and urgency to incorporate punctual strategic demands
like the request to Tesla using Twitter as discussed in Sect. 1, but also long-term
demands.

3.2 Efficient Creation and Maintenance of Architecture Drivers

To enable the proper use of VPs to improve architecture activities in continuous
software engineering, the specification of architecture drivers shall be based on
techniques that allow these specifications to be created, maintained, and ana-
lyzed efficiently. Architecture drivers are requirements that are new to the devel-
opment organization, risky and expensive [12], and can be categorized as follows:
business drivers, key functional and quality requirements, and constraints, which
can be organizational, technical and legal in nature [12].

In continuous software engineering, user requests are dynamically captured
and are expected to be implemented fast, such as in the Tesla case described in
Sect. 1. This demands means for quickly updating architecture drivers. However,
in industrial practice, architecture drivers are specified using natural language
only. As a consequence, every changed architecture driver will demand a great
amount of human labor and effort to manually identify and update each archi-
tecture driver impacted by the change. One means for specifying architecture
drivers that can be updated faster is to enrich the textual description with semi-
formal approaches like traditional UML sequence diagrams or Live Sequence
Charts. These diagrams offer means to specify the scenarios in an interactive
way to check how the system may, must or must not react to certain events [13].
On live sequence charts, there are also means for generating them from natural
language requirements documents using natural language processing [14].

3.3 Specify Architecture Models with Proper Approaches

To enable the dynamics imposed by continuous software engineering as well as
fast reactions in the engineering environment, the use of adequate architecture
models is fundamental. However, as for the architecture drivers (cf. Sect. 3.2),
the models that describe the architecture solutions are, very often, specified
informally, e.g., using PowerPoint or Visio diagrams. The adoption of appropriate
techniques like the use of modeling languages such as the Embedded Modeling
Profile [11], is growing, but it is still far from being the common practice [15].

Another key challenge in this regard is the gap that usually exists between
the architecture models and the source code. Modern UML modeling environ-
ments address this gap with code generators and executable models. They use
C/C++ or Java as action languages to make models executable. Consequently,
guards, activities, effects, and actions need to be programmed with these lan-
guages. Comparable approaches like Simulink or SCADE also use design models
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to abstract from concrete code and enable developers to specify algorithms on a
higher level of abstraction. The integration of architecture models and realiza-
tions is only possible when both are integrated with each other. Testing across
levels of abstraction and the gradual movement between architecture and realiza-
tion levels must be possible to enable the integration of artifacts at development
time, and their refinement during the software’s lifetime. In this regard, virtual
prototypes enable co-simulation of high-level models and code, and are there-
fore a promising candidate for the gradual transition from architecture to code,
when a valid semantic model is being defined. Co-simulation of high-level models
and code also enables back-to-back testing between these types of models and
therefore supports the maintenance of architecture models after code changes.

3.4 Simulation Environments for Co-simulation of Architecture
Specification and Source Code

Architecture specifications describe the structure of a system, the main infor-
mation flows, and the high-level behavior of important algorithms. Concrete
algorithm designs are therefore intentionally not part of architectures. One com-
mon problem in industry is that software low-level designs are not linked to the
reference behavior specified in architectures. The consequence is that changes in
one artifact are, very often, not reflected in the other artifacts. Consequently,
the deviation between the reference behavior specified in architectures and the
realization implemented in code increase over time which constitues a high risk
in continuous engineering approaches.

Modern model-driven-development tools address this issue by enabling the
development of executable specifications and code generation. This requires
architects to provide low-level specifications like state machine guards and UML
activities as executable C code. Specifying system behavior at this low level of
abstraction is neither always possible nor desired in early phases of the develop-
ment process. To address this challenge, we recommend considering the process
depicted in Fig. 4 and described in the remainder of this subsection. High-level
architectures document important use cases of a system, core components, their
abstract behavior, and important interfaces. The detailed architecture defines
the functional components of the system under development as blocks as well
as information flows between these blocks. The software design refines the func-
tional blocks with behavior models that are, for example, created with devel-
opment environments like Simulink, Stateflow, ASCET, Dymola, and SCADE.
Realizations are either generated automatically from software design models or
implemented manually. Depending on the size of the project, these phases are
performed once or iteratively, and require the use of one or many tools. Large
development projects make early decisions about the tools to use for the develop-
ment of individual function blocks, develop them individually, and then integrate
them during HiL testing. Because these artifacts are developed independently
of each other, only defects that become visible during testing get fixed. This
includes design models as input for code generation and code, but usually not
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architecture models. Enabling the validation of architecture models requires their
integration into both design and validation processes.

In continuous software engineering, it is necessary to overcome this gap. As
already outlined previously, it is necessary to have already executable specifica-
tions of the architecture drivers in terms of executable scenarios. Together with
the structural models of the software architecture, these scenarios can already
be simulated in very early design phases. During continuous development, we
can then replace abstract executable architecture models with more concrete
executable architecture models and finally with real code. To that end, it is nei-
ther necessary nor desirable for the models that work together to have the same
abstraction level. Actually, it is necessary to have a simulation framework like
FERAL [16] that can integrate high-level architecture models such as sequence
diagrams or state machines with real code such that iterative refinement can
take place during continuous development. Especially in the embedded systems
domain, it is also necessary to simulate certain aspects of the underlying hard-
ware like the communication buses needed or the processors used, e.g., whether
we use an ARM low-power processor or a high-end Intel core-processor. If this
is done properly, the virtual prototypes will cover the implementation, the soft-
ware, and the hardware architecture specifications independently, and also the
integrated holistic view proposed in the II-Model (cf. Sect. 3.1).

3.5 Continuous Verification and Validation in the II-Model

Nowadays, technical systems and their parts are developed by different suppliers
and integrated by the manufacturer [6]. Continuous system updates with short
release cycles demand high quality of the artifacts being developed and highly
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efficient quality assurance steps have to be performed. We understand that the
three aspects described in the remainder of this subsection are the cornerstones
that enable an integrated architecture verification and validation approach in
continuous software engineering.

Eco-system and Platform Verification and Validation: The ecosystem
has to be prepared to run new features as a reliable and safe platform with
defined interfaces, interaction patterns, and integration constraints. This means,
on the one hand, that the system interfaces and the extensibility of the sys-
tem design have to be verified. On the other hand, reliability, performance, and
robustness of the ecosystem with its existing and potential new features have to
be assured. Dedicated specification models and highly automated in-the-loop test
activities with extensive exploitation of simulation make it possible to efficiently
run manifold test scenarios in order to assure the required quality properties.

Feature Verification and Validation: The short development cycles and the
high quality needs require an efficient and seamless flow of information and coop-
eration between the specifying and integrating units and the feature developing
units. Issues are the information types, notations, and degree of details that are
needed to support the design and implementation of the new feature and its
integration and acceptance tests on the other side. Existing specification mod-
els and automated simulation environments enable a test-driven approach with
clear test stopping criteria and continuous testing of feature properties during
short cycles. The integration and acceptance test has to assure that (i) the fea-
ture provides its intended functionality with the defined quality properties, (ii)
the feature is fault-tolerant and robust in case of unintended usage or stimula-
tion, and (iii) there are no safety-related unintended feature interactions in the
ecosystem.

Continuous Ecosystem Monitoring: Additionally, continuous monitoring
as part of the holistic quality assurance is applied to identify problems and
potential future issues at run-time. Monitoring comprises the observation of
system and feature states, output data, and error flags. In the case of severe
issues, appropriate countermeasures have to be taken such as the partial or
complete deactivation of features.

4 Industrial Engagement on Continuous Software
Engineering

4.1 Continuous Software Engineering at Tesla, BMW, Jaguar Land
Rover, Brockwell Technologies, and Diagnostic Grifols

Tesla is making extensive use of continuous engineering practices and deliv-
ering innovations to customers in record times, such as the case discussed in
Sect. 1, where features for managing steering wheel and seat position for a parked
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vehicle, which were requested by a Tesla owner via Twitter, were delivered within
less than two months. Beyond that, Tesla is known for delivering incremental
build updates including feature extensions in-between two consecutive releases of
major firmware versions on a short-time basis. Beyond the continuous monitoring
of social networks in order to detect new customer demands, content provided
through the Tesla Firmware Upgrade Tracker8 gives evidence that Tesla must
truly be applying a continuous engineering process for software build updates
with a recurrent life-cycle of builds. This becomes even more evident by looking
at the inconsistent number of updated cars observed for each and every build and
by the fact that updates of different releases regularly overlap in time. That is,
a specific software update is delivered and installed on different cars at different
dates for various reasons, some of which seem obvious while others remain sub-
ject to Tesla’s proprietary deployment strategy. Nonetheless, there are 3 phases
that can be observed during a typical build lifecycle. The build release date as
the initial short phase when many of Tesla’s customers receive the update is fol-
lowed by a medium-length phase, i.e., a period of just a few days during which
the majority of cars get updated. The lifecycle is complemented by a long phase
of up to several months with updates being delivered on an almost daily basis.

One known aspect that has been changing directions towards a continuous
software engineering approach at BMW regards the safety engineering activities
of the development process, as described in [17]. As discussed by Vöst and Wag-
ner, BMW claims that the safety backlog has to be integrated with the functional
sprint backlog. The safety backlog will include the architecture drivers centered
on safety that must be addressed by architecture decisions described in the func-
tional, software, and/or hardware architecture. In this regard, the use of virtual
prototypes provide the necessary means for performing the appropriate verifica-
tion and validation by means of simulations. An integrated simulation approach
comprising the aspects discussed in Sect. 3.1 will enrich the evidences that the
safety requirements are properly addressed. Beyond the engineering artifacts,
BMW understands that in order to enable the continuous software engineering
of safety engineering activities, the developers have to be aware of the impact
that their commits will have on safety-critical components. If such an impact
is detected, BMW claims that it is necessary to jointly analyze and update the
safety analysis, the source code, and the requirements to keep the build run-
ning [17].

In addition to the Tesla and BWM examples of the adoption of continuous
software engineering, IBM9 mentions three examples of companies adopting con-
tinuous engineering practices and the benefits achieved so far: (i) Jaguar Land
Rover, which achieved 90% faster software validation for its vehicle infotainment
systems after adopting continuous software engineering practices; (ii) Brockwell
Technologies, a defense systems company, which achieved 40 % faster develop-
ment cycles; and (iii) Diagnostic Grifols, a manufacturer of medical devices,
whose time to market became 20% faster.

8 https://ev-fw.com.
9 http://www.ibmbigdatahub.com/blog/what-continuous-engineering.

https://ev-fw.com
http://www.ibmbigdatahub.com/blog/what-continuous-engineering
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4.2 A Vison for Supporting the II-Model with CI/CD and DevOps

Thinking of Fitzgerald and Stols Continuous* [2] in an enterprise or industrial
context emphasizes the necessity for a powerful and performant tool environ-
ment for every part of the Continuous-Engineering-Cycle (CEC). As described
in the II-Model shown in Fig. 3b a requirement is handled in short iterative
cycles which makes implementation, testing, and maintenance nearly parallel
processes. This methodology entails the need for a toolchain that empowers all
participants to focus on their main tasks but also makes the continuous infor-
mation flow of the iterative process beneficial to them. In the field, typical tasks
that can be found in every cycle, like the build process, checking, testing, deploy-
ment, target evaluation, and monitoring, are handled in several Stages which are
evaluated continuously for every change made in the whole project. By group-
ing the stages into Pipelines where every stage depends on the product or at
least the success of its predecessor, the whole pipeline can be evaluated upon
every change in requirements, executable requirements, the code, the simula-
tions (RIL, MIL, SIL, (v)HIL), the hardware or even the monitoring results.
A state-of-the-art solution for accelerating this procedure is to automate the
pipeline with one or more task runners, using, for instance, a tool like GitLab.
A GitLab runner can execute stages of the pipeline in suitable service environ-
ments, for example creating builds for different processor architectures which
are then executed in a simulation environment such as a (v)HiL to gather func-
tional or non-functional information (e.g. performance or power-consumption).
This enables the process to fill the gap between specification and realization
with automated virtual prototypes as well as to stock up the area between pure
code and hardware testing with simulations to gather information as early and
efficiently as possible in the workflow. In particular, automated mapping of the
errors or achievements of every stage to the related requirements and tasks of
earlier stages is enabled by grouping tasks into dependent stages. Dependencies
between stages in a typical scenario can be seen in Fig. 5. GitLab’s CI/CD fea-
tures10 can be easily used to manage the tasks of those CECs. It enables the
engineer to create one ore more automated jobs for each step of the CEC which
can be grouped and executed as a pipeline, as shown in Fig. 5. For that the

10 https://about.gitlab.com/features/gitlab-ci-cd/.
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simple markup language YAML11 is used to specify any desired behavior of the
pipeline. By tracking human-generated requirements in GitLab issues the results
of pipeline stages (e.g., success or failures and their causes) can be easily mapped
back to the requirement descriptions, thereby providing maximum traceability.
Even automated gate keeping tasks like merge-requests could be realized easily
by checking every change in the code (see Commits in Fig. 5) with the corre-
sponding pipeline stages, for example by running the generated tests in massive
parallel vHiL simulations, before running the more costly and time-consuming
HiL tests. In that way supporting the II-Model process with CI/CD or even Con-
tinuous* [2] allows it to fully develop, test, and monitor features in very short
sprints of only a few weeks or even days. Also, service providers like GitLab are
reacting to those needs by providing scalable products that take the complete
continuous engineering process into account including for example DevOps as a
particular feature12.

Our proposed workflow can be imagined in the context of the Tesla example
of Sect. 1, where a user voiced a requirement via Twitter. From this so-called
crowd-based requirement engineering [18] a requirements engineer could have
formulated a GitLab issue. A programmer assigned to this issue would now pro-
totype the requested feature as an executable requirement. After the implemen-
tation of this executable specification, a pipeline with RiL or MiL tests would
be started automatically. If the tests were successful, the code would then be
either generated or implemented by the programmer. Once the code had been
committed, another pipeline would be started, which would automatically ini-
tiate the build processes, including SiL and vHil simulations. Because the HiL
test often needs some interaction from a testing engineer, it is usually a manual
step. Once the feature would have been approved by the testing engineer, the
pipeline stage would get marked as passed and the code could be handed over
to production or deployed to Tesla cars worldwide in order to collect monitoring
data about the actual usage of the feature by the customer.

5 Conclusions and Future Works

In this paper we discussed how virtual prototypes should be used to improve
architecture specification and assessment in continuous software engineering con-
texts. We also discussed how different industries are orchestrating techniques to
realize the dynamics imposed by continuous software engineering, and how vir-
tual prototypes could improve existing architecture practices. As our next steps,
we intend to develop a domain specific language to enable the execution of sim-
ulations with virtual prototypes from specifications of semi-formal architecture
drivers. We also intend to evolve the integration of different X-in-the-Loop vir-
tual prototypes to fully integrate the different aspects of the engineering process,
targeting architecture models, implementation, calibration, delivery, and market-
ing monitoring, all in an automated, continuous, and integrated pipeline. These
11 http://www.yaml.org/start.html.
12 https://about.gitlab.com/2017/10/04/devops-strategy/.
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next steps will be fundamental for delivering the ultimate software at the push
of a button.
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Abstract. The brisk pace of the growth in embedded technology
depends largely on how fast we can write and maintain software con-
tained within embedded devices. Every enterprise seeks to improve its
productivity through maintainability. While many avenues for improve-
ment exist, highly maintainable code bases that can stay that way over a
long time are rare. This article proposes a reference software architecture
for embedded systems aimed at improving long-term maintainability.
This reference architecture, called the Abstraction Layered Architecture
(ALA), is built on the existing body of knowledge in software architecture
and more than two decades of experience in designing embedded soft-
ware at Tru-Test Group, New Zealand. ALA can be used for almost any
object-oriented software project, and strongly supports domain-specific
abstractions such as those found in most embedded software.

Keywords: Software architecture · Maintainability · Readability
Reusability · Embedded software · Embedded systems

1 Introduction

Tru-Test Group (henceforth, Tru-Test) is a New Zealand based company which
manufactures numerous embedded solutions for livestock management, with
many code bases existing for well over 20 years. A closer inspection of these
code bases revealed useful insights into how some architectural practices can
lead to better maintainability and lower complexity. While many code bases at
Tru-Test gradually unravelled into big balls of mud [5] and some of these had
to be abandoned, a few non-trivial examples thrived despite ongoing long-term
maintenance. In fact these software parts had undergone regular maintenance
for many years with almost trivial effort. Our perception was that they were two
orders of magnitude easier to maintain than our worst code bases. This paper
reports our attempt to uncover what makes software more maintainable, and
to then integrate our findings into a reference architecture that can be used for
future development.
c© Springer Nature Switzerland AG 2018
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It is said that 90% of commercial software is under maintenance [13], so
any improvements here can provide high rewards. Maintainable software is eas-
ier to update and extend, which helps a company’s profitability by reducing
ongoing software development costs. A review of maintainable code bases at
Tru-Test found that the many accepted software engineering best practices were
helpful but not sufficient by themselves. Code-level practices (like clear nam-
ing, appropriate commenting, coding conventions, low cyclomatic complexity,
etc.), module-level practices (encapsulation, programming to interfaces, etc.) and
design-level practices (separation of concerns using design patterns like depen-
dency injection, using object-oriented design, etc.) are all useful. However, indi-
vidually they concern themselves with relative micro-structures within software
code. The more maintainable code bases also featured robust in-the-large archi-
tectures. This paper focuses on architecture level interventions, which relate
to high-level design decisions, structures, and constraints that, if followed, can
achieve measurable improvements in maintainability.

For a developer already juggling a large set of requirements, quality attributes
and deadlines, coming to a solution that also satisfies a large set of principles
is often impossible. We hypothesize that it is possible to emerge a reference
architecture that satisfies the principles of maintainable software without know-
ing the requirements, and that using this reference architecture is significantly
easier than trying to satisfy all the maintainability and complexity principles
concurrently. This hypothesis was broken into three research questions, as fol-
lows, leading to the main contributions of this article:

RQ1 What are the key system, sub-system and code-level practices that improve
maintainability? This sets the foundation for this work - we reuse and build
on existing insights into writing maintainable software and consciously and
deliberately avoid inventing new names for known terms. Section 2 provides
a summary of these principles for writing maintainable code.

RQ2 How, and to what extent, can the practices identified in RQ1 be used to
emerge a reference architecture? This part of the research involves the cre-
ation of a reference software architecture that optimises maintainability
and complexity. The creation of this proposed architecture, called abstrac-
tion layered architecture (ALA) is covered in Sect. 3.

RQ3 How can we evaluate the impact of the architecture proposed in RQ2 on
maintainability? We test the impact of ALA on software maintainability
through both a re-architecting of the code base of an existing commercial
product from Tru-Test, and through the addition of more features to the
product. ALA shows measurable improvements in maintainability relating
to all its sub-characteristics as listed by ISO/IEC 25010. The evaluation
phase is described in Sect. 4.

2 Principles for Writing Maintainable Software

The principles listed in this section may not constitute an exhaustive list, but
have been found to be the most important for writing maintainable software.
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These principles were identified primarily through an internal review of all code
bases at Tru-Test for identifying the key qualities of code-bases that remained
robustly maintainable over the long-term. We also carried out a subsequent
literature search for identifying design and development techniques and practices
useful for writing maintainable code. At the conclusion of these investigations,
we identified the following principles, which are listed in no particular order.

P1-The First Few Strokes: Christopher Alexander, the creator of the idea
of design patterns in architecture states, “As any designer will tell you, it is the
first steps in a design process which count for the most. The first few strokes
which create the form, carry within them the destiny of the rest” [1].

The primary criteria for logically decomposing a system into discrete parts
is well known to have a high impact on maintainability [10]. An “Iteration Zero”
(the first Agile iteration) is needed to create the primary decomposition. It will
not emerge from refactoring.

P2-Abstraction: Ultimately the only way of achieving knowledge separation is
abstraction [14]. An abstraction is the brain’s version of a module. It is the means
we use to make sense of an otherwise massively complex world and it is the only
means of making sense of any non-trivial software system. A great abstraction
makes the two sides completely different worlds. A clock is a great abstraction.
On one side is the world of cog wheels. On the other someone trying to be on
time in his busy daily schedule. Neither knows anything about the details of
the other. SQL is another great abstraction. On one side is the world of fast
algorithms. On the other is finding all the orders for a particular customer. How
about a domain abstraction, the calculation of loan repayments. On one side, the
world of mathematics with the derivation and implementation of a formula. On
the other the code is about a person wanting to know if they can afford to buy
a house. If abstractions do not separate two different worlds like this, then we
are probably just factoring out common code. We need to find the abstraction
in that common code, and make it separate out something complicated which is
really easy to use, like a clock.

P3-Knowledge Dependencies: The dependencies that matter are “knowledge
dependencies” [3], not runtime dependencies [9]. Knowledge dependencies occur
at code design-time (code read time, code write time). In order to understand
and maintain a module, what knowledge do you need? Run-time dependencies
are not important - they can go in any direction, and be circular. Often runtime
dependencies in code are implemented as knowledge dependencies, destroying
the abstractions.

P4-Zero Coupling: The concepts of coupling and cohesion have been studied
extensively in literature [12]. A common misconception is that, because compo-
nents in a system must interact to do anything useful, they must, at the least,
be loosely coupled. The confusion arises from the use of the words ‘dependency’,
or ‘uses’ for both runtime and design-time (knowledge) dependencies as noted
in P3. It is important that runtime dependencies are always implemented com-
pletely inside an abstraction. For example, let’s say abstractions A and B will
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exchange data at runtime. There must be an abstraction C that knows about
the runtime dependency, and, for example, instantiates A and B and uses depen-
dency injection to connect them. A and B must know zero about each other.
Not only do A and B remain mutually zero coupled, the knowledge inside C
is also mutually zero coupled with the knowledge inside both A and B. The
only coupling remaining is the necessary knowledge coupling inside C on the
abstractions A and B.

P5-Composition not Collaboration: In the example in P4 above, C is a
composition of A and B. Ultimately, composition is the only necessary relation-
ship between abstractions of an architecture. Often architectures are described
with components and connectors. The connector is often a runtime dependency.
Thinking of components A and B as connected will induce us to let A or B have
knowledge of each other. If A and B collaborate, however subtly, there will be
a detrimental knowledge dependency between them, which will destroy them as
abstractions. This is especially problematical when there is only one instance
of each component. The lack of reuse makes it less likely to think of them as
knowledge independent abstractions. Whenever we draw two components and
connect them with a line, we should think of that as shorthand for two compo-
sition relationships. The drawing of instances of A and B connected by a line
is just code completely contained inside C. From the point of view of A, B and
C and all other abstractions in the system, the only relationship between them
should be composition.

P6-Layers: Layers provide a framework for controlling dependencies. They
should obviously be down the chosen layers, not across or within a layer and
certainly not upwards.

Following on from principle P3, the only dependencies allowed are knowledge
dependencies. This significantly changes how we do layering. Layering should
only reflect the design time view. It should not contain layers based on run-time
dependencies. Apart from [11], the layering metaphor is frequently used to repre-
sent runtime dependencies. For example, layering schemes such as GUI/Business
logic/database, 3-tier, the OSI communications model are all based on runtime
dependencies. Those dependencies run both ways. For instance, at run-time a
database on its own is just as useless as a GUI on its own, and data will flow
in both directions. To fit these systems into knowledge layers, they need to be
rotated ninety degrees. Now the metaphor for them becomes a chain. Their com-
ponent abstractions would generally all go into one layer, like A and B in our
previous examples. One additional abstraction, like C in our previous example,
would go in a higher layer. It would instantiate the required abstractions for a
given application, configure them and connect them together.

P7-Stable Dependencies Principle: From P5 and P6 we have abstractions
arranged in layers connected only by composition relationships going down. Rip-
ple effects of change, are now confined to these composition relationships. To
reduce the likelihood of the ripple effects, we reduce the likelihood of changing
abstractions in lower layers. There is a relationship between abstraction, stability
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and reuse in that they tend to increase together. The lower layers should have
increasing stability, and therefore increasing abstraction and reuse [8]. In higher
layers, the abstractions are more specific so that is where the majority of change
will be. All knowledge specific to the application requirements or other change-
able things such as hardware are put in the highest layer abstractions.

P8-Abstraction Granularity: There is a threshold point that should occur
at about 100 to 500 lines of code that relates to our brain’s capacity to handle
complexity. Abstractions larger than this size may be too complex and need
decomposing. If the average size is too small, abstractions will become numerous,
again increasing the complexity.

P9-Primary Separation - Requirements from Implementation: The first
division line of decomposition is to separate requirements from implementation.
This is the same principle used by DSLs. The requirements are expressed, suc-
cinctly, in terms of domain abstractions that you invent. Only internal DSLs
are used (we don’t want the disadvantages that external DSLs entail). The rep-
resentation of the requirements knows nothing of the implementation and the
implementation knows nothing of the requirements. Both depend on abstrac-
tions. The representation of requirements may typically take only about 1% of
the total code.

P10-Fluent Expression of Requirements: Maintainability is directly pro-
portional to the ease with which new or changed requirements can be imple-
mented into an existing system. More maintainable code bases allow require-
ments and the top-level application code that expresses them, to have a high
degree of one to one correlation.

P11-Diagrams: Architectures must distill out details. We make a distinction
between the use of Diagrams and Models (or boxes and lines). Models, as we
define them, can leave out details arbitrarily, and these details can turn out
to be important at the architectural level. Diagrams, as we define them, can
only leave out details inside abstractions. Diagrams are therefore protected from
change caused by the details. Diagrams are also executable. Diagrams are true
source code.

Models should not be used as documentation of the large-scale structure of
our code, as in for example an informal UML model. That would mean that the
actual large scale-structure of the code is implicit and distributed in the detailed
code. The structure should be explicit and in one place.

Diagrams and text are tools for different situations. Text is better for rep-
resenting linear chains of relationships, or small tree structures that can be
represented through indenting. Diagrams are better in situations where there
are arbitrary relationships between the elements, such as in state charts.

The lines on a diagram show the connections and the structure visually.
The lines also do it anonymously - without use of identifiers that you would
otherwise need to do searches on to find the connections. Diagrams also provide
an alternative and much better way to control scope than encapsulation does.
Encapsulation is not particularly visible at read-time, and limits scope only to
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a boundary. A line on a diagram explicitly limits the scope to only those places
where it connects.

Existing literature presents architectural tactics to deal with only some of
these principles, but we still lack a cohesive reference architecture like ALA
for achieving maintainability by design. Standards such as ISO/IEC 25010
define maintainability and its sub-characteristics [6]. Other works, such as the
Architecture-Level Modifiability Analysis (ALMA) provide a way to evaluate a
given architecture for maintainability [2]. ALMA and ALA both have the same
goal. ALMA uses change scenarios to evaluate modifiability of a given archi-
tecture. ALA is a reference architecture that is pre-optimized with respect to
modifiability. A loose analogy would be solving a mathematical equation. ALMA
is analogous to a numerical technique whereas ALA is analogous to a symbolic
technique. ALMA requires iteration to find an optimal solution. ALA solves for
the optimal solution directly. That solution is the reference architecture. ALMA
measures the quantity of interest, modifiability, directly and does so in the con-
text of a domain, so is potentially more accurate (after some iterations). ALA
makes the assumption that because the reference architecture satisfies the stated
modifiability principles, modifiability is already optimized. The two approaches
are complimentary. Compare modifiability with dependability (correctness). The
two fundamental techniques here are understandability and testing. The devel-
oper first creates code that should be correct by understanding it, and then tests
if it is actually correct by testing it. Using one without the other would not work
well. Similarly ALA provides an architecture that should be modifiable, but still
needs testing that it is actually modifiable.

3 Abstraction Layered Architecture

Abstraction Layered Architecture (ALA) was documented using the Software
Architecture Documentation (SAD) process and template [4]. The following sub-
sections follow the structure provided by SAD, and we highlight the key aspects
of each part of the overall architecture document.

3.1 Architecture Background and Drivers

ALA is geared towards making embedded code more maintainable. Embedded
code bases often contain entities (objects or components) which integrate dif-
ferent programming paradigms like logical, event and navigation flow together.
More generally, we consider any object-oriented system written using any lan-
guage which contains some degree of control or data flow and user interactions.
For pure algorithmic problems, like those that essentially carry out sequential
and nested function calls, ALA reduces to the well known functional decomposi-
tion strategy for functional programs, but adds emphasis on creating functions
at discrete abstraction layers. We identify the following architectural drivers,
based on the sub-characteristics of maintainability as per ISO/IEC 25010 [6]:
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– Modularity is the degree to which parts of the system are discrete or indepen-
dent. It depends on the coupling between components, calculated as the ratio
between the number of components that do not affect other components and
the number of components specified to be independent. It also requires each
component to have acceptable cyclomatic complexity.

– Reusability relates to the degree to which an asset within one component or
system can be used to build other components and/or systems. Reusability
depends on the ratio of reusable assets to total assets, as well as the relative
number of assets conforming to agreed coding rules.

– Analysability is the degree to which we can assess the impact of localized
changes within the system to other parts of the system, or identifying indi-
vidual parts for deficiencies or failures. Analysability depends on the relative
numbers of logs in the system, and suitability and proportion of diagnosis
functions that meet causal analysis requirements.

– Modifiability is the ease at which a part of the system can be modified with-
out degrading existing product quality. It depends on the time taken for
modifications themselves, and having measures to check the correctness of
implemented modifications within a defined period.

– Testability relates to the ability to easily test a system or any part of it. It
depends on the proportion of implemented test systems, how independently
software can be tested, and how easily tests can be restarted after mainte-
nance.

3.2 Views

We use the 4+1 model of documenting a reference software architecture [7].
The logical view, which decomposes the overall code base into smaller packages,
is the most important aspect of ALA due to its direct impact on maintainability.
The other views are also affected and are discussed briefly after we present the
logical view.

Logical View. Figure 1 shows a representation of the top layer of ALA.
Figure 1(a) shows ALA’s focus on the creation of clear interfaces which conform
to specific programming paradigms. For instance, we can have explicit, named
interfaces for data flow, event flow and navigation flow in a system. Most embed-
ded code bases would benefit from multiple programming paradigms meshed
together, and this mapping of interfaces to programming paradigms provides
clarity in their use during the creation and maintenance of the application.

Figure 1(b) introduces the concept of a domain abstraction. In general, a
domain abstraction is a class which explicitly uses named interfaces, selected
from the list of available interfaces in Fig. 1(b). A domain abstraction can accept
an interface, or provide an interface, consistent with UML class and compo-
nent diagrams. Interfaces do not need to be one way. For instance, an interface
accepted by a class may not necessarily feed data into the class, and can also
receive data. However, the two kinds of interfaces can help in understanding the
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Fig. 1. Primary representation of the logical view in ALA

general flow of data at the application-level (Fig. 1(c)). Another point to note is
that domain abstractions can have multiple interfaces and can within themselves
use several programming paradigms represented by these interfaces. This is in
line with the tight coupling between aspects like event flow and navigation flow
in a code base.

Figure 1(c) shows the top-level application code. This is a UML Component
diagram containing objects of named domain abstractions, connected or wired
using compatible interfaces. The idea here is to allow the top-level application
design to closely mimic functional requirements. Then, carefully chosen domain
abstraction instances can simply be wired or re-wired together as needed. In all,
ALA proposes the following four layers, (illustrated in Fig. 2):

1. Application layer, as shown in Fig. 1(c), contains knowledge of a specific appli-
cation, no more and no less. Each requirement or feature of the application
is succinctly represented by instantiating and wiring together the objects of
domain abstractions defined in the second layer.

2. Domain Abstractions layer contains all knowledge specific to the domain, like
the domain abstractions shown in Fig. 1. A domain may roughly equate to a
company. Its abstractions are reusable across all potential applications in the
domain.
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Fig. 2. The four layers in ALA

3. Framework layer contains all knowledge of programming paradigms and their
associated frameworks and the interfaces shared by domain abstractions. This
layer also abstracts out how the Domain Abstraction layer and Application
layer execute. For example, a common execution model framework here is
‘Event driven’. A common service is a timer service. This layer contains knowl-
edge and services that have potential to be more widely applicable than the
domain layer, and consequently are more abstract, stable and reusable than
those in the domain layer. We may not have to write anything in this layer
ourselves as its ubiquity means that someone else may have already done it.
The Applications and Domain Abstractions will only need to change if we
change the programming paradigm or service abstractions.

4. Language layer contributes the most generic knowledge, that of the program-
ming language(s) and associated libraries. This layer is included for complete-
ness, but it is so generic, reusable and stable that we would never implement
it for ourselves. We would always just choose the language(s) suitable for the
types of Applications, Domain Abstractions and Frameworks we are going to
make. All of those higher three layers will have knowledge dependencies on
this language choice, but if the language is stable, those knowledge depen-
dencies should never be a problem.
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These layers are adopted from a similar set of layers proposed in [11]. The
layers are relatively discrete, meaning that ideally each layer would be roughly an
order of magnitude more abstract, more stable and more reusable than the one
immediately above it. Having said that, code contained within a layer need not
be completely flat. For instance, in the domain abstractions layer, we can have
intra-layer hierarchies where abstractions could be built using local compositions.

Four major layers may seem like a small number. But note that the human
brain can be built from just six composition layers - (protons, electrons, etc.),
atoms, (protein molecules), (cells or neurons), neural net structures, brain. Some-
times an additional layer may be needed. For example, a features layer could be
introduced between the Application and Domain layers. A given application is
then a composition of features.

Development View. The development view constrains the process of design-
ing and developing a system. ALA requires significant up-front design, in which
the domain abstractions are identified from all known functional requirements.
The need for some upfront design puts us clearly outside the camp of the agile
purists who might say that the design will emerge over time, and clearly in the
camp of the iteration zeroists. After this zero-th sprint spent on design, most of
the domain abstractions will be known and any remaining architectural design
can be done iteratively, but it remains deliberate and emergence is not encour-
aged. In ALA, the first application design involves taking one requirement at a
time and writing it in terms of suitably invented domain abstractions, until all
known requirements have been designed. In this respect the Domain Abstrac-
tions together with their shared interfaces form a DSL for concisely implement-
ing requirements. The shared interfaces of the domain abstractions define the
grammar. In terms of elements, form and rationale, Domain Abstractions are
the elements, the shared interfaces give the form, and this paper provides the
rational.

ALA requires two skill levels. It needs the skills of a software architect com-
petent with all the principles outlined in this article, for the architectural design
and the on-going architectural refactoring. It then requires only average devel-
opment skills for coding the domain abstractions and interfaces, as these are
already stand alone. TDD suddenly starts to work well here as contractors can
be used for the development roles, because they need to know only about the
abstractions they work on. When they go, they will not take any other knowledge
with them.

Most modifications to a mature system usually only affect the top layer. The
top layer will typically contain only 1 to 10% of the total code. Addition of new
functionality may require introducing or generalizing domain abstractions.

Process View. The process view is concerned with the runtime structure of a
code base. ALA supports both single and multi-process/threaded systems due
to its emphasis on ensuring that domain abstraction instances are wired through
using the right interfaces logically. How these instances and objects bind at run
time is a decision that can be taken later.
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Physical View. The physical view allows mapping software to resources like
available hardware. ALA does not explicitly constrain the physical view, but the
application-level design shown in Fig. 1(c) can be modified to annotate where
each part of the diagram executes.

4 Evaluating ALA

We carry out two kinds of evaluations for ALA. Firstly, at the architectural
level, we identify the mechanisms that ALA provides for supporting each of the
quality attributes identified in Sect. 3.1. These mechanisms are listed in Table 1.
Overall, as can also be seen in Fig. 1(c), ALA supports our original goal of
ensuring functional requirements can be mapped onto the application level in a
one-to-one manner (research question RQ2). The second set of evaluations were
based on using ALA on a Tru-Test product. These experiments are described in
the following subsections.

4.1 Re-architecting an Existing Product

We chose to re-architect the XR5000, shown in Fig. 3, a hand-held embedded
device used for managing several activities on a dairy farm. The device features
a number of soft-keys for user actions. The user action associated with a soft-key
depends on which screen is currently active. The XR5000 is the latest in a family
of such devices produced by Tru-Test, and the code base for the product has
been maintained and modified over many years. The XR5000 legacy code base
represented a common “big ball of mud” scenario. It contained approximately
200 KLOC. It had taken 3 people 4 years to complete. One additional feature
(to do with animal treatments) had taken an additional 3 months to complete
- indicative of the typical increasing cost of incremental maintenance for a code
base of this type.

For re-architecting this product using ALA, we first did an ‘Iteration Zero’
(two weeks) to represent most of the requirements of the XR5000. This produced
an application diagram with around 2000 nodes. Figure 4 shows a part of the
application diagram. Table 2 shows the various kinds of interfaces used and their
associated programming paradigms as per Fig. 1.

The size of the diagram was interesting in itself. The actual representation
of requirements was about 1% of the size of the legacy code. The nodes were
instances of around 50 invented domain abstractions. The diagram was not a
model in that it was, in theory, executable. Most requirements were surprisingly
easy to represent at the application level. There were occasional hiccups that
took several hours to resolve, but as more abstractions were brought into play,
large areas of functionality would become trivial to represent. This was a positive
beginning.
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Table 1. ALA’s support for maintainability sub-characteristics as per ISO/IEC 25010

QA ALA mechanisms

Modularity The solution consists entirely of modules (that are abstractions). No module need

be large because it can always be broken up into a composition of other

abstractions

Cyclomatic complexity can be dealt by hierarchical layer-based decompositions

Cyclomatic complexity is reduced because modules based on abstractions naturally

have a single responsibility

Upfront design ensures high cohesion within domain abstractions

Reusability Reusability increases typically by an order of magnitude as we go down each layer

Two layers are dedicated to two levels of reuse, layer 2 for reuse at the domain

level, and layer 3 for reuse at the programming paradigm level

Interfaces and domain abstractions are reusable types

Domain abstractions conform to coding rules via interfaces

The interfaces that exist for connecting domain abstractions are at the reuse level

(and abstraction level) of the framework layer

Analysability Any piece of code, being inside an abstraction, is small and coherent in itself, and

the only external knowledge dependencies needed to understand it are on

abstractions in lower layers. These abstraction dependencies, being composition

relationships, are necessary to the meaning of the higher layer abstraction content

Modifiability The knowledge contained inside abstractions tends to be naturally cohesive and

therefore easy to change

The knowledge contained inside abstractions is zero-coupled with that in all other

abstractions - zero ripple effects

Dependencies are restricted to true knowledge dependencies, so zero ripple effects

from run-time dependencies

All Dependencies are composition relationships on abstractions, (not their

contained knowledge) so ripple effects occur only if the nature of the abstraction

itself changes

Abstractions tend to be naturally stable entities - reducing ripple effects

Abstractions are an order of magnitude more stable in a lower layer, further

reducing ripple effects

Testability All abstractions can be tested individually within a layer because they are already

zero coupled with their peers. Testing mocks can easily be wired to them

Inter-working of domain abstractions can be tested with straightforward

integration tests by wiring each possible combination of abstraction

Higher layer abstractions are generally tested with their composition of lower layer

abstractions intact

Automated acceptance testing via the external interfaces is not significantly easier

in ALA as the system appears as a black box to these type of tests. However

‘under the skin’ acceptance testing can be easier because all I/O abstractions can

be replaced by wiring in modified versions that can mock the hardware instead.

4.2 Adding a New Feature

The diagram created during the re-architecting experiment deliberately did not
include the aforementioned “treatments” feature. The next experiment was to
add this feature to the application. This involved adding database tables, fields
to existing tables, a settings screen, a data screen, and event-driven behaviours.
The incremental time for the diagram additions was of the order of one hour.
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Fig. 3. The XR5000 embedded device

Fig. 4. Sample application-level diagram for a part of the ALA-based XR5000 code
base

Obviously testing was needed to be considered also, and the ‘Table’ abstrac-
tion also needed additional work so it could migrate the data in its underlying
database, a function the product had not needed up until this point. Although
somewhat theoretical, the experiment was evidence to us of a potential order of
magnitude improvement in incremental maintenance effort.

The big question now was, could the application diagram be made to actu-
ally execute? Fortunately we were allowed to fund a summer undergraduate
student for 3 months to try to answer this question. It was a simple matter to
translate the application diagram into C++ code that instantiated the abstrac-
tions (classes), wire them together using dependency injection setters, configure
the instances using some more setters, and use the fluent interface pattern to
make all this straightforward and elegant. As an example, the wired code for
the diagram sample shown in Fig. 4 is shown in Fig. 5. Thanks to the compos-
ability offered by the interfaces of the domain abstractions, wiring instances in
code follows exactly the same structure as the application diagram. We have
omitted the interface types and kinds (provided or accepted) since we can only
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Table 2. Mapping of interfaces to programming paradigms for the XR5000

Interface(s) Programming paradigm

IUiLayout, IMenuItem UI layout

IDestination Navigation flow

IEventHandler Reactive

ITable Data flow or stream

iAction Activity flow

legally connect two instances through compatible interfaces. Also, the distinc-
tion between provided and accepted interfaces is more useful when defining the
domain abstractions, and not so much during the wiring of their objects because
both kinds of interfaces allow bidirectional flow of information.

The student’s job was to write the classes for 12 of the 50 abstractions in
the application. These 12 were the ones needed to make one of the screens of
the device fully functional. The initial brief was to make the new code work
alongside the old code, (as would be needed for an incremental legacy rewrite)
but the old code was consuming too much time to integrate with so this part
was abandoned. The learning curve for the student was managed using daily
code inspections, explaining to him where it violated the ALA principles, and
asking him to rework that code for the next day. It was his job to invent the
methods he needed in the interfaces between his classes to make the system
work, but at the same time give no class any knowledge of the classes it was
potentially communicating with. It took about one month for him to fully “get”
ALA and no longer need the inspections. As a point of interest, as the student
completed classes, the implementation of parts of the application other than the
one screen we were focused on became trivial. He could not resist making them
work. For example, as soon as the ‘Screen’, ‘Softkey’ and ‘Navigation action’
classes were completed, he was able to have all screens displaying with soft-keys
for navigating between them, literally within minutes.

The 12 classes were completed in the 3 months, giving the screen almost
full functionality - showing and editing data through to an underlying database,
searching, context menus, etc. Some of the 12 domain abstractions were among
the most difficult needed for the XR5000, and most of the interfaces had to be
designed, so there is some validity for extrapolation. Also, performance issues
were considered during the implementation. For example, the logical flow of data
from a Table to a Grid was actually implemented by passing a list of objects
in the opposite direction that describe how the data is transformed along the
way. These objects are eventually turned into SQL in a ‘Database interface’
class within the Table abstraction. We can estimate that the 50 classes may
have taken about one man-year to complete for the student. This compares
with the 12 man-years to complete the original, conventionally written code. An
interesting observation is that the original architecture diagram did not need to
change as a result of the implementation of its composite abstractions.
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Fig. 5. Code snippet relating to Fig. 4

5 Concluding Remarks

Abstraction Layered Architecture or ALA is an attempt to integrate principles
that seem to produce code bases that are easy to maintain over a long time. These
principles were identified via a review of Tru-Test code bases, both successful or
unsuccessful from a maintenance point of view, and supplemented by a review
of existing literature on this subject. This set of principles was then used to
emerge a reference architecture based on layering of abstractions. We later show
how ALA meets the key sub-characteristics of maintainability as per ISO/IEC
25010. More importantly, we show how an existing product at Tru-Test was
re-architected and extended using ALA to produce a more maintainable and
compact code base in a fraction of the time it took for the original code base.

This paper opens up several exciting directions for future research. We aim
to continue developing ALA to incorporate other practices for maintainability,
several of which are becoming more apparent as Tru-Test’s software operations
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scale up. Investigating the use of ALA in non-embedded code bases such as for
enterprise systems, and gathering empirical data on its effectiveness are some
other future directions.
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Abstract. A key challenge of component-based software engineering is
to preserve extra-functional properties such as security when composing
the software architecture from individual components. Previous work in
this area does not consider specific characteristics of cyber-physical sys-
tems like asynchronous message passing, real-time behavior, or so-called
feedback composition with two-way communication. Thereby, a compo-
sition of secure components might lead to insecure architectures with
undetected information leaks. In this paper, we address the preservation
of information flow security on composition of cyber-physical systems,
taking the above characteristics into account. We refine security poli-
cies during the architectural decomposition, and outline a compositional
verification approach that checks the security of individual components
against their refined policies. On composition of secure components, our
approach preserves security and thereby enables the design of secure soft-
ware architectures. We give a proof of concept using a component-based
software architecture of a cyber-manufacturing system.

Keywords: Information flow · Composition · Cyber-physical systems

1 Introduction

Due to the distributed and interconnected nature of cyber-physical systems,
component-based software engineering is widely used for their architectural
design [3]. A crucial challenge for software architects is to preserve extra-
functional properties of individual components when composing the overall soft-
ware architecture. For cyber-physical systems, one such key property is security.
Thus, a composition of secure components should not result in an insecure archi-
tecture.

The theory of information flow security [9] allows to detect information leaks
in the application-level behavior of software systems, giving provable security
guarantees at an early design stage. However, information flow security is not
necessarily preserved on composition [8] because the communication behavior of
components might conflict with crucial assumptions of other components.
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The problem that we address in this paper is to preserve information flow
security on composition of component-based software architectures for cyber-
physical systems. The communication within such systems is special in many
regards. First, cyber-physical systems typically communicate by message pass-
ing because they are often spatially divided and wirelessly connected. However,
asynchronous message passing contradicts the frequent assumption that systems
communicate synchronously [8]. Second, the communication must comply with
hard real-time constraints imposed by the physical environment. This real-time
behavior must be taken into account to detect timing channels, i.e., informa-
tion leaked through the system’s response times. Third, the application-level
communication protocols used by cyber-physical systems are usually based on
a two-way communication. This form of composition, known as feedback, is a
major limiting factor for the preservation of information flow security [15].

Related work on compositional security does either not take the above char-
acteristics of cyber-physical systems into account [1,5,13,14], or is not based on
information flow security and therefore does not give provable security guaran-
tees [2,6,11,16]. In both cases, composing architectures from secure components
might lead to undetected information leaks.

In this paper, we extend our previous work [4] by proposing a composi-
tional verification approach for the information flow security of component-based
cyber-physical systems. We establish a basis for compositionality of our approach
by providing software architects with a set of well-formedness rules for refining
security policies during the architectural decomposition of systems. Following
these rules allows to refine a global, system-wide security policy into a well-
formed set of local security policies for individual components. On this basis,
we outline a verification technique to check if the real-time message passing
behavior of an individual component complies with its local security policy. On
feedback composition, our approach ensures that local security of the individual
components implies global security of the overall software architecture. Thereby,
we enable software architects to preserve security on architectural composition.

We illustrate our approach based on a cyber-manufacturing system that
enables manufacturing as a service. To this end, the system communicates both
with a service market and a knowledge base. On composition of the system’s
software architecture from individual components, software architects need to
ensure that no sensitive information from the knowledge base is leaked to the
public service market.

In summary, this paper makes the following contributions:

– We propose well-formedness rules for refining security policies during decom-
position of cyber-physical systems into a component-based architecture.

– We outline a verification technique to preserve the information flow security
of individual components on composition of the overall architecture.

Paper Organization: We introduce our underlying component model in
Sect. 2, before proposing well-formedness rules for refining security policies in
Sect. 3. In Sect. 4, we outline our compositional verification approach. Finally,
we discuss related work in Sect. 5, before concluding in Sect. 6.
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2 Component Model

We assume a top-down architectural design of component-based systems. Start-
ing with an initial top-level component, a hierarchical software architecture is
formed by iterative decomposition into subcomponents. The bottom-level compo-
nents without further subcomponents encapsulate a stateful behavior that drives
the communication of a component with other components inside the architec-
ture. Hence, the behavior of composite components results from the composition
of their subcomponents. Components communicate asynchronously by passing
messages over ports. To that end, ports must be linked by a connector. A delega-
tion is a connector between a component and a subcomponent at the next lower
level. In contrast, a connector between two components at the same hierarchy
level is called assembly. Since the message passing between components is used
to realize complex, application-level communication protocols, we assume that
every port both receives input messages and sends output messages. This form
of composition, underlying a two-way communication, is known as feedback [15].

Figure 1 shows the architecture of a Manufacturing-as-a-Service (MaaS) sys-
tem that provides manufacturing services to a market. The top-level component
named Manufacturing System is composed of two subcomponents. Production Con-
trol coordinates the execution of an order received from the market. Knowledge
Management provides all the information required to execute the order.

  Manufacturing System

Knowledge Management

base

provider
Produc on Control

plant

market
material

instruc on

purchase

produc on

Legend:

Port

Component

Public

Neutral

Sensitive

Fig. 1. Example component architecture of a manufacturing-as-a-service system

In the following, we describe the system’s behavior without going into details
about the communication protocols and the concrete message passing. An order
received by the Manufacturing System is delegated to the market port. Subsequently,
Production Control requests a material overview and the control instructions for
the plant over the material and instruction ports. Knowledge Management answers
both requests based on a product specification that is acquired from an internal
knowledge base, or alternatively from an external provider. We assume that in both
cases the required materials are identical, however, the provider’s instructions
deviate from the instructions in the knowledge base which are regarded as a
business secret. After Production Control receives both information, it orders the
materials over the market port and controls the production over the plant port.
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Information flow security [9] of the MaaS system requires that no information
from the knowledge base is leaked to the market. According to this approach,
we distinguish between public and sensitive information. A system is secure if
the public information given by the system does not depend on any sensitive
information. To specify such security requirements at the architectural level, we
extend each component with a security policy by categorizing the component’s
ports according to their sensitivity. Thus, a security policy is a labelling for each
port of a component as either public, sensitive, or neutral (i.e., neither public
nor sensitive). To comply with its security policy, a component must ensure that
its communication behavior over public ports does not depend on information
received over sensitive ports. In contrast, an information flow from sensitive to
neutral or from neutral to public is not restricted. In our approach, the sensitivity
of a message corresponds to the labelling of the port that sends or receives it.

Figure 1 illustrates a security policy for the Manufacturing System. The base
port is labelled as sensitive because it provides access to the secret knowledge
base, whereas the market port is labelled as public due to its open access. The
remaining ports are labelled as neutral. Whether or not the system is secure
depends on the communication behavior of its subcomponents. Therefore, in the
remainder of this paper, we refine the security policy along with the decomposi-
tion into subcomponents (cf. Sect. 3), and apply compositional verification based
on the resulting refined security policies (cf. Sect. 4).

3 Refining Security Policies on Decomposition

Based on the initial top-level component of a software architecture, we present
an iterative procedure for refining the component’s security policy during the
architectural decomposition. Thereby, decomposing a component leads to a set
of refined security policies, one for each subcomponent. To refine a security pol-
icy, software architects need to provide each port of a subcomponent with a
sensitivity label. However, a crucial requirement for the refined policies is com-
positionality, i.e., the composition of refined policies must imply the security
policy of the composite component. To ensure compositionality, we provide soft-
ware architects with a set of well-formedness rules (WFR) that are derived from
the validity conditions for compositional security analyses by Mantel [8]. These
rules restrict the sensitivity labels for the ports of subcomponents as follows:

(WFR1) Inheritance on Delegation: A port that is connected to a delega-
tion inherits the sensitivity label of the delegating port. This rule ensures that
subcomponents do not upgrade or downgrade the sensitivity of ports.

(WFR2) Equivalence on Assembly: Every two ports that are connected by
an assembly must share the same sensitivity label. Thereby, we ensure that
two assembled components agree on the sensitivity of their connected ports.

(WFR3) Non-Neutrality on Assembly: A port connected by an assembly
must not be labelled as neutral. We thereby ensure that neutral ports can
not be exploited to indirectly leak information from one subcomponent to the
other. Thus, assembled ports must either be public or sensitive.
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During decomposition, the sensitivity of all delegated ports follows immedi-
ately from WFR1. For example, in Fig. 2a, we depict the inheritance of sensi-
tivities for the neutral provider port and the sensitive base port. In contrast to
delegations, assemblies require architects to assess the sensitivity of information
exchanged between the assembled components. In accordance with WFR2 and
WFR3, Fig. 2b illustrates the labelling of the communication between production
and instruction as sensitive, whereas the communication between purchase and
material is labelled as public. In general, assessing these sensitivities is a manual
effort and requires architects to anticipate the communication behavior of com-
ponents. In particular, the assessed sensitivities might be subject to change if
the specified component behavior can not be made compliant with the resulting
security policy. However, the provided well-formedness rules ensure that if the
behavior of subcomponents complies with the refined policies, then the policy of
the composite component is complied as well.

Knowledge Management

base

provider

(a) Delegation

material

instruc on

purchase

produc on

(b) Assembly

Fig. 2. Well-formedness of sensitivities on architectural decomposition

4 Preserving Security on Composition

We now present a verification approach to check if the message passing behavior
of a bottom-level component complies with its security policy. A crucial require-
ment for our approach is compositionality, i.e., when composing two secure com-
ponents, the composition must preserve security. To this end, we select a def-
inition of information flow security that is known to be preserved on feedback
composition, provided that the underlying communication is asynchronous [15].
The selected definition, named generalized noninterference [10], requires that
any perturbation of sensitive inputs (i.e., adding or deleting received messages)
does not alter the public communication of a system. To verify this property, we
check that the public communication of a component is equivalent to a perturbed
variant of itself that receives a varying set of sensitive input messages.

In Fig. 3, we illustrate our verification approach based on the equivalence
of public communication between the Manufacturing System and a corresponding
Perturbed System. The perturbation applies to all messages received over the
sensitive base, production, and instruction ports. To verify the global security pol-
icy of the Manufacturing System, we check both Production Control and Knowledge
Management against their local security policies, which were refined according to
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the rules given in Sect. 3. Thus, the verification comprises two equivalence checks
between the bottom-level components and their perturbed variants. For restrict-
ing the equivalence to public communication, we consider only messages sent or
received over the public purchase, material and market ports. Due to the compo-
sitionality of generalized noninterference, equivalence for the two bottom-level
components implies equivalence for the top-level component. Thus, if both sub-
components comply with their refined security policies, then the Manufacturing
System is secure with respect to its security policy as well.

