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Abstract. Machine learning methods present unprecedented opportu-
nities to advance our understanding of the connectomics of brain disor-
ders. With the proliferation of extremely high-dimensional connectomic
data drawn from multiple neuroimaging sources (e.g., functional and
structural MRIs), effective feature selection (FS) methods have become
indispensable components for (i) disentangling brain states (e.g., early
vs late mild cognitive impairment) and (ii) identifying connectional fea-
tures that might serve as biomarkers for treatment. Strangely, despite
the extensive work on identifying stable discriminative features using a
particular FS method, the challenge of choosing the best one from a
large pool of existing FS techniques for optimally achieving (i) and (ii)
using a dataset of interest remains unexplored. In essence, the question
that we aim to address in this work is: “Given a set of feature selection
methods {FS1, . . . , FSK}, and a dataset of interest, which FS method
might produce the most reproducible and ‘trustworthy’ connectomic fea-
tures that accurately differentiate between two brain states?” This paper
is an attempt to address this question by evaluating the performance of
a particular feature selection for a specific data type in fulfilling cri-
teria (i) and (ii). To this aim, we propose to model the relationships
between a set of FS methods using a multi-graph architecture, where
each graph quantifies the feature reproducibility power between graph
nodes at a fixed number of top ranked features. Next, we integrate the
reproducibility graphs with a discrepancy graph which captures the dif-
ference in classification performance between FS methods. This allows
to identify, for a dataset of interest, the ‘central’ node with the highest
degree, which reveals the most reliable and reproducible FS method for
the target brain state classification task along with the most discrimina-
tive features fingerprinting these brain states. We evaluated our method
on multi-view brain connectomic data for late mild cognitive impair-
ment vs Alzheimer’s disease classification. Our experiments give insights
into reproducible connectional features fingerprinting late dementia brain
states.
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1 Introduction

Neurological and neuropsychiatric disorders, including Autism spectrum disor-
der (ASD), Alzheimer’s disease (AD) or Mild Cognitive Impairment (MCI), are
distinctive conditions that affect the morphology, cognition, and function of the
brain. Understanding the connectomics of these brain disorders [1] can help
improve diagnosis, prognosis, and patient treatment. To this aim, several works
leveraged machine learning techniques [2–4] as well as graph analysis techniques
[5] to discover distinctive brain features which reliably differentiate between nor-
mal subjects and disordered patients. These might serve as biomarkers, which
can be targeted for developing efficient treatment. Due to the high dimensional-
ity of connectomic data, many machine learning methods embed feature selec-
tion (FS) techniques to effectively reduce the dimensionality of data samples by
selecting a subset of highly relevant features. Despite the great progress made
over the last decade in devising robust and accurate FS methods [6], developing
a new approach that would produce the best classification results and identify
the most reliable feature for all data types seems to be an intractable problem.
In fact, the ongoing proliferation of multi-source medical data, including struc-
tural and functional magnetic resonance imaging (MRI) data collected for the
human brain connectome project [7], presents unprecedented challenges to devise
feature selection methods that generate reproducible biomarkers across different
data sources. This is because each data source has its unique characteristics and
statistical distribution that might not match that of another data source. Hence,
identifying the best feature selection method that unravels the inherent traits of
a particular dataset remains a major challenge.

Despite the great potential that many FS methods hold for identifying con-
nectomic biomarkers for neurological disorders (e.g., Tourette Syndrome, ASD)
[8–10], training on small datasets comes with its limitations including an observ-
able variability of most discriminative features. Being able to rely on a stable
FS method that is ‘optimal’ for a specific dataset would constitute a radical
change for detecting disordered brain changes through the connectome data.
Our hypothesis is that the best performing FS method for a dataset of interest
might not be optimal for a different dataset in terms of classification accuracy
and feature reproducibility. To the best of our knowledge, existing FS assessment
criteria have mainly focused on the stability criteria [11,12], which quantifies the
sensitivity of feature selection methods to variations in the training set. However,
this does not assess the suitability of the ‘selected’ FS method for a particular
dataset. Basically, the question that we aim to address in this work is: Given
a set of feature selection methods {FS1, . . . , FSN}, and a particular dataset,
which FS method might produce the most reproducible and ‘trustworthy’ con-
nectomic features that accurately differentiate between two brain states (e.g.,
demented vs healthy)?

