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Preface

The 2nd International Workshop on Connectomics in NeuroImaging (CNI 2018) was
held in Granada, Spain, on September 20th, 2018, in conjunction with the 21st
International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI).

Connectomics is the study of whole brain maps of connectivity, commonly referred
to as the brain connectome. It focuses on quantifying, visualizing, and understanding
brain network organization, and includes applications in neuroimaging. The primary
academic objective of the CNI workshop is to bring together computational researchers
(computer scientists, data scientists, computational neuroscientists) to discuss new
advancements in network construction, analysis, and visualization techniques in con-
nectomics and their use in clinical diagnosis and group comparison studies. The sec-
ondary academic objective is to attract neuroscientists and clinicians to show recent
methodological advancements in connectomics, and how they are successfully applied
in various neuroimaging applications. CNI 2018 was held as a single-track workshop
that included three keynote speakers (Gustavo Deco, Martijn van den Heuvel, and
Dafnis Batalle), oral paper presentations, poster sessions, and software demonstrations.

The quality of submissions to our workshop was very high. Authors were asked to
submit papers of 8–10 pages in length for review. A total of 20 papers were submitted
to the workshop in response to our call for papers. Each of the 20 papers underwent a
rigorous double-blind peer-review process, with each paper being reviewed by at least
two reviewers from the Program Committee, composed of 28 well-known experts in
the field of connectomics. Based on the reviewing scores and critiques, the best 15
papers were accepted for presentation at the workshop, and chosen to be included in
this Springer LNCS volume. The large variety of connectomics techniques applied in
neuroimaging applications were well represented at the CNI 2018 workshop.

We are grateful to the Program Committee for reviewing the submitted papers and
giving constructive comments and critiques, to the authors for submitting high-quality
papers, to the presenters for excellent presentations, and to all the CNI 2018 attendees
who came to Granada from all around the world.

September 2018 Guorong Wu
Islem Rekik

Markus Schirmer
Ai Wern Chung
Brent Munsell
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Towards Ultra-High Resolution 3D
Reconstruction of a Whole Rat Brain

from 3D-PLI Data

Sharib Ali1(B), Martin Schober2, Philipp Schlömer2, Katrin Amunts2,3,
Markus Axer2, and Karl Rohr1

1 Department of Bioinformatics, Biomedical Computer Vision Group, BIOQUANT,
IPMB, DKFZ, University of Heidelberg, Heidelberg, Germany

sharib.ali@bioquant.uni-heidelberg.de
2 Research Centre Jülich, Institute of Neuroscience and Medicine 1, Jülich, Germany

3 Cécile and Oskar Vogt Institute of Brain Research,
Heinrich Heine University Düsseldorf, University Hospital Düsseldorf,

Düsseldorf, Germany

Abstract. 3D reconstruction of the fiber connectivity of the rat brain
at microscopic scale enables gaining detailed insight about the complex
structural organization of the brain. We introduce a new method for
registration and 3D reconstruction of high- and ultra-high resolution
( 64 µm and 1.3 µm pixel size) histological images of a Wistar rat brain
acquired by 3D polarized light imaging (3D-PLI). Our method exploits
multi-scale and multi-modal 3D-PLI data up to cellular resolution. We
propose a new feature transform-based similarity measure and a weighted
regularization scheme for accurate and robust non-rigid registration. To
transform the 1.3 µm ultra-high resolution data to the reference block-
face images a feature-based registration method followed by a non-rigid
registration is proposed. Our approach has been successfully applied to
278 histological sections of a rat brain and the performance has been
quantitatively evaluated using manually placed landmarks by an expert.

1 Introduction

Studying the brain fiber architecture and their functionality, like that of the
rat brain, is important for understanding complex human brain organiza-
tion. Conventional imaging methods include electron microscopy (EM), optical
microscopy (OM), and diffusion magnetic resonance imaging (D-MRI). While
D-MRI is limited in resolution, EM and OM often require some selective stain-
ing procedure of histological brain sections to reveal fiber connectivity. Recent
advances in 3D polarized light imaging (3D-PLI, a specialized OM technique
that utilizes the birefringence of nerve fibers) allows acquiring high- and ultra-
high resolution images of fibrous brain tissues [5]. In addition, information about
3D fiber orientation can be obtained without staining. 3D-PLI data consists of
different image modalities (Fig. 1, right): Transmittance map representing the

c© Springer Nature Switzerland AG 2018
G. Wu et al. (Eds.): CNI 2018, LNCS 11083, pp. 1–10, 2018.
https://doi.org/10.1007/978-3-030-00755-3_1
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2 S. Ali et al.

Fig. 1. Rat brain data. Left box: Reference blockface with 3D blockface volume (top)
and mid-section (bottom). Right box: original ultra-high resolution (1.3µm) 3D-PLI
data comprising transmittance (top left), retardation (bottom left), direction (top-
right), and inclination (bottom-right) maps. Images are scaled for better visualization.

extinction of polarized light when passing through the brain tissue, Retarda-
tion map showing the tissue’s (fiber’s) birefringence, as well as direction and
inclination maps representing the local 3D fiber orientation. Blockface images
are acquired during the sectioning procedure (Fig. 1, left) and constitute undis-
torted reference images for the acquired histological sections.

During the sectioning and mounting process brain tissue undergoes strong
distortions. Thus, spatial coherence between sections is lost and hence image reg-
istration becomes an inevitable task. In previous work, 3D reconstruction of his-
tological sections of the rat brain (e.g., [9–11]) was performed using rigid or affine
registration (e.g. [4,11]), which is generally not sufficient to cope with deforma-
tions in histological sections as mentioned in [9]. [10] used affine registration
with subsequent diffeomorphic non-rigid registration employing mutual infor-
mation. Compared to traditional histological data, 3D-PLI relies on unstained
cryo-sections and is acquired at very different resolutions. This poses different
challenges compared to traditional histological data. In previous work on the reg-
istration and 3D reconstruction of 3D-PLI data, high-resolution images (64µm
pixel size) were used in [1,13] and ultra-high resolution (1.3µm pixel size) images
in [2]. However, in [2] only rigid registration of the ultra-high resolution data to
unregistered high-resolution images was performed, and the human brain was
considered but not rat brain. [1,3] used high-resolution human brain sections
(64 µm pixel size) for registration to reference blockface data of the same res-
olution. Note that human brain sections typically cover larger areas, contain
more prominent structures, and include less image noise compared to the rat
brain. Thus, registration of 3D-PLI data of the rat brain is more difficult. In
[13], high-resolution 3D-PLI data (64 µm) of the rat brain was first registered
to the blockface data of same resolution and then transformed to a reference
Waxholm space. However, in contrast to [13], we register high-resolution images
with a section thickness of 60 µm to blockface images of 15.5 µm pixel res-
olution, which is more challenging due to the large scale difference. Also, we
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subsequently register ultra-high resolution images (1.3 µm) first to the registered
high-resolution images (15.5 µm after scaling) and then to upscaled reference
blockface images at 1.3 µm resolution using non-rigid registration (each image
section has a size of about 15000 × 12000 pixels). In addition, whereas in [13]
B-splines and a fluid model were used, respectively, we here use a more realistic
deformation model based on Gaussian non-rigid body splines (GEBS) for non-
rigid registration. None of the previous work provided a complete framework for
ultra-high resolution 3D reconstruction of the rat brain from 3D-PLI.

In this contribution, we introduce a new method for multi-scale (both high-
and ultra-high resolution data) and multi-modal registration of histological rat
brain sections from 3D-PLI. The main contributions are: (1) registration of 3D-
PLI data with three different spatial resolutions (1.3 µm, 15.5 µm, and 64 µm
pixel size), (2) correlation transform-based similarity metric for efficient and
robust rigid registration, (3) introduction of a feature transform-based similarity
metric and weighted regularization for non-rigid registration using a physically-
based deformation model, (4) robust feature-based registration, and (5) a com-
plete pipeline for 3D reconstruction.

2 Method

Our approach for 3D reconstruction of both high- and ultra-high resolution 3D-
PLI data of the rat brain consists of several steps. High resolution images are first
registered to their corresponding reference blockface images using rigid and non-
rigid registration. Ultra-high resolution images are then registered both rigidly
and non-rigidly to the corresponding sections of the reference blockface images.

2.1 Registration of High-Resolution 3D-PLI Data

To coherently align the high-resolution 3D-PLI data with the reference block-
face images several registration steps are required. The high-resolution data is

Fig. 2. Pre-processing of high-resolution 3D-PLI data. Left: Original image data, mid-
dle: segmented and scaled image, and right: COM alignment with blockface image.
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first coarsely registered using center-of-mass alignment, rigid registration, and
then non-rigid registration using GEBS [8] in conjunction with a novel feature
transform-based similarity measure and a weighted quadratic regularization.

Data Preparation and Coarse Registration. High resolution 3D-PLI sec-
tions of the rat brain are segmented from the original image data (see Fig. 2,
left) as in [1]. For initial alignment we perform a scaling transformation for
high-resolution images (64 µm) and then align their center-of-mass (COM) with
that of the reference blockface images (15.5 µm, see Fig. 2, right).

We use a parametric registration model for coarse registration of 3D-PLI
data. Let g1(x) and g2(x) with x = (x, y) : Ω → R, Ω ∈ R

2, be the reference
blockface and the PLI image, respectively, and T (x | θ) be the transformation
with the parameter vector θ to be estimated. Then, the goal is to minimize the
objective function ψ to obtain the optimal θ̂:

θ̂ = argmin
θ

ψ
(
g1(x), g2

(
T (x | θ)

)
. (1)

We use a spline-based multi-resolution scheme for rigid registration based on [14].
In contrast to [14], where the sum of squared intensity differences (SSD) was
employed, we propose using a correlation transform (CoT) of the image to deal
with multi-modal data (see Fig. 1). Let Px be a patch of size 7×7 pixels centered
at x, then the CoT is given by

g̃ (x) = (g (xk) − μ) /(σ + ε), with xk ∈ Px, (2)

where μ and σ are the mean intensity and standard deviation, respectively
within Px and ε = 0.001. For ψ in (1) we use the SSD between the com-
puted CoT values for the blockface image g̃1 and the high-resolution image g̃2:

ψ(θ) =
∑

x∈Ω

(
g̃1(x) − g̃2

(
T (x | θ)

))2

. We minimize Eq. (1) using Levenberg-
Marquardt optimization.

Non-rigid Registration. Non-linear distortions are often present in 3D-PLI
data due to the cutting and mounting procedure. In addition, local deforma-
tions are introduced because of time delays between mounting and data acqui-
sition. Since these deformations are the result of physical phenomena, a suit-
able physical deformation model should be used for non-rigid registration. In
our approach, we use Gaussian elastic body splines (GEBS) which represent
an analytic solution of the Navier equation from linear elasticity theory [7]:
μΔu + (λ + μ)∇ (divu) + f = 0, where λ and μ > 0 are the Lamé constants
and u is the deformation field under Gaussian forces f, and which has been
derived in [8]. In [15], an intensity-based registration approach using GEBS was
described, which, however is not suitable for multi-modal 3D-PLI data. Using a
CoT-based similarity measure for non-rigid registration has disadvantages (see
the red arrows in Fig. 3 which indicate that structure and intensity invariance are
not well preserved). In this contribution, we introduce a feature transform-based
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g̃1 g̃2 FeT g1 FeT g2

Fig. 3. Correlation transform (g̃) and feature-transform (FeT ) images of the multi-
modal reference blockface (g1) and 3D-PLI (g2) data (also refer to Fig. 1).

(FeT) similarity measure, and a Gaussian weighted quadratic regularization. FeT
better preserves the structure and intensity invariance and is thus better suited
for non-rigid registration. FeT consists of: 1) a structure variability measure Svar

defined by the trace of a covariance matrix C for seven features: Position (x, y),
absolute values of first and second order image derivatives (|gx |, |gy |, |gxx |,
|gyy |), and intensity difference |g(x)−g(xk)| for each xk within the patch Px,
and 2) a texture measure ST based on cross-correlation between the pixels in
Px. A patch size size of 5 × 5 pixels was chosen after our experimental obser-
vations. The combined feature transform (FeT) is then designed as a weighted
sum of the two components FeT = Svar +0.5ST . Figure 3 (right) shows example
results for FeT for blockface (FeTg1) and PLI images (FeTg2). It can be seen
that boundaries and inner texture are quite similar for the multi-modal images.
To preserve discontinuities of the deformation field, we use Gaussian weights fσ

for the quadratic regularization. We use the energy functional

argmin
u,uI

∑

Ω

Jdata(FeTg1 , F eTg2 ,u
I) + λIfσ(‖u‖) ‖u − uI‖22︸ ︷︷ ︸

JIntensity

+λE Jelastic(u) ,

(3)

where FeTg1 and FeTg2 are the feature transforms of the target and source
images, respectively. The weighting factors λI , λE > 0 control the trade-off
between the data term Jdata and the two regularization terms (quadratic and
elastic, in our case λI = 0.25, λE = 0.25). Here, quadratic regularization will
allow for smoother deformation field while elastic regularization will force for
a realistic deformation and avoid any unnatural deformations. uI is the defor-
mation field obtained by minimizing the SSD between the feature transforms
with a weighted quadratic regularization (i.e. minimization of JIntensity) using
Levenberg-Marquardt optimization. The final deformation field u is obtained
using an analytic solution based on GEBS.

Figure 4 (left) reveals the result after rigid registration. Visual inspection
shows a good alignment, however, misalignments are distinct along the corpus
callosum (indicated by blue arrows), the hippocampus (cyan arrows), and along
the borders of the cerebral cortex (black arrows). Using the new similarity mea-
sure for non-rigid registration, it can be observed in Fig. 4 that the misalignments
in various regions have been tackled (see Fig. 4, middle and right).
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Fig. 4. Registration of high-resolution 3D-PLI data. Left: Rigid registration, middle:
non-rigid registration (edges of blockface overlaid with high-resolution 3D-PLI image),
and right: Color-overlay image with blockface (green) and registered high-resolution3D-
PLI image (red). (Color figure online)

2.2 Registration of Ultra-High Resolution 3D-PLI Data

Due to the large difference in spatial resolution between the blockface images and
the ultra-high resolution images (factor of about 12) and arbitrary rotations we
perform registration using a scale-space method for feature detection and match-
ing. A Gaussian scale-space and a Hessian measure are used to detect features
in the registered high-resolution and the ultra-high resolution (retardation map)
images with subsequent feature matching based on FLANN [2]. Then, a similar-
ity transformation (rigid and isotropic scaling) is computed using the matched
features and a least squares approach. Unlike in [2], we use a fast bilateral

Fig. 5. Registration of ultra-high resolution (u-HR) images to the registered high-
resolution (HR) images. First column: Matching of detected salient features (retarda-
tion maps), second column: Alignment after similarity transformation, third column:
Alignment after non-rigid registration (transmittance maps), and fourth column: High-
lighted regions with large deformations. Misalignments are indicated by green regions
and black arrows. (Color figure online)
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filtering technique [12] to cope with the noise in the rat brain data and reduce
false detections in feature extraction. In Fig. 5, examples for feature matching
results are shown. Subsequently, a non-rigid registration (see Sect. 2.1) is used
to cope with local deformations at 15.5 µm resolution (see Fig. 5, third column).
Further, visible misalignments in Fig. 5 (third column) are corrected at a reso-
lution of 1.3 µm using the proposed non-rigid registration method (see Eq. (3))
and coarse-to-fine energy minimization (we use 9 pyramid levels).

Table 1. Mean target registration error and standard deviation (TREs±std. dev.)
using landmarks (LMs) from an expert for three rat brain sections. Registration of high-
resolution (HR) images and ultra-high-resolution (u-HR) images to reference blockface
(15.5 µm).

Section
HR(64µm) ⇒ BF u-HR(1.3µm) ⇒ BF

LMs initial rigid non-rigid initial rigid non-rigid
HR u-HR COM g g̃ MI FeT COM + scale MI FeT

# 105 25 35 708.3 37.7 23.9 7.0 7.2 419.7 8.4 13.5 4.9
±93.4 ±16.8 ±14.7 ±6.7 ±3.2 ±13.4 ±3.5 ±6.8 ±2.9

# 131 22 42 785.8 40.3 22.2 13.9 6.0 532.7 25.7 13.3 10.4
±247.5 ±10.6 ±6.8 ±3.5 ±3.3 ±271.0 ±9.9 ±5.7 ±5.9

# 337 29 61 701.6 25.0 20.9 11.4 6.7 453.1 21.6 10.9 7.9
±183.7 ± 8.1 ±7.3 ±11.0 ±3.3 ±264.6 ±7.7 ±9.0 ±4.5

Mean: 25 46 731.9 34.3 22.3 10.7 6.6 475.4 18.6 12.5 7.7
±174.8 ±11.8 ±9.6 ±7.0 ±3.3 ±173.0 ±7.0 ±7.2 ±4.4

3 Experimental Results

We have evaluated the proposed method for the registration and 3D reconstruc-
tion of high- and ultra-high-resolution data of the rat brain (64 µm and 1.3 µm).
Ground truth correspondences for three sections were determined manually by
an expert (on average 25 and 46 landmarks for high- and ultra-high resolution
sections, respectively). Table 1 shows the average target registration error (TRE).
It can be seen that our proposed non-rigid registration method using the feature
transform FeT yielded an overall improvement of about 4.1 pixels and 4.8 pixels
compared to a previous non-rigid registration approach using mutual informa-
tion [6] for high- and ultra-high resolution 3D-PLI data, respectively. Notably,
our non-rigid registration method can deal with large deformations which is evi-
dent from the large overall improvements of 15.7 pixels and 10.9 pixels compared
to rigid registration using CoT (g̃) for high-resolution and ultra-high resolution
data, respectively. Also, Fig. 6 shows that our non-rigid method is able to cope
with highly non-linear deformations present in our full rat brain data (in range
from 0–132 pixels in magnitude).

Figure 7 (left, middle) shows 3D visualizations of registration results as a
reconstructed 3D volume of 278 high-resolution image sections (transmittance
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Fig. 6. Deformation magnitudes after correction using our non-rigid registration app-
roach on high-resolution PLI data for 3 different sections (#131, #210, #283).

Fig. 7. 3D reconstruction. Left: Rigid registration, middle: non-rigid registration, and
right: rendered 3D volume at 1.3 µm resolution (scaled for visualization). (Color figure
online)

maps, 15.5 µm × 15.5 µm × 16.7 mm). After rigid registration, misalignments
are visible at locations indicated by arrows (black: Tissue boundary, blue: Corpus
callossum and red: Caudate putamen) and a square in Fig. 7 (left). However, after
non-rigid registration a coherent alignment can be observed (see Fig. 7, middle).
A rendered 3D reconstructed volume of ultra-high resolution is shown in Fig. 7
(right) where the smooth green regions indicate coherent alignment of corpus
callossum (retardation maps, 1.3 µm × 1.3 µm × 16.7 mm).

All the implementations are in C++ and we have used optimized C++
libraries for computing trace of covariance matrix to speed-up the FeT -based
SSD metric minimization in our non-rigid approach. Additionally, entire frame-
work, that is from high-resolution to ultra-high resolution reconstruction, is built
as a parallel processing pipeline and optimized for speed-up in complete 3D
reconstruction.

4 Conclusion

We have introduced a new multi-scale and multi-modal registration method for
3D reconstruction of both high-resolution and ultra-high resolution 3D-PLI his-
tological images of a rat brain. The method comprises a novel feature transform-
based similarity metric integrated in a physically-based non-rigid registration
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approach as well as a correlation transform-based similarity measure for robust
rigid registration. Quantitative evaluations showed that our method improves
the result compared to a previous multi-modal non-rigid registration approach
and leads to a coherent 3D reconstruction.
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Abstract. Multi-shell, high resolution diffusion MRI (dMRI) data from
the Human Connectome Project (HCP) provides an unprecedented
opportunity for the in vivo mapping of human brain pathways. It was
recently noted, however, that significant distortions remain present in
the data of most subjects preprocessed by the HCP-Pipeline, which have
been widely distributed and used extensively in connectomics research.
Fundamentally this is caused by the reliance of the HCP tools on the
B0 images for registering data from different phase encodings (PEs). In
this work, we develop an improved framework to remove the residual
distortion in data generated by the HCP-Pipeline. Our method is based
on more advanced registration of fiber orientation distribution (FOD)
images, which represent information of dMRI scans from all gradient
directions and thus provide more reliable contrast to align data from
different PEs. In our experiments, we focus on the brainstem area and
compare our method with the preprocessing steps in the HCP-Pipeline.
We show that our method can provide much improved distortion correc-
tion and generate FOD images with more faithful representation of brain
pathways.

1 Introduction

With the advance of multiband and several other MRI techniques, the Human
Connectome Project (HCP) [1] has developed cutting-edge connectome imaging
protocols to acquire high-resolution, multi-shell diffusion MRI (dMRI) that has
enabled the in vivo investigation of brain pathways with unprecedented details.
Among the various technical advances in the HCP protocol, one notable choice is
the acquisition of dMRI data from two phase encodings (PEs) for the correction
of susceptibility-induced distortion. However, it was noted recently that majority
of the preprocessed dMRI data from HCP [2] still contains significant distortions
in regions such as the brainstem [3]. Given the critical role that HCP data
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continues to play in brain imaging research, it is important to raise awareness
of this critical issue in the neuroimaging community and investigate solutions to
this fundamental problem.

Fig. 1. An illustration of the problem in susceptibility distortion correction in HCP-
Pipeline. Inputs to the distortion correction based on the topup tool from FSL are the
B0 images from the R/L and L/R PE. After that, the corrected B0 images appear
“undistorted”. For the ROIs (yellow box) of the corrected data from each PE, we
computed the FODs and plotted them in the right column. The residual distortions
are clearly visible as highlighted in the dashed ellipsoids. (Color figure online)

The susceptibility of the magnetic field to the tissue/air boundary around the
brainstem results in large distortions of the dMRI data along the phase encoding
(PE) direction [4]. As shown in Fig. 1, the distortion can be either stretching or
compression of the brainstem tissue. The susceptibility-induced distortion not
only causes geometric distortion, but more importantly the loss of information
due to piling up of signal intensities in regions with severe compression. The
state-of-the-art solution is to collect data from opposite PE directions and esti-
mate the distortion field from these two copies of data with the same set of
gradient directions [5–7], which is the approach HCP and various connectome
imaging projects adopt. Using data from the two PEs, the HCP has developed
the HCP-Pipeline to correct the distortions and merge them to generate the
preprocessed dMRI data for connectivity research [2], which has been widely
distributed to the research community. The susceptibility distortion correction
in the HCP-Pipeline is mainly based on the topup tool from the FSL, which
registers the B0 images from both PEs and estimates the deformation fields
for the correction. From the fiber orientation distributions (FODs) [8] plotted
in Fig. 1, we can clearly see the brainstem anatomy is severely misaligned even
though the “corrected” B0 images appear undistorted. This is because the B0
images do not have enough contrast to resolve the complex brainstem anatomy.
Merging such misaligned data, if we continue to run the preprocessing steps in
the HCP-Pipeline, will clearly introduce severe artifacts for connectivity model-
ing. The critical issue is that this is not a rare problem, but prevalent in most



FOD-Based Registration for Susceptibility Distortion Correction 13

preprocessed data [3]. In the benign cases, we might expect distorted pathways.
In more serious situations, false pathways can be introduced as we will demon-
strate in our experiments. It is thus imperative to tackle this problem and provide
improved correction for the highly valuable HCP dataset.

To overcome limitations in current methods for susceptibility distortion cor-
rection, we will develop a novel method based on registering the FODs com-
puted from data acquired in each PE. Compared with B0 images which existing
methods rely on for distortion correction, FODs represent information from all
gradient directions and encode more detailed contrast to allow better alignment
of brainstem anatomy. Our method first estimates the FODs for the multi-shell
imaging data in each PE. A variational optimization approach will then be devel-
oped to minimize the mismatch of FODs from the two PEs while requiring the
distortion fields to be opposite transformations as much as possible, which stems
from the physical models of susceptibility distortions. After that, we solve a reg-
ularized inverse problem to merge these corrected data for connectivity analysis.
Compared with previous works based on registering B0 images, there are two
main advantages in our FOD-based approach. Because FODs are computed from
the ratio between images of each gradient direction to the B0 image, and images
from all gradient directions experience the same susceptibility distortion in one
acquisition, the Jacobian modulation to image intensities are not needed in our
formulation. The second advantage is that there no need of incorporating the
rotation operator during the deformation process because the distortion is one-
dimensional along the PEs, which leads to a much simplified FOD registration
framework. In our experiments, we compare our method with the HCP-Pipeline
and demonstrate that much improved distortion correction can be achieved on
HCP data.

2 Methods

An overview of the proposed novel method for susceptibility distortion correction
is shown in Fig. 2. The inputs to the processing pipeline are the dMRI data from
two opposite PEs of the same subject. For data from the HCP, the two PEs
are R/L and L/R. In most other connectome imaging studies, the two PEs
are typically the A/P and P/A directions. In the first part of the workflow
(purple dashed box), the processing steps of the HCP-Pipeline are first applied
including the topup and eddy tools from the FSL. In the default HCP-Pipeline,
the “corrected” data from both PEs will then be merged to form the output
dMRI data. The novel processing pipeline developed in this work is shown in
the cyan box in Fig. 2. To remove the residual distortion in the data processed
by HCP-Pipeline, we compute the FODs from the multi-shell dMRI data of both
PEs to better characterize the differences in these images. The deformation fields
from FOD-based registration are then extracted to correct for distortions and
merging the data from the two PEs into a final dMRI dataset for connectivity
analysis.
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Fig. 2. The proposed framework for susceptibility distortion correction for connectome
dMRI data. (Color figure online)

2.1 FOD Image Registration

For the multi-shell dMRI data from each PE, we compute the FODs using the
multi-compartment model in [8]. At each voxel, the FOD is represented as the
coefficients to the spherical harmonics (SPHARMs). For the registration of the
FOD images from two PEs, we use the open source software package elastix
[9] and solve an image registration optimization problem as follows:

µ̂ = arg min
µ

C(IF , IM ◦ T (x,µ)), (1)

where IF and IM are the fixed and moving image, respectively, x is an image
voxel location and T (x,µ) is a coordinate transformation parameterized by µ.
In our work, both the fixed and moving images are 4-D images with the 4-th
dimension denoting the SPHARM basis functions used for FOD representation.
Practically we took the first N SPHARM coefficient images of each PE to form
the 4-D vector images for registration. The image mask was generated from
the HCP-Pipeline [2]. The mutual information is used as a cost function, and
B-spline transformation model is chosen for the modeling of the deformation.
An accelerated version of adaptive stochastic gradient descent [10] was used for
iterative optimization of Eq. (1). A multi-resolution strategy was used to tackle
the local minimum and accelerate the registration procedure. The images were
smoothed using a half-reduced Gaussian filter with standard deviations from 32
to 0.5 mm. For each iteration, 10000 image voxels were randomly sampled from
the fixed image, and 1500 iterations were used for each resolution.

Following previous works on modeling the susceptibility distortion [5–7], we
constrained the deformation only along the phase encoding direction during the
optimization of the registration. For the HCP data, we denote the FOD from
R/L PE as the fixed image, and FOD from L/R PE as the moving image. Using
the above registration process, we compute the forward deformation D from
R/L to L/R and the inverse deformation inv(D) from L/R to R/L. For data
from opposite PEs, the susceptibility distortion are symmetric in opposite PE
direction. For the preprocessed data from HCP-Pipeline, we assume that the
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residual distortions from the two PEs are still symmetric in each PE direction
since the symmetry was modeled in the topup tool [5]. The underlying true,
un-distorted image should thus be at the middle point between the fixed and
moving image. Half-way deformations D/2 and inv(D)/2 will thus be used to
merge the data from two PEs and reconstruct the true dMRI image next.

2.2 Merging Data from Different PEs

Using the deformations from FOD-based registration, we will solve an inverse
problem to reconstruct the underlying true image I from two distorted images,
denoted as Y+ and Y−, from two different PEs. Because we assume the I is at
the middle point between the fixed Y+ and moving image Y−, we can use the
half-way deformations D/2 and inv(D)/2 and formulate a forward model as:

[

Y+

Y−

]

=
[

K+

K−

]

I + n, (2)

where K+ and K− are sparse matrix representations of the deformations D/2
and inv(D)/2 that relates the true image I to the images from two opposite PEs,
and n denotes noise. Using regularized least squares, we can obtain the solution
to the inverse problem as

I =
(

[

KT
+ KT

−
]

[

K+

K−

]

+ λR

)−1
[

KT
+ KT

−
]

[

Y+

Y−

]

, (3)

where R is a smoothness regularization and λ is a non-negative parameter con-
trolling the relative weight of the regularization term. This reconstruction pro-
cess is applied to data from each gradient direction and form the final output
data from our method, which removes the residual distortions and produces high
quality data for connectivity analysis.

3 Experimental Results

In this section, we will apply our method to the connectome imaging data from
HCP and compare the performance with HCP-Pipeline. In particular, we will
focus on the brainstem area, which is a critical region for brain imaging research
but usually experiences high distortion. More recently, the brainstem area is
considered the earliest site of tau pathology in the Braak staging of Alzheimer’s
disease (AD) [11], thus making it highly significant to obtain accurate dMRI
imaging data in this challenging area of human brain.

For each HCP subject, we use two raw dMRI scans in the R/L and L/R
PEs from the 900-subject release of HCP. Each dMRI scan acquires data from
97 gradient directions distributed on three shells with b-values 1000, 2000, and
3000 s/mm2 at an isotropic spatial resolution of 1.25 mm. For each subject, we
will compare the FOD fields with known anatomy in the brainstem to evaluate
reconstruction quality. For all experiments, the FODs are calculated with the
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Fig. 3. Results from a brainstem ROI at the level of the midpons of subject 100307.
(A) Yellow bar indicates the location of the ROI on the mid-sagittal slice. (B) and (C)
show the FODs computed with data from the R/L and L/R PE after preprocessed
by HCP-Pipeline, respectively. (D) show the FODs computed with the corrected data
from HCP-Pipeline after merging data from R/L and L/R PEs. (E) show the FODs
computed with the merged data from our method. (Color figure online)

maximum SPHARM order of 12. The regularization parameter in the merging
process is chosen as 0.5. We have conducted our experiments on 10 randomly
selected HCP subjects. Overall we observe clear improvements in all subjects
after we applied our processing workflows to data generated by HCP-Pipeline.
This is even true for subjects that passed the quality control of [3]. Next we show
results from two representative subjects to demonstrate the improved distortion
corrections achieved by our method.