As a vehicle for checking the equivalence of communication, we rely on the
notion of bisimulation which requires two systems to send and receive equivalent
sequences of messages. However, due to the real-time behavior in our approach,
the instant of time at which messages are processed needs to be equivalent as
well. Deviations in the timing might enable public observers to deduce sensitive
information from the system’s response times. Thus, in our previous work [4],
we detect such timing channels by model checking a time-sensitive variant of
bisimulation known as timed bisimulation. By reusing this approach, we make
our compositional verification accessible to automation using off-the-shelf tools.

Manufacturing System

Knowledge Management

base

provider
Production Control plant

market
material

instruction

purchase

production

Perturbed System

Knowledge Management

provider

Production Control plant

market

material

instruction

purchase

productionbase

≈≈ ≈

Legend: ≈Timed BisimulationPerturbation Implication

Fig. 3. Compositional verification of the Manufacturing System component

5 Related Work

Research on compositional information flow security has been pioneered by
McCullough [10] and led to a uniform theory by Mantel [8]. In this section,
we focus on approaches for compositional security at the architectural level.



Towards Preserving Information Flow Security on Architectural Composition 153

Gunawan and Herrmann [6] as well as Copet and Sisto [2] provide composi-
tional verification approaches for security properties at design level, similar to
our work. However, both approaches are not based on information flow security,
lacking provable security guarantees. Said et al. [13], Sun et al. [14] as well as
Greiner et al. [5] enable the compositional verification of component-based sys-
tems based on information flow security. In contrast to our work, no systematic
refinement of security policies during the architectural design is addressed.

By contrast, Zhou and Alves-Foss [16] provide a set of architectural refine-
ment patterns for preserving generic multi-level security properties. Whereas the
authors guide the architectural design itself, our aim is to refine security policies
during design. Chong and van der Meyden [1] propose a theory of refinement for
secure software architectures. The authors deduce global information flow secu-
rity from the resulting architectural structure and from local security constraints
of individual components. In this respect, their work is similar to our approach.

However, none of the aforementioned approaches takes the specific charac-
teristics of cyber-physical systems into account, such as asynchronous communi-
cation or real-time behavior. By contrast, Mohammad and Alagar [11] address
the verification of multiple trustworthiness properties like access control security
in component-based systems. Similar to our approach, real-time behavior of sys-
tems is considered, and composition rules are proposed to preserve properties.
However, the approach does not take information flow security into account. Li
et al. [7] address the compositional verification of information flow security in the
presence of message passing. However, their work enforces security of individual
processes at program level. Thus, the architectural design and the refinement
of security policies are beyond their scope. Rafnsson et al. [12] propose a set
of combinators to preserve information flow security of processes under com-
position. The authors consider both time-sensitive behavior and asynchronous
communication. However, their approach is limited to discrete time and does not
take the refinement of security policies during architectural design into account.

6 Conclusions and Future Work

We proposed a compositional verification approach for the information flow
security of component-based cyber-physical systems. We provided a set of well-
formedness rules to refine security policies during the architectural decomposi-
tion. Furthermore, we sketched a compositional approach to verify generalized
noninterference of the overall software architecture. Our approach is based on
timed bisimulations to check the real-time message passing behavior of individ-
ual components against their refined security policies. On composition of the
overall architecture, our approach preserves the security of components.

Our well-formedness rules guide software architects during the architectural
decomposition, allowing them to systematically refine security policies along-
side. Our verification enables the architects to reason about the security of an
architecture only by checking the bottom-level components against their refined
security policies. Thereby, we avoid the drawbacks of a monolithic verification.
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In future work, we intend to automate our approach using an off-the-shelf
model checking tool. Furthermore, we seek to underpin our work by formally
proving the soundness of the compositional verification under consideration of
real-time behavior. In addition, we intend to weaken our well-formedness rules
for the refinement of security policies, providing software architects with a higher
degree of freedom during the architectural decomposition. Finally, we also plan
to extend our scope towards variable and self-adaptive software architectures.
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Abstract. Microservices have emerged as an architectural style for
developing distributed applications. Assessing the performance of archi-
tectural deployment alternatives is challenging and must be aligned with
the system usage in the production environment. In this paper, we intro-
duce an approach for using operational profiles to generate load tests to
automatically assess scalability pass/fail criteria of several microservices
deployment alternatives. We have evaluated our approach with differ-
ent architecture deployment alternatives using extensive lab studies in a
large bare metal host environment and a virtualized environment. The
data presented in this paper supports the need to carefully evaluate the
impact of increasing the level of computing resources on performance.
Specifically, for the case study presented in this paper, we observed that
the evaluated performance metric is a non-increasing function of the
number of CPU resources for one of the environments under study.

1 Introduction

The microservices architectural style [13] is an approach for creating software
applications as a collection of loosely coupled software components. These com-
ponents are called microservices, and are supposed to be autonomous, automat-
ically and independently deployable, and cohesive [13]. This architecture lends
itself to decentralized deployment, and for continuous integration and deploy-
ment by developers. Several large companies (e.g., Amazon and Netflix) are
reporting significant success with microservice architectures [9].

Currently, several deployment alternatives are possible for microservices
deployment, as for example, serverless microservices using lambdas, container-
based deployment (e.g., Docker1), virtual machines per host, and several hosts.

1 https://www.docker.com/.
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Of course, depending on the microservice granularity, a combination of these
deployment mechanisms could be used. The available deployment alternatives
and their configuration parameters imply a large space of architectural configu-
rations [15] to choose from.

Microservices are supposed to be independent from each other. However, the
underlying deployment environment might introduce coupling and impact the
overall application performance. Coupling can occur at the load balancer, at the
DNS look-up, and at the different hardware and software layers that are shared
among the microservices. Ueda et al. [16] report the performance degradation of
microservice architectures as compared to an equivalent monolithic deployment
model. The authors have analyzed the root cause of performance degradation
of microservice deployment alternatives (e.g., due to virtualization associated
with Docker) and have proposed performance improvements to overcome such a
degradation. Therefore, microservice architects need to focus on the performance
implications of architectural deployment alternatives. In addition, the impact of
the expected production workloads on the performance of specific microservices
deployment configuration needs to be taken into account. The alternatives for
microservice architecture deployment considered in this paper are memory allo-
cation, CPU fraction used and number of Docker container replicas assigned to
each microservice.

In this paper, we introduce a quantitative approach for the performance
assessment of microservice deployment alternatives. The approach uses auto-
mated performance testing results and high-level performance modeling to quan-
titatively assess each architectural configuration in terms of a domain metric
introduced in this paper. For performance testing, we focus on load tests based
on operational workload situations [10,17], e.g., arrival rates or concurrent num-
ber of users.

Our approach for the domain metric evaluation is based on the input
domain partition testing strategy [19] and domain-based load testing [5] that
was designed for the performance testing of telecommunication systems. In par-
tition testing based on input domains, the input domain is divided into subsets
that have equivalent fault-revealing behavior. In domain-based load testing the
load testing domain is divided into subsets that have equivalent workload situ-
ations [5].

Operational profile data is used to estimate the probability of occurrence of
each operational workload situation in production. Each operational situation is
reflected by a performance test case that is weighted by its relevance based on the
operational profile. Scalability requirements are used to assess each architectural
configuration. The resulting quantitative assessment is a measure between 0–1
that assesses the fitness of a certain architecture alternative to perform under a
defined workload situation.

The key contributions of this paper are as follows:

– a new quantitative approach for the assessment of microservice deployment
alternatives, and

– the experimental validation of the proposed approach.
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We have evaluated the introduced domain metric for ten different configu-
rations based on two different memory allocations, two different CPU alloca-
tions, and three different values for the number of Docker container replicas.
The experiments were executed in two data center environments. We evaluated
for each environment the best performing architectural configuration. It is very
significant that in both environments, increasing the number of containers for
the service being evaluated, or the fraction of CPU allocation did not guarantee
better performance. Therefore, we can conclude that it is very important for
practitioners to carefully assess expected operational profiles and deployment
alternatives of their applications using quantitative assessment approaches, such
as the one introduced in this paper.

The remainder of this paper is organized as follows. Section 2 contains a sum-
mary of the reviewed literature on microservice architecture challenges and per-
formance assessment. Section 3 contains an overview of the proposed approach
for performance assessment of microservice architectures. Section 4 contains the
experimental design, while Sect. 5 presents the experimental results obtained by
applying the proposed approach. Section 6 contains the threats to validity identi-
fied in this research. Section 7 presents our conclusions and suggestions for future
research. A reproducibility package is provided online [4].

2 Related Work

In this section we present a summary of the reviewed literature on microservice
architecture challenges.

2.1 Microservice Architectural Challenges

Alshuqayran et al. [2] present a comprehensive literature review of microservice
architectural challenges. The authors focus on the challenges, the architecture
descriptions, and their quality attributes. They have found that most of the
current research on microservice architecture quality attributes has focused on
scalability, reusability, performance, fast agile development, and maintainability.
Pahl and Jamshidi [14] present a systematic survey of the existing research on
microservices and their application in cloud environments. They have found that
microservices research is still immature and there is a need for additional exper-
imental and empirical evaluation of the application of microservices to cloud
environments. Their literature survey has also identified the need to develop
microservices tool automation.

Francesco et al. [9] present a characterization of microservice architecture
research. The authors’ focus was on answering research questions about publica-
tion trends, research focus, and likelihood for industrial adoption. They reported
that research on microservices is in the initial phases concerning architecture
methodologies and technology transfer from academia to industry. Most of the
research focus seems to be on architecture recovery and analysis. An impor-
tant finding of this paper is that most of the literature reviewed is related to
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the design phase, and only one research did address requirements. They have
also found from their literature survey that industrial technology transfer of the
architecture methodology is still far-off.

Esposito et al. [7] present design challenges of microservice architectures. The
authors have identified security and performance as major challenges resulting
from size and complexity. They have proposed to address these challenges by
carefully trading-off security and performance.

2.2 Performance Assessment of Microservice Architectures

Kozhirbayev and Sinnott [11] present the performance assessment of microser-
vice architectures in a cloud environment using several container technologies.
The authors have reported on the experimental design and on the performance
benchmarks that were used for this performance assessment. Casalicchio and
Perciballi [6] analyze the impact of using relative and absolute metrics to assess
the performance of autoscaling containers. They have concluded that for CPU-
dominated workloads, the use of absolute metrics can lead to better scaling
decisions.

McGrath and Brenner [12] present an approach for the design of a
performance-oriented serverless computing platform. The authors have evalu-
ated the performance of their approach using measurements derived from a pro-
totype. They have also discussed how to achieve increased throughput using
their approach.

3 Approach

In this paper, we extend our previous approaches [5,18] to define a new methodol-
ogy for the assessment of microservice deployment alternatives—also referred to
as (architectural) configurations. Our methodology enables an automatic assess-
ment of scalability criteria for architectural configurations and their compari-
son. For each configuration, this results in a measure—the so-called domain-
metric—that quantifies the configuration’s ability to satisfy scalability require-
ments under a given operational profile.

3.1 Summary of Previous Work

In [18], we introduced a metric to evaluate software architecture alternatives
with system workload growth. This metric uses the requirement definition, high-
level architecture modeling, and system measurement results to assess the system
architecture’s ability to meet architecture requirements as a function of workload
increases.

In [5], we introduced an approach for the assessment of telecommunication
systems using Markovian approximations. This approach uses operational data
and a resource-based Markov state definition to derive an efficient test suite
that is then used as the basis for the domain-based reliability assessment of the
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Fig. 1. Overview of the approach

software under test (SUT). The Markovian approximation is used to estimate
the steady-state probability of occurrence of each test case. In this way, the
test suite can be effectively reduced to focus on the performance test cases that
are most-likely to represent production usage. In domain-based load testing, the
input domain is the workload, e.g., in terms of the arrival rate or the concurrent
number of users. The total workload is divided into subsets that are related to the
probability of occurrence of each workload situation [5]. Therefore, we make an
implicit assumption that the testing domain can be divided into fault-revealing
subsets. Each subset is then mapped to a load test.

3.2 Computation of the Domain-Based Evaluation Metric

The approach introduced in this paper and illustrated in Fig. 1 consists of the
following steps: 1. Analysis of operational data, i.e., the quantitative estimation
of the probability of occurrence of a certain workload situation (e.g., number of
concurrent users) based on the analysis of the operational data, 2. Experiment
generation, i.e., the automated generation of the load test cases for the deploy-
ment configurations under evaluation, 3. Baseline computation, i.e., the quan-
titative definition of the scalability requirements that consist of the expected
pass/fail criteria for the load tests, e.g., based on a specified threshold of the
system response time for the expected workload, 4. Experiment execution, i.e.,
the execution of load test cases for the architectural configurations specified
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in the experiment generation step, and the computation of the domain-based
microservice architecture evaluation metric.

In this section, we illustrate the approach with a running example, which is
based on the SUT and the experiments from the evaluation in this paper (Sects. 4
and 5). The operational profile is taken from publicly available information about
a video streaming service.

Step 1—Analysis of Operational Data – This step relies on operational
data that includes the workload situations Λ observed over time, i.e., each point
in time tk is assigned a workload situation λi ∈ Λ. We make no specific assump-
tions about what metric is used to represent the workload situation. Example
metrics include the number of concurrent users or arrival rates of requests. We
use this operational profile data to estimate for each workload situation λi ∈ Λ
its probability of occurrence p(λi) estimated by the relative frequency of occur-
rence f(λi). The probability of occurrence will be used to weigh each test case
execution result. This is called probability of occurrence because it provides a
test coverage function for each test case with respect to the total operational
profile probability distribution, which we denote by total probability mass.

To illustrate this step, we first analyze the operational profile data to create
a user profile of the frequency of occurrence (i.e., state frequency) of the number
of concurrent users (i.e., workload situation) found in the system at a certain
time t. The graph of the state frequency distribution is shown in Fig. 1 (result of
Step 1). Then, for each workload situation λi, we set p(λi) to the corresponding
state frequency. The test suite coverage criteria is based on the values of p(λi).
Then, we use the operational profile obtained from the video streaming service
as a proxy for the operational profile of the system being evaluated. We have
scaled the number of concurrent users from the operational profile to 0–300.

Step 2—Experiment Generation – This step generates the load test suite
to analyze the architectural configurations. The four elements of this step are
the load test sequence, the load test template, the architectural deployment
configurations, and the baseline requirements (see result of Step 2 in Fig. 1).
The load test sequence is obtained by sampling the empirical distribution of
workload situations f into a so-called aggregated mass of workload situations f ′

that are representative for the neighboring workload situations. A value f ′(λ′)
represents the aggregated probability of neighboring workload situations of λ in
f . The reason for having this aggregated mass based on sampling is that it would
not be feasible to execute load tests for every single workload situation due to
the huge combinatorial space of configurations. The load test template TΛ is a
load test specification that is parameterized by a workload situation λi ∈ Λ. An
instance of this load test template will be executed for each element of the cross
product of the set of load test sequences and the architectural configurations.
The baseline requirement Γi defines for each service sj provided by the SUT the
criteria of a passed/failed test based on a performance measure Φ. We denote
the concrete measurements for Φ for a service sj under a workload situation λ
as x(λ)j . We make no specific assumption about the performance measure. An
example used in this section is the average response time of a service.
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Table 1. Scalability requirements based on baseline measurements (in seconds)

sj createOrder basket getCatalogue getItem login . . .

x(λ′)j 0.018 0.008 0.011 0.012 0.033 . . .

σ(λ′)j 0.008 0.003 0.002 0.009 0.025 . . .

Γj 0.042 0.017 0.017 0.039 0.108 . . .

Step 3—Baseline Computation, Quantitative Definition of the Scal-
ability Requirements – We now describe the approach that can be used to
calculate the fraction of correctly executed services ŝi for test case i. Initially, a
baseline performance test is run for each configuration αk ∈ A, similarly to the
approach used in our previous work [18]. Such baseline is chosen with a start-
ing workload situation β ∈ Λ. Then, the average response time, x(β)j , and the
standard deviation, σ(β)j for each service sj , under the baseline workload β are
measured.

Using the baseline performance measured for each service sj , the scalability
requirement is defined as Γj = x(β)j + 3 × σ(β)j . Table 1 illustrates the mea-
sured results for the baseline measurement workload β, for all services sj . This
is an innovative approach for scalability requirements definition that employs
the measured no-load baseline performance to automatically define a specific
tolerance for scalability degradation under load.

The proposed approach for setting scalability requirements using a normal
distribution follows an existing approach [3], where the normal distribution was
shown to be a good approximation for the distribution of a stream of concurrent
transactions.

Step 4a—Experiment Execution (Pass/Fail Assessment) – Next, each
service sj is tested under a certain workload λi ∈ Λ and configuration αk ∈ A.
Each test case execution produces a metric between 0–1 that represents the
fraction of the service executions that was assessed as successful by comparison
with the scalability requirement.

Each service sj will be marked as pass for workload λi and configuration αk,
if x(λi)j < Γj . In this case, cj = 1 will be set to denote that service sj has passed
the test, otherwise cj = 0 will be set.

In the following, we drop λ and the configuration α to simplify the notation,
as these computations are repeated for each workload situation and configura-
tion. In addition, as each test case i executes the set of n services {s0, . . . , sn−1}
with activation rates {δ0, . . . , δn−1}, the fraction ŝi of correctly executed calls to
all services can be evaluated as:

ŝi =
n−1∑

j=0

δjcj (1)

The activation rate δj denotes the fraction of calls to the service sj over the
overall number of calls to all services. Table 2 illustrates the pass/fail estimation
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for one workload situation λ. For this test case, the fraction of correctly executed
services was evaluated as ŝi = 74.81% (Fig. 1).

Table 2. Pass/fail based on scalability requirements (in seconds) for workload situa-
tion λ

sj createOrder basket . . . login . . .

Γj 0.042 0.017 . . . 0.108 . . .

x(λ)j 0.015 0.009 . . . 2.164 . . .

Pass/fail pass pass . . . fail . . .

δj 1.26% 1.26% . . . 2.58% . . .

Step 4b—Experiment Execution (Computation of Domain-based
Metric) – Finally, the domain-based architecture evaluation metric for the con-
figuration α, with respect to a test suite S, D(α, S) can be evaluated as:

D(α, S) =
z∑

i=0

p(λi)ŝi (2)

where p(λi) is the frequency of occurrence corresponding to workload situation
λi (as in Step 1). For the running example, as illustrated in Fig. 1, D(α, S)
would be evaluated as 0.615. The contribution of the test case case depicted
in Fig. 1 is 0.142 (0.19 × 74.81%). The resulting quantitative assessment is a
measure between 0–1 that can be used to assess the performance of different
architectural deployment configurations.

4 Experiment Design

In our evaluation, we show how to use our approach as illustrated in Fig. 1
to assess the scalability of an environment for a specific target system and its
architectural alternatives by utilizing the domain metric. We use the operational
profile from Step 1 (Sect. 3) and apply it to the Sock Shop microservices demo in
two different environments. We execute the experiments generated by our Step 2
and compare the results against individual baselines as per Step 3. In doing so, we
cannot only show the usage of our approach but also reveal interesting insights
on scalability of microservice applications and its adoption in practice.

The remainder of this section describes the precise details of our experiment
design. A reproducibility package is provided online [4].

4.1 System Under Test

As system under test (SUT), we utilize the most recent version of the Sock Shop
microservices demo (as per March 28, 20182) built by Weaveworks. It represents
2 https://microservices-demo.github.io/.

https://microservices-demo.github.io/
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a sample e-commerce website that sells socks, implemented using 12 microser-
vices, one of which is named cart, handling the user’s shopping cart. For the
implementation, various technologies were used, e.g., Java, .NET, Node.js and
Go. The Sock Shop has been found to be a representative microservice appli-
cation regarding several aspects [1]. For our research, the usage of well-known
microservice architectural patterns, the automated deployment in containers and
the support for different deployment options were the main criteria for selecting
the Sock Shop as the SUT.

4.2 Load Testing Tool

As the load testing tool, we use BenchFlow [8], that is an open-source framework3

automating the end-to-end process of executing performance testing. BenchFlow
reuses and integrates state of the art technologies, such as Docker4, Faban5, and
Apache Spark6 to reliably execute load tests, automatically collect performance
data, and compute performance metrics and statistics, as well as to validate the
reliability of the obtained results.

BenchFlow users define their performance intent relying on a declarative
domain-specific language (DSL) for goal-driven load tests by using provided
declarative templates for expressing tests’ requirements such as the test goals
and test types, metrics of interest, stop conditions (e.g., maximum test execu-
tion time) and which parameters to vary during the execution of the test. To
satisfy the user’s goal, the BenchFlow framework implements strategies and pro-
cesses to be followed that are driven by the user’s input specification and current
conditions of the SUT during the execution of those processes.

4.3 Testing Infrastructure

We deployed the load testing tool and the SUT to two different infrastructures.
The first one supports containerized deployment to bare metal at the Hasso Plat-
tner Institute (HPI) Future SOC (Service-Oriented Computing) Lab. The second
one enables containerized deployment in virtual machines on top of the VMware
ESXi7 bare metal hypervisor at the Free University of Bozen-Bolzano (FUB).

The containerized bare metal machines (HPI) have the following characteris-
tics: Load driver server—32 GB RAM, 24 cores (2 threads each) at 2300 MHz
and SUT server—896 GB RAM, 80 cores (2 threads each) at 2300 MHz. Both
machines use magnetic disks with 15 000 rpm and are connected using a shared
10 Gbit/s network infrastructure.

The containerized deployment in virtual machines (FUB) has the following
characteristics: Load driver server—4 GB RAM, 1 core at 2600 MHz and
SUT server—8 GB RAM, 4 cores at 2600 MHz with SSDs. Both machines use
3 https://github.com/benchflow.
4 http://docker.com.
5 http://faban.org.
6 http://spark.apache.org.
7 https://www.vmware.com/products/esxi-and-esx.html.

https://github.com/benchflow
http://docker.com
http://faban.org
http://spark.apache.org
https://www.vmware.com/products/esxi-and-esx.html
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an EMC VNC 5400 series network attached storage solution8 and are connected
using a shared 10 Gbit/s network infrastructure.

We rely on Docker CE v17.12 for the deployment of the containerized appli-
cation on both infrastructures.

4.4 Architectural Deployment Configurations

By relying on BenchFlow’s DSL [8], users can specify performance tests in a
declarative manner. In our case, we defined a load test exploring different sys-
tem configurations, as presented in Table 4 (on p. 12). BenchFlow supports a
wide range of variables to be automatically explored during configuration tests,
namely: (i) number of simulated users, (ii) amount of RAM/CPU share assigned
to each deployed service, (iii) service configurations, through environment vari-
ables, (iv) number of replicas for each service.

We rely on BenchFlow’s DSL to define all the experiments reported in this
section, and on the BenchFlow framework for their automated execution, test
execution quality verification, and results retrieval.

Figure 2 depicts an example SUT deployment, showing one Docker container
for each of the 11 microservices (i.e., 11 containers) and two Docker containers
for the cart service, running on top of a Docker engine, which is deployed as a
daemon process on the bare metal server at HPI and hypervisor at FUB. The
figure shows that a container can have multiple replicas.

Fig. 2. Docker containers for each microservice (13 containers) running on top of the
Docker engine deployed as a daemon process on the bare metal server

4.5 Design of Synthetic User Behavior

Even if we are not focusing on the behavior of an individual user, we need to
generate a representative workload on the target system when evaluating its per-
formance. Therefore, we model a synthetic user behavior that is replayed with
different numbers of users during the experiments, as per our methodology, rep-
resenting types of users that could utilize the Sock Shop in reality. We model

8 http://www.emc-storage.co.uk/emc-vnx-5400-emc-vnx5400-vnx5400-storage.

http://www.emc-storage.co.uk/emc-vnx-5400-emc-vnx5400-vnx5400-storage
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Table 3. Summary of requests and its numbers of occurrence in the user types
(V= visitor, B = buyer, O = orders visitor) and actual overall workload mix

Label Path Method V B O Mix (%)

home /index.html GET 2 3 2 11.85%

login /login GET 0 1 1 3.21%

getCatalogue /catalogue GET 2 4 2 12.56%

catalogueSize /catalogue/size?size={} GET 1 1 0 3.07%

cataloguePage /catalogue?page={}& size={} GET 1 1 0 3.07%

catalogue /category.html GET 1 1 0 3.07%

getItem /catalogue/{} GET 1 5 1 8.42%

getRelated /catalogue?sort={}& size={}& tags={} GET 1 2 0 3.78%

showDetails /detail.html?id={} GET 1 2 0 3.78%

tags /tags GET 1 1 0 3.07%

getCart /cart GET 4 9 3 23.34%

addToCart /cart POST 0 1 0 0.71%

basket /basket.html GET 0 1 0 0.71%

createOrder /orders POST 0 1 0 0.71%

getOrders /orders GET 0 1 1 3.21%

viewOrdersPage /customer-orders.html GET 0 1 1 3.21%

getCustomer /customers/{} GET 2 5 1 10.78%

getCard /card GET 0 1 0 0.71%

getAddress /address GET 0 1 0 0.71%

the following behavior mix [17]: three types of users with the respective rela-
tive frequency, and a maximum allowed 5% deviation for the defined frequency
distribution:

– visitor (40%): visits the home page, views the catalog and the details of some
products.

– buyer (30%): visits the home page, logs in, views the catalog and some details,
adds a product to the cart, visits the cart, and creates an order.

– order visitor (30%): visits the home page, logs in, and views the stored orders.

The summary of all requests sent to the Sock Shop and the occurrence of each
requests in the user types are provided in Table 3. We set a workload intensity
function [17] with 1 min of ramp-up and 30 min of steady state, to ensure the
system reaches the steady state and we collect reliable performance data. We
have added a negative exponential think time, which is executed between every
two requests, with 0, 1, and 5 s for minimum, mean and maximum think time
respectively and an allowed deviation of 5% from the defined time.

4.6 Experiment Runs

We deployed the SUT using ten different architectural configurations per test-
ing infrastructure. The parameters we vary over the different configurations are
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Table 4. Domain metric D(α, S) per configuration α = (RAM, CPU, # Cart Replicas)
in the two environments (HPI, FUB). The configuration with the highest domain metric
is highlighted.

RAM CPU # Cart replicas D(α, S) (HPI) D(α, S) (FUB)

0.5 GB 0.25 1 0.61499 0.54134

1 GB 0.25 1 0.77631 0.53884

1 GB 0.5 1 0.53559 0.54106

0.5 GB 0.5 1 0.51536 0.54773

0.5 GB 0.5 2 0.50995 0.54111

1 GB 0.25 2 0.74080 0.54785

1 GB 0.5 2 0.53401 0.54106

0.5 GB 0.5 4 0.50531 0.54939

1 GB 0.25 4 0.37162 0.54272

1 GB 0.5 4 0.56718 0.54271

the amount of available RAM, the CPU share, and the replicas for the cart
service. We target the cart service, as most of the requests issued by the designed
workload (see Sect. 4.5) target the cart service. The different configurations we
explore are reported in Table 4. We set the RAM to [0.5 GB, 1 GB], the CPU
share to [0.25, 0.5], and the number of replicas to [1, 2, 4].

The remaining resources of the server on which we deploy the SUT are shared
among all the other services part of the Sock Shop application and managed
by the Docker engine. In order to avoid containers to be “killed” during the
execution in case of out-of-memory, we disabled this behaviour on the Docker
engine.

By relying on the operational data presented in Sect. 3, we identified the
following number of users interacting with the system, resembling aggregated
workload situations for the system: 50, 100, 150, 200, 250, 300.

The baseline experiment (Step 3, Sect. 3), which we conduct to set a reference
point for our methodology, sets the RAM to 4 GB, the CPU share to 1 and the
replicas to 1 for the cart service, and measures the performance when 2 users
interact with the system.

In total, we executed 122 experiments with different configurations.

5 Empirical Results

In this section, we describe and analyze the results of our experiments that
are described in Sect. 4, as per Step 4 in Sect. 3. All the experiment results are
available online [4].

5.1 Results

Figure 3 shows the test masses for the different investigated architectural config-
urations in relation to the workload situations Λ (numbers of users). The domain
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Fig. 3. Relative and best test masses per number of users in the two environments
(HPI, FUB)

metrics D(αi, S) for all configurations αi ∈ A are provided in Table 4. The best
relative test mass plot represents the theoretical maximum which is reached if
all tests pass. It can be seen from Fig. 3 that none of the alternatives reached the
best relative mass, because of scalability assessment failures identified. For the
HPI environment (bare metal), the configuration with 1 GB of RAM, 0.5 CPU
share, and four cart replicas not have failures for up to 150 users. However, the
relative mass decreases significantly when the number of users is increased. For
the FUB environment (bare metal hypervisor), all configurations do not experi-
ence failures up to 100 users. After such load, the performance decreases with a
similar rate.

For the HPI (bare metal) experiments, the configuration with 1 GB of
RAM, 0.25 CPU share and one cart replica has the highest domain metric
D(α, S) ≈ 0.78, followed by the configuration with 1 GB of RAM, 0.25 CPU
share, and two cart replicas having a metric value of about 0.74. The worst con-
figuration with D(α, S) ≈ 0.37 is 1 GB of RAM, 0.25 CPU share, and four cart
replicas. This is an interesting result with significant implications to the assess-
ment of architectural deployment alternatives, since adding additional replicas
with the same memory and CPU configuration may decrease the application’s
performance for the HPI environment.

The results for the FUB experiments (VMware ESXi11 bare metal hyper-
visor), show a significant performance degradation as assessed by the domain
metric, when compared to the HPI experiment. In addition, most of the experi-
ment results are within a narrow domain metric range as can be seen from Fig. 3
where most of the lines overlap. The configuration with 0.5 GB of RAM, 0.5
CPU share, and four cart replicas obtains the highest domain metric for the
FUB experiments, with D(α, S) ≈ 0.54. The worst domain metric for the FUB
experiment is for the 1 GB of RAM, 0.25 CPU share and one cart replica con-
figuration. However, this configuration was assessed as the best configuration
among the HPI experiments. The difference in the domain metric assessment
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between the HPI and FUB environments for the 1 GB of RAM, 0.25 CPU share,
and one cart replica configuration, seems to indicate that additional architec-
ture factors may be impacting system performance, such as VMware Hypervisor
overhead, I/O bandwidth, etc. These findings support the recommendation that
practitioners have to evaluate the expected operational profile and deployment
alternatives in their own context.

5.2 Analysis

Our results show that determining the best deployment configuration for an
application requires the systematic application of quantitative performance engi-
neering approaches.

We have found that adding more CPU power or increasing the number of
Docker container replicas may not result in system performance improvement.
As listed in Table 4, the best configuration at HPI is 1 GB of RAM, 0.25 CPU
share and one cart replica, with the domain metric value of 0.77631. In addition,
more cart replicas at HPI results in performance degradation. For example, the
configuration with 1 GB of RAM, 0.25 CPU share, and four cart replicas, was
assessed as D(α, S) = 0.37162, while the configuration with 1 GB of RAM, 0.5
CPU share, and one cart replica, was assessed as D(α, S) = 0.55356. At FUB,
the domain metric oscillates over a narrow range. Scaling beyond 0.5 GB of
RAM, 0.5 CPU share, and 4 cart replicas does not lead to a better performance
if the number of users is higher than 150. In addition, the choice of the HPI or
the FUB deployments have significant impact on the domain metric as shown in
Table 4. These findings suggest that bottleneck analysis and careful performance
engineering activities should be executed before additional resources are added
to the architecture deployment configuration.

6 Threats to Validity

The following threats to validity to our research were identified:

Operational Pofile Data Analysis. The domain metric introduced in this
paper relies on the careful analysis of production usage operational profile data.
Many organizations will not have access to accurate operational profile data,
which might impact the accuracy of the domain metric assessments. Several
approaches can be used to overcome the lack of accurate operational profile
data [5], such as: using related systems as proxy for the SUT, conducting user
surveys, and analyzing log data from previous versions of the SUT.

Experiment Generation. Experiment generation requires the estimation of
each performance test case probability of occurrence, which is based on the
operational profile data. When the operational profile data granularity is coarse
there is a threat to the accuracy of the estimated operational profile distribution.
Some of the suggested approaches to overcome the coarse granularity of the
operational profile data are: performing the computation of operational profile
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data using analytic or simulation models [18], and developing heuristics based
on Markovian approximations [5].

Baseline Computation. The suggested approach for the quantitative defini-
tion of the scalability requirements proposed in this paper consisted of defin-
ing the expected pass/fail criteria for system scalability based on a specified
percentile (e.g., 3 σ) of the system response. This approach works well if we
assume that a baseline performance for each microservice was validated. How-
ever, the approach could provide a worst case scalability requirement, if one of
the microservices’ baseline performance is already exhibiting significant perfor-
mance degradation.

Experiment Execution. The proposed approach for automated execution and
analysis of the load test cases needs to be assessed for continuous improvement
using a declarative approach and automated deployment.

7 Conclusion

In this paper, we have introduced a new four-step approach for the quantitative
assessment of microservice architecture deployment alternatives. Our approach
consists of operational profile data analysis, experiment generation, baseline
requirements computation, and experiment execution. A domain-based metric
is computed for each microservice deployment alternative, specified as an archi-
tectural configuration. The metric (0–1) reflects the ability of the deployed con-
figuration to meet performance requirements for the expected production usage
load.

We have applied our approach to several deployment configurations in a large
bare metal host environment, and a virtualized environment. The approach took
advantage of automated deployment of Docker containers using a state-of-the-art
load test automation tool.

Our approach contributes to the state of the art by automatically deriv-
ing baseline performance requirements in a baseline run and assessing pass/fail
criteria for the load tests, using a baseline computation of these requirements.

We have found that in auto-scaling cloud environments, careful performance
engineering activities shall be executed before additional resources are added
to the architecture deployment configuration, because if the bottleneck resource
is located downstream from the place where additional resources are added,
increased workload at the bottleneck resource may result in a significant perfor-
mance degradation.
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Abstract. Microservice architectures and the DevOps development
practices have become essential as companies strive to provide reliable
and robust software systems supporting millions of users at the same
time as new features are released and defects corrected and deployed
in hours rather in months or years. It is therefore relevant to teach the
microservice architectural style as well as the DevOps practices to our
students. A central tenet of DevOps is fast feedback which pose a prob-
lem when it comes to providing formative feedback on exercises handed
in by students. In this paper, we present the architectural design chal-
lenges in assessing student solutions embodying microservice systems as
well as our analysis and solutions to them. We present our implemen-
tation, Crunch, and present student and instructor evaluation of having
this support in a concrete course.

1 Introduction

Over the last decade, practices have been developed to bring agility to not only
the software development process itself but all the way into software deploy-
ment and production. The rationale is that it serves little purpose to have test
driven development, Scrumm, and other practices produce software fast, if the
software takes months to be deployed in production. From the development
process perspective, one notable practice is DevOps which is a set of practices
that aim to decrease the time between changing a system and transferring that
change to the production environment [2]. From a software architecture perspec-
tive, a notable architectural style is microservice architecture which describes
a particular way of designing software applications as suites of independently
deployable services, that [...] have common characteristics around organization
around business capability, automated deployment, intelligence in the endpoints,
and decentralized control of languages and data [19].

In this paper, we outline a master level course that aims to teach central
practices of DevOps as well as to teach architectural tactics for microservice
architectures, notably for achieving high availability. As the learning vehicle,
the course uses the development of a microservice system as the central case,
formulated as a progression of exercises requiring enhancing architectural quality
c© Springer Nature Switzerland AG 2018
C. E. Cuesta et al. (Eds.): ECSA 2018, LNCS 11048, pp. 175–190, 2018.
https://doi.org/10.1007/978-3-030-00761-4_12
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attributes of the system (improved availability and performance), keeping the
system under automated test control, and agile deployment in a production
environment. A central pedagogical tenet in the course is to provide fast and
continuous feedback to students on their developed architecture and source code
implementations. Our automated assessment system, Crunch, was developed to
achieve this for a subset of the exercises.

Our main contribution is to present an architectural analysis for automated
assessment (AA) of student submissions of microservice architectures with for-
mative feedback. We outline the additional challenges compared to traditional
AA of single programs, analyse the design space, and argue for our choices.
Second, we present our implementation, Crunch, and demonstrate how it fits in
our teaching context, and present student and instructor experiences.

2 Related Work

Recent literature surveys [16,17] have analysed and classified automated assess-
ment (AA) tools from 1976 and onwards. They analysed research papers and
tools, and identified seven techniques for assessing submissions and for provid-
ing feedback to students, such as model tracing, static analysis, program trans-
formations, automated testing, and others. In their analysis of 74 AA systems,
the by far most employed technique is automated testing (54 systems)—in its
most basic form, the student’s program is run and its output compared to the
expected. In more elaborate AA systems, student’s programs are subjected to
instructor written test cases and feedback is the failed tests.

Our tool, Crunch, falls squarely in this automated testing class: It starts
the student’s services, execute a number of test cases on them, and verify that
output is correct. If not, students are presented with common root causes of
failures as well as detailed execution traces for failure analysis. All AA systems
reported by Kuening et al. handles just a single program or a program fragment.
Comparing to other class 2 environments [18] (defined as AA systems focused on
exercises that have many potential solutions but a particular solution strategy
is suggested) we find related work like Sykes’s [22] JIST that focus on Java code
fragments for novices, the same for Daly et al.’s [10] RoboProf, Truong et al.’s [23]
ELP, and Insa et al.’s [14] ASys: These systems combine several techniques to
provide strong feedback to students but only consider a code fragment or single
source file, not distributed systems.

Our contribution is to extend test-based AA to student developed distributed
system, to production deployments, and to assessing non-functional (architec-
tural quality attribute) requirements of these. To the best of our knowledge,
this is the first research to report on these aspects. While there is little research
to relate to in the area of AA of distributed systems, we acknowledge that the
model and architecture of our AA tool have been inspired by build pipelines from
continuous delivery [13] and uses technology and practices from DevOps [1,24].
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3 Educational Context

The context is a course, Cloud Computing and Architecture, which is a 5 ECTS
quarter length (7-week) course taught for computer science master level students,
at Computer Science, Aarhus University. Students have 3–4 years of program-
ming education and training (including courses in algorithms, object-orientation,
design patterns, compilers, and distributed computing), and are thus relatively
proficient in developing code that fulfill functional requirements.

The intended learning outcomes (ILO) of the course was therefore to cover
developing code for non-functional requirements (quality attribute logic), devel-
oping the microservice architecture, developing code for deploying (infrastruc-
ture logic), as well as developing automated tests for all introduced code.

3.1 Course Pedagogy and Structure

The course pedagogy was designed to closely align with the values and practices
of agile development and DevOps, focus strongly on techniques and tools used
in industrial practice, and is detailed by Christensen [9]. We combined elements
from constructive alignment [4], cognitive apprenticeship [6] with a story-telling
approach [7]. These elements were put into practice by structuring the course
on these premises:

– Learning activities were primarily quality attribute and infrastructure logic
programming assignments on a large DevOps project in which students evolve
a functionally correct but simple distributed system (called SkyCave) into a
cloud based, highly available and fault tolerant, scalable multi-user system.
Each exercise added increments of complexity over the previous ones, focusing
on enhancing availability, scalability, or performance to the SkyCave system;
and testing, deploying, and monitoring it.

– Submissions were in the form of their developed programs and systems. We
avoided requesting written reports.

– The final course grade was directly based on the amount and quality of exer-
cises solved. Each exercise has a point score, each solved exercise increased
the total score, and this was the foundation for the final grade.

3.2 Learning Vehicle: SkyCave

Students are given a functionally complete “worked example” [6] system, Sky-
Cave that provides the scaffolding for their learning activities. SkyCave is
inspired by the first adventure game, Colossal Cave Adventure [15]; however,
game elements have been removed and replaced by social networking and mas-
sive multi-user aspects: Friends can log into the SkyCave, meet in specific rooms,
post and read messages on that room’s wall, and extend the cave by creating
new rooms. A simple interaction is shown below (user commands after the >
prompt):
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== Welcome to SkyCave, player Joe ==

Entering command loop, type "q" to quit, "h" for help.

> look

You are standing at the end of a road before a small brick building.

There are exits in directions:

NORTH EAST WEST UP

You see other players in this room:

[0] Joe [1] Carla [2] Peter

> north

You moved NORTH

You are in open forest, with a deep valley to one side.

A non-web based interface may seem odd nowadays, but it kept the code base
small, in a single programming language (no JavaScript, html, nor css), allowed
us to introduce message queues as client-server communication middleware, and
user interface issues were not a learning goal of the course.

SkyCave is a classic client-server architecture with students extending and
enhancing both the server part (called “daemon” in SkyCave) as well as a text
based client part (called “cmd”). Furthermore, the daemon is designed to con-
nect to several external services, such as NoSQL database, a centralized user
authorization server, and more, thus forming a microservice architecture.

The initially provided SkyCave uses simple socket-based client-server com-
munication, a JSON based protocol, and a Broker pattern (RPC/RMI) based
architecture. It uses a Java8, Ant, Ivy, and JaCoCo toolstack and the code base
handed out to students is about 2,300 SLOC implementation and 1,900 SLOC
JUnit test code in 78/29 files. It “functionally works” but crashes in case of
internal failures, network issues, high load, high latency, etc. It only implements
a single-threaded, single server solution, and all external services are only pro-
vided by fake-object implementations [20]: for instance, the database interface
is implemented by an in-memory hash map—not a real database; etc.

The course had 38 exercises, available at [8], of which 13 were assessed by
Crunch, the rest by manual source code review by instructors. To give an impres-
sion, example exercises are (a) develop code to interface external REST based
authentication service, (b) develop code to store data in external MongoDB
NoSQL database server, (c) implement availability patterns like Timeout and
Circuit Breaker [21], (d) develop code to handle horizontal scaling of “daemon”
using session caching in external Memcached, (e) setting up MongoDB redun-
dancy using passive replication, (f) develop code to use RabbitMQ as message
broker between “cmd” and “daemon”, and (g) deploy services to DigitalOcean
cloud platform. Many exercises were doubled in the sense that one exercise
required students to implement code in their “cmd” and “daemon”, while the
follow-up exercise required students to develop automated tests to validate cor-
rect behavior of the developed production code.

Solving all exercises in the course will make student’s SkyCave a horizontally
scalable system with geographically redundant, sharded, NoSQL databases, ses-
sion cache servers, gracefully degrading in face of all types of network loss or
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slow external services, deployed at commercial cloud providers, and required
more than 20 correctly configured servers to operate.

3.3 Technological Platform

DevOps practices require that it is fast and automated to establish develop-
ment and staging environments for testing a set of collaborating services. In
current industrial practice, container technology plays a central role and was
thus a central learning goal of the course. Containers are lightweight virtual
machines that are operated from the command-line, and can be controlled from
scripts/infrastructure logic. We adopted Linux based Docker [1,11] as it is versa-
tile and well supported. Exercises in the set required students to write Dockerfiles
which are infrastructure logic code in a Docker defined domain specific language.
A dockerfile describes how to build a Docker image that includes the students’
services built from their codebase, and defines how to start their services.

Furthermore, Docker allows students to release their solution proposals for
exercises by uploading their image with their SkyCave code on Docker Hub1

which is a cloud based online repository. These images were private and with
course instructors given read permission, to avoid plagiarism.

Thus, in addition to be a learning goal, it allows instructors to start stu-
dent’s services, notably the “daemon” service, easily by issuing the docker run
command, like:

docker run -d css-17:skycave ant daemon -Dcpf=exercise.cpf

which translated to “download and next run a container from the docker hub
image named ‘css-17:skycave’ (‘css17’ is the student group’s account name, ‘sky-
cave’ their image name) by executing ant daemon -Dcpf=exercise.cpf; ‘ant’
invokes the ant build management tool, ‘daemon’ is the predefined target, and
the final part specifies a configuration file specific to the exercise to be tested
(See Sect. 5.2 later).

4 Example of Crunch Assessment

In this section, we outline an exercise named ‘weather-timeout’ whose intended
learning outcome is development of quality attribute logic code to increase avail-
ability, detail how Crunch assesses it, and finally shows the type of formative
feedback presented to the students. It serves as a concrete context to base the
later architectural discussion on.

4.1 Assignment ‘Weather-Timeout’

One of the commands in the SkyCave client is ‘weather’ which will print the
current weather situation at the student’s registered hometown.
1 https://hub.docker.com/.

https://hub.docker.com/
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> weather

The weather at: AARHUS

The weather in AARHUS is Cloudy, temperature 12.4C (feelslike 12.1C).

Wind: 4.1 m/s, direction West.

This report is dated: Mon, 29 May 2017 10:38:37 +0200.

Architecturally, the “cmd” sends a weather request to its “daemon” server,
which in turn must contact an external microservice, a course provided HTTP
based weather service, retrieve current weather information, format it, and pass
it back to the “cmd”. In a previous exercise, named ‘weather’, students have
added code to their SkyCave “cmd” and “daemon” code base to achieve this,
but have not considered external weather service failure situations.

The ‘weather-timeout’ exercise extends upon this exercise and require stu-
dents to implement a safe failure mode using the timeout pattern [21] in case
their “daemon” cannot contact the external weather service due to connection
errors, or in case the weather service is too slow to respond. The availability
requirement is that the ‘weather’ command never takes more than 8 s to com-
plete, and output details about the cause like e.g.:

> weather
The weather service failed with message: *** Weather service not available.

Slow response. Try again later. ***

4.2 Assignment Submission

Students submit an assignment for assessment by Crunch using a webpage which
also serves to show an overview of submitted assignments, point score, and for-
mative output (see Fig. 1). The submission process is simple as it only records
that the assignment from this group should be assessed by Crunch on its next
run. The source code must be released by the students to their docker hub image
using the image name that Crunch has recorded for this group.

4.3 Crunch Assessment

Crunch is a batch program which runs at scheduled intervals, and performs an
assessment of all submitted exercises for all groups. In our course, Crunch ran
every second hour of the day.

For each group, Crunch assesses if the student’s latest published image on
docker hub fulfills the tests associated with the submitted exercises in a sequence
defined by progressive complexity in the assignments: easier first and most com-
plex last. Upon the first failing solution, it skips the assessment of the rest, which
also means no points are awarded! This aligns strictly to the agile doctrine: All
tests pass, always. We will return to this in Sect. 7.

Crunch’s internal algorithm is similar to the pipeline architecture in con-
tinuous integration servers [13]: A given group’s image is subjected to a build
pipeline, in which each assignment assessment is similar to a stage consisting of
a series of steps to be performed. In the case of the assess if group’s codebase
solves assignment ’weather-timeout’ stage, Crunch will execute these steps:
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1. Pull students’ image from docker hub.
2. Start a slow responding weather service on address slowweatherservice:

9876. It will accept connections but replies are 15 s delayed.
3. Start “daemon” from student’s image RECONFIGURED to connect to slow

responding weather service at slowweatherservice:9876.
4. Start “cmd” and issue the ‘weather’ command.
5. Verify that “cmd” output contains *** Weather service not available. Slow

response. Try again later. ***
6. Verify the time taken between issuing the ’weather’ command and the answer

received is no more than 8 s.
7. Stop “daemon”, “cmd”, and weather service.

A stage with similar steps was also executed to test for a non-existing weather
service.

4.4 Formative Feedback

A failure is clearly marked in the student group’s overview page as shown on
Fig. 1: The ‘weather-timeout’ entry in the list is red and its status is “Failed”.
To get formative feedback, students must follow the “Link to Detailed Result”
link. Figure 2 shows the upper and middle part of the formative feedback to our
student group. The left side of the figure shows the group name, a time stamp, the
name of the docker image used for the scenario run, and the conclusion “Failure”.
Next follows the “Steps exercised” section. This lists all actions Crunch made up
until the failing step, similar to our stage outline in Sect. 4.3. Here step 14 failed
“Executing ‘ant cmd’ and issuing commands to validate assignment ‘weather-
timeout’ ”. Thus the students already know that their server/“daemon” has been
started correctly, as step 13 succeeded.

Fig. 1. Assessment page for failed submission
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Fig. 2. Feedback - part I (left), and part II (right)

The section named “Possible causes for this failure are”, right part of Fig. 2,
is formative feedback in which Crunch lists potential sources of the error. This
section encodes the instructors’ accumulated knowledge of recurring issues in
the student’s code bases, as well as details the exact test case steps executed
and expected output.

Finally, the actual log output from both ‘daemon’ and ‘cmd’ are provided for
very detailed post mortem analysis by the students. The upper part “Docker logs
output from your daemon” is visible in the bottom in the right part of Fig. 2.

5 Architecture and Implementation

Our main contribution is to push the boundary of automated testing AA systems
from single programs to distributed, robust, microservice architectures deployed
in production. Testing robustness of microservice architectures presents several
challenges:

– Expressing Test Cases. Exercises define requirements that students must pro-
duce source code to fulfill, and an AA tool must express test cases that verify
that it is correctly implemented. Expressing these test cases of course rely
on a mutual agreement on the interface as the instructor developed test code
must call services developed by the students. However, an interface dictated
by the AA tool may limit the design space of the students, if not careful.

– Distribution Challenge. Microservice architectures are distributed systems
and thus not only a single program needs to be executed, but a set of ser-
vices must be deployed, started, and correctly configured to communicate and
collaborate as a cohesive system on a network.
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– Quality Attribute Evaluation. Our course puts emphasis on enhancing quality
attributes, notably increasing availability, or performance of the SkyCave
system, through coding appropriate tactics and patterns [3,21], implement
caching, or deploying and configuring redundant services.

– Operations. The point of DevOps is putting software into its final operational
environment fast—so it can provide value to customers. Thus a central part of
assessment is not only that the student’s microservices work—but that they
are indeed available to the end users.

5.1 Expressing Test Cases

Regarding how to express test cases, there are two options:

Internal Test Case Deployment: In the case of Java programs, the obvious
choice is using the JUnit2 testing framework. Though tedious, we would be able
to write JUnit test cases in a Java test class, copy this test class into the student’s
code base in the docker image, and compile, and execute it from within their
container: thus test cases are deployed internally in their virtual machine. This
allows the unit-under-test (UUT) to be very fine-grained (testing at unit level),
like testing a single method in a single class, by the test case code instantiating
the class, invoke the method, and verify its output.

External Test Case Deployment: Write test cases that execute in its own
container, instantiate student’s services (like daemon or cmd or both) in sepa-
rate containers and execute tests by interacting over the network or some other
defined interface: test cases are deployed externally. The UUT is then course-
grained (testing at integration/system level), like sending commands to their
‘cmd’ command line interface and let it interact with the ‘daemon’, or sending
network packages to the student’s daemons in the marshalling format of method
calls.

The internal deployment scheme has the decisive liability that it puts much
too strong limitations on the student’s design space: To compile our test case
code as part of their code base, the Java interface, method name, parameter
lists, and package had to be dictated as part of the exercise description. This
would limit their design space, and also hint much too strongly at a solution, to
be desirable at master level.

We therefore adopted to use external test case deployment, which treats the
student’s developed system as a service that our AA tool interacts with as part of
the assessment. This is also in line with the course goals of teaching microservices
as independently deployable services.

The next issue is then to define the interface between an AA tool and the
student’s “daemon”. Again we face two options:

Network Messages: The communication between the “cmd” and “daemon” is
in the SkyCave codebase designed using the Broker pattern [5], and implemented

2 www.junit.org.

www.junit.org
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in the delivered code, using JSON marshalling. It is thus possible to create cor-
rectly formatted network messages and send them to, say, the daemon, receive
the reply message and demarshall it for verification. Note however, that validat-
ing “cmd” behaviour is not possible using this scheme, as “cmd” output goes to
the console, and thus no networks messages are interceptable.

User Interface Input/Output: The “cmd” is a command line user inter-
face, with users typing commands (Sect. 4.1) and reading output. Docker allows
connecting stdin and stdout of a running container and we can thus program-
matically provide input and read output from a student’s running “cmd” service
and define our test case this way.

We chose the user interface input/output scheme for two reason. First, choos-
ing the network message format would delimit the student’s design space and
ability to change and enhance the network protocol. Indeed one of the later exer-
cises dealt with enhancing performance by changing the protocol. In contrast,
the external user interface of the text UI “cmd” was defined once and for all by
the assignments. Second, requirements in exercises were stated in terms of UI
output which is in line with what to expect in a real development project. And
third, it allows validating exercises whose focus is development of code in the
“cmd” itself.

Generalizing this to other AA systems for testing student’s solution including
a web or graphical user interface, would require the provide code base architec-
ture to include a Window Driver pattern [12,13], to let the AA mimic user
interaction.

The liability is of course that this system level testing is rather coarse-grained
and can to some extend be cheated (tests pass, but no real solution coded). To
mitigate this, we added a internal inspection tool to the SkyCave code base:
basically a dedicated log file that Crunch could read. Exercises had requirements
dictating what to write into this specialized log under given circumstances. For
instance, one exercise required students to implement the Circuit Breaker pat-
tern [21] which is a state machine. All state transitions had to be written to the
inspector log. Crunch would then configure a service that should force their cir-
cuit breaker through all state transitions, and then verify that all proper state
transitions were written to their inspector log. This allowed Crunch to assess
internal state in their system, not visible from a normal system testing level,
and thus represents the specialized interfaces testability tactic [3].

5.2 Distribution

The distribution challenge actually encompass several challenges as seen from
an AA viewpoint.

– Starting and stopping services. AA relies on scripted executions of students’
executables, and in our context this means we have to start and stop microser-
vices developed by them from our AA program.

– Configuring services for collaboration. Starting the student’s “daemon” is not
enough, as it depends on an ever growing number of external services, such
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as MongoDB database, MemCached cache servers, external services, etc. In a
microservice architecture context, these dependencies are defined by TCP/IP
hostnames and port numbers. For most of our AA tests, we need to reconfigure
some or all of these bindings.