In contrast to methods focusing on boosting the accuracy of FS methods
[13] in classifying different brain states, our primary goal is not to maximize
individual-level classification accuracy but to identify the best FS method that
will produce reproducible brain features associated with a specific brain disorder
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(i.e., potential biomarkers) for a particular dataset. To do so, given a set of FS
methods, we first model the relationship between FS methods using a set of
graphs, each graph quantifies the feature reproducibility power between neigh-
boring nodes at a fixed number of top ranked features (i.e., a ‘feature threshold’
K). The weight of an edge connecting two FS nodes in the graph captures the
overlap in top K ranked features. Next, we generate a discrepancy FS graph,
where the strength of an edge connecting two FS nodes encodes the absolute dif-
ference in their classification accuracy. Ultimately, by merging all reproducibility
and discrepancy graphs, we generate a holistic graph which allows the identify
the central FS method with most reproducible features in relation to other FS
methods in the graph. More importantly, the selected central FS method will be
used to identify the most meaningful and reproducible connectomic features for
a brain disorder of interest.

2 Multi-graph Based Identification of Data-Specific
Feature Selection Method for Reproducible
Discriminative Feature Discovery

In this section, we introduce the proposed pipeline to identify the FS method
that produces ‘the most agreed upon’ features for distinguishing between two
groups drawn from a connectomic data of interest. Fig. 1 displays the key steps
of our framework.

Multi-view Connectomic Feature Extraction. Each brain is repre-
sented by a set of nv networks {Vi}nv

i=1, each encoding a particular view of
the connectional brain construct. To train our classification model based on the
identified FS method, we define a feature vector vk for each brain network view
k, whose elements belong to the off-diagonal upper triangular part of the corre-
sponding connectivity matrix (Fig. 1).

FS-to-FS Multi-graph Construction. Given a particular data view, we
aim to identify the best feature selection method that gives the most reproducible
and reliable features allowing to tease apart two brain states. We hypothesize
that the most reliable FS method is able to reproduce the majority discriminative
features identified by other methods, thereby achieving the highest consensus
with other FS methods. The most appealing characteristic of the approach is
that it evaluates the importance of a given FS method while considering a set
of FS methods at a given cut-off threshold K representing the number of top
K ranked features selected to train the classifier (e.g., support vector machine
–SVM). Given a set of N FS methods F = {FS1, . . . , FSN}, we construct an
undirected fully-connected graph GK = (VK , EK); VK is the set of nodes, each
nesting an FS method in F , while EK represents weighted edges, which model
pairwise overlap in top K features among FS methods. By varying the cut-off
values K, we define a set of graphs G (or multi-graph) that model the overlap
between FS methods at different levels. Next, for easily merging the generated
multiple graphs, we represent each GK as a similarity matrix SK (Fig. 1), where
each element SK(i, j) denotes the overlap in top K ranked features between
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Fig. 1. Proposed data-specific feature selection method identification pipeline. For each
subject, we define connectomic feature vectors, each derived from a particular brain
view. We note that the performance of different FS methods varies with data types.
Given a particular data view, we define multiple graphs, each represented as a similarity
matrix modeling the consensus in top K ranked features among other selection meth-
ods. Next, we define a accuracy discrepancy matrix measuring the pairwise absolute
difference in average accuracy between FS methods. By merging consensus similarity
defined at multiple thresholds K with the accuracy discrepancy matrix, we generate a
final matrix S. The best FS method for the dataset of interest is defined as the node
with the highest centrality in S, thereby allowing to identify the most reproducible
features distinguishing between two brain states (e.g., healthy vs disordered states).
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FS methods i and j. We generate an average similarity matrix S̄ by merging
all similarity matrices across all thresholds, thereby capturing the average FS
method consensus with other methods.

FS-to-FS Accuracy Discrepancy Matrix Construction. Since classi-
fication accuracy influences the credibility of the produced distinctive features,
we propose to model the relationship between FS methods in terms of discrep-
ancy in average classification accuracy. Hence, we define an average accuracy
discrepancy matrix Ā, where the cost Ā(i, j) of an edge connecting two nodes i
and j is defined as Ā(i, j) = |āi − āj |, where āi represents the average accuracy
of FS method i at different cut-off thresholds. Next, we merge both Ā and S̄ to
output the final FS similarity matrix S (Fig. 1).