We first show that residual distortions can still exist in data considered to
be high quality. In Fig. 3, we plotted the FODs computed from data generated
at different stages of the workflow shown in Fig. 2 for subject 100307, which has
passed the quality control in [3] based on visual examination of tract density
images (TDI). In both Fig. 3(B) and (C), the dashed ellipsoids highlight the
FODs for the left and right cortico-spinal-tract (CST). Clearly they are oriented
differently in Fig. 3(B) and (C), which indicates the presence of residual distor-
tions. If we merge these two datasets, as done typically by HCP-Pipeline, and
computed the FODs as shown in Fig. 3(D), the FODs corresponding to the left
and right CST become mingled together, which is not anatomically correct since
the CSTs only decussate at the more inferior medulla area of the brainstem. In
the FODs computed from the data generated by our method shown in Fig. 3(E),
we highlight that the FODs for the left and right CST in dashed ellipsoids. This
shows that our method not only maintains the separation of the two CSTs in
midpons, but also corrects the distortions that existed in the data generated by
HCP-Pipeline.
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In addition to the relatively benign distortions such as in subject 100307,
we also observe more critical cases that false fiber trajectories can be caused
in the merged data if the distortions are not removed. In Fig. 4, we show the
results from subject 136833 at an ROI in the midbrain. In Fig. 4(B) and (C), we
show the FODs computed from the data of each PE after they went through the
distortion correction steps of HCP-Pipeline. The two dashed ellipsoids highlight
the trajectories of the fiber tracts of the cerebellar peduncles on the left and
right hemispheres, but they are obviously distorted toward the right and left
side, respectively. If we simply merge the data after the distortion correction
in HCP-Pipeline, the resulting FODs shown in Fig. 4(D) suggest there are two
possible fiber trajectories in each hemisphere as highlighted by the dashed ellip-
soid. This is due to the merge of the misaligned data from two PEs and clearly
not anatomically meaningful. After we apply the distortion correction by our
method, we can see the FOD trajectories of these two fiber pathways become
much better aligned and maintains the same number of pathways as in the data
from both PEs.

Fig. 4. Results from a brainstem ROI at the level of the midbrain of subject 136833.
(A) Yellow bar indicates the location of the ROI on the mid-sagittal slice. (B) and (C)
show the FODs computed with data from the R/L and L/R PE after preprocessed
by HCP-Pipeline, respectively. (D) show the FODs computed with the corrected data
from HCP-Pipeline after merging data from R/L and L/R PEs. (E) show the FODs
computed with the merged data from our method. (Color figure online)
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4 Conclusions and Discussion

There are two main goals of this work. The first is to raise awareness of the
residual distortions in the connectome imaging data from HCP and other imag-
ing projects even after they are processed by the HCP-Pipeline. As we showed
in our results, these distortions can lead to detrimental effects for modeling the
connectivity of brain pathways. The second goal of this work is the development
of a novel framework for the correction of these residual distortions in connec-
tome imaging data. Our method is based on the registration of FOD images from
both phase encodings, which provides more anatomically relevant contrast than
B0 images used in current tools in the HCP-Pipeline. We demonstrated that our
method can remove residual distortions and produce anatomically more valid
FODs for brainstem regions. Besides the brainstem area, connectome imaging
data have distortions throughout the brain, even for deep brain areas around the
ventricles. As our future work, it is thus important to conduct a more extensive
examination of the residual distortions in other brain regions, and study how
our method can help improve the accuracy and reliability in tractography and
related connectivity research.
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Abstract. Tractography is a prevalent technique for in vivo imaging of
the white matter fibers (a.k.a. the tractograms), but it is also known to be
error-prone. We previously propose the Group-wise Tractogram Analysis
(GiTA) framework for identifying anatomically valid fibers across sub-
jects according to cross-subject consistency. However, the original frame-
work is based on computationally expensive brute-force KNN search. In
this work, we propose a more general and efficient extension of GiTA. Our
main idea is to find the finite dimensional vector-space representation of
the fiber tracts of varied lengths across different subjects, and we call
it the group-wise isometric fiber embedding (GIFE). This novel GIFE
framework enables the application of the powerful and efficient vector
space data analysis methods, such as the k-d tree KNN search, to GiTA.
However, the conventional isometric embedding frameworks are not suit-
able for GIFE due to the massive fiber tracts and the registration errors
in the original GiTA framework. To address these issues, we propose a
novel method called multidimensional extrapolating (MDE) to achieve
GIFE. In our experiment, simulation results show quantitatively that our
method outperforms the other methods in terms of computational effi-
ciency/tractability and robustness to errors in distance measurements
for real fiber embedding. In addition, real experiment for group-wise
optic radiation bundle reconstruction also shows clear improvement in
anatomical validity of the results from our MDE method for 47 different
subjects from the Human Connectome Project, compared to the results
of other fiber embedding methods.

1 Introduction

Tractography computes white matter fiber tracts from diffusion MRI and it is
a prevalent technique for in-vivo measurement of anatomical connectivity of the
brain. However, this technique is also known to be error-prone [1].

Fiber filtering methods have been proposed previously to remove redundant
and anatomically invalid fibers based on data fidelity [2], geometrical sound-
ness [3] and anatomical knowledge [4]. Yet, these methods did not explicitly
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address the inter-subject consistency and the results are not guaranteed to be
consistent across subjects, or reproducible. We hypothesize that the errors in the
fiber tracts computed with tractography are random and they are not anatom-
ically consistent across different subjects. Accordingly, we recently proposed a
data-driven framework called Group-wise Tractogram Analysis (GiTA) which
identifies the anatomically valid tracts as the common tracts among different
subjects [5]. The idea is to measure the commonness of each fiber tract with
respect to all different subjects and identify those that are common among most
of the subjects. A major limitation of GiTA is that this framework is computa-
tionally very expensive, as it requires comparing all tracts across all subjects. In
addition, the efficient and powerful data analysis methods based on vector-space
data representation, such as the k-d tree KNN search, are not applicable due
to the unequaled lengths of the fiber tracts. It is also invalid to resampled the
fiber curves to the same number of points for computing the Euclidean distance
since this generally doesn’t reflect the intrinsic geometrical distance between
the fiber curves. Besides, the GiTA framework also suffers from inter-subject
misalignment due to registration error.

To address the aforementioned issues, we propose a novel group-wise iso-
metric fiber embedding (GIFE) framework. The GIFE framework tries to find
the finite dimensional embedding of the fiber tracts of any target subject, given
the pre-computed embedding of the fiber tracts for the reference subject. This
GIFE framework is naturally parallelizable and it does not require comput-
ing the full pairwise distance matrices across all pairs of subjects but only the
distances between the fibers of the target subjects and the reference subject.
Furthermore, we also handle the inter-subject misalignment in the embedding
and derive a novel method called multidimensional extrapolating (MDE), as a
tribute to the original multidimensional scaling (MDS) framework, to achieve
robust and efficient GIFE. MDE can be viewed as a novel variant of the multi-
dimensional unfolding (MDU) framework [6,7]. Unlike the conventional MDU,
MDE allows the embedding of the reference set to be fixed. Besides, MDE deals
specifically with the errors in distance measurements such as registration error.

Previously, fiber embedding based on tract affinity has been applied to fiber
bundle segmentation [8] without preserving the distance in the embedding space.
The embedding based on MDS has been applied to fiber visualization for indi-
vidual subjects [9]. However, it is not scalable to GiTA.

2 GIFE: Group-Wise Isometric Fiber Embedding

We adopt the principle of MDS for GIFE because it preserves pairwise dis-
tances. In addition, we address the scalability by using only a small amount of
tract distances. Moreover, since the inter-subject distances are often inaccurate
in our problem, rather than solving the embedding from the inter-subject dis-
tances directly, we transform the embedding found using the intra-subject tract
distances to fit to the geometry defined by the inter-subject distances and the
resultant embedding is robust to the errors in inter-subject distances.
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2.1 The Classical MDS

Our idea is based on the classical MDS. The basic formulation of the classical
MDS can be written as follows [6]:

Bn×n ≈ ZpZT
p (1)

where Bn×n = − 1
2P

n×nD(2)n×nPn×n, Zp is the p-dimensional embedding of
the fiber tracts, and it denotes the first p columns of the matrix Z, P is known
as the centering matrix defined as Pij = 1 − 1

n ,∀i = j and Pij = − 1
n ,∀i �= j,

D(2) is the input squared distance matrix.
The solution of Eq. (1) can be obtained by using the following steps:

(a) B = P

[
−1

2
D(2)

]
P, (b) EΛET = svd(B), (c) Zp = EpΛ

1
2
p (2)

where Zp and Ep are the first p columns of Z and E, Λp is the top-left p × p
block matrix of Λ.

To simplify the derivations and implementation, we make the following
assumption.

Assumption 1. Let − 1
2D

(2) = VAVT , where V and A are the eigenvector and
eigenvalue matrices of − 1

2D
(2). We assume Vp = PVp.

In fact, we can always impose V = PV as a constraint in the classical MDS
factorization framework. We omit this step in this work since we observe that
this complication unnecessary as the assumption is often valid in our problem.

Based on this assumption, we have:

B = P

[
−1

2
D(2)

]
P = −1

2
D(2) = B# (3)

which is the simplified Gram matrix that we adopt in the rest of this work.

2.2 The Classical Multidimensional Extrapolating (cMDE)

In our problem, computing, storing and factorizing the massive pairwise dis-
tances between all fiber tracts for all pairs of subjects are very costly in general.
Alternatively, we propose to consider one of the fiber bundles as a reference.
Then, for all other bundles, we propose to estimate their embedding based on
the precomputed embedding of the reference bundle. We call this problem the
GIFE problem, and we develop a novel method called multidimensional extrap-
olating (MDE) to solve it. Since we follow the idea of classical MDS so we call
our method the classical MDE, or cMDE. There are three variants of the MDE
method: inter-set MDE, intra-set MDE and cMDE. The inter-set MDE is com-
puted using only the distances of fibers from different subjects, the intra-set
MDE is computed using only the distances from the same subjects, and the
cMDE is a combination of these two.
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In cMDE, we want to find the embedding Yp of the target fibers such that:

[
Xp

Yp

] [
XT

p ,Y
T
p

] ≈
[
B#

XX , B#
XY

B#
Y X , B#

Y Y

]
= B# = −D(2) =

[
−D(2)

XX , −D(2)
XY

−D(2)
Y X , −D(2)

Y Y

]
(4)

where the reference embedding Xp of the reference fibers and the simplified
Gram matrix B# of the reference and target fibers are given.

Inter-set MDE: Embedding with Inter-set Distance. In the ideal case
where the registration process in the GiTA is perfect, and the inter-subject
distance measure DXY or DY X is ideal, we can simply use the following relation
to estimate Yp.

B#
Y X ≈ Yp(Xp)T ⇒ Ŷp = B#

Y XXpΛ−1
XX (5)

where X and ΛXX are the eigenvector and eigenvalue matrices of B#
XX , and this

formulation is closely related to the Nystr öm approximation [10]. This method
might overfit Y to the inter-set distances despite the errors therein.

Intra-set MDE: Embedding with Intra-set Distance. Since DY Y is also
known, we can obtain their eigen-decomposition.

B#
Y Y ≈ EY

p ΛY Y (EY
p )T = YpY

T

p (6)

The solution found by the above decomposition maybe more reliable than the
one found by Eq. (5), since we only use the intra-subject distance measure and
no mis-alignment error is present. However, this also does not give us Yp directly
since

YpY
T

p = YpRRTY
T

p (7)

where RRT = Ip×p, meaning that the solution remains valid up to any arbitrary
orthogonal transformation.

CMDE: Finding the Optimal Orthogonal Transformation. We propose
to estimate the optimal R which transforms the solution of the intra-set MDE
Y toward the solution of the inter-set MDE Ŷ, such that the geometry of the
embedding defined by B#

Y Y is preserved when we try to align the embedding of
Y with the inter-set distances. And we propose the following model to solve it:

Ỹ = YpR
∗, R∗ = arg min

1
2
‖R − Y

T

p Ŷp‖2, s.t. RRT = I (8)

The rationale of this model lies in that Y
T

p Ŷp is actually the least-squares
solution of min

R
‖YpR − Ŷp‖2 without the orthogonality constraint RRT = I.
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The latter formulation is more intuitive. An advantage of Eq. (8) over the latter
intuitive formulation is that it admits a closed-form solution [11]

R∗ = UVT (9)

where UDVT = svd(Y
T

p
ˆ̂
Y p).

3 Experimental Results

3.1 Randomly Sampled Tractograms

In this experiment, we simulate the situation of GIFE problem by subsampling
a relatively small real optic radiation bundle reconstructed using the Human
Connectome Project (HCP) data. This simulation allows us to quantitatively
assess the distance preservability of different methods.

Experiment Configuration. First, we reconstruct the optic radiation fiber
bundle for one subject from the HCP data [12,13] using the method described
in [14]. This bundle contains a total of 8170 fibers. Note that we used the unfil-
tered fiber tracts in this experiment, and some spurious tracts are present. We
also compute the Hausdorff distance between all pairs of tracts in the bundle.
Then, we randomly sample the bundle 10 times without replacement and each
subsample contained 10 percent of the original bundle, and the sub-bundles are
denoted as {T0, T2, ..., T9}. Finally, we consider T0 as the reference bundle and
extract its intra-set distance matrix from the full distance matrix, and we extract
the intra-set and inter-set distance matrices with reference to T0 for all other
sub-bundles. We mainly compare our method with four different comparable
methods for MDU: the weighted least-squares MDS (LS-MDS)1 [6], the Scal-
ing by MAjorizing a COmplicated Function (SMACOF) algorithm2 [15] and the
Maximum Variance Unfolding (MVU)3 [7]. Only the inter-subject distances with
reference to T0 and the intra-subject distances are used in this comparison. We
also compare our method with the inter-set MDE and the intra-set MDE. Lastly,
we compute the cMDS computed with the full distance matrix for reference.

We originally computed cMDS with the full distance matrix using 11 dimen-
sions. However, only 7 of them correspond to positive eigenvalues. According to
the MDS theory [6], we should only use positive eigenvalues for cMDS so we
fix the dimensionality to be 7 in all methods. In this experiment, we perturbed
the inter-set distance DT0,Ti

by D′
T0,Ti

= DT0,Ti
× (1 + n) and n ∼ N(0, 0.5).

Computing the full distance matrix for this bundle took about 11 h on a single
CPU core, and computing the subset of distances required by MDE would take
only about 4 h.

1 Gradient descent implementation.
2 http://tosca.cs.technion.ac.il.
3 http://lvdmaaten.github.io/.

http://tosca.cs.technion.ac.il
http://lvdmaaten.github.io/
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Table 1. Quantitative results for distance preservation in the embedding.

cMDS LS-MDS SMACOF MVU inter-set MDE intra-set MDE cMDE

ρ(D, DGT ) 0.97 0.48 0.36 0.05 0.72 0.38 0.96

Time (s) 6.38 1562 1445 2723 0.16(/10) 0.6(/10) 0.73(/10)

Results. Some visual results for this simulation experiment are shown in Fig. 1.
We observe that our method (cMDE) well approximates the point distribution of
cMDS, while the other methods generally fail to preserve the geometrical rela-
tionship between the fiber tracts given the partial and imprecise information.
From Fig. 2, we can see that the inter-set MDE might be affected by the inter-
set misalignment and the intra-set MDE may be oriented arbitrarily while our
method optimally restores the point distribution. We are also able to evaluate
our method quantitatively by comparing the pairwise distance in the embedding
space with the true Hausdorff tract distance. We adopt the signed Pearson cor-
relation coefficient as our distance similarity measure. Note that this measure is
invariant to linear scaling which is acceptable in our problem. The results are
summarized in Table 1. We observe that our method gives very satisfactory dis-
tance preservation in the embedding space. In addition, our method compares
significantly favorably to other methods in terms of computational efficiency. The
computational cost for calculating the distances are not included in this table.

(a) (b) cMDS (c) cMDE (d) LS-MDS (e) SMACOF (f) MVU

Fig. 1. 3D visualization of the results of isometric embedding for a randomly sampled
visual pathway fiber bundle using different methods. (a) shows the original bundle.

(a) (b) (c) (d) (e)

Fig. 2. MDE with intermediate results. (a) a target bundle (b) inter-set MDE
(c) intra-set MDE (d) cMDE (e) cMDS with full distance matrix.
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This experiment is conducted in MATLAB on Linux with Intel(R) Core(TM)
i7-6820HQ CPU @ 2.70 GHz and 32 GB memory. All iterative methods termi-
nate at convergence or a maximum of 100 iterations. The computational times
shown are all the total times. Since the MDE framework is parallelizable, we put
(/10) behind the times to indicate the possibility of further breaking down the
computational time by parallelization.

3.2 Common Optic Radiation Fiber Bundle Extraction

Following the GiTA framework, we apply our GIFE framework to extracting
common optic radiation fiber bundles [14] using the HCP data for 47 subjects.
We use the raw noisy fiber tracts as the input in this experiment. For this task,
we pick the fibers common in most of the bundles as the common fiber based on
a commonness measure defined based on the Euclidean distance in embedding
space or Hausdorff distance in the fiber space. We adopt the k-d tree based KNN
search to calculate the Euclidean distances. We use 25 dimensions for the embed-
ding. For results, we expect the common bundle to capture the main anatomical
characteristics of the optic radiation bundle and we also expect it to be highly
organized to follow retinotopy [4]. The total computation time for calculating
all pairwise tract distances was around 60056 hrs·core. We also subsample the
fibers with a fixed sampling ratio 1/10, which reduces the computation to about
6000 hrs·core. Note that the tract distance calculation involves k-nearest neigh-
bor search which is approximately linear time complexity with k-d tree. Since we
implement the original GiTA on a large-scale computing array with thousands
of CPUs, the computation time is reduced to a couple of days. By employing the
GIFE framework, we reduce the computation time by over 90% to about 500
hrs·core, which is tractable for a small-size cluster with dozens of CPU cores.

Fig. 3. Common optic radiation bundles. The common bundles from the original GiTA,
GiTA + inter-set MDE and GiTA + cMDE generally do not contain spurious tracts.
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We compare our cMDE method with the inter-set MDE and intra-set MDE as
well as the original GiTA framework. The results are shown in Fig. 3. The results
show that the original GiTA extracts the largest common bundles. However, the
tracts appear to be a bit disorganized and this might be due to the inter-subject
misalignment. We also observe that the GiTA + intra-set MDE framework failed
to extract meaningful common bundle. Both of GiTA + inter-set MDE and
GiTA + cMDE extract consistently highly organized bundles with increased
organization by raising the commonness, while the bundles extracted by GiTA
+ cMDE are more anatomically complex and agreeable to the results of the
original GiTA. This is an anticipated outcome of the better overlapped reference-
target embedding of cMDE over the inter-set MDE. The computational time
for the intra-set MDE for 1 subject is about 200 sec·core, and the inter-set
MDE took about 0.05 sec·core, solving the optimal R∗ and computing the final
cMDE mapping took about 0.008 sec·core. We also compare with the MDU
solved by LS-MDS and SMACOF in which we fix the reference embedding while
iteratively updating only the target embedding for each target subject. However,
LS-MDS and SMACOF generally require recalculating all the pairwise distances
for the reference and target embeddings at each iteration, and each iteration of
them took about 100 secs·core and both methods ran about 50 iterations before
convergence. The results of LS-MDS are disorganized and sparse, and SMACOF
gives a large amount of disorganized, hence invalid, common optic radiation fiber
tracts.

4 Conclusion

In this work, we present a novel GIFE framework to achieve scalable GiTA. We
also propose a novel method called MDE to achieve efficient and robust GIFE.
The resultant method is highly scalable, parallelizable and robust to inter-subject
misalignment. Real experiment shows clearly improved anatomical validity of the
results of our proposed MDE method over other methods. This GIFE framework
will be generally useful non-exclusively for common bundle reconstruction among
all possible GiTA problems.
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Abstract. Global brain network parameters suffer from low classifica-
tion performance and fail to provide an insight into the neurodegener-
ative diseases. Besides, the variability in connectivity definitions poses
a challenge. We propose to represent multi-modal brain networks over
a population with a single 4D brain tensor (B) and factorize B to get
a lower dimensional representation per case and per modality. We used
7 known functional networks as the canonical network space to get a
7D representation. In a preliminary study over a group of 20 cases, we
assessed this representation for classification. We used 6 different con-
nectivity definitions (modalities). Linear discriminant analysis results in
90–95% accuracy in binary classification. The assessment of the canon-
ical coordinates reveals Salience subnetwork to be the most powerful in
classification consistently over all connectivity definitions. The method
can be extended to include functional networks and further be used to
search for discriminating subnetworks.

Keywords: Functional networks · Tensor factorization
Structural networks · Brain connectome · Alzheimer’s Disease

1 Introduction

Brain has been known to be a network of cortical regions, yet until the rela-
tively recent advances in magnetic resonance imaging (MRI), it was not possible
to build network models of in-vivo brain. Current functional MRI (fMRI) and
diffusion MRI (dMRI) technologies allow us to delineate functional (fNET) and
structural network (sNET) models, collectively called the brain connectome, at
a cortical parcellation scale. The analysis of these network models has the poten-
tial of shedding light on how the brain works, as well as the cause and progress
of neurodegenerative diseases.
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The majority of the analysis approaches has been focused on the changes in
the global network features, such as the clustering coefficient, the average path-
length, the small-worldness index, etc. Despite their high sensitivity to abnor-
malities, these features are poor in classification and/or staging due to their
global nature [1]. A more promising approach is to assess the changes in sub-
networks of the connectome, towards which purely statistical techniques, such as
Network Based Statistics (NBS) [2], have gained popularity. Another concern is
the lack of standardized techniques for building connectomes, which introduces
an unavoidable uncertainty on the derived conclusions.

We propose to use the powerful tensor factorization techniques to simulta-
neously address the aforementioned problems, namely sub-network based and
multi-modal analysis of the connectome. We introduce the Brain Tensor (B-
tensor) as a multi-dimensional multi-modal connectome representation and fac-
torize it in terms of apriori known canonical subnetworks. In a preliminary study
with Alzheimer’s Disease patients, we demonstrate that the factorization coef-
ficients not only have high discrimination power in a binary classification task,
but also provide an insight into the most affected/discriminative canonical sub-
networks. We conclude with a discussion on the potential extensions of B-tensor
factorization.

2 Background

Initial efforts on network analysis have focused on global, and local character-
istics in order to identify components of networks, and to assess similarities or
differences between networks. Utilizing global features such as clustering coef-
ficients, average path length, small-worldness is useful when a given network is
compared with a reference network, or to examine differences of neural networks
from different species. Briefly, global features look at the network as a whole
and fail to identify local difference. On the other hand, local features such as
local clustering coefficient, shortest path etc. have shown their significance when
properties of individual components are examined [3].

NBS has been proposed to overcome the limitation of global assessment. It
identifies statistically significantly different edges between two classes of net-
works. The identified edges are used to detect discriminative subnetworks. The
distribution of sizes of these subnetworks is used to assign a p-value to the sub-
network identified as discriminative between the positive classes. NBS is purely
statistical, oversees the a priori known structure of brain.

Karahan et al. utilized coupled tensor factorization to fuse EEG, FMRI, and
DTI data represented in 3rd, 2nd, and 3rd order tensors, respectively. Coupling
is enforced over temporal and spatial domains for EEG/FMRI and over sub-
jects for EEG/DTI. Two different representation is used for EEG where first
one is time-varying and the other one is subject-varying EEG [4]. However, in
this research, a priori is not used and multimodal structural and functional rep-
resentation of brain networks have not been considered. Utilized tensors do not
represent network sets row signals/spectra with a spatial and/or subject dimen-
sion. Williams et al. generate a 3rd order tensor model by using a trial-structured
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neural data with dimensions represent neurons, time and trials. With the help
of TCA (Tensor Component Analysis), they have managed to decompose this
tensor into three interpretable factors (neuron factors, temporal factors, trial
factors). In addition, TCA has been utilized for dimension reduction [5].

We propose a 4th order B-tensor that represents multi-modal networks
(structural and/or functional) over a population. A modality is defined as a
network construction method independent from data source (i.e. structural or
functional data). Decomposition of B-tensor over a priori known subnetwork is
studied.

3 Method

3.1 B-Tensor Construction

For a multi-modal (R-modal) connectome defined over I × J nodes (cortical
parcels) for a population of K cases, the 4th order B-tensor (B ∈ R

K×I×J×R) is
defined. In this work, we used 6 variants of sNET definitions, hence R = 6, over
a population of 20 cases, hence K = 20. We used the 148-parcel Destrieux atlas
[6], hence I = J = 148.

Following the co-registration of T1-weighted MRI and dMRI volumes, the T1-
weighted MRI volume is parcellated using FreeSurfer1, into 148 parcels which
are used to define the 148 nodes ({Vi}) of the sNETs. Diffusion tensor (DT)
volume is computed from diffusion weighted MRI (DWI) using an in-house
software built upon the MITK platform2. Fiber tracts are constructed using
the 4th-order Runge-Kutta (RK4) deterministic tractography algorithm [7] with
minimum fractional anisotropy (FA) set to 0.15, stepsize set to 0.7 mm (≈ half
the voxel size), minimum fiber length set to 14 mm and the maximum curvature
set to 35◦. RK4 was initiated from 30 randomly selected seeds per voxels with
FA > 0.15.

In order to construct the sNETs, each fiber ({fk}) is associated with the
nodes in the vicinity of its end-points using a symmetric 3D Gaussian kernel
with a standard deviation (σ) of 0.155 mm, centered at the fiber endpoints. σ is
optimized by minimizing the integrated square error (ISE), as described in [8].
The numeric volumetric integral of the Gaussian kernel positioned at one of the
end points of fk, within the node Vi (and up to a radial distance of 2σ) is used
as the fiber-parcel/node association and is denoted by Wik.

Six different sNETs are constructed using 6 different structural connectivity
(network edge weight) definitions, Cij , between pairs of nodes, (Vi, Vj), as follows:

Cij =
∑

k

WikWjk : Weighted Connectivity (1)

1 https://surfer.nmr.mgh.harvard.edu/.
2 http://mitk.org/wiki/MITK.

https://surfer.nmr.mgh.harvard.edu/
http://mitk.org/wiki/MITK
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CN
ij =

2 × Cij

V
Vi + Vj

: Normalized Connectivity (2)

Cstat
ij =

1
Cij

∑

k

WikWjk × Ψ(FA(fk(t))) , ∀Cij �= 0

FA-based Connectivities (3)

where V is the voxel volume in mm3, Vi and Vj are the volumes of corresponding
parcels, and Ψ represents the statistics operator (∈{min, max, mean, median})
operating over the fiber parametrized by t.

3.2 B-Tensor Factorization

The CP factorization of B is given as [9,10],

Bk,i,j,r ≈
Q∑

q=1

Ak,qCi,qDj,qEr,q (4)

where the decomposition is performed over Q (free parameter) factors. Each
one of the components represents the factorization of a single dimension of B
over the Q factors. While A and E are associated with the individual cases and
the sNET definitions, C and D are solely associated with the network topology.
Hence, we combined C and D into a single component that represents network
topologies across Q factors, while A and E are merged to represent per case per
connectivity (per-modality) represented in terms of those network topologies.
Namely,

Bk,i,j,r ≈
Q∑

q=1

Mk,r,qGi,j,q =
Q∑

q=1

(∑

s

Ak,sEr,sIq,s
)( ∑

s

Ci,sDj,sIq,s
)

(5)

where Iq,s = δqs, i.e. the identity matrix and s ∈ {1, 2, · · · , Q}. This allows
us to decouple the network topology from the cases and the modalities (con-
nectivity definitions). Thus, we can work with case and modality independent
network topologies, namely the canonical subnetworks, G. With a further simpli-
fication, we constrained G to be a binary valued tensor representing the apriori
known (fixed) canonical subnetworks. Following Yeo et al., we defined 7 canon-
ical subnetworks, namely the visual, the somatomotor and auditory, the dorsal
attention, the salience, the limbic, the frontoparietal and the default mode sub-
networks [11]. They are expressed in terms of the node definitions of B and
numbered from 1 to 7, respectively. G is assumed known and fixed for the rest.
M, on the other hand, represents the factorization coefficients over the canoni-
cal dimensions (subnetworks). This gives us 7D representations per case and per
modality as Fk,r ∈ R

7.
Following [12], Eq. 5 can be matricised as

B(1,4;2,3) = MT
(3;1,2)G(3;1,2) (6)
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where M(3;1,2) = M(3) = (E � A)T and G(3;1,2) = (G(3) = D � C)T .3 Fixing
G as described above, we can solve for M using any matrix inversion technique,
such as QR decomposition, to get M(3) = G−T

(3) B
T
(1,4;2,3). G

−T
(3) is computed once

and used throughout the analysis. Finally, the computed M(3) is tensorized back
to its original form to get the estimated M as a 3rd order tensor representing
per case, per connectivity unconstrained real-valued factorization coefficients.

4 Experiments

4.1 Data

T1-weighted MRI and dMRI images were acquired by using a Philips Achieva
3.0T X scanner with a 32-channel head coil from 7 AD patients and 13 con-
trols with written consent. The AD patients were diagnosed by means of stan-
dard clinical evaluation tests by a team of expert neurologists. We used 3D
FFE (Fast Field Echo) pulse sequence with multi-shot TFE (Turbo Field Echo)
imaging mode for T1-weighted MRI. The acquisition parameters were TE/TR
= 3.8ms/8.3ms, flip-angle = 8◦, SENSE reduction 2 (Foot-Head), FOV =
220(RL)×240(AP ) mm2, voxel size = 1.0×1.0×1.0 mm3 and number of slices =
180. dMRI were acquired with a maximum gradient strength of 40 mT/m, and
200 mT/m/ms slew rate, using a single-shot, pulse-gradient spin echo (PGSE),
echo planar imaging (EPI) sequence. The acquisition parameters were FOV=
200×236 mm2, 2.27 mm isotropic voxel size, 112×112 reconstruction matrix, 71
slices and TE/TR = 92ms/9032ms. 120 diffusion weighting gradient directions
were used at various b-values between 3000 − 0 s/mm2.

4.2 Analysis and Results

The separation of the AD patients and the controls in the 7D canonical space
of subnetworks was assessed by Linear Discriminant Analysis(LDA) [13]. Binary
classifiers are trained for each one of the 6 connectivity definitions in the cor-
responding 7D space (Fr) and the training accuracies are measured. We also
computed the unit normal of separating hyperplanes, i.e. the canonical axis,
along which the separation of the two groups is maximized. AccB represents
the binary classification accuracy. We also trained a separate binary classifier
using LDA on the standard global network parameters (global clustering coeffi-
cients [14], average shortest path length [15], small-worldness index [16]). Accglb
represents the classification accuracy using these global parameters. The results
are given in Table 1 together with the corresponding canonical axes for the B-
tensor analysis. All accuracies were above 90%, with the weighted and normalized
connectivity definitions being the best performing ones for B-tensor. The corre-
sponding classification accuracies using global connectome features in LDA are
between 75%–90%.

3 � denotes the Khatri-Rao product.
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Table 1. Classification accuracies of LDA classifier for different connectivity definitions
(modalities) and the associated canonical axes.