Regarding the start and stop services issue, many virtual machine system
(like VMWare and VirtualBox) use graphical user interfaces, which is difficult
to operate from an AA test case. We considered Vagrant and Chef, but choose
Docker as it suits both our learning goals as well as it is a command-line tool
(See Sect. 3.3), making it easy to put under programmatic control. In addition,
Docker images are generally small which reduces the time spent on downloading
images.

Regarding the configuring service issue, it is similar to dependency injec-
tion of test doubles [20], like test stubs or mocks, which is normal practice
when developing unit tests. However, as our test cases are at the service inter-
face level, the challenge is to reconfigure the student’s service to communicate
with Crunch defined services, tailored to test a specific scenario. For instance,
the ‘weather-timeout’ assessment in Sect. 4.3 required Crunch to reconfigure the
student’s “daemon” to interact with a slow responding weather service. For this
end, we developed a simple dependency injection framework, Chained Property
File (CPF), which is basically property files that define key-value pairs, such as
SKYCAVE WEATHERSERVER = localhost:8182. Our exercises required students
to specify their configuration in CPF files named after the exercise. So, the
interface between Crunch and the student’s codebase was that they had to cre-
ate a CPF file name ‘weater-timeout.cpf’ for that particular exercise. What sets
CPF apart from ordinary property files is that our AA tool could chain itself into
it, and overwrite specific properties, much like cascading stylesheets (CSS). Thus
to reconfigure their “daemon” to use Crunch’s slow responding weather service,
Crunch used a special CPF for this exercise, and would start their “daemon”
using it ant daemon -Dcpf=wt-exercise.cpf. The wt-exercise.cpf uses the
chaining feature < (cpf):

< weather-timeout.cpf

SKYCAVE_WEATHERSERVER = slowweatherservice:9876

This CPF file translates to read and set properties according to the (chained)
student CPF “weather-timeout.cpf”, and next overwrite the value of key
SKYCAVE WEATHERSERVER.

5.3 Quality Attribute Evaluation

Assessment of quality attributes using a test based approach pose challenges
that range from easy to difficult. For instance, performance testing would require
specialised tools, like JMeter, and long-running processes to measure correctly.
Crunch is in its first release, and focus on the availability quality attribute which
is relatively easy to measure: if safe failure modes are in place, the “daemon”
will survive calls to broken external services and produce the proper output;



186 H. B. Christensen

otherwise it will crash which is easily detected by Crunch. In addition, it is
simple to test the timing requirements, like the maximal 8 s delay in ’weather-
timeout’.

Table 1. Classification of supported Assignments

Assignment ILO Environment

Skycave-image Deployment Staging

Weather-client Functional Staging

Wall Functional Staging

Subscription-service Microservice Staging

Weather-service Microservice Staging

Weather-timeout Availability Staging

Weather-circuit-breaker Availability Staging

Mongo-storage Microservice Staging

Mongo-storage-wall Microservice Staging

Rabbitmq-request-handler Microservice Staging

Operations Operations Operations

Weather-service-operations Operations Operations

Rabbitmq-operations Operations Operations

5.4 Operations

Finally, the operations aspect was assessed by introducing a set of exercises that
required students to deploy their “daemon” on a cloud provider of their choice.
Our Crunch AA tests consisted of connecting to their production system every
second hour of the day, and exercise a simple user story. The assessment criteria
was just that the services were available (servers running and operational) and
thus rather weak. However, as Crunch was testing an externally deployed system,
it of course had no way of reconfiguring its service bindings.

6 Evaluation

The exercise set contained a total of 38 exercises of which 13 were mandatory
to solve (total of 385 points), while 25 were optional (total of 645 points). The
full set of exercises can be found in [8]. Table 1 outlines the 13 assignments
that Crunch can assess. The table lists the assignment name, the intended
learning outcome (ILO), and the environment set up for assessment. Regard-
ing the intended learning outcome column, exercises marked “Microservice”
are focused upon extending SkyCave to interact with and deploy new/external
services; “Availability” are focused on increasing availability of the “daemon”
in failure situations; “Operations” assesses their deployed production system,
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while “Functional” and “Deployment” are feature adding or deployment related
exercises.

The Environment column shows the execution context that Crunch sets up,
either a staging environment providing services, or directly in the operational
environment in the cloud.

Over the seven weeks of the course, a total of 369 exercises from 32 groups
(mean: 11.5 exercises per group) were submitted. Thus at the end of the course
Crunch evaluated 369 exercises every two hours.

6.1 Questionnaire

After the course instance in which Crunch was used, a questionnaire was given
with seven course related question on a Likert scale from ‘Strongly agree’ to
‘Strongly disagree’ plus free text option on all; and a final free text question ask-
ing for recommendations for improvement. Two of the questions were regarding
the use of Crunch in the course. In all 23 students filled out the questionnaire.
The questions regarding Crunch were:

– Question 2 (Q2): “The automated marking by Crunch is better than man-
ual/human review for assignments focusing on functionality”

– Question 3 (Q3): “The automated feedback from Crunch was detailed enough
to help me find the cause of failing the test”

The resulting score was more than 95% agreed or strongly agreed on the Q2
statement; while 91% on the Q3 statement. The results are of course encouraging,
with more than 90% of the students being happy about the support given by
Crunch. Especially encouraging is the about 91% agreement that the formative
feedback given by Crunch is adequate for the student’s ability to reproduce and
ultimately remove defects from their systems. This is also supported by the
most common critique in the free text feedback, namely that Crunch should
run more often than the two hour interval we had set it for. As one student
noted: “However, why not run Crunch on a more frequent basis (and during
night-time it’s out!)? I sometimes had to eagerly wait for a long time to see if I
had successfully squashed a bug.”

7 Discussion

We have run the course twice with an almost identical exercise set. In the first
instance, all assessments were made manually, while Crunch was introduced in
the second instance, which allows a comparison. Overall, our experience of using
Crunch in the course is positive. Our main motivation was to provide the fast
feedback cycle of agile and DevOps development—while some students com-
plained about the “long” two hour cycle, it should be contrasted to manual,
instructor provided, feedback that may take days to arrive. A second motivation
was the emphasis on regression testing—adding new features should never inval-
idate existing functionality. We saw that happening on numerous occasions in
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our first instance of the course using only manual review and testing, while after
introducing Crunch no student group would be able to pass the course if this
happened. The final motivation, of course, was taking a burden off our shoul-
ders as reviewers. Introducing Crunch meant more time was available to review
their design, architecture, and deployment code, without spending a lot of time
setting up a staging environment for execution to verify functional behaviour.

We observed one interesting difference between the two instances of the
course, namely that the average grade level was significantly lower the second
time we ran it: 7.8 versus 9.8 (just above grade C compared to just below grade
B)3. While there are many reasons for this, we attribute at least some of it to
the regression testing nature of Crunch: student’s had to keep existing behaviour
running.

Crunch is in its first release, and was admittedly developed under an inherent
assumption of “good behaviour” from the students, which thus pose a source of
error, and also pose a risk of direct cheating. One such issue we discovered was
that we assumed the Ant build script in the student’s code was unaltered from
what we have handed out, and we used a particular Ant target to build and
execute their own tests as part of the initial Crunch test ‘skycave-image’. After
the exam, we discovered at least one group that had changed this target in such
a way that it only built their production code but did not run their own tests,
and thus not in line with the learning goals. Still, Crunch does validate external
production behaviour correctly.

Regarding direct cheating by, say, just writing required “cmd” output instead
of implementing real behaviour, we judge the chance as minimal. First, Crunch
assesses a piece of behaviour in several ways, for instance, the ‘weather’ com-
mand is first assessed configured with a working service (functional test), next
configured to a non-existing service (availability test), and finally configured
to a slow responding one (availability). As the students’ daemon is shut down
and restarted between each test, it cannot maintain state and thus “count how
many times it has been assessed, and respond accordingly”. Secondly, most of
the exercises in the course set were manually review of their produced code (by
retrieving the exact same images as Crunch used), so such cheating would have
been spotted.

Agile and DevOps development is based on developing strong automated
test suites before or as part of production code development, and this was a
clearly defined learning goal of the course. However, one may argue that Crunch’s
tests represent an a priori oracle which allows students to ignore their own test
development. We have indications that at least one group used this loophole,
but perhaps the complaints from several groups that the “two hour cycle is too
long” points in the direction, that others did as well.

3 In Denmark, grades A–E are mapped to a numerical scale, A=12, B=10; C=7,
D=4, and E=2).
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8 Conclusion

In this paper, we have presented Crunch which is a tool to perform automated
assessments of microservice assignments while providing formative feedback to
the students both in terms of accumulated score but more importantly by pro-
viding feedback in order to diagnose why a particular assignment solution fails.
We have discussed the learning context, a course on DevOps and microservice
architecture, which puts strong emphasis on agile processes which makes it nat-
ural that also the feedback cycle on submitted assignments is fast and agile.

Automated assessment of programming exercises is hard, and assessment of
client-server systems relying on many external services (client, server, replicated
databases, caching services, message queues, credential servers, etc.) are even
harder, as the solution space is vast, and setting up the proper execution con-
text for a particular test case is complex. To the best of our knowledge, our
contribution is the first reported attempt to tackle this problem.

We have analysed the challenges facing microservice system validation and
discussed our design choices: external test case deployment using container tech-
nology, validation through user interface input/output, service configuration
through chained property files, and finally fine-grained inspection through a
special logging mechanism. Common to the first three design solutions are that
they operate on service boundaries and not on object boundaries and are thus
course-grained. This fits the content of our course well as it is oriented towards
microservice architectures, but more importantly it does not limit the solution
space much for the students, providing room for student’s imagination and free-
dom of implementation. The fine-grained inspection facility was introduced to
enhance Crunch’s ability to inspect internal state while leaving the design space
open. We find that these design choices are viable and may serve as guidelines
for further experimentation and research in the area of automated assessment.

Finally, we have provided data from evaluating Crunch in our teaching con-
text. Though our data is limited, they are still encouraging and points towards
the benefits of test-based automated assessment of distributed systems.

Acknowledgements. Daniel Damgaard contributed to the architectural analysis.

References

1. Anderson, Charles: Docker. IEEE Software, pp. 102–105 (2015)
2. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables

DevOps: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)
3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn.

Addison-Wesley, Boston (2012)
4. Biggs, J., Tang, C.: Teaching for Quality Learning at University. Open University

Press, McGraw-Hill, New York City (2007)
5. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern Oriented Software, vol. 4.

Wiley, Hoboken (2007)



190 H. B. Christensen

6. Caspersen, M.E., Bennedsen, J.: Instructional design of a programming course: a
learning theoretic approach. In: Proceedings of the Third International Workshop
on Computing Education Research, ICER 2007, pp. 111–122. ACM, New York
(2007)

7. Christensen, H.B.: A story-telling approach for a software engineering course
design. In: Proceedings of the 14th Annual ACM SIGCSE Conference on Inno-
vation and Technology in Computer Science Education, ITiCSE 2009, pp. 60–64.
ACM, New York (2009)

8. Christensen, H.B.: Cloud Computing and Architecture, E16 Website. (2016).
http://users-cs.au.dk/baerbak/c/cloud-e16/menu1.html

9. Christensen, H.B.: Teaching DevOps and cloud computing using a cognitive
apprenticeship and story-telling approach. In: Proceedings of the 2016 ACM Con-
ference on Innovation and Technology in Computer Science Education, ITiCSE
2016, pp. 174–179. ACM, New York (2016)

10. Daly, C., Horgan, J.M.: An automated learning system for Java programming.
IEEE Trans. Educ. 47(1), 10–17 (2004)

11. Docker. Docker web site (2017). www.docker.com
12. Fowler, M.: Window driver (2004). https://www.martinfowler.com/eaaDev/

WindowDriver.html
13. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation. Addison-Wesley, Boston (2010)
14. Insa, D., Silva, J.: Semi-automatic assessment of unrestrained Java code: a library,

a DSL, and a workbench to assess exams and exercises. In: Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer Science Education,
ITiCSE 2015, pp. 39–44. ACM, New York (2015)

15. Jerz, D.G.: Somewhere nearby is Colossal cave: examining will crowther’s original
”Adventure” in Code and in Kentucky. Digit. Humanities Q. 1(2), 2 (2007)

16. Keuning, H., Jeuring, J., Heeren, B.: Towards a systematic review of automated
feedback generation for programming exercises. In: Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education, ITiCSE
2016, pp. 41–46. ACM, New York (2016)

17. Keuning, H., Jeuring, J., Heeren, B.: Towards a systematic review of auto-
mated feedback generation for programming exercises - extended version. Tech-
nical report, Department of Information and Computing Sciences, Utrecht, The
Netherlands, March 2016

18. Le, N.-T., Pinkwart, N.: Towards a classification for programming exercises. In:
Workshop on AI-supported Education for Computer Science, pp. 51–60 (2014)

19. Lewis, J., Fowler, M.: Microservices (2014). https://www.martinfowler.com/
articles/microservices.html

20. Meszaros, G.: xUnit Test Patterns: Refactoring Test Code. Addison-Wesley, Boston
(2007)

21. Nygard, M.T.: Release It! Design and Deploy Production-Ready Software, 2nd edn.
Pragmatic Bookshelf (2018). https://pragprog.com/

22. Sykes, E.R.: Qualitative evaluation of the Java intelligent tutoring system. J. Syst.
Cybern. Inform. 3(5), 49–60 (2006)

23. Truong, N., Roe, P., Bancroft, P.: Static analysis of students’ Java programs. In:
Proceedings of the Sixth Australasian Conference on Computing Education - Vol-
ume 30, ACE 2004, pp. 317–325. Australian Computer Society, Inc., Darlinghurst
(2004)

24. Wikipedia. DevOps (2016). www.wikipedia.org. Accessed Jan 2016

http://users-cs.au.dk/baerbak/c/cloud-e16/menu1.html
www.docker.com
https://www.martinfowler.com/eaaDev/WindowDriver.html
https://www.martinfowler.com/eaaDev/WindowDriver.html
https://www.martinfowler.com/articles/microservices.html
https://www.martinfowler.com/articles/microservices.html
https://pragprog.com/
www.wikipedia.org


Beethoven: An Event-Driven Lightweight
Platform for Microservice Orchestration

Davi Monteiro1(B), Rômulo Gadelha1, Paulo Henrique M. Maia1,
Lincoln S. Rocha2, and Nabor C. Mendonça3

1 State University of Ceará (UECE), Fortaleza, CE, Brazil
{davi.monteiro,romulo.gadelha}@aluno.uece.br, pauloh.maia@uece.br

2 Federal University of Ceará (UFC), Fortaleza, CE, Brazil
lincoln@dc.ufc.br

3 University of Fortaleza (UNIFOR), Fortaleza, CE, Brazil
nabor@unifor.br

Abstract. The microservice architecture provides an efficient manner
to allocate computational resources since each microservice can be indi-
vidually scaled. Despite its benefits, there are still challenges regarding
the cooperation among different microservices in order to provide elabo-
rated business processes. In this paper, we propose Beethoven, an event-
driven lightweight platform for microservice orchestration that eases the
creation of complex applications that use microservice data flows. The
platform is composed of a reference architecture and an orchestration
language. The reference architecture has been instantiated by using the
Spring Cloud Netflix ecosystem. To demonstrate the feasibility of the
Beethoven platform, an example application has been developed. All
artifacts produced as part of this work are available.

Keywords: Event-driven architecture · Reference architecture
Microservice composition · Orchestration

1 Introduction

Microservice Architecture (MSA) arises as a novel architectural style to develop
a single application as a collection of independent, well-defined, and intercom-
municating services [3]. Microservices are autonomous and communicate with
each other through lightweight mechanisms, often an HTTP resource API [2]. In
addition, MSA proposes a solution for efficiently scaling computational resources
and solving other problems present in a monolithic architecture. Since microser-
vices can be individually scaled, they provide an efficient manner to allocate
computational resources, enabling flexible horizontal scaling in cloud environ-
ments.

Despite providing numerous benefits, MSA brings costs such as difficulties
in explicitly defining collaborations between microservices. Although accessing a
microservice through its API using a communication protocol is straightforward,
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there are issues to manage business processes that stretch across the boundaries
of an individual microservice as the overall software complexity increases [4].
MSA faces challenges such as the cooperation among different microservices in
order to provide complex and elaborated business processes. To address this
issue, there are two approaches that may be used for microservices composition:
orchestration and choreography. The former refers to a centralized business pro-
cess that coordinates a series of service invocations, while the latter represents
decentralized and cooperative service coordination [4].

Although there exist some recent approaches for microservice orchestra-
tion [5,6], those solutions have limitations in dealing with the microservices
dynamic location since the solutions require a previous registration of the
microservices, which compromises the scalability in case of new microservices
need to be composed at runtime. Moreover, those solutions are not available for
both industry and academic communities, which may compromise their reusabil-
ity, extensibility, and experimental reproducibility.

To fill that gap, this paper proposes Beethoven, a lightweight platform for
microservice composition that eases the creation of complex applications that
use microservice data flows. The platform is composed of a reference architec-
ture and an orchestration Domain Specific Language (DSL) that enables software
engineers to express microservice orchestration. The reference architecture fol-
lows an event-driven design approach and has been instantiated by using the
actor model and the ecosystem provided by Spring Cloud Netflix. In order to
demonstrate the feasibility of the Beethoven platform, an example application
has been developed.

The remainder of this paper is organized as follows. Section 2 presents the the-
oretical background of this work and discusses relevant existing work related to
our proposal. Section 3 describes the Beethoven platform (reference architecture
and orchestration DSL). Section 4 outlines the concrete architecture that imple-
ments the reference architecture using the ecosystem provided by Spring Cloud
Netflix. Section 5 demonstrates the use of Beethoven by means of an example
application. Finally, Sect. 6 provides some final considerations.

2 Background and Related Work

For some researchers, MSA is a subset of SOA or a special approach to con-
strain any SOA-based application to be successful. Although there is no formal
definition of the microservices architectural style, Lewis and Fowler [2] describe
microservices using the following set of principles: (i) componentization via ser-
vices; (ii) organized around business capability; (iii) products not projects; (iv)
smart endpoints and dumb pipes; and (v) decentralized data management and
governance. In addition, in order to address common problems presented in
distributed systems, a MSA-based application should implement the following
patterns: (i) Circuit Breaker Pattern: an effective mechanism to tackle long
timeouts and cascading failures; (ii) Service Discovery Pattern: a solution
used to determine the location of a microservice instance at runtime by using a
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service registry; and (iii) Client Side Load Balancer Pattern: a load balancer
that is performed on the client side for routing requests across servers.

The works more closely related to ours are Medley and Microflows. The
former, proposed by Yahia et al. [6], is an event-driven platform for service
composition based on a DSL for describing orchestration. Before defining a com-
position, Medley requires to register the information (e.g. endpoints, operations,
data types) about each microservice that will be used during the orchestration.
Microflows [5] is an approach for microservices orchestration using BDI agents
that requires three activities: describing information (e.g. endpoints, supported
operations, inputs, and outputs) about a microservice using a JSON-based ser-
vice description; specifying goals for a particular microservice composition; and
defining constraints for the microservice compositions.

As a consequence of the dynamic aspect of a microservice that can be
deployed, replicated or reallocated during the application execution, it is not
possible to determine the microservice endpoint at design time. For instance,
in order to orchestrate microservices using Medley or Microflows, it is required
to previously describe and register each microservice that will be part of the
orchestration. This means that, if new microservices need to be composed with
the existing ones, a software engineer needs to describe and register the new
microservices and then restart the orchestration platform.

Therefore, differently from the aforementioned works, Beethoven does not
utilize service descriptors for describing and registering microservices, but rather
relies on the Service Discovery Pattern to determine the location of a microser-
vice instance during orchestrations, thus making the composition more dynamic
and scalable.

3 Beethoven

3.1 Reference Architecture

A reference architecture is a special type of software architecture that provides
abstractions and guidelines for the specification of concrete architectures in a
certain domain [1]. Figure 1 depicts the general representation of the Beethoven
reference architecture using a block diagram (modules). This is a 4-layer archi-
tecture composed by API, Service, Database Abstraction, and Orchestration
Engine layers, which are described below.

API Layer—provides a uniform interface and endpoints to standardize the
access to the Service Layer. Such interface and endpoints are specified following
the RESTful standard and conventions, being technology-agnostic.

Service Layer—provides a controlled access point to the other two layers in the
reference architecture (i.e., Database Abstraction and Orchestration layers). This
layer implements all services that are consumed by the API layer. In addition,
the services offered by this layer can be used to build applications for managing,
monitoring, and visualizing the workflow execution.
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Fig. 1. Beethoven’s reference architecture

Database Abstraction Layer—used to store the workflow, task, and event
handler definitions. The Database Abstraction Layer is also responsible for
recording information about the execution of workflow instances, such as resource
utilization, throughput, and execution time. Such information can be used in sub-
sequent analysis to identify, for instance, the existence of bottlenecks or failures
when performing certain tasks.

Orchestration Engine Layer—it is the architecture core layer and follows the
event-driven architectural style to provide a workflow execution mechanism in a
decoupled and scalable manner. This layer is composed of three main architec-
tural components: Event Channel, Event Processor (Decider, Report, Workflow,
and Task), and Instance Work (Task and Workflow). The Event Channel com-
ponent is used as an event bus to exchange messages among Event Processor
components and can be implemented as message queues, message topics, or a
combination of both. The Event Processor component is responsible for process-
ing a specific type of event and notifying a successful or failure execution by
publishing another event in the Event Channel. An Event Processor component
can be bound to a set of Instance Worker components, which are responsible
for performing a specific activity (e.g., decision, reporting, workflow, or task)
demanded by the Event Processor component to which it is bound.

The Orchestration Engine, as shown in Fig. 1, is composed by an event chan-
nel, used to transfer event messages among event processors, which can be of
four types: Decider Event Processor, Report Event Processor, Workflow Event
Processor, and Task Event Processor. Specifically, in the event process context,
there are two types of events: an event (occurrence of a particular action) and a
command (an action to be performed). In the Orchestration Engine, each event
processor can send or receive events and commands to or from another event
processor using the Event Channel.

The Workflow Event Processor sends events (e.g., scheduled, started, or com-
pleted) during execution of workflow instances and receives commands (e.g.,
start, stop, or cancel) to manage the execution of a workflow instance. After
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receiving the command to start a workflow, the Workflow Event Processor cre-
ates a workflow instance and a worker (Workflow Instance Worker) for handling
all events and commands related to the workflow instance that has been cre-
ated. In this way, multiple workflow instances can be executed in parallel. The
Task Event Processor sends events during the execution of tasks and receives
commands to execute tasks.

The Decider Event Processor receives events generated by the Task Event
Processor and Workflow Event Processor in order to decide which action (com-
mand) should be performed. To this end, the Decider Event Processor evaluate
event handlers definitions.

The Report Event Processor receives all events that are generated during the
execution of workflow instances and their respective tasks to record metrics (e.g.,
execution time, throughput, and errors). Furthermore, additional information
about failures or timeouts during the task execution is also written from the
events received by this processor.

3.2 Orchestration DSL

This section introduces a textual DSL named Partitur, available on GitHub1,
for expressing microservices orchestration in Beethoven. Partitur is built using
Xtext2, a tool based on the Eclipse Modeling Framework for the development of
programming languages and DSLs. In the following subsections, we present the
main Partitur elements: Workflow, Task, and Event Handler.

Workflow—A workflow is an abstraction of a business process that is executed
in a distributed manner among different microservices. A workflow is composed
of a set of activities that may eventually be executed and a set of constraints
that must be obeyed. In this way, the definition of a workflow is designed to
ensure that all activities performed during a business process are in accordance
with the business constraints that have been specified. A Partitur workflow is
composed of: (i) a unique identifier that represents the workflow name; (ii)
a set of tasks that represent each business task or activity that is possible
to be performed during a business process execution; and (iii) a set of event
handlers that enclose all the business constraints that must be satisfied.

Task—In Partitur, a task is an atomic and asynchronous operation responsi-
ble for performing an action that manages a microservice. A Partitur task is
composed of: (i) a unique identifier that represents the task name and (ii)
an HTTP request, which is composed of the main four HTTP methods (i.e.,
DELETE, GET, POST, and PUT).

Event Handler—Partitur event handlers are based on Event-Condition-Action
(ECA) rules that form the following structure: on Event if Condition do Action.
Partitur event handlers are composed of the following structure: (i) a unique
identifier that represents the event handler name; (ii) an event identifier that
1 https://github.com/davimonteiro/partitur.
2 https://www.eclipse.org/Xtext/.

https://github.com/davimonteiro/partitur
https://www.eclipse.org/Xtext/
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is used to define which event must be listened and captured during the workflow
execution; (iii) a set of conditions representing boolean parameters that must
be true in order to process an event; and (iv) a set of commands defining the
actions that should be performed on the occurrence of an event that satisfies the
specified conditions.

4 Spring Cloud Beethoven

Aiming at observing the viability of the reference architecture, a concrete archi-
tecture, named Spring Cloud Beethoven3, has been implemented using the actor
model and the following technologies: Java, Spring Cloud Netflix4, and Akka5.

Since the concrete architecture is based on the Spring Cloud Netflix
ecosystem, it provides integration with Spring Boot applications using auto-
configuration and binding to Spring Cloud Netflix components, such as Spring
Cloud Eureka, Spring Cloud Ribbon, and Spring Cloud Hystrix. Therefore, in
order to address dynamic microservices location, Spring Cloud Beethoven relies
on Spring Cloud Eureka for service discovery and Spring Cloud Ribbon for
client-side load balancer. As consequence, there is no need to describe previ-
ously and register each microservice that will be part of the orchestration. Thus,
new microservices that are added to a microservices-based application can be
used during the microservice composition.

In the actor model, actors are essentially independent of concurrent pro-
cesses that encapsulate their state and behavior and communicate exclusively
by exchanging messages. To implement the orchestration engine of the reference
architecture, each event processor has been instantiated in the concrete archi-
tecture as an actor. Next, each actor implemented in the concrete architecture
is detailed in terms of internal state, sent or received messages, and behavior.

WorkflowActor—The WorkflowActor has been implemented following the
Workflow Event Processor specification. For this reason, it is able to receive and
process commands to manage workflow instances. In practice, the WorkflowActor
receives commands and creates child actors to manage the workflow instances.
Specifically, the WorkflowActor works as a supervisory actor who receives com-
mands to manage a workflow instance and delegates that responsibility to a
WorkflowInstanceActor (WorkflowActor ’ s child). Each WorkflowInstanceActor
receives commands from the WorkflowActor and updates the state of the work-
flow instance. As a result, all work that the WorkflowActor receives is delegated
to a WorkflowInstanceActor. This approach provides a mechanism to isolate a
workflow execution with no shared data among the concurrent actors.

TaskActor—The TaskActor receives only the command to start tasks and sends
success or failure events during a task execution. To execute a task, TaskAc-
tor uses the services provided by the TaskService to perform HTTP requests
3 https://github.com/davimonteiro/beethoven.
4 https://cloud.spring.io/spring-cloud-netflix/.
5 https://akka.io/.

https://github.com/davimonteiro/beethoven
https://cloud.spring.io/spring-cloud-netflix/
https://akka.io/
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asynchronously. For example, when executing an HTTP request, one callback
is recorded for success and another callback for failure. Each callback triggers
an event on the task response. After receiving a command to start a task, the
TaskActor performs an HTTP request and registers the request callbacks. In
this way, different tasks can be performed asynchronously in parallel with no
external interference.

ReportActor—The ReportActor is responsible for listening to all events trig-
gered by the execution of a workflow and its task. Thus, it can record information
about the execution of each task in a workflow. As an internal state, the Repor-
tActor stores information about all workflow instances. At the end of a workflow
instance execution, the information is stored in a database for further analysis
of the application engineers.

DeciderActor—Finally, the DeciderActor receives events triggered by the
actors WorkflowInstanceActor and TaskActor to decide, as specified by the event
handlers, which command (e.g. start a workflow or a task) should be sent and
to whom. The DeciderActor does not store state information and behaves in a
reactive fashion.

5 Example Application

In order to demonstrate the feasibility of the Beethoven platform, an example
application has been developed. The example application, available on GitHub6,
is a Customer Relationship Management (CRM) system based on MSA for an
investment bank. The application is composed of the following microservices:

costumer-service manages the costumer registry;
profile-service analyses costumers’ history to define retention strategies;
email-service sends welcome, promotion, and informational emails;
package-service sends personalized packages to customers;
account-service sends credit/debit card, and letter within card password;
discovery-service maintains a registry of service information;
beethoven-service manages and performing Partitur workflows.

In the CRM application, there is a business process for new customers that
is started after registering a new customer using the costumer-service. Next,
the profile-service analyzes the new customer profile to define which retention
strategies should be used. In this process, new customers should receive a wel-
come email (email-service), a personalized package (account-service), and a let-
ter that contains the card’s password and the account’s card (account-service).
Each business process step is performed by a specific microservice.

In order to use the Beethoven platform in a MSA-based application, it is
necessary to create a microservice based on the Spring Cloud Netflix ecosystem
and to add the Beethoven dependency in the project classpath. In this way,

6 https://github.com/davimonteiro/crm-msa-example.

https://github.com/davimonteiro/crm-msa-example
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it is possible to initialize the Beethoven platform. Listing 1.1 depicts a part of
Partitur specification for the new consumers process. Line 1 declares the workflow
definition with the keyword workflow and newConsumersProcess as workflow
name. Lines 2–6 define a task for creating a new consumer. Lines 7–11 define
an event handler that specifies when the workflow named newConsumersProcess
has been scheduled, then the task named createNewConsumer must be started.

� �

1 workflow newConsumerProcess {

2 task createNewConsumer {

3 post("http://consumer-service/consumers")

4 .header("Content-Type", "application/json")

5 .body("${createNewConsumer.input}")

6 }

7 handler h1 {

8 on WORKFLOW_SCHEDULED

9 when workflowNameEqualsTo("newConsumerProcess")

10 then startTask("createNewConsumer")

11 }

12 }
� �

Listing 13.1. Partitur specification for the new cosumer process.

6 Conclusion and Future Work

In this paper, we have presented a platform for microservice orchestration that
eases the creation of complex microservice data flows. The main contributions
of this work are threefold: (i) an event-driven platform, named Beethoven, for
microservice orchestration and an DSL, named Partitur, for expressing microser-
vice orchestration; (ii) a concrete implementation of the reference architecture,
called Spring Cloud Beethoven; and (iii) an example application to demonstrate
how the proposed platform can be used in a real example. As limitations, failures
that may occur during the execution of workflow instances must be handled by
using the orchestration DSL. As future work, we will concentrate on improving
the reliability, flexibility, and resilience of the proposed platform by using self-
adaptation mechanisms. In addition, we plan to perform empirical evaluations to
validate the proposed platform. At last, we expect to receive feedback from both
academic and industrial communities that can be used to improve the platform.
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Abstract. Providing valid architecture information to stakeholders
remains a challenge, as the effort required for documenting and main-
taining this information over a longer period of time is very high. Auto-
matically and continuously extracting architecture information from the
system implementation makes it possible to document and keep archi-
tecture information up-to-date. In large software systems, architecture
extraction has to deal with the continuous and efficient extraction of
architectural information from very large code bases. In cooperation with
a company from the financial sector, we have developed over several years
a platform for the automatic extraction and provision of architectural
information for large-scale service-oriented software systems. The plat-
form was evaluated in a real industrial environment. The results of this
evaluation show that it can provide up-to-date architectural information
for large code bases on a daily basis. It also provides information on the
trustworthiness of the extracted information and how it can be improved.
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1 Introduction

(Ultra) large-scale software systems, are characterized by their (ultra-)large size
on dimensions such as lines of code (LoC), number of people developing and
operating such systems, the amount of data stored, accessed, manipulated and
refined, the number of software connections and interdependencies among soft-
ware components, and the number of hardware elements [8]. The large scale
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dimension also applies to the architectural information that is required by many
different stakeholders contributing to the development and operation of large-
scale systems.

In such a context it is required that architecture information is made explicit,
i.e., that it is documented, to facilitate the sharing and reusing of architecture
information across team and organizational boundaries [7]. Otherwise, archi-
tecture information needs to be re-discovered from the system implementa-
tion whenever this information is required by a particular stakeholder, which is
tedious and time-consuming and it slows down development and release cycles.

Another challenge is the continuous system evolution of large-scale systems
in response to changing requirements and the migration to new implementation
technologies, which requires that explicit architecture information is updated
accordingly [4]. Stakeholders require trustworthy architecture information, i.e.,
architecture information that is complete and up-to-date. Providing this infor-
mation for large-scale systems - ideally on a daily basis - is likely to exceed the
available resources for architecture documentation, at least if documenting has
to be performed manually. Automating the creation of documentation can help.
However, this means that approaches for automated architecture information
extraction and documentation are capable of (1) extracting architecture infor-
mation at the abstraction level required by stakeholders and (2) dealing with
the size of large-scale systems and the resulting amount of data that needs to be
processed for documentation generation.

In this paper we present a platform for automatically provisioning architec-
ture information of large-scale service-oriented systems. The platform extends
a project’s development infrastructure and provides architecture information
to different stakeholders and tools. The platform has been developed as part
of a long lasting research-industry cooperation with Raiffeisen Software GmbH
(RSG), a provider of IT solutions for the finance domain in Austria with the
goal to improve software architecture management at RSG.

The contributions of this paper are twofold: (1) We present a platform for
the automated provisioning of up-to-date architecture information for large-scale
software systems. (2) We analyze the developed platform in terms of perfor-
mance, scalability, and trustworthiness of the extracted information in an indus-
trial case study with RSG, where it has been used in a real production setting.

The remainder of this paper is organized as follows: In Sect. 2 we describe
the industrial context of our work, we outline the industrial research approach,
and we refer to previous work we have performed in this area. Section 3 discusses
challenges and requirements for provisioning architecture information. In Sect. 4
we present our platform, i.e., the provisioned architecture information, how this
information is extracted from the implementation, and how we address the iden-
tified challenges and requirements. Section 5 describes how we have validated
our work. In Sect. 6 we discuss related work. Section 7 concludes the paper with
a summary and outlook on future work.
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2 Industrial Context, Research Approach, and Previous
Work

Raiffeisen Software GmbH (RSG) is developing a large-scale enterprise service
oriented architecture (SOA) for the financial domain in Austria including soft-
ware for end users (i.e., internet banking applications and portals), and soft-
ware for employees in banks (front and back office applications). RSG has ∼800
employees at 7 international development sites located in Austria and other
European countries. The applications are operated in multiple computing cen-
ters at different locations in Austria. RSG is currently in the process of migrat-
ing its SOA towards microservices in order to speed up development and release
cycles. RSG has a long lasting research cooperation with the Software Com-
petence Center Hagenberg (SCCH) and the Johannes Kepler University (JKU)
Linz with the goal to innovate development practices at RSG. In this research
cooperation we are following a model for technology transfer from research to
practice proposed by Gorschek et al. [6]. This seven step model begins with the
identification of potential improvement areas in an industrial context (step 1),
and the definition of a prioritized research agenda based on these needs (step
2). Next, a candidate solution is formulated (step 3), which is then validated
at different levels beginning with evaluation in experimental laboratory settings
(step 4), followed by a presentation of the candidate solution to practitioners
and management from industry to collect feedback (step 5). Further validation
is done in piloting projects in companies permitting realistic validation (step 6),
before the solution is finally released (step 7).

In our case, RSG has identified architecture information extraction as impor-
tant improvement area. Architecture information is vital for system development
and SOA governance activities. RSG considers the system implementation as
the only trustworthy source of information since manually created documenta-
tion is typically not maintained during system evolution. Beginning in 2011 we
developed an approach for extracting architecture information from the system
implementation via static code analysis along with enriching the system imple-
mentation with dedicated metadata facilitating architecture extraction [12]. We
also developed an approach for automatically analyzing the extracted architec-
ture information for compatibility with RSG reference architectures [11]. The
approach has been validated using selected subsystems at RSG, first in a labo-
ratory setting for concept and tooling refinement, later directly at RSG in order
to get feedback from a real world industrial setting. Feedback from applying
our approach in an industrial setting showed that the developed concepts for
architecture extraction and analysis were perceived as valuable at RSG, which
also contributed to our long-term research collaboration. Our approach gained
the attention of additional stakeholders at RSG, which saw the potential of sup-
porting their daily work with the automatic provisioning of architecture infor-
mation. Additionally, the development practices evolved at RSG with a stronger
focus on automation and continuous delivery. These factors imposed additional
requirements on the implementation of our approach in terms of performance
and scalability, but also stakeholder accessibility.
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Originally, we started to implement our approach for architecture extrac-
tion as an extension for integrated development environments (IDEs) since we
initially targeted mainly solution architects and developers with our approach.
Additional stakeholder interest lead as first to implement the approach on the
basis of a client/server architecture and to decouple it from the IDE. The change
of development practices and the interest from additional stakeholders made it
evident that our approach needed to further evolve to be integrated into a contin-
uous delivery process. This also meant that we now had to continuously extract
and analyze not only the architecture of single subsystems but of the entire large-
scale SOA. Additionally, we had to support not only the current version of the
overall system, but multiple versions in the light of continuous systems evolu-
tion. These new and challenging requirements and use cases lead us to completely
redevelop our approach for architecture extraction in 2016. While our approach
remained the same from a conceptual point of view, we reimplemented it from
a technical point of view to deal with the aforementioned requirements.

3 Challenges and Requirements

The following challenges and requirements have been identified at RSG for our
architecture information platform:

– Standardized Architecture Information: Software development at RSG is per-
formed by over 800 employees organized in multiple teams, including a soft-
ware architecture management team, several development teams, a test man-
agement team, a release management team, and an operations team. This
large number of employees requires means for standardizing architecture infor-
mation, i.e., for using the same terminology and also for creating standardized
documentation.

– Up-to-date Architecture Information: Stakeholders require that the provided
architecture information is up-to-date. This means that the extracted infor-
mation reflects the state of the currently implemented system so that the
stakeholders do not perform their work based invalid data.

– Support for Large-scale Systems: Architecture information needs to be pro-
vided for the entire system, which is considerably large. Analysis of the whole
system is required for SOA governance activities, as well as for analyzing
service dependencies across subsystem boundaries.

– Support for System Evolution: RSG also needs to analyze the evolution of
architecture information over time, i.e., across multiple versions of the system.
Evolution analysis is, for instance, required by software testers to focus testing
activities on modified system parts, or by release managers for the planning
of new releases as well as identifying old service versions that are already
replaced by new versions and thus can be retired.

– Full Automation: Provisioning of architecture information needs to be fully
automated - except for initial setup steps that have to be performed only
once. Automation is considered by RSG as a fundamental prerequisite for
the successful establishment of the architecture information platform.
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4 An Architecture Information Provisioning Platform

In this section, we present our platform for automated provisioning of architec-
ture information. First, we present the RSG Component Model, a conceptual
model that identifies the main architectural elements (information) required by
RSG for system development. Then we describe how this conceptual model is
automatically extracted from the system implementation and how it is provided
to different stakeholders and tools. Finally, we discuss how the platform addresses
the challenges and requirements described in Sect. 3.

4.1 RSG Component Model

The RSG component model is used for describing systems at a conceptual level
and at a high level of abstraction, where systems are discussed among dif-
ferent technical stakeholders like solution architects, designers, test managers,
release managers, as well as non-technical stakeholders like product managers
and domain experts. The component model is part of an RSG-specific reference
architecture and was derived by the architecture management group by analyz-
ing system development and SOA governance processes and by identifying the
main architectural entities and their dependencies.

Fig. 1. RSG component model

The main elements of the RSG component model are shown in Fig. 1:

Release: Releases are collections of deployables defined by a release manager
for a joint release.
Deployable: Deployables are software units (i.e., docker images) that are
deployed/released to a platform as a service (PaaS) infrastructure. A deploy-
able contains one or more software modules.
Software Module: A software module represents a single application providing
one or more services. Software modules are versioned and contain services,
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service endpoints, service components, service proxies, database and host com-
ponents. (We have omitted these containment relationships in Fig. 1.)
Service: Services define business functionality in terms of service operations
that can be used by applications.
Service Components: A service component implements the business function-
ality defined by a service. Internally, a service component uses database and
host components, as well as functionality provided by other services. If other
services are located in the same software module, services are directly invoked
using local procedure calls. If services are located in another software module,
services are used via service proxies that encapsulate remote communication.
Service Endpoints: Service endpoints are technology-specific access points for
providing services via dedicated communication technologies like REST or
SOAP.
Service Proxies: Service proxies are - typically automatically generated -
service client implementations encapsulating the remote access of a service
located outside of a software module.
Database Components: Database components are components for reading and
writing data from/to database management systems (DBMS).
Host Components : Host components are components that are using function-
ality provided by host programs that are executed at a mainframe.
TRACOS : Transaction Codes (TRACOS) are identifiers of host programs
executed at a mainframe, which are used by host components. TRACOS are
an important concept for communication between service development teams
and host development teams. Further they are also important for software
testers for developing service tests for a particular TRACO.

The conceptual model also had an impact on the definition of the current
reference architecture and technology stack used by RSG. As part of the current
technology stack the architecture management team has defined how the concep-
tual model can be extracted from the system implementation (see also Sect. 4.2).
Each element of the conceptual component model can be derived from an imple-
mentation artifact like source files, and build and configuration files. Deployables
and software modules can be identified based on the Maven Project Object Model
(POM) files that define packaging information for deployables and software mod-
ules. Services, service components, service endpoints, service proxies, database
and host components are identified by adding metadata (code-level annotations)
to dedicated Java classes and interfaces representing these elements. RSG follows
a model-based approach for the high level design of software modules that auto-
matically generates implementation stubs for many elements of the component
model including corresponding metadata - this eliminates the need to specify
metadata manually. TRACOS are not directly contained in host components
but in separate so-called record mapping files (XML files). Identifying the used
TRACOS of a host component requires a look up of human-readable operation
names used in host components to find the corresponding 4 character short iden-
tifier of the corresponding host program at the mainframe. Only releases cannot
be extracted from the system implementation - they are defined by a release
manager via a dedicated release management tool.
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Additionally to identifying the elements of the RSG component model, also
the relationships between these elements can be extracted directly from the
system implementation using call graph analysis for determining component and
service usage.

The RSG component model represents a union set of architectural entities -
not all stakeholders are interested in all elements of the component model. This
is shown at the bottom of Fig. 1 where for selected stakeholders relevant ele-
ments are highlighted. For instance, release managers are mainly interested in
deployables and software modules and their required dependencies for verifying
the completeness of releases. Testers are writing tests at the service level, thus
they are interested in which service endpoints they have to test for a particular
service. Further, in order to test host transactions they have to determine by
which service a particular host transaction (TRACO) is being called. Solution
architects are concerned with the high-level design of deployables and software
modules, i.e., the design of services and service dependencies, while designers are
responsible with the internal detailed design of a software module in terms of
internal components like database and host components.

4.2 Platform Overview

In the following, we describe how the RSG component model is automatically
extracted from the system implementation, and how the extracted architecture
information is then provided (shared) to stakeholders and tools for further usage.
An overview of the platform is depicted in Fig. 2. The platform is implemented
as a set of microservices providing different kinds of analyses at different levels
of abstraction. These services are used by a set of tools.

Extracting and providing architecture information is a three step process.
In the first step we provide a set of code-level analyses, in the second step we
are extracting and verifying architecture information using code-level analysis,
finally in the third step architecture information is visualized and used by dif-
ferent tools and stakeholders.

Code Analysis: We have implemented an approach for source code analy-
sis based on graph databases, i.e., Neo4j1. This approach differs from typical
code analysis approaches where analysis is implemented via abstract syntax tree
(AST) visitors for deriving information from the system implementation. The
use of a database permits working with large codebases as well as analyzing the
evolution of such codebases without the need to fetch different version from a
version control systems (VCS). A graph database is a natural fit since source
code in terms of an AST is already a graph-based structure. We duplicate the sys-
tem implementation stored in a VCS in a graph database since VCS provide no
means for analysis - this is also not the intended use case of an VCS. The system
implementation in the graph database is updated as part of cyclic build pro-
cesses. During the build process the system implementation (i.e., source, XML,
1 https://neo4j.com/.

https://neo4j.com/
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Fig. 2. Architecture information platform

and Manifest files) are fetched from the VCS, are converted to a graph model
via dedicated parsers, and written to the graph database via the Code Anal-
ysis Service. It was decided to store the complete AST in the graph database
and not only information currently required for architecture extraction. This
will permit implementing additional kinds of analyses in the future without the
need of extending parsers and underlying datamodels. All elements stored in the
database are versioned to facilitate evolution analysis. While the version of the
current development iteration (snapshot build) is overwritten when a new build
is triggered, all release builds (increase of version) are kept in the database.

The Code Analysis Service provides a set of code analyses to be used by
other higher-level services:

– Search for type and interface declarations of a specified module.
– Search for type, field, and method declarations with specified metadata.
– Search for extended types and implemented interfaces of a specified type

declaration, search for all type declarations derived from a specified type,
and search for all type declarations implementing a specified interface.

– Search for import relationships of a specified module, and search for modules
importing a specified module.

– Search for method declarations of types and interfaces.
– Calculation of call graphs for specified method declarations
– Search for XML documents and elements and attributes of XML documents

These analyses are implemented by means of Cypher2 queries - the query
language provided by Neo4j. While some analyses can be formulated as single
2 https://neo4j.com/cypher-graph-query-language/.

https://neo4j.com/cypher-graph-query-language/
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queries, other analyses are implemented as a combination of multiple subsequent
queries. Source code analysis with database queries provides several advantages:
The creation of ASTs by parser infrastructures is time-intensive - especially when
an AST needs to be created multiple times for a large number of source files due
to different kinds of analyses; Analyses can span module and version boundaries;
Finally, new analyses can be provided by simply adding new queries instead of
modifying existing AST visitors performing different kinds of analyses.

Architecture Information Extraction and Verification: In this step the
RSG component model is extracted from the system implementation using analy-
sis functionality provided by the Code Analysis Service. Architecture information
extraction is triggered at the end of cyclic build processes after the system imple-
mentation has been updated in the Code Analysis Service. Extraction processes
are performed whenever a new version of a software module is built. As part of
the extraction process the following steps are performed:

1. Find or create the corresponding deployable for a software module by analyz-
ing its Maven POM file.

2. Find Imported Modules: Find all module dependencies of the software module
that need to be analyzed.

3. Delete any existing elements of the RSG component model for the current
software module version that might no longer be up-to-date.

4. Find and create services, service endpoints, service components, database com-
ponents, host components, and service proxies by searching for types with cor-
responding marker interfaces in their implementation. For all these elements
we store a mapping from the element of the RSG component model to the
corresponding implementation type.

5. For all host components determine the used traco codes by analyzing metadata
of method declarations and by looking up traco codes in XML-based record
mapping files.

6. The final step of the extraction process is determining usage/call dependencies
between the different elements of the RSG component model. This is done
by walking the call graph for all operations (methods) defined in services
at the code level and checking if a called methods belong to a type that
has a corresponding element in the RSG component model. In this case a
dependency in between these two elements is created.

Next to extracting architecture information from the system implementation,
two additional services are verifying the consistency and completeness of the
architecture information.

The Rule Analyzer Service is analyzing the system implementation, i.e., it
searches for types with missing and incomplete metadata that cause the archi-
tecture extraction to be incomplete. For example, it searches for services not
implemented by a service component or service components without a corre-
sponding service. Further issues can be detected by analyzing the use of 3rd
party metadata, i.e., defined by the Java EE 3 standard. In many cases the use
3 http://www.oracle.com/technetwork/java/javaee/overview/index.html.
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of Java EE metadata also requires the use of RSG-specific metadata. While this
means that some elements of the RSG component model could also be identified
without RSG-specific metadata, it was an explicit design decision of RSG to
require the use of RSG-specific metadata. The motivation behind this decision
was that RSG-specific metadata reflecting the elements of the RSG component
model are more stable than technology-specific metadata that might change over
time due to the move to new technologies and frameworks.

The Release Analysis Service analyzes the integrity of planned releases. The
service verifies that a release comprised of a set of deployables is (1) complete,
i.e., that it contains all dependent deployables, and (2) that the versions of all
software modules belonging to the release are compatible with each other.

Architecture Information Usage and Presentation: Extracted architec-
ture information is provided to a set of different tools (3rd party and company-
specific tools as well as research prototypes) used at RSG acting as front-end for
providing architecture information to different stakeholders:

Quality Dashboard : RSG uses a quality dashboard (SonarQube4) for the mon-
itoring of all quality issues. A dedicated plug-in creates issues for violations
detected by the Rule Analysis Service, i.e., missing code-level annotations
causing the extracted information to be incomplete.
Release Planning Tool : RSG is using a dedicated release planning tool (XL
Release5) for orchestrating, visualizing, and automating release pipelines.
RSG has extended this tools via a dedicated release verification step that
shows the results of Release Analysis Service for each release. Only if a release
has been successfully verified, i.e., a release is complete and all version depen-
dencies are satisfied, further - partially manual - release activities are carried
out.
Enterprise Architecture Management Platform: The enterprise architecture
management platform (EAMP) is a RSG-developed tool for analyzing and
managing service dependencies. EAMP was developed supporting SOA gov-
ernance activities. Information provided in EAMP is provided by the RSG
Component Model Service.
eKNOWS Documat : eKNOWS Documat is a research prototype for automat-
ically generating viewpoint-based architecture documentation. In addition to
general purpose viewpoints like module and code viewpoints, the eKNOWS
Documat also provides RSG-specific viewpoints for generating documentation
for deployables, software modules, and selected services.
Test View : Test View [3] is a research prototype supporting software testers
in focusing their testing activities, i.e., by detecting modified services that
have to be retested, and by identifying hot spots like frequently used services
and services used by many different services.

4 https://www.sonarqube.org/.
5 https://xebialabs.com/products/xl-release/.

https://www.sonarqube.org/
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4.3 Support for Challenges and Requirements

In the following, we describe how we addressed the challenges and requirements
presented in Sect. 3.

Standardized Architecture Information: Standardization is achieved by estab-
lishing a company-wide conceptual model that defines a terminology that
is consistently used among all stakeholders. Also automated extraction of
architecture information from the system implementation and providing this
information to different tools contributes the standardization of architecture
information within RSG.
Up-to-Date Architecture Information: By automatically updating architec-
ture information as part of cyclic build processes it is ensured that requested
architecture information is kept up-to-date. Further a dedicated analysis ser-
vice detects issues like missing metadata and reports quality issues to a cen-
tralized quality dashboard.
Support for Large Codebases: Support for large codebases was one of the main
drivers behind the re-engineering of our work based on new implementation
technologies. Foundation for addressing performance and scalability require-
ments was the use of a graph database (Neo4j) for storing and analyzing large
amounts of data. Also implementing the platform as a set of microservices
addresses performance requirements, since single services can be indepen-
dently scaled in case of increasing performance and scalability requirements.
Also Neo4j is scalable via clustering.
Consider System Evolution: Storing both - system implementation and archi-
tecture information - in a graph database permits analyzing this information
across version boundaries as it is for instance needed for documenting incre-
mental system changes.
Automation: Fully automated provisioning of architecture information was a
long term effort at RSG. Foundation for automation lies in the RSG specific
technology stack, the reference architecture and the RSG component model,
which define how architecture information can be extracted from the system
implementation. For the development of our platform complete automation
without any human intervention was a fundamental requirement.

5 Evaluation

We have evaluated our platform in an industrial case study at RSG.

5.1 Case Study Design

Objective: In the case study we analyzed the performance and scalability of
the platform, as well as the trustworthiness of the extracted architecture infor-
mation. It was our goal to perform validation under real conditions. Therefore
we investigated the following research questions (RQs):

RQ1: Does the platform scale to real world industrial use cases?
RQ2: Is the extracted architecture information trustworthy?
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Unit(s) of Analysis: We have used the platform for extracting architecture
information for the entire online banking system of RSG that was released early
2018. The online banking solution consists of 296 software modules plus 5 frame-
work projects defining the technology stack for the system. The 296 software
modules are grouped into 89 deployables.

Data Collection: For answering the research questions we have used run-
time monitoring and static code analysis. Further, we discussed the results with
experts at RSG.

For answering RQ1, we have measured the required build time for each of
the 89 deployables at RSG’s build infrastructure. Build processes include a ded-
icated build step where the system implementation is parsed and transferred
to the Code Analysis Service. We have analyzed the log files of the continuous
integration infrastructure at RSG and measured the duration of cyclic build pro-
cesses with and without the parsing process enabled to determine the overhead
during the build process. We have analyzed the duration of build processes over
a period of two weeks.

For each of the 296 software modules we measured the duration for extract-
ing architecture information, i.e., the RSG component model from the system
implementation, via the RSG Component Model Service. Therefore we analyzed
the logfiles of the RSG Component Model Service, which provided dedicated log
entries.

For answering RQ2, we have analyzed the results of the Rule Analyzer Ser-
vice, i.e., the found problems of each software module to make statements regard-
ing the completeness of the extracted architecture information. To ensure the
integrity of collected data, the data was verified by the software architecture
management group at RSG.

5.2 Quantitative Analysis

At the time of analysis, the Neo4j database of the Code Analysis Service has
stored 44.48 millions lines of code (LoC) from 8288 Maven modules. 4653 mod-
ules were 3rd parts libraries, while 3635 modules (3.17 millions LoC) were source
modules developed by RSG. Some of the source modules existed in multiple ver-
sions in the database because during the analyzed time span multiple releases of
modules occurred. In sum, 2331 distinct source modules existed in the database.

The build duration of a quality assurance (QA) build of the entire online
banking solution (94 build jobs) at RSG lasted in average 4.6 h. If parsing to
the Code Analysis Service is enabled, the build process lasts 7.4 h, which is an
increase of 62%. We should note that these build jobs are performed in parallel.
The average duration for a single build process of a deployable goes up from
2.9 min to 4.8 min. The required overhead of the parsing process varied between
9% and 156% and depends on different factors like the number of concurrently
executed build processes and the resulting server load, or the size of the parsed
deployables.
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Extraction of architecture information via the RSG Component Model Ser-
vice was measured for 296 distinct software modules. We only considered the
latest version of each software module. In average, the extraction of architecture
information took 14.72 s per software module. Architecture extraction for all
software modules lasted in average for 72.6 min.