FS Method Identification. We assign a score ci for each FSi in S, that
quantifies the consensus in top selected feature set as well as classification perfor-
mance among other methods. In particular, inspired from graph analysis theory,
we define ci as the centrality measure, indicating the number of times that FS
method is visited on whatever path of a given length. The final FS method is
selected as the one with the highest centrality in S. Once, we identify the most
reliable FS method, we train an SVM classifier using the top K selected features
by FS to reveal the most discriminative ones.

3 Results and Discussion

Evaluation Dataset. To perform the classification, we used leave-one-out cross
validation on 77 subjects (41 AD and 36 late MCI) from ADNI data1, each
with structural T1-w MR image [14]. We reconstructed both right and left cor-
tical hemispheres for each subject from T1-w MRI using FreeSurfer software
[15]. Then we parcellated each cortical hemisphere into 35 cortical regions using
Desikan-Killiany Atlas [15]. We generated two brain network datasets derived
from the maximum principal curvature brain view and the mean cortical thick-
ness brain view, respectively. For each cortical attribute, we produced a morpho-
logical brain network, where the strength of a connection linking ROI i to ROI
j is defined as the absolute difference between the averaged attribute values in
both ROIs [2,3].

FS Methods and Training. We used the Feature Selection Library [16] pro-
vided by Matlab to select 7 FS methods: relieff [17], mutinffs [18], laplacian
[19], L0 [20], UDFS [21], llcfs [22], and cfs [23]. We adopted a leave-one-out
cross-validation (CV) strategy to train each FS in combination with an SVM
classifier. For FS methods that required parameter tuning, we used nested CV.
For each FS method, we evaluated the performance of SVM classifier across dif-
ferent number of top K selected features varying from 10 to 100, with a step
size of 10 features.

Findings and Future Improvements. Fig. 2 confirms our hypothesis that the
best FS method for one data type might not be the best for another data type.
1 http://adni.loni.usc.edu/.

http://adni.loni.usc.edu/
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Fig. 2. Top 10 reproducible discriminative features identification using the best identi-
fied feature selection (FS) method for each network brain view data. Selected FS meth-
ods (�), corresponding classification accuracy, and top reproducible features varied
across data types and right and left hemispheres (RH and LH).

For instance, relieff was identified for view 1 LH connectomic data with a classi-
fication accuracy of 61.03%, while L0 was identified for view 2 LH connectomic
data with a classification accuracy of 70.3%. Overall, the identified discriminative
features distinguishing between LMCI and AD brain states varied across views
and cortical hemispheres. However, we note that nodes 1, 2 and 5 corresponding
with the bank of the superior temporal sulcus, caudal anterior-cingulate cortex,
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and cuneus cortex were frequently selected. These regions were reported in other
studies on AD [24].

There are several future directions to explore to further improve our seminal
work. First, instead of pre-defining a similarity matrix modeling the relationship
between FS methods in terms of top ranked feature consensus, we can instead
learn these associations in a more generic way. Second, we will integrate the fea-
ture stability criteria for FS method identification. Third, we will evaluate our
method on multiple connectomic datasets, including functional and structural
connectomes. Fourth, ideally, the FS method giving the best classification accu-
racy would identify the most discriminative and reproducible features. We aim
to further improve our framework to identify the data-specific FS method that
satisfies both criteria.

4 Conclusion

In this work, we investigated a novel problem arising from the need to discover
the most reproducible and reliable clinical biomarkers that distinguish between
two groups (e.g., healthy and disorders brains) by identifying the best feature
selection method suited for the dataset of interest. We first proposed the con-
cept of FS similarity multi-graph to model the relationships between different FS
methods in terms of overlap top ranked features at multiple thresholds. By fur-
ther integrating an accuracy discrepancy graph with the similarity multigraph to
enforce a consistency between high classification performance and feature repro-
ducibility when identifying the best FS method for the target input data. By
exploring the topological properties of the merged graph, we mark the central FS
node with the highest the centrality score as the most reliable one. Our prelim-
inary findings showed that the performance of a particular FS method to train
a typical classifier varies with the data type. Besides classification accuracy, it
is also possible to integrate feature stability as a measure to identify the best
FS method. Another line of our ongoing work is to study the reproducibility
of the identified features by the ‘best’ FS methods across multi-source medical
datasets.
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