Conn Canonical Axis AccB Accglb

Cij [0.012 −0.010 −0.377 −0.887 0.211 −0.159 −0.022] 0.95 0.8

CN
ij [−0.326 −0.130 −0.530 −0.636 0.426 0.054 −0.073] 0.95 0.85

Cmin
ij [−0.224 −0.064 −0.351 −0.509 0.401 0.448 −0.446] 0.90 0.75

Cmax
ij [−0.352 0.231 −0.345 −0.703 0.299 0.056 0.340] 0.90 0.90

Cmean
ij [−0.352 −0.287 −0.298 −0.714 0.347 0.046 0.215] 0.90 0.80

Cmedian
ij [−0.333 −0.296 −0.286 −0.741 0.347 0.0461 0.215] 0.90 0.75

The components of the canonical axes unit vectors provide an insight with
regard to the relevance of the corresponding canonical subnetwork in discrim-
inating the AD patients from the controls. The higher the absolute value of
a component of a canonical axes, the more important that canonical dimen-
sion (subnetwork) is in discriminating the two groups. Figure 1 shows the mean
and standard deviation of the magnitude of each component computed over all
modalities.

In order to compare the connectivity definitions with regard to their discrim-
inating power, we ordered the canonical subnetworks based on the mean values
given in Fig. 1 and computed the classification accuracy of LDA using the top
K (∈ [1, 7]) canonical subnetworks, separately for each connectivity definition.
Figure 2 shows the results. In general, increasing the dimension of the canoni-
cal space improves the accuracy, except for the 2D case (i.e. using the dorsal

Fig. 1. Mean and standard deviations of the canonical axes’ components computed
over all modalities. The 4th subnetwork (Salience subnetwork) is consistently observed
to be the most important one.
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Fig. 2. Accuracy of LDA for all modalities using top K (∈ [1, 7]) canonical dimensions
(subnetworks). The weighted connectivity definition performed the best almost unan-
imously where as the FA-statistics based connectivities performed relatively poorly in
general.

attention and the salience networks only). However, the weighted connectivity
definition performed the best almost unanimously where as the FA-statistics
based connectivities performed relatively poorly in general.

5 Discussion

The B-tensor factorization allows us to represent the multi-modal (multi-
connectivity) brain connectome in a canonical space of subnetworks with an
intuitive interpretation. The AD patients are clearly separated from the controls
in this space. The salience network is consistently observed to be the most impor-
tant subnetwork among the 7 subnetworks used. The dorsal attention and the
limbic subnetworks seem to be the second most important networks whereas the
fronto-parietal network is the least important one. Although this result seems to
be counter intuitive as the memory loss (primary function of limbic subnetwork)
is the major symptom of AD, there is also evidence supporting our findings
[17]. Furthermore, the AD cases in our dataset are described as early stage AD
by our collaborating neurologists, which may also explain the observed impor-
tance of the salience subnetwork. These preliminary results are limited by the
fixed definition of the canonical subnetworks. However, the B-tensor factoriza-
tion framework can be utilized for searching for discriminative subnetworks. This
would provide a further insight into the causes and progression mechanism of
neurodegenerative diseases.

The assessment of different connectivity definitions within the aforemen-
tioned canonical space reveals that the weighted and normalized connectivity
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definitions’ discriminative power outperforms those of FA-statistics based con-
nectivities. Although it has been discussed that the FA is an indirect measure of
the quality of communication between cortical regions, these preliminary results
suggest the opposite. This is potentially due to well-known deficiencies of dif-
fusion tensor model that underlies the FA measurements. A similar assessment
using the microstructural integrity of the fiber tracts by means of compartment
models, such as NODDI [18], can potentially show a higher discriminative power.

The continuous representation of brain connectome in the canonical space can
also be used for staging the disease progression. A regression analysis between
this low-dimensional representation and clinical test results should be carried
out, which is left for future work. Current study is limited to different sNET
definitions, yet the framework is suitable to include fNETs in the B-tensor simul-
taneously with sNETs. Such a multi-modal analysis may uncover non-trivial
relations between the structural and functional changes during the course of the
disease, by means of the correlations of different modalities as represented in
the canonical space. A fundamental limitation of the present study is the small
dataset size which might have caused an overfitting of the LDA classifier. Further
experiments on a larger dataset are due to arrive at stronger conclusions.

6 Conclusion

We have presented a novel tensor based multi-modal representation of brain
connectome and described how it can be factorized to get a continuous, low-
dimensional representation in a canonical space offering an intuitive understand-
ing of neurodegenerative diseases’ causes and progression. Preliminary results
with a small cohort of AD patients and controls revealed high classification accu-
racy and identified the salience subnetwork as the most discriminative network
component among the 7 known.

Future work will include the experiments with a larger cohort, the extension
of the model to joint analysis of structural and functional networks, the assess-
ment of the canonical representation as a disease staging/monitoring biomarker
and developing a canonical subnetwork search strategy optimized for classifica-
tion/regression accuracy.
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Abstract. The morphology of anatomical brain regions can be affected
by neurological disorders, including dementia and schizophrenia, to var-
ious degrees. Hence, identifying the morphological signature of a spe-
cific brain disorder can improve diagnosis and better explain how neu-
roanatomical changes associate with function and cognition. To capture
this signature, a landmark study introduced, brain morphometricity, a
global metric defined as the proportion of phenotypic variation that can
be explained by brain morphology derived from structural brain MRI
scans. However, this metric is limited to investigating morphological
changes using low-order measurements (e.g., regional volumes) and over-
looks how these changes can be related to each other (i.e., how morpho-
logical changes in region A are influenced by changes in region B). Fur-
thermore, it is derived from a pre-defined anatomical similarity matrix
using a Gaussian function, which might not be robust to outliers and
constrains the locality of data to a fixed bandwidth. To address these
limitations, we propose the intact connectional brain morphometricity
(ICBM), a metric that captures the variation of connectional changes in
brain morphology. In particular, we use multi-view morphological brain
networks estimated from multiple cortical attributes (e.g., cortical thick-
ness) to learn an intact space that first integrates the morphological
network views into a unified space. Next, we learn a multi-view mor-
phological similarity matrix in the intact space by adaptively assigning
neighbors for each data sample based on local connectivity. The learned
similarity capturing the shared traits across morphological brain network
views is then used to derive our ICBM via a linear mixed effect model.
Our framework shows the potential of the proposed ICBM in capturing
the connectional neuroanatomical signature of brain disorders such as
Autism Spectrum Disorder.
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1 Introduction

Brain disorders affect the brain construct on multiple levels including neural
activity quantified using functional magnetic resonance imaging (MRI) and brain
tissue morphology measured using structural T1-weighted MRI. While several
studies focused on identifying the functional signature (or fingerprint) of brain
disorders [1–3], a few works investigated the morphological fingerprint of a spe-
cific brain disorder (Alzheimer’s disease, Autism Spectrum Disorder, Parkinson’s
disease). To fill this gap, [4] proposed a statistical metric called brain ‘morpho-
metricity’ (BM) that describes the associations between brain morphology and
multiple risk factors such as age and gender. Using structural MRI, volumetric
measurements of noncortical structures and thickness measurements of cortical
regions were generated. To capture the similarity between brain morphologies
of brains drawn from distinct groups (e.g., normal controls and ASD patients),
they computed a similarity matrix for each of these measurements separately,
and then averaged them to produce the global anatomical similarity matrix. Ulti-
mately, a Linear Mixed Effect model (LME) was applied to estimate the variance
captured by the similarity matrix to unravel the morphological signature of a
specific phenotypic trait (e.g., clinical diagnosis).

However, the proposed morphometricity metric is limited to investigating
morphological changes using low-order measurements (e.g., regional volumes)
and overlooks how these changes can be related to each other (i.e., how mor-
phological changes in region A are influenced by changes in region B). In other
words, it does not look at morphological connectivity of anatomical regions of
interest (ROIs), where a morphological connection quantifies the (dis)similarity
in shape between two brain ROIs –i.e., how their morphologies are related. This
can be modeled using multi-view morphological brain networks (MBN) as pro-
posed in [5–8]. These showed great potential for brain disorder diagnosis [5–
7] and morphological connectional biomarker identification [8] using supervised
[5,6] or unsupervised learning [7] techniques trained on structural T1-weighted
MRI data. More importantly, each view-specific MBN models the relationship in
morphology between brain regions using a specific measurement (e.g., curvature).

To fill this gap, we unprecedentedly propose to use multi-view MBNs for
‘connectional brain morphometricity’ (CBM) estimation. We note that in the
landmark work [4] of BM, the similarity matrix is computed using a pre-defined
similarity function such as Gaussian metric, which (i) may not be robust to out-
liers, (ii) may not handle well multi-view data drawn from multiple sources, and
(iii) may fail to capture data sample distributions with varying bandwidths. To
address these limitations, we propose to learn the data similarity matrix by lev-
ering the intact-awareness similarity learning model developed in [9]. More pre-
cisely, the proposed approach aims to recover an intact space [10] that captures
the complementarity between multiple data views. A practical example of this is
the medical diagnosis of neurological diseases, such as dementia. Each morpho-
logical feature (e.g., cortical thickness) alone captures insufficient information
and thus cannot comprehensively describe the brain atrophy, which can only be
fully recovered by integrating all the features. To leverage the complementary of
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multi-view MBNs, we propose a novel intact connectional brain morphometric-
ity (ICBM) learning framework to identify the connectional morphology-driven
fingerprint of specific traits. Specifically, we use the intactness-aware similarity
learning method [9] to estimate the similarity that has the maximum dependence
with its intact space, where shared traits across views are well captured. First,
we learn the complementarity between different MBNs by constructing an intact
connectomic space. Within a joint framework, we simultaneously learn a multi-
view morphological similarity matrix in the intact space by adaptively assigning
neighbors for each data sample based on local connectivity. The learned similar-
ity capturing the shared traits across morphological brain network views is then
used to derive our ICBM via a linear mixed effect model. The main contributions
of our work can be summarized as follows:

– We propose to learn a morphological intact space that models the complemen-
tarity between different morphological brain networks by integrating them in
one space, thereby catching partial information from each individual view.

– We learn the multi-view morphological similarity matrix that is in harmony
with the morphological intact space of multi-view MBNs.

– We introduce the intact connectional brain morphometricity, a metric that
could reveal novel insights into morphological connectivity fingerprinting
brain disorders.

2 Intact Connectional Brain Morphometricity Learning

In the following, we present the main steps of our intact connectional brain mor-
phometricity (ICBM) learning framework. To clarify the reading, we summarized
the major mathematical notation in Table 1. Figure 1 illustrates the proposed
pipeline for estimating the intact connectional morphometricity in three major
steps: (1) construction of multi-view morphological networks, (2) learning of the
intact multi-view similarity matrix, and (3) estimation of the ICBM using LME
model.

Multi-view Morphological Network. Inspired by the foundational works of
[7,8], we define a morphological brain network V as a graph comprising a set of
nodes, each node representing a brain ROI. The connection between two nodes
quantifies the dissimilarity in shape between two ROIs i and j by computing
the absolute difference between ROI-based average morphological measurements
(e.g., mean curvature). By diversifying the morphological measurements, we gen-
erate a set of MBNs Mv = {V 1, V 2, . . . , V k}, each capturing a specific view of
the morphological brain construct. Since each MBN can be defined as a symmet-
ric matrix, we only vectorize the off-diagonal upper triangular part to generate
a feature vector Fk

s for each subject s and each view k (Fig. 1-A).

Intact Morphological Similarity Learning. This step is the core of our
framework as it describes the connectional similarity between the morphological
views. Basically, we first propose to learn an intact space that represents the
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Fig. 1. Proposed framework for intact connectional brain morphometricity (ICBM)
learning. (A) Feature extraction from different multi-view morphological brain net-
works, each driven from a specific morphological brain measurement (e.g., curvature).
Multi-view feature vectors are concatenated to create a multi-view training matrix
including all subjects. (B) Intact similarity matrix construction. We learn an intact
connectomic space, which captures the complementarity between all views {Fk}, and
where the intact similarity matrix S is jointly learned. (C) ICBM estimation. Given
the learned similarity matrix along with the phenotype vector (e.g., subject label as
normal control or autistic) and the population covariance matrix, we compute ICBM
using linear mixed effect (LME) model.

complementary information of multiple views. As reported in [10], an individual
view is insufficient for learning, thus integrating multiple views is necessary to
learn a comprehensive representation of the data. Given specific views Vi and
Vj generated from the intact space X, the view insufficiency can be expressed by
I(X;Vj |Vi) that measures how much information is shared between the intact
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Table 1. Major mathematical notations used in this paper

Mathematical notation Definition

n number of subjects

Vk brain network of the k view of subject n in
R

nr×nr

Mv set of subject-specific multi-view morphological
networks

Fk matrix including features vectors extracted from the
kth brain network view k of all subjects

Fk
s feature vector extracted from the brain network of

the k-th view for subject s

Xn a sample in the intact space X represented by K

feature vectors F k in R
dkf

where dk
f is the feature dimension of the k-th view

Wk a mapping function of a specific feature view Fk,
representing all subjects in X

Sc connectional similarity matrix in R
n×n

m2
c learned intact connectional brain morphometricity

y the phenotype vector that describes the clinical state
of samples (e.g., healthy or disordered)

Σ the covariance matrix that contains data of covariate
variables such as age and gender

fe the LME fixed effect vector

re ∼ N(0, vaS
c) a random effect vector resulting from a

zero-mean multivariate Gaussian distribution
with a covariance matrix Sc

ε the noise vector with variance ve

space X and the newly generated view Vj given the known view Vi. Given,
multiple views Mv generated from the complete intact space X, the information
obtained to learn X is measured by:

I(X;V1,V2, . . . ,Vk) =
k∑

i=1

I(X;Vi−1,Vi−2, . . . ,V1) (1)

Thus, learning X can be formulated as a minimization problem based on Eq. 1
so that X = minX L(X;V 1, V k) where L(.) is the loss function l(.) over the
samples on different views. Considering Wk a mapping function of a specific
feature view Fk representing all subjects in the intact space X, the intact space
X learning is formulated as follows:

min
X,Wk

1
K

K∑

k=1

‖2F +λ1 ‖2F (2)
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where λ1 ‖2F is a regularization term used to penalize the intact space X and λ1

is a non-negative parameter.
Following the learning of the intact space X, one can learn an intact similarity

matrix Sc between subjects across views by maximizing its dependence with
the intact space X. This results in connecting the data points based on their
locality –i.e., only the nearest neighbors observations of a specific point can be
connected to this point rather than all other observations. Hence, the multi-view
morphological similarity learning can be formulated as follow:

min
Sc

λ2

n∑

i=1

n∑

j=1

‖1 Sc
ij + γ ‖2F (3)

where γ ‖2F is used to prevent Sc from converging to identity matrix. λ2 and γ
are non-negative parameters. Additionally, in order to handle noisy samples, we
adopted the l1 distance instead of l2.

Since the connectional similarity matrix Sc is derived from the intact connec-
tomic space X, we combine both models of Eqs. 2 and 3 into a joint alternating
optimization framework where the learning of the intact space is influenced by
the learning of the similarity matrix and vice versa:

min
X,Wk,Sc

1
K

K∑

k=1

‖2F +λ2

n∑

i=1

n∑

j=1

||Xi − Xj ||1Sc
ij + γ ‖2F (4)

Intact Connectional Brain Morphometricity Estimation. Next, we pro-
pose to use the learned intact morphological similarity matrix Sc to estimate the
intact connectional morphometricity. Specifically, we are using the Restricted
Maximum Likelihood (ReML) [11] to fit the Linear Mixed Effect (LME) model
described as follows:

y = Σ ∗ fe + re + ε, (5)

where y denotes the phenotype vector that describes the clinical state of samples
(e.g., healthy or disordered subject), Σ is the covariance matrix that contains
data of covariate variables such as age and gender, fe is the fixed effect vector,
re ∼ N(0, vaSc) is a random effect vector resulted from a zero-mean multivariate
Gaussian distribution with a covariance matrix Sc, and ε denotes the noise vector
with variance ve. We then define the intact connectional brain morphometricity
mc as:

mc =
va

va + ve
=

va
vc

(6)

where va is the variance captured by Sc and vc is the phenotypic variance. The
proposed ICBM can thus described as the proportion of phenotypic variation
that can be explained by morphological brain connectivity.
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3 Results and Discussion

Data Parameters. We evaluate the proposed framework on 341 subjects (155
ASD and 186 NC) from Autism Brain Imaging Data Exchange (ABIDE)1, each
represented using four morphological brain networks constructed using the fol-
lowing cortical measurements in the right and left hemispheres: mean maximum
principal curvature, mean cortical thickness, mean sulcal depth, mean of aver-
age curvature. For more details about MBN construction strategy, we kindly
refer the reader to [6,8]. Three parameters were tuned using grid search: the
dimension of the intact space, λ2 is a non-negative trade-off parameter and nk

is the number of nearest neighbor of a specific sample in X. Specifically, using
a grid search strategy we tuned one parameter by fixing the others using 5-fold
cross-validation for the left and the right hemispheres, independently.

Estimating ICBM Using Different Combinations of Brain Network
Views. Given our 4 brain network views, we first constructed all possible com-
binations using 2, 3, and 4 views, respectively. This allows to investigate the
ICBM using different combinations of views as mapped onto the intact space.
For instance, using two views, we generate C2

4 ICBMs, each for a specific pair
of views. Next, we report in Fig. 2 the average ICBM across all pairings along
with the standard deviation. For comparing the estimated intact connectional
brain morphometricity across hemispheres, we report in Fig. 2-A ICBM esti-
mates when tuning the parameters for the left hemisphere (LH) and then fixing
them for the right hemisphere (RH), whereas in Fig. 2-B, the ICBM parameters
are tuned using the RH.

Fig. 2. Intact connectional brain morphometricity (ICBM) estimates using three dif-
ferent combinations of brain four views: mean maximum principal curvature, mean
cortical thickness, mean sulcal depth, mean of average curvature. (A) ICBM estimated
while fixing the model parameters using the left hemisphere (LH). (B) ICBM estimated
while fixing the model parameters using the right hemisphere (RH). Blue bars display
ICBM for the LH and orange bars display ICBM for the RH.

1 http://fcon 1000.projects.nitrc.org/indi/abide/.
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Figure 2 shows the association between multi-view morphological networks
and ASD, assessed using the ICBM. Specifically, our preliminary analyses indi-
cate that this particular clinical condition is not significantly morphometric since
all intact connectional brain morphometricity estimates were smaller than 0.8
as explained in [4]. Figure 2 also shows that the right hemisphere (orange bars)
is more morphometric than the left hemisphere on a ‘connectional’ level. This is
in line with the findings of [7], where MBNs derived from the right hemisphere
produced the best classification accuracy in distinguishing between ASD and NC
subjects, which might indicate that right hemispheric connectional features have
more discriminative power than the left hemisphere when leveraging high-order
morphological information such as correlation between cortical measurements.
We also note that both Fig. 2-A and B exhibit similar trends where the estimated
of ICBM for RH is higher than LH for three- and four-view based combinations.
As for two-view based combination, we note that ICBN is somewhat invariant
across cortical hemispheres.

4 Conclusion

In this work, we introduced the intact connectional brain morphometricity, a
metric that is learned using multi-view morphological brain network data for
identified the connectional morphometric fingerprint of a specific trait (e.g.,
autism spectrum disorder). Our preliminary results revealed that autism is not
significantly morphometric on a connectional level. However, we found that the
right hemisphere is more morphometric than the left one. In our future work,
we will evaluate the proposed ICBM learning framework on other disordered
datasets (e.g., dementia). It would be also interesting to compare conventional
brain morphometricity [4] to the connectional one.
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Abstract. Morphometric similarity networks (MSNs) have been recent-
ly proposed as a novel, robust, and biologically plausible approach to
generate structural connectomes from neuroimaging data. In this work,
we apply this method to multi-centre neonatal data (postmenstrual age
range: 37–45 weeks) to predict brain dysmaturation in preterm infants.
To achieve this goal, we combined different imaging sequences (diffusion
and structural MRI) to extract a set of metrics from cortical and subcor-
tical brain regions (e.g. regional volumes, diffusion tensor metrics, neurite
orientation dispersion and density imaging features) which were used to
construct a similarity network. A regression model was then trained to
predict postmenstrual age at the time of scanning from inter-regional
connections. Finally, to quantify brain maturation, the Relative Brain
Network Maturation Index (RBNMI) was computed as the difference
between predicted and actual age. The model predicted chronological
age with a mean absolute error of 0.88 (±0.63) weeks, and it consistently
predicted preterm infants to have a lower RBNMI than term infants. We
conclude that MSNs derived from multimodal imaging predict chronolog-
ical brain development accurately, and provide a data-driven approach
for defining cerebral dysmaturation associated with preterm birth.

Keywords: Morphometric similarity networks · Preterm brain
Brain developmental delay · Multi-modal MRI

P. Galdi and M. Blesa—These authors contributed equally to the work.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-00755-3 6) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2018
G. Wu et al. (Eds.): CNI 2018, LNCS 11083, pp. 47–57, 2018.
https://doi.org/10.1007/978-3-030-00755-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00755-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-00755-3_6
https://doi.org/10.1007/978-3-030-00755-3_6


48 P. Galdi et al.

1 Introduction

Preterm birth is associated with a distinct brain magnetic resonance image
(MRI) phenotype that includes generalized and specific dysconnectivity of neu-
ral systems and increased risk of neurocognitive and psychiatric impairment
[1,2]. Different structural properties derived from MRI data, such as fractional
anisotropy, mean, axial and radial diffusivity and neurite density index, have
shown age related differences in the developing brain [3,4] and have been linked
to altered neurodevelopment in children born preterm [5].

In recent years, several studies have used connectomics to study the devel-
oping brain and to investigate atypical development and dysmaturation [3,6,7].
The majority of connectomics work in neonates is based on single modes of data
such as diffusion MRI (dMRI) tractography or resting-state functional connec-
tivity (rsfMRI). An alternative method to model connectivity is the structural
covariance network (SCN) approach [8] that works by calculating the covariance
between regional measurements across subjects, resulting in a single network for
the entire population. Other approaches have constructed subject-specific SCNs
[9,10], but these techniques have been restricted to the use of morphometric
variables available through standard structural T1-weighted MRI sequences and
by using a single metric to assess the “connectivity” between nodes. To the best
of our knowledge, only Shi et al. used SCNs in addition to white matter (WM)
networks to provide evidence of the existence of brain alteration in neonates at
genetic risk for schizophrenia [11]. The main limitation of the mentioned meth-
ods is that they do not take advantage of additional information that can be
derived combining multiple modalities. In recent work Ball et al. applied canon-
ical correlation analysis to multi-modal imaging and clinical data from preterm
infants [12]. The study identified specific patterns of neonatal neuroanatomic
variation that related to perinatal environmental exposures and correlated with
functional outcome. They show that data-driven approaches which incorporate
broad image phenotypes improve characterisation of atypical brain development
after preterm birth.

In this work, we investigated whether connectomes derived from multimodal
data within a predicting framework capture novel information about brain dys-
maturation in preterm infants. Morphometric similarity networks (MSN) model
the inter-regional correlations of multiple macro- and micro-structural multi-
modal MRI variables in a single individual. MSNs were originally devised to
understand better how human cortical networks underpin individual differences
in psychological functions [13]. The method works by computing a number of
metrics for each region of interest (ROI) derived from different MRI sequences
which are then arranged in a vector. The aim is to obtain a multidimensional
description of the structural properties of the ROIs. The MSN is then built con-
sidering the ROIs as nodes and modelling connection strength as the correlation
between pairs of ROI vectors. The pattern of correlations can be conceptualized
as a “fingerprint” of an individual’s brain. Here, the edges of individual MSNs
were used to train a regression model to predict postmenstrual age (PMA) at
the time of MRI acquisition. Then, to quantify brain maturation, the Relative
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Brain Network Maturation Index (RBNMI) [7] was computed as the difference
between predicted and actual age. We aimed to test the hypothesis that RBNMI
is reduced in preterm infants at term equivalent age compared with infants born
at term.

2 Methods

2.1 Participants and Data Acquisition

We combined neonatal brain MRI data collected in our institution with data
from the first release of the Developing Human Connectome Project1 (dHCP)
in order to achieve balance across the age range of interest (37–45 weeks PMA).
The total study sample consisted of data of 95 subjects.

The Edinburgh Birth Cohort (TEBC). Participants were recruited as part
of a longitudinal study designed to investigate the effects of preterm birth on
brain structure and outcome.2 The study was conducted according to the prin-
ciples of the Declaration of Helsinki, and ethical approval was obtained from
the UK National Research Ethics Service. Parents provided written informed
consent. A total of 55 neonates (30 preterm, 25 term, PMA range 38–45
weeks) underwent MRI at term equivalent age at the Edinburgh Imaging Facil-
ity: Royal Infirmary of Edinburgh, University of Edinburgh, Scotland, UK.
A Siemens MAGNETOM Prisma 3 T MRI clinical scanner (Siemens Health-
care Erlangen, Germany) and 16-channel phased-array paediatric head coil were
used to acquire: 3D T1-weighted MPRAGE (T1w) (acquired voxel size = 1 mm
isotropic); 3D T2-weighted SPACE (T2w) (voxel size = 1 mm isotropic); and two
dMRI acquisitions, the first one using a protocol consisting of 8 baseline volumes
(b = 0 s/mm2) and 64 volumes with b = 750 s/mm2, the second one consisting of 8
baseline volumes, 3 volumes with b = 200 s/mm2, 6 volumes with b = 500 s/mm2

and 64 volumes with b = 2500 s/mm2. Diffusion-weighted single-shot spin-echo
echo planar imaging (EPI) volumes with 2-fold simultaneous multislice and 2-
fold in-plane parallel imaging acceleration were acquired with 2 mm isotropic
voxels; both acquisitions had the same echo and repetition time. Infants were
scanned without sedation. All images were reviewed by an expert in paediatric
neuroadiology (AJQ), and none contained major focal parenchymal lesions.

Developing Human Connectome Project. The goal of the dHCP is to
create a dynamic map of human brain connectivity from 20 to 45 weeks PMA.
The infants were scanned using optimized protocols for structural T1w and T2w,
rsfMRI, and dMRI. The first release consists of images of 40 term infants (PMA
range 37–44 weeks).

1 http://www.developingconnectome.org/project/.
2 http://www.tebc.ed.ac.uk.

http://www.developingconnectome.org/project/
http://www.tebc.ed.ac.uk
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Fig. 1. Distribution of PMA at scanning in the pooled sample (37–45 weeks PMA). In
the left panel, age distributions in term and preterm infants are shown. In the right
panel, the age distributions in the TEBC and dHCP populations are shown.

The distribution of PMA at scan for the pooled data, each cohort, and the
term and preterm groups is shown in Fig. 1. The neonates from both cohorts
were separated in two groups: 65 term (PMA at scan range 37–44 weeks) and 30
preterm infants at term equivalent age (PMA at scan range 38–45 weeks). All
the term infants were born after 36 week of gestation, while the preterm children
were born before 32 weeks.

2.2 Data Preprocessing

Structural data were preprocessed using the dHCP minimal processing pipeline
described by Makropoulos et al. [14]. The result of this processing is the parcel-
lation of each structural image into 87 ROIs [15].

Diffusion MRI processing of TEBC dataset was performed as follows: for each
subject the two dMRI acquisitions were first concatenated and then denoised
using a PCA-based algorithm [16]; the eddy current, head movement and EPI
geometric distortions were corrected using outlier replacement and slice-to-
volume registration [17–20]; bias field inhomogeneity correction was performed
by calculating the bias field of the mean b0 volume and applying the correction
to all the volumes [21]. The dMRI data from the dHCP was already preprocessed
[22].

For both datasets, the mean b0 volume of each subject was co-registered
to their T2w volume using boundary-based registration [23], then the inverse
transformation was used to propagate the ROI labels to the dMRI. For each
ROI, two metrics were computed in the structural space: ROI volume and the
mean T1w/T2w signal ratio. In dMRI space, seven additional metrics were also
computed: the mean of each tensor-derived metric (FA: fractional anisotropy,
MD: mean diffusivity, AD: axial diffusivity and RD: radial diffusivity) and the
mean of the three Neurite Orientation Dispersion and Density Imaging (NODDI)
parameters (ICVF: intracellular volume fraction, ODI: orientation dispersion
index and VISO: isotropic volume fraction) [24]. For the tensor derived metrics,
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b = 750 s/mm2 was used for the TEBC and b = 1000 s/mm2 for the dHCP data.
NODDI maps were calculated with the default parameters.

2.3 Data Harmonization

We used ComBat to harmonise data because of its efficacy for removing scan-
ner variability while preserving biological variation [25]. Each image metric was
harmonized separately using gender, gestational age at birth, PMA at scan and
prematurity (coded as a binary variable) as biological covariates of interest.

2.4 Network Construction

The MSN for each subject was constructed by selecting 82 of the total 87 ROIs
(excluding CSF and background parcels); each of the ROI metrics was normal-
ized (z-scored) and then Pearson correlations were computed between the vectors
of metrics from each pair of ROIs. In this way, the nodes of each network are
the ROIs and the edges represent the morphometric similarity between the two
related ROIs (see Fig. 2 for a graphic overview of the approach). For comparison,
we also computed single-metric networks: in this case connections were assigned
a weight computed as the absolute difference between ROI values [10]. Note that
we did not control for the effect of brain size; this is an aspect worth investigating
in future work.

Fig. 2. Individual MSN construction. Different metrics are extracted from diffusion and
structural MRI data. The same parcellation is applied to both image types and the
average metric values are computed for each ROI. A connectivity matrix, representing
MSN connections, is built by computing the Pearson correlation between the vectors
of metrics of each pair of ROIs.

2.5 Regression Model

We trained a linear regression model with elastic net regularisation to pre-
dict PMA at scan in both preterm and term infants starting from individual
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MSNs. For each subject, the edges of the MSN (inter-regional correlations) were
concatenated to form a feature vector to be given as input to the regression
model. Following the approach of [7], prediction performances were evaluated
with a Monte Carlo cross-validation scheme. This worked as follows: in each of
100 repetitions, 50 term infants were selected at random to form the training set:
the remaining 15 full term infants and 15 premature infants selected at random
constituted the test set. Then, the mean absolute error (MAE) was computed
across subjects and repetitions. The parameters of the regression model were
selected with a nested 3-fold cross-validation loop.

2.6 Feature Selection

After the preprocessing phase, nine different metrics are available for each ROI.
To study which combination of features produced better performance in the
age prediction task, we implemented a sequential backward feature selection
scheme. Starting from the full set of features, at each iteration we removed
the feature whose subtraction caused the least increase in prediction error. The
prediction error was computed with a leave-one-out cross-validation scheme on
term infant data only. The best performing model, which was adopted for all
subsequent analyses, was based on eight features (regional volume, T1w/T2w
ratio, FA, AD, RD, ICVF, VISO, ODI) with a MAE of 0.64 (±0.44) weeks.
None of the single-metric networks (Sect. 2.4) outperformed the selected MSN,
however it is interesting to note that the metrics that yielded the least and
second least error were regional volume (MAE: 0.76 ± 0.61) and FA (MAE:
0.79 ± 0.91), respectively. These two metrics were previously associated with
age-related changes in the developing brain [3,4,15]. See supplementary material
for a comprehensive report of feature selection results.