Analysis of the implementation with the Rule Analyzer Service has revealed
254 problems, where architecture information was not extracted correctly. Prob-
lems were found in 112 software modules (38%), while 184 modules (62%) had
no problems. Of the 254 problems, 237 problems indicated missing elements
of the RSG component model. Two software modules contained more than 10
problems - one module contained 48 problems, the other module contained 19
problems. Another five modules contained more than 5 problems. Most modules
with problems contained between one or two problems.

5.3 Qualitative Analysis and Answers to the Research Questions

RQ1: Does the platform scale to real world industrial use cases? Analysis of the
performance data shows that extracting architectural information, i.e., the RSG
component model via the Code Analysis Service does scale well - even for a large-
scale software systems, like the online banking solution of RSG. More resource-
intensive is the parsing process where the system implementation is written as
graph structures to the Neo4j database. This adds a significant overhead to cyclic
build processes. Despite this overhead it was still possible to provide architecture
information on a daily basis. Currently, RSG neither had to scale the services nor
the Neo4j database to meet RSG’s performance and scalability requirements.

RQ2: Is the extracted architecture information trustworthy? Validation showed
that the extracted architecture information was valid for almost 2/3 (62%) of all
analyzed software modules, while in 1/3 (38%) of all software modules problems
were detected. While the number of software modules with problems is still
high, it needs to be considered that this is the result of a first-time analysis of the
quality of the extracted architecture information. Further, most software modules
with problems contained only between 1 and 2 problems that can be resolved
with minimal efforts, i.e., by adding dedicated metadata in the source code.
Regarding the 7 software modules containing more than 5 problems, it turned
out that these modules were not developed following a model-based approach
where metadata was automatically added to the system implementation, but
where metadata has to be defined manually. In summary, RSG is optimistic
that the quality of the extracted architecture information can be improved with
reasonable efforts. Nevertheless, analysis results show that is necessary also to
provide means for assessing the quality of the extracted architecture information.
Further, RSG is also planning to introduce a dedicated quality control step as
part of their service development process where solution architects will manually
have to assess the validity of extracted architecture information.
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5.4 Threats to Validity

Internal Validity: We have applied the platform to RSG’s online banking sys-
tem, which encompasses about 1/3 of the applications developed by RSG. The
large size of the analyzed systems and the validation directly in the produc-
tion environment at RSG make us confident that the platform will also scale to
the additional systems developed at RSG since the remaining applications are
built based on the same technology stack. Regarding the trustworthiness of the
extracted information it still remains to be seen if the quality of the extracted
information can be increased in the future by means of automated verification
combined with manual quality control steps.

External Validity: Although the platform has been developed for one specific
company our work can also be adapted for other domains. Large parts (i.e., 19.5
kLoC of 29.3 kLoC) of the platform are not company-specific, i.e., the Code
Analysis Service as well as the code parsers (see Sect. 4.2), and are therefore
reusable. Also the RSG Component Model - although developed for a particular
company - can at least partially be reused and adapted to other domains since
most of its elements describe general concepts of service-based systems.

6 Related Work

Our platform for automated provisioning of architecture information is related
to work from different areas, i.e., source code analysis, architecture recovery
approaches, approaches for architecture documentation, and architecture knowl-
edge sharing platforms.

Performing code analysis with graph databases was already proposed by
Urma and Mycroft in [10]. They have developed a system on top of Neo4j for
source code querying, call graph, and data flow analysis in a similar way as
our Code Analysis Service. Urma and Mycroft have developed their system sup-
porting program comprehension and programming language evolution research,
while we use code analysis as foundation for extracting and analyzing architec-
tural information. We also took different steps for validating our work. While
Urma and Mycroft have analyzed twelve open source java projects in a lab-
oratory setting, we performed validation in an industrial setting. Further, we
included in our validation also the process of storing and updating the system
implementation in Neo4j as part of cyclic build processes which is an impor-
tant aspect in the light of continuous quality control that requires a significant
amount of resources. Urma and Mycroft focused their validation only on analyz-
ing the query performance. The only information they provide regarding writing
data to Neo4j is that ”pre-processing the source code and loading into Neo4j
as a transaction took between two and ten times longer than compiling it using
javac”. We can confirm their findings that code analysis with graph database
queries scales to large-scale codebases.

Our approach differs from architecture recovery approaches that RSG
requires an approach for the reliable extraction of architecture information,
which is a problem of existing architecture recovery approaches [5].
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Our extracted architecture information (the RSG component model) is
related to the C4 model proposed by Brown [2]. I.e., deployables of the RSG
component model correspond to containers in the Container Diagram in C4.
Other elements of the RSG component model (components and services) can be
mapped to components in C4 with corresponding tags indicating the different
kinds of components and services of our model. Despite these commonalities, the
RSG component model contains a larger number of different elements since this
model has been developed for a domain-specific use case, while C4 is a generic
approach. Diagrams of the C4 model can be generated via the Structurizr6 tool
where diagrams are defined directly in code. This permits linking of diagram
elements to implementation artifacts, which ensures that diagram elements are -
at least partially - updated automatically on implementation changes. For RSG,
expressing architecture models in code as intended by the Structurizr tool would
require too much resources for maintaining these models over time. Further, RSG
not only needs diagrams but needs to provide architecture information to differ-
ent visualization and analysis tools.

ArchiMedes [1] is a Wiki-based architecture knowledge management plat-
form. The platform can connect to architecture model repositories and visualize,
document, and analyze enterprise architecture models written in the ArchiMate
language7. While our platform also provides means for visualizing and analyzing
architecture models, a central aspect of our work is to automatically extract
architecture models from the system implementation and to keep architecture
information up-to-date on a daily basis.

7 Conclusion

Architecture information is vital for many software development activities. This
applies especially for large-scale software systems being developed by hundreds of
developers. We have presented a platform for automated provisioning of architec-
ture information. Architecture information is extracted from the system imple-
mentation, automatically analyzed and verified, and provided to different stake-
holders and tools. Validation in an industrial setting showed that the platform is
capable of providing architectural information for large-scale software systems on
a daily basis. However, trustworthiness of the extracted information still needs
to be improved by establishing dedicated quality control activities.

As part of future work we plan to extend our work to support not only archi-
tecture solution structures but also other kinds of architectural knowledge, i.e.
architectural design decisions (ADD) and their rationale. We plan to investigate
the capturing of ADDs in the system implementation proposed by Oliver and
Zimmermann [9] and the integration with our work on an architecture knowl-
edge base, which uses community-driven processes for architecture knowledge
management.

6 https://structurizr.com/.
7 http://www.opengroup.org/subjectareas/enterprise/archimate-overview.
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Abstract. The increasing number of sensor-embedded mobile devices
has motivated the research of mobile Sensing as a Service in which
mobile devices can host Web servers to serve sensory data to the Internet
of Things systems, urban crowd sensing systems and big data acquisi-
tion systems. Further, the improved processing power of modern mobile
devices indicates the mobile devices are not only capable of serving sen-
sory data but also capable of providing Context as a Service (CaaS) based
on requesters’ own interpretation algorithms. In order to demonstrate
mobile CaaS, this paper proposes a service-oriented mobile Indie Fog
server architecture, which enables dynamic algorithm execution and also
supports distributed CaaS processing among mobile devices. Moreover,
in order to optimise the process distribution, the proposed framework
also encompasses a resource-aware process assignment scheme known
as MIRA. Finally, the authors have implemented and evaluated the pro-
posed framework on a number of real devices. Accordingly, the evaluation
results show that the MIRA scheme can improve the process assignment
in the collaborative mobile CaaS environment.

1 Introduction

Ericsson Research [3] forecasts the global mobile Internet subscription will reach
9.2 billion in the year 2020 in which 6.1 billion subscription derives from smart-
phones. Explicitly, this phenomenon has motivated the research in utilising
smartphones, tablets and phablets (i.e. large size smartphones), which consist of
various embedded sensors, as a part of Internet of Things (IoT) [5] to support
crowd sensing [21], urban sensing [2] and big data acquisition [8]. Further, as the
computational power of mobile devices continues evolved, they are now capable
of providing mobile Context- [4] as a Service (CaaS) [20].

Different to Sensing as a Service (S2aaS) [17], which provides raw sensory
data from the mobile device-hosted Web servers [7], CaaS-based mobile servers
are capable of extracting meaningful information from the batch of raw sensory
data that is of interest to the requester. For example, a CaaS-based mobile server
can inform the remote urban big data server that currently the X-district of the
c© Springer Nature Switzerland AG 2018
C. E. Cuesta et al. (Eds.): ECSA 2018, LNCS 11048, pp. 219–235, 2018.
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Y-city is crowdy based on the interpretation of the raw sensory data collected
by the mobile server.

Although a mobile server can provide mobile CaaS (mCaaS) by simply asso-
ciating context reasoning mechanisms with the sensory data it collects, consider
that context can be subjective [14], different individuals have their own inter-
pretation of the context from the same data. Hence, the pre-defined context
reasoning methods on mobile servers will face difficulty to fulfil the requesters’
needs. Alternatively, the mobile server can allow the requesters submit their own
context reasoning algorithm and use the requesters’ algorithm to interpret the
sensory data for the requesters. In order to achieve this mechanism, a promising
solution is to apply Indie Fog [6] model.

An Indie Fog-enabled mobile server, which is called mobile Indie Fog (MIF)
server, provides a process execution engine that allows the mobile server dynam-
ically execute CaaS requesters’ context reasoning algorithms. Further, MIF
servers can establish distributed computing environment among themselves when
they encounter each other opportunistically. Specifically, we term such a dis-
tributed computing environment—mobile fog computing (MFC). In particular,
MFC allows the participated mobile servers to share their computational and
networking resources for certain tasks collaboratively, which reduces the resource
usage of single nodes and ideally can improve the overall processing speed. Below,
we use an example to express the MFC for CaaS.

In Fig. 1, the MIF server that provides CaaS (CaaSMIF) has registered to
Indie Fog registry with its Service Description Metadata (SDM).

Fig. 1. Overview of mobile Indie Fog for providing
context as a service and distributed context interpre-
tation processing.

An IoT-based big data
server intends to orchestrate
a large number of mobile
S2aaS servers in an urban
area in order to produce real-
time spatiotemporal informa-
tion. Consider that retriev-
ing and processing raw sen-
sory data from all the mobile
servers will cause bottleneck
issue and also can be costly
for mobile servers’ Inter-
net bandwidth, the big data
server decided to request
MIF servers, which can pre-
process the raw sensory data
for the big data server before
they reply the requests. As the figure shows, the big data server discovered the
CaaSMIF and then sent a CaaS request package to the CaaSMIF. Afterwards,
the CaaSMIF deploys the algorithm and starts the context reasoning processes.

While the CaaSMIF is performing the context reasoning, due to the size of
the involved data and the complexity of the algorithm, the CaaSMIF has reached
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its resource allowance threshold. Hence, it seeks the help of proximal stationary
and mobile Indie Fog servers by distributing processes to them. Consider that
the CaaSMIF is a moving object, it may not stay connected with the other Indie
Fog server. Therefore, the distributed process package should contain all the
involved files such as the algorithm, the dependencies of the algorithm method
and also a portion of sensory data.

In case that the CaaSMIF is unable to complete all the context reason-
ing processing and is unable to maintain the communication channel with the
requester, it can migrate all the remaining works to the other Indie Fog servers
by specifying its request as process migration. In particular, a process migration
request specifies the process handler should route the final result to a specific
node, which in this example is the big data server.

Above overview briefly summarises the mechanisms provided by Indie Fog
for mCaaS. However, it also raises a question:

How does the CaaSMIF partition the workload of the context reasoning processes
in MFC environment while all the participants are heterogeneous?

In order to support the adaptive process distribution in MFC environment,
we propose Mobile Indie fog Resource-aware process Assignment (MIRA)
scheme. Further, in order to validate MIRA scheme in MFC environment, we
developed a service-oriented mobile Indie Fog server architecture.

This paper is structured as follows. Section 2 describes the proposed system
architecture and the main components of the MIF server. Section 3 describes
the proposed MIRA scheme. Section 4 provides the prototype implementation
details and the evaluation results. Section 5 reviews and compares the related
works with the proposed framework. This paper is concluded in Sect. 6 together
with future research directions.

2 System Design

This section firstly describes the proposed service-oriented mobile Indie Fog
server architecture for CaaS. Afterwards, we explain how the server handles
CaaS request, how it performs distributed processes with the other MIF servers
in proximity and how it migrates its processes to the other MIF servers.

2.1 System Architecture

Figure 2 illustrates the proposed server architecture, which consists of the fol-
lowing main components.
Controller—is the core of the MIF server that is responsible for three primary
tasks:

– Request routing. When a component needs to access the data or the function
of another component, the request needs to route through the Controller for
security and privacy control.
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Fig. 2. Architecture of mobile Indie Fog server for CaaS.

– SDM Management. The Controller needs to maintain an up-to-date Service
Description Metadata (SDM) of the MIF server. Specifically, the SDM should
describe the following information.

• Hardware specification (e.g. device model ID, CPU name and architec-
ture, RAM model etc.), performance (e.g. processing compute-score, SD-
Card read/write speed, Wi-Fi signal strength etc.) and current usage of
resources such as CPU load, RAM usage, network throughput etc.

• Currently supported services, such as sensory services for environmental
pictures, data brokering service (i.e. deliver the data to a specific net-
worked server) or the context interpretation service, which interprets the
raw sensory data using the methods from the requesters. Further, if the
server currently supports CaaS, then the SDM should also contain the
information regarding the Runtime Engine specification and states.

• Supported process runtime environments. This information lets MIF
clients understand what types of code or script the server is capable of
executing. Based on this information, the MIF client can prepare their
algorithm in the corresponding program code or script.

As suggested by the Indie Fog architecture [6], SDM is expected to be written
in OData (www.odata.org/) format.

– Security and Privacy Management is a component that handles the security
and privacy settings. In general, the owner of MIF server can manually con-
figure the available services such as which S2aaS are available, what type of
secure program deployment protocol is available (e.g. public key based SSH).
Since this is more practical-related, we consider it as a future work.

www.odata.org/
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Indie Fog Agent—is a core component derived from the Indie Fog architecture
[6], which registers the Mobile Indie Fog (MIF) server to the global registry and
it enables the communication between the MIF server and Indie Fog clients.
Service Interfaces (HTTP RESTful Service Interface, Publish-Subscribe Ser-
vice Interface and CoAP Service Interface etc.) are the protocols to enable dif-
ferent types of service provision by the MIF server. In general, RESTful is the
basic protocol for providing S2aaS and CaaS based on HTTP request/response.
Proximal Indie Fog Adaptor—is a component that allows the MIF server to
communicate with proximal Indie Fog servers. In general, we expect the envi-
ronment consists of various mobile and stationary Indie Fog providers.
S2aaS Manager—is a local service that has two main mechanisms: (1) Sensory
Data Management, which allows other components to request S2aaS Manager
for the sensory data that has been collected previously; (2) Sensing mecha-
nism allows other components to request S2aaS Manager to perform on-demand
sensory data acquisition using the device’s internal sensors via the underline
OS-provided Application Programming Interfaces (APIs).
CaaS Manager—is a local service that handles CaaS requests. Specifically,
it has two main mechanisms—Work Management and Distributed Computing
and Migration. The details of how CaaS Manager handles its request will be
described in the next section.
Workspace Manager—is the component that handles program deployment
on Process Runtime Engine. In particular, different to the regular stationary
Indie Fog servers that do not have much constraint, MIF servers’ operation
environments are highly dynamic and constraint due to the limitation of avail-
able resources (i.e. available processing power and battery life). Therefore, MIF
servers may not host the general Virtual Machine or Containers Engine for
executing the requesters’ program. However, MIF servers can still provide iso-
lated runtime environments that allow dynamic code execution. For example, an
Android OS device can utilise Termux (termux.com) to build a Process Runtime
Engine that can configure multiple runtime environments (application instances)
which supports different programming languages (NodeJS, Python, Perl, Ruby
etc.) for each program execution. Certainly, the supported runtime environments
depend on the pre-installed libraries by the MIF server and the corresponding
information should be included in SDM. The example shown on Fig. 2 illustrates
that the Process Runtime Engine is currently operating N number of isolated
runtime environments for N number of different requesters.

Due to the privacy concern, the other components of MIF server do not have
permission to access the data of Process Instances in the runtime environments.
Further, the Workspace Manager will remove a Process Instance entirely (includ-
ing the data and repository) when the process is completed, which indicates that
if a MIF client intends to perform a process repeatedly, the client needs to con-
figure it from the program code. Otherwise, the MIF client has to upload the
request package to the MIF server again.

https://termux.com/
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2.2 CaaS Request Handling

Here, we provide the details of how CaaS Manager handles its requests. Specifi-
cally, we use Business Process Modelling Notations to express the workflows.

Figure 3a illustrates the process deployment workflow. When CaaS Manager
receives a request package, it first requests the corresponding raw sensory data
from S2aaS Manager. Second, it prepares the work package, which contains the
content of the request package together with the raw sensory data, then CaaS
Manager sends the work package to Workspace Manager, who will extract the
work package and place the files in a workspace in the Process Runtime Engine.
Once the workspace is ready, Workspace Manager will execute the CaaS process
in Process Runtime Engine as an isolated Process Instance and establish a com-
munication channel between itself and the Process Instance to receive output.
Afterwards, the Workspace Manager will pass the output(s) to CaaS Manager
and CaaS Manager will pack the output(s) to a response package and relay it to
the corresponding component.

(a) CaaS process deployment.

(b) CaaS process distribution and migration.

Fig. 3. CaaS process workflows.

The process distribution
and process migration mech-
anisms share numerous com-
mon tasks. Therefore, we use
a single figure to explain their
activities.

Figure 3b illustrates the
interaction between a MIF
server who received the ini-
tial CaaS request (denoted
by delegator) and another
MIF server (worker) who has
agreed to participate in pro-
cess distribution or process
migration.

The workflow starts with
the task of creating work
package. Here, a work package
consists of the correspond-
ing raw sensory data files,
the context reasoning algo-
rithm program code and all
the dependencies of the pro-
gram. In general, it is pos-
sible to request the worker
to download the dependencies
via the Internet. However, it
will increase the cost of the
worker and it may not reduce
the overall timespan because
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the delegator and worker are communicated locally either via LAN or Wi-Fi
Direct. Alternatively, based on the SDM of the worker, if the worker has all
the dependencies in the local modules of its Process Runtime Engine, the work
package does not need to include the dependencies.

The main difference between process distribution and process migration is
the receiver of the final output. Essentially, the objective of process distribution
is to co-working on a set of works. For example, the delegator needs to process
30 raw sensory data for CaaS, it may partition the workload to two parts with
15 raw sensory data per each part, then request a worker to handle one of the
work packages. Afterwards, the delegator will wait to receive the output from the
worker, then the delegator can pack the output from the worker together with the
output from its local processes to a single output package and send it back to the
CaaS requester. In contrast, if the objective is process migration, the delegator
may pack all the raw sensory data together with the CaaS request package as
one single work package and send it to the worker. When the worker receives
the work package as a process migration request (e.g. based on the RESTful
request parameter), it will immediately notify the delegator that it has received
the work package successfully and the delegator can notify the CaaS requester
that it has successfully migrated the CaaS process to another server. However, if
the delegator does not receive the acknowledgement from the worker in a period
of time, it will try to find another worker to handle the process migration. Once
the worker completes the work, it will directly send the output package to the
initial CaaS requester.

Note that in certain cases, the program and the related data can be privacy-
sensitive. Hence, the CaaS requester should clarify it in the request message in
order to prevent the MIF server distributing or migrating the program and the
data to other servers.

3 Mobile Indie Fog Resource-Aware Process Assignment
Scheme

In this section, we describe the proposed Mobile Indie fog Resource-aware pro-
cess Assignment (MIRA) scheme for adaptive process distribution and process
migration in MFC environment.

A näıve approach to partition the workload may consider only the processing
performance among all the participants. For example, let P = {pi : 1 ≤ i ≤ N}
be a set of MIF servers and let compi be the computational performance of MIF
server—pi. Therefore, the workload shared by one of the MIF servers—px will
be |W |× compx∑

i∈|P | compi
, where compx is the computational performance of px ∈ P

and W is the set of works.
However, in MFC environment, such an approach is infeasible because the

dynamic factors such as the network latency caused by signal interruption, the
runtime hardware resource usage including CPU load, RAM usage, read/write
storage status, the network bandwidth availability are influenced by the device
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user’s activities. Therefore, we designed MIRA scheme based on the considera-
tion of the dynamic factors.

To proceed with MIRA scheme, the delegator needs to collect the following
information from—SDM of worker and the local record of CaaS processing.

The information from the workers SDM are:

– Compute-score of the worker based on a common measuring tool such as
GeekBench, which is a cross platform benchmark tool and its database
contains a broad range of benchmark results contributed by the society
(browser.geekbench.com). Note that MIRA scheme uses compute-score based
on the CPU usage. For example, if a device, which has compute-score as 3000
and its current CPU usage is 20%, then MIRA scheme considers the compute-
score of the device as 3000 − 3000 × 20% = 2400.

– Average CPU and RAM usage in recent time (i.e. 1, 5 and 15 min).
– The CPU architecture (e.g. ARM, x86 etc.).

The delegator should have performed the context reasoning process for a
number of times locally and record the following values before it intends to per-
form process distribution. In contrast, if the delegator has never proceed with the
processes, it can only perform the näıve process distribution described previously.

– The timespan for processing one data object using the requester’s algorithm
with one CPU core.

– The total process timespan for N number of data objects using M number of
CPU core(s) in which N must be greater than M . Specifically, these records
will help MIRA to calculate the base variety value of the process timespan
varied by M number of CPU core(s).

With the base variety value (denoted by bvy
m, m is the number of cores, y is

the type of data), MIRA can measure the timespan of processing a data batch
that contains N number of data objects of a given type. In detail, bvy

m derives
from the following formula:

bvy
d,m = Δαy

d
1
n Δty

d,n,m

= Δαy
d×n

Δty
d,n,m

where n is the number of data objects.

Δtyd,n,m is the timespan for delegator—d to process n number of data using
m number of CPU core.

Δαy
d is the timespan for delegator—d to process one y type data object using

1 CPU core.
Example of using bvy

d,m to measure the timespan for d to process a data batch
(D; denoted by Δtd,m(D)) is as follow:

Δtd,m(D) =
Δαy

d

bvy
d,m

× |D| (1)

In order to measure the optimal partition of the workload for process distri-
bution or process migration, we need to measure the comparable timespan when
the worker is handling the work package. Specifically, Δtωd,x denotes the dis-
tributed processing timespan when delegator—d relies on worker—x to handle

https://browser.geekbench.com/
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all the works. Note that MIRA scheme uses the maximum workload to measure
the timespan of each distributed processing. Below illustrates all the elements
involved in the measurement of Δtωd,x:

Δtωd,x = Δtpkω

d,x + Δtpoω

d,x + Δtnpkω
x + Δtpcω

x + ΔtpkO
x + ΔtpoO

x,r + ΔtnpkO
r (2)

where:

– ω is the work package. ω consists of three elements—dependency modules
used in the algorithm (mdl), algorithm program code (alg) and a set of raw
sensory data R, where R = {rsdk : 1 ≤ k ≤ N}.

– Δtpkω

d,x is the work package packing time. It consists of:
• Δtpkmdl

d is the measured timespan to pack the modules.
• Δt

pkalg

d is the timespan to pack the algorithm program code.
• ΔtpkR

d = Δtpkrsd

d × |R| is the timespan to pack |R| number of rsd ∈ R
where R is all the rsd in queue. Note that MIRA scheme analyses the
optimal assignment based on the measured latency and the comparable
computational performance score. For example, suppose a delegator has
compute score of 3000 and it can complete 20 works of a batch in 30 s.
Further, the delegator found a worker that has compute score of 7000.
In order to measure the performance of the process distribution, MIRA
needs to use the same number of works (20 works) and also considering the
other factors (i.e. packing, unpacking, network transmission etc.) when 20
works will be distributed to the worker.

– Δtpoω

d,x is the timespan to post ω from d to x. It consist of the following
elements:

• Δtpomdl

d,x = Mbmdl

cMbd,x
is the measured timespan to post mdl, where Mbmdl

is the size of mdl in Megabit and cMb is the network transmission speed
between d and x in Megabit. The transmission speed between d and x is
known when d requests SDM from x.

• Δt
poalg

d,x = Mbalg

cMbd,x
is the measured timespan to post alg, where Mbalg is

the size of alg in Megabit.
• ΔtpoR

d,x = MbR

cMbd,x
is the measured timespan to post R, where MbR is the

size of R in Megabit.
– Δtnpkω

x is the timespan to unpack and deploy ω on the worker. It consists of
the following elements:

• Δtnpkmdl
x = Δt

npkmdl
d

�(d,x) is the measured timespan to deploy mdl. Δtnpkmdl

d

is an known value since d has previous unpacked the modules when it
received the initial CaaS request.

• Δt
npkalg
x = Δt

npkalg
d

�(d,x) is the measured timespan to deploy alg. Δt
npkalg

d

is an known value since d has previous unpacked the modules when it
received the initial CaaS request.

• ΔtnpkR
x = Δt

npkrsd
d

�(d,x) ×|R| is the measured timespan to deploy R. Δtnpkrsd

d is
a value obtained by performing and recording one packing and unpacking
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an rsd on d. �(d, x) = csx

csd
is the computational performance rate between

the two nodes d and x, where csx is the compute score of x and csd is the
compute score of d.

– Δtpcω
x = Δt

pcrsd
d ×|R|
�(d,x) is the measured timespan to process ω on x.

– ΔtpkO
x = Δtpko

d ×|O|
�(d,x) is the measured timespan to pack the process outputs,

where O = {ol : 1 ≤ l ≤ N} is a set of outputs. Δtpko

d is a value obtained by
performing and recording one packing and unpacking an o on d.

– ΔtpoO
x,r = MbO

cMbx,r
is the measured timespan to post the outputs to receiver. The

receiver is unnecessary to be the delegator itself. In case of process migration,
the receiver could be the initial CaaS requester.

– ΔtnpkO
r = Δtnpko

d ×|O|
�(d,r) is the measured timespan for receiver to unpack the

output package, where �(d, r) = csr

csd
is the computational performance rate

of r and d based on their compute-score and current CPU usages.

Once we obtain the above values, we can calculate the non-normalised score
of a participant—z (including the delegator):

νz(ω) = 1 − Δtωd,z∑
i ∈ |Ω| Δtωd,i

(3)

where Ω = {ωi : 1 ≤ i ≤ N} denotes N number of work packages created for
participants. Note that in here, if the z is the delegator, its Δtωd,z does not involve
the latencies described in previous formulations.

The normalised score of a participant—z will be:

nνz(ω) =
νz(ω)

∑
i ∈ |Ω| νi(ω)

(4)

and the workload shared by the participant—z will be:

sh(R, z) = ‖nνz × #R‖ (5)

4 Evaluation

The goal of the evaluation is to test the performance of the proposed framework
and the MIRA scheme. We have implemented the proposed framework in real
devices. The configuration of the testing environment is described as below:

We implemented the MIF server on three mobile devices:

– Asus Zenfone 3, as the delegator node, which has 8 × 2 GHz CPU, 3 GB
RAM, operated by Android 7.

– Nokia 8, as a worker, which has 4 × 2.5 GHz CPU and 4 × 1.8 GHz CPU,
4 GB RAM, operated by Android 8.

– Asus Zenpad 3S, as a worker, which has 2 × 2.1 GHz + 4 × 1.7 GHz CPU,
4 GB RAM, operated by Android 7.
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The MIF server and its Process Runtime Engine were built on top of Termux
and the current prototype supports NodeJS-based process instance. We consider
to include the other types of instances as future work.

Here, we assume the CaaS requester intends to interpret context information
from image-based sensory data.

The raw sensory data used for the testing was a number of full colour 1453 ×
2560 pixel JPEG images files with 1.8 Megabyte in file size. The context rea-
soning program was mainly processing the image files and generate fixed size
output data files.

4.1 Solo Process Performance

In order to demonstrate the factors influenced by the available computational
resources, we firstly tested the CaaS process on the delegator device solely.

Fig. 4. Solo CaaS process performance.

Figure 4 illustrates the performance test results by the delegator device solely.
The X-axis denotes the number of raw sensory data objects involved in the pro-
cess and the Y-axis denotes the average processing timespan in millisecond. As
the results show, when the device is capable of using 2 cores, the process times-
pan can be greatly reduced comparing to single core-based processing. Further,
3 and 4 core-based processes could also improve the performance but not as
explicitly as the comparison between single core and dual core. When we assign
the process with more cores, the performance was unable to improve much, it
is because the device itself has been using significant processor resources for the
operating systems activities. Note that, although we have successfully performed
the testing on 8 cores, the operating system was unable to maintain the CPU
resource for the other background applications, and hence, the HTTP server of
MIF has been forced to terminate.

4.2 Distributed Processing

Figure 5 shows the results of the performance testing among 8 cases. To enu-
merate, the first 4 cases are solo processing using different number of CPU on
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the delegator device (denoted by Solo 1 core, Solo 2 core, Solo 3 core and Solo 4
core); the next 2 cases are equal process distribution with 1 MIF worker (Nokia
8) while the delegator was using single core (1c 1w equal) or dual CPU cores (2c
1w equal); the last 2 cases illustrate the results in which the process distribution
have applied the proposed MIRA scheme (1c 1w adaptive and 2c 1w adaptive).

As expected, when the number of raw sensory data in the batch is small
(i.e. 6 works), the process distribution did not provide much improvement to the
overall speed. Explicitly, packing and unpacking the work packages have caused
significant overhead. Moreover, when the delegator is capable of allocating more
CPU cores to the process, it can outperform the distributed processes. On the
other hand, allocating more cores on CaaS processes also means that the device
is reducing the resources allocated from the other applications, which could affect
the device users regular activities.

Fig. 5. Performance comparison among cases of multi-core processing, equal process
distribution and adaptive process distribution with one MIF worker.

As the results are shown, utilising distributed processing with the MIF
worker, if the workload was equally distributed among the delegator and worker,
the performance is similar to the performance of dual core solely processing on
the delegator when the number of works were over 12. Further, if the system
applied the proposed MIRA scheme, the speed can be further improved. Specifi-
cally, as the results are shown when there were 30 works, applying MIRA scheme
can almost achieve the similar speed as the cases of solely processing using 3
cores on the delegator, which indicates that the delegator can save 2 cores CPU
resource usage by utilising MIRA-based distributed processing.

Note that the results of case (2c 1w equal) and case (2c 1w adaptive) were
very similar because the analysis result from MIRA was similar to equal parti-
tioning.

As Fig. 6 shows, when the workload is small (e.g. 6 works), process distribu-
tion is unable to improve the overall processing speed, especially if the delegator
was capable of allocating two or more cores for the processes. On the other hand,
when the amount of works in the batch is large (e.g. 30 works), distributing the
works to two workers can significantly improve the overall speed. Further, when
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Fig. 6. Performance comparison among solo, single worker-based and two workers-
based process distribution.

the system applied MIRA scheme, the system can further improve the speed.
However, similar to the previous testing results, the improvement granted by
MIRA is not clear when the workload is small (i.e. 6 or 12 works) because the
work distribution analysis results from MIRA were the same as equal distribu-
tion.

4.3 Process Migration Performance

Figure 7 shows three cases of migration. Migrate all the processes with the rest
of unprocessed raw sensory data to one single worker (Nokia 8). The 2nd case is
equally partition the number of unprocessed raw sensory data into each migra-
tion package then migrate the processes to two workers (Nokia 8 and Zenpad 3).
The 3rd case was also migrate processes to the two workers but with the pro-
posed MIRA scheme to decide how to distributed the works in each migration
package.

Fig. 7. Process migration performance.

As the result shows, utilising MIRA scheme can also improve the overall
speed (around 11% to 15%) when the works need to be migrated to multiple
nodes.
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4.4 Discussion

Overall, the evaluation results show that process distribution does not improve
much performance in MFC environment when the data batch size is small
because there was much overhead involved. However, the results also show that
the performance of MIRA-enabled process distribution with one worker is almost
equivalent to the performance of utilising 2 to 4 CPU cores on the delegator
(depending on the worker’s processing power), which indicates the resource con-
servation the proposed framework can provide. Further, one may argue that since
the processing timespan was quite long, why not simply retrieve the raw sensory
data from the mobile server then process the data in the cloud? The answer
highly depends on the mobile Internet availability and the cost in the countries.
Consider that if the mobile server receives a number of requests that involve 100
MB sensory data per each request, it can be very costly for the mobile server
and hence, it may discourage the device owner to provide the service. Definitely,
the results of the experiments have raised a new research direction in proposing
an adaptive process distribution and migration in a cross-layered cloud-fog-edge
environment.

5 Related Works

The framework proposed in this paper involves two research fields—mobile sens-
ing services and mobile ad hoc distributed computing. Hence, in this section,
we review a number of related works and justify the differences between the
proposed framework and the related works.
Mobile Sensing—In last decade, researchers have proposed numerous mobile
sensing approaches. To enumerate, effSense [21] introduced cost-efficient mobile
crowd sensing solution which lets mobile devices collaboratively route the col-
lected sensory data among the participative nodes towards reducing the mobile
Internet transmission costs; COROMM [18] is a context-aware cost-efficient real-
time mobile crowdsensing framework that can dynamically adjust the data col-
lection process in order to reduce the bandwidth and energy consumption from
mobile devices. Further, there exist a number of related approaches in mobile
phone sensing [1,9,13,15], where, the mobile sensing data is uploaded to a cen-
tral repository. Different to these works, Sarma et al. [16] proposed a multi-layer
architecture for mobile sensing in which the devices can form an edge group in
proximity and utilise the resource richer broker peers to communicate with other
groups and the global repository. Hence, remote clients can either communicate
with the edge broker or the global central server to retrieve the sensory data.

The major difference between the proposed framework in this paper and the
past related works is that the proposed framework supports CaaS directly from
the mobile devices. To the best of our knowledge, this is the first framework
proposed for providing CaaS from mobile devices based on extending Indie Fog
architecture.
Mobile Ad Hoc Distributed Computing—Hyrax [12] is a framework that
aims to apply MapReduce to the grid computing environment formed by a group
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of mobile devices. The result of Hyrax shows that the approach is too heavy-
weight. Honeybee [10] is a framework that aims the same purpose as Hyrax.
However, instead of utilising the heavyweight MapReduce, Honeybee applied
the active work stealing scheme in which participants in mobile grid computing
environment will actively be taking the work (e.g. processing image files) from
the other nodes who have more works.

The extension of Honeybee results in [11] as mobile crowd computing using
work stealing model. The idea is each worker will take one work from the delega-
tor. The connected 2nd tier node of the worker will influence the 1st tier worker
taking how many works from the delegator. For example, if a 1st tier worker has
a 2nd tier worker, then the 1st tier worker will ‘steal’ two works from the delega-
tor. One for itself and one for its connected 2nd tier worker. The extension of [11]
proposed by Soo et al. [19] using proactive resource-aware work-stealing scheme,
which optimise the number of works stolen by workers based on the workers’
current computational and networking states. The work in [19] was proposed for
fog computing environment with static Fog nodes and mobile delegator.

The proposed framework in this paper is different to all the above works.
First, the collaboration does not assume the workers are stationary like in [19].
Second, we do not assume workers are stably connected like in Hyrax. Third,
we do not assume workers already have the same program code installed for
processing the data like the assumption made in Honeybee and Mobile Crowd
Computing [11]. Therefore, our work requires a different strategy which has not
been addressed by the past related works.

6 Conclusion

This paper proposed a framework for providing Context-as-a-Service (CaaS)
from mobile-embedded servers based on extending the service-oriented Indie Fog
architecture. Further, in order to effectively achieve the distributed computing
mechanism of Indie Fog in mobile ad hoc environment, we proposed MIRA
scheme, which can optimise the work partitions based on resource-aware dynamic
factors in mobile environments. Finally, we have implemented the prototype of
mobile Indie Fog on real world devices and used the prototype to validate the
proposed MIRA scheme. Overall, MIRA scheme has proved that it can improve
the overall performance of the distributed processes.

In the future, we plan to extend the proposed framework with the following
mechanisms.

1. Blockchain-based incentive model. In order to encourage the MIF providers
to contribute more computational resources, a distributed incentive model
will be used to credit the contributors of MIF.

2. We also plan to extend and to validate the MIRA scheme in a more com-
plex environment which consists of heterogeneous Fog nodes (e.g. industrial
integrated routers, single-board computers, fan-less low power PCs) and geo-
distributed cloud servers.
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Abstract. Most of the time a large software system implies a com-
plex architecture. However, at some point of the system’s execution,
its components are not necessarily all running. Indeed, some compo-
nents may not be concerned by a given use case, and therefore they do
not consume/use or register the declared services. Thus, these architec-
tural elements (components and their services) represent a “noise” in the
architecture model of the system. Their elimination from the architec-
ture model may greatly reduce its complexity, and consequently helps
developers in their maintenance tasks. In our work, we argue that a
large service-oriented system has, not only one, but several architectures,
which are specific to its runtime use cases. Indeed, each architecture
reflects the services, and thereby the components, which are really useful
for a given use case. In this paper, we present an approach for recovering
such use case specific architectures of service-oriented systems. Architec-
tures are recovered both through a source code analysis and by querying
the runtime environment and the service registry. The first built archi-
tecture (the core architecture) is composed of the components that are
present in all the use cases. Then, depending on a particular use case,
this core architecture will be enriched with only the needed components.

1 Introduction

The context of this work is the architecture of large-sized service-oriented soft-
ware systems. By large-sized systems, we mean systems that are composed of
hundreds to thousands of components, registering and consuming hundreds of
services. Architectures of systems in general are important to be explicitly mod-
eled, and this is particularly critical for large systems. When such architecture
models are not explicit, it becomes important to recover them from the system’s
artifacts (e.g., source code). Architecture recovery is a challenging problem, and
several works in the literature have already proposed contributions to solve it
(e.g., works cited in [8,13,15]). Architectures recovered from large systems are
however complex and difficult to “grasp”. Indeed, architectures of large systems
c© Springer Nature Switzerland AG 2018
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model a lot of components, their contracts (required and provided interfaces) and
their numerous and tangled interconnections. If we add, to these architecture ele-
ments, services that are registered and consumed by components (which enrich
their contracts), these architectures can be easily assimilated to “spaghetti” code.

We noticed that at some point in the execution of such large systems, not
all their components are running/active. Components that are not running and
their properties (services and their connections) represent a “noise” in a recov-
ered (complex –“spaghetti”) architecture. Their elimination reduces thereby the
complexity of this architecture and helps the developers in their maintenance
tasks. In this work, we argue that large systems do not have a single large and
complex architecture, but rather several architectures depending on the use con-
text. In this paper, we present an approach (Sect. 2) which enables to recover
the architecture of a service-oriented system, depending on a particular use case.
This approach contributes with a process that analyzes the source code of the
system and interacts with the runtime environment, including the service reg-
istry, to build a first core architecture modeling the components of the system
that always run. Then, this core architecture is enriched with new elements
that reify the runtime entities involved in a particular use case, of interest for
the developer (in which a bug occured, for instance). Simplifying architecture
models in this way enables developers to make like a quick “inventory” of what
is concretely running, among all what composes their system, at a particular
execution time. They can easily identify which component is consuming a par-
ticular failing service, for instance. In the literature there is no efficient process
for recovering these dynamic use case architectures from running systems (see
Sect. 5).

We implemented the proposed process for the OSGi platform (see Sect. 3)
and we experimented it on a set of real-world Eclipse-based applications (see
Sect. 4). At the end of the paper, we highlight the interests and limitations of
the proposed process, as well as some future directions of this work (Sect. 6).

2 General Approach

The problem with traditional architectural models of a software system is that
they describe all involved components and their potential dependencies. The
proposed process (see Fig. 1) enables to produce an architecture model that can
be used by the developer to solve a maintenance problem related to a given use
case. First, we create the core architecture, which represents only components
that exist in the system whatever the executed application’s use case. In the
second step, we use traces obtained by executing scenarios corresponding to the
application’s use cases to identify what we call “use case”-specific (or use-case)
architectures. The latter are built around the core architecture with variants
(adding new components, services, etc.) concerning the executed use case.

Recovering the Core Architecture: To create the core architecture, we use
first a static analysis to collect all the components involved at the system’s
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Fig. 1. Proposed approach

starting time. The core architecture will be comprehensive once the dynamic
elements are identified. Indeed, some dependencies exist only through requests
for services made during execution time. To identify these dependencies, we
launch the application without applying a use case (“Use Case 0” in Fig. 1).

Recovering Use Case Architectures: During a maintenance activity, the
developer focuses on a given use case of the application. Thus, we ask a developer
to execute a set of use cases and we capture all traces produced by the involved
components. After that, we parse the code of the newly activated components in
order to identify their dependencies. The collected information is used to enrich
the core architecture in order to build the “use case”-specific architecture.

3 Implementation of the Approach: Case of OSGi

We implemented our approach for OSGi-based systems. OSGi is a specification
that defines a component model and a framework for creating highly modular
Java systems [16]. An OSGi component is known as a bundle that packages a
subset of the Java classes, and a manifest file. The OSGi framework introduces a
service-oriented programming model. Indeed, a bundle (provider) can publish its
services into a Service Registry, while another bundle searches the registry to use
available services. We take as a running example an Eclipse-based application
that runs on top of Equinox, which is the reference implementation of the OSGi
specification. We used the release: Eclipse JEE for Web Developers, Oxygen.21.

3.1 Recovering the Eclipse Core Architecture

In order to recover the core architecture of the Eclipse-based application, we first
perform a static analysis of the source code and the manifest files of the bundles
that are needed to start this application. These bundles refer to components
1 Downloaded from repository: https://lc.cx/P2Qw.
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that have the state “ACTIVE”. They are recognized by querying the runtime
environment. Indeed, we have added listeners in the Eclipse plugin which imple-
ments the proposed process. We rely on SCA2 for the modeling of the obtained
architecture. SCA has been chosen because of its simplicity and the existence of
good tools support for the graphical visualization. First, each bundle is modeled
as an SCA component which has as a name the bundle’s symbolic name. Then,
by parsing the manifest files, we identify the dependencies between components.
Indeed, we consider each declared interface in the exported package as a provided
interface and the declared interfaces in the imported packages are considered as
required interfaces. The SCA Wires are used to represent the connections. After
that, we hide the required interfaces that are not concretely used in code.

Besides, in the context of OSGi components, services are defined by dedi-
cated classes that are instantiated and registered with the OSGi Service Registry
either programmatically or declaratively (i.e., using the OSGi DS framework).
Services declared with DS framework are identified by parsing the “OSGI −
INF/component.xml” files. For the programmatically registered services, we
parse the following two statements: <context>.registerService(..) and
<context>.getServiceReference(..). Then, the core architecture is enriched
by dynamic features. Indeed, we query at runtime the execution environment
and Service Registry to identify what are the concretely registered dynamic ser-
vices and consumed services. Therefore, we hide the static information.

3.2 Recovering Eclipse Use Case Architectures

Once the core architecture is recovered, we ask the developer to execute a set of
scenarios corresponding to use cases. New components related to each scenario
can be activated and new services can be registered. These components and ser-
vices, are identified by querying at runtime the execution environment and the
Service Registry. As consequence, for each scenario, we generate a runtime use
case architecture by adding to the core architecture the newly activated com-
ponents, interfaces, and services. For instance, after executing the following use
case: “Accessing the Toolbar Menu, Opening Help− >Install New Software...”,
11 new components are activated. Figure 2 shows an excerpt of the recovered
use case architecture for this scenario. We show in this figure the new activated
components (surrounded by bold lines) which are connected to the core architec-
ture components. For reasons of readability, we show only some core architecture
elements that are directly connected to the newly activated components.

Besides, we offer also to the developers a way to refine the recovered use case
architecture and spotlight the implicit service-oriented architecture (pure SOA),
which contains only services (without interfaces) and the active components
that register or consume services. In this way, we enable them to focus only on
services-based dependencies, which simplify greatly the architecture model.

2 SCA is a set of specifications which describe SOA systems: https://lc.cx/AEP3.
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Fig. 2. A “Use Case”-specific architecture

4 Empirical Evaluation

We evaluated our approach starting from two Eclipse-based applications of dif-
ferent sizes. The aim is to measure the gain in the reduction of complexity of
the recovered runtime use case architectures. Indeed, we have compared the
complexity of the architecture that is obtained by a static code analysis of all
the system components with the complexity of the recovered use case architec-
tures. Table 1 describes the chosen systems3. For each system, we executed 4
use cases related to the installed projects. In order to measure the complexity of
the recovered architectures, we have used a complexity metric (CM) proposed
in [10]: CM = AC

ACw
, where, AC is Absolute Complexity of a use case architecture

and ACw is the worst architecture complexity which corresponds to the static
architecture complexity. To estimate AC, we create an adjacency matrix from
the architecture and we calculate the influence degree of each component on the
rest of the system.

Table 1. Selected eclipse-based applications

S. Id. Description Installed projects # of bundles # of classes SLOC

1 Eclipse JEE for Web

Developers Oxygen.2

WTP, BPEL,Axis

Tools.

1040 131282 4.11M

2 Eclipse Modeling Tools

Oxygen.2

ArchStudio,

Papyrus, BPMN2.

1502 151471 4.90M

4.1 Complexity Measurement Results

The obtained results are presented in Table 2. As we can see in column 2, the
static architectures of the two candidate systems are very complext and this is
3 They have been downloaded from the following repository: https://lc.cx/m77k.
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particularly true for the largest application. Column 4 presents the number of
actions on the graphical user interface in order to describe quantitatively each
use case. We can see (in Column 5) that the complexity of all the obtained
use case architectures is greatly less than the complexity of the static architec-
tures (ACw). This confirms our intuition that focusing on the runtime use case
architectures greatly reduces the complexity of the architecture compared to the
static one. Second, the obtained CM values (Column 6) are good for all the
recovered use case architectures. However, we noticed that these values decrease
when we increase the size of the system. If we take UC2 in the two systems,
which have almost equal number of GUI actions, we can see that CM value in
the second system is less than in the first system (0.25 vs. 0.31). This because,
the ACw increases with the system size, while the AC vary in a stable interval.
Third, we can observe in column 7 that the average number of newly activated
components is equal to 50 components per use case. This can be considered as a
good value for a system that contains more than a thousand components. Devel-
opers recover and understand the core architecture once (it is common to all use
cases), which is considered as the initial overhead of our approach. After that,
they can focus only on the newly activated components for a use case. At the
end, we can observe the high correlation between the number of GUI actions
and CM values (correlation coefficient equal to 0.86 for System 1 and 0.88 for
System 2). The more the GUI actions we do, the greater CM values we obtain.
But CM values remain very low, AC is thereby kept far below ACw.

Table 2. Experiment Results

S. Id. ACw Use Case # of GUI
Actions

AC CM # of Active
Components

1 5637 UC 0 0 1076 0.19 163

UC 1 11 1195 0.21 174

UC 2 28 1777 0.31 242

UC 3 35 1907 0.33 248

UC 4 55 1941 0.34 259

2 9014 UC 0 0 2153 0.23 392

UC 1 4 2197 0.24 394

UC 2 27 2330 0.25 413

UC 3 30 2429 0.26 425

UC 4 49 2885 0.32 473

4.2 Performance Measurement

We evaluated the performance of our approach by estimating the time for recov-
ering each architecture. We ran our experiments in a machine with a CPU
4.20 GHz Intel Core i7-7700K, with 8 logical cores, 4 physical cores, and 32
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GB of memory. The recovering of the static architectures takes 4 h for the first
System and 9 for the second System. Besides, the average time for recovering a
use case architecture is 45 min for the first System and 2 h for the second System.
Therefore, this results demonstrate the efficiency our approach.

4.3 Threats to Validity

This experiment may suffer from some threats to the validity of its results:

Internal Validity. In order to evaluate the accuracy of our approach, we need
to compare the recovered architectures with “ground-truth” use case architec-
tures. A “ground-truth” architecture is an architecture that has been verified
as accurate by the architects [9]. Obtaining this architecture is challenging. To
mitigate this threat, we have verified manually the component dependencies of
large parts of the recovered use case architectures by analyzing and checking
manually source code and the manifest files of the candidate components.

External Validity. Our evaluation is based on set of OSGi systems which limits
our study’s generalizability to other kind of systems. To mitigate this threat, we
selected systems providing different functionalities (BPMN, BPEL,...) and sizes.

5 Related Work

A framework comprising a set of principles and processes for recovering systems’
ground-truth architectures has been proposed in [9,13]. The authors in [15] pro-
vide a review of the hierarchical clustering techniques which seeks to build a
hierarchy of clusters starting from implementation level entities. In our work,
we focus on runtime use case architectures, instead of recovering whole static
architectures. However, if the recovered use case architectures remain complex
for a human analysis, we can use of one of the existing clustring methods for
abstracting those architectures. The works in [3–5,21] focused on extracting
component-based architectures from existing object-oriented systems. Seriai et
al. in [20] used FCA to identify the component interfaces. Unlike these works, in
our work, we deal with reducing the size of the recovered architecture by focusing
on particular use cases, and we include dynamic features in this architecture.

Besides, several SOA recovery approaches have been proposed in the litera-
ture as part of the process of migrating systems to SOA solutions [18]. Most of
these approaches are based on static code analysis of the target system. Exam-
ples of these works are [2,11,17]. A number of works such as [7,12,22] have
been proposed to detect SOA patterns from service oriented applications. Our
approach focused on the recovery of pure SOAs. Using SOA design patterns
may be a good complement to our approach for a better understanding of the
recovered architecture. More particularly, this helps in better understanding the
design decisions made during the modeling of the analyzed system.
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Managing complex architectures of large software systems became a topic
of interest of several research works. Some authors proposed to organize archi-
tectural information using a Dependency Structure Matrix [14,19]. The authors
in [6] have proposed an architectural slicing and abstraction approach for reduc-
ing the model complexity. Abi-Antoun et al. [1] proposed a technique to stat-
ically extract a hierarchical runtime architecture from object-oriented code. In
our approach, we deal with architectures at a higher level of granularity (com-
ponent ones) and not low level ones (at object-oriented program level).

6 Conclusion and Future Work

In this work, we noticed that recovering the whole architecture of a large system
produces models that are not tractable for developers due to their size and
complexity. In this paper, we proposed a process for recovering the architecture
of large component-/service-oriented systems. Since services in these systems are
not provided and consumed all together, in a given use case, and components
are not all active in the same time, we defined in this process a method to reduce
the size and the complexity of the architecture. Thanks to a runtime analysis
and taking into consideration only specific use cases of interest for the developer
(related to a bug occurrence, for instance), we spotlight the active elements
(components and services) in the recovered architecture. We benefited from the
OSGi framework capabilities to implement such a process, and we experimented
it on a set of Eclipse-based applications. The results showed the potential of the
approach in recovering the architectures of these large systems, while reducing
their complexity by spotlighting essential elements.

As a future work, we plan to make the recovered architecture models
dynamic: they evolve (elements are shown and hidden) while the system is run-
ning by following debugger-like behaviors. In this way, we help the developer to
monitor and evolve her/his system directly via its architecture. In addition, we
want to make them interactive, by enabling developers to control components
and services just by clicking, dragging and dropping the visualized elements.
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Abstract. The transition to agile software development changes the decision-
making power in organizations. This study aims to provide researchers and
practitioners with empirical insights into how the participation in decision-
making by enterprise, solution and system architects evolves due to this tran-
sition. For this purpose, a case study was conducted to examine the participation
of and challenges for architects in decision-making in agile projects. A mixed-
method research approach was used comprising observations, conversations,
interviews, literature study and a survey. We found that 101 decision types are
used prior to and in agile iterations, in which architects and stakeholders col-
laborate to make these decisions. The projection of these types of decisions over
25 different actors in the case study organization demonstrates that decision-
making is a group effort in which solution and system architects are highly
involved. Architecture and agility can indeed co-exist. Another finding of this
case study is that stakeholders in agile teams perceive less architecture
involvement in decision-making and expect less design decisions up front.
Architects are challenged to become team players, to make design decisions
only when they are necessary, and finally, to document, communicate, and share
design decisions more effectively.

Keywords: Enterprise architecture � Solution architecture
System architecture � Agile decision-making � Agile software development
Agile teams

1 Introduction

The adoption of agile software development has become mainstream [1, 2]. The
transition to agile, however, is still a challenge in the areas of people, organization,
project and process [3]. One of the consequences of this transition is that agile gives
more decision-making power to teams and developers [4, 5]. This implies that some
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other actors see a reduction in their decision-making power. Architects are one of the
actors in an agile context, so the question is how their decision-making power changes
due to the agile transition: are they involved in more or less decisions, do they have to
find different ways to collaborate in decision-making, and how do stakeholders1 per-
ceive the role of architects in decision-making? Several publications describe an
adapted role for architects in agile software development, albeit from a more theoretical
perspective [6–11]. In this research, we intend to empirically explore the involvement
of architects in all kinds of decisions in agile projects and their collaboration with
stakeholders. Just as stakeholders of architecture may be involved in design decisions,
architects may participate in other types of decisions, like management decisions [12].
The main research question of this study is therefore:

What is the impact of the agile transition on the role of architects in decision-
making prior to and in agile iterations?

To answer the main research question we divided it into the following sub-questions:

• RQ-1: What types of decisions are used prior to and in agile iterations?
• RQ-2: What is the involvement of architects in these types of decisions?
• RQ-3: What is the perception of stakeholders about the way architects participate

in decision-making prior to and in agile iterations?

To answer the research questions, a case study was conducted. In this case study,
we used a mixed method research approach comprising observations, conversations,
interviews, literature study and a survey. The transition to agile is still ongoing [10, 13].
Case studies can therefore provide useful insights to research. The case study was
conducted in an organization that has an architecture practice for eight years, and has
applied agile in software development for two years.