2.7 Measuring Brain Maturation

The information contained in a MSN can be used to derive a data-driven metric
of brain maturation [7]. RBNMI is the difference between the predicted and
actual age: a negative score implies that the apparent age (i.e., the age predicted
by the model) is lower than the actual age; hence RBNMI can be interpreted as
an index of dysmaturation.

3 Results and Discussion

3.1 Data Harmonisation

We tested the efficacy of ComBat harmonization by comparing MSNs built
before and after harmonizing the data. We used principal component analy-
sis to perform an unsupervised dimension reduction and projected individual
MSN onto the first two principal components (PCs), explaining 28% of the vari-
ance. Figure 3 shows that without harmonization points are distinctly clustered
by dataset, while after harmonization there is no clear separation.
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Fig. 3. Individual MSNs projected onto the first two principal components (PC1 and
PC2) that explain most of the variation in the data, before harmonization (left panel)
and after (right panel).

3.2 Morphometric Similarity Networks

The selected model predicted PMA at scan with a MAE of 0.88 (±0.63) weeks
when tested on all data. We then computed the mean RBNMI values for each
group of subjects, averaged across the 100 Monte Carlo repetitions. The group
RBNMI was more negative for the preterm group (Fig. 4). The difference between
the two groups was confirmed with a two-tailed t-test (p < 0.001) after testing
for departure from normality of the RBNMI distributions with a D’Agostino
and Pearson’s test (p = 0.42 for the pretermn group; p = 0.98 for the term
group). These results suggest that the information contained in a MSN is suffi-
cient to detect a dysmaturation in preterm infants at term equivalent age. One
interesting aspect to consider is that the MSN was built by combining features
from different imaging sequences that describe complementary aspects of brain
structure and have been previously studied in isolation [3,15]. Hence, to fully
describe the developing brain it is crucial to follow a holistic approach, integrat-
ing information from multiple sources.

To study which connections contributed the most to age prediction, we
selected only edges which were assigned a non-zero coefficient in at least 99%

Fig. 4. Distribution of per group mean RBNMI values, averaged across test subjects
within each of the 100 rounds of cross-validation, shown as histograms (left) and as box
plots (right). Averaged RBNMI values in the preterm group were significantly more
negative than in the term group.
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of the Monte Carlo repetitions. These edges are shown in the chord diagram in
Fig. 5. The selected connections are predominantly located in subcortical regions
(thalamus, caudate and subthalamic nuclei); white matter ROIs in the temporal
lobe and posterior cingulate cortex; frontal regions, brain stem and cerebel-
lum. These areas have been previously associated with age-related changes and
preterm birth [3,26,27].

Fig. 5. Chord diagram showing MSN edges used for prediction in at least 99% of
regression models in the Monte Carlo repetitions. The thickness of connections reflects
the strength of the correlation between edge weights and age across subjects (positive
correlations in shades of gray; negative correlations in shades of red). (Color figure
online)

4 Conclusions

We used inter-regional morphometric similarities to train a predictive model
for PMA at scan and to derive a data-driven metric of brain maturation, the
RBNMI. We found that preterm infants at term equivalent age were consis-
tently assigned a lower RBNMI than infants born at term, indicating delayed
brain maturation. The predictive model for age performed best when structural,
diffusion tensor-derived and NODDI metrics were combined, which demonstrates
the importance of integrating different biomarkers to generate a global picture of
the developing human brain. The motivation for using a network-based approach
is indeed obtaining a whole-brain description able to capture a developmental
pattern. Our results suggest that the information contained in MSNs is sufficient
to train a machine learning model in the age prediction task. A second reason
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for working with similarities instead of single regional metrics is methodological:
computing edge weights as inter-regional similarities enables an integrated rep-
resentation of all available metrics in a single network; to work with the original
features directly would mean either working with several networks (thus requir-
ing a further step to integrate them) or concatenating all the features in a single
predictive model, aggravating the problems related with the “curse of dimen-
sionality”. In future work, we plan to extend the presented approach to other
clinical variables beyond PMA, such as clinical risk indices and neurocognitive
outcome data.
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Abstract. Brain imaging genetics is an emerging research field to
explore the underlying genetic architecture of brain structure and func-
tion measured by different imaging modalities. However, not all the
changes in the brain are a consequential result of genetic effect and it
is usually unknown which imaging phenotypes are promising for genetic
analyses. In this paper, we focus on identifying highly heritable mea-
sures of structural brain networks derived from diffusion weighted imag-
ing data. Using the twin data from the Human Connectome Project
(HCP), we evaluated the reliability of fractional anisotropy measure,
fiber length and fiber number of each edge in the structural connec-
tome and seven network level measures using intraclass correlation coeffi-
cients. We then estimated the heritability of those reliable network mea-
sures using SOLAR-Eclipse software. Across all 64,620 network edges
between 360 brain regions in the Glasser parcellation, we observed ∼5%
of them with significantly high heritability in fractional anisotropy, fiber
length or fiber number. All the tested network level measures, capturing
the network integrality, segregation or resilience, are highly heritable,
with variance explained by the additive genetic effect ranging from 59%
to 77%.
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1 Introduction

Brain imaging genetics is an emerging research field that integrates genotyping
and neuroimaging data to explore the underlying genetic architecture of brain
structure and function. Genetic analysis of imaging measures not only allows
the detection of risk variants associated with diseases, but also provides insights
into the underlying biological mechanism of preclinical brain changes. However,
not all the changes in the brain are a consequential result of genetic effect. It is
usually unknown which imaging phenotypes are promising for genetic analyses.
Therefore, prior to that, it is important to quantify the degree to which brain
imaging phenotypes can be attributed to genetic effect using heritability analysis.

Recently, substantial attention has been drawn to the genetic influence on
structural brain connectivity, which appeared to be altered in heritable dis-
eases (e.g. Alzheimer’s disease [13]). One widely analyzed measure is fractional
anisotropy (FA), an measure of fiber integrity very sensitive to the white matter
changes in various diseases [9]. Brain-wide, regional and voxel level FA measures
have all been found to be highly and significantly heritable [1,9]. Other features
that have been investigated include white matter fiber tract shapes [8], white
matter volume, network level characteristic path length and clustering coefficient
[1], and fiber orientation distribution [15]. However, these studies mostly focus
on the heritability of tracts (i.e. white matter ROIs) themselves, but not the
resulting anatomical connections of the human brain (i.e. connectome). To this
end, the heritability of brain connectomic features remains largely unknown.

To bridge this gap, we propose to perform a comprehensive heritability anal-
ysis of anatomical brain networks using the twin data from the Human Connec-
tome Project (HCP) [19]. We employ a new brain parcellation defined based on
functional MRI (fMRI) to generate brain networks with improved anatomical
precision, enabling us to examine the genetic influence on the structural coordi-
nation within/between functional brain circuits. With three sessions of diffusion
weighted imaging (DWI) scans for each individual, we first evaluate the reliabil-
ity of three edge-level measures, including fractional anisotropy, fiber length and
fiber number, and seven network-level measures using intraclass correlation coef-
ficients (ICC). The heritability of those reliable network measures were then esti-
mated using Sequential Oligogenic Linkage Analysis Routines (SOLAR)-Eclipse
software. Across all 64,620 edges between 360 ROIs, ∼5% of them show signifi-
cantly high heritability in fractional anisotropy, fiber length or fiber number. Top
functional brain circuits connected by these heritable edges include visual and
default mode network (DMN). All the tested network level measures, capturing
the integrity, segregation or resilience of brain networks, are highly heritable
with variance explained by the additive genetic effect ranging from 59% to 77%.

2 Method

HCP Data. We downloaded high spatial resolution DWI data from the
Human Connectome Project (HCP) [19]. In total, there are 179 pair of twins
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(Age: 29.1 ± 3.68), including 136 mono-zygotic females, 98 mono-zygotic males,
68 di-zygotic females and 56 di-zygotic males. DWI data was processed follow-
ing the MRtrix3 guidelines [18]. More specifically, we first generated a tissue-
segmented image appropriate for anatomically constrained tractography [16].
Then, we estimated the multi-shell multi-tissue response function [3] and per-
formed the multi-shell, multi-tissue constrained spherical deconvolution [7].
Afterwards, we generated the initial tractogram with 10 million streamlines
(maximum tract length = 250, FA cutoff = 0.06) and applied the successor of
Spherical-deconvolution Informed Filtering of Tractograms (SIFT2) methodol-
ogy [17]. Compared to SIFT, SIFT2 generates more biologically accurate mea-
sures of fiber connectivity whilst making use of the complete streamlines recon-
struction [17]. Finally, we mapped the SIFT2 output streamlines onto the Glasser
atlas with 360 ROIs [5] to produce the structural connectome. The final brain
networks were constructed using fibers going through white matter and con-
necting Glasser ROIs. In this project, we focused on three edge-level measures,
including fractional anisotropy (FA), length of fibers (LOF) and number of the
fibers (NOF). In addition, we binarized the brain network and calculated seven
network-level topological features characterizing the integrity, segregation and
resilience of brain networks [14] (see Table 1).

Reliability of Connectomic Features. Tractography-based networks is
known to have an issue on measurement reliability. To investigate the precision
of connectomic features, we estimated the test-retest reliability by comparing
three DWI data sets of the same individuals acquired at different time points.
We calculated intraclass correlation coefficients (ICC) for each brain connec-
tomic feature to evaluate their reliability [12]. All connectomic features with
good/excellent reliability (ICC ≥ 0.75) are included for the subsequent heri-
tability analysis [10].

Heritability Analysis. Heritability is defined as the proportion of pheno-
typic variance attributable to genetic effect. In this project, we estimated the

Table 1. Heritability of topological features derived from brain networks.

Topological features ICC h2 Std. error P-value Variance
(covariates)

Assortativity coefficient 0.92 0.59 0.06 3.50 × 10−13 0.04

Local efficiency 0.89 0.76 0.04 1.36 × 10−24 0.18

Modularity 0.87 0.70 0.05 3.02 × 10−19 0.11

Transitivity 0.89 0.77 0.04 3.90 × 10−24 0.16

Cluster coefficient 0.89 0.76 0.04 1.37 × 10−24 0.17

Global efficiency 0.87 0.75 0.04 4.88 × 10−23 0.16

Characteristic path length 0.85 0.72 0.04 5.71 × 10−23 0.02
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heritability of brain connectomoic features extracted from twin subjects in the
HCP cohort without using any genetic data. SOLAR-Eclipse software tool is cho-
sen over traditional ACE modal due to its capability in evaluating the covari-
ate effects, significance of heritability and standard error for each trait [4,9].
It requires three inputs: phenotype traits, covariates measures and a kinship
matrix indicating the pairwise relationship between twin individuals. A maxi-
mum likelihood variance decomposition method is applied to estimate the vari-
ance explained by additive genetic factors and environmental factors respectively.
The output from SOLAR-Eclipse includes heritability (h2), standard error and
the corresponding significance p-value for each feature. We estimated the her-
itability of all brain connectomic features, including FA, LOF, NOF of 64,620
edges and 7 network level measures (Table 1). Network level measures are derived
from binarized brain network in a way that the weight of the link is set to one
when it exists and zero otherwise [14]. Prior to the heritability analysis, inverse
Gaussian transformation was applied to ensure normality of all the measures.
Since many previous studies have reported the effect of age (linear/nonlinear),
gender and their interactions on structural brain connectivity [2,6,11,22], all
heritability analyses were conducted with age at scan, age2, sex, age × sex and
age2 × sex as covariates. In addition, we extracted the total variance explained
by all covariate variables.

3 Results

Reliability of Brain Connectomic Features. Shown in Fig. 1(a) is the scat-
ter plot of edge-level reliability against heritability estimated in SOLAR-Eclipse.
Each dot corresponds to one edge and the color indicates the significance of the
heritability. For FA, LOF and NOF measures, 11.13%, 9.95% and 45.54% of total
edges respectively show consistency across three sessions with good/excellent
reliability score (ICC ≥ 0.75). In total, 43,051 out of 193,860 edge-level features
passed the reliability test and their heritability patterns will be further analyzed.
All tested network level measures show very good reproducibility across sessions,
with the ICC value ranging from 0.85 to 0.92 (see Table 1). Since we focus on
the features reproducible across three sessions, the heritability analysis was only
performed on the DWI data from one session.

Heritability of Edge-Level Measures. After excluding the edges without
passing reliability test, there are 5105 edges whose FA show significantly high her-
itability after stringent Bonferroni correction (p ≤ 0.05/(64, 620×3) = 2.58e−7).
For LOF and NOF measures, there are 2687 edges and 7311 edges passing the
significance threshold respectively. From Fig. 1(b), we observe that the heritabil-
ity (h2) of FA measure is between 0.4 and 0.85. LOF and NOF measures show
similar heritability distribution, but there is much less edges with very high
heritability (h2 ≥ 0.8).

Shown in Fig. 1(c) are the heatmaps of anatomical connection matrix with
ICC ≥ 0.75 and p ≤ 2.58e − 7 for FA, LOF and NOF measures respectively.
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Fig. 1. Heritability distribution of all significant and reliable edges. (a) Scatter plots
of reliability against heritability. Dot color indicates log-transformed p-value. (b) His-
togram for reliabe edges. (c) Heatmap of anatomical connection matrix. Rows and
columns are reordered to form seven functional groups corresponding to Yeo parcel-
lation. Top and side color panels indicate the corresponding Yeo parcellation of each
ROI. The last subcortical (SUB) group is added to complement the Yeo atlas. (Color
figure online)

Glasser brain regions were reordered to form seven functional groups defined in
Yeo parcellation (Fig. 2) [21]. Subcortical part was added to complement Yeo
atlas. For all three edge-level measures, the majority of those significantly heri-
table and reliable edges are located within default mode network, within visual
circuit, or connecting default mode network with other circuits, such as Ven-
tral Attention and Frontal-Parietal. Edges connecting Visual and Somato-Motor
circuits show the highest average heritability (h2 = 0.69) in FA measure. For
LOF and NOF, the edges with the highest average heritability are from Limbic
system (h2 = 0.64 for LOF and h2 = 0.49 for NOF).
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Fig. 2. Brain map of Yeo parcellation in MNI space. From left to right: axial view,
coronal view, sagittal view (Left) and sagittal view (Right). The bottom color panel
indicates the color scheme of different regions: Visual (VIS), Somato-Motor (SM), Dor-
sal Attention (DA), Ventral Attention (VA), Limbic system (LS), Fronto-Parietal (FP)
and Default Mode Network (DMN). (Color figure online)

For each type of measures, we further ranked the edges based on their her-
itability (h2) and examined the brain regions connected by those top heritable
edges. In Fig. 3(a) are the heatmaps showing the heritability of top 0.5% edges
in FA, LOF and NOF respectively. In the brain connectivity map (Fig. 3(b)),
we observed that many top heritable edges are within the frontal lobe. several
brain regions in occipital lobe (primary visual cortex) as hubs connected by some
highly heritable edges for FA and LOF. These fiber tracts belong to white mat-
ter region inferior longitudinal fasciculus, whose regional FA value is previously
identified to be highly heritable [9]. In addition, we found that the length of Cin-
gulum tracts (vertical lines in the middle of the brain) are also largely controlled
by the genetic factors, with h2 around 0.65. Its FA measure was also previously
reported to be heritable with h2 = 0.81 [9]. For NOF, top heritable edges show a
different spatial pattern and are more evenly distributed across the whole brain.
Functional brain circuits that are mostly connected by these top heritable edges
are DMN and FP (Fig. 3(c)). Finally, we examined the expression patterns of
those brain regions involved in the DMN circuit in Allen Human Brain Atlas,
including medial prefrontal cortex, angular, precuneus, posterior cingulate cor-
tex and hippocampus. Interestingly, many of these brain regions connected by
heritable edges show very similar gene expression patterns.

Heritability of Network-Level Measures. For each individual, we extracted
seven network-level topological features to evaluate the integrity, segregation
and resilience of brain network, including assortativity coefficient, modularity,
local efficiency, cluster efficiency, transitivity, characteristic path length and its
inverse measure global efficiency. The detailed description of these measures
is available in [14]. Shown in Table 1 is the summary of estimated heritability
for all topological features. Five covariates can explain ∼15% variance of all
topological features except for assortativity coefficient and characteristic path
length. Sex and age2 × sex are the only factors that exhibit significant influence
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Fig. 3. Heritability of top 0.5% edges ranked by h2. (a) Heatmap of anatomical con-
nection matrix. (b) Heritability of edge-level measures in the brain map. Node color
indicates different Yeo functional groups. (c) Heatmap showing total number and aver-
age h2 value of edges connecting each pair of functional groups in Yeo parcellation. Top
and side color panels indicate the corresponding Yeo parcellation of each ROI. The last
subcortical (SUB) group is added to complement the Yeo atlas. (Color figure online)

on the network topology heritability. Assortativity coefficient has the highest
reliability, but only 58% of variance can be attributed to the additive genetic
effect. The other six features are estimated to have similar heritability around
0.75. These findings are consistent with previous studies, e.g. characteristic path
length and clustering coefficient of anatomical brain network are highly heritable
[1]. Our heritability estimation is slightly higher than theirs, possibly due to the
selection of different brain parcellation schemes.
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4 Conclusion

We performed a comprehensive heritability analysis for both edge-level and
network-level brain connectomic features. Unlike previous studies that largely
focus on the tracts (i.e. white matter ROIs), we used a new brain parcellation to
construct brain networks (connectome) with improved anatomical precision. Our
results show the degree to which the genetic factors may influence the structural
coordination between/within functional brain circuits. Many edges/tracts were
found to be highly heritable, particularly those connecting default mode network
circuit or visual circuit. This is consistent with another finding that hub regions
in the default mode network have very similar gene expression patterns [20].
All seven tested network-level features are reliable and significantly heritable.
Future effort is warranted to investigate the genetic variations underlying these
heritable connectomic features.
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Abstract. The functional architecture of the brain can be described as
a dynamical system where components interact in flexible ways, con-
strained by physical connections between regions. Using correlation,
either in time or in space, as an abstraction of functional connectiv-
ity, we analyzed resting state fMRI data from 1003 subjects. We com-
pared several data preprocessing strategies and found that indepen-
dent component-based nuisance regression outperformed other strate-
gies, with the poorest reproducibility in strategies that include global
signal regression. We also found that temporal vs. spatial functional
connectivity can encode different aspects of cognition and personality.
Topological analyses using persistent homology show that persistence
barcodes are significantly correlated to individual differences in cogni-
tion and personality, with high reproducibility. Topological data analy-
ses, including approaches to model connectivity in the time domain, are
promising tools for representing high-level aspects of cognition, develop-
ment, and neuropathology.

1 Introduction

Recent advances in the science of complex networks have utilized tools from
topological data analysis, in particular, persistent homology [10,29]. This app-
roach investigates connections between constituent parts of networks using pow-
erful and flexible algorithms designed to encode and measure the persistence
of relationships across multiple scales. As a discipline, topological data analysis
combines algebraic topology and other tools from pure and applied mathemat-
ics to support a widening array of applications for studying the architecture of
dynamic and complex networks. Although graph-theoretic connectivity, a rela-
tively simple type of topological analysis, has found wide application in func-
tional neuroimaging [23], more advanced uses of topological data analysis are
emerging.
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We evaluate the performance of graph-theoretic and persistent homology
metrics on both time and space formulations of functional connectivity and
use the Human Connectome Project dataset [26] to evaluate how the topologi-
cal architecture of brain networks is related to cognitive function. Since image
processing strategies traditionally used for resting state fMRI data have been
optimized for conventional types of analysis, we also evaluate the effects of dif-
ferent preprocessing pipelines. Specifically, we measure the reproducibility of
graph-theoretic metrics obtained from both time and space dimensions, follow-
ing several preprocessing pipelines to assess the potential impact of processing
strategies on the ability of graph-theoretic metrics to identify individual differ-
ences in connectivity and related cognition, behavior and personality.

Our analyses demonstrate that: (1) Graph-theoretic and topological analy-
ses performed on connectivity across time and space are correlated with dis-
tinct aspects of cognitive function. (2) The barcode obtained from the persistent
homology of resting state fMRI data is a compact representation of information
about individual differences in cognition and personality, with nearly all cognitive
metrics tested showing significant correlation to topological features within brain
regions known to be substrates for related cognitive functions. (3) Topological
metrics show excellent reproducibility when applied to long-duration functional
connectivity metrics (1 h resting state fMRI per subject). Reproducibility was
highest for FIX ICA processed data [15] and consistently poorer for preprocess-
ing strategies that include global signal regression [20].

2 Related Work and Technical Background

Dynamic Functional Connectivity. Methods for dynamical analysis of
the temporal information in fMRI image data have shown promise for
extracting information not available from conventional functional connectivity
approaches [18]. Several of these methods involve sliding window approaches [1],
where synchronization between brain regions is estimated from short epochs of
time. Windowed analyses, however, obtain estimates of connectivity from short
time series, resulting in limited accuracy of individual measurements.

An additional approach to component analysis includes identifying point-
process temporal co-activation patterns [5,17] by clustering time points that
exhibit similar activation across the brain and examining temporal structure
within the relative sequence of activation of these co-activation patterns. Point-
process methods such as temporal co-activation patterns have been analyzed by
clustering timepoints together with similar patterns of relative activation across
the brain into composite spatial nodes or networks that show hierarchical simi-
larity structure to each other with architecture that combines features of more
familiar intrinsic connectivity networks [5,17]. Nevertheless, there is a symmetry
where an fMRI time series can arbitrarily be seen as connectivity between time
points across the brain, where the individual time points become the nodes in a
graph, with edges reflected by spatial similarity across the brain.
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Topological Data Analysis (TDA) of Networks. TDA [3,13] of networks
goes beyond graph-theoretic analysis by utilizing tools from computational topol-
ogy to describe the architecture of networks or data structures in more flexible
ways. In particular, it encodes higher order (not just pairwise) interactions in the
system and studies topological features of the brain network across all possible
thresholds. Persistent homology, a main ingredient in topological data analy-
sis, is an emerging tool in studying complex networks, including, for instance,
collaboration [4] and brain networks [19]. Topological methods have also shown
promise in modeling transitions between brain states in functional imaging data
using combined information in space and time [24].

Persistent Homology and Barcodes. Persistent homology studies the topo-
logical features of a point cloud at multiple scales; see [10] for seminal work on
the topic and [3,13] for excellent surveys. We follow the illustrative example of
persistent homology and metric space mapping in [27].

As illustrated in Fig. 1, we begin with a point cloud P , equipped with a
(Euclidean) distance metric. For some t ≥ 0, the union of balls of radius t, cen-
tered at the points of P , forms a topological space. As the radius t increases, we
get a nested sequence of spaces referred to as a filtration. The radius t, which
parametrizes the spaces in such filtration, is often viewed as time. Using persis-
tent homology, we investigate the evolution in time of the topological features
of spaces in the filtration.

t

(a)

(b)

2.5 3 3.7 4.2 5.63.2 4 5210

(c)

t=2.5 t=3 t=3.2 t=3.7 t=4.2 t=5.6t=0 t=2 t=5

Fig. 1. Computing the persistent homology of a point cloud (image adapted from [27],
Fig. 1). (Color figure online)

As t increases, we focus on the important events when the topology of the
space changes. This change occurs, for example, when components merge with
one another to form larger components or tunnels. We track the birth and death
times of each topological feature (a component or a tunnel). The lifetime of a
feature in the filtration is called its persistence. In Fig. 1(a), at time t = 0, each
colored point is born (appears) as an independent (connected) component. At t =
2.5, the green component merges into the red component and dies (disappears).
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Therefore, the green component has a persistence of 2.5. At t = 3, the orange
component merges into the pink component and dies. Hence, it has a persistence
of 3. Similarly, the blue component dies at t = 3.2 and the pink component dies
at t = 3.7. At time t = 4.2, the collection of components forms a tunnel which
has a persistence of 1.4 and disappears at t = 5.6. The red component born at
time 0 never dies and thus it has a persistence of ∞. In Fig. 1(b), we visualize
the appearance (birth), the disappearance (death) and the persistence of these
topological features in the filtration via the barcode [13], where each feature
is summarized by a horizontal bar that begins at its birth time and ends at
its death time. Computationally, the above nested sequence of spaces can be
combinatorially represented by a nested sequence of simplicial complexes (i.e.,
collections of vertices, edges and triangles) with a much smaller footprint, as
illustrated in Fig. 1(c); see [9] for computational details.

3 Methods

Data Sources. Resting state fMRI data from 1003 participants (534 female,
mean age = 29.45 ± 3.61 (SD); 469 male, mean age 27.87 ± 3.65) out of
the 1200 Subjects Data Release of the Human Connectome Project (HCP) [26]
were analyzed. The current study utilized both minimally preprocessed and FIX
ICA cleaned BOLD resting-state data [15] acquired over four 15-min multiband
BOLD resting-state scans over 2 days. Only subjects completing all four resting-
state scans are included in this analysis. The first 20 volumes of each run were
excluded, yielding 1180 timepoints.

Region of Interest (ROI) Selection. Gray matter regions of interest con-
sisted of 333 regions in the cerebral cortex [14], 14 subject-specific subcortical
regions from FreeSurfer derived segmentation [12] (bilateral thalamus, caudate,
putamen, amygdala, hippocampus, pallidum and nucleus accumbens) and 14
bilateral cerebellar representations of a 7-network parcellation [28]. This com-
bined parcellation scheme incorporates gray matter ROIs totalling 361 regions.

Image Processing. A time series for each scan in each subject was extracted
from FIX ICA cleaned and minimally preprocessed BOLD data. The minimally
preprocessed BOLD data were also analyzed with head motion, white matter
and CSF regression and these regressors plus global signal regression [25].

Functional Connectivity Calculation. Functional connectivity was calcu-
lated in both time and space domains (Supplement, Fig. 5). For the space
domain, a 361× 361 matrix was computed for each scan representing the Pear-
son correlation coefficient between the time series for each pair of gray matter
regions. For the time domain, the matrix of 361× 1180 time series was transposed
and the correlation coefficient was analogously calculated between 1180× 1180
pairs of timepoints. Given the large number of intercorrelated node pairs, full
correlation was used because of the potential instability of partial correlation
results.
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Graph-Theoretic Metrics. We selected four graph-theoretic metrics for com-
parison of reproducibility of results across preprocessing strategies and between
time and space connectivity measurements: modularity, chacteristic path length,
global efficiency and clustering coefficient. These were computed using the Brain
Connectivity Toolbox software for Matlab [23].

Reproducibility Metrics. As a metric of reproducibility, the intraclass cor-
relation coefficient (ICC) was calculated using the ICC.m function for Matlab
using ‘1-k’ parameter across four scans for each of 1003 subjects for each mea-
surement. This represents the expected ICC value that would be obtained for
four scans per subject (1 h of resting state fMRI data). To interpret the repro-
ducibility of an ICC score, we used the following guidelines – Poor - less than
0.4; Fair 0.4–0.59; Good 0.6–0.74; Excellent 0.74–1 – according to [6].

Persistent Homology Analysis. To apply persistent homology to brain net-
works, we map a given brain network to a point cloud in a metric space, where
network nodes map to points and the measures of association between pairs of
nodes map to distances between pairs of points [27]. In this paper, the association
between two nodes u, v in the brain network is measured by their correlation
coefficients corr(u, v). The idea is to map this association to a distance mea-
sure such that higher correlations between nodes map to smaller distances. We
use the mapping d(u, v) =

√
1 − corr(u, v). Subsequently, a nested sequence of

Vietoris-Rips complexes (a type of simplicial complex) is constructed in the met-
ric space for persistent homology computation. Dimension 0 persistence barcodes
were calculated with the R toolbox package TDA [11]. Specifically, connectivity
matrices were converted into normalized distance matrices and used directly as
input into function ripsDiag from the TDA library.

Cognitive and Personality Variables. Subject-level cognitive and person-
ality scores used in this study contained scores from the 12 cognition domain
measures included in the HCP battery of behavioral and individual difference
measures - Cognition Domain [2] and 5 factor-level scores for personality from
the NEO Five Factor Inventory (NEO FFI) [7]. We use corrected scoring of
Agreeableness factor rather than the initial data supplied with the 1200 sub-
jects release of the Human Connectome Project dataset [8]. Specific cogni-
tive measures included: Episodic Memory (Picture Sequence Memory), Exec-
utive Function/Cognitive Flexibility (Dimensional Change Card Sort), Exec-
utive Function/Inhibition (Flanker Inhibitory Control and Attention Task),
Fluid Intelligence (Penn Progressive Matrices), Language/Reading Decoding
(Oral Reading Recognition), Language/Vocabulary Comprehension (Picture
Vocabulary), Processing Speed (Pattern Comparison Processing Speed), Self-
regulation/Impulsivity (Delay Discounting), Spatial Orientation (Variable Short
Penn Line Orientation Test), Sustained Attention (Short Penn Continuous Per-
formance Test), Verbal Episodic Memory (Penn Word Memory Test), Working
Memory (List Sorting).
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4 Results

Effects of Image Preprocessing on Reproducibility of Functional Con-
nectivity. Functional connectivity was calculated by computing Pearson cor-
relation coefficients for each pair of fMRI time series for 1003 subjects, each
with four 15 min scans, using 4 preprocessing strategies for each pair of 361 gray
matter nodes. For each preprocessing strategy, reproducibility was calculated
by computing the intraclass correlation coefficient (ICC) for each pair of gray
matter regions, obtained from 1003 subjects and 4 scans per subject (Supple-
ment, Fig. 4). Statistical analysis using 1-way ANOVA demonstrated that each
set of ICC values was significantly different for all four preprocessing strategies
(F < 1.0e−7), with markedly higher ICC values for Independent Component
nuisance regression and lowest ICC values for preprocessing including global sig-
nal regression. For ICA-based nuisance regression, ICC was excellent (>0.7) for
almost all connections but weaker for connections involving the subcortex [25].

Reproducibility was also calculated for four graph-theoretic metrics and time
and space topological persistent homology measures. For graph-theoretic and
topological metrics obtained by functional connectivity over space and time,
reproducibility was highest for independent component-based nuisance regres-
sion, shown in Fig. 2. For persistent homology measures in the spatial domain
(Fig. 2, top right), the difference was striking, with markedly improved repro-
ducibility using ICA-based regression compared to more limited preprocess-
ing strategies, and the weakest reproducibility obtained when including global
signal regression. Taken together, these results provided strong evidence that
for functional connectivity, whether computed over space or time, and includ-
ing both graph-theoretic and topological measures computed from functional

Fig. 2. Reproducibility of graph-theoretic and topological measures of functional con-
nectivity by preprocessing strategy.
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connectivity, the highest reproducibility was obtained using ICA-based nuisance
regression. For all remaining analyses in this report, we used only FIX ICA
cleaned data.

Differences in Results for Space and Time Connectivity. Reproducibil-
ity, as shown in Fig. 2, left, shows a comparable intraclass correlation for graph-
theoretic measures obtained from connectivity with nodes representing spatial
regions and with nodes representing timepoints. Reproducibility for global effi-
ciency in time was higher than for other measures, which were all about 0.7.