The results of this case study demonstrate that 101 different types of decisions are
used prior to and during agile iterations. The projection of these types of decisions over
25 different actors in the case study organization demonstrates that decision-making is
a group effort in which solution and system architects are highly involved. Stakeholders
in agile teams perceive less architecture involvement and expect less comprehensive
documents. Architects are challenged to become team players, to make design deci-
sions only when they are necessary, and finally, to document, communicate, and share
design decisions more effectively.

This study is important for a number of reasons. First, it provides architecture
practitioners and researchers with empirical insights into how the role of architects in
decision-making evolves due to agile software development. These insights are useful
to confirm and extend existing theories, as well as to improve architecture practices.
Second, it provides insights into what types of decisions are made in an agile context.
These insights may enable organizations to assess and improve themselves.

This paper is structured as follows: in Sect. 2 we discuss related work. The research
method is explained in Sect. 3. In Sect. 4 we present the results of this case study. In
Sect. 5 we discuss results and in Sect. 6 threats to validity and limitations. Section 7
contains the conclusion.

1 We consider stakeholders as the actors other than architects who participate in decision-making
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2 Related Work

To answer our main research question we first need to know what decisions are made in
an agile context. Drury studied the decision-making process in agile teams extensively
[14–16]. In one of her studies Drury identified various decision types that are used
during software development [15]. Drury’s study focuses on the decisions generally
made by agile teams during the iteration. These decisions are divided over four phases.
In the first phase, the iteration planning, the team plans the upcoming iteration. They
assign story points to a user story and divide tasks. In the execution phase, the team
works on developing the actual product. In the review phase, the stakeholders get the
opportunity to give feedback to the team and review progress. They determine if the
requirements are met and which user stories need to be more detailed or debugged and
taken to the next iteration. In the final phase, the iteration retrospective, the team
members give feedback on the iteration [15]. We used Drury’s decision types as a
starting point to identify different types of decisions.

With regard to the role of architects in decision-making two aspects play a role. First,
decision-making is described as one of the major tasks of architects and key design
decisions are seen as the main artifact of architects [17, 18]. Traditionally, the main task
for architects is to make decisions that would be costly and risky to change mid-project
[19, 20]. These decisions are made prior to or in the early stages of a project, and therefore
architects are linked to big design up front planning and decision-making [20]. Second,
architecting is conducted on different organizational levels. That means that there are
different levels on which key design decisions are made. All these levels are relevant
when studying the impact of agile on the role of architects. TOGAFmakes the distinction
between enterprise, segment and solution architects. The enterprise architect operates at
the enterprise level, the segment architect operates in a given domain, and the solution
architect has its focus on system technology solutions [21]. SAFe makes the distinction
between enterprise, solution and system architects. Enterprise architects act at the port-
folio level and solution/system architects at the program and large solution level [6].

The impact of agile on architecture has been studied by different scholars [10, 22,
23]. Architecture has traditionally a top-down approach, while agile works bottom-up.
Architects are plan and documentation-driven, while agile works with a trial-and-error
approach and documentation is of less importance. The question is whether these two
will complement each other, or if there is an unbridgeable gap [9, 10, 22]. In the early
days of agile, there was doubt whether agility and architecture could co-exist [24].
Contemporary frameworks and approaches demonstrate that agility and architecture
can co-exist [5, 6]. This research aims to provide empirical insight into the challenges
for architects in the way they participate in decision-making in an agile context and
compare these insights with existing theories.

3 Research Approach

3.1 Research Method

We regard the way different actors are involved in decision-making in an agile context
a complex social phenomena. The case study approach is suitable to understand such
phenomena [25, 26]. As part of this case study, we used a mixed method research
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approach comprising observations, conversations, interviews, literature study and a
survey. Figure 1 visualizes the research design. As the unit of analysis, we chose the
architect [26]. The architect, and more specifically, the enterprise, solution or system
architect, is one of the actors who is involved in decision-making in the case study
organization.

3.2 Case Study Organization

The case study organization is a Dutch government body, with approximately 1,800
employees and which operates in the financial sector. The organization has applied the
agile approach for software development for two years and is generally aware that
architecture and agile teams need to be aligned. The challenge for the organization is to
find a way to connect the more bottom-up agile software development approach and the
more top-down organizational governance approaches like business planning and
portfolio management. In this study, we focus on the decisions that are required prior to
and during the agile iterations and what the role of architects is in these decisions. The
case study organization employs six enterprise architects, who operate at the enterprise
and the domain (portfolio) level, and twelve solution architects who act at the program
and project level. Regularly, solution architects work for two or three agile teams. In
the domain where this research was conducted, two system architects operate as part of
an agile team. The main architecture artifacts are: architecture criteria at the enterprise
level, future-state architectures (FSA) at the domain and program level, and project-
start architectures (PSA) at the project level. Architecture criteria consist of principles,
policies, and standards. An FSA describes the future state of a domain or program in
terms of business, application, and technical architecture. A PSA contains the relevant
principles, policies and standards for a project, as well as the current and future state of
a project in terms of the business, application, and technical architecture. Figure 2
illustrates the different levels, associated artifacts and positioning of architecture roles

Fig. 1. Research design
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in the case study organization. For example, in the development of a new payment
system, an enterprise architect created an FSA containing the target organization and
processes, the relevant architecture criteria, and the high level requirements for the
system. A solution architect and a system architect created a PSA containing the
software architecture and the required infrastructure for the system. During the
development of the system, two system architects were involved as part of two agile
teams. These system architects were also acting as developer.

3.3 Data Collection

As a first step, ethnographic methods were applied to gain an understanding in the way
of working of the case study organization [25]. The first insights were obtained during
observations while attending agile team meetings. In addition to these observations,
informal conversations were held with practitioners to expand and clarify observations.
Furthermore, documents of the case study organization were studied, in particular
architecture documents like FSAs and PSAs. Lastly, a literature study was conducted to
gain an understanding of relevant literature. Four databases (Google Scholar, IEEE
Xplore Digital Library, Springer Link, and the digital library of the VU University)
were searched based on the following keywords: “Enterprise Architecture”, “Archi-
tecture”, “Decision-making Agile projects”, “Agile and Architecture”, and “Architec-
ture Decision-making Agile”. The literature with the most relevance for the research
questions, is included in the related work section. Based on the information gathered to
date, semi-structured interviews were held in the last quarter of 2016. The goal of these
interviews was to create a list of decision types that were used prior to and in agile
iterations. As a starting point we used Drury’s list of decision types [15]. In the
interviews different decisions were explored in which each respondent participated.
These decisions were summarized at the end of each interview. The respondent had the
opportunity to confirm or reject a captured decision. A list of the decision types made
by the respondent was obtained on the basis of each interview. These decision types

Fig. 2. Organization of architecture function in case study organization
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were added to Drury’s original decision list. A project leader, a product owner, and an
enterprise architect validated the complete list of decision types. As a result, duplicate
and unclear decision types were removed. The final decision list reflects the decision
types of an organization in an agile transition. The interviewees were also asked for
their perception about the role of architects in decision-making. Table 1 shows the
number of participants per role in the interviews, as well as in the subsequent survey.
The average number of years of experience of all participants with agile software
development is 4.7. Six agile teams were included in this research. These teams worked
on a variety of systems: a customer relationship management system, a portal, a data
collection system, a payment system (two teams), and a contribution collection system:
all larger systems (>1 million Euros).

As a next step, we used a survey to gain insight into the participation in decision-
making according to respondents. The decision list we created in the previous step was
used as the basis for the survey. Initially we asked 35 people to participate in the
survey. These people all play a role related to the six agile teams. Ultimately 25 people
participated between December 2016 and January 2017. The respondents can be cat-
egorized into two groups: the architects’ perspective of their participation in decision-
making and the stakeholders’ perspective of the architects’ and their own participation
in decision-making. The architects were asked to identify the decision types in which
they participate. By participation, we mean active participation in the sense of having a
say in decisions of that type. The stakeholder group consists of all the other participants
in the survey. The stakeholders have each a different concern, regarding agile iterations
and have different perspectives on decision-making. The stakeholder group was asked
to identify participation of the different roles of architects in the different decision types
and to identify the decision types in which they participate themselves. As a final step
in this research, the results of the interviews and survey were analyzed and discussed
among the researchers.

Table 1. Number of participants involved in case study

Role Interview Survey

Enterprise architect 2 3
Solution architect 1 3
System architect 2 2
Developer 2
Head of section 2
Information manager 1
Portfolio manager 1
Information analyst 1
Project manager 1
Project leader 2 2
Product owner 3 4
Scrum master 3
Total 10 25
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4 Results

4.1 Decision Types

Based on the outcome of the interviews, a list was created with 101 decision types2

divided over five different phases and three perspectives as shown in Table 2. The first
phase is the initiating phase with decision types that are made prior to the agile itera-
tions. Decisions made in this phase provide the context for the agile iterations. The
second phase is the operational one with decision types used at the start of each agile
iteration. The third phase contains types of decisions used during the execution of the
iteration. We then have the review phase that contains end-of-iteration decision types.
The final phase contains decision types on the retrospective. Compared to Drury’s list of
decision types, 72 decision types were added, and one decision type was removed.
Drury did not take the initiating phase into account; so all decision types in this phase
were added. The decision type removed during validation was “who is the owner of the
user story”. The three persons validating the decision list interpreted this decision type
differently. Furthermore, they remarked that “everyone is the owner of a user story”, and
therefore “what is the decision here meant to be?” We also classified the decision types
according to different perspectives. The management perspective contains decision
types regarding planning, estimation, resourcing, and prioritization. The user perspec-
tive includes decision types on topics like requirements and acceptance. The third and
last perspective is the design perspective with decision types on design and engineering.
The decision list provides a snapshot of the decision types identified at the time of this
research when the architects in this organization followed a rather traditional, document
driven approach. That is why decision types were added like “Decide on the content of
the FSA” and “Decide on the content of the PSA” and “Decide if the PSA is final”.

4.2 Involvement in Decision-Making

We first wanted to know who participates in which decision types. Figure 3 shows the
absolute number of decision types in which the 25 respondents of the survey

Table 2. Number of decision types per phase and per perspective

Phase Management User Design Total

Initiating 10 3 9 22
Operational 28 5 4 37
Execution 8 0 13 21
Review 4 8 2 14
Retrospective 7 0 0 7
Total 57 16 28 101

2 The complete list can be found on https://bergmart.wordpress.com/2018/04/02/research-into-the-
evolving-role-of-architects-in-decision-making-in-an-agile-context/
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considered themselves to participate. One of the findings from Fig. 3 is that agile
decision-making in this organization is a collaborative group effort. Different actors
participate actively in the same decision types. On average, eleven actors participate
actively in one decision type. Over 50% of all decision types involved all solution and
system architects, product owners, the information analyst, one of the enterprise
architects, one of the developers and one of the project leaders. Under 30% of decision
types involved the scrum masters, the heads of section, the portfolio manager, the
project manager, two of the enterprise architects, one of the developers, and one of the
project leaders. One enterprise architect participates in far more decision types than the
other two. Such a big difference also appears with the developers where one of them
participates in 56 decision types and the other one in only three. The heads of section
and the project leaders demonstrate considerable, but fewer major differences. With
regard to the participation of architects, the system and solution architects are the ones
that are most involved. They participate strongly in all phases and there is considerable
overlap in the decision types they participate. In 29 decision types, all system and
solution architects indicated their participation.

Secondly, we wanted to find out who participates in design decision types and
whether architects participate in other kind of decisions. Figure 4 demonstrates that
most actors have a say in decision types of all three perspectives. E.g., product owners
not only decide on user-related topics, but also on management and design related
topics. Solution and system architects not only participate in design decision types, but
also in user and management related decision types. Conversely, scrum masters are

Fig. 3. Absolute number of decision types per phase per actor
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mostly focused on management decision types. The perspective with which architects
are most familiar, the design perspective, is certainly not the domain of the architects
alone. As can be seen in Fig. 4, different stakeholders participate in design decision
types.

The finding that decision-making is a group effort, is further underpinned by
looking at the participation in individual decision types. Table 3 contains the decision
types that respondents consider have the most simultaneous participation. The decision
type on the non-functional requirements attracts the most participation. In total 18 of
the 25 respondents indicated that they participate actively in decisions of this type. Five
of the 12 decision types with the highest participation relate to the initiating phase and
another five to the retrospective phase. The first and last phase show the highest
participation across the different participants. It is notable that both system and solution
architects are heavily involved in almost all decision types. Furthermore, Table 3
demonstrates that 10 of 12 decision types have a management perspective.

In order to provide a balanced view, we also wanted to chart the decision types with
the least simultaneous participation. Table 4 contains these decision types, all of which
have a management perspective. Table 4 shows that these decision types require fewer
participants than the decision types in Table 3. What stands out, is that system and
solution architects play a role in some of the decision types with a management
perspective. We already saw in Fig. 3 and Table 3 that system and solution architects
are quite heavily involved in decision-making compared to stakeholders.

Fig. 4. Relative division of decision types over perspectives per actor
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4.3 Perception about Architectural Participation in Decision-Making

Finally, we were interested in stakeholders’ perception of the participation of architects,
so that we could derive the challenges for architects. Table 5 contains the number of
decision types in which architects participate according to stakeholders. We considered
there to be participation of an architecture role if over 50% of the stakeholders were of
the opinion that this architecture role participated. For comparison reasons, we also
included the scores of the eight architects themselves. As can be seen, stakeholders
have a different perception than architects. Especially in the operational and review
phases, stakeholders perceive less participation than system and solution architects.
Table 6 is similar to Table 5, although the decision types are clustered per perspective
instead of per phase. Architects and stakeholders agree on the participation of architects
in design decisions. The big differences are in the user and management perspective
where solution and system architects participate in much more decision types than
stakeholders perceive. Our next analysis addresses which architecture role is dominant
in which decision phase according to stakeholders. An architecture role is dominant in
a decision type when it has the highest percentage of participation according to
stakeholders, and when this percentage is higher than 50%. As is shown in Table 7,
stakeholders perceive the system architect overall as the dominant architecture role in
the iterations compared to the other two architecture roles. The enterprise and solution
architects play a more dominant role in the initiating phase only. This differs from the
perception of solution architects themselves (see Table 5), who are of the opinion that
they are strongly involved in all phases.

The interviewees commented on the role of architects and their way of working
with agile teams. They acknowledged the role of architects but questioned the way in
which architects contribute. According to a product owner: “Architects are not so
important during iterations. However, I recognize their value during the initiating
phase. The FSA provides us with a framework within which we work and with the
rationales of the decisions that were made early on. The PSA is also a good starting
point in terms of how applications interact and what tools to use. Our system architect
has the PSA in his head. We do not use the document, the system architect works
accordingly. I think that the FSA and PSA could be shorter. One should not go into too
much detail in the beginning.” One of the enterprise architects remarked: “To make
sure that the architecture framework becomes part of the team’s DNA, you need stable
teams. When this is the case you do not need a PSA or any big up front documentation.
The most important task of an architect is to talk and talk.” One of the solution
architects thought that the FSA and PSA were overly detailed. He also commented on
the role of the enterprise architect versus the solution architect: “Enterprise architecture
is about the ideal world. As a solution architect I’m part of the real world. I have to
deal with resource and budget constraints. These constraints determine the architec-
ture to a large extent. I value the FSA, although it is too detailed. I personally make
many decisions, and I agree that these decisions should be documented and motivated.
We need to find a better way instead of creating a PSA.”
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Table 3. Decision types with most participants

No Decision Phase Pers Ent
Arch

Sol
Arch

Sys
Arch

Dev Head
Sec

Inf
Mng

Portf
Mng

Inf
Ana

PM PL PO Scr
Mas

Total

19 Decide on non-
functional
requirements

Init User 3 3 2 1 1 1 – 1 1 1 4 – 18

16 Decide who is
suitable for the
team

Init Man – 2 2 1 2 1 1 1 1 2 2 2 17

95 Decide what to
improve during
the next iteration

Retro Man 1 3 2 1 – – – 1 – 2 4 3 17

97 Decide what
new things the
team will try in
next iteration

Retro Man 1 3 2 1 1 – – 1 – 2 4 2 17

17 Decide for
someone (extern
or intern) to join
the team during
the project

Init Man – 2 2 – 2 1 – 1 1 2 3 2 16

33 Decide if a user
story meets the
scope (time,
budget, minimal
viable product)

Oper Man – 3 2 1 – – – 1 1 2 4 2 16

67 Decide if a
functional
direction or
solution is too
comprehensive

Exec Des 2 3 2 1 – 1 – 1 – 2 4 – 16

98 Decide root
cause if team
did not meet its
iteration goal

Retro Man 1 3 2 1 – – – 1 – 2 4 2 16

100 Decide issues
that will most
influence team
success

Retro Man 1 3 2 1 1 – – 1 – 2 4 1 16

6 Decide on the
time scope of a
project

Init Man 1 2 1 – – 1 1 1 1 2 4 1 15

21 Decide the
roadmap of the
project

Init Man 3 2 – – 1 1 1 1 1 1 4 – 15

96 Decide what
went well to
continue during
next iteration

Retro Man 1 3 2 1 – – – 1 – 1 4 2 15
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Table 4. Decision types with least participants

No Decision Phase Pers Ent
Arch

Sol
Arch

Sys
Arch

Dev Head
Sec

Inf
Mng

Portf
Mng

Inf
Ana

PM PL PO Scr
Mas

Total

64 Decide who
will pair
together for
paired
programming

Exec Man 1 1 1 3

50 Decide task
estimates

Oper Man 2 1 1 4

28 Decide
capacity for
team members

Init Man 2 2 1 5

26 Decide which
people will be
available

Init Man 2 1 2 1 6

57 Decide if a
task fits in the
scope of the
project

Oper Man 2 2 1 1 6

Table 5. Number of decision types in which architects participate according to themselves and
to stakeholders, per phase

Enterprise architect Solution architect System architect

Phase Stakeh EA-1 EA-2 EA-3 Stakeh Sol-1 Sol-2 Sol-3 Stakeh Sys-1 Sys-2

Initiating 11 12 8 14 13 19 13 18 10 14 12
Operational 1 0 4 15 8 32 23 19 19 35 25
Execution 5 3 9 17 14 18 16 18 17 17 15
Review 2 2 1 9 2 12 6 9 5 10 10
Retrospective 0 0 0 6 6 7 7 7 7 7 6
Total 19 17 22 61 43 88 65 71 58 83 68

Table 6. Number of decision types in which architects participate according to themselves and
to stakeholders, per perspective

Enterprise architect Solution architect System architect
Perspective Stakeh EA-1 EA-2 EA-3 Stakeh Sol-1 Sol-2 Sol-3 Stakeh Sys-1 Sys-2

Design 14 13 18 25 24 27 24 26 24 20 24
User 1 2 2 11 1 14 6 10 4 15 9
Management 4 2 2 25 18 47 35 35 30 48 35
Total 19 17 22 61 43 88 65 71 58 83 68
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5 Discussion

The list with decision types shows a mixed picture. On the one hand, it contains
decision types that are typical for an agile process, on the other hand, it includes
decision types that belong to a more traditional way of working. Especially, the design
decision types in the initiating phase fit to a traditional way of working with decision
types on FSA and PSA. This case study shows a snapshot of an organization that
applies software development in an agile manner, while at the same time applying
architecting in a rather traditional fashion with artifacts like FSAs and PSAs. Two
interesting observations can be made. First, despite the rather old-fashioned architec-
ture artifacts, the value of architecture is not questioned by the stakeholders, and
according to architects themselves, they participate strongly in decision-making. This is
in line with literature that architecture and agility can co-exist [5, 6]. Second, the
architects that participated in the interviews are aware of the changes that are needed,
i.e., that architecture artifacts like FSAs and PSAs are at some point no longer
appropriate. Remember that one of the enterprise architects explained that once agile
teams are stable, a PSA or any big documentation is not needed. When we took our
snapshot, that stable situation was not yet reached. The agile teams in this study were
formed less than two years ago and had many external employees. So it was reasonably
obvious for architects to continue creating FSAs and PSAs while at the same time
being aware of the necessary transition in the architecture function. From this case
study we learn that changes in the way of working of architects lag the changes in the
way of working in software development.

This study also confirms that decision-making in an agile context is a collaborative
group effort [4, 27]. On average, eleven actors (of a maximum of 25) participate
actively in the decisions of one decision type. The actors most involved are the solution
architect, system architect, product owner, and information analyst. We also found that
solution and system architects just as much participate in management and user-related
decision types as product owners participate in design decision types. Where architects
in the past had the authority to make design decisions on their own, they now col-
laborate with other stakeholders [15]. This case study also demonstrates that architects
have a say in other types of decisions. Another finding from this study is that all
solution and system architects, and one of the enterprise architects, are heavily involved
in all decision phases. However, stakeholders have the perception that the involvement
of enterprise and solution architects can be limited to the initiating phase.

Table 7. Number of decision types where a certain architecture role is dominant according to
stakeholders

Phase Enterprise architect Solution architect System architect

Initiating 8 8 5
Operational 0 2 18
Execution 1 5 14
Review 2 0 4
Retrospective 0 0 7
Total 11 15 48
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This case study raised various challenges for architects with regard to their role in
decision-making in an agile context. Table 8 summarizes these challenges and dis-
cusses possible actions for architects.

Table 8. Challenges for architects in decision-making in an agile context

Topic Challenge for architects Action for architects

Who to involve in design
decisions and make sure these
decisions are adopted by
teams?

Stakeholders expect to be
involved in design decisions.
Architects can no longer make
design decisions on their own
and impose these decisions to
teams. Imposing design
decisions to a team is a situation
that does not really motivate
teams, particularly agile teams.
“Teams, in general, have the
potential to make more effective
decisions than individuals
because teams can pool
knowledge and information,
which helps them to make a
good decision” [15].

Architects must become team
players who are able to discuss
and explain decisions to
stakeholders and colleague
architects. They need to focus on
effective communication and
collaboration and be able to
compromise and negotiate
decisions with stakeholders [7, 9,
28].
Architects have to find ways to
intervene effectively:
• Learn from organization theory:
“effective interventions are
based on valid information
about the organization’s
functioning; they provide
organization members with
opportunities to make free and
informed choices; and they gain
members’ internal commitment
to those choices. Free and
informed choice suggests that
members are actively involved
in making decisions about the
changes that will affect them”
[29].

• Apply nudge theory, which is “a
concept in behavioral science,
political theory and economics
which argues that positive
reinforcement and indirect
suggestions to try to achieve
non-forced compliance can
influence the motives, incentives
and decision-making of groups
and individuals, at least as
effectively if not more
effectively, than direct
instruction, legislation, or
enforcement” [5, 30].

(continued)
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6 Threats to Validity and Limitations

According to Yin, four different threats to validity may occur in case studies: construct
validity, internal validity, external validity, and reliability [26]. The following coun-
termeasures were taken against these threats. Construct validity was counteracted by

Table 8. (continued)

Topic Challenge for architects Action for architects

When to make design
decisions?

Stakeholders expect architects
not to go into much detail in the
beginning.

Architects should try to create a
minimal set of design decisions
at the level on which they
operate, be it a system, solution,
domain, or the enterprise as a
whole. Architects must try to
delay design decisions until they
are absolutely necessary [5]. This
can be done by applying a risk
and cost driven approach to
architecting [19, 29]. Such an
approach supports architects to
identify the key concerns at the
right level to address in their
decision-making.

How to document design
decisions?

Stakeholders do not expect thick
documents like FSAs and PSAs.
Delivering these types of
standard documents can become
a goal in itself, which is a
common pitfall of architects (not
only because of agile) [31].

Architects must find a more
integrated way of documenting
and communicating design
decisions instead of creating
documents with design decisions
on each organizational level, and
passing these documents to the
next organizational level.
Different authors identified and
described the required change
from documents to key decisions
[7, 8]. The implementation of
this change is not straightforward
and requires further research.

With whom to share design
decisions?

Stakeholders expect design
decisions to be shared along the
lines of different organizational
levels. The simultaneous
participation of different
architecture roles in the same
decision types (like in the case
study organization) may seem
inefficient, especially in the eyes
of stakeholders, but is very
valuable from a knowledge-
sharing perspective.

Ultimately, design decisions at
different levels need to be
coordinated. How design
decisions can be coordinated and
knowledge can be shared across
different organizational levels
like enterprise, domain, and
software system, is an area for
future research.
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having the list of decision types validated by three different roles in the case study
organization. Furthermore, the case study report was drafted by one of the authors and
reviewed by two of the other authors. Nevertheless, we do not exclude misinterpre-
tation of survey questions. The results of the survey show some large differences
between respondents in the same role. Internal validity is not applicable since this is an
exploratory study. Regarding external validity, we argue that the findings of this case
study are of interest to other practitioners and researchers outside the case study
organization. Although we focused on a single domain in only one organization, the
results correspond with contemporary research and confirm earlier defined theories.
Reliability was established by creating a case study protocol and a database in MS
Excel where the results were stored [26]. Another approach we used was that two
authors conducted the data analysis to reduce the threat of bias. This was done partly in
parallel, and partly sequential.

A limitation of this study is that we did not include implicit decisions. In an agile
approach most of decision-making is done in daily stand-ups, sprint-planning or pre-
refinement sessions and documented to a bare minimum. This is an area for future
research. The decision list in this study can be used as a point of departure to study
what decisions in agile projects are implicit or explicit. Another limitation is that the
decision list reflects the decision types identified at some point during an agile tran-
sition of just one organization. The findings of this study are thus based on decision
types that may change over time. Compared to Drury we found much more different
types of decisions [15]. One explanation is that we included the decision types used
prior to an agile iteration, where Drury only had the agile iteration in scope. Another
explanation is that our list was created based on interviews with architects, project
leaders, and product owners, where Drury collected the decisions during a focus group
meeting with mainly agile practitioners. A third limitation is the ambiguity of archi-
tectural roles. Different respondents of the survey may have had a different under-
standing of a particular architectural role. A final limitation is that we did not study the
interaction between different actors. This is also an area for future research. Social
network analysis is a good starting point [32]. Using the lens of social network analysis
could help to explain why participants in the same role differ so much in their par-
ticipation in decisions.

7 Conclusion

This research focused on the role of architects in decision-making in agile projects. The
purpose was to provide insights in decision-making participation of architects, espe-
cially enterprise, solution, and system architects, and to align the empirical insights
with a theoretical perspective. At first a list was created covering all the decision types
made in various phases prior to and in agile iterations. From this list we concluded that
architecture and agility indeed can co-exist and that changes in the way of working of
architects lag the changes in the way of working in software development. The decision
list was taken as a starting point for a survey that was designed to receive insights in the
architects’ and stakeholders’ participation in decision types in practice. The results of
our study reveal a mixed participation of different actors including architects in all
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decision types. On average, eleven actors (of a maximum of 25) participate actively in
the decisions of one decision type, confirming that decision-making in an agile context
is a collaborative group effort. Another finding from this study is that stakeholders in
agile teams perceive less architecture involvement and expect less comprehensive
documents. Architects are challenged to become team players, to make design deci-
sions only when they are necessary, and finally, to document, communicate, and share
design decisions more effectively.
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Abstract. To deliver high-quality software, in a software development
process a variety of quality attributes must be considered such as per-
formance, usability or security. In particular, quality attributes such as
security and usability are difficult to analyze quantitatively. Knowledge
about such quality attributes is often only informally available and there-
fore cannot be processed in structured and formalized decision-making
approaches to optimize the software architecture. In this paper, we have
defined a framework in order to make use of informally available knowl-
edge in automated design decision support processes. We connect quali-
tative reasoning models with models for quantitative quality estimation
to optimize software architectures regarding both knowledge representa-
tion models together. By our approach quality attributes for which no
quantitative evaluation model is available can now be used in automated
software architecture optimization approaches. For evaluating our app-
roach, we demonstrate its benefits using a real-world case study and an
example that is related to a real-world system.

Keywords: Software · Architecture · Model · Reuse · Solutions
Design decision · Qualitative reasoning · Quality

1 Introduction

Todays increasingly complex software systems have many responsibilities and
often implement a large number of features. In addition to the core business
features, the systems often also support a variety of features designed to oper-
ationalize quality requirements, that are intended to improve a certain quality
attribute (QA). From the viewpoint of the quality performance alone, any addi-
tional functionality with the same hardware configuration can be an influencing
factor.

Performance is not even the only quality that is influenced by new features. In
the case of user authentication, other QAs such as usability are also influenced.
The software architect would like to know these effects as early as possible in
the design phase, in order to avoid expensive refactoring later in the project.

Software architects often have implicit knowledge about such effects on QAs
of different software components. However, this knowledge is often only infor-
mally available and cannot be used in automated analysis and decision processes.
c© Springer Nature Switzerland AG 2018
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Moreover, QAs such as security or usability often lack applicable analysis tech-
niques. In approaches for design time quality prediction such QAs often remain
unconsidered due to missing quantification and analysis techniques, although
they are often crucial for the success of a project. Due to the lack of possibilities
for considering informal knowledge in systematic decision support approaches,
important trade-off decisions between performance and other quality require-
ments cannot be analyzed sufficiently.

The Palladio [19] approach together with PerOpteryx [12] is one example for
design-time quality prediction and decision support for component-based soft-
ware architectures. With the help of Palladio software architects can evaluate
their design decisions with the focus on QAs such as performance, reliability, and
maintainability at design time. On the basis of Palladio’s analysis engine, Per-
Opteryx evaluates architecture candidates resulting in the Pareto-optimal solu-
tions. However, the analysis is limited to quantified QAs such as performance. In
our previous work [5], we have extended the PerOpteryx approach so that not-
quantified QAs can be analyzed in a very simple manner. However, this exten-
sion and also other existing approaches, such as ArcheE [2], or ArcheOpteryx [1],
can not analyze complex relationships between modeled knowledge such as the
mutual effect between usability and security. Therefore, when using approaches
that rely on quantified QAs to analyze the software architecture quality, informal
knowledge remains unconsidered.

In this paper, we address the aforementioned issues by extending Palladio and
PerOpteryx for improving software architecture design decisions by modeling
informal knowledge explicitly and include the knowledge in PerOpteryx’ auto-
mated decision support process. Our approach offers tools to annotate knowledge
about QAs of software components and to model mutual effects on QAs from and
to other components. The aim of our approach is to create a framework for eval-
uating architectural design options, which uses both quantitative and qualitative
methods to estimate the relative merits of quality attributes in an architectural
design. The contribution of this paper is an approach that can be used to ana-
lyze QAs for which no adequate quantification methodology is available or the
quantification is too expensive even for complex mutual effects. The results can
then be used to analyze the impact of decisions on the performance of the sys-
tem and to make trade-off decisions. At the end, this helps software architects
to consider informal knowledge in systematic processes together with quantified
knowledge, in order to improve their software architecture design decisions.

2 Background

For our approach, we use two approaches namely Palladio and PerOpteryx for
software quality analysis and optimization as a basis and extended it in order to
consider interferences of not-quantified QAs in the design space optimization.
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2.1 Architecture Model: Palladio Component Model

Palladio is an approach for the definition of software architectures with focus
on performance QAs [19]. Several parts of this introductory section are taken
from [10].

As our running example let us consider the Business Reporting System (BRS)
model. The BRS allows users to retrieve statistical analysis of business processes.
For this purpose, the system allows the user to generate graphical and online
reports. The system is roughly based on a real system [22]. The architecture
model specified by the software architect consists of nine software components
deployed on four different hardware nodes. The software components contain
cost annotations, while the hardware nodes are annotated with performance
units (processing rates) and cost (fixed and variable cost for example in EUR)
units.

For each software component service, the component developers provide an
abstract behavioral description called service effect specification (SEFF). SEFFs
model the abstract control flow through a component service in terms of internal
actions (i.e., resource demands accessing the underlying hardware) and external
calls (i.e., accessing connected components). SEFFs are composed automatically
to determine the system-wide behavior. Modeling each component behavior with
separate SEFFs enables us to quickly exchange component specifications without
the need to manually change system-wide behavior specifications (as required in
e.g. UML sequence diagrams).

For performance annotations, component developers can use the extended
resource-demanding service effect specifications (RDSEFFs). Using RDSEFFs,
developers specify resource demands for their components (e.g., in terms of CPU
instructions to be executed).

A software architect composes component specifications modeled by various
component developers to create a system model. The performance simulation
finally is performed by solving such a model analytically or simulation-based.
In this paper, we use the transformation from PCM to Layered Queueing Net-
works [7].

2.2 Design Space Exploration: PerOpteryx

The PCM separates parameterized component performance models from the
composition models and resource models. The PCM thus naturally supports
many architectural degrees of freedom (DoF), such as replacing components,
changing the component assignment, and so on. The PerOpteryx approach
explores these given DoF and thus supports to make well-informed trade-off
decisions for performance, reliability, and cost. Several parts of this introduc-
tory section are taken from [10].

For the exploration, PerOpteryx makes use of DoF of the software architec-
ture that can either be predefined and derived automatically from the architec-
ture model or be modeled manually by the architect.

On the basis of our running example we can derive two types of DoF: For
instance we could change the component allocation and the server configuration.
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For the allocation degree, we could have several servers, each having different pos-
sible processing rates. As an example of a manually-modeled DoF, let us consider
that some of the architecture’s components offer standard functionality for which
other implementations (i.e. other components) are available. Here, an alterna-
tive component for several components could be used in the BRS as for example
the Scheduler component. This component could be replaced by a functional
fully equivalent QuickScheduler component. Assuming that QuickScheduler
has less resource demand but is also more expensive than Scheduler, the result-
ing architecture model has a lower response time but higher cost.

The resulting DoFs span a design space which can be explored automatically.
Together, they define a set of possible architecture candidate models. Each of
these candidate architecture models is defined by choosing one design option for
each DoF. The set of all possible candidate models corresponds to the set of all
possible combinations of the design options, the design space.

Using the quantitative quality evaluation provided by Palladio, PerOpteryx
determines performance, reliability, and cost metrics for each candidate model.

Based on the DoFs (as optimization variables) and the quality evaluation
functions (as optimization objectives), PerOpteryx uses genetic algorithms and
problem-specific heuristics to approximate the Pareto-front of optimal candi-
dates. Details on the optimization are not required for the discussion in this
paper, but can be found in [10,11].

In our previous work [5] we proposed an extension to include not-quantified
QAs on different levels of measurement in a decision support engine together with
quantified QAs such as performance, reliability, and cost. To do so, we extended
the analysis engine of PerOpteryx to obtain a combined analysis of quantified
and not-quantified QAs. This makes it possible to balance between mutually
influencing quantified QAs and not-quantified QAs. For example, if a more secure
alternative component would have less performance, the component with better
performance would always be preferred without taking the not-quantified QAs
into account. The combined analysis results in Pareto-optimal values of all QAs.
As a result, software architects can analyze the impact of simple design decisions
on other QAs (e.g. performance, cost) when including for instance a security
related feature.

In its previous version as described in this section, PerOpteryx does not
support the complex effect of decisions on other, informally modeled QAs that
is common for QAs such as usability or security. For example, no influence of fault
tolerance on usability can be modeled. The main effects of design decisions on
informal modeled QA would remain unconsidered and may not be fully evaluated
with the previous version of PerOpteryx.

2.3 Qualitative Reasoning

Qualitative Reasoning (QR) is a research field of Artificial Intelligence (AI) that
expresses conceptual knowledge. QR creates models for continuous aspects of
the physical world (e.g. quantity, space, time), which supports a reasoning with
little information. Qualitative reasoning also has practical benefits in industry,
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focusing on scientific and engineering domains [3]. QR is suitable for modeling
and simulating such conceptual models. In QR, the quantities describing the
dynamic characteristics of a system contain qualitative information about the
current size and the direction of possible changes. Usually, an interval scale is
modeled by an ordered set of variables. These ordinal scaled variables contain
nominal information as well as information about the order of the variable values.
Such a set of variables is referred to as the quantity space. QR models represent
a trade-off between the ability of modeling informal knowledge generated by
humans, but at the same time sufficient formal specification of properties to
enable automatic evaluation.

3 Approach

Our approach explicitly models informal knowledge and uses that knowledge
together with quantified values in order to improve automated software architec-
ture optimization mechanics. This shall improve the tools of a software architect
to make better decisions in a software architecture design process.

We developed a meta model and analysis techniques to define informal knowl-
edge about mutual effects between quality attributes of components. This model
includes a description of the characteristics of QAs of the system’s components
and rules that describe how these QAs are influenced by other components.
As usual in component-based approaches, these characteristics are composed
together with the corresponding software components. Thus, the modeled knowl-
edge fits seamlessly into the component unit. This allows to reuse knowledge by
the natural reuse mechanisms of software components.

In order to be able to evaluate the models using informal knowledge, we also
describe our reasoning algorithm in the second part. This algorithm automati-
cally evaluates the qualities with their effects for a system model. The results can
then be used to make trade-off decisions between a variety of quality attributes.
PerOpteryx allows the specification of the QAs to be analyzed. By this, the
architect can then select the QAs that are relevant for the requirements. Not
relevant QAs can be skipped by the analysis engine.

3.1 Qualitative Reasoning Model

Fig. 1. Schematic representation of our
Qualitative Reasoning meta model

Figure 1 shows the meta model of our
approach, with the relevant classes
and attributes. At the core of our
approach, a Not-quantified Quality
Attribute (NQA) is used to express
a level of quality (i.e. the informal
knowledge) of a component, while a
Mapping Rule Set (MRS) defines how
this level of quality is influenced by
the quality of other components.



270 Y. Schneider et al.

A software architect could annotate a component with the NQA
(Accessibility, +) to express “somewhat good accessibility”. Table 1 shows
more examples of NQAs. Additionally, the software architect can annotate the
component with a MRS as shown in Table 2 to express that the reliability of
this component is affected by the fault tolerance and the recoverability of other
components.

Dimension Set and Dimension Element. The quantity space, with all its
elements and their order, is modeled by the Dimension Set.

Table 1. An example NQA
set with three example NQAs

A dimension set defines the range of all pos-
sible values that can be specified within a dimen-
sion. Each definition of a dimension set D also
contains a strict total order relation <, denoted
<⊆ D×D. For two dimension elements e1, e2 ∈ D,
e1 < e2 means that e1 represents a worse quality
than e2.

Table 2. MRS modeling the
dependency from reliability to
fault tolerance and recover-
ability

For our case studies, we model a dimen-
sion set with five different dimension elements
{--, -, 0, +, ++} and define the order < so that
-- < - < 0 < + < ++.

Quality Dimension. A quality dimension q is an
attribute that could be analyzed and evaluated by
our QR approach. This may be a software quality,
such as security, but also any other attribute of
software components, such as their manufacturer.
For example, such a quality dimension could be
denoted as Usability or Recoverability.

Not-Quantified Quality Attribute. A NQA represents a relevant quality
property of a software component. It is represented by a pair (q, e) that is com-
prised of the quality dimension q and the corresponding dimension element e. Let
us assume that the architect wants to express that a component A has compara-
tively “good” usability. To do so, the architect models an NQA (Usability, +)
and annotates it to component A.

Mapping Rule Set. A Mapping Rule Set (MRS) is the core of the symbolic
non-numerical calculation of the model elements. The MRS defines how a partic-
ular quality dimension of a component is affected by another particular quality
dimension of other components. For this purpose, a MRS is comprised of sev-
eral mapping rules (rn) and a quality dimension d on which the rules apply, i.e.
MRS := (d, (rn)). The MRS results in an NQA whose dimension element were
calculated according to its rules.

Table 2 shows an example MRS for the quality dimension Reliability. This
MRS shows how fault tolerance and recoverability of other components affect
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the reliability of a given component. For example, if another component that
affects our given component is annotated with the NQA (Recoverability, 0),
the example MRS would result in the NQA (Reliability, -) for our given com-
ponent. Details on the evaluation of a MRS is explained in Sect. 3.3. If the quality
of a component is affected by multiple other components, the different quality
values are averaged (cf. Sect. 3.3).

Mapping Entry. A Mapping Entry E represents the pair E :=
(
(kn)n∈N+

, v
)
,

while (kn)n∈N+
represents the sequence of input elements and v represents the

resulting affected element. A Mapping Entry E assigns a sequence of input
dimension elements (kn) to a dimension element v, i.e. E : (kn) �→ v. All ele-
ments (kn) , v of a mapping entry must be contained in the same dimension
set D, i.e. (kn) , v ∈ D. Two input elements

(
k1n

)
,
(
k2m

)
are equal if they agree

in their length n,m, their elements, while they occur in the same order, i.e.(
k1n

)
=

(
k2m

) ⇔ n = m ∧ ∀ (i)ni=1

(
k1i = k2i

)
.

Table 3. Assignment of
one NQA to an affected
element

Table 4. An example
assignment that assigns
two NQAs to a resulting
element

The first column of the MRS in Table 3 is a map-
ping entry: An input privacy value of ++, is mapped to
the output privacy value (second column) of +. More
formally, this mapping entry can defined as follows:
((++) , +). An example of several input dimension ele-
ments is shown in Table 4. It defines that the privacy
of a given component depends on the privacy and
accessibility of other components. An example map-
ping entry is for instance ((++, +) , ++). It expresses
that a “very good” privacy of other components com-
bined with “good” accessibility of other components
result in a “good” privacy of our given component.

Mapping Rule. A mapping rule R calculates the
resulting dimension element r for a set of NQAs. It
is defined as a pair of a sequence of quality dimen-
sions (qn) and a set of mapping entries {em}, i.e.
R := ((qn) , {((kn) , v)m}). For all mapping entries in
a mapping rule em ∈ R, each sequence of input ele-
ments has to be unique. Thus, each sequence of input
elements is uniquely assigned to a dimension element.

If there is no NQA input, the mapping rule does not have a resulting element
and therefore has no influence on further calculations. This behavior allows the
simultaneous use of different modeling granularities. Differently deeply modeled
knowledge can be analyzed simultaneously without missing information affecting
the analysis result. The formal rules of the mapping will be described in more
detail in Sect. 3.3.

The NQA set in Table 1 could be mapped to the element -- according to
the mapping rule in Table 3, and according to the mapping rule in Table 4 to
the element -. For the first mapping rule, it must only be considered the NQA
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element (Privacy, +) of the NQA set. The remaining elements do not influence
the result of the first mapping. In the second mapping rule, the relevant subset
is the subset {(Privacy, +) , (Accessibility, -)}.

3.2 Model Creation

Software architects can extend their architecture models by enriching their com-
ponents by NQAs. More concrete, a component can be annotated with NQAs for
the quality attributes security and maintainability. Developers can also use MRS
to model dependencies between different quality dimensions. This mechanism
could be used, if for example the fault tolerance of particular component affects
the reliability of another component. For this purpose, prefabricated dimension
sets from Palladio can be reused or new dimensions can be defined.

The NQAs and MRS for particular components are then specified by devel-
opers and experts. The values for these NQAs and MRS can be derived from
the informal knowledge of the developers and domain experts. Alternatively, the
knowledge can be derived from other sources such as related documentation or
other technical reports. On that basis software architects can then model implicit
knowledge and make it available to the other software architects in component
repositories.

3.3 Qualitative Reasoning Process

This section describes the evaluation process of our approach. We describe the
process of the model evaluation so that they can be used for the design space
exploration. Our QR process allows the evaluation of the informal knowledge of
an entire system, which was previously limited for individual components.

The following two notations apply to the pseudo code of the following algo-
rithms: The symbol ← describes the assignment of a value to a variable. The
symbol ⊕ describes the append operation on lists.

Candidate Evaluation. PerOpteryx generates the candidate model based on
the DoFs. For such a candidate model, our approach provides the NQAevalu-
ation function to evaluate our QR models.

Algorithm 1. Function for evaluating
an architectural candidate

function NQAevaluation(candidate)
nqas ← [ ]
(cn) ← TopologicalSort(candidate)
for all c in (cn) do
nqa ⊕ QualitativeReasoning(c)

end for
return Reduce(nqas)

end function

Algorithm 1 shows our QR func-
tion for a candidate model. The input
parameter of this function is a candi-
date model. This candidate includes
all models required for the quality
evaluation: The structure information
of the system, the connectors of the
interfaces, and the annotation of the
components with the associated NQA
and MRS. After the actual QR about
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informal knowledge has been evaluated in this function, the PerOpteryx pro-
cesses the results in the ongoing optimization process.

In the first step of Algorithm 1, we create a list that contains the results of
the QR. The evaluated NQAs of the candidate model are added to this list.

Second, all components of the candidate model are sorted topologically by
their dependencies. To do this, the TopologicalSort function extracts all
components from the given candidate model, followed by a topologically sort,
and returns this resulting list of components. The topological sorting, orders all
components in a system in a linear order that their existing dependencies are
still fulfilled. The dependencies are predetermined by the interface connections
from the components. This allows to iterate linearity over all components and
evaluate our QR models for each single component. Through this sorting, all
dependencies and mutual influences are retained in our QR evaluation. If a
component needs to be evaluated by the QualitativeReasoning function, the
topological sorting ensures that all components which affect others have already
been evaluated.

The QualitativeReasoning function evaluates the given component and
returns its resulting NQAs. This function uses the MRSs of a component to
determine the influence of other components on the component’s own NQAs.
Afterwards, we insert the evaluated NQAs into the result list. After the QR
evaluation, the NQAevaluation function returns the reduced list of all eval-
uated NQAs. For this purpose, the Reduce function reduces multiple different
NQAs, so that this multiple NQA can be used by PerOpteryx.

Algorithm 2. Function for quality rea-
soning on one component

function QualitativeReasoning(comp)
nqas ← [ ]
(cn) ← Required(comp)
for all c in (cn) do
nqas ⊕ GetNQAs(c)

end for
req ← Reduce(nqas)
for all mrs in GetMRSs(comp) do
nqas ⊕ Solve(mrs, req)

end for
nqas ⊕ GetNQAs(comp)
nqas ← Reduce(nqas)
SetNQAs(comp, nqas)
return nqas

end function

This function accepts a list of
different NQAs and returns a list
of unique NQAs. For all NQAs
with the same quality dimension,
the multiple dimension elements are
reduced to a unique dimension ele-
ment. This process often results in
different NQAs for the same quality
dimension. To consider these ambi-
guities, we map the different ele-
ments for a QA to one unique ele-
ment. This unique element comes
from the same dimension set as the
others and is the median of these
multiple units. The order relations
from a dimension set make it pos-
sible to determine the median for a
list of elements from this set. This step increases the stability, as several different
dimension elements for the same quality dimension are mapped to one unique
dimension element.
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In the first loop, we form the frequency distribution over all NQAs. The
classes correspond to the NQA dimensions. A list of the several dimension ele-
ments is assigned to each unique class. The Dimension and Element function
return the respective parts from a value. This frequency distribution is then
reduced in the second loop to unique NQAs. For the multiple dimension ele-
ments of a same quality dimension, the median for a list of dimension elements
is determined and assigned back to the quality dimension. This new NQA will
be added to the result list.

Component Evaluation. The Algorithm 2 shows the QualitativeReason-
ing function for our QR evaluation for a single component. The function evalu-
ates the influences of other components on the qualities of the component passed
as an input parameter. As a result, this function returns the NQAs of the passed
component that are influenced by the MRSs, bundled with the NQAs of the
components.

First, all NQAs of the required components are collected in the first loop.
Thus, all required components are iterated in this loop. Thus, the Required
function returns the components which with their provided interfaces fulfill
the required interfaces of the passed components. These required components
directly influence the requested components through their provided services.
The topological sorting ensures that the MRSs of the required components have
already been evaluated. The GetNQAs function returns the NQAs of the com-
ponent as a parameter. These resulting NQAs are then reduced so that each
quality dimension is represented by a unique NQA. Subsequently, the influence
of these NQAs on the MRSs is evaluated in the second loop. To do this, the
GetMRSs function returns the MRSs of the component as a parameter. All
the MRS of a component are evaluated using the Solve function. The Solve
function gets one MRS and several NQAs as input parameters. The function
returns a new NQA that results from the evaluation of the passed MRS. This
result is marked for reduction. Subsequently, the NQAs of the required compo-
nents, the results from the MRS and the NQAs of the evaluated components
are reduced. We use this result as temporary NQAs for the previously evaluated
component.
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Algorithm 3 . Function for solving a
MRS

function Solve(mrs, nqas)
elements ← [ ]
for all mr in mrs do
key ← [ ]
(qn) ← Dimensions(mr)
for all q in (qn) do
for all nqa in nqas do
if Dimension(nqa) == q then
key ⊕ Element(nqa)

end if
end for

end for
for all me in mr do
if Key(me) == key then
elements ⊕ Value(me)

end if
end for

end for
element ← Median(elements)
return (Dimension(mrs), element)

end function

The Solve function in Algorithm
3 calculates for a given MRS how
the defined quality dimension is influ-
enced by a given NQA. This func-
tion requires a MRS which defines
the influenced quality dimension and
the mapping rules which define the
concrete rules of influence. As second
input, the function requires the NQAs
that exert the influence. Finally, the
function returns an NQA of the
affected quality dimension and the
evaluated dimension element.

The algorithm works as follows:
First, we create a list that contains the
evaluated dimension elements (from
the mapping rules). These elements
are used to determine the dimension
element for the NQA. The first loop is
used here to iterate over all mapping
rules of the given MRS.

Subsequently, in the first inner
loop, we iterate over the quality
dimensions of the current mapping rule. This is done by the Dimensions func-
tion that returns the quality dimension of the mapping rule. The next loop is
used to iterate over the given NQAs to find the required dimension element
from the NQAs. The resulting dimension elements are stored in the correspond-
ing list. In the second inner loop, the mapping entries of the mapping rule are
iterated to determine the resulting dimension element for the previously deter-
mined list. This is done by the Key function that returns the sequence of the
input dimension elements of the passed mapping rule. Next, we check for each
mapping entry whether the key of a mapping entry corresponds to the list. If
yes, the corresponding dimension element is stored in the list. At the end of the
function, we calculate the median of all the dimension elements determined by
the mapping rules and return it together with the quality dimension of the MRS
as NQA.

4 Evaluation

We have applied our approach to two different case studies for considering the
following research questions: 1. What new insights can be gained through the
additional use of informal knowledge in a decision support process? 2. Are the
modeling elements sufficient to enrich real world systems with common knowl-
edge from the domain of information systems?

We have carried out the following case studies to answer the research ques-
tions. First, we applied our approach to the previously introduced BRS. The
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second case study shows the application of our approach to a real-world sys-
tem namely the Remote Diagnostic Solutions (RDS) [8]. The RDS is used by
industrial systems to submit their diagnostic status information.

Both of our case studies follow a three-step design: 1. We create all the models
required for the optimization as described in the previous sections. 2. We extend
the PCM components by NQAs and MRSs. 3. The design space optimization is
carried out to determine the Pareto-optimal candidates.

4.1 Case Study I: Business Reporting System

The BRS allows users to retrieve statistical analysis from running a business pro-
cess from a database. As the system interacts directly with the user, an important
requirement is to include a usability dimension and consider the dimension in
the optimization process. Further, the system stores data, thus it is important
to include the dimensions reliability and recoverability.

Table 5. MRS modeling the
positive influence of recover-
ability to backupability

Table 6. MRS modeling the
influence of recoverability to
usability

System Configuration. The initial configura-
tion of the BRS is a 4-tiered system that is com-
prised of a web server, two servers for the busi-
ness logic, and a database server. In order to gen-
erate a graphical report or online view of the raw
data, the user submits a request to the web server
component. These user requests are delegated to
the scheduler component by the web server com-
ponent. Depending on the type of request, the
scheduler component either delegates the request
to the graphical reporting component or to the
online reporting component. Both components
require the database component. To reduce the
database load, data that has already been loaded
or generated, is cached in the cache component.
For user administration, the scheduler first calls
the UserManagement component for session han-
dling.

In this case, we regard the performance as well as the cost of the system as
quantified QAs. To model the performance of the system, we use the RDSEFF
mechanism of Palladio. To evaluate the performance, we transform the model
into Layered Queuing Networks and use the Solver of [7]. To model the second
part of the performance model, we model the hardware context of the BRS.

Experimental Procedure. For this case study, we have chosen a compo-
nent selection scenario. Therefore, we include several new components in our
repository, that serve as architecture alternatives. All of these alternatives are
functionally equivalent, but their software quality differs. This in turn influences
the software quality of the overall software architecture. First, we added three
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additional components to our repository: the Database, CoreOnlineEngine, and
Web server components.

To enrich the model by informal knowledge, we first define all necessary
basic elements for our QR model. The first model element is the dimension set
DS = {--, -, 0, +, ++}. The element ++ is the best-valued, and the element −−
is the worst-valued value (ordered set).

An architect might have the choice between two concrete database sys-
tems namely the Oracle Database 12c and the IBM DB2 10.5. For decision-
making, the architect reviews several technical reports, including [17]. This
report proposes that the backupability of the Oracle database can be rated
as better than the backupability of the second database. This information is
enriched to the two alternative components by NQA elements. The IBM database
is annotated with (Backupability, 0) while the Oracle database is anno-
tated with (Backupability, +). We expect that measurements show that the
Oracle database consumes 1.5-times more CPU resources than the other
database and is twice as expensive.

Fig. 2. BRS results: response time, cost,
and usability

When having a second CoreOn-
lineEngine component available, this
second CoreOnlineEngine component
might have 20% lower CPU resource
demand and 80% less costs. We
define this component less fault toler-
ant as the original component. From
Microsoft’s TechNet report we can
derive a correlation between database
backups and the recoverability of a
database [14]. We express that infor-
mation as an MRS. For this, we anno-
tate both components with the MRS
that is described in Table 5. The MRS
model defines that if a required component defines a certain backupability, this
directly impacts the recoverability of the CoreOnlineEngine component. The
ability to recover quickly after a system failure depends, among other things,
on current data backups. Consequently, backups of databases are crucial for the
system’s overall recoverability.