Yet, when these graph-theoretic measures were compared across subjects to
scores on 12 cognitive tests and 5 personality factors, only functional connectivity
obtained from the time domain (using timepoints as nodes and correlation across
spatial regions as edges) showed significant partial correlation to cognitive tests.
Partial correlations were computed for each cognitive and personality metric
separately, with age, sex and mean head motion used as subject-level covariates
in each case, false discovery rate corrected. In particular, modularity in the
time connectivity graphs was correlated with inhibitory components of executive
function, and the characteristic path length and median clustering coefficient in
the time connectivity graphs were correlated with vocabulary and processing
speed (Supplement, Fig. 6).

Differences in Reproducibility and Behavioral Correlations for Persis-
tent Homology. Persistence barcodes were calculated for connectivity graphs
in the time (correlation across spatial ROIs) and space (correlation across time-
points) domains by calculating the “connectivity distance” at which each node
merged with another cluster as described in Sect. 3. Each barcode consisted of
a vector of 361 elements (space domain) or 1180 elements (time domain). Bar-
codes were reordered by persistence (length) for display in Fig. 3, left. Re-ordered
barcodes were also used for analysis in the time domain, because timepoints are
arbitrary and convey no consistent meaning across subjects or scans. In the space
domain, barcodes were used without reordering, as each element of a barcode
corresponds to a preserved brain region across subjects and scans.

The reproducibility of barcode results is shown in Fig. 3, center panels for
space and time domains, yielding excellent (>0.7) ICC values for almost all
elements. This is shown graphically on a template brain for the space domain as
an inset in the figure, demonstrating that regions of lower ICC are exclusively
in the medial orbitofrontal and medial anterior temporal regions, areas that are
in close to brain/bone interfaces and are known to represent regions of high
susceptibility artifact in the fMRI BOLD signal.

When comparing cognitive and personality metrics to persistence barcodes,
also with partial correlation with age, sex and head motion as covariates, there
were significant corrected correlations between persistent homology and fluid
intelligence in both time and space domains, with less sensitivity to head motion
when calculated in the time domain. For the spatial domain, fluid intelligence
was correlated with barcode values in brain regions comprising association cor-
tex of the frontal, parietal and temporal lobes, with weaker correlations in sen-
sory and motor regions. Of 12 cognitive tests performed, 11 showed significant
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Fig. 3. Reproducibility and cognitive correlation of persistent homology barcode
analyses.

partial correlation with persistent homology in the space domain after correction
for multiple comparisons, and of five personality factors, four showed significant
corrected partial correlation with persistent homology in the space domain (Sup-
plement, Fig. 8 to Fig. 21, spatial distribution of correlation between persistent
homology barcodes and specific cognitive measures including episodic memory,
cognitive flexibility, agreeableness, openness, etc.)

5 Discussion

Topological data analysis of resting state functional connectivity using persis-
tence barcodes identified individual differences in cognition and personality in
the Human Connectome Project sample. Whether examining functional connec-
tivity in the time or space domain, fluid intelligence was predicted by persis-
tence barcode values, and distinct patterns of spatial regions were significantly
correlated with a wide array of cognitive performance scores. Persistent homol-
ogy showed excellent reproducibility across scans for the same individual for
functional connectivity over both space and time in the brain. Graph-theoretic
values also demonstrated good to excellent reproducibility, with functional con-
nectivity in time and space domains correlated with distinct aspects of cognitive
performance. For all tests, reproducibility was highest when using a robust inde-
pendent component analysis nuisance regression strategy with a less connected
graph than for other cleaning pipelines, suggesting that the spurious artifactual
correlation between brain regions had been reduced. Reproducibility was lowest
when using a strategy that includes global signal regression, possibly representing
effects of contaminating results by incorporating information from other brain
regions [20].
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Not only were persistence barcodes significantly correlated with a surprising
number of cognitive and personality features, but the spatial distributions of
regions correlated with each behavior were also informative. Brain regions show-
ing a correlation between barcode values and fluid intelligence were located in
the association cortex, particularly in frontoparietal attentional regions, but not
the sensory and motor cortex (Supplement, Fig. 7). These frontoparietal regions
have been favored in the literature as substrates for general intelligence [16].

Similarly, correlations between persistent homology and working memory
were observed in the ventral attention network and prefrontal cortex, the core
neural substrates associated with pattern recognition, working memory and
focused attention. A correlation between persistent homology and spatial atten-
tion specifically identified right hemispheric frontoparietal regions, consistent
with well-known right dominance of lesions contributing to hemispatial neglect
and lateralization of brain function to the right for spatial attention [21]. Both
reading and language vocabulary scores were correlated with areas of the pos-
terior temporal lobe associated with the Wernicke Area. Both episodic memory
and verbal episodic memory scores were significantly correlated with areas of
the posterior cingulate and medial temporal lobe, critical regions well known for
their involvement in memory recall. Agreeableness was significantly correlated
with persistent homology in the superior temporal sulcus, a core region of the
social brain related to social empathy [22].

Although less intuitive than traditional functional connectivity between brain
regions, our results suggest that functional connectivity between timepoints
may offer new insights into aspects of cognition and neuropathology. Persistent
homology, including potential higher dimensional topological features, may rep-
resent distinct aspects of brain function. These approaches may reflect dynami-
cal aspects of connectivity such as the temporal duration and frequency of brain
microstates or oscillations between metastable patterns of relative brain activity
and provide new insights into brain network architecture or opportunities for
the prediction of behavioral traits.
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Abstract. Functional connectivity from resting-state functional MRI
(rsfMRI) is typically represented as a symmetric positive definite (SPD)
matrix. Analysis methods that exploit the Riemannian geometry of SPD
matrices appropriately adhere to the positive definite constraint, unlike
Euclidean methods. Recently proposed approaches for rsfMRI analysis
have achieved high accuracy on public datasets, but are computationally
intensive and difficult to interpret. In this paper, we show that we can get
comparable results using connectivity matrices under the log-Euclidean
and affine-invariant Riemannian metrics with relatively simple and inter-
pretable models. On ABIDE Preprocessed dataset, our methods classify
autism versus control subjects with 71.1% accuracy. We also show that
Riemannian methods beat baseline in regressing connectome features to
subject autism severity scores.

1 Introduction

Resting-state functional MRI (rsfMRI) has shown to be a promising imaging
modality for diagnosing neurodevelopmental and neurodegenerative diseases,
e.g., autism spectrum disorder (ASD) and Alzheimer’s disease, and identifying
associated biomarkers. However, analyses of imaging studies suffer from issues
of low sample sizes, such that the conclusions are often not generalizable across
datasets. The Autism Brain Imaging Data Exchange (ABIDE I) dataset is a joint
effort from multiple international groups to aggregate a large dataset of imaging
and phenotypic data for the purpose of identifying biomarkers of autism. To
address heterogeneity in multisite data, the Preprocessed Connectome Project
uses state of the art preprocessing that has shown good generalizability to the
whole ABIDE I cohort [7]. This has fostered new methods for machine learning
on covariance/correlation matrices of the preprocessed data.

Several recently proposed methods use deep neural networks (DNN) [2,9,
11,15,17] to classify autism, achieving high accuracy. DNN learns a nonlinear
mapping to semantically separate the data, but comes at the expense of high
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computation cost and difficult interpretability. These proposed methods do not
take into account the SPD properties of correlation matrices.

Correlation matrices are symmetric semi-positive definite, and can be made
symmetric positive definite (SPD) with a simple regularization step. The space
of SPD matrices forms a Riemannian manifold. Using Euclidean operations on
the manifold can be problematic, but many machine learning algorithms are
only designed for the Euclidean space features. The two most commonly used
Riemannian metrics proposed for the SPD manifold are the affine-invariant met-
ric (AIM) and the log-Euclidean metric (LEM). The AIM is based on Lie group
action on points on the SPD manifold, defined by a base point such that all other
points are compared relative to. The LEM is equivalent to a special case of the
AIM for which the base point is at identity, mapping the SPD manifold to the
Euclidean space. These frameworks have been applied to brain network analy-
ses in multiple studies. Varoquaux et al. [20] introduced a probabilistic model
based on the AIM for comparing single subject correlation matrices from a group
model to identify outlier stroke patients from a group of healthy controls. Ng
et al. [16] used the AIM for transport on the SPD manifold to remove nonlinear
commonalities between scans in longitudinal studies. Other works use the LEM
to define kernels on the manifold for machine learning algorithms [8,23].

1.1 Contribution

Although works mentioned above have studied brain connectivity representa-
tions as SPD matrices on a Riemannian manifold, to the best of our knowl-
edge, no one has demonstrated the performance of Riemannian methods on a
ubiquitously used benchmark dataset such as ABIDE. Furthermore, regression
between Riemannian representations of brain networks with neuropsychiatric
features has not been explored. In our first contribution, we show that classi-
fication with a simple logistic regression using log mapped correlation matrices
under the LEM achieves comparable results to other state-of-the-art deep neu-
ral network methods on the ABIDE dataset, with an accuracy of 70.0%. It uses
a simple classification method (logistic regression) with little parameter tuning
or engineering tricks. Due to the linearity of the classifier decision boundary,
and the fact that log-Euclidean correlations retain the interpretatibility of the
original correlations between pairs of regions, we can visualize the resulting clas-
sifier. Our second contribution is to show that the AIM can improve upon this
accuracy, by proposing an optimization over the base point that yields a better
performance at 71.1% accuracy.

2 Methods

The typical pipeline for rsfMRI analysis begins with the estimation of network
as a connectome matrix using some measure of functional similarity between
all pairs of regions of interest (ROIs) in the brain. To use the connectome for
diagnosis of autism spectral disease, features are extracted from the correlation



80 E. Wong et al.

matrix as input into machine learning algorithms for classification. For many
correlation-based measures, such as the most commonly used Pearson correla-
tion, the matrices are symmetric semi-positive definite matrices. Thresholding
the eigenvalues by some positive epsilon regularizes these correlation matrices
to SPD.

We first review AIM and LEM, and then go over our preprocessing steps on
the ABIDE dataset.

2.1 SPD Matrices

A d×d matrix M is symmetric positive definite if zTMz > 0, ∀z �= 0 ∈ R
d. The

space of all SPD matrices, denoted Sd
++, is not a vector space, but a Rieman-

nian manifold. Using Euclidean operations on the manifold can be problematic,
leading to the swelling effect, see e.g., [4]. Several metrics have been proposed
for the SPD manifold [3,4,10,18]. Geodesic distance under the AIM [4,10], given
by
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addresses these issues. Under this Riemannian framework, two operations are
introduced, the Riemannian exponential map and the Riemannian logarithmic
map:
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where Exp and Log denote the Riemannian operations, and exp and log denote
the matrix exponential and logarithm. ExpM1

(X) returns a point at time one
along the geodesic starting at M1 ∈ Sd

++ and with initial velocity vector X.
LogM1

(M2) is the inverse operation which yields that vector in the tangent
space that Exp maps M1 to M2. For data analysis, consider M1 as the base
point that all data points are compared to. For example, M1 can be set as the
Fréchet mean, such as in [16].

Another proposed metric is the LEM [3], given by

dist (M1,M2) = ‖log (M1) − log (M2)‖F .

Notice that distances under the LEM are equivalent to those under the AIM
when one of the two matrices, M1 or M2, is equal to the identity matrix. This
becomes a way of mapping SPD matrices to the Euclidean tangent space at
identity, i.e., f : Sd

++ → R
d×d

fLEM (M) = log (M) . (1)

After transforming data in Sd
++ via the log map, we can apply Euclidean

models, e.g., logistic regression. In the AIM case, the mapping of M2 with respect
to some basepoint M1 is

fAIM (M2) = log
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We have the choice of either fixing the base point M2 to the Fréchet mean and
proceeding with Euclidean methods, or learning the base point simultaneously
during optimization to select the best base point for the learning task. The reader
may refer to [10] for the computation of the Fréchet mean for the SPD manifold
under AIM.

For the optimization over the base point, we propose to use the backprop-
agation computation for matrix operations, i.e., matrix logarithm, described in
[12,13]. As a concrete example, in the 2-class logistic regression case, the prob-
ability of a data point M2 being in class Y is given by

P (Y = 1|M2) =
1

1 + exp
(

−
(

c + βvec
(

log
(

M
−1/2
1 M2M

−1/2
1

))))

,

where M1 is a base point to optimize over and vec (·) is the vectorization of a
matrix. The energy function is the standard cross-entropy for logistic regression.
Because of chain rule, minimizing the cross-entropy with respect to M1 involves
computing the matrix logarithm backgradient Z, using a neural network-like
setup such that the matrix logarithm is a “layer” upon its inputs (refer to [12] for
details). Afterwards, the gradient with respect to C = M

−1/2
1 is ∇C = M2CZ +

ZCM2. We can update the base point in a couple of ways: (1) by standard
(additive) gradient descent and then regularizing the resulting M1 to have all
positive eigenvalues, or (2) by taking the Exp map, Cnew = ExpCold

(∇Cold
).

2.2 ABIDE

The ABIDE I dataset is a collection of rsfMRI and phenotypic data for typi-
cally developing controls and ASD subjects acquired at 20 different sites. The
Preprocessed Connectome Project [7] has preprocessed ABIDE data using state
of the art pipelines to promote shareability and fair comparison of results. We
obtain the fMRI data from the Project, preprocessed with the CPAC pipeline
and parcellated according to the Harvard-Oxford atlas, and select the 871 sub-
jects (468 controls, 403 ASD) to be consistent with [1,17]. The resulting time
series at each of the d = 111 regions are normalized to mean = 0 and standard
deviation = 1.

3 Results

3.1 Classification

We first compare between raw and Fisher-transformed Pearson’s correlation
matrices, as well as eigenvalue-regularized and log-Euclidean transformed matri-
ces as input for each subject into logistic regression for classification. We eigen-
decompose raw correlation matrices and lower-bound small eigenvalues to 0.5,
and re-compose them into regularized correlation matrices to ensure that the
matrices are SPD. Log-Euclidean matrices are obtained by taking the matrix
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logarithm of the regularized correlation matrices. All matrices are then reduced
to upper triangles and vectorized into feature vectors. Matrix features involv-
ing log-Euclidean transform are of 6205 dimensions because diagonal entries are
included in the upper triangle, whereas all other features are of 6105 dimensions.

We use the Scikit-Learn implementation of logistic regression with L2 penalty
as classifier, and evaluate the classification performance through a nested ten-
fold cross-validation scheme (folds selected at random). At each fold, 10% of the
data is set aside for testing, and the other 90% is ten-fold cross-validated to get
the best parameter for L2 penalty. The range of parameters we cross-validate
over are [0.01, 0.05, 0.075, 0.1, 0.2, 0.5, 0.75, 1.0, 3.0, 5.0].

We then also compare the affine-invariant transformed matrices with an
optimization for the base point in TensorFlow using the same ten-fold cross-
validation scheme. At the first layer, square correlation matrices are affine-
invariant transformed with variable M2, then linearized to a 6205 dimensional
vector and fed into a sigmoid function for classification. The cost function to
optimize over is the sum of the logistic regression cross-entropy plus L2 penalty
with parameter λ. In TensorFlow, the range of parameters we cross-validate
over are [5, 10, 15, 20, 100, 200]. The matrix backpropagation is modified to the
method described in the previous section. The optimization is run until conver-
gence within 50 iterations.

Table 1 shows the results. Our baseline of using just vectorized correlation
matrix features has an accuracy score of 65.7%, comparable to baseline scores
reported in [1,17]. A t-test shows that both the log-Euclidean and the affine-
invariant transformed features have a statistical significant improvement in per-
formance over the raw correlation baseline (p = 0.02 and p = 0.002, respec-
tively). The regularized correlation matrix shows similar accuracy to the raw
correlation features, indicating that the increase in performance is solely due to
the Riemannian mappings. Figure 2 describes the range of classification accu-
racy from ten-fold cross-validation for the baseline compared to log-Euclidean
and affine-invariant mapped features. Using the model learned from the log-
Euclidean features, we visualize the highest weights in the classification thresh-
olded at |w| > 0.25 in Fig. 3. Red connections indicate positive weights that
push classification toward the ASD group (label = 1) and blue connections are
negative weights toward the control group.

Figure 1 is a diagram of the learned weights on the ROIs grouped by subnet-
works from [19]–visual, default mode, sensorimotor, auditory, executive control,
and frontoparietal networks. The colormap runs from negative values in blue
(driving classification toward control) to positive values in red (toward autism).
For visualization, very small weights have been filtered. There is evidence of
patterns within and between subnetworks. The weights within a subnetwork are
simplified to their means within a block. Our results show that control subjects
tend to have higher intranetwork connectivity especially within the sensorimo-
tor, executive control, and default mode networks, whereas subjects with ASD
have stronger internetwork connectivity, e.g., between the default mode and the
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Table 1. Accuracy performance of Riemannian and various state of the art classifica-
tion methods

Method Validation Accuracy (Stdev) Sensitivity Specificity

Abraham et al. [1] CV10 0.668 - -

Dvornek et al. [9] CV10 0.685 (0.06) - -

Parisot et al. [17] CV10 0.695 - -

Heinsfeld et al. [11] CV10 0.70 0.74 0.63

Raw correlation CV10 0.657 (0.06) 0.728 0.573

Fisher correlation CV10 0.672 (0.05) 0.737 0.594

Regularized correlation CV10 0.660 (0.06) 0.741 0.565

Log-Euclidean CV10 0.700 (0.05) 0.809 0.575

Affine-Invariant CV10 0.711 (0.05) 0.838 0.585

Fig. 1. Classification weights grouped by subnetwork (Color figure online)

Fig. 2. Box plots of the classification accuracy over ten-fold cross-validation.

sensorimotor networks. This is in agreement with existing literature that the
default mode network is not well segregated from other subnetworks for the
ASD population [5,21,22].
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Fig. 3. Plot of the connections with highest weights in the classification (Color figure
online)

3.2 Regression

To show that the Riemannian features also have predictive power in regression,
we compare the performance of log-Euclidean and affine-invariant transformed
matrices versus raw correlation matrices in the prediction of autism severity
as measured by the ADOS Total score. Though there has been work on doing
regression on Riemannian manifolds [6,14], it has not been applied for ASD anal-
ysis. Because regression is more challenging than classification, and some sites
lack ADOS scores for control subjects, we limit our analysis to the largest site
with a roughly even split of ASD and control subjects that have ADOS Total
score. The Utah site has 62 subjects with scores ranging from 0 to 21. Scores
below 10 are considered typically developing. We use partial least squares regres-
sion (PLS), with the features projected down to one component and regressed
to ADOS. It is not trivial to adapt the base point optimization for the NIPALS
algorithm in solving PLS. Instead, here we fix the base point to the Fréchet mean.
Table 2 shows the root mean squared error (RMSE), R2 and Q2 coefficient of
determination values between Riemannian and baseline correlation matrix fea-
tures. The R2 is computed over the whole data subset, and the Q2 value is
calculated through a leave-one-out cross-validation (LOOCV) scheme. The plot
of true versus predicted ADOS using the Fréchet mean base point is shown in
Fig. 4. To show the statistical significance of improvement, we do a permutation
test. We sum up the absolute value of the residuals of the LOOCV predictions
and take the difference of the proposed method from the baseline correlation
as the test statistic. Then we do 10000 permutations swapping the predictions
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between the two classes and sum up the number of times that the differences
are greater than our nonpermuted test statistic value. Both log-Euclidean and
affine-invariant metrics significantly improve over the raw and Fisher correlation
baselines (also similarly significant by t-test on the RMSE).

Table 2. Comparison of Riemannian features against baselines in PLS regression

RMSE R2 Q2 Raw Corr Improve Fish Corr Improve

Raw correlation 6.17 0.631 −0.05 - -

Fisher correlation 6.18 0.624 −0.062 - -

Log-Euclidean 5.42 0.816 0.182 p = 0.0112 p = 0.0127

Affine-Invariant 5.36 0.837 0.202 p = 0.0064 p = 0.0069

Fig. 4. Predicted vs. true ADOS scores for regression under AIM

The regression weights in Fig. 5 show similar patterns to the classification
results, though not the same. This is expected because the regression data is
only a single-site subset. The classification and the regression weights share a
correlation of 0.31, reasonably consistent for such high-dimensional data. Sum-
marizing weights into means of each block, we can see the pattern that the intra-
connectivity in the default mode and sensorimotor networks drives the regression
toward low ADOS scores (control) and interconnectivity between the two net-
works pushes regression toward high ADOS scores.
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Fig. 5. Regression weights grouped by subnetwork

4 Conclusion

In this paper, we have established that the Riemannian representation of SPD
matrices is beneficial for the autism classification and regression tasks and com-
parable in performance to other modern methods. In particular, the results are
interpretable under the log-Euclidean metric, whereas the affine-invariant met-
ric leads to high learning performance. For future work, we will compare how
the choice of ROI may have an effect on predictions. We will also develop the
affine-invariant base point update for other analyses, and study whether it may
yield an improvement in performance in a deep neural network.
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Abstract. We propose a hierarchical Bayesian model that refines a
population-based atlas using resting-state fMRI (rs-fMRI) coherence.
Our method starts from an initial parcellation and then iteratively reas-
signs the voxel memberships at the subject level. Our algorithm uses a
maximum a posteriori inference strategy based on the neighboring voxel
assignments and the Pearson correlation coefficients between the voxel
time series and the parcel reference signals. Our method is generalizable
to different initial atlases, ensures spatial and temporal contiguity in the
final network organization, and can handle subjects with brain lesions,
whose rs-fMRI data varies tremendously from that of a healthy cohort.
We validate our method by comparing the intra-network cohesion and the
motor network identification against two baselines: a standard functional
parcellation with no reassignment and a recently published method with
a purely data-driven reassignment procedure. Our method outperforms
the original functional parcellation in intra-network cohesion and both
methods in motor network identification.

Keywords: Rs-fMRI · Markov Random Field
Patient-specific networks

1 Introduction

Resting-state fMRI (rs-fMRI) captures the intrinsic communication patterns
in the brain. Neural activity at rest is organized into Resting State Networks
(RSNs), which are determined by both spatial coherence and temporal syn-
chrony at the voxel level [1]. Non-invasive methods for identifying RSNs are
of particular interest when planning neurosurgery, where the goal is to localize
(and subsequently avoid) cruicial motor and language functionality, also known
as the eloquent cortex. Accurately identifying these key functional networks will
determine safe resection margins and may also help us to predict the functional
c© Springer Nature Switzerland AG 2018
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outcomes of surgery [2]. Task-fMRI, where the subject is performing an explict
language or motor paradigm, is currently the most popular technique for map-
ping eloquent brain areas. However, recent interest has moved towards rs-fMRI
to overcome both the unreliability of certain task activations and the inability
of critically ill patients to complete a cognitively demanding protocol [2].

While a standard functional parcellation is often sufficient to identify RSNs
in healthy individuals, a subject specific approach is necessary for brain lesion
patients due to a compensatory mechanism known as neural plasticity. For exam-
ple, it has been shown that motor and language functionality in patients with
low-grade gliomas can migrate to other parts of the brain [3]. Therefore, data
from glioma patients may not conform to a standard functional atlas.

Previous work has focused on deriving subject-specific functional atlases from
the original rs-fMRI data. These techniques include, but are not limited to, spa-
tially constrained hierarchical parcellations [4] and data-driven clustering tech-
niques [5]. In contrast, we approach this problem as one of atlas refinement rather
than atlas construction. This strategy allows us to work with any previously val-
idated anatomical or functional parcellation. Liu et. al have introduced a method
to obtain subject-specific RSNs by iteratively reassigning the voxel memberships
based on the Pearson correlation coefficients between the voxel time series and
a collection of network reference signals. This method was originally derived to
determine functional network differences in healthy subjects and showed promise
for clinical populations [6]. These reference signals are calculated as a weighted
average of the previous iteration’s reference signal and the current average time
series for the RSN. Their method does not explicitly consider spatial contiguity
in RSNs, and requires the user to specify various parameters.

We develop a Bayesian model that uses both spatial and temporal informa-
tion to iteratively refine an initial functional parcellation on a patient-specific
basis. Our model uses a Markov Random Field (MRF) prior to encourage spa-
tial contiguity within the functional parcels. We employ a maximum a posteriori
(MAP) inference strategy for voxel-wise network assignment until a predefined
convergence criteria is met. Our method builds on prior work in Bayesian net-
work modeling [7] and MRF priors for rs-fMRI data [8]. We validate our method
on rs-fMRI data from 67 glioma patients. Our initial atlas is the Yeo 17 net-
work functional parcellation [9], which is one of the most widely cited functional
atlases in the literature. We compare the performance of our method with the
original parcellation (no reassignment) and with reassignment according to Liu,
whose paper references the same parcellation. Our validation metrics include the
intra-network cohesion amongst the final RSNs and motor network identification
via task based fMRI concordance using three distinct task paradigms.

2 A Bayesian Model for Voxel Reassignment

Our model infers an underlying (i.e. latent) network architecture that integrates
both spatial contiguity and temporal synchrony across the brain. At each voxel,
we leverage the time series data, the neighborhood network membership, and a
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Fig. 1. A graphical model of our framework where shaded nodes represent observed
random variables.

binary tumor label, indicating if the voxel lies within the lesion or not. Let Xv be
the network assignment for voxel v. In our framework, Xv gets assigned to one of
K+1 values, where K is the number of networks (or region parcels) defined in the
initial atlas. An assignment of Xv = 0 indicates no network membership for voxel
v if it belongs to the glioma. Mathematically, let X−v be the current network
assignments of all other voxels in the brain. Likewise, yv is the time series data
at voxel v, µk is the current reference signal for network k ∈ {

1 . . . K
}
, and

bv ∈ {
0, 1

}
is the binary tumor label such that bv = 0 implies that voxel v

is tumorous. Our setup is illustrated in Fig. 1. As seen, the assignment for Xv

depends on its immediate spatial neighbors. The relationship between Xv and
X−v is captured by an MRF prior while the relationship between Xv and yv, bv is
captured by the data likelihood. For visualization purposes the 2D representation
in Fig. 1 shows four neighbors per pixel. However, we have implemented a 3D
model, which has six neighbors per voxel.

We encourage spatial contiguity in our latent network assignments by stip-
ulating that voxel v will be more likely to assume the state of its neighboring
voxels. We model the MRF prior after the Potts model [10]:

P (Xv = k|X−v) =
1

Zx
Ψ(Xv,X−v, k) ∝

⎧
⎨

⎩
1 + exp

⎡

⎣−(β +
∑

i∈ne(v)

1Xi=k)

⎤

⎦

⎫
⎬

⎭

−1

(1)
where β controls the influence of the neighbor voxel network memberships
on voxel v. Here, ne(v) denotes the neighbors of voxel v, and the sum∑

i∈ne(v) 1Xi=k captures how often these neighbors are assigned to network k.
Notice that this sum will be zero for network k when Xi �= k for all i ∈ ne(v).

The likelihood P (yv|Xv = k;µk, bv) is modeled after a rescaled version of
the Pearson correlation coefficient between the reference µk and data yv:

ρ =
cov(yv,µk)

σyv
σµk

(2)
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where ρ is subsequently shifted and scaled to be between [0, 1] to allow for a
normalizable density. The final likelihood model is given by

P (yv|Xv = k;µk, bv) =
1
Zy

Ψ(yv,µk, bv) =
1
Zy

{
(ρyv,µk

+ 1)
2

× bv

}
. (3)

The rescaled Pearson correlation coefficient goes to one for strong positive corre-
lations and zero for strong negative correlations. The label bv sets the likelihood
to zero for tumorous voxels, which corresponds to no network membership.

2.1 Approximate Posterior Inference

The observed rs-fMRI time series yv are conditionally independent given {Xv}.
Based on the model factorization, our posterior distribution can be written as

P (Xv = k|X−v,yv; θ) =
1
Z

Ψ(Xv,X−v, k)Ψ(yv,µk, bv) (4)

where Ψ(Xv,X−v, k) models the prior, Ψ(yv,µk, bv) models the likelihood under
the belief that Xv = k, and Z is a normalization constant that combines both
Zx and Zy. We have derived an update procedure based on maximizing the
following log-posterior over all possible network assignments:

X∗
v = argmax

k

{
− log Z + log Ψ(Xv,X−v, k) + log Ψ(yv,µk, bv)

}
. (5)

2.2 Implementation Details

We have derived an algorithm based on max product message passing to ensure
atlas stability [11]. Our algorithm iterates between two main steps: updating
the network assignments {Xv} and updating the reference signals {µk}. Let
Y ∈ Rx×y×z×T be the aggregated rs-fMRI data across all (x, y, z) spatial coor-
dinates and let X(t) ∈ Rx×y×z be the assignment information at iteration t.
Let B ∈ Rx×y×z be the binary tumor matrix. The values stored in B are 0 at
tumorous voxels and 1 elsewhere. We initialize our algorithm with the Yeo atlas
and then the Hadamard product X(0) = X � B, which defaults all tumorous
voxel assignments to 0 due to unreliable signal at these locations. We then par-
cellate Y by the assignments in X(0) and calculate the initial reference signals
µ

(0)
k for k ∈ {

1 . . . K
}

with

µ
(t)
k =

∑V
v=1 Yv · 1(X(t)

v = k)
∑V

v=1 1(X(t)
v = k)

. (6)

At each main iteration t, we determine the voxel assignments I times according
to our MAP rule in Eq. (5) initializing with X(t−1). Using the assignments in
i − 1, we employ a flooding schedule to simultaneously determine the network
values X̂(i) at iteration i. The updated assignments X(t) is given by majority
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Algorithm 1. Max product message passing procedure for atlas refinement.
Here, c is a prespecified threshold on the network consistency between iterations.
1: procedure MRFrefinement(X ,B,Y )
2: X (0) ← X � B
3:

{
µ

(0)
1 · · ·µ(0)

K

} ← Y ,X (0) � Eq. (6)
4: t ← 1
5: M ← 0 � Membership retention M ∈ [0, 1]
6: while M < c do � Convergence threshold c ∈ [0, 1]

7: X̂ (1) ← X (t−1)

8: for i = 2 : I do
9: for v ∈ V do

10: X̂
(i)
v ← argmaxk

{
log Ψ(Xv, X̂

(i−1)
−v , k) + log Ψ(yv,µ

(t−1)
k , bv)

}

11: X (t) ← mode({X̂ (i)}I
i=1)

12:
{
µ

(t)
1 · · ·µ(t)

K

} ← Y ,X (t) � Eq. (6)

13: M ←
∑

v 1(X
(t−1)
v =X

(t)
v )·Bv∑

v Bv
� Fraction of retained voxel memberships

14: t ← t + 1

15: return X t

vote over the determined network values {X̂(i)}Ii=1. Given the new assignments,
we update the network signals by Eq. (6) for k ∈ {

1 . . . K
}

and check if the
convergence criteria has been met by calculating the fraction of non-zero assigned
voxels retaining the same network membership between iterations t− 1 and t. If
the membership consistency between iterations is less than a specified stopping
criteria, we repeat the procedure. Each voxel of interest has six neighbors as
determined by adjacency in each of the three coordinate directions. Algorithm
1 presents our pseudo-code where the subject-specifc inputs are B and Y .

2.3 Baseline Comparisons

We compare our Bayesian approach with the original parcellation and with the
voxel reassignment method described by Liu [6]. We use the Yeo 17 network atlas
due to its strong reproducibility and the large sample size used for construction.
We confine our experiments to the more conservative cortical ribbon version of
the Yeo atlas to get a more detailed parcellation. The method of Liu initializes
the reference signals to the average time series defined by the original parcella-
tion. From here, Liu reassigns voxel v by considering the maximum correlation
between its time series and all K reference signals. A confidence value for each
voxel is also computed as the ratio of the maximum correlation over the second
highest correlation. The reference signal updates are only taken from voxels that
have confidence values which exceed a predetermined threshold. They are com-
puted as weighted combinations of the previous iteration’s reference signals with
the updated reference signals. The corresponding weights are nonlinear functions
of the signal-to-noise ratio, the inter-subject variability, and the iteration num-
ber. We applied the Liu baseline with the parameter suggestions provided in [6],
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which were optimized for the 17 network Yeo atlas. We initialize each method,
original, Liu, and proposed as described in Sect. 2.2.

3 Experimental Results

Dataset and Preprocessing: Our dataset includes task and rs-fMRI for 67
glioma patients who underwent preoperative mapping as part of their clinical
workup. The fMRI were acquired using a 3.0 T Siemens Trio Tim (TR = 2000 ms,
TE = 30 ms, flip angle = 90◦, field of view = 24 cm, acquisition matrix = 64 ×
64×33, slice thickness = 4 mm, and slice gap of 1 mm). We manually segmented
each patient’s tumor using MIPAV. Figure 2 illustrates tumor segmentations for
three different patients to motivate the heterogeneity of our cohort. The fMRI
was processed using SPM8. Both rs-fMRI and task-fMRI underwent slice timing
correction, motion correction and registration to the MNI-152 template. The
rs-fMRI was scrubbed using the ArtRepair toolbox in SPM, linearly detrended,
underwent nuisance regression utilizing CompCor [12], bandpass filtered from
0.01 to 0.1 Hz, and spatially smoothed with a 6 mm FWHM Gaussian kernel.

General Linear Model (GLM) in SPM8 was used to derive activation maps for
the three motor tasks [2]. Our dataset includes three different motor paradigms
that were designed to target distinct parts of the motor homonculus [13]: fin-
ger tapping, tongue moving, and foot tapping. Since the task-fMRI data was
acquired for clinical purposes, only 42 patients performed the finger task, 35
patients performed the tongue task, and 20 patients performed the foot task.

The population-based atlas contains 17 distinct functional networks confined
to the cortical ribbon [9]. For both methods, a network retention convergence
criteria of 0.98 was used. We chose β = −0.5 and I = 100 iterations for our
model and a confidence value of 1.5 for the Liu baseline. Different combinations
of reference signal calculation between updates for both our method and the Liu
baseline were explored; we have reported the optimal results in each case.

3.1 Evaluating Resting State Network Cohesion

Our intra-network cohesion metric quantifies the temporal synchrony between
voxels that belong to the same network [1]. Let Vk be the voxels assigned to

Fig. 2. The tumor segmentations (yellow) for three different patients are shown. (Color
figure online)
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network k, we define the Network Cohesion (NC) as the average correlation
between voxels assigned to network k with the network signal µk.

NCk =

∑
j∈Vk

ρyj ,µk

|Vk| (7)

Figure 3 illustrates the difference in NC between our proposed method and both
the original parcellation (left) and the Liu baseline (right). A value greater than
zero is considered to be more temporally synchronous while a value less than zero
is considered to be less temporally synchronous. In all 17 networks, our method
outperforms the original atlas with significance p < 0.005. This highlights the
importance of our subject-specific approach for glioma patients, whose functional
networks are substantially reorganized due to tumor presence.

Fig. 3. Difference in intra-network cohesion between our method and the original par-
cellation (left) and the Liu baseline (right).

Naturally, the Liu baseline achieves higher NC due to its correlation-based
voxel reassignment procedure. Figure 4 shows the original parcellation, and the
final network assignment using our method and Liu’s method in a single patient.
Each distinct color represents one of the 17 networks. We observe an overall lack
of spatial contiguity in the Liu baseline, as highlighted in the white circle. This
might be due to spurious noise within rs-fMRI signal at the voxel level, resulting
in some spatially discontiguous reassignment. The large grey area in the right
hemisphere is the excluded tumorous region for this subject.

Figure 5 shows the proportion of voxels retained in the original network mem-
bership between our method (left) and the Liu baseline (right). We observe sub-
stantial reorganization in the networks defined from our method. Along with
higher NC, this further motivates our approach, showing that many voxels in
the original parcellation may not belong to the proper RSN for this cohort.
We observe an even larger reorganization in the Liu networks. In the following
section we conjecture that the displacement in the Liu networks may be too
large, because while the Liu baseline provides more temporally cohesive RSNs,
it fails to identify functionally consistent motor networks.
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Fig. 4. Left: Original network assignment. Middle: Our final network assignment.
Right: Liu’s final network assignment. For visualization, we have dilated the networks
according to the liberal Yeo mask.

Fig. 5. Network retention for our method (left) and Liu’s method (right).

3.2 Motor Network Concordance, as Validated by Task-fMRI

Our second experiment quantifies the rs-fMRI concordance between the pseudo-
ground truth motor network in each patient and the motor RSN identified by
each of the methods. Specifically, we will use the GLM activation map across
three distinct motor tasks to define seed locations for motor functionality. The
seed is defined as a group of highly activated voxels within the activation map.
The Yeo atlas separates the motor network into two different parcels [9]. Our
measure of task concordance will be the maximum correlation between the ref-
erence signals of these two RSNs and the average time series associated with the
GLM activation seed. We determine that a method is better at motor network
identification by having a higher positive correlation with significance p < 0.05.

Figure 6 illustrates the performance gain of our method. The pink boxplots
show the difference in task concordance between our method and the origi-
nal atlas, while the blue shows the difference in task concordance between our
method and the Liu baseline. The tasks are ordered as finger, tongue, and foot
from left to right. Table 1 summarizes the results and corresponding p-values for
this experiment. The values in bold show when our method outperforms other
methods with a student t-test with significance threshold α = 0.05.
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Fig. 6. Difference in task concordance between our method and both the original atlas
(pink) and the Liu baseline (blue). Our method achieves significantly better perfor-
mance in five out of the six comparisons. (Color figure online)

Table 1. P-values for our method vs. the original atlas and the Liu baseline.

Task Sample size Ours vs. Original Ours vs. Liu

Finger 42 3.6e−3 1.2e−5

Tongue 35 7.0e−3 3.7e−2

Foot 20 0.45 9.8e−5

Our method outperforms the Liu method in each of the three tasks. In addi-
tion, our method performs better than the original atlas in the finger and tongue
task, but not the foot task. This latter result can be due to the local area of
the motor homonculus that foot activaton lies in [13] or the smaller sample size.
By observing p-values reported for the finger and foot task, we conclude that no
reassignment would be preferrable to the Liu baseline in this experiment. How-
ever, the Liu method RSNs were the most temporally cohesive. Though network
cohesion is a desirable property for RSNs [1], we have demonstrated that higher
cohesion does not always lead to a functionally consistent motor network. We
conjecture that (1) Liu is too liberal in the voxel reassignment, and (2) both
spatial and temporal consistency are required for RSN identification.

In summary, our method balances both spatial contiguity with temporal
synchrony to help describe functional networks in patients who have undergone
localized neural plasticity. We observe that our method shows more cohesive
RSNs for tumor patients than a population-based functional atlas. We also deter-
mine that the motor network refined by our method is a closer representation
to the actual motor network in these patients. This combination of results give
us confidence in our method for characterizing RSNs in a lesional population.

4 Conclusion

We have formulated a Bayesian model that can refine a population atlas on a
patient-specific basis. Our model considers both spatial contiguity as well as
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temporal synchrony between voxels, all while handling large and variable brain
lesions. Our method outperforms established baselines for identifying a func-
tionally consistent motor network. The use of the MRF prior along with itera-
tive voxel reassignment shows a viable balance between properties of interest in
resulting RSNs. These methodological improvements broaden the applications
in which one can use rs-fMRI for analysis. We have generated a method that
can be translated to other patient cohorts with anatomical brain lesions, like
stroke or traumatic brain injury. Our performance in assessing RSN cohesion
shows that our method captures subject-specific functional organization well,
even in a pathological population. Our method outperforms both baselines in
terms of motor network identification, which is an important step for preoper-
ative planning for neurosurgical resections to avoid permanent motor network
damage.

Future work with our method will involve different initial atlases. Specifically,
we aim to observe how our method performs with atlases of different network
numbers, and different initial size (voxel membership) of networks. Methodolog-
ically, we aim to vary the number of neighbors considered in our prior model,
assigning varying weights to neighbors of different geodisic distances from the
center voxel. Clinically, we aim to study reorganization of sites near the glimoa,
which is known to show the most neural plasticity in these patients [3].
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Abstract. Machine learning methods present unprecedented opportu-
nities to advance our understanding of the connectomics of brain disor-
ders. With the proliferation of extremely high-dimensional connectomic
data drawn from multiple neuroimaging sources (e.g., functional and
structural MRIs), effective feature selection (FS) methods have become
indispensable components for (i) disentangling brain states (e.g., early
vs late mild cognitive impairment) and (ii) identifying connectional fea-
tures that might serve as biomarkers for treatment. Strangely, despite
the extensive work on identifying stable discriminative features using a
particular FS method, the challenge of choosing the best one from a
large pool of existing FS techniques for optimally achieving (i) and (ii)
using a dataset of interest remains unexplored. In essence, the question
that we aim to address in this work is: “Given a set of feature selection
methods {FS1, . . . , FSK}, and a dataset of interest, which FS method
might produce the most reproducible and ‘trustworthy’ connectomic fea-
tures that accurately differentiate between two brain states?” This paper
is an attempt to address this question by evaluating the performance of
a particular feature selection for a specific data type in fulfilling cri-
teria (i) and (ii). To this aim, we propose to model the relationships
between a set of FS methods using a multi-graph architecture, where
each graph quantifies the feature reproducibility power between graph
nodes at a fixed number of top ranked features. Next, we integrate the
reproducibility graphs with a discrepancy graph which captures the dif-
ference in classification performance between FS methods. This allows
to identify, for a dataset of interest, the ‘central’ node with the highest
degree, which reveals the most reliable and reproducible FS method for
the target brain state classification task along with the most discrimina-
tive features fingerprinting these brain states. We evaluated our method
on multi-view brain connectomic data for late mild cognitive impair-
ment vs Alzheimer’s disease classification. Our experiments give insights
into reproducible connectional features fingerprinting late dementia brain
states.
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1 Introduction

Neurological and neuropsychiatric disorders, including Autism spectrum disor-
der (ASD), Alzheimer’s disease (AD) or Mild Cognitive Impairment (MCI), are
distinctive conditions that affect the morphology, cognition, and function of the
brain. Understanding the connectomics of these brain disorders [1] can help
improve diagnosis, prognosis, and patient treatment. To this aim, several works
leveraged machine learning techniques [2–4] as well as graph analysis techniques
[5] to discover distinctive brain features which reliably differentiate between nor-
mal subjects and disordered patients. These might serve as biomarkers, which
can be targeted for developing efficient treatment. Due to the high dimensional-
ity of connectomic data, many machine learning methods embed feature selec-
tion (FS) techniques to effectively reduce the dimensionality of data samples by
selecting a subset of highly relevant features. Despite the great progress made
over the last decade in devising robust and accurate FS methods [6], developing
a new approach that would produce the best classification results and identify
the most reliable feature for all data types seems to be an intractable problem.
In fact, the ongoing proliferation of multi-source medical data, including struc-
tural and functional magnetic resonance imaging (MRI) data collected for the
human brain connectome project [7], presents unprecedented challenges to devise
feature selection methods that generate reproducible biomarkers across different
data sources. This is because each data source has its unique characteristics and
statistical distribution that might not match that of another data source. Hence,
identifying the best feature selection method that unravels the inherent traits of
a particular dataset remains a major challenge.

Despite the great potential that many FS methods hold for identifying con-
nectomic biomarkers for neurological disorders (e.g., Tourette Syndrome, ASD)
[8–10], training on small datasets comes with its limitations including an observ-
able variability of most discriminative features. Being able to rely on a stable
FS method that is ‘optimal’ for a specific dataset would constitute a radical
change for detecting disordered brain changes through the connectome data.
Our hypothesis is that the best performing FS method for a dataset of interest
might not be optimal for a different dataset in terms of classification accuracy
and feature reproducibility. To the best of our knowledge, existing FS assessment
criteria have mainly focused on the stability criteria [11,12], which quantifies the
sensitivity of feature selection methods to variations in the training set. However,
this does not assess the suitability of the ‘selected’ FS method for a particular
dataset. Basically, the question that we aim to address in this work is: Given
a set of feature selection methods {FS1, . . . , FSN}, and a particular dataset,
which FS method might produce the most reproducible and ‘trustworthy’ con-
nectomic features that accurately differentiate between two brain states (e.g.,
demented vs healthy)?

In contrast to methods focusing on boosting the accuracy of FS methods
[13] in classifying different brain states, our primary goal is not to maximize
individual-level classification accuracy but to identify the best FS method that
will produce reproducible brain features associated with a specific brain disorder
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(i.e., potential biomarkers) for a particular dataset. To do so, given a set of FS
methods, we first model the relationship between FS methods using a set of
graphs, each graph quantifies the feature reproducibility power between neigh-
boring nodes at a fixed number of top ranked features (i.e., a ‘feature threshold’
K). The weight of an edge connecting two FS nodes in the graph captures the
overlap in top K ranked features. Next, we generate a discrepancy FS graph,
where the strength of an edge connecting two FS nodes encodes the absolute dif-
ference in their classification accuracy. Ultimately, by merging all reproducibility
and discrepancy graphs, we generate a holistic graph which allows the identify
the central FS method with most reproducible features in relation to other FS
methods in the graph. More importantly, the selected central FS method will be
used to identify the most meaningful and reproducible connectomic features for
a brain disorder of interest.

2 Multi-graph Based Identification of Data-Specific
Feature Selection Method for Reproducible
Discriminative Feature Discovery

In this section, we introduce the proposed pipeline to identify the FS method
that produces ‘the most agreed upon’ features for distinguishing between two
groups drawn from a connectomic data of interest. Fig. 1 displays the key steps
of our framework.

Multi-view Connectomic Feature Extraction. Each brain is repre-
sented by a set of nv networks {Vi}nv

i=1, each encoding a particular view of
the connectional brain construct. To train our classification model based on the
identified FS method, we define a feature vector vk for each brain network view
k, whose elements belong to the off-diagonal upper triangular part of the corre-
sponding connectivity matrix (Fig. 1).

FS-to-FS Multi-graph Construction. Given a particular data view, we
aim to identify the best feature selection method that gives the most reproducible
and reliable features allowing to tease apart two brain states. We hypothesize
that the most reliable FS method is able to reproduce the majority discriminative
features identified by other methods, thereby achieving the highest consensus
with other FS methods. The most appealing characteristic of the approach is
that it evaluates the importance of a given FS method while considering a set
of FS methods at a given cut-off threshold K representing the number of top
K ranked features selected to train the classifier (e.g., support vector machine
–SVM). Given a set of N FS methods F = {FS1, . . . , FSN}, we construct an
undirected fully-connected graph GK = (VK , EK); VK is the set of nodes, each
nesting an FS method in F , while EK represents weighted edges, which model
pairwise overlap in top K features among FS methods. By varying the cut-off
values K, we define a set of graphs G (or multi-graph) that model the overlap
between FS methods at different levels. Next, for easily merging the generated
multiple graphs, we represent each GK as a similarity matrix SK (Fig. 1), where
each element SK(i, j) denotes the overlap in top K ranked features between



102 N. Georges and I. Rekik

Fig. 1. Proposed data-specific feature selection method identification pipeline. For each
subject, we define connectomic feature vectors, each derived from a particular brain
view. We note that the performance of different FS methods varies with data types.
Given a particular data view, we define multiple graphs, each represented as a similarity
matrix modeling the consensus in top K ranked features among other selection meth-
ods. Next, we define a accuracy discrepancy matrix measuring the pairwise absolute
difference in average accuracy between FS methods. By merging consensus similarity
defined at multiple thresholds K with the accuracy discrepancy matrix, we generate a
final matrix S. The best FS method for the dataset of interest is defined as the node
with the highest centrality in S, thereby allowing to identify the most reproducible
features distinguishing between two brain states (e.g., healthy vs disordered states).
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FS methods i and j. We generate an average similarity matrix S̄ by merging
all similarity matrices across all thresholds, thereby capturing the average FS
method consensus with other methods.

FS-to-FS Accuracy Discrepancy Matrix Construction. Since classi-
fication accuracy influences the credibility of the produced distinctive features,
we propose to model the relationship between FS methods in terms of discrep-
ancy in average classification accuracy. Hence, we define an average accuracy
discrepancy matrix Ā, where the cost Ā(i, j) of an edge connecting two nodes i
and j is defined as Ā(i, j) = |āi − āj |, where āi represents the average accuracy
of FS method i at different cut-off thresholds. Next, we merge both Ā and S̄ to
output the final FS similarity matrix S (Fig. 1).

FS Method Identification. We assign a score ci for each FSi in S, that
quantifies the consensus in top selected feature set as well as classification perfor-
mance among other methods. In particular, inspired from graph analysis theory,
we define ci as the centrality measure, indicating the number of times that FS
method is visited on whatever path of a given length. The final FS method is
selected as the one with the highest centrality in S. Once, we identify the most
reliable FS method, we train an SVM classifier using the top K selected features
by FS to reveal the most discriminative ones.

3 Results and Discussion

Evaluation Dataset. To perform the classification, we used leave-one-out cross
validation on 77 subjects (41 AD and 36 late MCI) from ADNI data1, each
with structural T1-w MR image [14]. We reconstructed both right and left cor-
tical hemispheres for each subject from T1-w MRI using FreeSurfer software
[15]. Then we parcellated each cortical hemisphere into 35 cortical regions using
Desikan-Killiany Atlas [15]. We generated two brain network datasets derived
from the maximum principal curvature brain view and the mean cortical thick-
ness brain view, respectively. For each cortical attribute, we produced a morpho-
logical brain network, where the strength of a connection linking ROI i to ROI
j is defined as the absolute difference between the averaged attribute values in
both ROIs [2,3].

FS Methods and Training. We used the Feature Selection Library [16] pro-
vided by Matlab to select 7 FS methods: relieff [17], mutinffs [18], laplacian
[19], L0 [20], UDFS [21], llcfs [22], and cfs [23]. We adopted a leave-one-out
cross-validation (CV) strategy to train each FS in combination with an SVM
classifier. For FS methods that required parameter tuning, we used nested CV.
For each FS method, we evaluated the performance of SVM classifier across dif-
ferent number of top K selected features varying from 10 to 100, with a step
size of 10 features.

Findings and Future Improvements. Fig. 2 confirms our hypothesis that the
best FS method for one data type might not be the best for another data type.
1 http://adni.loni.usc.edu/.

http://adni.loni.usc.edu/
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Fig. 2. Top 10 reproducible discriminative features identification using the best identi-
fied feature selection (FS) method for each network brain view data. Selected FS meth-
ods (�), corresponding classification accuracy, and top reproducible features varied
across data types and right and left hemispheres (RH and LH).

For instance, relieff was identified for view 1 LH connectomic data with a classi-
fication accuracy of 61.03%, while L0 was identified for view 2 LH connectomic
data with a classification accuracy of 70.3%. Overall, the identified discriminative
features distinguishing between LMCI and AD brain states varied across views
and cortical hemispheres. However, we note that nodes 1, 2 and 5 corresponding
with the bank of the superior temporal sulcus, caudal anterior-cingulate cortex,
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and cuneus cortex were frequently selected. These regions were reported in other
studies on AD [24].

There are several future directions to explore to further improve our seminal
work. First, instead of pre-defining a similarity matrix modeling the relationship
between FS methods in terms of top ranked feature consensus, we can instead
learn these associations in a more generic way. Second, we will integrate the fea-
ture stability criteria for FS method identification. Third, we will evaluate our
method on multiple connectomic datasets, including functional and structural
connectomes. Fourth, ideally, the FS method giving the best classification accu-
racy would identify the most discriminative and reproducible features. We aim
to further improve our framework to identify the data-specific FS method that
satisfies both criteria.

4 Conclusion

In this work, we investigated a novel problem arising from the need to discover
the most reproducible and reliable clinical biomarkers that distinguish between
two groups (e.g., healthy and disorders brains) by identifying the best feature
selection method suited for the dataset of interest. We first proposed the con-
cept of FS similarity multi-graph to model the relationships between different FS
methods in terms of overlap top ranked features at multiple thresholds. By fur-
ther integrating an accuracy discrepancy graph with the similarity multigraph to
enforce a consistency between high classification performance and feature repro-
ducibility when identifying the best FS method for the target input data. By
exploring the topological properties of the merged graph, we mark the central FS
node with the highest the centrality score as the most reliable one. Our prelim-
inary findings showed that the performance of a particular FS method to train
a typical classifier varies with the data type. Besides classification accuracy, it
is also possible to integrate feature stability as a measure to identify the best
FS method. Another line of our ongoing work is to study the reproducibility
of the identified features by the ‘best’ FS methods across multi-source medical
datasets.
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Abstract. The ability to uniquely characterize individual subjects
based on their functional connectome (FC) is a key requirement for
progress towards precision neuroscience. The recent availability of dense
scans from individuals has enabled the neuroscience community to inves-
tigate the possibility of individual characterization. FC fingerprinting
is a new and emerging problem where the goal is to uniquely charac-
terize individual subjects based on FC. Recent studies reported near
100% accuracy suggesting that unique characterization of individuals is
an accomplished task. However, there are multiple key aspects of the
problem that are yet to be investigated. Specifically, (i) the impact of
the number of subjects on fingerprinting performance needs to be stud-
ied, (ii) the impact of granularity of parcellation used to construct FC
needs to be quantified, (iii) approaches to separate subject-specific infor-
mation from generic information in the FC are yet to be explored. In
this study, we investigated these three directions using publicly avail-
able resting-state functional magnetic resonance imaging data from the
Human Connectome Project. Our results suggest that fingerprinting per-
formance deteriorates with increase in the number of subjects and with
the decrease in the granularity of parcellation. We also found that FC
profiles of a small number of regions at high granularity capture subject-
specific information needed for effective fingerprinting.

Keywords: Functional connectivity · Fingerprinting · Parcellation
Precision neuroscience

1 Introduction

Resting state functional connectivity (RSFC) studies that estimate connectiv-
ity based on blood-oxygen-level-dependent (BOLD) signal measured using func-
tional magnetic resonance imaging (fMRI) have revealed many principles of brain
function [4,5]. Most of the existing studies made inferences about RSFC at a
group level, by co-registering individual scans to a standard template, and found
that such inferences are reliable [11]. While group-level inferences inform us of
the generic principles, they obscure principles specific to individual subjects that
are essential for characterizing brain function in health and disease. Recent avail-
ability of ‘dense’ fMRI scans from individuals (e.g., Human Connectome Project
c© Springer Nature Switzerland AG 2018
G. Wu et al. (Eds.): CNI 2018, LNCS 11083, pp. 107–116, 2018.
https://doi.org/10.1007/978-3-030-00755-3_12
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(HCP) data [12], Midnight Scan Club (MSC) [7], and MyConnectome dataset
[8]) provide a tremendous opportunity to study idiosyncratic properties of brain
function and make progress towards ‘precision neuroscience’ [10].

Functional connectome fingerprinting, where the goal is to identify individ-
uals using subject-specific RSFC, has been explored using the above datasets
that constitute dense scans from individuals [6,9]. Specifically, given a set of N
reference fMRI scans, one from each of the N subjects, and a new target fMRI
scan from one of the same N subjects, the goal is to identify the subject by
‘matching’ RSFC of the target scan with that of the reference scans. As RSFC
is used to match the reference and the target scans, we refer to it as a functional
fingerprint. There are different approaches to using RSFC and their effect on the
accuracy of fingerprinting has been studied. For instance, Finn et al. [6], using
126 subjects from HCP, reported a fingerprinting accuracy in the range of 92%–
94% while using whole-brain RSFC and 98–99% using a frontoparietal-based
RSFC. In another study, using 100 unrelated subjects from HCP, Amico and
Goni [3] observed that by performing principal component analysis (PCA) on
whole-brain RSFC and using the resultant principal components for matching,
the accuracy increased from 94% to 98%. Xu et al. [15] studied the reliability
of boundaries drawn between functional areas delineated using spatial gradients
(the approach is discussed elaborately in [14]) and reported success rate of up to
99% using 30 subjects.

These near 100% success rates may lead one to conclude that fingerprinting
is not only a relatively easy problem, but also a solved problem with no room for
progress. However, this is far from reality. Note that the underlying hypothesis
that drives the fingerprinting methodology is that RSFC instances from the same
subject lie in close proximity, segregated from other subjects’ RSFC, in some
high-dimensional space. When a small number of subjects are sampled from a
population, the RSFCs from one subject may be well separated from that of
others in the high-dimensional space. However, when many more subjects are
sampled from a population, this high-dimensional space may become cluttered
with RSFCs from different subjects, where RSFCs from different subjects may
look more similar than the RSFCs from the same subject, and as a result hurt
the overall fingerprinting performance. This aspect of fingerprinting is yet to be
studied.

In addition, the impact of granularity of the parcellation used for computing
RSFC on fingerprinting accuracy is yet to be investigated. A parcellation of the
brain is expected to capture functionally distinct areas at a given level of gran-
ularity, often indicated as the number of parcels. While subject-specific RSFC is
desired for fingerprinting purpose, the granularity at which this subject-specific
information becomes available is not known.

Subject-level RSFC contains both generic and subject-specific information.
Separating out subject-specific information from generic information is crucial
for determining what aspects of RSFC are relevant for fingerprinting. Finn et
al.’s approach [6] of using RSFC within different groups of brain regions is one
approach. Their underlying hypothesis is that the subject-specific signatures are
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present within the RSFC of different region groups. One hypothesis, that is not
yet explored, is that an RSFC profile of one or small number of regions could be
used for fingerprinting. This direction allows us to study the degree of subject-
specific information available in a single-node’s FC profile and it also allows us
to discover the regions in the brain that provide subject-specific connectivity
maps for fingerprinting.

In this study, we investigated the above directions to deepen our understand-
ing of functional connectome fingerprinting. Specifically, we addressed the follow-
ing three questions: (1) How does the number of subjects affect the accuracy of
fingerprinting? (2) How does the granularity of parcellation used for computing
RSFC affect fingerprinting accuracy? (3) Can we find RSFC elements that are
highly suited for effective fingerprinting? We performed our analysis on resting
state fMRI data from 339 unrelated individuals in the HCP, using computing
resources from the Ohio Supercomputer Center [16]. Our results suggest that
fingerprinting performance deteriorates with increase in the number of subjects
and with the decrease in the granularity of parcellation. We also found that a
small number of regions at high granularity capture subject-specific information
needed for effective fingerprinting.

The rest of this paper is organized as follows: The datasets used in our
study are described in Sect. 2. Methods we used to answer above questions are
presented in Sect. 3. We discussed our results in Sect. 4 and we concluded with
Sect. 5.

2 Data

Resting state fMRI data from the 1200-subjects 2017 HCP data release (March
2017) [12] was used in this study. This release included processed resting state
fMRI scans from 1003 healthy young adults. While we could use all of the 1003
subjects’ data, any familial relationships among subjects may muddle our anal-
ysis for fingerprinting. To avoid familial relationships among subjects, we used
a set of 339 unrelated subjects provided in the HCP release [2].

As part of the HCP, resting-state fMRI scans were collected from each sub-
ject on two separate days. On each day, a 20 min scan left-to-right (LR) phase
encoded scan and a 20 min right-left (RL) phase encoded scan were obtained.
For these four fMRI scans, we used the extensively-preprocessed node-timeseries
data that was made available in the HCP data release. This node-timeseries data
was generated by performing a series of steps including preprocessing, artefact
removal using ICA, inter-subject registration, group-PCA, group-Independent
Component Analysis (ICA), and dual-regression to compute time series for each
independent component (IC). These steps are described in the HCP documen-
tation [1]. As part of the Group-ICA step of the HCP preprocessing pipeline,
the brain was parcellated into ICs at different granularities: 15, 25, 50, 100, 200,
and 300 regions. Node-timeseries for ICs from each of these parcellations were
provided in the HCP data release. We refer to the set of node timeseries from
these ICs as IC15, IC25, IC50, IC100, IC200, and IC300. The node-timeseries
data from the March 2017 release was used as is without further processing.
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3 Methods

3.1 FC Fingerprinting

We will formally establish the terminology that will be used in the rest of the
paper. We refer to fMRI scans for which we know which subject they are collected
from as ‘reference’ scans. We refer to the new set of scans for which the subject
they are collected from needs to be determined by matching with reference scans
as ‘target’ scans. Given a set of N reference scans {R1, R2, . . . , RN} from N
different subjects, and a set of target scans {T1, T2, . . . , TN} from the same set
of subjects, the problem of FC fingerprinting is to determine for each target scan
Ti the corresponding subject’s reference scan Rj by matching their RSFC. There
are two key steps here: (1) computing FC, (2) matching FC.

For computing RSFC from an IC node-timeseries derived from a scan, we
computed Pearson correlation between each pair of node-timeseries. As the scans
were collected from each subject on two separate days, we computed the average
RSFC per day. That is, we averaged the RSFC from the resting-state LR and RL
encoding scans on each day. As a result we have two RSFCs, one per day, from
each subject: RSFCd1 and RSFCd2. As the node-timeseries data is available for
different granularities of parcellation, these two RSFCs were computed for each
of the granularities.

For matching RSFCs, we used a method that is similar to that of Finn et al.’s
[6] whole-brain approach. Specifically, for each RSFC computed from a target
scan Ti, we computed the Pearson correlation between the vector constructed by
taking the upper-triangular values of the target RSFC matrix with that of each
of the reference RSFCs. The reference RSFC that showed highest correlation
with the target RSFC is treated as a match.

The accuracy of fingerprinting is computed as the fraction of subjects for
which the target scans were perfectly matched with their reference scans. As
we have two RSFCs from each subject (RSFCd1 and RSFCd2), we computed
fingerprinting accuracy in two ways: (1) using RSFCd1 as a reference and RSFCd2

as target, (2) using RSFCd2 as a reference and RSFCd1 as target. The results
from the former and latter cases are labelled as Day1 Ref: Day2 Tgt and Day 2
Ref: Day1 Tgt, respectively.

3.2 Studying the Effect of Sample Size

To study the effect of sample size on fingerprinting accuracy, we conducted
fingerprinting analysis on smaller subsets of the dataset. Out of the 339
subjects in our dataset, we randomly selected samples of different sizes
({50, 95, 140, 185, 230, 275, 320}) and computed their fingerprinting accuracies
using the method described above. This was repeated 100 times for each size
and the average accuracies for the 100 runs are reported.