Another important dimension is the usability. A Web server component being
more user-friendly would increase the overall usability quality. We expect this
component to have a doubled CPU resource demand at the same price. In [16]
describe that the usability of user interfaces depends on how easily the users
can recover from errors. In this case, the usability is positively influenced by
the recoverability of the required components. Thus, we annotate both compo-
nents with the MRS shown in Table 6. All three new alternative components
are included into the repository of our original PCM model. Because these three
new alternative components are identical in terms of their provided and required
interfaces to the original components, they are automatically used by PerOpteryx
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as alternatives for the design space exploration. This extended model for QR
assertions for not-quantified QAs can now be used in combination with the
architectural model to be optimized in PerOpteryx. The analysis is carried out
with a constant usage profile for the performance simulations. The resulting
Pareto-optimal candidates are described in the following section.

Results. We have evaluated in total 200 iterations, each with 30 candidates per
iteration. The optimization resulted in a total of 6015 valid architectural candi-
dates while 22 of them were Pareto-optimal results. The architecture candidates
are shown in Fig. 2, the Pareto-optimal candidates are shown black filled.

The two components that have higher quality are more expensive. Accord-
ingly, the candidates which include both better components are comparatively
expensive. Furthermore, the evaluation shows that if money is invested for buying
more expensive components, this will improve usability, but would not signifi-
cantly improve the performance. If performance is to be improved further, this
must be achieved, for example, by improving processor performance. The eval-
uation also shows how the Pareto-optimal candidates changes when other QAs
such as usability are considered. Without the evaluation of these, some Pareto-
optimal candidates with better usability but worst performance would not have
been considered. By the help of our results, an architect now gained more infor-
mation for the decision which architecture candidate to choose in accordance
with performance, cost, and usability. If the specific project requirements are
based on a better usability of the overall system, the software architect would
have to select the more expensive components. However, the results show that
performance does not have to be decreased significantly. If performance is less
important, money can be saved by investing only in the implementation. Another
interesting finding is that the use of only one component with a better usability
(instead of both components) does not lead to a noticeable improvement of the
overall usability.

4.2 Case Study II: Remote Diagnostic Solution

The Remote Diagnostic Solution (RDS) represents a system used in the industry.
It records equipment information, failures and other status information from
industrial systems such as power plants. The RDS mainly offers two different
services. First, industrial devices can access the system and upload diagnostics
status information. Second, in the case of an abnormal behavior, the devices
store further error information, which can be analyzed by the operators. Service
engineers can then access the system through a website to generate reports on
the status of the devices. Additionally, in the case of an atypical behavior, these
may send commands for reconfiguring the devices.

System Configuration. The RDS system is designed as a 3-tier system. It con-
sists of: The Peripheral Network Server on which the RDSConnectionPoint runs
for remote access of the industrial devices. The application server with the central
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business logic. The database server with the database component. The business
logic consists of: a deviceData component, which processes and forwards data.
A parser component that processes inputs when a status report is uploaded.
A dataMiningAndPrediction component that performs the data analysis. A
dataAccess component that handles communication with the database com-
ponent. The user interface to access the status reports is implemented by the
serviceEngineerWebsite component. We determine the performance and costs
of the system, as in the first case study, as quantified QAs.

Experimental Procedure. Systems often offer different configuration options.
The database of the RDS namely the Microsoft SQL Server offers the possibility
to use the recoverability either in simple or full mode. For the decision-making,
the architect might review technical reports, as for instance the Microsoft recov-
ery model report [13]. This report describes that the backupability of the full
model is higher, but this is associated with worse performance. The two different
operating modes are modeled as two alternatives, so they are automatically used
by PerOpteryx to create architecture alternatives.

Table 7. MRS model-
ing the influence between
backupability and recov-
erability

Table 8. MRS modeling
the influence of recover-
ability to usability

We model this knowledge by NQA elements
and apply them to corresponding components. The
full recovery model database is annotated with
(Backupability, +) while the simple recovery model
database is annotated with (Backupability, 0). We
expect that the full recovery model database has a
4.0-fold increase in CPU resource demands compared
to the simple mode.

The dataAccess component is responsible for
accessing the data. Thus, we apply the MRS shown
in Table 7. The MRS models the informal knowledge
of the correlation between database backups and the
recoverability of the data accessed by this component.
Since the serviceEngineerWebsite component can be
used to access the database data, it is annotated with
the MRS shown in Table 8. By this, we model the
informal knowledge about the positive influence of the
recoverability to the usability.

In addition to the two alternative recovery models
of the database, PerOpteryx has five different additional servers available to
distribute possible (additional) load. As in the previous case study, the not-
quantified quality (usability) as well as the quantified qualities (performance
and costs) are considered. The MRS model used here models properties that
affect the usability of the overall system.
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Fig. 3. RDS results: response time, cost,
and usability

Results. We evaluated in total 200 iter-
ations, each with 20 candidates per iter-
ation. The optimization resulted in 2030
valid architecture candidates, while 9 of
them were Pareto-optimal. The archi-
tectural candidates are shown in Fig. 3,
the Pareto-optimal candidates are shown
black filled.

The configuration mode with the
higher recoverability QA also has the
higher resource demand. Accordingly,
the Pareto-optimal candidates, which
include the component with this mode,
are also significantly slower than the
others.

The experiment also shows how transitive effects of informal knowledge can
be evaluated in a system. A usability NQA has not been modeled for any com-
ponent, but a usability NQA is obtained by evaluating several MRS. This shows
how existing dependencies in a system are recognized, which were not directly
modeled for the individual components before.

The evaluation shows that the approach can also be applied in real-world sce-
narios and shows which trade-off decisions still need to be clarified by a software
architect. Architects can use this results to deepen their understanding of the
interplay of the components in the system. Furthermore, the results show that
the system with higher usability does not necessarily have to be more expen-
sive. However, improved usability goes hand in hand with higher response times.
Nevertheless, the higher response times should be possible to be compensated
by more powerful hardware (which would then result in higher cost).

4.3 Discussion

Both case studies show how informal knowledge can be modeled independently
for individual components and then combined in an automated design space
exploration together with quantified QAs such as performance. Case study I
shows how our approach helps to understand more complex inter-dependencies
between different QAs. Through the results of the exploration, an architect can
decide whether the better usability justifies the higher cost. Case study II shows
how informal knowledge can be combined with quantified QAs applied to a real-
world system in an automated design space exploration.

In the case studies we have shown how experts can model the characteris-
tics and influences of qualities for their components and how these independent
models can be assembled to evaluate the overall quality of a system. We have
also shown that our approach can be used to model and evaluate more complex
contexts such as the transitive effects of qualities on each other. This can lead
to the detection of existing dependencies that were not previously detected. If
these effects are not considered, PerOpteryx would only determine the optimal
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candidates based on the quantified performance and cost values. The two case
studies show how the evaluation of these effects influences the Pareto-optimal
candidates.

Creating the initial QR model that models the architectural knowledge may
be comparatively time-consuming. However, creating the models only needs to be
created once. Wide parts of the models can be reused (except for project-specific
modifications). The reuse of the architecture knowledge and the optimization
is comparable to the reuse of the component itself or the optimization of the
software architecture and can therefore be carried out with comparatively little
effort. By using the additional knowledge, however, the software architect can
now gain new insights into the interaction of the components and effects of
individual architectural decisions that were previously neither explicitly visible
nor could be optimized.

5 Related Work

In their comparative survey [6], Falessi et al. have reviewed and compared dif-
ferent methods used in software architecture decision-making. However, most
methods focus more on identifying quality attributes and alternatives and are
not specified for an automated decision-making approaches to optimize the soft-
ware architecture, which is the interest of this approach.

Svahnberg and Wohlin presented in [21] an approach that supports the
evaluation of different architectural candidates based on the considered qual-
ity requirements by means of a multi-criteria decision-making methods. Using
multiple architecture candidates and quality requirements, their approach can
be used to identify the best architecture candidate according to the require-
ments. For this, their approach uses the analytical hierarchy process AHP to
pair-evaluate architecture candidates. Regnell et al. proposed in [18] the quality
performance model QUPER, an approach to estimate non-functional require-
ments. Their approach can be used to reason about quality in terms of cost
and value. Kazman et al. presented in [9] a qualitative method for architectural
trade-off analyzing that takes into account multiple QAs and identifies trade-offs
between them. However, QUPER and the AHP -based approach are manual pro-
cesses that require quality to be broken down to cost, while the last requires a
manual navigation in the design space. Therefore the mentioned approaches are
comparatively time-consuming when evaluating many architectural candidates.

The Garp3 workbench was proposed in [4] and allows to model, simulate, and
analyze qualitative models of system behavior. The approach supports domain
experts articulating and capturing their conceptual knowledge. The resulting
models are not linked to components on architecture level and thus do not enable
an automatic improvement of architecture models.

The NFR (Non-Functional Requirements) framework was proposed in [15]
and focuses on the modeling and analysis of non-functional requirements. NFR
models allow good visibility to all relevant non-functional requirements and their
interdependencies, and they document design decisions and rationales in addi-
tion to providing. The RE-Tools was proposed in [20] and is an open-source
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requirements modeling toolkit. The toolkit supports among others NFR with
SIG as a notation for requirements. On the basis of a SIG, the toolkit uses
Qualitative Reasoning to evaluate the goal achievement.

The aforementioned approaches model QAs at a higher level of abstraction
than in our approach. In contrast to our approach, due to the higher abstraction
the reusability of the modeled knowledge is limited.

6 Conclusion

In this paper we presented an approach to model software architecture knowledge
to automatically optimize software architectures. Existing quantitative model-
ing approaches can be combined with our newly developed modeling and eval-
uation concept that is based on qualitative reasoning. With our newly devel-
oped approach, it is therefore possible to take into account qualitative modeled
informal knowledge, together with quantitative evaluation processes. Decision
support processes gain new dimensions that can be used for optimization and
thus increase their benefit. Software architects can thus gain new insights into
the mutual influence of components on important QAs that were not previously
visible due to a lack of knowledge modeling and optimization possibilities.

We have performed two case studies, to demonstrate the applicability and
benefits of our approach on real-world software systems. The case studies have
shown how informal knowledge can be modeled and can be used to evaluate
software architecture design decisions during the design phase. Based on the
case studies we have shown which conclusions can be derived from the results of
the optimizations.
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Abstract. Many organizations struggle with efficient architecture decision-
making approaches. Often, the decision-making approaches are not articulated
or understood. This problem is particularly evident in large, globally distributed
organizations with multiple large products and systems. The significant archi-
tecture decisions of a system are a critical organization knowledge asset, as well
as a determinant of success. However, the environment in which decisions get
made, recorded, and followed-up on often confounds rather than helps articu-
lation and execution of architecture decisions. This paper looks at aspects of
architecture decision-making, drawing from an industry-based case study. The
data represents findings from a qualitative case study involving a survey and
three focus groups across multiple organizations in a global technology com-
pany. Architects in this organization are responsible for multiple products and
systems, where individual products can include up to 50+ teams. The impact is
not just on others in the system; architecture decisions also impact other deci-
sions and other architects. The findings suggest recommendations for organi-
zations to improve how they make and manage architecture decisions. In
particular, this paper notes the relevance of group decision-making, decision
scope, and social factors such as trust in effective architecture decision-making.
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1 Introduction

Architecture decisions can significantly affect architects and other roles. Realizing this,
a vital component of any architectural approach is having a process that promotes
follow through and feedback on architecture decisions. This paper presents a case study
of a large technology organization with multiple business units and product lines. This
study examines approaches to architecture decision-making and seeks to understand in
more depth the reasons for the decision-making approaches employed by architects, as
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well as the challenges and context that architects must deal with. In addition, this study
attempts to understand the impact of architecture decisions. The remainder of this paper
describes the study.

Section 2 places this study in context through a review of relevant literature from
software architecture decision-making. This study employs a survey and three focus
groups as part of a larger case study into architecture decision-making. Section 3
describes the research approach used in this study and includes the research questions
that this study sets out to answer. Section 4 presents the findings from the survey and
focus groups. Section 5 is a discussion of the findings. Finally, Sect. 6 presents the
summary and conclusions from this study, including a set of recommendations based
on the findings, and a discussion of future research that builds on this study.

2 Literature Review

This section presents a review of the relevant architecture and decision-making liter-
ature that informs this study and helps to shape its research objectives. Bass, Clements
and Kazman [1] define architecture as, “the structure or structures of the system, which
comprise software elements, the externally visible properties of those elements, and the
relationships among them.” Traditionally, an architecture may be described using one
or more relevant views [2]. Recognizing that some architecture decisions have a broad
impact Kruchten, Capilla and Dueñas [3] propose that a “decision view” be added to
existing architecture views, superimposing the design rationale which underlies and
motivates the selection of design options realized in the architecture. Kruchten, Lago
and Van Vliet [4] suggest that “Architecture Knowledge = Design Deci-
sions + Design”. Jansen and Bosch [5] go even further to assert that a system’s
architecture should be viewed as the composition of a set of architectural design
decisions. This paper takes the position that it is a distraction to argue whether deci-
sions should drive the selection of relevant views as do Tyree and Akerman [6], or
whether selecting relevant views should drive important decisions [7]. Both the
architecture and the relevant views that represent it embody design decisions. Both are
important to communicate. Important to understanding any architecture are the
cumulative decisions that influenced it as well as an appreciation for how those
decisions were made.

Although several formal architecture decision-making approaches have been pub-
lished, software engineering researchers find few to be used in practice. This may be
because many published decision-making approaches describe processes for making
reasoned tradeoffs between several competing options, while decision making
researchers observe that many complex real-world decisions are not about making
tradeoffs, but instead about finding a reasonable decision that satisfices the current
situation and allows for action [8]. Rekha V. and Muccini [9] also found that none of
the published methods account for differences in expertise required to make informed
decisions nor do they have provisions for resolving conflicts or differences of opinion.
Surveys of architects have found that over 85% of decisions made are group decisions
[9, 10]. During group discussions, both shared and unshared (e.g. unknown to all
members of the group) information is brought out and examined.
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Tyree and Akerman [6] proposed elevating architecture decisions to first-class
architectural artifacts suggesting that documented decisions can provide concrete
direction for implementation and serve as an effective tool for communicating to
customers and management. It is unclear whether practicing architects often take their
advice. In a survey by Dasanayake, Markkula, Aaramaa and Oivo [11], architects
reported that 90% of their decisions were made and communicated informally. And
while these architects were mostly satisfied with their informal decision-making pro-
cesses, they also recognized some challenges with revisiting design rationale, com-
municating decisions to customers, and in knowledge gaps between engineers and
architects. In our research we also found that decisions were communicated informally
through a number of media, including slide decks, wikis, and meeting recordings.

Kruchten [12] proposes the following taxonomy for architecture decisions: Existence
decisions state that some element or artifact will show up in the system’s design or
implementation. Bans or non-existence decisions are statements of things to not do.
Kruchten [12] suggests that it is especially important to precisely document bans because
there isn’t a place for them in conventional architecture documentation. Property deci-
sions affect the overall qualities of the system and may be represented by design rules or
constraints. Executive decisions are driven by the business environment and may affect
the development process or choices of technology and tools. Although they may place
constraints on the architecture, Kruchten [12] asserts that executive-level decisions are
often not captured or appear in documents usually not associated with the architecture.
Kruchten’s model, while one of the few decision categorization models that we can find
in software architecture, is insufficient for handling decisions in the type of environment
we are studying and for classifying the types of decisions we are uncovering.

While Miesbauer and Weinreich [13] found that architecture decisions could be
mapped to Kruchten’s taxonomy [12], they noted that architects themselves talk about
decisions they make according to level. They proposed classifying architecture deci-
sions according to these levels: Management typically makes organization-level deci-
sions with advice from software architects. Once made these decisions are rarely
revisited. Project managers, architects, and customers tend to make project-level deci-
sions at the beginning of a project. Software architects or team leads typically make
architecture-level decisions after discussion in a group. Finally, implementation-level
decisions are made independently by developers and typically not documented. Mies-
bauer and Weinreich [13] suggest further investigation into whether the levels they
identify are adequate to partition the decision space. A weakness in the framework of
Miesbauer and Weinreich [13] is it suggests that impact is contained to a specific level.
In our research, we found it fruitful to characterize decisions along multiple dimensions,
including impact and scope. We also found examples where implementation-level
decisions had system-wide impacts on architectural qualities.

3 Research Approach

This section presents the research questions addressed through this paper. This section
then states the epistemological stance employed by the study, and how that influences
the study and the choice of research methods. This study uses a case study of a large,
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global technology organization. A survey and three focus groups are used to answer the
research questions. This section describes these methods, and how they contribute to
the study. Finally, this section describes the data collection and analysis methods.

3.1 Research Questions

With regard to architecture decision-making, the topics of interest to this study relate to
approaches, challenges, context, and impact. This paper aims to contribute to the body
of knowledge on architecture decision-making by answering the following research
questions:

• RQ1: Approaches: What are some examples of decision-making approaches used
by architects, and how those decisions are made?

• RQ2: Challenges: What challenges do architects encounter associated with the
current architecture decision-making approaches?

• RQ3: Context: How does the context influence decisions made by architects?
• RQ4: Impact: How do decisions made by architects impact other people?

Findings related to these questions are presented in Sect. 4.

3.2 Research Method

Any study is shaped by the social and theoretical perspectives adopted by the
researchers [14]. This study adopts an interpretivist, constructivist philosophical stance.
Interpretivist research acknowledges that people have potentially widely-varying per-
ceptions of the same phenomenon, and that knowledge is a social product [15].

This study uses a case study to “understand complex social phenomena” related to
how architects make decisions. Case studies are well suited to research in software
development because they study contemporary phenomena in their natural setting [16,
17]. This study is concerned with how and why architects make the decisions they do,
and how those decisions impact others. Case studies can “uncover subtle distinctions
and provide a richness of understanding and multiple perspectives” [18]. This research
includes perspectives from multiple stakeholders, not just architects. Yin [19] notes that
case studies are suitable when “the boundaries between phenomenon and context may
not be clearly evident.” The primary unit of analysis is a Business Group, BG1, one of
the largest business groups in the company consisting of approximately 5,000 people in
different sites around the world. BG1 has multiple business units, each of which is
responsible for multiple product lines in a particular domain. The initial survey targeted
architects across BG1. The researchers decided to conduct a focus group with partic-
ipants from each of three product lines. We targeted one product line per business unit
in order to get a representative sample of perspectives on the topic of architecture
decision-making. The case study consists of one survey from BG1 and three focus
groups, FG1, FG2, and FG3.

These four units of analysis combine to provide a comprehensive picture of
architecture decision-making. Initially, the researchers conducted a survey of 62
architects located across a business group with sites in North America, Europe, Israel,
and India. We wanted to broadly understand how architects perceived their role and
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interactions with others and more specifically what they found to be challenging and
rewarding aspects of their work. In addition to demographic information, the survey
asked about their role and interactions with other architects, engineers, product owners
and product management. The survey participants were highly experienced, as shown
in Table 1. The majority (90%) had architect, technical lead, or principal or distin-
guished engineer in their job title. The remaining respondents were engineers or
managers. Different kinds of architects were represented including customer, solutions,
systems, and Scrum (team lead) architects. Following on from the survey, we con-
ducted three focus groups specifically on the topic of architecture decision-making.

Morgan [20] defines focus groups as “a research technique that collects data
through group interaction on a topic determined by the researcher”. Yin [21], on the
other hand, says the groups are focused because they share some common experience
or views. These two perspectives are complimentary for the purpose of this study. The
unit of analysis is the group itself, not the individuals within the group, so each focus
group is one data collection unit [21] (Table 2).

The survey data was collected using aWeb-based survey tool. The focus groups were
recorded and then transcribed. The authors analyzed the survey data and focus group data
independently and reviewed the analyses together through multiple iterations.

Table 1. Survey respondents’ years of experience as architects

# years experience as an architect % of respondents

10+ years 47%
6–10 years 23%
4–5 years 15%
1–3 years 13%
<1 year 2%
No response 10%

Table 2. Summary of focus groups conducted as part of this study

Focus group FG1 FG2 FG3
Focus Architecture

Decision
Making

Architecture
Decision
Making

Architecture Decision Making

# Participants 10 11 12
Location Israel USA India
Domain Security

Products
Video
Technology

Networking Technology

Roles Architects,
Program
Managers

Architects,
Engineers

Architects, Engineers, Program
Managers, Engineering Managers
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3.3 Threats to Validity

This section discusses potential threats to the validity of this research study.

• External Validity. The researchers do not claim that these findings are universally
applicable. They are representative of a number of business units in a specific, large
global technology organization. They serve as illustrative examples that others may
learn from.

• Construct Validity. To mitigate this threat, data was collected from multiple
sources. The researchers used triangulation between the survey data and the three
focus groups, thereby converging evidence from four distinct data sources. The
researchers compared results across multiple groups, where the data was collected at
different points in time and in different geographic locations.

• Reliability. Relating to the repeatability of the study, the survey instrument and
focus group questions were designed over several iterations and involved other
subject matter experts and architects to review these and provide feedback. Using
respondent validation [21] the researchers reviewed the data with a small group of
architects from BG1 to help ensure validity of the data and the findings

• Internal validity. This study does not attempt to establish any causal relationships,
so no internal validity threats are described [17].

4 Research Findings

4.1 Survey Results

The top 6 activities surveyed architects reported in order of frequency mentioned were
architecture design, 98%; collaborating with development teams, 87%; product and
solution requirements specification, 84%; knowledge sharing, 82%; document review,
65%; and program and product planning, 50%. Only 18% reported coding and 15%
testing. Most, 82%, interacted daily with engineering and development teams; 13% did
so weekly. Frequency of interactions with product owners and management was less
with 44% reporting interacting daily, 37% weekly, and 10% monthly.

When asked what impacted their effectiveness, architects identified the dissipation
of knowledge, the large number of people involved in making decisions, finding
reliable or up to date documentation and information, misalignment with the devel-
opment team and other architects, organizational changes, time zone differences, time
pressures, and overlapping/unclear roles and responsibilities.

For the most part, architects perceived that they were effective in their various roles.
77% rated their effectiveness positively. 79% rated their communications with engi-
neering as successful. Slightly less, 60%, rated their communications with product
management as successful. However, some architects, were unsure whether others in
the organization considered their work valuable or necessary. Architects wanted to be
heard, understood, and recognized as making valued contributions.

Surveyed architects found working with engineers to be extremely rewarding. They
were gratified to receive pragmatic, concrete feedback on the architecture and the
decisions they made; to see the final solution as implemented and its evolving design; to
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answer questions, mentor engineers, and bring information about customers and broader
issues to the team; to feel part of a team working on a common goal; and to be engaged in
collaborative decision-making and mutual learning. They wanted engineers to be more
involved earlier in the definition of the product as well as to be more involved themselves
during implementation. Learning was perceived as bi-directional: while engineers have
broader view of technology and trends in the industry, architects know about customer
needs, product requirements, and more broadly about the existing architecture.

Architects expressed frustrations when engineers misunderstood their designs or
when engineers lacked product knowledge. Other architects expressed frustration with
engineers’ seemingly short-term focus or focus on functionality to the exclusion of
system qualities. It was also frustrating when engineers didn’t contribute to or value
architecture documentation, or when the code was viewed as “the only source of truth”
about the design.

When asked one thing they would like change to make their practice of architecture
more effective when working with engineering, several themes emerged: better
knowledge sharing, improved documentation including documentation of decisions,
and improved feedback and review of the architecture and its implementation.

Surveyed architects who regularly engaged with product owners or product man-
agement (not all did, and some architects were also in the role of product owner) were
mixed in their perceptions. Some architects found it rewarding that they could influence
product management’s understanding of significant architecture requirements, clarify
or remove unnecessary requirements, and influence product features and their delivery
roadmap. They found it rewarding to get deeper insights into the customer and the
product provided by product management.

Architects were frustrated by conflicting requirements or when product owners
changed requirements or priorities too rapidly. Another frustration was inflexible
product managers who didn’t listen. Other architects expressed frustration with product
owners’ lack of current product or customer knowledge or when they made architecture
decisions without asking their advice. They were also frustrated when those decisions
seemed shortsighted or overly focused on satisfying a single customer.

When asked one thing they would like change to make the practice of architecture
more effective working with product management, architects on the whole wanted to
improve communications, increase collaboration, increase their visibility into and
influence on the overall product strategy and backlog, and be involved in joint
decision-making on architecture.

4.2 Examples of Decisions

Focus group participants were asked to share their experiences with recent architecture
decisions. Examples of decisions are sown in Table 3.

The researchers found it difficult to classify these decisions according Miesbauer
and Weinreich [13] levels or to line them up with Kruchten’s taxonomy [13]. Con-
sequently, we characterized decisions as being technology, design guidelines, infras-
tructure, or product implementation level decisions. Analysis revealed that technology,
design guidelines, and infrastructure decisions were viewed positively, while product
implementation decisions were not. The data in Table 3 relates the decision examples
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to the case study. The scope of decisions relates to a component, a product (composed
of many components), or a system (composed of many products). The decision impact
is expressed in terms of whether the decision impacts the product team, the business
unit, or the business group. Table 3 also notes the source focus group for the example.

4.3 Approaches to Decision Making

Architects described their decision making as mostly informal, e.g. the right people get
in a room or on a phone call and discuss. While decision-making can be informal, it can
also be political. One respondent in FG1 recounted a situation where those who dis-
sented were removed from further discussion. Another observed that conversations,
and persuasion and interpersonal relationships often drive decisions, and that this was
not always positive. Depending on the decision, certain people had veto power, and for
some decisions, it was agreed that product management rightfully should make them,
although architects would like to be consulted.

Table 3. Examples of decisions identified in focus groups, and their context

Category Example from this study Scope Impact Source

Technology Investing in microservices
frameworks

System Business
unit

FG2

Technology Moving to containers and
microservices

System Business
unit

FG2

Technology Moving to open standards System Business
group

FG2

Design
guideline

Defining a standard for defining
and publishing APIs

System Business
group

FG2

Product
implementation

Using incompatible technology Product Business
unit

FG2

Product
implementation

Deciding to use platform native
encryption components

Product Business
unit

FG2

Product
implementation

Taking a short-sighted, simple
decision due to client pressure

Component Business
group

FG1

Product
implementation

Taking a decision quickly instead
of analyzing new information
brought up in a meeting

Component Business
unit

FG1

Product
implementation

Designing a backwards
incompatible end-to-end solution

Component Business
unit

FG1

Product
implementation

Extending an existing solution,
trying to fit a design to an
incompatible platform

Product Product
line team

FG3

Product
implementation

Repeatedly bringing up a design
problem due to lack of
understanding of an existing
solution

Component Product
line team

FG3

Infrastructure Investing in a separate
infrastructure group

System Business
unit

FG2
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The survey raised several questions about who made decisions about the archi-
tecture. One respondent noted that in some cases project managers and product man-
agers make technical decisions without consulting architects. A different respondent
expressed a desire for “more formal tracking of decisions” to help collaboration with
product managers and product owners.

4.4 Challenges with Current Approaches to Decision Making

Architects were not always involved in architecture-related decisions. Survey respon-
dents indicated that architects did not always have the influence that they thought they
should have: “significant decisions are completely centralized within the senior lead-
ership team and architects/POs/PMs have less influence than they should.” This was
echoed by another respondent who noted, “Not all the information is shared with
architects which could affect some architecture decisions in the initial phase of the
project”. There was no indication that the lack of information sharing or centralizing of
decision-making was designed to deliberately to exclude architects, but several
architects certainly felt the impact.

Focus group participants cited several challenges that they associated with current
decision-making approaches. Decisions are often made without considering the tech-
nical feasibility of implementing the solution, and the long-term consequences asso-
ciated with that. An example cited by one architect related to a build vs buy decision. In
the system he worked on, there were several instances where the team decided to build
the required functionality, rather than buy a commercial solution. This had the effect of
adding to the system’s technical debt.

Participants in FG2 noted that it is difficult to reverse poor decisions, and when
decisions are reversed or changed, it does not happen quickly enough. Participants in
FG1 noted an unwillingness to change decisions: “the first decision is accepted as the
final one and the project leader doesn’t adjust or change direction when problems or
new information is found”.

The survey highlighted several examples where architects felt decisions were not
followed through. In one case, an architect felt that people do not follow through on
implementing architecture decisions because they are unaware of them, or they do not
trust the decision. One architect noted that architects are often out of the loop during
development and that decisions and feedback would be improved if the team were to
“…involve architects on the problems raised during the implementation”.

4.5 Context in Which Architects Make Decisions

Architects didn’t directly share many thoughts on why decisions were made the way
they were. But some decisions seemed to be made under time pressure. In those cases,
decision makers had to make tradeoffs between short-term project considerations and
longer-term architecture sustainability. Decisions sometimes were made in the narrow
context of delivering the next feature; in this case expediency drove the decision-
making process. People got together, discussed, and made a decision. One participant
in FG1 noted that it was difficult to make longer-term decisions, so he didn’t: “It’s too
hard to get enough convergence or consensus or agreement around a long term
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decision, so I often find that I’m making a small, local decision that serves a particular
local need and that is locally optimized, and I’m not able to take any long term wide-
ranging considerations into account”. At other times when it was important to gain
consensus, it took time to make decisions. One architect in FG2 noted that, “Because
we’re focused on getting consensus over multiple engineering teams and architecture
teams all over the place, the process has just gotten more complicated.”

A large number of distributed teams is also an important part of the decision-
making context. The participants in FG2 are part of a group of 50+ teams working on a
single product. Geographic distribution between teams and multiple time zones adds to
the difficulty of their context. As one architect from FG2 stated, “we’re not com-
partmentalized enough that we can make these decisions in one timezone, or even a
couple of timezones”.

The distribution among multiple countries, time zones, and teams results in it taking
a long time to make “big” decisions. Participants cited situations where consensus-
based decisions were necessary and referred to “big” and “consensus” as attributes of
decisions that take a particularly long time. As one architect noted about working with
teams spread over 5 countries, it takes a long time “… to sell the idea, right? You have
to build consensus around that, and that does take a lot of time”.

Trust is also a factor in decision-making contexts. Focus group participants agreed
that decision-making is “more productive” when there is a higher level of trust between
the people directly involved. Participants cited situations where trust is not present. One
example is where there are “pockets of … technical feudalism” where an architect is
making decisions in isolation.

The agile development process is also a factor. One surveyed architect noted,
“Agile development as currently practiced … does not have a place for Architecture.
So this needs to be fixed before we can have a meaningful discussion about how
developers and architects interact.” Another expressed frustration about the way
decisions are changed, “The thing that frustrates me more is when the implementation
doesn’t match the design because there is a misunderstanding and the developers make
their own decisions without checking with the architect. I’m all for letting the devel-
opment teams as much freedom as possible but the architect needs to be consulted.”

4.6 Effect of Architecture Decisions on Architects and Other People

There are examples where architecture decisions are not followed through. In one
system discussed by participants in FG2, architects defined a high-level architecture
(HLA) for several subsystems. The perception of architects is that the teams respon-
sible for implementing that HLA exhibited “passive aggressive non-compliance”. They
did not challenge the HLA decisions directly. Instead, they disregarded the decisions in
the HLA. The perception of the architects was that “people on various scrum teams …
decide they know better”. Participants related this problem to the context of operating
within a “giant” multi-country, multi-time zone project with 50+ teams. This context
added to a lack of visibility by architects into what teams are actually building.

While verbal communication related to follow-through on architecture decisions
happens, it is unpredictable. One architect expressed in the survey their desire for
engineers to contribute more to design documentation, noting “I wish engineers would
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have contributed more to the knowledge sharing via documentation (and not only
verbally, which they do very happily)”.

Lack of information related to past decisions have a significant effect on architects
currently working on the product. The need for a trail of decisions and their context
came through as architects noted challenges associated with joining a product team
where the architecture already has a long history, e.g., “the very long history of the
project and the decisions that were taken before I joined the project”.

Engineers don’t always have enough context about the architecture. Sometimes
engineers encounter cases where the architecture does not seem to support what they
need to do. One architect noted in some cases “they don’t care too much about the
design; if it seems it doesn’t work, they may “adapt” the implementation, not in line
with the design (that may well be wrong or incomplete) but without necessarily telling
the architects or updating the documentation”. A further risk here is that if architects
don’t get this feedback, then any architecture decisions recorded earlier become out of
date without an appropriate feedback loop.

5 Discussion

The geographic and time zone challenges reflected by FG2 indicates that the organi-
zation in question did not give enough consideration to the impact of these factors on
architecture decision making.

5.1 Perceptions of Agile Development on Architecture Decisions

Agile development emerged as a particularly strong theme from survey results and the
focus group data. The organizations that these groups were part of made decisions and
assumptions about what it meant for agile and architecture to co-exist. Architects tend
to bring up longer-term perspectives on the architecture. Some feel that shortsighted
decisions are made when the decision makers focus only on feature delivery at the
expense of architecture integrity or increased maintenance costs. An architect in FG2
noted, “We do have this type of organization problem. I think it’s because a combi-
nation of agile and I’m not sure the journey to Agile Architecture is… It’s still a
journey … We haven’t quite figured it out.”

Several survey respondents and focus group participants echoed a common theme
around agile methods contributing to a loss of a paper trail. One survey respondent
noted, in connection with the adoption of agile methods, “we seem to have forgotten
that paper-trail is important for adequate product maintenance”.

5.2 Feedback

Architects desire more feedback on their decisions and want more follow through with
engineering. One architect in the survey stated, “In my book software architecture
implies that you have to work with the engineers and also be part of the development
teams…[It] helps validate the design ideas you have as an architect.”
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Some architects want more defined processes: “I believe the lack of formal devel-
opment lifecycle processes leaves the architect with a design that no one has to comply
with”. “The ‘old way’ of architecture process is gone and we don’t really have a new
one yet”. Another architect offers that one way to improve feedback “…is for the
architect to be a “virtual” member of the development team, going to some of the
stand-ups, user story reviews, retrospectives, etc.”

5.3 Group Decisions

The findings revealed that groups often make architecture decisions informally. Often
decisions are not recorded and so the nuances behind the decisions are lost or become
tacit knowledge held only by those initially involved with the decisions. Decisions
coming from several sources impact the architecture. Product management, with or
without architects’ involvement, sometimes makes architecture decisions. Still other
architecture decisions are “strategic” and made by senior management. Architects
wanted more involvement in all these decisions.

5.4 The Roles of Architects and Their Decision-Making Scope

The roles of architects and their scope of decision-making are not always clearly
defined. There are different types of architects, ranging from those embedded in
development teams (Scrum Architect) to customer and end-to-end solutions architects.
Some architects are also Product Owners, which means they define features as well as
product architecture. Architects are communicators, and often are the bridge between
customer needs and engineering. However, decision-making responsibilities are not
always clear. Responsibilities of various architect roles sometimes overlap. Architects
would like more clearly defined roles that were better understood and agreed to.

5.5 Scope and Impact of Decisions

The data shown in Sect. 4.2 indicates that the impact of decisions is generally quite high.
Relating the decisions examples to the organization structure, 16.7% impact the product
line team. 58.3% impact the business unit responsible for the product line. 25% impact the
business group responsible for the business units. The majority of examples that impact
the business group are architecture decisions that have a system scope, while one decision
example has a component scope. This illustrates that, from an architecture perspective, a
decision made at the component level can have a wide-reaching impact well beyond the
team. Of the example decisions shown in Sect. 4.2, the architecture decisions at the
product scope impact either the product line team or the business unit. The architecture
decisions at the system scope impact either the business unit or the business group.

5.6 Characterizing Decisions

During the data analysis we realized that none of the decision frameworks discussed in
the literature review adequately captured certain dimensions of a decision. During the
coding process we identified decision categories, which we noted as “Technology”,
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“Product”, etc. It also proved useful to identify the level of abstraction that a decision
related to or impacted, i.e., systems, sub-system, component, etc.

We find it more useful to characterize decisions along multiple dimensions rather
than try to fit them in to a single taxonomy. Our approach was to start with the data, and
identify suitable characterizations for the data, rather than start with a framework and
force-fit the data to the framework. This approach helped us, and the participants in our
study, to gain a deeper understanding of the decisions and their context.

6 Summary and Conclusions

This section presents a summary of the research findings. Section 6.1 shows how the
research questions have been addressed. Section 6.2 provides a set of recommendations
for architects and organizations based on the research findings. Section 6.3 presents
conclusions from the research. Finally, Sect. 6.4 outlines directions for future research
by the authors that builds on the topics and findings in this paper.

6.1 Answering the Research Questions

This paper sought to address four specific research questions, as outlined in Sect. 3.1.
This section summarizes how each research question has been addressed.

• RQ1: Approaches. Sections 4.2 and 4.3 presented findings that show examples of
current decision-making approaches used by architects. The findings identified a
range of approaches, notably the prevalence of informal, group-based decisions.
There are also examples of scenarios where architects are not involved in archi-
tecture decisions which were made by product management or management, or
where they had insufficient information to make an informed decision.

• RQ2: Challenges. Section 4.4 articulated challenges encountered by architects
related to decision-making approaches. The findings identified some architecture
decisions were made without considering the technical feasibility or longer-term
consequences and other decisions were made without adequate information.

• RQ3: Context. Section 4.5 described some conditions within which architects
make decisions. The findings identified that architects worked with large, dis-
tributed teams to make decisions which often required consensus building and
gaining trust. Architects did not directly offer explanations for their decision-
making approaches. Some decisions are made more quickly under time pressures
while “bigger” decisions take more time and involve gaining group consensus.

• RQ4: Impact. Section 4.6 showed how decisions made by architects, and their
decision-making approach, impact other people. The findings suggest that decision-
making was viewed as more effective when architects followed through with
engineering or decisions were made collaboratively.

6.2 Recommendations

The following recommendations are drawn from the survey and focus group findings:

1. Consider the space-time separation of teams, and how that impacts architecture
decisions. When dealing with teams who are separated in space (through multiple
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geographies) and time (through multiple time zones), make an effort to compart-
mentalize the scope of responsibility of teams such that coherent architecture
decisions can be made in each location.

2. Establish clear decision-making boundaries. Articulate who is responsible for which
type of decisions. This can be based on scope of decision (product, system, com-
ponent, etc.), nature of decision (product, technology, etc.), or something else.

3. If your organization is using an agile development approach, then take the time to
articulate how architecture fits.

4. Understand who is impacted by decisions made by architects. Establish a feedback
loop so that architects understand that impact in a timely manner.

5. Start with why. Architects in this study expressed a much higher degree of success
in decision adoption when other people understood why a decision is being taken.
This is an important part of the context of architecture decisions.

6. Take the time to foster trust among architects and those impacted by decisions.
7. Consider how architecture decisions are retained and communicated. We see a need

for retaining and communicating architecture decisions and their rationale, espe-
cially when decisions have broad impact. Documenting decisions, to be effective,
should fit into existing processes.

8. Some decisions are necessarily made for short-term expediency, e.g. to address an
immediate customer need. Perhaps there needs to be some mechanism to flag these
types of decisions and manage them, perhaps in a product debt backlog (especially
those that will incur architecture debt) for periodic review.

6.3 Conclusions

Having multiple dimensions that help characterize different decisions, as shown in
Sect. 4.2, provides deeper insights into the types of decisions architects are dealing
with. Architects are generally experienced decision makers operating in an environ-
ment characterized by time pressure, insufficient information, poorly defined or non-
existent procedures, and a need for coordination across hundreds of people in multiple
global teams. Their perception is they are most effective in making decisions where
they have formal and direct collaboration with engineering and product management.
The findings showed several examples that help the researchers understand how
architects approach decision-making, and the challenges, context and impact of those
decisions. The findings did not reveal sufficient data about the reasons why architects
choose the decision-making approaches they employ.

6.4 Future Research

Future research based on this study will focus on the following:

• Understanding how architecture decisions constrain other decisions. It is hard for
developers who get involved later, long after a decision is made, to understand the
initial design context. This research points to the potential need for a cumulative
history of decisions.
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• Understanding the trade-offs and benefits between documenting decisions, and
other aspects of the architecture. In particular, is it more important to document
decisions than it is other aspects of the architecture?

The authors also intend to reproduce this study with additional organizations to
understand how approaches to architecture decision making vary in different contexts.
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Abstract. In this paper, we present our 4-year experience of creating,
evolving, and validating an automated software architecture measure-
ment system within Huawei. This system is centered around a compre-
hensive scale called the Standard Architecture Index (SAI), which is com-
posed of a number of measures, each reflecting a recurring architecture
problem. Development teams use this as a guide to figure out how to
achieve a better score by addressing the underlying problems. The mea-
surement practice thus motivates desired behaviors and outcomes. In
this paper, we present our experience of creating and validating SAI 1.0
and 2.0, which has been adopted as the enterprise-wide standard, and
our directions towards SAI 3.0. We will describe how we got the devel-
opment teams to accept and apply SAI through pilot studies, constantly
adjusting the formula based on feedback, and correlating SAI scores with
productivity measures. Our experience shows that it is critical to guide
development teams to focus on the underlying problems behind each
measure within SAI, rather than on the score itself. It is also critical
to introduce state-of-the-art technologies to the development teams. In
doing so they can leverage these technologies to pinpoint and quantify
architecture problems so that better SAI scores can be achieved, along
with better quality and productivity.

Keywords: Software measurement · Software architecture
Software quality

1 Introduction

In this paper, we present our 4-year long experience within Huawei to evaluate,
measure, and improve the architectures of their software products. As a multi-
national company, Huawei is constantly seeking to improve product quality and
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maintain rapid feature delivery. As with all software systems, as they age and
evolve, more and more effort is spent on maintenance. Recognizing the profound
influence of software architecture in accommodating a rapidly-changing market
environment, improving productivity and efficiency, and shortening the Time-
to-Market (TTM) cycle, in 2013, Huawei embarked on a software architecture
improvement program.

Research on software measurement has a long history. From McCabe’s canon-
ical Cyclomatic complexity [15] to C&K [6], LK [13], and MOOD metrics
suites [8] for object-oriented programs, research on code-level metrics continu-
ously evolves. System and architectural level metrics have been proposed as well.
For example, Coleman’s maintainability index [7] combines multiple measures
into a single scale. Quality assessment tools, such as SonarQube, also provide
metrics and maintainability ratings1.

Huawei practitioners, however, found that existing metrics and indexes could
not provide sufficient insight into their architectures. First, there is insufficient
evidence that these metrics can be used to compare and contrast projects so
that management could reliably discern which projects were suffering mainte-
nance problems. Nor could they rely on these metrics to monitor the evolution of
a project so that architecture degradation could be detected early. Second, if a
system obtained a sub-optimal score, it was not clear what the underlying prob-
lems were and hence what should be done to fix these problems so as to achieve
a better score. Finally, our understanding of software architecture and evolution
advances over time. New concepts, such as code smells and anti-patterns, have
been widely accepted but were not reflected in legacy metrics.

To address these shortcomings, Huawei’s Research and Development group
proposed to institutionalize a standard software architecture measurement sys-
tem, to uniformly monitor hundreds of products. For this purpose, we conducted
extensive research on architecture design, architecture measurement theory, tool-
ing and practice. Since several software architecture measurement tools were
already in use by some product teams within Huawei, we also conducted inter-
nal research to collect their experiences, which showed that the most commonly
applied metrics are at the source code level, and there are few widely used met-
rics at the design/architectural level. In addition, many of the adopted metrics
were based on the experience and intuition of the development teams, without
rigorous theoretical foundations.

Based on these early insights, we created the first version of our software
architecture measurement standard, SAI 1.0, which adopted multiple software
architecture measurement practices, and used the ISO/IEC 25010 software mea-
surement model as a reference. We first used SAI 1.0 to measure open source
projects to benchmark and adjust the model, and then conducted internal pilot
studies to collect feedback. After two rounds of pilot studies, we evolved the
standard to SAI 2.0. This version provided more precise guidance on where the
architecture problems are, and the scope of their impact. During this process
we were searching for and adopting state-of-the-art technologies to pinpoint,

1 https://docs.sonarqube.org/display/SONAR/Metric+Definitions.

https://docs.sonarqube.org/display/SONAR/Metric+Definitions
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visualize, and quantify the underlying architectural problems. This way, the
teams could actually achieve a better score by fixing these problems. Through-
out this process we have validated SAI quantitatively by correlating its scores
with productivity measures, and qualitatively by interviewing practitioners. SAI
2.0 is now widely accepted within Huawei and we are working towards the cre-
ation of SAI 3.0.

Although our objective is to comprehensively measure software architecture,
including both code and models, in reality, source files are the only reliable
artifacts available. In this paper, we focus on architecture as module structures
that can be inferred from source files [2], and our architecture assessment focuses
on relations among files. Our contributions from this experience are as follows:

(1) First, a successful architecture measurement system should be able to sup-
port quantitative comparison of different projects, and to monitor architec-
ture degradation over time. The quantitative score should be supported by
quality and productivity data continuously collected through the develop-
ment process. Most importantly, the components of the score should indicate
the existence of flaws in code, design or architecture, so that development
teams can understand where improvement is needed.

(2) Second, product teams should be equipped with state-of-the-art tools and
conduct key activities to pinpoint, quantify, and visualize architectural
debts. Using the overall architecture score as the guidance, the teams could
use these tools to identify and remove the underlying flaws, and improve
quality and productivity, which in turn, will improve the score. These tools
and activities are critical for the teams to take actions based on architecture
measurement.

(3) Finally, an effectively way to convince practitioners to adopt such a mea-
surement system is to demonstrate concrete improvement in terms of quality
and productivity through pilot studies, and closely work with practitioners,
taking their opinions into consideration and adjust the model accordingly.
Once the practitioners experienced the benefits of applying this framework,
they are not only willing to measure their systems on a daily basis, but also
to leverage and improve these technologies in innovative ways.

2 Objective, Challenges, and Strategies

Our objective in creating a standard architecture measurement system is to
improve the quality and productivity of Huawei’s software products. The chal-
lenge is to have this measure accepted by both management and development
teams, and to demonstrate the benefits to both parties. To achieve these objec-
tives, the designers of SAI needed to answer the following questions:

Q1. How to create a software measurement system that adds value and pro-
vides practical benefits to development teams?

The measurement system must be based on solid theoretical foundations, and
provide clear guidance and benchmarks. An improved score should be associated
with improved quality and productivity, and vice versa.
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Q2. Is it possible to accurately measure software architecture quantitatively?
The measurement system must be quantitative so that the users can under-

stand to what extent a system has been improved or degraded. If a system is
known to have a healthy architecture and has been successful, or if the devel-
opment team is suffering from maintenance difficulties, then the score should
faithfully reflect these conditions.

Q3. How to convince developers to accept and use these measures? If archi-
tecture measurement is just an extra task that cannot be integrated into the
regular development process, then it will become a burden to the development
team. Thus we not only needed to answer the first question satisfactorily, but we
also had to convince the development teams to integrate the standard into their
development process. If the standard is to be accepted in the long run, develop-
ers must see that the application of the standard leads to improved productivity
and efficiency.

Q4. How to make these measures actionable? That is, can the development
team figure out what to do to get a better score?

Since the ultimate purpose of the measurement system is to improve software
quality and productivity, the development team should be able to figure out
where and how the software should be improved.

To address these challenges, the designers of SAI, under the leadership of
the first author, have applied the following strategies, not only to create a theo-
retically sound and practically beneficial index, but also to prove its benefits to
development teams, thus promoting its acceptance:

1. Conducting internal and external research. Since 2013, Huawei has established
collaborations with researchers around the world, and conducted extensive
research on architecture design, measurement theory, technology, tooling, and
practice. We also conducted research internally to understand the different
emphases and priorities of teams, and the advantages and limitations of SAI.
SAI is thus the result of internal and external research, based on both theory
and practice.

2. Conducting pilot studies and rigorous evaluation. After each version of SAI
was designed, and before it was applied to Huawei projects, we first used
the index to measure open source systems to conduct initial evaluations and
make adjustments. After that, we solicited Huawei development teams to
conduct pilot studies to evaluate the measurement system. The evaluation
process integrated interviews to assess if the measures faithfully reflect the
practitioners’ intuitions, and quantitative analysis to see if the variation of
measures had a strong correlation with productivity.

3. Augmenting measurement with tools and key activities. To help the developers
understand where and how to improve their architecture quality, and hence
their measurement score, we provided several tools, including a graphical view
of the components of their SAI scores, an architecture guarding tool called
UADP, design structure matrix (DSM) [1,23,24] tools, and the associated
architectural debt quantification methods [12,25], which we will elaborate in
the next few sections.
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3 The First Version of SAI

Figure 1 depicts the theoretical structure of our architecture measurement sys-
tem. As shown in the figure, the ultimate objective of SAI is to improve a suite
of quality attributes, including maintainability, reliability, security, performance,
etc. [2]. For each quality attribute, we measure the software from three dimen-
sions: (1) structural measures that assess the structural relations among files,
modules, and components; (2) class/function measures that assess implementa-
tion quality and styles within each source file; and (3) global measures that focus
on design and implementation choices with global impacts, such as the density
of global variables and the rate of unused APIs. Based on these measures, we
defined a comprehensive index, which we call Product SAI or Project SAI. The
higher the SAI, the lower the quality of the product architecture; the lower the
SAI, the better the quality. In this section, we present the components of the
first version of SAI, its supporting tools, and our pilot study results.

3.1 Computational Model and Benchmarks

Fig. 1. SAI overview

Considering the avail-
ability of architecture
measurement technol-
ogy and tools, as
well as the poten-
tial applicability and
benefits to software
development practice,
SAI 1.0 was created
to focus on maintain-
ability measurement.
Table 1 lists all the
measures integrated
into SAI 1.0, which
shows that we intend
to measure both source code and software models. In reality, however, high-level
models are usually not available. Even if they are available, their accuracy is
questionable. Although we have not been able to quantify all dimensions of all
quality attributes today, SAI was designed to be extensible to accommodate
additional dimensions and metrics in the future.

The metrics listed in Table 1 are either derived from existing metrics, or
proposed by our collaborators or senior architects. Following are a few examples:

– Class disorder rate: measures if a class takes too many responsibilities, or
accesses other class’s data, derived from code smells such as Feature Envy [10],
and anti-patterns, such as divergent changes [9].
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Table 1. Metrics in SAI 1.0

Structure measures Class/func. measures Global measures

Model Overall dependency level Average class inheritance depth Global variable density

Module independent evolvability Average class inheritance width

Logical architecture coupling

Logical architecture cohesion

Activity diagram complexity

Sequence diagram complexity

Module cyclic dependency rate

Code Overall dependency level Average class inheritance depth Global Variable Density

Module independent evolvability Average class inheritance width Code duplication rate

Module disorder rate Class disorder rate Design pattern defects

Module cyclic dependency rate Class violation rate Redefined symbol rate

Unstable dependency module Overly complex class Unused API rate

Header file cyclical dependency Overly complex function Extra header file rate

Modularity violation rate Overly deep function

Overly complex module Overly long function

– Class violation rate: measures how often classes are changed for similar rea-
sons, such as code clone [10].

– Average class inheritance depth: derived from the well-known C&K metrics
[6] for object-oriented code.

– Modularity violation rate: measures how often files belonging to structurally
independent modules change together frequently, as recorded in the revision
history, following the work of Wong et al. [21].

Most of these measures can be extracted automatically from a project’s
source code and revision history, but for some of them, we are still exploring
practical methods to quantify them, such as Module Independent Evolvability
that aims to measure the extent to which modules can evolve independently
from each other [16]. We keep these measures in our framework so that they can
be quantified in the future.

To promote the comprehensive architecture quality index, we must address
the following two challenges: (1) how to ensure that the measurement is consis-
tent with the developers’ intuition and faithfully reflects architecture quality? (2)
How to set thresholds of each measure for projects with different programming
languages, ages, scales, markets etc., so that their intrinsic characteristics can be
revealed? For example, what should be the threshold to determine if a function
is “overly complex”? Shall we provide different thresholds for Java and C?

To address the first challenge, we proposed the concept of Architectural
Bad Smells, which extends the original definition of code smells [10], which
has been widely accepted in Huawei. Defining the architectural counterpart of
smells makes SAI more convincing and acceptable to developers. We thus asso-
ciated each architecture measure with a type of architecture smell (or defect),
so that each measure is backed up by a group of specific architecture defects.
For example, the Module Disorder Rate is associated with the module disorder
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architectural smell, that is, modules that take multiple responsibilities and cause
divergent changes. The more modules are detected as being disordered, the
higher the measure. This mapping has effectively reduced suspicions within
development teams towards SAI. After trade-off analysis and careful comparison,
the first version of SAI was created as a sum of weighted architecture smells:

SAI = Σ(weighti ∗ #ArchitectureSmelli)/KLOC

where i = 0 . . . n, and n is the total number of architectural smells.
To address the second challenge of setting reasonable and justifiable thresh-

olds and weights for each architectural smell, we took the following steps:
First, referring to existing architecture measurement practices, we assigned

the initial thresholds and weights so that the development teams that were
already practicing their own measurement could continue with little dis-
ruption. For example, for Overly Complex function, the threshold is set as
“CyclomaticComplexity > 15”; Duplicated Code is defined as two units of code
with more than 10 lines of similar code, etc. These thresholds were already being
used by some product lines for a long time. Furthermore, we assigned slightly
different thresholds and weights for C, C++ and Java.

Second, we assigned thresholds and weights for each measure according to
the severity of the associated architectural issues. For example, the thresholds
and weights of Underused API were determined by our architects and measure-
ment experts based on their experiences. Third, we collected opinions from our
development teams, and assigned more weight to architectural smells with signif-
icant impact on development efficiency, such as Divergent Changes. Finally, we
collected subjective judgement and rankings of the impact of each architectural
smell on development productivity and efficiency. We ranked the results accord-
ingly and adjusted the weight of each architecture measure and smell, so that it
was consistent with the intuition of the architects and development teams.

Different teams may have different opinions about how the thresholds and
weights should be assigned. To avoid potential arguments and disagreement, we
decided not to publicize the weight of each architectural smells. For the three
mainstream programming languages used in Huawei—C, C++ and Java—we
selected a set of successful open source projects and obtained their average SAI
scores. Here we consider an open source project to be successful if it has evolved
for a very long period of time, supports distributed development by a large
number of contributors, and has a large number of uses. We used their scores as
the benchmark for our software products using the same languages, which we
called SAI-benchmark.