Silhouette Coefficient Based Analysis: To investigate the effect of the sam-
ple size further and to test our hypothesis that with more and more subjects
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the RSFC space gets cluttered making it difficult to perform fingerprinting accu-
rately, we used Silhouette coefficient [13], a commonly used cluster evaluation
metric, to determine how well separated the subjects’ RSFCs are in the space.
A Silhouette value is computed for each data point in the cluster and the value
can only range from −1 to 1. Positive values closer to 1 indicate that the data
point is at the core of the cluster, while a value closer to −1 indicates that the
point is actually closer to points in another cluster than in the same cluster. For
our analysis, an RSFC with a negative value is indicative that it is more similar
to RSFCs from other subjects than it is to the RSFCs from the same subject.
For a more complete treatment of Silhouette coefficient we refer an interested
reader to [13]. The Silhouette value was calculated for each RSFC by assigning
all RSFCs from each subject to a separate cluster. For this analysis, we used
RSFCs computed from all four scans of a subject and so each cluster has four
members. We computed the average Silhouette value over all RSFCs from all
subjects. To understand how sample size affects the space of RSFCs using Sil-
houette coefficient, we created 100 randomly sampled sets of subjects each for
different sample-sizes ({5, 50, 95, 140, 185, 230, 275, 320}). For each sample-size,
we computed the average Silhouette coefficient for each of the hundred sets. We
also computed the fraction of subjects that contained a scan with a negative
Silhouette value in each of the sets for different sample-sizes. We reported the
average of the fraction of subjects.

3.3 Studying the Effect of Granularity of Parcellation

To study the effect of the granularity of parcellation on fingerprinting accuracy,
we performed fingerprinting analysis on 100 randomly sampled subjects using
their node-timeseries from IC15, IC25, IC50, IC100, IC200, and IC300. For each
level of granularity, the fingerprinting accuracy was recorded. This was repeated
100 times and the average accuracy for each granularity are reported.

3.4 Determining Elements of RSFC that are Highly Relevant
for Fingerprinting

Subject-level RSFC contains both generic and subject-specific information. Sep-
arating out subject-specific information from generic information is crucial for
determining what elements of RSFC are relevant for fingerprinting. We pursue
two key methods for identifying relevant RSFC components. Our approach is to
select the RSFC profile for one brain region, i.e., all region-pairs that involve the
brain region, and compute the fingerprinting performance of that region’s FC
profile.

Single-Node RSFC Based Fingerprinting. The FC fingerprinting method
described above (in Sect. 3.1) uses the entire set of elements from an RSFC.
Our hypothesis is that only one region’s connectivity profile may be sufficient to
uniquely fingerprint a subject. To test this, we use only edges incident on one
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Fig. 1. The effect of the number of subjects on RSFC fingerprinting. (a) Average
accuracy of fingerprinting as the number of subjects increased from 50 to 320 using the
IC300 dataset. The error bars indicate accuracies one standard deviation away from the
mean. (b) Accuracy of fingerprinting on the 1000 subject IC300 dataset as the number
of subjects increased from 100 to 1000. Error bars indicate accuracies one standard
deviation away from the mean. (c) The average subject Silhouette values with varying
number of subjects. (d) The fraction of subjects with a negative Silhouette value for
at least one RSFC.

region (at a time) for matching a target RSFC with reference RSFCs. This is
repeated for all the regions in the parcellation to determine the regions whose
RSFC profile captures highly subject-specific information. We randomly selected
100 subjects and conducted the fingerprinting analysis for each parcellation gran-
ularity on each node and recorded the resultant accuracies.

Studying Reliability of Single Node Analysis. We randomly selected a
set of 150 subjects from the 339 unrelated individuals and we refer to it as
‘Group A’. From the remaining individuals, we randomly selected another set of
150 subjects and refer to it as ‘Group B’. Using RSFCs computed from IC300

dataset, we computed for each of the 300 nodes their FC fingerprinting accuracy
when single node RSFC is used for groups A and B separately. We compare
these node-level fingerprinting accuracies from groups A and B to determine the
reliability of the single node fingerprinting accuracies.
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4 Results

4.1 The Effect of Sample Size on Fingerprinting
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Fig. 2. The accuracy of fingerprinting
with change in parcellation granular-
ity. The error bars indicate accuracies
one standard deviation away from the
mean.

The results from our analysis of quan-
tifying the effect of sample size on fin-
gerprinting are shown in Fig. 1. The fin-
gerprinting accuracy for unrelated indi-
viduals decreased from 92.16% to 89.75%
as the number of subjects increased from
50 to 320 for the scenario Day 1 Ref:
Day 2 Tgt. Similar reduction in accu-
racies were seen for Day 2 Ref: Day 1
Tgt, even though these accuracies are rel-
atively small compared to Day 1 Ref: Day
2 Tgt (Fig. 1(a)). Note that the observed
(2–3%) decrease in fingerprinting accu-
racy (in Fig. 1(a)) may seem tolerable, but
when FC fingerprinting is considered for
clinical practice where the underlying sample size is significantly larger the esti-
mated accuracy may not meet the demands of precision neuroscience. To under-
stand the extent of this drop in accuracy on larger datasets, we performed this
analysis on the larger HCP dataset with 1000 subjects. The accuracy for 1000
subjects was 85.8%, for the scenario Day 2 Ref: Day 1 Tgt. These results sug-
gest that there can be a significant reduction in accuracies as larger and larger
datasets are considered.

In general, this reduction in accuracy could be due to RSFCs from different
subjects exhibiting more similarity than the RSFCs from the same subject with
the increase in the number of subjects. That is, the space of RSFCs is more clut-
tered as the number of subjects increased. To further investigate this hypothesis
of cluttering in RSFC space due to increased number of subjects, we used Sil-
houette coefficient, a popular cluster evaluation metric, to quantify segregation
of RSFCs. The average subject Silhouette value decreased from 0.2608 to 0.1606
as the number of subjects increased from 5 to 320 subjects for IC300 (Fig. 1(c)).
This supports our hypothesis that the space of RSFCs becomes less segregated
(or more cluttered) as the number of subjects increased. Furthermore, there was
an increase in the fraction of subjects with a negative Silhouette value for at
least one RSFC from an average value of 13.8% to 35.51% as the number of
subjects increased from 5 to 320 for IC300 (Fig. 1(d)). This quantifies the degree
of cluttering in the RSFC space as a function of sample size.

4.2 The Effect of Parcellation Granularity on Fingerprinting

We also saw an increase in fingerprinting accuracy as the granularity of parcel-
lation increased (Fig. 2). The average accuracy increased from 55.47% to 91.13%
as the number of parcels increased from 15 to 300 for the scenario Day 1 Ref:
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Day 2 Tgt. This suggests that finer parcellations capture subject-specific RSFC
more effectively than coarser parcellations. This result is also in agreement with
our previous Silhouette results (Fig. 1(c)); in all cases the Silhouette values were
lower, and fraction of subjects with a negative Silhouette value were higher,
when coarse parcellation was used (Fig. 1(c) and (d)).

We also performed a combined analysis on the effect of the number of subjects
and granularity of parcellation. The average accuracy showed a constant down-
ward trend with an increase in the number of subjects and a constant upward
trend with an increase in the number of parcels (Fig. 3).
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Fig. 3. Heatmap showing the relation between the number of subjects and the granu-
larity of parcellation on fingerprinting accuracy. (a) Day 1 Ref: Day 2 Tgt (b) Day 2
Ref: Day 1 Tgt.

4.3 Determining Elements of RSFC that Are Highly Relevant
for Fingerprinting

We computed fingerprinting accuracy for each brain region by ‘matching’ the
edges incident on the region from the target RSFC with the reference RSFCs.
This was repeated for each parcellation granularity. The results are shown in
Fig. 4(a) and (b). There are three key observations: (1) There is an increase in
the range of fingerprinting accuracy as the number of nodes increased (Fig. 4(a)
and (b)). (2) The best single-node accuracy for finer parcellations are nearly as
good as the whole-brain RSFC based accuracy. For instance, best single-node
accuracy for IC300 was 86.13% compared to the whole-brain RSFC accuracy of
91.13% (only 5% lower) for Day 1 Ref: Day 2 Tgt. (3) The difference between the
best single-node accuracy and the whole-brain RSFC decreased with increase in
the number of parcellations. These results suggest that at a finer granularity of
parcellation, some region’s RSFC not only captures subject-specific information
but also does so nearly as well as the whole-brain RSFC.

To assess the reliability of the accuracies across two different samples of
subjects, we created two non-overlapping groups A and B of 150 subjects each
and computed single node RSFC based accuracies separately. The single-node
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Fig. 4. Single node RSFC based fingerprinting accuracy: (a) Day 1 Ref: Day 2 Tgt
(b) Day 2 Ref: Day 1 Tgt. The accuracy of using the full RSFC for fingerprinting as a
black dot for each parcellation granularity.

0 0.2 0.4 0.6 0.8 1
Accuracy of each node in Group A

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

 o
f e

ac
h 

no
de

 in
 G

ro
up

 B

(a) (b)

Fig. 5. (a) Comparision between the single-node RSFC-based fingerprinting accuracy
between groups A and B for Day 1 Ref: Day 2 Tgt. (b) The accuracies of each node
are colored in the brain volume for groups A and B.

accuracies of 300 nodes in the IC300 parcellation are strongly correlated between
groups A and B (Fig. 5(a)). This suggests that these regions that consistently
resulted in higher accuracies in independent samples capture FC information
unique to individual subjects. The fingerprinting accuracies for the components
in the IC300 dataset for groups A and B are shown in Fig. 5(b). The regions that
resulted in higher accuracies in group A also resulted in higher accuracies in
group B. Particularly, the ICs in the frontal region and lateral-parietal regions
resulted in highest accuracy, approximately 90%, among other regions. These
results are consistent with the findings reported in Finn et al. [6], where they
observed frontoparietal network to exhibit very high accuracy.

5 Conclusion

In this work we investigated the different aspects of FC fingerprinting that have
been overlooked. They include the impact of number of subjects and granu-
larity of parcellation. We also studied single-node RSFC-based fingerprinting
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and the reliability of the resultant accuracies. Our results suggest that as the
number of subjects increase the RSFC space gets more and more cluttered result-
ing in reduced accuracies. We borrowed ideas from cluster evaluation that have
been well studied in the data mining community. We also found that with a
high-granularity of parcellation, higher fingerprinting accuracies are possible.
We also investigated the role of single-node RSFC in effective fingerprinting.
We found that just one brain region’s RSFC profile can be nearly as good as
the whole-brain RSFC based matching. We also observed that the frontal and
lateral-parietal regions that show very high accuracies are also reliable across
independent samples.
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Abstract. We present two related methods for deriving connectivity-
based brain atlases from individual connectomes. The proposed meth-
ods exploit a previously proposed dense connectivity representation,
termed continuous connectivity, by first performing graph-based hier-
archical clustering of individual brains, and subsequently aggregating
the individual parcellations into a consensus parcellation. The search
for consensus minimizes the sum of cluster membership distances, effec-
tively estimating a pseudo-Karcher mean of individual parcellations. We
assess the quality of our parcellations using (1) Kullback-Liebler and
Jensen-Shannon divergence with respect to the dense connectome rep-
resentation, (2) inter-hemispheric symmetry, and (3) performance of the
simplified connectome in a biological sex classification task. We find that
the parcellation based-atlas computed using a greedy search at a hierar-
chical depth 3 outperforms all other parcellation-based atlases as well as
the standard Dessikan-Killiany anatomical atlas in all three assessments.

1 Introduction

The ability to quantify how the human brain is interconnected in vivo has opened
the door to a number of possible analyses. In nearly all of these, brain parcel-
lation plays a crucial role. Variations in parcellation significantly impact con-
nectome reproducibility, derived graph-theoretical measures, and the relevance
of connectome measures with respect to biological questions of interest [16]. A
natural approach is then to use individual densely sampled connectomes to drive
the parcellation directly, leading to a more compact, connectivity-aware set of
brain regions and resulting graph, as done in e.g. [10]. A comprehensive review
of parcellation methods and their effects on the derived connectome quality is
given in [17]. Because individual connectivity data is at once very informative
and highly redundant, there is a great flexibility in how parcels can be derived
from dense, highly resolute graphs. It is possible for example to derive (1) a uni-
fied population-based atlas, (2) individual-level parcellations with cross-subject
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label mapping, or (3) individual parcellations with no inter-subject label corre-
spondence. While the first approach is appealing for its simplicity and ease of
interpretation, the second and third may enable the researcher to reveal some
individual aspect of the connectome that is lost in the aggregate atlas.

In this work, we attempt to bridge these three approaches by first construct-
ing maximally flexible hierarchical parcellations, and then finding a unifying set
of labels and parcels to maximize individual agreement. We use the a contin-
uous representation of a brain connectivity [8] as our initial dense connectome
representation. Continuous connectivity is a parcellation-free representation of
tractography-based, or “structural” connectomes that is based on the Poisson
point process. Once individual parcellations are computed, we obtain a group-
wise parcellation using partition ensemble algorithm. We access quality of the
resulting parcellations in three ways. (1) We use the continuous connectome
framework to compare parcellation-approximate and exact edge distribution
functions. (2) We compare performance of the resulting graphs on a gender
classification task. (3) We also show that without any explicit knowledge of
brain geometry and based solely on graph connectivity we obtain comparatively
symmetric parcellations.

2 Methods

2.1 Continuous Connectome

The continuous connectome model (ConCon) treats each tract as an observation
of an inhomogeneous symmetric Poisson point process with the intensity function
given by

λ : Ω × Ω → R
+, (1)

where Ω denote union of two disjoint toplogically spherical brain hemispheres,
representing cortical white matter boundaries. In practice, ConCon uses cortical
mesh vertices as nodes of connectivity graph. From such a representation, a
“discrete” connectivity graph could be computed from any particular cortical
parcellation P . We follow definitions from [8] and call P = {Ei}Ni=1 a parcellation
of Ω if E1 . . . Ek ⊆ Ω such that ∪iEi = Ω, and N is the number of parcels (ROIs).
Edges between regions Ei and Ej can then be computed by integration of the
intensity function:

C(Ei, Ej) =
∫∫

Ei,Ej

λ(x, y)dxdy, (2)

Due to properties of the Poisson Process, C(Ei, Ej) is the expectation of the
number of observed tracts between Ei and Ej . In the context of connectomics,
this is the expected edge strength.

2.2 Graph Clustering

Once we obtain all individual continuous connectomes, we partition each inde-
pendently into a set of disjoint communities. For graph clustering we use the
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Louvain modularity algorithm [1], as it has shown good results in multiple neu-
roimaging studies [5,7,9,12]. This algorithm consist of two steps. The first step
combines locally connected nodes into communities, while the second step builds
new meta graph. The nodes of the meta-graph are communities from the previ-
ous step, and the edges are defined as the sum of all inter-community connections
of the new nodes. The algorithm in [1] cycles over these steps iteratively, con-
verging when further node clustering leads to no increase in modularity. We
follow the hierarchical brain concept [7], repeating the clustering procedure iter-
atively. After the initial parcellation, we further cluster each individual parcel as
an independent graph. In this work, we repeat the process three times. For each
(i’th) continuous connectome this procedure yields a three-level hierarchically
embedded partition: P I

i , P
II
i , P III

i , (see Fig. 1).

Fig. 1. Adjacency matrix of a sample continuous connectome. Rows and columns are
reordered according to partition of the third hierarchical level. Boxes of different color
represents clusters of different hierarchical levels. P I clusters are obtained first, next
we reapply clustering on each detected P I cluster and obtain P II. This is repeated once
more to obtain P III (Color figure online)

2.3 Consensus Clustering

In order to obtain a unified parcellation for all subjects, we use consensus cluster-
ing. The concept was developed for aggregating multiple partitions of the same
data into a single partition. We define the average partition over all individual
partitions {Pi} as:

P̄ == argminP

∑
i

d(P, Pi), (3)
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where P̄ is used to denoted desirable average partition, K is a number of averaged
partitions, d(Pi, Pj) is a distance measure between two partitions and we want
to minimize average distance from P̄ to all given partitions Pi. All partitions are
represented by a vector of length M , where M is a number of clustered objects
(vertices of a graph in our case). It contains values from 1 up to N , where N
is a number of clusters (parcels). This task is generally NP complete [14], but
there are many approximate algorithms. We use two approaches: Cluster-based
Similarity Partitioning Algorithm (cspa) [11] and greedy algorithm from [2].

CSPA defines a similarity between data points based on co-occurrence in a
same cluster across different partitions, and then partitions a graph induced by
this similarity. Specifically, given multiple partitions P1, . . . PK of a data points
x1, . . . xM . One can define similarity between points xi, xj as follow:

S(xi, xj) =
K∑

k=1

δ(Pk(xi), Pk(xj)), (4)

Here δ is Kroneker delta. Thus S(xi, xj) is just number of partitions in which
points xi and xj were in the same cluster. Next we build a graph, with nodes
correspond to data points and edge between node xi and xj is equal to S(xi, xj).
We the partition this graph into communities using some clustering algorithm
and the resulting partition is our clustering consensus partition.

Another way to find such average clustering is to optimize loss function given
by Eq. 3.

The authors of [2] propose a greedy approach (Hard Ensemble - HE). Given
multiple partitions P1 . . . PK it combines them iteratively, first it finds average
of P̄1,2 = minP̄ (d(P̄ , P1) + d(P̄ , P2)), next average of P1,2 and P3 and so on.
As a measure of distance the authors take the average square distance between
membership functions:

d(Pi, Pj) =
1
N

∑
k=1...N

||pki − pkj ||2, (5)

Exclusively for this definition we use another way to encode object’s member-
ships: Pi is a matrix of size M ×N (number of objects times number of clusters)

Pm,n
i =

{
1 if m’th object belongs to n’th cluster
0 otherwise.

(6)

In Eq. 5 pki and pkj are kth rows of memberships matrices Pi and Pj respectively.
They correspond to membership vector of the kth object. Since we are looking
for disjoint clusters, only a single element of such row vector is equal to 1. This
representation is defined up to any column permutation π of matrix P , thus the
optimization procedure is done subject to all possible column permutations.
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2.4 Comparison Metrics

Once we find individual partitions and combine them into an average partition,
we want to access their quality. We use two different approaches.

First, we compare representation strength of different parcellations by mea-
suring distance between original λ(x, y) and its piece-wise approximation given
by:

γ(x, y) =
1

|Ei||Ej |C(Ei, Ej), (7)

where x ∈ Ei and y ∈ Ej . Natural way to compare two statistical distributions
is to measure distance between their probability density functions, we will use
Kullback-Leibler divergence [4]. For two probability distributions with densities
λ(x) and γ(x) the KL divergence is:

KL(λ, γ) =
∫ ∞

−∞
λ(x) log

λ(x)
γ(x)

dx, (8)

It takes values close to 0 if two distributions are equal almost everywhere. Similar
but symmetrized version of KL divergence is Jensen-Shannon divergence [6].
Again for two probability distributions with densities λ(x) and γ(x) it is given
by:

JS(λ, γ) =
1
2
(KL(λ, r) + KL(γ, r)), (9)

where r(x) = 1
2 (λ(x) + γ(x)).

Second, we compare performance of different parcellations on a gender clas-
sification task. We use Logistic Regression model with (small) l1 regularization
on a vectors of edge weights (the upper triangle of adjacency matrix excluding
diagonal). Classification performance is measured in terms of ROC AUC score,
which is typical for binary classification tasks.

Finally, in order to quantify goodness of consensus clustering and access
hemisphere symmetry we use Adjusted Mutual Information [15]. It measures
similarity between two partitions, with value 1 corresponds to identical parti-
tions and values close to zero for partitions that are very different. Given set
X of n elements, X = {x1, x2, . . . xn} let us consider two partitions of X:
U = {U1, U2, . . . Ul} and V = {V1, V2, . . . Vk}. These partitions are strict (or
hard):

k⋂
j=1

Vj =
l⋂

i=1

Ui = ∅

and complete:
k⋃

j=1

Vj =
l⋃

i=1

Ui = X
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We can construct the following l × k contingency table:

U, V V1 V2 . . . Vk

∑k
j=1 sij

U1 s11 s12 . . . s1k s1

U2 s21 s22 . . . s2k s2
...

...
...

. . .
...

...

Ul sl1 sl2 . . . slk sl∑l
i=1 sij s1 s2 . . . sk

Here sij denotes a number of common objects between Ui and Vj :

sij =
∣∣ Ui

⋂
Vj

∣∣
then Mutual Information is given by:

MI =
l∑

i=1

k∑
j=1

P (i, j) log
P (i, j)

P (i)P ′(j)
, (10)

where P (i) is the probability of a random sample occurring in cluster Ui, P ′(j)
is the probability of a random sample occurring in cluster Vj :

P (i) =
si

n
, P ′(j) =

sj
n

and P (i, j) - probability of an object occurs in Ui and Vj simultaneously:

P (i, j) =
sij
n

Adjustment scheme as proposed by Hubert and Arabie [3] has the following
general form:

Adjusted Index =
Index − Expected Index

Max Index − Expected Index
(11)

Using AMI we access ensemble goodness (how good clustering ensemble algo-
rithm combines multiple partitions) using modified 3:

Ensemble goodness =
K∑
i

AMI(P̄ , Pi), (12)

We compute parcellation symmetry by comparing hemisphere parcels (labels):

Symmetry = AMI(P̄LH, P̄RH). (13)
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3 Experiments

3.1 Data Description

We use construct continuous connetomes of 400 subjects from the Human Con-
nectome Project S900 release [13] following [8]. We use an icosahedral spherical
sampling, at a resolution of 10242 mesh vertices per hemisphere. We used Dipy’s
implementation of constrained spherical deconvolution (CSD) to perform prob-
abilistic tractography. Prior to clustering, we exclude all mesh vertices that were
labeled by FreeSurfer as corpus callosum or cerebellum.

3.2 Experimental Pipeline

Our experiments are summarized as follows:

1. For each subject we reconstruct its Continuous Connectome.
2. For each Continuous Connectome we iteratively run Louvain clustering algo-

rithm, as described above. Subgraphs of having less then 1% of original graph
vertices were not divided.

3. Next we aggregate individual subject partitions and obtain consensus clus-
tering. Aggregation was done over 400 HCP subjects. Further, after finding
the optimal parcellation, we obtain two parcellations based on two disjoint
sets of 200 HCP subjects in order to compute reproducibility.

4. We aggregate partitions of the same level (I-II-III) using CSPA and HE.
5. We compare obtained partitions between themselves and with FreeSurfer’s

Desikan-Killiani parcellation using Kullback-Leibler and Jensen-Shannon
divergence. We compute goodness of an ensemble and parcellation symmetry
using AMI.

6. We compare performance of simplified connectomes on a binary classification
task using Logistic Regression with l1 penalty. Classification results are mea-
sured in terms of ROC AUC score, with averaging over 10 cross-validation
folds.

3.3 Results

Table 1 represent all comparison results. First we can see that CSPA algorithm
failed to find good clustering ensemble which result in poor classification perfor-
mance and high KL and JS divergences. Greedy algorithm performed on P III on
the other hand outperforms standard Desikan atlas across all comparison metrics
(except number of parcels, 68 versus 83). Surprisingly, greedy ensemble of second
level partition (P II) performs comparatively with Desikan, despite having twice
as lower number of parcels (30 versus 68).

Another interesting property that we get automatically is parcellation sym-
metry. Our clustering algorithm known nothing about brain topology (all infor-
mation was contained in graph connectivity), still reconstruct parcellations which
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Table 1. All results are rounded to 2 significant digits. Where it possible results are
reported with standard deviation. Best result in each row is colored. KL, JS divergences,
lower is better; binary Gender Classification was measured in terms of ROC AUC
score, higher - better; Ensemble goodness and Hemisphere symmetry were measured
using AMI, Ensemble goodness is an average AMI between consensus partition and all
individual partitions, higher - better.

cspa P I cspa P II cspa P III HE P I HE P II HE P III DKT

KL 1.22 ± .07 1.18 ± .07 1.15 ± .07 1.16 ± .07 .86 ± .05 .66 ± .04 .83 ± .05

JS .20 ± .00 .19 ± .00 .19 ± .00 .20 ± .00 .17 ± .00 .14 ± .00 .16 ± .00

Gender Classification .63 ± .04 .64 ± .04 .69 ± .03 .64 ± .03 .75 ± .03 .86 ± .02 .81 ± .03

Hemisphere symmetry .15 .24 .32 .26 .55 .66 .64

Ensemble goodness .47 ± .06 .40 ± .02 .35 ± .00 .53 ± .05 .64 ± .02 .70 ± .01 −
Number of ROIs 5 7 8 7 30 83 68

are highly symmetrical. For standard Desikan atlas hemisphere symmetry is 0.64,
and for our best parcellation this value even higher (0.66), and still remains quite
high for second level partition (0.55).

Finally we check if our best ensemble parcellation, which combines 400 indi-
vidual partitions is stable. We split 400 subjects into 2 groups of 200 subjects
and independently combine their partitions. We compare resulting parcellations:
P̄1,200 and P̄201,400 between themselves and with original P̄ (which is an ensemble
of all 400 subjects) again using Adjusted Mutual Information. Both P̄1,200 and

Fig. 2. Left column: Desikan-Killiany parcellation. Right column: HE P III parcellation.
Lateral and Medial views, left hemisphere.
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P̄201,400 shows AMI value greater than 0.80 (0.83 and 0.82 respectively) when
compare with P̄ , they also highly similar between themselves (Fig. 2).

4 Conclusion

We have presented an approach for generating unified connectivity-based human
brain atlases bases on consensus clustering. The method is based on finding a
pseudo average over the set of individual partitions. Our approach outperforms
standard a anatomical parcellation on several important metrics, including agree-
ment with dense connectomes, improved relevance to biological data, and even
improved symmetry. Because our approach is entirely data driven an requires no
agreement between individual parcellation labels, it combines both the flexibility
of individual parcellations and the interpretability of simple unified atlases.

Acknowledgements. This work was funded in part by the Russian Science Founda-
tion grant 17-11-01390 at IITP RAS.
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Abstract. Network science is enhancing our understanding of how the human
brain works at a systems level. A complete population-wise mapping of region-
to-region connections, called connectome atlas, is the key to gaining a more full
understanding for network-related brain disorders and for discovering
biomarkers for early diagnosis. Since a brain network is commonly encoded in
an adjacency matrix, it is difficult to apply the state-of-the-art atlas construction
approaches by normalizing and averaging the individual adjacency matrices into
a common space. In this paper, we propose a novel data-driven approach to
construct an unbiased connectome atlas to capture both shared and comple-
mentary network topologies across individual brain networks, offering insight
into the full spectrum of brain connectivity. Specifically, we employ a hyper-
graph to model the manifold of a population of brain networks. In this hyper-
graph, each node represents the individual participant’s brain network, and the
edge weight captures the distance between two participants’ brain networks. The
construction of a connectome atlas can be achieved using a hierarchical process
of graph shrinkage toward the latent common space where the network
topologies of all individual brain networks gradually become similar to each
other. During the graph shrinkage, the adjacency matrix of each brain network is
transformed to the common space by a series of diffusion matrices which
exchange the connectome information with respect to the adjacency matrices on
the neighboring hypergraph nodes such that the most representative character-
istics of network topology are eventually propagated to the final connectome
atlas. We have validated our connectome atlas construction method on the
simulated brain network data and DTI data of 111 twin pairs in determining the
genetic contribution of the structural connectivity.
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1 Introduction

The human brain consists of more than 100 billion neurons and 100 trillion connec-
tions, making it one of the greatest mysteries and challenges in science. Due to this
complexity, the underlying causes of neurological and psychiatric disorders, such as
Alzheimer’s disease, Parkinson’s disease, autism, epilepsy, schizophrenia, and
depression are largely unknown. Recent advances in non-invasive and in-vivo neu-
roimaging technology now allow us to visualize a large-scale map of structural and
functional connections in the whole brain at the individual level. The ensemble of
macroscopic brain connections can then be described as a complex network - the
‘connectome’ [1].

Image atlases are critical in neuroimaging studies since they serve as the reference
to discover the intrinsic brain differences that are thought to underlie certain neuro-
logical disease. In general, the construction process of volumetric (or anatomic) image
atlases consists of two major steps [2]: (1) register all individual images into a common
space; and (2) average intensities across the warped images at each voxel to produce
the atlas representing the common anatomical structures for the entire population.

High inter-subject variations of brain anatomy found in the image atlas construction
process suggests that the region-to-region brain connectivity could be even more
variable than the brain anatomy itself. Currently, very few methods [3, 4] have
addressed the problem of constructing the population-wise connectome atlas from a set
of brain networks of individual subjects. These works focus on the definition of net-
work nodes, instead of connectivity. Compared to the construction of volumetric image
atlases, the computational challenges for connectome atlases include the following
three issues: (1) The complex nature of network topology. The region-to-region con-
nections in brain network follow the principle of a “small world” [1], making it much
more complex than the fixed neighborhood pattern in 3D regular grid (Fig. 1(a)). (2)
Lack of a common geometric space to process the information across brain networks.
Various regularization constraints such as Laplacian and diffeomorphism have been
used to convert the ill-posed image registration problem into a well-posed optimization
framework [2]. As a result, it is straightforward to deform each voxel until two images
become similar. However, it is difficult to “deform” the connectivity of one network to
another network with reasonable constraints defined based on the graph data structure.
Similarly, averaging brain networks edge-by-edge across individual subjects discounts
the multivariate nature of the brain networks, and that issue is not often encountered
when averaging individual anatomical images voxel-by-voxel. (3) The difference in
network scale, data noise, and acquisition across network datasets. For instance,
thresholding techniques are widely used to discard the spurious connectivity for both
structural and functional networks, as shown in Fig. 1(b). Differing network topology
based on different thresholds poses a challenge for constructing accurate and robust
connectome atlas.

To address these challenges, we propose a novel connectome atlas construction
method to capture both common and varied information across individual brain net-
works, offering insight into the full spectrum of brain connectivity in the population.
Specifically, we first represent the manifold of the brain network data in a hypergraph
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model. Each brain network (encoded in the adjacency matrix) is considered as the
hypergraph node. The weight on the hyper-edge measures the distance between two
networks. Any two hypergraph nodes are connected via the hyperedge only if the
distance between two brain networks is relatively small. Since each node is the indi-
vidual brain network (a graph) encoded in the adjacency matrix, we use the term
“hypergraph” hereafter concerning the manifold of brain network data in the popula-
tion, for clarity. For each hypergraph node, a non-linear network diffusion procedure is
used to exchange the network information through the hyperedges, making the network
topology of the underlying hypergraph node similar to the average of its neighboring
hypergraph nodes. Essentially, the flow of information exchange occurs in two ways:
each brain network is influenced by its neighboring hypergraph nodes, and in turn, the
underlying brain network also propagates its native network characteristics to the entire
population through the connected hypergraph. This dynamic information exchange
procedure continues to converge (to the steady state of diffusion) until the network
topologies at all hypergraph nodes become similar to each other. To validate our atlas
construction method, we construct the connectome atlas on both simulated data and
real neuroimaging data. We demonstrate that a more accurate and consistent connec-
tome atlas results from our proposed method compared to the existing matrix averaging
method [5].