These benchmarks, on one hand, enabled the development teams to under-
stand their architecture quality in a straightforward way, and to assess the need
to improve their architectures. On the other hand, it conveyed a clear message:
if the SAI of a software product is higher than that of successful open source
software systems, it means that product may have room for improvement.
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3.2 Supporting Tools

Fig. 2. UADP overview

To improve the application
of SAI, we provided a suite
of tools and recommended to
development teams that they
improve their SAI scores, such
as guarding their architec-
ture in real time. We cre-
ated a tool called UADP
ArchGuarding (“UADP” for
short), that comprehensively
supported the measurement
of all the components of
SAI, and could be rapidly
deployed in the development
environment of our products.
Figure 2 depicts the structure
of UADP, which collects infor-

mation from the code repository, issue database, product configuration database,
and model library, measures and detects architectural smells, saves the defects
into an architectural smell database, and presents the results in a graphical user
interface as shown in Fig. 3. Using this interface, a product team can conveniently
monitor not only their SAI scores, but also the architectural smells associated
with the scores. If the score is not satisfactory, they can figure out which archi-
tecture smells are causing the problems, and how to improve the score by fixing
the underlying architecture problems.

3.3 Pilot Studies and Results

To test the effectiveness of SAI 1.0, we first collected data from six products,
covering the major product domains within Huawei. After that, we reported
the architecture measuring and guarding solutions (SAI and UADP), as well as
the pilot study plan to management and obtained their approval. Six months
later, we organized a teleconference, when all product teams participated in the
pilot study presented their progress. The midterm reports were widely circulated
within Huawei. At that time we also started the 2nd round of the pilot study,
extending the scope to more than 30 products.

After one year of pilot study, by the end of 2014, the data shows that the
architecture quality of the pilot products, as measured by SAI 1.0, improved
23.51% on average. As an example, guided by the architectural assessment
score, Product A fixed 500+ architecture smells, reduced coupling among sub-
systems by 30%, increased modularity within subsystems, improved SAI score
by 29.71%, and improved development efficiency, measured by the number of
person-month per 1000 LOC, by 30%. One subsystem was refactored and reduced
LOC from 471k to 199k, by removing a large amount of duplicated code. In
this case, the Divergent Change architecture smell was reduced substantially.
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As another example, the SAI of product B improved 64.2%, coupling among
modules was reduced by 20%, 2K LOC were removed, and maintenance effort
decreased by 20%. Correspondingly, the ability to conduct parallel development
improved significantly, the efficiency of feature delivery improved 18.8%, and
efficiency of validation and verification also improved. A manager of the pilot
product commented: “Architecture guardian is an innovative and excellent prac-
tice within Huawei, and has produced profound and long-lasting impacts with
excellent results”.

Fig. 3. UADP GUI

At the beginning of 2015,
we summarized our applica-
tion of SAI to Huawei R&D
management, and decided to
promote SAI to all prod-
ucts within Huawei. As the
number of projects increased,
issues concerning its design
were reported. The follow-
ing are some representative
examples: “Should Overly
Complex Class be consid-
ered an architecture smell?”,
“Unstable Dependency Mod-
ule lacks theoretical support
and can be ambiguous”, etc. We improved the model and UADP tool
accordingly.

4 The Second Version of SAI

Based on the feedback we received, we improved the model and released SAI 2.0
in the middle of 2015. In SAI 2.0, we improved the computational model and
incorporated new technologies to facilitate architecture quality improvement.

4.1 Improved Computational Model

The most prominent changes of SAI 2.0 include the explicit mapping of architec-
tural smells to quality attributes, and the categorization of architectural smells
based on their scope: global, system, component, module, file, and function. The
broader the scope of a smell, the more weight assigned to the corresponding mea-
sures. The overall SAI score becomes the sum of SAI scores for all quality attri-
butions being considered. Each quality attribute, in turn, is mapped to multiple
architecture factors, such as repeatability, system coupling, module balance, etc.
These factors were either from ISO 25010, or proposed by Huawei senior archi-
tects. Each architecture factor is further mapped to a number of architecture
smells that may negatively affect the factor. Each architecture smell, in turn,
is weighted to reflect its impact scope, e.g., a clique involving 3 modules has a
smaller impact scope factor than a clique covering 10 modules.
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Our principles for setting the weight of each measure are as follows: (1) the
broader the impact scope of an architectural smell, the higher the weight; (2)
the higher level of abstraction of an architectural smell, the higher the weight;
(3) the more contribution to architecture complexity of a smell, the higher the
weight, and (4) the more impact on development and maintenance efficiency, the
higher the weight. We conducted interviews with key architects and refined the
weights based on the above principles.

The adjustment of SAI 2.0 was non-trivial. To minimize the impact to soft-
ware products caused by architecture measurement standard changes, we exper-
imented with the weight and threshold assignment so that the scores and trends
obtained from SAI 2.0 were largely consistent with those of SAI 1.0. The ben-
efit of using SAI 2.0 was to provide development teams with more fine-grained
information about which aspects of the architecture needed improvement and
which architecture attributes could be affected.

4.2 Integrating New Techniques

During the development, evolution, and application of SAI, we also established
collaborations with universities and research institutes, to learn of state-of-the-
art concepts and technologies. We explored a suite of new metrics and measure-
ment techniques, including independence level [19], propagation cost(PC) [14],
decoupling Level (DL) [16], module balance [3], architectural debt [12,25], etc.,
and a suite of new technologies that can be used by the development teams to
enrich the automatic architecture measuring and guarding solutions. Next we
introduce 3 technologies that have been adopted by Huawei development teams.

1. Design Structure Matrix and DSM-based Metrics. Collaborating with
Drexel University and the University of Hawaii, in 2013, we introduced the
Design Structure Matrix (DSM) [1] representation to Huawei development teams
to model the dependency structures of their products. A DSM is square matrix in
which the columns and rows are labeled with the same set of elements in the same
order, and a marked cell indicates that the elements on the row depends on the
elements on the column. We found that DSM modeling is useful in two ways.
First, we can model design elements at any level of granularity: files, classes,
packages, or the self-defined modules. Figure 4 shows relations among modules
in a Huawei product. This DSM shows that the first 4 modules form a strongly
connected graph, and none of them depend on Module E. It also reveals the
number of dependencies between each pair of the modules.

A B C D E
Module A (1) 18 52 34
Module B 144 (2) 68 132
Module C 576 32 (3) 417
Module D 283 82 27 (4)
Module E 36 19 42 3 (5)

Fig. 4. Design structure matrix

Second and more importantly, a DSM can
model history and structural relations simul-
taneously. For example, in Fig. 5, each cell is
marked with the number of structural depen-
dences between each module pair, and the
number of times files within these modules
are changed together. For example, the cell
in the first row and second column is labeled
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“68, 992”, meaning that there are 68 structural dependencies from Module A to
Module B, and the files within these modules were changed together 992 times.
This DSM shows that not only do these modules form cyclical dependencies, but
that these cycles are expensive to maintain because files within them have been
changed together hundreds of times, presenting compelling evidence that this
product needs to be refactored. The DSM-based analysis was enthusiastically
adopted by development teams.

A B C D E
Module A (1) 68,992 132,585 0,141 144,222
Module B 32,992 (2) 417,1915 0,246 576,378
Module C 82,858 270,1915 (3) 0,130 283,240
Module D 19,141 42,246 30,130 (4) 36,53
Module E 18,202 52,378 34,240 0,53 (5)

Fig. 5. DSM with history

Along with DSM modeling, we also
adopted a suite of associated metrics,
including independence level (IL) [19],
decoupling level(DL) [16], and prop-
agation cost(PC) [14]. These metrics
complement with one another. PC was
designed to measure how tightly source
files within a system are coupled with
each other. The idea is to calculate the transitive closure of a DSM until no
more dependencies can be added, and then calculate percentage of non-empty
cells to the total number of cells. The higher the PC, the tighter the system is
coupled.

A B C D E F G H I
Module A (1)
Module B 13 (2) 2 2 1 1 15
Module C 11 6 (3) 4 9
Module D 5 1 (4) 3
Module E 9 1 4 (5) 4 19
Module F 6 2 2 2 2 (6) 39
Module G 216 129 57 16 18 31 (7)
Module H 3 4 32 417 (8)
Module I 3 3 2 2 2 1 26 (9)

Fig. 6. DSM after refactoring

Both DL and IL are based on the
Design Rule Hierarchy (DRH) [23] algo-
rithm that clusters a DSM into a hier-
archical structure in which the most
influential files are at the top of the
hierarchy, and files in the lower layers
depend on files in higher layers. Most
importantly, the files within each layer
are clustered into mutually independent
modules. Accordingly, the modules at
the bottom layer of a DRH are truly
independent since they can be revised or replaced without influencing other
parts of the system. The metric Independence Level (IL) [19] measures the por-
tion of files that are clustered into the lowest layer of a DRH, that is, the portion
of files that can be implemented and changed independently. The larger the IL,
the more modules in the system can be changed independently. A new metric,
Decoupling Level (DL) [16], evolved from IL to take into account the size of
each modules, the number of independent modules in all layers, and the depen-
dency relations among modules. The more independent modules, the smaller
each module, and the less coupled they are, the higher the DL.

One of the product teams leveraged DRH clustering in an innovative way
to guide their refactoring activities, and obtained impressive results. The DSM
in Fig. 5 depicts the initial structure of their product, which made it clear that
the original structure of the system was poorly modularized. The product teams
thus used the modules clustered by the DRH algorithm as the de facto modular
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structure and refactored the system accordingly. By doing so, they increased the
DL of the system by 250%. As a result, the SAI of the subsystem improved by
40%, much better than the open source benchmark. The DSM after refactoring
is depicted in Fig. 6. This figure shows that, even though the cycles were not
completely removed, the number of dependencies among modules was signifi-
cantly reduced. Given the excellent results of DSM analysis and the associated
metrics, we have integrated them into architectural measurement and guarding
solution, SAI standard, and recommended key activities.

Table 2. Product M architectural debt analysis

Person month Debt ratio (%)
Module A 166.71 120.45 (72%)
Module B 375.55 281.65 (75%)

2. Architectural Debt Quan-
tification. We explored archi-
tectural debt analysis techniques
in 2015 and 2016, completed an
architectural debt quantification
prototype, and conducted a pilot
study using Project M, which had
experienced difficulty maintaining
their product for a long time. Table 2. The table shows that, of the 166.71 person-
months spent in Module A, 120.45 (72%) person-month were extra maintenance
costs caused by the severe architecture debt. The percentage of debt in Module
B is 75%. These numbers were acknowledged by the development team, and pro-
vided a foundation for their decision to conduct refactoring. We plan to further
integrate this technology into our architecture automatic measuring and guard-
ing solutions, and make it a key activity to motivate architectural refactoring.
This will allow our development teams to quantify their debts and visualize archi-
tecture problems using DSMs, so that they can justify refactoring and pinpoint
the focus of refactoring.

4.3 Pilot Study and Results

In late 2015, we measured 20 products using SAI 1.0. After that we deployed SAI
2.0 and started a trial assessment in 2016. After 9 months of trial and adjustment,
Huawei products switched to SAI 2.0. Since our ultimate purpose is to use SAI
as a measure to improve software productivity and efficiency, we collected data
from multiple versions of 29 products that have applied SAI 2.0. For each project,
we collected both the SAI measures for each release, and productivity measures
during the process. In Huawei, we measure productivity using person-months per
1000 LOC. These data were collected continuously over the past two years. As
shown in Fig. 7, for 24 out of 29 projects, SAI measures are shown to have positive
correlation with productivity. For about 1/3 of the projects, their productively
is strongly correlated with their SAI scores.



Software Architecture Measurement 315

Fig. 7. SAI and productivity

For some of the
projects, the number
of data points is not
enough to obtain sta-
tistically meaningful
results. For projects
whose SAI scores are
shown to be nega-
tively correlated with
their productivity, we
are investigating the
reasons and will con-
tinue collecting the
data and monitoring their variation over time. For the second project whose
productivity appeared to be opposite to its SAI score, we found out that it is
because the system was undergoing major repository merging and the produc-
tivity data was not correctly collected. We will filter out such data in the future.

5 Lessons Learned and Results

Results. SAI has now been widely deployed and accepted within Huawei: it has
now been used in more than 100 products. Thus we can now answer the research
questions proposed in Sect. 2:

1. By creating a software measurement system with a score that can be traced to
concrete architectural flaws, supported by key activities and tools such as the
quantification of architecture debt, we helped development teams realize the
need to conduct large scale architecture refactoring. The value of architecture
measurement has been validated by widespread adoption in our development
teams. Thus we now believe that architecture measurement should be inte-
grated into the core daily activities of the software development process.

2. It is possible to measure software architecture quantitatively. We learned
that we could obtain measures that reveal the level of severity of architecture
smells, and that are consistent with the intuition of architecture experts,
development teams, and management. In this way we can provide support
for them to do the necessary refactoring.

3. By working with developers and being flexible, not expecting 100% com-
pliance immediately, we found that our teams accepted these measures as
meaningful.

4. Finally, our developers determined that the measures that we produced were
indeed actionable. They used these measures to plan refactoring activities
and those refactorings resulted in substantial improvements to our systems
in terms of bug rates, change rates, and effort.

Overall we consider the design and deployment of SAI within Huawei to have
been a great success. The process required patience and flexibility, it required as
much listening as talking, but in the end produced meaningful results.
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Lessons Learned. Through the creation and evolution of SAI we have learned a
number of lessons that, we believe, strongly affected our success.

First, at the beginning of the process, we were met with suspicion from devel-
opment teams. On the surface, their doubts were directed towards the standard.
But in reality, their doubts stemmed from the implicit pressure of ongoing per-
formance reviews. At this point, we had to compromise. For teams to accept
and adopt the standard smoothly, it was necessary to not only convince them
in theory, but also to accept some compromises in practice, as we were proving
the value of our approach.

Second, we needed to not only provide supporting tools, but also keep improv-
ing its usability, which is a key for development teams to accept the standard
and apply it widely.

Third, the evolution of the standard is necessary, but it must be incremental.
It was also critical to invite architects from a wide range of teams to participate
in the construction of instruments from the beginning.

Fourth, we learned that we need to participate in conferences and learn from
the research community. We must continuously assess and adopt new theories
and methods from the field of architecture measurement. The process, from
learning a new theory or method, to its complete integration into the practice
of architecture measurement, is long and challenging.

Fifth, once the development teams were inspired to participate in architecture
measurement, and once they gained sufficient confidence in the instrument, they
brought unexpected innovations to the architecture measurement standard and
solution. The product team who used DRH clustering to guide their refactoring
process is an example. Another team proposed and employed the concept of
architecture hotspot in a simple and practical way.

6 Related Work

In this section, we review related work on (architectural) complexity measures
and change measures.

Software Metrics. Various metrics have been used to measure software code
complexity in past decades. Cyclomatic complexity [15] calculates the number of
linearly independent paths through a program’s source code to measure complex-
ity. Various object-oriented metrics, such as the well-known CK metrics [6], LK
Metrics [13] and MOOD Metrics [8], were proposed to measure object-oriented
programs. Based on software metrics, software measurement has been widely
studied. For example, Coleman [7] applied two models for measuring software
maintainability. Sjøberg et al. [20] conducted a case study to examine the rela-
tions among code metrics and the correlations between these metrics and soft-
ware maintainability. Instead of focusing on a specific class of metrics, our SAI
integrates three types of metrics—structure, class/function and global metrics—
to measure software maintainability. This helps development teams to monitor
their software in different perspectives.
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Change Measures. Change measures can be calculated from a project’s version
control system and its issue tracking system. Various change measures extracted
from history, such as change frequency and code churn, have been used for soft-
ware measurement. For example, Schulte [17] measure software based on the
activeness of each file in the project’s revision history. Wong et al. [22] calcu-
lated co-changes as the number of times two files have been changed (commit-
ted) together in the project’s revision history. They also showed that co-change
measures contain important information which reveals improper relations—
modularity violations—among files. Following Wong et al.’s work [22], Schwanke
et al. [18] used structure dependency and change measures to predict defects and
showed that modularity violations can arise as the result of implicit assumptions
between structurally unrelated files.

Architecture Metrics. Several architecture-level metrics have been proposed to
measure architecture quality. Mo et al. [16] introduced Decoupling Level to mea-
sure how well a software system is decoupled into small and independent mod-
ules. MacCormack et al. [14] defined the Propagation Cost metric to measure
how tightly coupled a system is. Bouwers et al. presented two architecture-level
metrics, Component Balance [3] and Dependency Profiles [4]. They also inves-
tigated the usefulness of these metrics [5], and demonstrated that measurement
results matched practitioner intuitions. Our SAI has integrated multiple archi-
tectural measures. To properly assess and understand a software architecture we
used a specific architecture measure for each architecture smell.

Architecture Debt Analysis. Various approaches have been proposed to detect
and analyze architecture debt. In an industrial case study [11], the authors pre-
sented a cost-benefit model, which was used to estimate the effort that could be
saved by a refactoring to decouple the architecture. In the case study of Kazman
et al. [12], they used an economic model to assess the effort that could be saved
after refactoring the identified architecture debts. Our SAI not only integrates
architecture debt analyses, but also integrates other state-of-the art techniques
to assist a development team in detecting architecture problems and assessing
the technical debt caused by these problems.

7 Conclusions and Future Work

In this paper, we have presented our 4-year experience of implementing a soft-
ware architecture measurement system within Huawei. Our study has revealed
the significant and positive impact of architecture measurement, in terms of
ensuring software quality and productivity, and supporting continuous evolution
and improvement of architecture. Our experience showed that formulas alone
are not enough; it is important to back up formulas with concrete architecture
smells. The development teams use these identified smells to determine how to
improve their scores, and hence to improve their architecture. We also confirmed
that it is important to adopt state-of-the-art analysis approaches—such as DSM
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analysis and architecture debt quantification—as key activities to better under-
stand the consequences of degrading the architecture and to quantitatively sup-
port refactoring decisions. The SAI scores have shown positive correlations with
productivity measures for most of our pilot studies. And we have shown that,
with some coaching, most product teams eventually adopt and even embrace
software architecture measurements. The automatic architecture measurement
and guarding solutions, as well as the SAI formula itself, are still being refined
to address various issues and challenges, including:

– How to further increase the accuracy of our architecture measures, so that
they can be fully consistent with the intuitions of architects and product
teams, as well as the market performance of their products?

– How to measure service-oriented architectures and other similar architectures
that consist of collections of interacting components, each of which has its own
architecture and its own code base?

– Currently our architecture measurement tool is an independent web-based
application. We are working to integrate it within an IDE, so that software
developers can be immediately alerted to potential software decay. This way,
our tools can be fully integrated into development activities, and architecture
measurements will become part of the daily routine of software development.

– We also intend to explore AI-based architecture refactoring and evolution,
employing machine-learning to make refactoring recommendations.

We believe these explorations will drive the progress, evolution and develop-
ment of automatic architecture measurement and guarding solutions, as well as
SAI itself.
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Abstract. Architectural technical debt can have a huge impact on soft-
ware maintainability and evolution. Hence, different architectural viola-
tions, detected as architectural smells, need to be identified and refac-
tored. In this paper, we conducted a multiple case-study on several
architectural smells detected in four industrial projects. We conducted
an in-depth investigation with a questionnaire, interviews and thorough
inspection of the code with the practitioners. We evaluated the negative
impact of the technical debt detected by the architectural smells, their
difficulty to be refactored and the usefulness of the detection tool. The
results show that practitioners appreciated the help of automatic detec-
tion, and that they prioritize refactoring architectural debt that causes
more negative impact despite the higher refactoring effort.

1 Introduction

Architectural Technical Debt (ATD) can have a huge negative impact on software
maintainability and evolution. In a recent survey [1], more than 250 practitioners
report that the average time wasted because of the presence of Technical Debt
accounts for 37% of the whole development time. From the same study, it is also
clear that ATD generates the most negative impact.

ATD is regarded as suboptimal solutions in the architecture of a product.
A large number of software components that are too interdependent can be
considered as an example of ATD. Suboptimal solutions can cause a negative
impact, in the form of extra effort, when maintaining or evolving the project. For
example, a component that has a lot of dependencies to many other components,
would have ripple effects when changed: every time a bug is fixed or a new
functionality is added, the practitioners need extra effort. When this, or other
sorts of negative impact, occur, they represent the interest of the ATD.
c© Springer Nature Switzerland AG 2018
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Some ATD can be automatically detected, thanks to identification tools ana-
lyzing source code [2–4]. More in particular, existing tools recognize Architec-
tural Smells (AS) [5,6], or else anti-patterns present in the architecture of the
project. These patterns can be identified, for instance, by analyzing the depen-
dency graph of the project. An AS is usually a symptom of the presence of ATD,
and detecting AS can help developers and architects identifying ATD.

Finally, there is a cost associated with the removal of ATD, which is regarded
as the principal of Technical Debt. ATD is removed by paying the principal in
term of time for refactoring the code. The main reason to repay the principal,
and to refactor ATD, is to avoid paying its interest [7].

In summary, it is critical to detect ATD, but also to prioritize it by under-
standing its interest and principal. Although some tools are able to detect AS
(and therefore pointing at the possible presence of ATD), there are no studies
on what negative impact and cost of refactoring are associated to such ATD and
how practitioners prioritize ATD revealed through AS.

Given the previous motivations, in this study we aim at answering the fol-
lowing RQs:

– RQ 1: How do AS help practitioners in identifying ATD?
– RQ 2: How do practitioners prioritize ATD revealed through AS?
– RQ 2.1: How is the AS’s negative impact (interest) perceived by the practi-

tioners?
– RQ 2.2: What is the refactoring cost (principal) of AS perceived by the prac-

titioners?

By answering RQ1, we aim at understanding if AS are useful to automati-
cally identify ATD in industrial projects. Answering RQ2 means answering the
combination of RQ2.1 and RQ2.2: understanding what negative impact is gen-
erated by the ATD and what cost of refactoring is required. This would help
identifying which AS are more critical for the practitioners to prioritize.

In summary, with this case-study, we make a first step towards understanding
how practitioners can semi-automatically detect and prioritize ATD.

The paper is organized through the following sections: in Sect. 2, we present
related works; in Sect. 3, we describe the design of the case study, while in Sect. 4,
we present the results; in Sect. 5, we discuss the results with respect to the RQs;
in Sect. 6, we outline the threats to validity and finally in Sect. 7 we draw our
conclusions.

2 Related Work

To the best of our knowledge, no studies have been conducted on identifying
and prioritizing ATD using architectural smells. A recent paper [8] reports a
comparative case-study on a component modularization, analyzing the negative
impact saved by reworking a single instance of Architectural Debt. The study
also reports an ad-hoc measurement project to detect the ATD, but it does not
assess AS and does not compare several projects.
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Several studies on code smells have been conducted in collaboration with
practitioners, but not on architectural smells. An exploratory survey on code
smells has been performed by Yamashita et al. [9]: their results showed that a
large proportion of developers did not know about code smells. Soh et al. [10] con-
ducted a study where professionals were hired to perform maintenance tasks on
functionally equivalent Java projects in order to assess whether code smells affect
maintenance activities. Another empirical study on understanding maintenance
problems related to code smells, has been done by Yamashita [11]. Palomba
et al. [12] conducted a study on developer’s perception of the nature and sever-
ity of code smells.

3 Research Design

We conducted a multiple case-study in a large, international company located in
Sweden. In particular, we automatically analyzed four projects and we assessed
the output with the practitioners responsible for the development and mainte-
nance of such projects.

3.1 Case-Study Design

We designed an embedded, multiple case-study, according to the guidelines
in [13]. Our unit of analysis was a project developed by the organization. We
conducted an in-depth analysis of four software projects of the same company,
described in Sect. 3.2. The investigation included a mix of quantitative and qual-
itative methods, which is highly recommended in case-studies [13], where it is
crucial to reach a detailed understanding of complex systems, such as large soft-
ware projects.

The objectives of the case-study were:

1. automatically identify the AS in the industrial projects (RQ1)
2. evaluate the output in terms of negative impact (RQ2.1) and cost of refac-

toring (RQ2.2), to prioritize the ATD.

To identify the AS, we used Arcan [5], a tool for architectural smell detection
described in Sect. 3.3. We decided to use Arcan for: reproducibility purposes
since the tool is fully available online, it has been previously validated and the
formulas used to identify the smells are well known. This allows other researchers
to reproduce this study in other organizations and compare the results with ours.

To answer RQ1 and RQ2, for each project, we performed the following steps:

– We conducted a meeting with the team to understand the project.
– The code was analyzed using Arcan. A sample of the detected AS was then

selected to be further assessed. We selected 22 AS since understanding in-
depth architectural issues, their negative impact and their cost of refactoring
was quite time consuming for the practitioners. This did not allow us to
evaluate a larger number of AS. However, 22 cases is a reasonable number
considering the kind of in-depth analysis that was performed. In particular,
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we extracted the AS of three different kinds in a balanced number for each
project. We chose the ones that were considered the most critical, according
to Arcan’s severity measure (see Sect. 3.3). This was done to focus on AS that
would be more probably regarded as problematic by the practitioners.

– We conducted a group interview with the team responsible for the analyzed
project. We selected participants who had high experience and a higher knowl-
edge of the project. The interview lasted, on average, two to three hours, and
included the following activities:
1. First, we introduced Arcan and the AS to the practitioners. We care-

fully presented the AS types and we explained how they were calculated
(including formulas) and what they were expected to reveal.

2. Then, we showed a graphical representation of the smell in the form of
a graph, rendered with Neo4J1, which visualized the involved classes,
packages and dependencies.

3. We asked the developers to identify the architectural issue related to the
selected AS. In order to avoid speculations, we asked the practitioners to
navigate the source code and to share the screen with the researchers and
with the other interviewees.

4. Once the architectural issue related to the AS was identified, we con-
ducted an assessment according to the objectives defined in our RQs. In
particular, we used the questionnaire described in Sect. 3.4. Such ques-
tionnaire was divided in four parts: (1) understanding if the considered
smell was pointing at a critical underlying ATD and if it was known (2)
assessing the negative impact experienced and estimated by the practi-
tioners. In order to do so, we used a method [14], empirically evaluated,
to quantify the negative impact of Technical Debt; (3) assessing the costs
and steps necessary for refactoring the AS; (4) understanding what was
the current process to evaluate quality and what additional value would
the automatic tool give the practitioners.

3.2 Analyzed Projects

The analyzed projects were developed by the same company and they were
written in Java: they had different size but they operated in the same field of
Product Data Management. A brief description of the projects is outlined in
Table 1. The interviewees were nine, two for projects B, C and D and three for
project A.

3.3 Data Collection - Automatic Detection of as with Arcan

Arcan [5] is a tool for architectural smell detection in Java projects. An architec-
tural smell can derive from commonly used architectural decisions, intentional
or not, that negatively impact internal software quality [15] with large effects on
software maintainability [16].

1 https://neo4j.com/.

https://neo4j.com/
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Table 1. Analyzed industrial projects and architectural smells

Name Description Metrics Architectural Smells

NoP NoC UD HL Class
CD

Package
CD

AS

A Product Data Management (PDM) 269 10171 476 1 199 31 707

B After market 240 7261 98 0 7 6 111

C Audit project 220 3250 34 1 31 8 74

D Warehouse management project 166 3067 53 0 49 7 109

Legenda: NoP: Number of Packages, NoC: Number of Classes, Unstable Dependency (UD),
Hub-Like Dependency (HL), Cyclic Dependency (CD), Total Architectural smells (AS).

In this study, we considered the following three architectural smells ade-
quately validated in [5,17]:

– Unstable Dependency (UD): describes a subsystem (component) that
depends on other subsystem that are less stable than itself, with a possible
ripple effect of changes in the project.

– Hub-Like Dependency (HL): occurs when an abstraction has (outgoing
and ingoing) dependencies with a large number of other abstractions.

– Cyclic Dependency (CD): refers to a subsystem (component) that is
involved in a chain of relations that break the desirable acyclic nature of a
subsystems dependency structure. The subsystems involved in a dependency
cycle can be hardly released, maintained or reused in isolation. Arcan detects
this smell according to different shapes [18].

Moreover, Arcan estimates the Severity of each architectural smell [19]
according to the values of the metrics used for the AS detection. A Severity-
Score(ASk) is evaluated for each instance of AS and according to each type of
AS in order to evaluate the criticality of the smell. In our study with the prac-
titioners, we selected the AS instances with the highest Severity, according to
each type of AS.

In this work we have considered the above three AS since these AS are
detected by an available tool such as Arcan and they are based on dependency
issues which certainly represent relevant sources of possible architectural debt.
Since this kind of smells do not represent the only source of architectural debt,
we will consider in the future other categories of architectural smells. We focused
our attention on architectural smells and not on code smells [20], also if some
code smells such as for example the God Class smell [21] can have an impact at
architectural level and hence it can be considered an architectural smell.

3.4 Data Collection - Survey with Practitioners

The questionnaire carried out during the interviews is reported in Table2 in [22].
We used the survey tool Google Forms. We asked the practitioners to fill in a
form (the same) for each AS.
2 For space reason, it is available at https://drive.google.com/file/d/160TA9Q9jUI

UpTBp-Wg7zu87elVa3y1qr/view?usp=sharing.

https://drive.google.com/file/d/160TA9Q9jUIUpTBp-Wg7zu87elVa3y1qr/view?usp=sharing
https://drive.google.com/file/d/160TA9Q9jUIUpTBp-Wg7zu87elVa3y1qr/view?usp=sharing
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Identifying Architectural Debt via Architectural Smells (RQ1). We
started asking if the analyzed AS was related to a critical architectural issue
(ATD) (Q1.1). Only the ones considered as high priority issues were then further
analyzed. This was done because we wanted to obtain more in-depth analysis
rather than more sub-cases of smells, to better understand the details of the
ATD. Then, we asked if the practitioners were already aware of the AS before
it was revealed during the interview: this was done to understand if the output
of the tool increased the awareness of the practitioners.

Architectural Smells Impact (RQ2.1). This part of the survey aimed at
assessing the negative impact of the AS (Table in [22]). The question from 2.1 to
2.6 were adapted from the seven factors reported in [14]. In their paper, Martini
et al. carry out an evaluation of these factors and report them as necessary and
important for assessing the negative impact of Technical Debt. The assessment
of the factors was adjusted, transforming the specific values used in [14] into a
generic agreement Likert scale. Although this meant reducing the precision of
the assessment, in this study we were interested in assessing a higher number
of AS, and we therefore opted for a simplified set of questions. The factors and
related questions in [22] are:

– Reduced Development Speed. If the speed is reduced, the interest of the
ATD is hindering evolvability and maintainability of the system (Q2.1)

– Bugs related to the TD item. If many bugs are generated from the ATD,
this greatly affects the maintainability of the system and the time wasted to
fix bugs instead of developing new features (Q2.2).

– Other qualities compromised. There are several qualities that can be
affected by ATD, as shown in [7]. Here we used the ones suggested in the
ISO standard [23] but excluding maintainability and evolvability (as they are
already covered by the previous factors), (Q2.3).

– Users affected. ATD might not involve a large part of the system, but can
still affect a large number of developers. In this case, the extra cost of the
interest would be multiplied by all the “victims” (Q2.4).

– Frequency of the issue. The more frequent the negative impact occurs, the
worse the interest (Q2.5).

– Future growth of interest. To understand the overall negative impact of
TD, it is important to assess the current negative impact (already covered by
Q2.1–2.5), but we need to understand its future growth [7] as well (Q2.6).

– Other extra costs. There might be other context-dependent extra costs to
be considered when assessing the interest (Q2.7).

– Spread in the system. The larger the portion of the system affected by
the TD, the more ripple effects the interest might have on the organization
and on the newly added code. This factor was already covered by the Arcan
analysis and was included in the selection criteria according to the severity
of the smell.
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Finally, we asked an overall assessment of the negative impact associated with
the AS (Q2.8). The correlation analysis supports the reliability of the chosen
method. Such sanity check is explained with more details in Sect. 4.2.

Architectural Smells Refactoring (RQ2.2). The second part focused on
refactoring the architectural smell under analysis (Q3.1–3.4). First, we asked
what strategy the practitioners would use to remove the smell (Q3.1). Then,
we asked an estimation of how much time would be required to remove the
smell (Q3.2). We agreed about the possible thresholds with the Chief Architect
before the investigation. The thresholds were based on what the companies would
consider Low effort and High effort. The next question aimed at understanding
if the refactoring would create negative side effects (Q3.3). In fact, refactoring
ATD might optimize one aspect of the system, but it could negatively affect
other qualities [24].

Architectural Smells Prioritization (RQ2). We asked the overall prior-
ity that the practitioners would give to refactoring the ATD detected by the
AS (Q3.4). In particular, we asked the practitioners to consider all the factors
assessed so far, including questions 2.1–2.8 and 3.1–3.3. The aim was to under-
stand how the negative impact and cost of refactoring affected the priority given
by the practitioners.

Arcan Evaluation to Identify ATD (RQ1). This part included general ques-
tions on Arcan, the detected smells and the use of software quality assessment
tools during the development process, questions 4.1–4.7 (see Table [22]). The
aim of these questions was to collect feedback from practitioners when detecting
ATD by identifying architectural smells. In particular, we wanted to understand
if the current state of the art on detecting AS would help the practitioners in
managing their ATD. We asked for a) the difficulties emerged by using Arcan, b)
the participants’ past experiences using software analysis tools, c) quality index
computation, d) estimate which are the most or least important type of archi-
tectural smells and e) evaluate if they are interested in using a new architectural
debt index.

4 Results

Architectural Smells Selection. Table 1 shows the AS found by Arcan in
the four industrial projects. As we can see, we had a large amount of Unstable
Dependencies (UD). We found only two Hub-like Dependencies (HL), one in
project A and one in project C. We also found many Cyclic Dependencies; more
at class level (CCD) than at package level (PCD). Given the high amount of
some smells (CD and UD) found in the projects, we had to select some AS
instances from each category and for each project. For HL, we selected the
two instances that we detected, while for UD, CCD and PCD we selected the
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instances with high severity according to Arcan. After this selection, we obtained
the smells of Table 2a. Although Arcan shows the graph with the dependencies
and the packages involved in a smell, it was difficult for the practitioners to
easily navigate the results for the Package Cyclic Dependency smell, which were
thus removed from the analysis.

4.1 Architectural Smells Identification (RQ1)

First, the practitioners assessed whether the AS was pointing to critical ATD
issues, causing an increase of technical debt, or not. (Q1.1). In Table 2a, we
can see the results of this first screening: on the “Discussed” column we report
the number of smells that were initially discussed, while, on the “Problematic”
column, we report the number of smells that were recognized as real problems.

From this analysis, we can see that 50% of the AS were considered prob-
lematic, or else related to the presence of ATD. From the qualitative analysis, it
is possible to better understand the reasons for the AS that were not considered
related to ATD. One of the causes for this result was the kind of software that
was assessed. For example, in project A, several Cyclic Dependencies were cre-
ated by callbacks from anonymous classes in GUI components. When discussed
with the practitioners, they clearly stated that “On the Java server, you would
never have this kind of stuff, but here it’s kind of natural”. Callbacks for event
listeners in the GUI components could not be easily replaced, and therefore the
developers did not recognize CDs as problematic in those specific cases, but
rather as a necessary solution. This leads to an interesting context-dependent
finding: CDs might not need to be reported when analyzing GUI components.

The few HLs were very well understood and were recognized right away as
issues, even without navigating the code.

On the other hand, UDs were not easily understood by the practitioners: it
was difficult for them to relate to the concept of Unstable Dependency, and they
often disagreed on it being a problem. On the contrary, this kind of dependency
was sometimes related to design patterns used on purpose. This is the case of an
instance of Unstable Dependency in project A, that was caused by classes that
applied a Strategy design pattern.

As a result of this first screening, we performed the subsequent assessment
only on the AS listed as “Problematic” in Table 2a.

According to Question 1.2, only half of the problematic smells were known
by the practitioners (Table 2a). This shows that the automatically reported AS
improved the ATD awareness of the practitioners in 50% of the cases.

4.2 Architectural Smells Prioritization (RQ2)

Architectural Smells Impact (RQ2.1). The answers to questions 2.1–2.6,
are shown in Fig. 1a. According to Question 2.1, in most of the cases the detected
AS was associated with reduced development speed when adding functionalities,
except for Unstable Dependencies: for this type of AS, practitioners seem to
agree in 25% of the cases only.
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Fig. 1. Answers’ for questions 2.1–2.6 (architectural smells impact)

Table 2. Extracted architectural smells results and average answers by architectural
smell given to questions Q2.8, Q3.2, Q3.3 and Q3.4

(a) Extracted Smells

Type of Known
Projects Smell Discussed Problematic Yes No

A
UD 2 0 0 0
HL 1 1 1 0
CD 4 1 1 0

B
UD 2 1 0 1
HL 0 0 0 0
CD 3 2 0 2

C
UD 1 0 0 0
HL 1 1 1 0
CD 3 3 2 1

D
UD 2 1 0 1
HL 0 0 0 0
CD 3 1 1 0

Total 22 11 6 5

(b) Answers by smell

Average of
Smell ID Q2.8 Q3.2 Q3.3 Q3.4

CD1 2 2 1 2
CD2 2 2 1 2
CD3 1 2 0 1
CD4 3 3.67 1.67 3
CD5 2.5 2.5 2.5 2
CD6 2.5 2.5 2.5 2
CD7 2.5 2.5 2.5 2

HUB1 1.5 2 0 1
HUB2 2 2 0 3

UD1 0 1 0 1
UD2 1 3 1.67 1

Total 1.90 2.48 1.29 1.86

As for Question 2.2, in more than 60% of the cases, the negative impact
caused by Cyclic Dependencies is perceived as an increase of the number of
bugs, while it does not happen for the other types of architectural smells.

Analyzing Question 2.3, some system qualities are negatively affected by
the presence of Cyclic Dependencies in 60% of the cases and of Hub Like in
50%, while Unstable Dependency almost never affects them. Examples of other
qualities affected by these ASs were mentioned in the interviews to be especially
performance and testability.

According to Question 2.4, Unstable Dependencies seem to have an impact
on technical debt that involves only few developers, while the impact seems to be
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higher for Hub-Like Dependencies (50% of the times) and Cyclic Dependencies
(more than 60% of the cases).

As for Question 2.5, the developers perceive often the negative impact of
Cyclic Dependencies in 60% of the cases, Hub Like Dependencies in all the cases
and Unstable Dependencies in 50%.

According to Question 2.6, it is possible to assert that the impact will grow
in the future, at least for every Hub-Like Dependencies and Cyclic Dependen-
cies (75% of the times), but again it seems that we cannot assert the same for
Unstable Dependencies.

In addition, Fig. 1b shows an analysis of the answers for each type of archi-
tectural smell, where each column represents the degree of accordance for the
statements related to the negative impact of each smell.
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Fig. 2. Answer’s for questions 2.8, 3.2–3.4

According to Question 2.7, architectural smells can also have other impacts
and generate problems for writing test cases or fixing conflicts during merg-
ing, and, in a few cases, the problems associated to some architectural smells
instances, as for example for Cyclic Dependencies, were already identified and
added as technical tasks to the backlog to be solved in the next future.

Finally, analyzing the answers to Question 2.8 regarding the overall negative
impact, 42.9% Low Impact, 21.4% Medium-Low Impact and 28.6% Medium-
High Impact. Moreover, in 7% of the answers (Fig. 2a), the possible negative
impact of the AS was not a problem (or negligible).

Architectural Smells Refactoring (RQ2.2). According to Question 3.1, in
most of the cases the suggested refactoring requires the split of a class to reduce
the responsibility, sometimes to move some logic from a class to another, or to
move some logic by creating a new class.

Analyzing Question 3.2, the time for refactoring AS is more than 8 man
hours for 93% of the cases and in 14% of the cases, exceeds 100 man hours
(Fig. 2b Question 3.2). This was the case for example of a Cyclic Dependency
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identified in project D. Performing refactoring of this instance of AS, according
to the practitioners, would involve reviewing the architecture of a main part
of the system and reimplementing the logic revisiting the patterns used in this
context.

According to Question 3.3 in 60% of the cases practitioners seem to agree
that conducting refactoring would not create side effects.

According to Question 3.4, practitioners assigned Low priority to 100% of the
UD instances, 50% to the HL and 25% to CD. They assigned higher priorities
to the other instances of CD and HL (Fig. 2d Question 3.4). The results on
refactoring have been deeply investigated in the following section in order to
understand the relationships between the aspects covered by the questions.

Fig. 3. Correlation analysis among the
variables related to impact factors, over-
all negative impact, side effects, effort and
refactoring priority. The white cells repre-
sent non-significant correlations (p-value >
0.05)

Correlation Analysis on the Pri-
oritization of ATD. In order to
understand the relationships among
cost, impact and overall prioritiza-
tion of ATD, we ran Pearson corre-
lation tests on the agreement scores.
In particular, we compared questions
2.1–2.6 (impact factors) 2.8 (overall
negative impact), and 3.2–3.4 (effort,
refactoring side effects, and overall
refactoring priority), shown in Fig. 3.
The scores in the white cells represent
non-significant results (we set p-value
< 0.05 for significance), so we discuss
the red cells only.

First, we can see how there is
a medium-strong and significant cor-
relation between all the impact fac-
tors (2.1–2.6) and the overall nega-
tive impact. This confirms that all
the chosen factors were contributing
to the developers’ perceived negative

impact, but none of them seems redundant. This finding also confirms that the
chosen method, to assess the negative impact of ATD, can be considered sound.

We can observe how the refactoring effort has a strong correlation with the
side effects of refactoring the AS. This makes sense, as the most side effects the
refactoring would generate, the more costly it would be to remove the ATD.

The strongest correlation is between the priority of refactoring and the over-
all negative impact (0.88). This shows that the negative impact, perceived by
the practitioners, is the main driver for the prioritization of refactoring. This
means that, to prioritize ATD, practitioners need to know its impact (or else
its interest). It is finally interesting to observe that there is a medium-strong
positive correlation between the effort and the assigned priority. Although this
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is counterintuitive (more cost would suggest less priority), this finding implies
that practitioners would prefer to refactor ATD that generates negative impact
despite its higher cost of refactoring.

Architectural Smell Detection Evaluation (RQ1). According to Question
4.1, half of the practitioners found Arcan’s output quite difficult to understand
without using the graph generated by Neo4j. According to Question 4.2, 75% of
the practitioners make use of software analysis tools during development activity:
in particular, they used SonarQube (Fig. 4a Question 4.2); for Question 4.3 all
the practitioners expressed at least a Mid-Low interest in using Arcan as support
during the development of a project (Fig. 4a).

As for Question 4.4, 75 % of the practitioners found that Cyclic Dependency
is the most important smell to detect, while (Question 4.5) Unstable Dependency
seems to be the less important to detect (Fig. 4d). Lastly (Question 4.6), 75% of
the practitioners use an index to measure code quality (Fig. 4a) and, according
to Question 4.7, all the practitioners seemed interested in using an architectural
debt index based on architectural smells detection (Fig. 4a).

5 Discussion

We discuss the results in relation to each RQs.
RQ 1: How do AS help practitioners in identifying ATD? Given

the results outlined in the previous sections, we can assert that AS detection
increases awareness on ATD as (1) it highlights issues that should be considered
as real problems but were not known according to practitioners and (2) in the few
cases where the problem was known, it provided additional unbiased evidence of
its presence.

RQ 2.1: How is the architectural smells’ negative impact perceived
by the practitioners? The results obtained in the analysis suggest that Unsta-
ble Dependency is the smell that causes less negative impact compared to the
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other smells considered in this analysis. In fact, practitioners do not consider
this smell as a real problem in most of the cases. Hub-Like Dependency is the
one that gives a higher perception of the negative impact and whose effect will
grow worse in the future, since all the answers to the corresponding questions
(2.6 and 2.8) are “agree” or “somewhat agree”.

The smell that seems to be more impactful is Cyclic Dependency, although
some of them were not considered real problems, meaning that they don’t rep-
resent technical debt according to the practitioners.

In conclusion, the detection of these two smells helps practitioners. While the
few HL Dependencies were considered a problem, CD need to be better filtered
before being a reliable indicator of a serious presence of ATD.

RQ 2.2: What is the refactoring cost of AS? which kind of AS cost
more to remove? Cyclic Dependency is the smell that requires more time to
be refactored, and the one that creates more side effects during refactoring. For
every type of smell, refactoring requires several hours to be performed, in some
cases, for Cyclic Dependencies, more 100 man hours. On the contrary, Hub-Like
Dependency is the architectural smell that requires a Mid-Low number of hours
for refactoring without having any side effect.

RQ 2: How do practitioners prioritize ATD revealed through AS?
Combining the results of RQ2.1 and RQ2.2, we can say that Hub-Like Depen-
dencies seem to be the most convenient smell to detect and to refactor (best ratio
cost/benefits). Cyclic Dependencies are also important, but need to be better
filtered, because some are considered as a necessary coupling, and some have
a really high cost of refactoring and therefore it is not clear if they should be
prioritized for their removal or not. Finally, Unstable Dependencies are perhaps
the less useful smell to detect and refactor.

6 Limitations and Threats to Validity

Validity threats for case studies are proposed in [13].
As for construct validity, there is a possibility that the practitioners misinter-

preted what the AS represents or what we asked in the questionnaire. However,
we thoroughly mitigated these threats as explained in the research design, with
previous workshops explaining the AS.

As for internal validity, it is unlikely that the negative impact reported by
the practitioners would be affected by factors that are not the AS, as we were
careful to inquire the main causes of negative impact when investigating the code.
The correlation analysis do not imply causality per se: however, this threat is
mitigated by the construction of the questionnaire and by further qualitative
evidence collected, which supports causality.

There is a threat to external validity. The case-study has been conducted in
a single organization, although we selected four quite different projects, and a
limited amount of AS were in-depth studied.
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As for reliability, two researchers were present during the investigation, while
the results were checked by multiple researchers. Furthermore, the study is fully
reproducible. The practitioners might have been biased when recognizing the
negative impact of the code, due to peer pressure. However, they were capable
of recognizing several harmful smells.

The results are based on practitioners’ experience and perception. This means
that the real cost, impact, and the consequent optimal prioritization of ATD
might differ from the one reported here. However, practitioners are the ones
suffering by ATD and are the final users of AS, so their perception is of utmost
importance to understand how to manage ATD using AS.

7 Conclusion and Future Developments

In this paper, we performed a case study within a large software company,
to understand how practitioners identify and prioritize Architectural Technical
Debt using automatically detected architectural smells. Four industrial projects
have been analyzed, and a sample of the detected AS has been thoroughly
inspected by the projects’ practitioners to find the causes of the issues, and
to assess their negative impact and refactoring costs based on their perception
and experience. We found which AS pointed at the most harmful Architectural
Technical Debt (RQ1), which ones have more impact (RQ2.1), which ones cost
more to refactor (RQ2.2) and which ones are, overall, more convenient to detect
and prioritize (RQ2).

From the combined results, we can conclude that using AS to identify and
prioritize ATD was considered useful: the tool helped identifying half of the
problems that were not previously known by the practitioners, and provided
evidence for the known ones. However, some AS were not considered high pri-
ority, which helps researchers to further improve and filter the automatically
revealed AS. Cyclic Dependency was the AS with the worst impact but also the
most expensive to refactor, while Hub Like Dependency has also a similar strong
negative impact but seems to be the most convenient to detect and to refactor
(less costly). On the contrary, Unstable Dependency was not perceived as an
issue.

In the future, we plan to perform new case studies in other industrial domains
and companies. We aim to better explore the refactoring cost of the smells to
improve the prioritization of the smells to be removed first. According to this
aspect we would like to ask practitioners to evaluate the usefulness of a new
Architectural Debt Index [25], which allows to identify and assess the overall
architectural debt of a project by taking into account the severity of each archi-
tectural smell. The index can be used to evaluate the most critical parts and to
monitor the evolution of the architectural debt during the project history.

Finally, we aim to analyze and detect through Arcan other categories of
architectural smells other than those related to dependency issues, such as smells
related to the interface (Ambiguous Interface, Redundant Interface and Unstable
Interface [26]) or smells related to performance or security issues.
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Abstract. The software industry increasingly needs to consider archi-
tecture evolution in the context of industrial ecosystem platforms. These
environments feature a large number third-party offerings with a high
variety and complexity of design and technology options. The software
architects working on platform migration and in-platform evolution sce-
narios in such environments require support to find and utilize optimal
offerings, ensure design compatibility with various technical and non-
technical constraints, and optimize architectures. Based on a multi-case
study of three industrial cases, we have derived an architecture knowl-
edge model that provides a basis for supporting software architects in
platform migration and in-platform evolution scenarios.

1 Introduction

A common scenario in modern software industry practice is the migration and
architectural evolution of legacy systems, usually developed inside a single orga-
nization, to cloud platforms. This evolution process typically aims to utilize the
various offerings of these platforms, as well as incorporating third-party products
from related software ecosystems or integrating devices as part of the Internet of
Things (IoT). Unlike the familiar contours of in-house development, architects
find themselves confronted with a new production environment that offers a
large number and variety of offerings and deployment options, and that is highly
dynamic. As a result, industrial platform migration and in-platform evolution is
an increasingly challenging undertaking [9].

For the software architects involved in this process, this presents three major
challenges: the discovery of a new target environment’s parameters (e.g., avail-
able technologies, offerings, and constraints); the restructuring and optimization
of an application for the target environment; and the subsequent management
of its structure across a lifecycle that can span several platforms and deploy-
ment configurations. In each case, the architect’s decisions are heavily dependent
on context—best practices for a specific application domain, available products
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and technologies, relevant regulations, desired qualities, and so on. All these
constantly change over time and across different use cases and platforms.

Ideally, this context should be captured as knowledge, kept up-to-date, and
made available for use by the architects during the decision process. While there
are several approaches in the literature on capturing knowledge about archi-
tecture evolution decisions [2], they have not yet found widespread adoption
in practice, and the community is actively researching on how to make them
more lightweight and easier to use [8]. In practice, the evolution process is labor-
intensive, error-prone and time-consuming, especially in an enterprise-level appli-
cation that involves multiple teams, constraints, and features developed over
longer periods of time.

This study aims to contribute towards filling this gap by providing a light-
weight and reusable approach that enables architects to perform an exploratory
analysis of their options in a structured manner. The focus lies not on detailed
implementation, but on providing “just enough architecture” [3] for the broad
outlines and main design decisions of a project—e.g., programming languages,
technologies, architectures—that once taken are “costly to change” [8]. Based on
three industrial system cases demanding significant architectural evolution, we
performed a multi-case study to derive elements and relationships of an archi-
tecture knowledge model, which was then used to support software architects in
platform migration and in-platform evolution scenarios.

The paper is structured as follows: Sect. 2 discusses related work. Next, Sect. 3
introduces our research method and the three industrial cases. Sect. 4 describes
our approach, and Sect. 5 discusses the results and concludes the paper.

2 Related Work

Software architecture is expected to support the evolution of software systems
to keep pace with the shifts in their technical and business environment [2,13].
Accordingly, correct understanding and representation of the architecture are
fundamental for a systematic evolution process [13]. Research has produced a
large number of patterns and architectural styles, which serve to address recur-
ring design problems [7]; this has been extended to cover new paradigms such as
cloud-based architectures [4,10] or microservices [6,16]. Nevertheless, research
in the field is still far off from the ideal of “capturing architectural knowledge
in a single [...] handbook, which codifies knowledge to make it widely avail-
able” [8], as the various approaches are isolated and fragmented. While valuable
on their own, in practice many of the approaches require much input from the
stakeholders and result in a “collection of documents.” This is an overhead that
people usually prove unwilling to invest in, especially if the value of the outcome
is unclear. Our approach is intended to be a more light-weight alternative with
regard to discovery and management of offerings which limits the decisions taken
during the architecting process to only the relevant set of constraints. The deci-
sion space is limited to manageable proportions by providing only compatible
options and their driving forces and consequences.
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3 Study Design

The work reported in this paper follows a multi-case study research method. We
followed the available guidelines for such case studies in industry [17] for the
design of our study. The research questions we defined for this study are:

– RQ1: to investigate the minimal set of elements and relationships required
by software architects to sufficiently represent and specify a software system
at a relatively high abstraction level suitable for brownfield development

– RQ2: to investigate the minimal set of elements and relationships required
to represent the contexts of in-platform evolution and platform migration

– RQ3: to investigate how the models resulting from RQ1 and RQ2 can be
used to support architectural decisions.

The overall objective was to limit the effort in modelling (compared to exist-
ing methods such as [2]). The model must be detailed enough to represent the
case study context, while generic enough to avoid overfitting. The main facili-
ties offered by the model would be the management of knowledge, by creating
a central knowledge model that can be used to represent any software product,
and more importantly the exploitation of that knowledge, by exploiting the links
between elements in a knowledge repository to select subsets based on specific
criteria. This would allow the architect to browse for “suitable” offerings (i.e.,
having a desired set of functional and non-functional attributes) for each step of
the evolution process; if such were not found, or were not available, the model
should be able to provide suggestions for adaptation of existing offerings, or the
development of new ones, by exploiting the knowledge base.

In our prior work, we performed a set of comprehensive studies of the liter-
ature on software architecture decision making [12], quality attributes in such
decisions [12], and in software ecosystems [14]. In addition, for this work we
exploratively studied the practitioner literature on migration practices and pat-
terns in cloud and IoT platforms (e.g., [1,4,11,15]). As a result we (1) hypothe-
sised a minimum necessary set of model elements and relations. Next we defined
(2) a case study protocol template used for all cases (see [17]) and (3) sought cases
among industrial software systems with sufficiently complex migration and evo-
lution scenarios. We then (4) selected three systems for which we could gain access
to detailed documentation and key stakeholders : a Geospatial Analytics System,
a Water Management System, and an Edge-Cloud Analytics System. For space
reasons, we can not report on them in detail. A case study protocol and detailed
model description can be found in a technical report1. For each case we first con-
sulted the available documentation and plans for migration, and then consulted
architects of the system to close any gaps in our understanding. We used coding
techniques and the constant comparison method borrowed from Grounded The-
ory [5] to code the qualitative data for context elements and relations. After the
data had been coded in the first case, we formally modelled the whole case using
the resulting model, then applied the same method to the second system (and

1 http://doi.org/10.5281/zenodo.1288459.
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after that in the same manner the third system) and thereby iteratively refined
the codes, model elements, and relations. Next, we re-modelled the first system
(and after that the second and the third system) with the resulting model and
resolved any arising inconsistencies. The result is (5) a semiformal model for
platform migration and in-platform evolution, and three derived case models.