2 Methods

Supposing we have N subjects, each has a brain network encoded as the adjacency
matrix Pn (n ¼ 1; . . .;N) which is derived either from the fiber tractography result on
diffusion weighted images or correlation of mean time course in functional MRI data
[1]. Each element pn i; jð Þ in Pn measures the strength of connectivity between regions
Oi and Oj. For simplicity, we assume each Pn is symmetric.

2.1 Model the Manifold of Connectome Data Using a Hypergraph

First, we employ the Gromov-Hausdorff (GH) distance [6] to measure the topological
difference between any pair of adjacency matrices Pm and Pn (m 6¼ n). It has been
demonstrated in [6] that GH distance, characterizing the network topology, has superior

Fig. 1. The challenges for constructing connectome atlas compared to volumetric image atlas.
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performance over other graph theory based network similarity measures. We construct
a k-NN hypergraph G to model the manifold of connectome data where each Pn is only
allowed to connect to K other adjacency matrices with smaller GH distances. Hence,
the hypergraph model consist of N nodes Pnjn ¼ 1; . . .;Nf g and K � N hype-edges.

Furthermore, we associate each hyperedge with a weight emn where emn ¼ e�
GH Pm ;Pnð Þk k2

r2

if Pm falls in the k-NN neighborhood of Pn (i.e., Pm 2 Xn) and emn ¼ 0 otherwise. r
controls the strength of exponential decay. Xn is a set of network indexes which are
connected to Pn. Since only networks with similar topologies are connected by
hyperedges, we can effectively avoid a fuzzy connectome atlas due to exchanging
information too early when two networks have large topological difference.

2.2 Network Diffusion for Individual Brain Networks

To make our method robust to noise and data heterogeneity, we first construct a kernel
matrix Sn for each adjacency matrix Pn, where each element Sn i; jð Þ measures the local
adjacency. Suppose xi

n denote for the set of region indexes whose connectivity
strengths to the underlying region Oi are greater than certain threshold h. Note, xi

n

includes the region Oi itself. Thus, we measure the local adjacency as sn i; jð Þ ¼
pn i;jð ÞP
k2xin

pn i;kð Þ if the index j is in xi
n. Otherwise, sn i; jð Þ ¼ 0.

Pairwise Network Diffusion. Let us first consider the simple case when the hyper-
graph model G only consists of two brain networks (Pm and Pn) and one hyperedge
between them. The kernel matrix Sm and Sn can be obtained as above. Suppose Pt¼0

m ¼
Pm and Pt¼0

n ¼ Pn represent the initial matrix at t ¼ 0. We follow the principle of
network diffusion in [7] to iteratively update adjacency matrices as:

Ptþ 1
m ¼ Sm � Pt

n � Sm; andPtþ 1
n ¼ Sn � Pt

m � Sn; ð1Þ

where Ptþ 1
m and Ptþ 1

n denote for the diffused matrices after t iterations. The intuition of
the above network diffusion procedure can be interpreted as ptþ 1

m i; jð Þ ¼P
u2xi

m

P
v2x j

m
sm i; uð Þ � sm j; vð Þ � ptn u; vð Þ. Thus, the adjacency information is only

propagated through the common neighborhood. Suppose regions Ou and Ov are the
neighbors of Oi and Oj in the network Pm, respectively. If regions Ou and Ov in the
counterpart network Pn also have strong connections, it is highly possible that the
connection between Oi and Oj is the most representative characteristic in the population.
Another essential fact is that even if Oi and Oj are not strongly connected in Pm, their
adjacency still have the chance to remain by propagating Pt

n u; vð Þ (the presence of their
respective neighbors Ou and Ov in the counterpart network Pn) via the network diffusion
process. The convergence on pairwise network diffusion has been proven in [7].
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Groupwise Network Diffusion. It is straightforward to extend the pairwise network
diffusion to the groupwise scenario. Given the hypergraph model G of connectome
data, the diffusion process for each brain network Pm can be defined as:

Ptþ 1
m ¼ Sm �

P
n2Xm

emn � Pt
nP

n2Xm
emn

 !
� Sm ð2Þ

For computational efficiency, we use the weighted average
P

n2Xm
emn � Pt

n as the
reference in the diffusion process, where larger weight emn holds more likelihood that
the common network topology shared by Pm and Pn can remain in the connectome
atlas.

2.3 Construction of Connectome Atlas by Groupwise Graph Shrinkage
and Network Diffusion (GRAND)

Here, we present our data-driven approach of constructing a connectome atlas, as
illustrated in Fig. 2. In the beginning (t ¼ 0), all brain networks are in their native
position, forming the graph model G0. The lines in Fig. 2 denote the hyperedges where
the length of a hyperedge reflects the network distance between the two nodes at either
end of the hyperedge. Then, we apply the groupwise network diffusion to each of graph
nodes such that the underlying network Pt

m become similar to the weighed average of
its connected graph nodes

P
n2Xm

emn � Pn, which makes the hypergraph shrink toward
the hidden population center. Through this process all brain networks become similar
to each other. The whole procedure of building a connectome atlas by GRAND is
summarized as follows:

Fig. 2. The overview of our connectome atlas construction.
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1. Set t ¼ 0; calculate the intrinsic matrix Sn for each adjacency matrix Pn;
2. Model the manifold of fPnjn ¼ 1; . . .;Ng with the graph model G0, where the

network distance is calculated by GH distance.
3. For each Pt

n, we apply the network diffusion via Eq. (2) and update to Ptþ 1
n ;

4. Remodel the manifold of the diffused adjacency matrix fPt
njn ¼ 1; . . .;Ng with the

new graph model Gt;
5. If not converging (e.g., t\T , T is the number of total iterations), set t tþ 1 and

go back to step 3; otherwise, stop. Finally, the connectome atlas A can be calculated
as A ¼PN

n¼1 P
T
n .

3 Experiments

We first validate our connectome atlas construction method on simulated network data
with the known ground truth. Then we evaluate our method on the real brain network
data in the cross-sectional twin study since the twin dataset often servers as the ground
truth. In all experiments, we compare our GRAND method with log-Euclidian matrix
averaging [5] which is abbreviated as log-Euclidean.

3.1 Experiment on Simulated Network Data

Network Simulation. A set of simulated networks were generated from the data
shown in the left of Fig. 3, with three separable clusters (displayed in red, blue, and
purple). At each iteration, we selectively swap several data points (randomly, near the
cluster boundaries) to another cluster. For the data points with correct cluster labels, we
construct the connection based on the distance between two points. However, we
specifically leave some points un-sampled, as displayed by the symbol ‘?’ in the middle
of Fig. 3. For the data points with the incorrect cluster labels, we only allow very few
connections to the points with the same label.

Typical Example of Fusing Networks. We apply log-Euclidean [5] and GRAND on
the same set of simulated networks, to evaluate the capability of finding common
network topology and suppressing noisy information. Compared to log-Euclidean
method (blue box in Fig. 3), the network averaging result of GRAND (red box in
Fig. 3) clearly demonstrated (1) there are three clusters that match closely with the
original data; (2) the un-sampled data points in one simulated network are captured
since the connections were repeatedly present in other network samples; and (3) the
spurious connections were pruned since they were not consistently supported by the
other networks.

Quantitative Evaluation. We simulate networks with different proportions of data
swapping percentage, each with 20 simulations. After each simulation, we used log-
Euclidean and GRAND methods to construct the average networks. Then we applied
the conventional spectral clustering method on the estimated average network to obtain
network partitions. We plotted the dice ratio between the clustering for the simulated

132 G. Wu et al.



ground truth and average networks as a function of the proportion of mis-labeled edges
in the right of Fig. 3. The blue and red curves denote the dice ratios that were cal-
culated based on the clustering results derived from the average network by log-
Euclidean and GRAND methods, respectively.

3.2 Experiment on Real Brain Network Data

In total 53 dizygotic (DZ) twins and 58 monozygotic (MZ) twins were scanned in a
3.0 T GE scanner with a 32-channel receive-only head coil. Diffusion tensor imaging
was performed using a three-shell diffusion-weighted, spin-echo, echo-planar imaging
sequence. A total of 6 non-DWI (b = 0) and 63 DWI with non-collinear diffusion
encoding directions were collected at b = 500, 800, 2000 (9, 18, 36 directions).
Streamline-based tractography was performed and tract counts between AAL parcel-
lations (116 brain regions) were used as adjacency matrices.

Evaluate the Replicability of the Connectome Atlas. We repeated the following
steps in DZ twins for 30 permutations: (1) randomly pick one subject out of each DZ
twins; (2) form the DZ cohort with 53 individual networks; and (3) construct the
connectome atlas for the underlying DZ cohort using our GRAND method. We deploy
the same procedure to MZ twins. Hence, we can obtain a set of DZ and MZ con-
nectome atlases which are shown in the top and bottom of Fig. 4(a), respectively.
Through visual inspection, both the DZ and MZ connectome atlases consistently have
the same network topology across each permutation, which shows the promising
replicability performance of our proposed connectome atlas construction method. We
further quantify the replicability across connectome atlases across permutation test by
calculating the exhaustive pairwise GH-distance between any two possible connectome

Fig. 3. Average network generated by log-Euclidean (blue box) and GRAND (red box) on the
simulated networks (dash boxes) which are drawn from the simulated data (left) with the three
distinct clusters (color is used to denote the cluster index). The quantitative evaluation results by
log-Euclidean (blue curve) and GRAND (red curve) after network simulation w.r.t. different data
swapping percentage is shown in the right. (Color figure online)

GRAND: Unbiased Connectome Atlas of Brain Network 133



atlases. The mean and standard deviation of GH-distance are (3.6 ± 0.4) � 10−3 for
MZ and (4.3 ± 0.5) � 10−3 for DZ cohorts, respectively. For comparison, we repeat
the same permutation test for log-Euclidean method. The statistical scores of exhaus-
tive pairwise GH-distance are (2.3 ± 0.6) � 10−2 for MZ and (3.3 ± 0.8) � 10−2 for
DZ cohorts, respectively, which demonstrates that our proposed method has much
better replicability than the conventional matrix averaging method.

Discovering the Intrinsic Network Difference Between MZ and DZ Twins. We
applied our connectome atlas construction method to the entire 53 DZ twin and 58 MZ
twin cohorts (in total 222 networks). The connectome atlases by log-Euclidean and
GRAND are shown in Fig. 4(b) and (c), respectively. It is clear that our connectome
atlas presents clearer modularity structure than using matrix averaging, where the
modularity scores [1] are 0.658 by GRAND and 0.426 by log-Euclidian matrix
averaging.

Since MZ twins share 100% of genes while DZ twins only share 50% of genes, it
was expected that the distance between MZ twin pairs would be smaller than the
distance between DZ twin pair. We first examine the GH-distance for each twin pair
based on the networks in their native space and applied a two-sample t-test between
MZ twin cohort and DZ twin cohort. The t-score is only 0.58 (p[ 0:05), indicating the
difference of GH distance is not clearly significant between MZ and DZ cohorts in the
native space. Since all brain networks eventually transform to the common space in the
end of GRAND, the external difference (not related to gene inheritage) can be sub-
stantially reduced in the common space. After two-sample test, we found the GH

Fig. 4. The connectome atlases in totally 25 permutation tests are shown in (a). The connectome
atlas by log-Euclidean and GRAND are shown in (b) and (c), respectively. The significance
analyses of module-to-module difference between MZ and DZ twins is shown in (d), where we
display the top three modules with t-score greater than 80.0. (Color figure online)
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distance is completely separable between MZ and DZ twins after applying GRAND
method (t-score is 79:79 under p\10�16), suggesting that the statistical power has
been substantially improved after we transform individual networks to the common
space. Furthermore, we examined the significance of module-by-module difference
between MZ and DZ twins in the common space based on the modules of connectome
atlas in Fig. 4(d). Three modules where even the smallest network distance within DZ
twins was greater than the largest network distance within MZ twins are shown in the
red boxes.

4 Conclusions

We propose a novel computational approach to construct the connectome atlas from a
set of individual brain networks. We used a hypergraph to model the manifold of
individual brain networks. We cast the construction of connectome atlas into a dynamic
graph shrinking process where the common topology information was propagated
along the hypergraph via network diffusion. We achieved promising results on both
simulated and real data, which suggests that our connectome atlas methodology will
prove valuable to other neuroimaging studies using connectome analyses.
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Abstract. The impact of developmental and aging processes on brain
connectivity and the connectome has been widely studied. Network the-
oretical measures and certain topological principles are computed from
the entire brain, however there is a need to separate and understand
the underlying subnetworks which contribute towards these observed
holistic connectomic alterations. One organizational principle is the rich-
club - a core subnetwork of brain regions that are strongly connected,
forming a high-cost, high-capacity backbone that is critical for effec-
tive communication in the network. Investigations primarily focus on its
alterations with disease and age. Here, we present a systematic analy-
sis of not only the rich-club, but also other subnetworks derived from
this backbone - namely feeder and seeder subnetworks. Our analysis
is applied to structural connectomes in a normal cohort from a large,
publicly available life-span study. We demonstrate changes in rich-club
membership with age alongside a shift in importance from ’peripheral’
seeder to feeder subnetworks. Our results show a refinement within the
rich-club structure (increase in transitivity and betweenness centrality),
as well as increased efficiency in the feeder subnetwork and decreased
measures of network integration and segregation in the seeder subnet-
work. These results demonstrate the different developmental patterns
when analyzing the connectome stratified according to its rich-club and
the potential of utilizing this subnetwork analysis to reveal the evolution
of brain architectural alterations across the life-span.

Keywords: Connectome · Subnetwork · Life-span · Rich-club
Diffusion

1 Introduction

The last few decades have seen a rapid expansion in the application of network
theory to study brain connectivity as it allows for a simple representation of
c© Springer Nature Switzerland AG 2018
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complex systems [7,29]. Regions of the brain represent nodes in the network and
edges can be defined either structurally or functionally, e.g. by using diffusion
MRI (dMRI) or functional MRI (fMRI), respectively. These configurations have
been widely studied across individual epochs of development, furthering our
understanding of the development and function of the human connectome [3,25,
26,28,30], as well as disease [11,13,23].

The principle that the human connectome is divided up into subnetworks
stems from the idea of functional segregation [2,27]. To investigate differences
in such subnetworks, studies may utilize a priori divisions of the connectome
which are specifically targeted to their research question at hand [5] or determine
inter-connections exhibiting a statistical contrast through cluster-based thresh-
olding [33]. However, studies for which such a division cannot be made a priori,
data driven measures of modularity may be used, which fraction a connectome
into modules [9,18,20]. Others utilize topological features, such as the structural
core, to define a subdivision [16]. Whilst the connectome can be interrogated as
a whole, identification and analyses of its subnetworks may reveal features with
greater regional or network topological specificity and serve as markers of change
over time with disease or age.

Many topological aspects of the human brain have been studied, such as
small-worldness [32] and economically optimized wiring [8]. Recently, another
organizational principle was proposed - the rich-club (RC). The RC is a subset of
nodes that is more densely interconnected than expected by chance and has been
studied in healthy controls [31], during development [1] and in disease [11,13,23].
Moreover, this definition enables categorization of the edges by their association
to the network’s ‘backbone’ that is its rich-club. This stratification identifies
edges in the connectome as belonging to: RC, feeder (F) and seeder (S) [1,17,25].
However, this classification has not been propagated to the nodal level to define
subnetworks within a connectome, which can subsequently be studied across the
life-span.

In this work, we assess the change in properties of subnetworks, as defined
by RC, F and S nodes, over the life-span. We first generate the nodal assign-
ment to each category based on group-averaged connectomes for four age groups
- younger than 20 years of age, between 20 and 40 years, between 40 and 60
years and above 60 years. We assess these group connectome assignments based
on edge density and subsequently propagate the nodal labels back to each sub-
ject’s connectome. Five subnetworks are defined: RC; F; S; RC and F combined
(RC+F); and F and S combined (F+S). For completeness, we include the full
connectome in the analyses. Finally, we calculate global network measures of
betweenness centrality, efficiency, transitivity and assortativity for each subject
and each subnetwork and each subject’s connectome and investigate their asso-
ciation with age.
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2 Materials and Methods

2.1 Study Design and Patient Population

In this work we utilize data from the NKI/Rockland life-span study [21]. Prepro-
cessed connectome data were obtained from the USC Multimodal Connectivity
database1 [6]. MRI acquisition details are available elsewhere [6]. In brief, a
total of 196 connectomes of healthy participants are computed, based on 3 T
dMRI acquisition (64 gradient directions; TR, 10000ms; TE, 91ms; voxel size,
2mm3; b-value, 1000 s/mm2). Following eddy current and motion correction, dif-
fusion tensors are modelled and deterministic tractography was performed, using
fiber assignment by continuous tracking [19] (angular threshold 45◦). Regions of
interest (ROI) are based on the Craddock atlas [12], resulting in 188 ROIs and
connections are weighted by the number of streamlines connecting pairs of ROIs.
Here, we normalize each connectome by the maximum streamline count for each
subject, so that the connection weights wij within each subject are wij ∈ [0, 1].

In our analysis, we divide the 196 participants into four age groups: Y20 ≤
20 years, 20 years < Y40 ≤ 40 years, 40 years < Y60 ≤ 60 years, 60 years <
Y80 ≤ 80 years. Four subjects were above 80 years old (81, 82, 83 and 85 years).
As there were only four subjects, we included them in the Y80 group. Table 1
characterizes the study cohort and groups.

Table 1. NKI/Rockland life-span study cohort characterization and their division by
age (in years).

Overall Y20 Y40 Y60 Y80

N 196 53 67 47 29

Age (mean (SD)) 35.0 (20.0) 13.41 (4.1) 27.4 (5.9) 47.4 (5.4) 71.0 (6.8)

Sex (Male; %) 58.1 54.7 56.7 72.3 44.8

2.2 Group Connectomes and Rich-Club Organization

A group-averaged connectome computed from weighted matrices is derived in
two steps [31]. First, we calculate a binarized, group-average adjacency matrix
by retaining edges that are present in at least 90% of the subjects in each group.
Weights are subsequently added to the group-averaged adjacency matrix by tak-
ing the average weight of each connection across the group, generating a weighted
group-averaged connectome Wgroup for each age group.

We utilize Wgroup to subsequently calculate the weighted RC parameter
φgroup(k) [22] as implemented in the Brain Connectivity Toolbox [24], where
k denotes the degree of nodes. The RC parameter φgroup(k) is normalized rel-
ative to a set of comparable random networks of equal size and with similar

1 http://umcd.humanconnectomeproject.org.

http://umcd.humanconnectomeproject.org
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connectivity distribution. Here, we generate 100 random networks while pre-
serving weight, degree and strength distributions of Wgroup [24]. For each of
these random realizations of the graph, we calculate the weighted RC parameter
φrand(k). Finally, the normalized weighted RC parameter is calculated as

φnorm
group(k) =

φnorm
group(k)

mean(φrand(k))
. (1)

For this metric, φnorm
group(k) >1 denotes the presence of a RC. We select

kgroup
max : φnorm

group(k) > 1, (2)

as the degree of the RC nodes of a given group, which allows us to determine the
RC members. This analysis is repeated for each group and kgroup

max is recorded.
We then use the mean of kgroup

max over all groups for all subsequent analyses.

2.3 Subnetwork Definition

In previous work, edges have often been differentiated after RC assessment,
stratified according to their relation to the RC nodes - RC edges connect RC
nodes; F edges connect RC to non-RC nodes; and S edges connect any two non-
RC nodes [1,17,25]. Similarly, nodes can be differentiated into RC, F and S,
based on their connectivity profile. F nodes are directly connected to RC nodes,
but do not belong to the RC themselves. S nodes do not belong to the RC nor are
they directly connected to an RC node. Here, we define five subnetworks using
this differentiation, namely RC alone (RC), F alone (F), S alone (S), as well as
the subnetworks from combinations of RC, F and S, including the connections
between them (RC+F; F+S; RC+F+S). These subnetworks are identified for
each group using the group-averaged connectome and subsequently propagated
to each subject. Figure 1 illustrates a toy network example of and it’s separation
into RC, F, and S, with an example connectome for Y20.

2.4 Network Analysis

There are a variety of network measures which can be derived from any given
graph or subnetwork, describing different local or global properties [10,24,31,32].
In this work we focus on global network measures of betweenness centrality
(BC), global efficiency (E), transitivity (T) and assortativity (a). BC relates to
the amount of information passing through a given node, thereby reflecting its
importance for communication in the network. Although it is a local measure,
the mean BC describes the prevalence of important nodes in a network. E charac-
terizes how efficiently a network exchanges information. It also directly relates to
the global integration of the network, where higher E reflects greater integration
between specialized communities. T describes the likelihood of closed triangles in
a network. If node n is connected to node m, which in turn is connected to node
o, then T reflects the probability that node n is also directly connected to node
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Fig. 1. Differentiation of RC, F and S nodes. (a) Toy model of a network, showing the
highly connected RC center (purple), F nodes (blue) with direct connections to the RC,
but are not RC members themselves, and S nodes (black) which are not RC members
nor connected to the RC. (b) Regions within a connectivity matrix, classified by their
membership to RC, F, or S nodes, as well as the connectivity between memberships
(green, orange and gray). (c) Connectome of Y20 (=20 years) group, rearranged to
reflect the representation in b). Color-coded to represent RC (white), F (yellow) and
S (red) connections. (Color figure online)

o. These closed triangles lead to locally segregated networks, thereby promoting
specialization [2,27]. The last measure, a, is a correlation coefficient between the
edge weights of node on opposite ends of a connection. If a is positive, it means
that the connected nodes have a similar connectivity profile, reflecting a ten-
dency for similar nodes in a network to be linked. Importantly, these measures
can be calculated in networks with multiple, disconnected components. After
investigating the group differences of these four network measures, we calculate
Spearman’s correlation coefficient for each network measure against age for the
entire NKI/Rockland cohort in each of the four groups to identify developmental
trends. For the group-averaged connectomes, we further assess the edge density
of the adjacency matrices for each of the five subnetworks.

3 Results

3.1 Group Connectome, Rich-Club and Subnetwork Definition

Table 2 details the kgroup
max computed from each group-averaged connectome and

the number of corresponding regions determined to form the rich-club subnet-
work. The average kgroup

max over all groups quantifying the common degree for RC
assessment is kmax = 55.25.

Table 2. Normalized RC analysis of the four age groups, identifying the degree kgroup
max ,

as well as the corresponding number of regions.

Y20 Y40 Y60 Y80

kgroup
max 56 54 55 56

# regions 8 11 10 7
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Using kmax results in the identification of ten individual regions as belonging
to the rich-club across the life-span cohort, with each region appearing in at
least two of the four groups in our analysis (see Fig. 2b). For each age group,
Fig. 2a shows the corresponding connectomes reordered by their relation to the
rich-club, Fig. 2b) lists the regions that are determined to be part of the RC
for each group, and Fig. 2c) shows the edge densities within and between nodal
membership on the group-averaged connectomes.

Fig. 2. Membership analysis of the four age groups. (a) Group-averaged connectomes
for each group reordered as in Fig. 1b, color-coded to represent RC (white), F (yellow)
and S (red) connections. (b) Brain regions identified as belonging to the RC for each of
the four group-averaged connectomes (L/RPGpd: Left/Right Parahippocampal poste-
rior). (c) Edge density analysis in each section of the connectivity matrix (see Fig. 1b)
after nodal assignment to either RC, F, or S. (Color figure online)

Fig. 3. Network theoretical measures by subnetworks for each age group.
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3.2 Subnetwork Network Analysis

Following the RC, F, S differentiation, we label each subject’s nodes with the
corresponding assignment based on their respective group-averaged connectome.
Figure 3 shows the distributions of mean values for each network theoretical
measure computed from each subnetwork in each age group.

Utilizing the age of all 196 subjects in the cohort, we calculate Spearman’s
rank correlation coefficient for each network measure within each subnetwork.
Table 3 summarizes the developmental topological associations of each subnet-
work with age.

Table 3. Spearman’s rank correlation coefficients between each network measure and
age of the subjects for each subnetwork (*: p<0.05; **: p<0.01; ***: p<0.001).

Network measure

T E BC a

Subnetwork

RC 0.26*** 0.05 0.27*** −0.10

F 0.21** 0.37*** −0.11 −0.22**

S −0.29*** −0.21** −0.4*** −0.46***

RC+F 0.09 0.19** 0.03 −0.13

F+S 0.18** 0.37*** −0.33*** −0.34***

RC+F+S 0.06 0.2** −0.25*** −0.2**

4 Discussion

In this work we presented a subnetwork analysis based on the differentiation
of rich-club, feeder and seeder regions in the brain over the life-span. Utilizing
group-averaged connectomes for subnetwork definition, we were able to identify
developmental patterns in network measures from each subnetwork. Importantly,
we demonstrated that rich-club, feeder and seeder regions evolve differently over
time, potentially reflecting their functional difference in the human connectome.

By dividing our cohort into individual groups based on their age, we showed
that the determined degree for the presence of a RC organization is largely con-
sistent across age ranges. However, the number of regions identified as RC varied.
We stabilized the number of RC regions by employing the average degree for our
subnetwork analyses. In their study, van den Heuvel et al. [31] reported six bilat-
eral regions (precuneus, superior frontal, superior parietal cortex, hippocampus,
putamen and thalamus) making up the adult human connectome’s RC. We note
that our analyses comprised of only subcortical regions in the rich-club. While
we were not able to reproduce the cortical RC regions found by van den Heuvel
et al., our results agree with the remaining three subcortical RC regions (hip-
pocampus, putamen and thalamus). In addition, we identified left caudate, and
bilateral pallidum and parahippocampal posterior as part of the RC.
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Considering the variation across the age groups and the use of weighted con-
nectomes, it is possible that RC membership may be a more fluid process, where
specific regions may gain or lose their membership depending on age-specific
requirements of the brain over the life-span (e.g. reflecting the neurobiological,
metabolic and cognitive demands to meet developmental and aging processes).
As such, others have similarly found this fluidity in rich-club membership in
comparisons of children [15] and adolescents [14] versus young adults. This is
likely an effect of changing connectivity weights, as the edge density remains
mostly constant for F, S, F-S and RC-F connections. It is only within the RC
subnetwork that density increases with age.

Analyzing network measures for each of the defined subnetworks demon-
strates varying associations with age for each of the subnetworks. Our results
show that the relationship between network measures with age is not linear,
which is in agreement with other studies [4,34]. However, we observe clear trends
for T and BC within the RC with age, suggesting that the RC may be further
reinforced (increase in T) and that members of the RC might not be of equal
importance in terms of information transport (increasing BC). Feeder regions are
further integrated in the network, increasing the E of their connectivity with age,
while further strengthening their communication paths within this subnetwork.
Seeder, however, seemingly reduce in importance with age, shown in a reduction
of every network measure investigated with age. The reduced importance may be
indicative of a brain reorganization or pruning-like process, where increasingly
limited resources for the human connectome are invested in the feeder regions.

There are limitations to our study. The identification of RC regions, though
relatively stable across age groups, varies. This may be due to underlying bio-
logical processes, however, further investigation is necessary, in order to ensure
that this is not the result of noise in the data or due to the cross-sectional nature
of the study cohort. Furthermore, mostly subcortical regions were identified as
being part of the RC. Future studies can use further divisions of the human con-
nectome, e.g. into cortico-cortical and/or subcortico-subcortical connectomes,
to elucidate more specific patterns of age-related change in the cortex. In addi-
tion, the use of multi-modal MRI data can further enhance our understanding of
developmental and aging trajectories. Another important aspect will therefore
be the use of combined structural and functional connectome data for analysis.

In this study we report different patterns of evolution in subnetworks defined
using rich-club topology over the life-span. We demonstrate in particular, that
feeder regions are strengthened, while the seeder subnetwork is weakened with
age. Future, multi-modal studies in healthy controls will allow the formulation
of novel hypotheses, which can subsequently be tested in disease, and have the
potential of identifying biomarkers for diagnoses and prognoses across a breadth
of neuropathological and neurodevelopmental disorders.

Funding. This project has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sklodowska-Curie grant agree-
ment No 753896.



144 M. D. Schirmer and A. W. Chung

References

1. Ball, G., et al.: Rich-club organization of the newborn human brain. Proc. Nat.
Acad. Sci. 111(20), 7456–7461 (2014)

2. Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T., Bullmore, E.: Adaptive
reconfiguration of fractal small-world human brain functional networks. Proc. Nat.
Acad. Sci. 103(51), 19518–19523 (2006)

3. Batalle, D., Edwards, A.D., O’Muircheartaigh, J.: Annual research review: not just
a small adult brain: understanding later neurodevelopment through imaging the
neonatal brain. J. Child Psychol. Psychiatry 59(4), 350–371 (2018)

4. Batalle, D., et al.: Early development of structural networks and the impact of
prematurity on brain connectivity. NeuroImage 149, 379–392 (2017)

5. Bonilha, L., et al.: Presurgical connectome and postsurgical seizure control in tem-
poral lobe epilepsy. Neurology 81(19), 1704–1710 (2013)

6. Brown, J.A., Rudie, J.D., Bandrowski, A., Van Horn, J.D., Bookheimer, S.Y.: The
UCLA multimodal connectivity database: a web-based platform for brain connec-
tivity matrix sharing and analysis. Front. Neuroinf. 6, 28 (2012)

7. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat. Rev. Neurosci. 10(3), 186 (2009)

8. Bullmore, E., Sporns, O.: The economy of brain network organization. Nat. Rev.
Neurosci. 13(5), 336 (2012)

9. Cao, M., et al.: Topological organization of the human brain functional connectome
across the lifespan. Dev. Cogn. Neurosci. 7, 76–93 (2014)

10. Chung, A.W., et al.: Characterising brain network topologies: a dynamic analysis
approach using heat kernels. Neuroimage 141, 490–501 (2016)

11. Collin, G., Kahn, R.S., de Reus, M.A., Cahn, W., van den Heuvel, M.P.: Impaired
rich club connectivity in unaffected siblings of schizophrenia patients. Schizophre-
nia Bull. 40(2), 438–448 (2013)

12. Craddock, R.C., James, G.A., Holtzheimer III, P.E., Hu, X.P., Mayberg, H.S.:
A whole brain fMRI atlas generated via spatially constrained spectral clustering.
Hum. Brain Mapp. 33(8), 1914–1928 (2012)

13. Daianu, M.: Rich club analysis in the Alzheimer’s disease connectome reveals a
relatively undisturbed structural core network. Hum. Brain Mapp. 36(8), 3087–
3103 (2015)

14. Dennis, E.L., et al.: Development of the rich club in brain connectivity networks
from 438 adolescents & adults aged 12 to 30. In: Proceedings of IEEE International
Symposium Biomed Imaging, pp. 624–627 (2013)

15. Grayson, D.S., et al.: Structural and functional rich club organization of the brain
in children and adults. PLOS ONE 9(2), e88297 (2014)

16. Hagmann, P., et al.: Mapping the structural core of human cerebral cortex. PLoS
Biol. 6(7), e159 (2008)
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