4 Migration and Architecture Evolution

4.1 Evolution Attributes and Process

An application can be considered as comprising its concrete realization (architec-
ture, software components, etc.), and an associated set of attributes (functional
and non-functional requirements, etc.) and constraints (dependencies, licenses,
legal limitations, etc.) that provide a context that describes and governs its func-
tion and usage. The two facets are interdependent: the introduction of a new
software component affects the attributes, and predetermined attributes and
constraints can affect which components are compatible in a design situation.

Fig. 1. Element sets involved in a software migration process (simplified). The target
application results from a set of decisions trying to fulfil the attributes and constraints
of the evolution aims while remaining compatible with the target environment. Legacy
components, target environment offerings and off-the-shelf products are available for
use as long as they satisfy these constraints.

Software evolution can then be described as the transformation of the spe-
cific realization with specific attributes of a Legacy Application L into a new
realization with its own attributes, the Target Application T . The latter is often
deployed in a new Target Environment E , as in the specific case of software
migration. As shown in Fig. 1, T results from a mix of different element sets.
The coonstraints will result from those carried over from L, the constraints of E ,
and whatever additional constraints our Evolution Aims A dictate. In addition,
A and L provide a minimum set of attributes, that the application must realize.
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The evolution process is then a search for components and configurations (real-
ization) that are compatible with both the attributes and constraints sets of T .
Depending on the context, this idealized view has to be modified: some of the
sets may be empty, A may be minimally described, L may be insufficiently doc-
umented, etc. The relative experience and preferences of architects are also an
unknown factor. As a result, the problems and choices that may emerge during
the transformation process can not be anticipated beforehand.

Consequently, our focus has been reduced to a minimal core: a single evo-
lution step, either moving (importing) the component from one environment
to another, or adapting it (refactoring) to satisfy specific requirement(s). In a
migration context, moving effectively copies a component from L, or from some
list of O, and imports it into a new environment (T as deployed in E). The pres-
ence of the import results in a set of mismatches with the constraints, attributes,
and existing state of T , setting off a sequence of adaptation steps in what is in
essence an experimentation cycle. If a satisfactory solution to each mismatch is
found (or it is considered an affordable trade-off), the next component import
from L takes place, gradually building up T . If the mismatches of a specific
import cannot be resolved, then alternative equivalent elements can be imported
and tested from the offerings of E or O. The context of each adaptation deci-
sion is thus limited to the imported component and its immediate operational
environment, and a concurrent adaptation of both the implementation and the
attributes takes place, resulting in the final T .

4.2 Migration Scenarios and Model Attributes

Based on the finding from the previous sections, we examined three systems,
each representing scenarios typically encountered in industry:

– Migrating a legacy monolithic system into a cloud platform, given a set of
business, technical, and legal constraints

– Re-architecting a legacy monolithic system into a cloud-deployed
microservice-based architecture

– Requirement-based dynamic selection and allocation of system components
on a cloud-edge platform.

The three systems, as well as the resulting detailed model itself, are presented
in more detail in the technical report (see footnote 1); here we only present
an overview. The model comprises a generic domain knowledge representation
model which includes five sets (Capabilities, Applications, Architecture, Technol-
ogy, Constraints), and a software description model using the elements defined in
the former to provide a concrete definition of software products. The main goal
of our model is to limit the possible options presented to the architect to man-
ageable levels. The selection of suitable solutions, which lies at the root of the
trial-and-error approach described above, is carried out by matching individual
attributes, either for compatibility (e.g., compatible interfaces or licenses, writ-
ten in a programming language supported by E) or to discover alternatives (e.g.,
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products with the same functionality). The latter process can require traversing
of the domain knowledge type hierarchy (e.g., the various categories of data bases
or file systems for persistent storage functionality), or of the versions of a specific
product (e.g., the versions of an ecosystem platform and packages supported).

The more attributes are matched, the narrower the resulting option set. In
practice there are usually mismatches which have to be resolved either by resort-
ing to close analogues, or to integrating solutions (e.g., Enterprise Integration
Patterns or specific plugins and extensions) which can be used to “bridge” the
operational environment of the component with the requirements being pur-
sued. Using this matching approach, a component can be adapted to its new
environment. Its external attributes (e.g., its functionality, external interfaces,
implementation languages) then become attributes of the composite system.
Conversely, since the only thing required to use a component are its external
attributes (interfaces, functionality, constraints), placeholder components can be
defined, whose exact implementation is left undefined. This means that a place-
holder can either be dynamically instantiated by using one of multiple compatible
solutions (e.g., a placeholder “SQL database”), be implemented by some third
party to specification (“compatibility by design”), or can represent a wrapper
for an otherwise non-compatible component.

Finally, the model provides concrete architectural guidance by associating
attributes and constraints, as well as technologies or applications, with specific
architecture patterns and strategies, as well as by indicating the (in)compatibility
between patterns. From practical experience with using the model during the
microservice-based re-architecting, we realized that the more inexperienced users
are overwhelmed by the breadth of architectural options, showing that thearchi-
tecture perspective on its own is unsuitable as an entry point to the design pro-
cess, and that it had to be refined through combination with other constraints
and attributes. This led to the creation of architecture templates, represent-
ing common configurations of patterns in combination with components types,
functionalities, and constraints.

5 Discussion and Conclusions

Based on the data from a comprehensive literature study and practitioner
reports, software evolution of three industrial case scenarios, and interaction with
key stakeholders of these projects, we have derived a model for easing software
architecture evolution decisions. The scenarios were used to evolve the model,
as well as test and validate its functionality. Perforce, such a model operates on
a number of assumptions that may not always exist in practice. We assume that
a common language between stakeholders exists, so that the same term (e.g., a
Capability or Pattern) will be commonly understood and used in the same way.
Likewise, we assume that the descriptions provided to populate the knowledge
repository and instanciate our models are accurate and up-to-date. A further
problem, which is common to such approaches, is the analysis of the impact of,
and tradeoffs between, multiple quality attributes. These are hard to quantify,
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and vary with context. Thus we can only present a rough ranking of attribute
importance and impact, but it is left to the architect to evaluate them. Likewise,
the cumulative impact of the individual decisions can only be assessed at the end
of the evolution process. The model can support, but not replace the architect.
Factors such as personal preferences, past experience, and existing commitments
to some technology, can not be anticipated. Nevertheless, our experience work-
ing with the model shows that it provides a number of benefits. It creates a
common, centrally managed, knowledge repository, which provides a consistent
reference model and a framework that links software products, software archi-
tecture aspects, business requirements and constraints, and technologies, and
allows the easy discovery of interrelations.

The model is also extensible, as new elements, domains, and views can be
added easily, while maintaining the same structure. The recursive structure
which the software description supports means that a variety of offerings can
be represented and recomposed at will, with varying levels of detail depending
on the context: from a basic template to a complete description. The ability to
define templates enforcing consistency in certain key areas is fundamental for
industrial ecosystems, and can be used to provide architectural guidance. Fur-
thermore, although developed in the context of software migration, we believe
that the model is in practice generalizable for all cases of architecture evolu-
tion from greenfield to brownfield, which has much the same requirements and
involves the same elements.

Using the model first requires populating the knowledge repository. Though
this process can be assisted by tools, it still represents a considerable investment
of time and effort. This is an inherent disadvantage of all such approaches, but we
believe that the resulting benefits, once this repository is established, outweigh
the investment, especially from the view of a keystone organization that has to
manage large collections of offerings, and ensure a minimum level of consistency
and compliance among the various participants within an ecosystem. The model
has the advantage of needing only a high-level description of its elements and
features to work; it does not require a full-fledged architecture reconstruction.
The full and accurate description of individual components can be deferred to
a later time, if and when necessary for their further decomposition. We also
expect that, in the context of large ecosystems, software products will share
many common elements, encouraging frequent reuse of the generated models, or,
analogous to our architecture templates, the creation of prototype applications
or application modules. Working directly with the model is often not practical,
as the number of attributes involved grows geometrically; this was most clearly
seen in the WMS scenario, where the large pattern set had to be structured in
pre-defined combinations to become usable. It is therefore our future research
plan to realize a web-based decision support tool for the model.

Acknowledgments. This work was partially supported by FFG project DECO (no.
864707) and Austrian Science Fund (FWF) project ADDCompliance.
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Abstract. In an initial attempt to systematize the research field of
architectural threat analysis, this paper presents a comparative study
of two threat analysis techniques. In particular, the controlled experi-
ment presented here compares two variants of Microsoft’s STRIDE. The
two variants differ in the way the analysis is performed. In one case,
each component of the software system is considered in isolation and
scrutinized for potential security threats. In the other case, the analysis
has a wider scope and considers the security threats that might occur
in a pair of interacting software components. The study compares the
techniques with respect to their effectiveness in finding security threats
(benefits) as well as the time that it takes to perform the analysis (cost).
We also look into other human aspects which are important for industrial
adoption, like, for instance, the perceived difficulty in learning and apply-
ing the techniques as well as the overall preference of our experimental
participants.

Keywords: Empirical study · Secure software · Threat analysis
STRIDE

1 Introduction

After decades of research and knowledge transfer in the field of “security by
design”, the software-intensive industries have absorbed the idea that security
needs to be addressed throughout the software development lifecycle. Building
Security In Maturity Model (BSIMM) [12] collects statistics from 95 compa-
nies and gauges their level of adoption with respect to several secure software
development techniques. According to the report, security-specific code analy-
sis techniques have successfully found their way into the industrial practice, as
two thirds of the surveyed companies adopt them routinely. In this respect, the
availability of well-known automated tools has helped significantly. Architectural
threat analysis is another important pillar of building more secure software and
the above-mentioned BSIMM report mentions that about one third of the sur-
veyed companies use architectural threat analysis techniques, like Microsoft’s
STRIDE [20], attack trees [19], Trike [16], CORAS [11], PASTA [24], threat
patterns [2], to cite a few.
c© Springer Nature Switzerland AG 2018
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Working in collaboration with our industrial partners from the automotive
industry, we noticed that Microsoft’s STRIDE is well-known and often used. In
particular, our partners use the so-called STRIDE-per-element version. In this
version, each component of the software system is considered in isolation and
scrutinized for potential security threats. However, practitioners advocate for
a threat analysis technique that allows them to analyze end-to-end scenarios
where several components interact (e.g., to provide a given functionality). In
this respect, the STRIDE-per-interaction variant could be more appropriate, as
in this variant the analysis has a slightly wider scope and considers the security
threats that might occur in a pair of interacting software components. On the
other hand, there are also truly end-to-end analysis techniques, like for instance
the one proposed by Tuma et al. [23]. From our perspective, it is interesting to
study how these alternative techniques differ across the spectrum (analysis of
isolated components vs analysis of pair-wise interactions vs analysis of end-to-
end scenarios) in terms of performance. In essence, which approach to threat
analysis produces more results in a faster way? Consequently, this study focuses
on the differences between the analysis of isolated components and the analysis
of pair-wise interactions. In current work, we are also comparing the analysis of
isolated components with the analysis of end-to-end scenarios.

In the latest publication by Shostack [20] describing Microsoft’s STRIDE,
the author describes two variants that are dubbed ‘STRIDE per element’ (anal-
ysis of isolated components) and ‘STRIDE per interaction’ (analysis of pair-
wise interactions). A more detailed description of the two is provided in Sect. 2.
In our study, we divide our participants (110 master students) into two treat-
ment groups (Element vs Interaction), each using one of the two variants
of STRIDE to analyze the architectural design of an Internet-of-Things system.
For replication purposes of this study, we have created a companion web-site [1],
where all the material used during the experiment is available. The study ana-
lyzes and compares the effectiveness of the two variants in unearthing security
treats (benefits) as well as the time that it takes to perform the analysis (cost).
We also look into other human aspects which are important to adoption, like
the perceived difficulty in learning and applying the techniques as well as the
overall preference of our participants.

The rest of the paper is organized as follows. Section 2 provides a primer
on the STRIDE variants. Section 3 describes the experiment and states the
research hypotheses. Section 4 presents the results, while Sect. 5 discusses them.
The threats to validity are listed in Sect. 6. Section 7 discusses the related work
and Sect. 8 presents the concluding remarks.

2 Treatments

STRIDE is a threat analysis approach developed to help people identify the types
of attacks their software systems are exposed to, especially because of design-
level flaws. The name itself is an acronym that stands for the threat categories
of Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service
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and Elevation of Privilege. For the definition of threat categories, we refer the
reader to the documentation of STRIDE [20].

Fig. 1. A high-level DFD of the experimental object.

The analysis is based on a graphical representation of the system architecture
as a Data Flow Diagram (DFD). As shown in Fig. 1, a DFD represents how
information moves around in a software-based system. The diagram consists of
processes (active entities), data flows (exchanged info), external entities (e.g.,
users or 3rd parties), data stores (e.g., file system) and trust boundaries.

The first step in applying the STRIDE methodology is to create a DFD using
the available system documentation. The second step is a systematic exploration
of the DFD graph in order to identify the threats. The two STRIDE variants
differ in how this exploration is carried out.

STRIDE per Element. Using this approach, the analyst visits every element
in the diagram (e.g., starting in the top-left corner). For each element type,
STRIDE advises looking into a subset of threat categories. To this aim, STRIDE
provides a table mapping element types to threat categories. For instance, the
Sensor in Fig. 1 is an external entity, therefore according to STRIDE, the analyst
should look into Spoofing and Repudiation threats. For each pair of element type
and threat category STRIDE also provides a catalog of example threats that can
be used for inspiration by the analyst. With reference to the Sensor, one provided
example threat for spoofing a hardware device is IP spoofing.

STRIDE per Interaction. This technique adopts an approach of systematically
visiting the interactions in a DFD. Interactions are patterns of DFD elements
connected via data flows. The analyst has to first identify the interactions. For
instance, “Sensor sends sensor data to Gateway” is a match for the above-
mentioned interaction. For each type of interaction STRIDE again advises look-
ing into a subset of threat categories and provides a catalog of example threats.
For example, when an external entity is passing input to a process, the analyst
is advised to look into Spoofing and Repudiation threats. If there is no logging
in place, the Gateway is able to deny having received sensitive information from
the Sensor.
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3 The Experiment

This section presents the design of a controlled experiment, conducted with
participants in an academic setting.

3.1 Experimental Object

As depicted in Fig. 1, the Home Monitoring System (HomeSys) is a system for
remote monitoring of residential homes. The purpose of this system is to provide
necessary tools for customers to automatically receive and manage notifications
about critical events in their homes. The system consists of a smart home gate-
way which communicates with sensors and actuators and a cloud system which
collects data from the gateways and offers a dashboard to the customers. Sensors
are analog or digital hardware devices that produce measurements and send them
to the gateway. This system includes sensors that detect temperature, humidity,
smoke, etc. Actuators are hardware devices that can receive commands from
the gateway, like for instance, taking a picture, activating a buzzer or flicking
a switch. The gateway is a hardware device which relays measurements to the
cloud (via a 3G or WiFi network) and manages the actuators in the residency.
The HomeSys cloud is a software system that communicates with the gateways
and provides services for the customers, as well the operators of the system.

The system documentation (about 30 pages) includes (1) the description of
the problem domain with scenarios, (2) the requirements of the system and (3)
a hierarchical architectural description documented in UML. For instance, the
documentation includes a UML deployment diagram. The complete description
of the system is available with the experimental material [1]. The participants
worked on the HomeSys system throughout the entire course before entering the
experiment. Therefore, they were very familiar with the object of the experiment
and had enough knowledge about the system to understand the problem and
complete their task.

3.2 Participants

The participants of this study are 110 first-year master students of Software
Engineering, attending a course on “Advanced Software Architecture”, taught
by the experimenters. In order to gather sufficient data, we have repeated the
experiment for two consecutive academic years (2016 and 2017). The partici-
pants performed the assigned tasks in teams. Each year, the participants were
randomly grouped into teams of about 4 students and assigned one analysis
techniques (i.e., treatment groups). In total, we have assigned 14 teams to the
Element and 13 teams to the Interaction treatment.

We have collected information with a short questionnaire before the study
took place to investigate the background of the participants. As shown in Table 1,
it included questions about participants’ work experience and perceived familiar-
ity with task-related concepts. Most participants have had previous experience
in software development outside the university and consider to have adequate



Two Architectural Threat Analysis Techniques Compared 351

Table 1. Answers to the entry questionnaire.

Questions and answers [%]

1. Do you have any working experience in software development outside the university?

Yes (63) No (37)

2. How would you describe your working experience outside the university?

Profit (39) Non-profit (8) Both (27) NA (26)

3. How would you rate your level of expertise as a programmer?

Very insufficient (1) Limited (17) Adequate (58) Advanced (24)

4. How would you rate your level of familiarity with software design, including the use of UML?

Very insufficient (2) Limited (33) Adequate (63) Advanced (2)

5. How would you rate your level of expertise in security?

Very insufficient (16) Limited (65) Adequate (16) Advanced (3)

knowledge about software design and programming. A large majority of the
participants are able to use UML, which is relevant as the study object is docu-
mented in such language. The course does not require background knowledge of
information security, hence the participants consider to have limited expertise
in this area, as expected.

3.3 Task

The teams were presented with the same task on the same experimental object.
The task was divided into two sub-tasks: participants were asked to (1) build
a DFD based on the provided architectural documentation and (2) analyze the
DFD according to the assigned technique.

During the training, participants were provided with guidelines for creating
the DFD. First, they had to create a DFD by mapping the nodes from a given
deployment diagram into DFD elements. Second, the participants had to use the
rest of the documentation (e.g., component and sequence diagrams) to refine the
DFD and identify the data flows. The details of training are available online [1].

The second sub-task required a systematic analysis of the DFD according to
the techniques described in Sect. 2. The analysis results had to be documented in
a report and submitted electronically. The report had to contain a list of iden-
tified threats and corresponding descriptions. Threat descriptions were made
according to a provided template (available online [1]). The purpose of the tem-
plate is to simplify and standardize the analysis of the reports. Note that the
task has been performed during a supervised lab session. In the lab, the teams
were instructed to keep an informal log of the identified threats (lab notes).
The preparation of the official report had to be done after the supervised lab.
However, we have monitored that the reports did not contain more threats with
respect to the work done in the lab (e.g., by taking snapshots in the lab). The
snapshots taken during the lab were compared with the final report to capture
any threats identified outside the supervised lab. We have not recorded any
discrepancies between the snapshots and the reported threats.
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Finally, we asked the teams to keep track of the time they spent. To this aim,
the teams were instructed to use an online time-tracking tool (www.toggl.com)
and submitted their time-sheets electronically at the end of the supervised lab.

3.4 Execution of the Study

The experiment is positioned at the end of a course on software architecture. The
topic covered in the experiment aligns with the course content. Participation in
the study contributes to the teaching objectives of the course, hence participants
were highly motivated. For more details about the experimental material please
refer to the companion web site [1].

Entry Questionnaire. A few weeks before the beginning of the study, the par-
ticipants have been asked to fill in a brief questionnaire about their knowledge
and background (see Sect. 3.2).

Training. As part of training for the experiment, the participants attended 2
lectures (mandatory 4 h of training). In the first lecture (2 h) the participants
got an introduction to secure design and the use of the DFD notation. The
lecture also included a practical exercise on how to build a DFD for a system
of similar size as HomeSys. For the second lecture (2 h) participants were split
according to their assigned treatment group. Each group received a dedicated
lecture explaining the philosophy of STRIDE specific to their treatment group.
In addition, participants received only documentation specific to their treatment
group. This was done in order to limit the problem of treatment diffusion. An
overview of the HomeSys documentation was also given in the second lecture.
The students were more than familiar with the system, but the experimenters
wanted to be sure that they would be able to navigate the documentation without
hiccups. Finally, in a lab session preceding the experiment, the participants were
familiarized with the time-keeping tool.

Supervised Lab. The experiment took place in one lab session of 4 h. The session
was supervised by the authors and two teaching assistants. At the beginning of
the lab, the authors explained the experimental protocol to the participants, e.g.,
by summarizing the task, mentioning all the provided material, and reminding
the participants about the time-tracking tool. Each team was provided with a
printed copy of task description, the relevant book chapters, and the documen-
tation of HomeSys. The teams performed the assigned task and kept track of
their work by writing lab notes.

Report. The participants were given about a week to write a report documenting
the threats they had found during the lab. To this aim, they used their lab notes.
Each report contained a figure of the DFD and a list of identified threats, where
each threat was documented according to a provided template [1]. In particular,
each threat is described with a title, a position in the DFD where the threat
is located, a threat category (STRIDE), required attacker capabilities, and a

www.toggl.com
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detailed description of the threat itself. The participants were also asked to
document their assumptions about the system.

Exit Questionnaire. At the end of the lab session, the participants were asked
to fill in an exit questionnaire. Access to the questionnaire was open for a week
after the lab session had finished, during which time a few reminders were sent
by email. As discussed later, this questionnaire is meant to validate some exper-
imental assumptions (e.g., the participants understood the task and were ade-
quately prepared to carry it out) and to collect additional information about the
treatments (e.g., the perceived difficulty of the tasks).

3.5 Measures

We have collected the measure of effort (in minutes) spent by each team on both
sub-tasks (DFD creation and threat analysis).

We have also collected the measure of true positives (TP ), false positives
(FP ) and false negatives (FN). True positives are reported threats that are
assessed as correct by the experimenters in light of the analyzed DFD and the
security assumptions made by the team. False positives are wrong or unrealistic
threats reported by the team. Finally, false negatives are threats that are present
in the analyzed system but had gone unnoticed by the team.

In order to record the correct threats a “ground truth” has been created by
the first author. Incidentally, we decided to let the teams produce their DFD as
this activity is an integral part of threat analysis in practice. Ergo, the teams
have analyzed slightly different DFDs. A ground truth was built for each team
to ensure a correct evaluation. For each report, the ground truth was used to
identify the correct, incorrect and overlooked threats. In particular, a threat is
considered correct if (1) it is identified at the correct location, (2) it is correctly
categorized, (3) it has some impact on system assets, (4) the description of
the threat agent is correct and (5) the description provided by the team is
realistic from a security perspective and does not contradict their assumptions.
Oftentimes the teams reported the same threat more than once, using a different
title. A threat (either correct or incorrect) that is identified more than once
is marked as a duplicate. Note that duplicated threats are intentionally not
considered as TP or FP .

3.6 Hypothesis

We have adopted a standard design for a comparative study of one independent
variable with two values, i.e., the two treatments of Element and Interaction.
Our study investigates three dependent variables: productivity, precision, and
recall. In this study we define the productivity (Prod) of a team as the number
of correct threats (TP ) per time unit. For each team, precision (P ) is the per-
centage of correctly identified threats out of the total number of reported threats
(TP/(TP +FP )). Recall (R) is the percentage of correctly identified threats out
of the total number of existing threats (TP/(TP + FN)).
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We use the Wilcoxon statistical test to determine whether there is a statistical
difference in the three dependent variables across the two treatment groups.
Accordingly, the null hypotheses are as follows:

HProd
0 : There is no statistically significant location shift between the average

productivity of the two treatment groups.
HP

0 : There is no statistically significant location shift between the average
precision of the two treatment groups.
HR

0 : There is no statistically significant location shift between the average
recall of the two treatment groups.

4 Results

In this section, we present the results of the study and answer to research ques-
tions. All statistical tests have been performed using the two-sample Wilcoxon
test of independence with a level of significance equal to 0.05.

4.1 True Positives, False Positives, and False Negatives

Figure 2 reports the number of TP , FP and FN per treatment group. We
have observed slightly better averages for the Element group, compared to the
Interaction. Namely, the TP is higher (Element: 14.3, Interaction: 11.6),
the average number of FP is lower (Element: 14.2, Interaction: 15) and
the average number of FN is also lower (Element: 8.8, Interaction: 11.8).
However, the analysis shows that there are no significant differences between the
amount of TP , FP and FN across treatments groups.
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Fig. 2. Average time per sub-task and total time of treatment groups (left) and true
positives, false positives, and false negatives (right).

The average number of TP , FP and FN per threat category is depicted in
Fig. 3. Overall, both treatment groups visibly focused less on Repudiation and
Elevation of Privilege threats compared to other threat categories. A statisti-
cal analysis shows that there are significant differences between the TP of the
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Fig. 3. The mean number of identified threats for per element (top) and per interaction
treatment (bottom).

Denial of Service (p-value = 00.02) and Tampering (p-value = 00.007) threat
categories across treatments. For the Denial of Service threat category, the
Element treatment group identified on average more TP (statistically signifi-
cant, p-value = 00.02) and less FN (not significant). For the Tampering threat
category, the Element treatment group identified on average less FN , more
TP (statistically significant, p-value = 00.007), and less FP . This might be due
to the two methods providing different mapping tables (from DFD to threat
categories [20]). The Interaction has a lower rate of mappings to the Denial
of Service threat category (8/72 = 11% vs 3/20 = 15%). We have also com-
puted the recall when the Denial of Service threats are removed. The results
stay similar to what is reported in Fig. 4, i.e., the median recall is not “driven”
by the Denial of Service category. Incidentally, there is a similar situation in the
mappings for the Tampering category (3/72 = 4% vs 3/20 = 15%). Identified
threats from other categories do not differ across treatment groups.

4.2 RQ1: Productivity

As shown in Fig. 2, the average time spent by the teams performing STRIDE per
element is 3.5 h, whereas the average time spent per teams performing STRIDE
per interaction is 3.95 h (not statistically significant). There is a noticeable dif-
ference between time spent on the sub-tasks, with the analysis time being dom-
inant. When looking at differences across the treatments, the Element group
was on average faster in performing both sub-tasks (not statistically significant).
It is interesting to notice, that even though both treatments followed the same
guidelines for DFD creation, the Interaction group created on average DFDs
with more elements (discussed in Sect. 5).

The overall productivity of a technique depends on the amount of correctly
identified threats (TP ). The average productivity of the Element group is
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4.35 TP/h1. The Interaction group turned out to be less productive (3.27
TP/h). However, the difference is not statistically significant and, hence, the
null hypothesis HProd

0 cannot be discarded.
As a possible explanation for lower productivity of the Interaction treat-

ment, we highlight that the documentation of the STRIDE per interaction vari-
ant is more complex with regard to mapping threats to interactions. As men-
tioned by Shostack, “STRIDE-per-interaction is too complex to use without a
reference chart handy” [20]. Such a reference chart was available to the partici-
pants, yet the complexity might still have been too high.

4.3 RQ2: Precision

Figure 4 presents the precision (i.e., the correctness of analysis) of the two treat-
ment groups as an aggregate (left-hand side) and across each individual threat
category (right). Overall, the mean precision is 0.60 for both treatment groups.
Therefore, null hypothesis HP

0 cannot be rejected. We have also analyzed the dif-
ferences in precision within threat categories. There is a statistically significant
difference in the precision of Tampering threats (Element: 0.58, Interaction:
0.81, p-value = 00.027). A difference can also be observed for the Denial of Ser-
vice category (not statistically significant).
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Fig. 4. Precision (left) and recall (right) aggregated across threat categories.

4.4 RQ3: Recall

Shostack states that the “STRIDE-per-interaction leads to the same number of
threats as STRIDE-per-element” [20]. Yet in our study, the number of reported
threats was higher for the Element treatment, especially the number of FP
(see Fig. 2). Figure 4 presents the recall (i.e., completeness of analysis) of the
two treatment groups as aggregate (left-hand side) and across each individual
threat category (right). The average recall for the Element treatment is 0.62,
whereas the average recall of the Interaction is 0.49. The difference is sta-
tistically significant (p-value = 0.028). Therefore, null hypothesis HR

0 can be

1 Scandariato et al. [18] reported an average productivity of 1.8 TP/h.
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rejected. We have also analyzed the differences within each threat category and
found a statistically significant difference in the recall of the Denial of Service
category (Element: 0.55, Interaction: 0.34, p-value = 00.014). One possible
explanation relates to the fact that the Element group tends to create smaller
DFDs, as discussed in Sect. 5. Alternatively, the difference could be linked to the
fact that the threat examples in the documentation are more extensive in case of
the Element treatment and the documentation of the Interaction treatment
is more complex to navigate (as mentioned in Sect. 4.2). These are interesting
hypotheses for future studies.

4.5 Exit Questionnaire

In summary, the two treatments displayed a statistically significant difference
only with respect to recall, with the Element group reporting more complete
results (13% better). It is also important to appreciate how the two variants
are perceived by the participants. This could have an impact on the successful
adoption of the technique and, hence, become a deciding factor beyond the
performance indicators investigated in the three research hypotheses.

To this aim, we asked the participants to fill in a questionnaire at the end
of the experiment. Due to space limitations, the questions and the answers are
not shown here. They are available on the companion web-site [1] under the
“Questionnaires” tab. To investigate differences across the treatment groups, we
have performed a Cochran-Mantel-Haenszel test (similar to the Chi-square test)
with a level of significance equal to 0.05.

In general, participants from both treatment groups agreed about having
a clear understanding of the task, though they were sufficiently prepared and
were familiar with the experimental object. Overall the task was not too dif-
ficult, while the first sub-task of creating the DFD was perceived easier than
the second sub-task of analyzing the DFD (for both treatments). According
to the documentation, “STRIDE per element is a simplified approach designed
to be easily understood by the beginner” [20]. This implies that STRIDE per
interaction is perceived by Microsoft as the technique to be used in production.
However, according to our results, the techniques are the same (i.e. per element
is not simpler than per interaction) in terms of productivity and precision. Con-
cerning the learnability, the teams from both treatment groups agreed that the
techniques they used were easy to understand and learn (no significant differ-
ences). Although the teams were given sufficient time to carry out the task, both
treatment groups perceived the techniques as lengthy and tedious.

The participants from both treatment groups mostly believed that 50–75% of
their identified threats were correct. This is a fairly accurate estimation according
to the observed precision in this study (0.6). Interestingly, participants were
slightly less confident about the completeness of their analysis. The aggregate
recall over all teams (regardless of the treatment group) is 0.5 and only less
than half of the participants (47.7%) have this perception. Finally, participants
generally liked the technique they used but were not especially fond of it either.
No significant differences were observed across treatments.
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5 Discussion

DFD. The participants followed precise guidelines for DFD creation [1]. As
such, the created DFDs have limited variability as well as consistent quality,
e.g., we did not find many mistakes in the DFDs. In this study, we have made
a deliberate choice to minimize the influence of the DFD creation (common
to both treatments) and focus on the alternative techniques of analyzing the
DFD (the key difference between the treatments). Figure 5 depicts the number
of DFD elements in the models created by the teams. On average, the teams
created DFDs with about 26 data flows, 6 processes, 4 data stores, 3 external
entities, and 3 trust boundaries. A few differences can be noted. On average,
we observed a smaller number of DFD elements in the Element group (37.4)
compared to the Interaction group (41.9). This difference is consistent across
the different element types, yet not statistically significant.
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Fig. 5. The average number of DFD elements (DF=data flows, PN=process nodes,
DS=data stores, EE=external entity, TB=trust boundaries) (left) and the average
number of duplicated threats (right).

Mistakes. As reported in Fig. 5, the teams sometimes reported several threats
more than once. Duplicated threats are considered to slow down the analysis
process, especially during threat prioritization. Note that the results about pro-
ductivity (see Sect. 4.2) are not affected by duplicates, as they were discarded.

Most commonly, threats are duplicated due to (i) threat ‘fabrication’ or (ii) a
misuse of the reduction technique. We consider threat fabrication as mistakenly
identifying threats in order to achieve complete coverage of the STRIDE category
mapping table. Proposed by STRIDE, threat reduction is a technique that aims
towards minimizing the number of DFD elements that have to be analyzed.
In particular, the reduction enables coupling the elements of the same type in
order to analyze them at once. In other words, the threats identified for one
DFD element may apply to other elements of the same type.

About 30% of all reported threats were duplicated. Of those, the major-
ity belonged to the Element group (65%). The mean number of duplicated
threats identified by the Element teams is bigger (6) than the Interaction
teams (5) (not statistically significant). However, there is a significant differ-
ence in the amount of Tampering duplicates across treatments (Element: 6.27,
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Interaction: 1.67, p-value = 0.042). Incidentally, we also observed more Spoof-
ing duplicates in the Interaction treatment. A possible explanation for fewer
duplicates in the Interaction group is that the notion of interaction patterns
might lend itself useful to a correct use of the reduction technique.

Interestingly, we observed that most teams correctly identified more outsider
threats than insider threats. Very often, the reported insider threats were just
unrealistic and assessed as false positives.

Analysis Focus. Overall (including duplicated threats and FP ), both treat-
ment groups have focused their analysis on ‘border’ elements of the system,
as well as the data flows that pierce through trust boundaries. The reports of
the Element treatment group contain more threats to processes, external enti-
ties, and data stores compared to threats to data flows. In contrast, the reports
of the Interaction treatment group contain more threats to data flows com-
pared to threats to other types of DFD elements. In general, all teams were more
likely to identify correct threats to the data flows crossing a trust boundary. This
confirms the usefulness of using trust boundaries to focus the attention of the
analyst. However, there is a lack of precise guidelines for how and where trust
boundaries should be placed, as our teams showed uncertainties in this regard.
The teams were more likely to falsely identify threats (FP ) to processes and data
stores. The participants found the most commonly known threats (e.g., phish-
ing, SQL injection, stealing for credentials or account). Coincidentally, these
are more commonly identified on data flows. Correctly identifying a Tampering
threat to a data store within system boundaries would mean finding a way to
by-pass the system access control or even overcome obstacles like file-locking
or other system defenses. This kind of threat requires correct assumptions and
more security background. Unfortunately, most teams did not document many
(if any) assumptions.

6 Threats to Validity

The time spent for performing the task was measured by the participants them-
selves. To mitigate this threat, we have continuously reminded the participants
to pause and continue measuring time during breaks. The amount of work that
was reported was consistent with the reported time, which indicates that this
is a minor concern. The use of student participants instead of professionals is a
potential issue threatening the generalization of results. This kind of population
sampling is sometimes referred to as convenience sampling [25]. It is considered
controversial due to certain drawbacks [3]. However, studies have shown [6,15,17]
that the differences between the performance of professionals and graduate stu-
dents are often limited. The experiments were conducted by using teams of
3–5 students, which threatens the generalization of results to a single analyst.
Nonetheless, the state-of-the-art [7,20,22] advises sound-boarding the analysis
with a team of experts in the industrial setting as well. This is what happens in
the medium-to-large companies we collaborate with. Finally, the results of this
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study may be influenced by the experimental object and in turn, may not be
applicable to a system of different complexity or from a different domain.

Possible mistakes might have been made during the assessment of the reports
and during the creation of the ground truth. In order to avoid over-loading the
participants and make them tired, the supervised experiment was performed in
a span of 4 h. Additional time was given for documenting the identified threats
outside the supervised lab. The teams were not monitored after the experiment
has ended, however, we have made sure that the final report included only the
threats in the lab notes (e.g., by taking snapshots in the lab).

7 Related Work

McGraw conducted a study including 95 well-known companies [12]. The study
analyzes the security practices that are in place in the companies. The BSIMM
model does not mention STRIDE per se, rather it highlights the importance of
threat analysis. Microsoft has not published evidence of the effectiveness of the
STRIDE variants analyzed in this paper. Guidelines, best practices, and short-
comings are discussed, yet there is no evidence about how the two approaches
differ in terms of performance [20].

Scandariato et al. [18] have analyzed a previous version of STRIDE-per-
element and evaluated the productivity, precision, and recall of the technique
in an academic setting. The purpose of their descriptive study was to provide
an evidence-based evaluation of the effectiveness of STRIDE. Our study, on
the other hand, provides a comparative evaluation (by means of a controlled
experiment) of the two latest approaches for STRIDE. Also, our study has a
larger number of participants and uses a larger object. We remark that our
study has some discrepancies with respect to the observed productivity (4.35 in
our study vs. 1.8 threats per hour), precision (0.6 vs. 0.81), and recall (0.62 vs.
0.36). However, a direct comparison is not entirely possible, as the two studies
use different versions of STRIDE-per-element (our being the most up-to-date).

A privacy oriented analysis methodology (LINDDUN [4]) has been evaluated
with 3 descriptive studies [26]. LINDDUN is inspired by STRIDE and is com-
plementary to it. Both techniques start from a representation of a system, which
is described as a DFD. Similarly, the authors assess the productivity, precision
(correctness) and recall (completeness) of the technique, as well as its usability.

Labunets et al [10] have performed an empirical comparison of two risk-
oriented threat analysis techniques by means of a controlled experiment with
students. The aim of the study was to compare the effectiveness and perception
of a visual technique with a textual technique. The main findings were that the
visual method is more effective for identifying threats than the textual one, while
the textual method is slightly more effective for eliciting security requirements.

The work of Karpati, Sindre, Opdahl, and others provide experimental com-
parisons of several techniques. Opdahl et al. [14] measure the effectiveness, cov-
erage and the perception of the techniques. Karpati et al. [8] present an experi-
mental evaluation of MUC Map diagrams focusing on identification of not only
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vulnerabilities but also mitigations. Finally, Karpati et al. [9] have experimen-
tally compared MUCs with mal-activity diagrams in terms of efficiency.

Diallo et al. [5] conducted a descriptive comparison of MUCs, attack trees,
and Common Criteria [21]. The authors have applied these approaches to the
same problem and discuss their observations about the individual technique’s
strengths and weaknesses. An interesting evaluation of the reusability of threat
models (MUC stubs and MUC Maps diagrams, both coupled with attack trees)
is presented by Meland et al. [13]. The authors conducted an experiment includ-
ing seven professional software developers. The study suggests that overall, the
productivity is improved by reusing threat models for both techniques.

8 Conclusion

This study has presented an empirical comparison of two variants of a popular
threat analysis technique. The comparison has been performed in-vitro by means
of a controlled experiment with master students. As presented in Sect. 4, this
work provides reproducible analysis and observations about the effectiveness of
applying both techniques, in terms of productivity, precision and recall. In sum-
mary, with the type of population used in this study (non-experts), our study
observed better results with the STRIDE-per-element variant. For instance,
STRIDE-per-element yielded 1 additional threat per hour in terms of productiv-
ity, with no consequences on the average correctness of the results (i.e., same pre-
cision). The proponents of STRIDE have claimed that “STRIDE-per-interaction
leads to the same number of threats as STRIDE-per-element” [20]. However, in
this study, we have observed a statistically significant higher level of completeness
in the results returned by the teams using STRIDE-per-element. This is possi-
bly influenced by the tendency of the STRIDE-per-interaction group to create
larger DFD models, which might not be necessarily needed. Another explanation
is related to the more complex documentation in the case of the Interaction
treatment. As security budgets are quite tight in companies, knowing that one
variant might be more productive is a useful piece of information.

This work calls for future studies about the effectiveness of the threat analysis
variants, especially with more expert analysts. In particular, we are planning a
case study in two companies where the local, per-element analysis is compared
to a global, end-to-end analysis. Furthermore, it would be beneficial to study
the effect on the importance (in terms of risk) of the discovered threats, as well
as the quality of the of security requirements that are derived from them.
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Abstract. With recent big data analytics (BDA) proliferation, enter-
prises collect and transform data to perform predictive analyses in a scale
that few years ago were not possible. BDA methodologies involve busi-
ness, analytics and technology domains. Each domain deals with different
concerns at different abstraction levels, but current BDA development
does not consider the formal integration among these domains. Hence,
deployment procedure usually implies rewriting code to be deployed on
specific IT infrastructures to obtain software aligned to functional and
non-functional requirements. Moreover, previous surveys have reported a
high cost and error-prone transition between analytics development (data
lab) and productive environments. This paper presents ACCORDANT,
a domain specific model (DSM) approach to design and generate data
analytics solutions bridging the gap between analytics and IT architec-
ture domains. To validate the proposal’s feasibility and usability, a proof
of concept is developed and evaluated.

1 Introduction

With recent big data and data science proliferation, enterprises collect and trans-
form data to carry out predictive analyses in a scale that few years ago were not
possible. The convergence of Internet of things (IoT), No-SQL databases, dis-
tributed computing, data streaming and machine learning (ML) enables us to
extract insights from raw data to add value to the business.

The development of big data analytics (BDA) solutions involves three knowl-
edge domains: business, analytics and technology. In the business domain, busi-
ness experts have to define business goals and quality scenarios to drive ana-
lytics projects. In the analytics domain, these business goals are translated into
specific analytics tasks by data scientists. Finally, in the technology domain,
software architects make decisions in terms of tactics, patterns and deployment
considerations keeping in mind quality attributes.
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In each domain, stakeholders (i.e. business experts, data scientists and soft-
ware architects) deal with cross-cutting concerns at different abstraction lev-
els. Due to the lack of techniques and tools to enable articulation and inte-
gration of such domains, BDA solutions development presents a high cost and
error-prone transition between development and productive environments [1,2].
Though there is a growing interest of companies in big data adoption, real deploy-
ments are still scarce (“Deployment Gap” phenomenon).

In the same vein, recent surveys [3,4] have reported that only 13% analytics
solutions are “always” deployed, 50% “most of the time”, and about 33% “some-
times” or less often. Forty percent of respondents report noticeable delays (weeks
or months) in time-to-market. In short, BDA deployment presents problems in
model translation, interoperability and stakeholders’ communication. These pit-
falls are the result of the traditional approach of BDA development where data
scientist produce models as source code implemented using ML-driven tools
which are focused on analytics perspectives within a controlled environment
(data lab). On the other hand, IT architects have to translate these models into
software products what it usually implies rewriting code to obtain productive
software components deployed on specific IT infrastructures.

Domain Specific Modeling (DSM) is an approach to tackle these concerns.
Therefore, we propose ACCORDANT (An exeCutable arChitecture mOdel foR
big Data ANalyTics) a DSM approach to design BDA solutions bridging the gap
between analytics and IT domains. The specific objectives of this research are:
(i) to design a DSM to describe analytics and deployment components for BDA
solutions. (ii) To implement a prototype to diagram ACCORDANT models. (iii)
To validate our proposal using a proof of concept from real life analytics project.
We follow the Design Science Research methodology (DSR) due to its recognized
application in information systems and computer science research [5].

The remainder of the document is organized as follows. Section 2 introduces
the background. Section 3 synthesizes the related work. Section 4 offers the pro-
posal overview. Section 5 describes the evaluation and Sect. 6 offers the prelimi-
nary results. Finally, Sect. 7 draws the conclusions and future work.

2 Background

2.1 Domain Specific Modeling (DSM) in Software Architecture

Domain Specific Modeling enables software to be modular and resilient to
changes through the separation of concerns principle by specifying technology–
agnostic concepts, relationships and constraints within the domain. An impor-
tant advantage of DSM is the close mapping problem and solution domains to
provide code generation. Moreover, DSM can speed up and optimize the code
generated for the specific platform improving the productivity.

Regarding representations, DSM can be expressed in graphical, textual or
mixed notation according the domain context. It is possible to embed multiple
views or aspects (for example analytics, architecture and deployment) within
the domain using different representations which share some elements or links.
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2.2 Big Data Analytics Deployment

BDA deployment implies putting the analytics model in productive environ-
ments ready to be in continuous operation. Specifically, this phase involves sys-
tem’s architecture definition and how software components will be deployed on
technological infrastructure to fulfill the quality scenarios.

The inputs for the deployment phase are the analytics transformations and
models built and validated during data preparation, model building and model
evaluation. The activities involved in deploy phase range across quality scenarios
definition, architecture design, software development, testing, software deploy-
ment in computational nodes, and monitoring. Due to the multidisciplinary
nature of DBA deployment, different concerns require views and languages.

To offer a smooth transition and interoperability among analytics tools, open
standards such as PMML (Predictive Model Markup Language) [6] have been
proposed to enable transformations and models interchange. Due to the wide use
of these specifications, they are considered de-facto standards of interoperability.

2.3 DevOps and Infrastructure as Code (IaC)

DevOps (Development and Operation) seeks to reduce the separation between
development and operation aiming to an automated deployment process. This
automatic deployment includes provision of computing resources ready to use.
Consequently, the approach of Infrastructure as Code (IaC) supports the DevOps
goal dealing with automatic provisioning of computing resources.

3 Related Work

Previous works have proposed methodologies, techniques and tools to integrate
analytics and architecture in BDA projects. Indeed, some works have tackled
DSM to describe BDA solution.

Gribaudo et al. [7] propose a modeling framework for performance evalua-
tion of systems running applications based on lambda architecture. This mod-
eling framework allows to define stream, batch, storage, computation nodes,
computation stages along with performance indices to be simulated and evalu-
ated. Huang et al. [8] introduce a model to design, deploy and configure Hadoop
clusters through architecture metamodel and rules which describe BDA infras-
tructure and deploy automation. Guerriero et al. [9] introduce a DSM offering
Big Data design which comprises data, computation, technology-frameworks and
deployment concepts. All these works are focused on design, deploy and eval-
uation of BDA technology infrastructures. However, they leave out functional
analytics models to get a integrated BDA solution.

On the other hand, some works have presented DSM to model analytics
functions, however they do not tackle architecture and deploy considerations.
Breuker in [10] offers initial conceptualization of a DSM and code generation for
visual representations of probabilistic models. Lechevalier et al. [11] introduce a
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DSM framework for predictive analytics of manufacturing data using Artificial
Neural Networks (ANN) to generate analytics models. Sujeeth et al. present in
[12] OptiML, a DSL for machine learning which describes analytics functions
using a statistical model which cover a subset of ML algorithms, this analytics
functions are analyzed and optimized before the code generation. Qualimaster
Project [13] is an approach for systemic risks analysis in financial markets using
self-adaptation in big data stream processing.

4 Proposal

ACCORDANT bridges the gap of data lab and production environment tran-
sition using a domain specific modeling (DSM) for both data scientists and IT
architects to describe and integrate their concerns.

This approach looks for offering an extension for DevOps practice, starting
from architectural artifacts, instead of source code, for operation deployment.
We call this approach: “ArchOps”, because we believe that architectural models
are first-class entities in software development, deployment and operation.

This proposal is composed by seven steps depicted in Fig. 1: (1) quality sce-
narios definition, (2) ML models and transformations development (PMML spec-
ifications), (3) Functional Viewpoint design, (4) Deployment Viewpoint design,
(5) code generation, (6) deployment and (7) software solution monitoring. In
the proposed DSM, we include the Functional Viewpoint (FV ) and Deployment
Viewpoint (DV ) proposed by Rozanski and Woods in [14]. Figure 2 offers a high-
level view of ACCORDANT metamodel along with its internal viewpoints.

Fig. 1. Proposal overview

Quality scenarios (QS ) include specific and measurable quality requirements
described by source, stimulus, environment, artifact, response and measure. QS
are defined by business and IT experts to achieve business goals.



368 C. Castellanos et al.

Models and transformations contain the artifacts already developed by data
scientists using diverse tools within the scope of data lab. Data transforma-
tions and models are exported to technology-neutral XML format (conforms to
PMML) to be used in the FV as analytics building blocks. Both PMML trans-
formations and models have associated a mining schema which describe the data
features (inputs and outputs).

Functional Viewpoint (FV) constitutes analytics workflow in terms of inges-
tion, preparation, analysis and exporting building blocks. FV deals with func-
tional requirements to achieve the expected result in analytics projects, and the
constructs are described in technology-neutral way, as detailed in Fig. 2. These
workflows are described in a component-connector structure which includes
Ingestor of raw data from source, Transformer, Estimator, Sink components, and
Connectors. Estimator and Transformer are the software component realizations
of PMML model and data transformer respectively, and the PMML defines their
behavior. A Component has provided and required Interfaces which enable com-
munication with Connectors. The data structure of Interfaces is inferred from
PMML mining schema. Furthermore, Connectors transfer data or control flow
among components, hence we include a set of connector types: Event, DataAc-
cess, Stream, Arbitrator and Adaptor following the classification proposed by
Taylor et al. in [15] and BDA requirements.

Fig. 2. ACCORDANT metamodel overview

Deployment Viewpoint (DV), depicted in Fig. 2, specifies Devices and exe-
cution environments (ExecEnvironment) where the Artifacts are deployed. An
Artifact is assigned to functional elements (components and connectors) through
interviewpoint mappings (in purple). Additionally, to fullfill the QS, an QASpec
determines the quality attribute’s requirements for an Artifact. In this way, the
same FV model can be deployed in different DV models.
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The Code generation takes PMMLs, FV and DV models designed in previ-
ous steps and uses model-to-text transformations to generate executable code.
To do this, it is necessary to select the target technology manually for each
component/connector Artifact regarding its QASpec. DV model also contains
the required details for infrastructure provisioning and the ExecEnvironment-
Artifact assignments. The transformations produce two kind of code: (i) source
code (data transformations, estimators, ingestor/sink components and connec-
tors) and (ii) deployment code (IaC).

In the Deployment step, IaC previously generated is executed to provisioning
technology infrastructure. Generated software code is installed on such infras-
tructure according ExecEnvironment-Artifact assignment. As a result, a BDA
solution is running on productive environment aligned to QS.

Finally, analytics software solution running in a specific infrastructure can
be monitored against QS to measure how quality attributes are achieved.

5 Evaluation

We built a proof of concept to evaluate the technical feasibility and usability
implementing an experiment. The prototype is a web interactive diagramming
editor to describe FV and DV.

The use case implemented is related to delay prediction of a public transport
service at Vancouver. Bus trips data are collected from realtime API of Vancou-
ver Transport Operator1. We evaluate the interaction of data scientist and IT
architect by means of a proof of concept. Data scientist trains and evaluates a
regression tree model using a data science-driven tool (Scikit-learn). The model
predicts the delay depending of a set of features such as bus trips, routes, stops
and time). As a result, this model is exported to PMML.

The QSs are defined by IT architect in terms of performance and modifia-
bility attributes. The first QS specifies that users make 1000 requests to delay
prediction service under operations without load, and the responses must have
an average latency lower than 2 s. Second QS states that when data scientist
produces a new version of the predictive model (new PMML file), it must be
updated at runtime in 10 s.

The architect designs FV and DV models defining two tactics oriented to
tackle modifiability and performance scenarios: Tactic 1 ) trip data are collected
from Translink API, using an Ingestor component, and delivered to Estimator
component through an Event connector. The Estimator component contains the
PMML regression tree model. Estimator component receives incoming data and
produces the delay prediction. Then, this delay prediction is sent via second
Event connector to be stored in a MongoDB collection (Sink). Tactic 2 ) is
similar to Tactic 1, but DV model includes horizontal scaling (2 instances) of
Estimator artifact for load balancing of prediction requests.

1 https://developer.translink.ca/.

https://developer.translink.ca/
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The scope of this proof of concept is limited to use the following target
technologies: Kubernetes2 (IaC) OpenScoring3 (web server for PMML mod-
els), Kafka (pub/sub message queue) and MongoDB (NoSQL database) drivers.
OpenScoring allows to publish PMML files as REST web services. Kubernetes is
used to manage infrastructure’s provisioning through IaC. Therefore, code gen-
eration (model to text transformations) are implemented only for OpenScoring
(Estimator), Kafka (Event connector) and MongoDB (Ingestor/Sink).

We compare the development and deployment time of the use case using
traditional approach versus ACCORDANT. In the traditional approach, the
model trained by data scientist is recoded as Java component and deployed
as a REST service. Kafka Connectors and MongoDB driver are developed and
configured manually. Once software components are developed, the deployment
process uses Kubernetes.

6 Preliminary Results

After the experimentation, we obtained results in terms of feasibility, ease of
use and effectiveness. ACCORDANT allows to design BDA solution integrating
analytics models and architectural decisions. Also, ACCORDANT enables to
express different concerns and integrate them by means of ACCORDANT view-
points. The software implementation and deployment are accelerated avoiding
recoding and bugs thanks to automatic code generation. Design the whole BDA
solution (FV and DV models) on ACCORDANT, and the real deployment using
Kubernetes takes 25 min reducing the time-to-market compared to traditional
approach which takes 150 min.

Regarding the quality scenarios, both Tactic 1 and Tactic 2 fulfill the modifi-
ability scenario enabling to update analytic model at runtime in 10 s by means of
OpenScoring REST services. Although both tactics achieve time responses aver-
age lower than 2 s, tactic 1 presents a better performance (1,328 ms) than tactic
2 (1,785 ms). The monitoring shows a higher latency when prediction results are
stored in MongoDB through driver. It could imply that more Estimator instances
could overload the MongoDB access generating a slight additional latency; there-
fore, scaling of Estimator component should require to scale the other associated
components.

7 Conclusions

We present a DSM approach in BDA deployment which enables to deliver BDA
solution in production avoiding software recoding. Furthermore, we could reduce
time-to-market and programming errors along with speeding up the tactics
design and infrastructure provisioning. We validate the feasibility and use of the
DSM proposed through experimentation with a case study and proof of concept.

2 https://kubernetes.io/.
3 https://openscoring.io/.

https://kubernetes.io/
https://openscoring.io/
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The building of DSM editor is time consuming, and the customization is not
easy. Hence, we are going to explore models@run.time frameworks to improve
and accelerate the prototypes building. In some cases, PMML transformation
are not enough (e.g. join functions) to implement an whole solution, so PMML
could be extended including new functions to broaden the spectrum of usability.
Improvement in terms of technologies catalog and automatic monitoring of QS
can be developed in future iterations. The selection of target technology for
connectors and components could be supported using recommender system or
heuristics rules based on the quality attribute specification of each artifact.

Finally, a deeper and more rigorous evaluation is necessary to evidence that
an artifact is both applicable and useful in practice from three realities: real
tasks, real systems, and real users.
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