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Abstract. Dental caries are currently one of the most prevalent diseases
in the modern world. Early detection and diagnosis of the disease is the
best treatment available to dental healthcare professionals and is crucial
in preventing advanced stages of decay. This paper presents an effective
model for caries detection across a variety of non-uniform X-rays using
individual tooth segmentation, boundary detection and caries detection
through image analysis techniques. The tooth segmentation is imple-
mented using integral projection and an analytical division algorithm.
The boundary detection is implemented through the use of top and bot-
tom hat transformations and active contours. Finally the caries detection
was achieved through the use of blob detection and cluster analysis on
suspected carious regions. The cluster analysis generates its results rel-
ative to the image being analyzed and as such, forms the unsupervised
evaluation approach of this paper. The viability of this unsupervised
learning model, and its relative effectiveness of accurately diagnosing
dental caries when compared to current systems, is indicated by the
results detailed in this paper, with the proposed model achieving a 96%
correct diagnostic.
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1 Introduction

Despite advances in oral healthcare, dental caries remain the most widespread of
oral diseases, with approximately 36% of the world’s population showing signs
of the infection [1]. This has led to many attempts to improve the detection
rate of caries in order to prevent more serious oral diseases from developing.
Traditionally, dental X-rays have been used by oral healthcare professionals to
assess unobservable areas of the tooth and make a diagnosis through observation
[2]. Newer advancements in computer vision have led to the development of
Computer-aided Diagnosis systems in order to assist in the identification and
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diagnosis process. Unfortunately these systems have a high false positive rate at
identifying caries and as such have not been usable as standalone systems [3].

The goal of this paper is to propose a caries detection model to assist in the
treatment of dental caries. The proposed model aims to rectify the shortcomings
of existing models and provide more accurate results by implementing a new
approach to the diagnostic algorithm.

Several factors have led to the unfavourable identification results with respect
to caries diagnosis. Firstly, dental X-rays are noisy and low in contrast due to
the low dosage rates in the capture process [4]. These low dosage rates can also
affect the visibility of caries due to the X-rays not fully penetrating the teeth.
There is no workaround for this as the low dosage rates ensure the health of
the patient [5], thus image enhancement techniques must be utilized to assist
in computer vision. Secondly, the majority of segmentation research focuses on
tooth segmentation for the purposes of human identification. As a result, features
required for caries detection are lost in favour of preserving crown shape in order
to match teeth. Finally, current caries detection algorithms use a supervised
learning model as the basis of their comparative model. Suspected caries regions
are compared against a set of classifiers which are obtained from a learning set
where the presence of caries is known. If there are similarities between the test
image and the classifiers, the algorithm provides a positive caries diagnosis.

There have been varying degrees of research into optimizing the each of the
specific aspects of radiograph processing. Ahmad et al. [6] tested the effects
of four image enhancement techniques, namely adaptive histogram equalization
(AHE), contrast adaptive histogram equalization (CLAHE), median adaptive
histogram equalization (MAHE) and sharp contrast adaptive histogram equal-
ization (SCLAHE) in an attempt to determine which provided better results in
terms of improving X-ray quality. Further research by Bharathi et al. [7] looked
at the effectiveness of median, finite impulse response (FIR) and Gaussian filters
in reducing noise levels.

Research with regards to tooth segmentation alternates between the use
of integral projection or active contours. Nomir et al. [8] proposed a method
adapted from the works of Hu et al. [9]. A mask of the initial image was obtained
by performing an iterative and adaptive threshold. Integral projection was per-
formed on this mask based on the assumption that most, if not all, of the non
teeth related pixels have been removed. This method was used again by Nomir
et al. [10] for human identification. Lin et al. [11] also used an adaptation of
the method presented in Ref. [8] for use in human identification. Jain et al. [12]
and Frejlichowski and Wanat [13] further developed this method to incorporate
a probability model. Segmentation through active contours was used by Zhou
et al. [14] as well as Oliveira [15]. Rad et al. [16] compiled an evaluation of these
various segmentation methods.

Not much research has been done with respect to caries identification itself.
Solanki et al. [17] used an unsupervised learning approach where the shape
contour of each tooth was analyzed. Oprea et al. [18] proposed a binary threshold
be applied on a high contrast image. A subsequent rule check was performed
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to determine if any black pixel groups occurred within the tooth or along its
boundary and flagged these as caries. Oliveira [15] made use of a supervised
learning approach and developed a set of classifiers for caries detection. Finally,
Zhang et al. [19] used a blob detection method to isolate potential dental caries
for 3-D rendering and assessment.

In order to achieve the goal of an improved caries detection model using an
unsupervised learning approach, this paper presents a unique diagnostic model.
This model is comprised of both adapted algorithms from previous research and
novel algorithms which reduce the inaccuracies inherent to current methods.

2 Segmentation

The segmentation of the X-rays into individual teeth was achieved through a
three stage process. This process consists of pre-processing and image enhance-
ment, adaptive and iterative thresholding and separation line selection using a
novel algorithm.

2.1 Pre-processing

The diagnostic rate of the algorithm detailed in this paper was improved by
optimizing the quality of the images being processed. This optimization was
achieved through the implementation of image enhancement techniques which
were used to remove nosie from the image and improve the overall image quality.
To ensure the best outcome of the image enhancements, a preliminary cleanup
process was implemented to remove any abnormalities present in the images due
to the radiograph process.

Image Enhancement. Following the removal of all non-organic structures
barring dental fillings, the image contrast was enhanced in order to provide better
definition of the dental structures. To preserve feature detail, noise reduction
obtained from blur filters was avoided. Following research conducted by Yoon
et al. [20] which suggested that Adaptive Histogram Equalization provided a
greater contrast improvement for computer vision, a combination of a median
filter followed by histogram equalization was implemented.

2.2 Thresholding

Iterative Thresholding. Due to the similarities in the X-Ray images being
processed, the model proposed in [8] was adapted as the basis for the thresholding
implementation. A canny edge detector was used to obtain the general outline
of the teeth in each X-ray image. A morphological dilation was then applied to
these edges in order to obtain the pixels in the area assumed to be the tooth
boundary. Approximately half of the pixels obtained this way corresponded to
the teeth pixels whilst the rest were of the jaw bone and other background
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objects. The initial threshold value was calculated from the average pixel value
of the assumed teeth pixels and the background pixels and subsequent thresholds
were calculated as follows:

Z(i,j)edcntal f (7’7 j)
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where f(i, j) is the grayscale value of a pixel at point (i, j), u% and ut, are the
mean grayscale values for their respective regions and T; is the threshold value
for the whole image calculated from the average values of the background and
teeth pixels.

This step was repeated until the iterative threshold value did not change in
subsequent re-evaluations or until a hard limit was reached. It was determined
in Ref. [8] that convergence occurred within four to ten iterations for their set
of images. Following several tests it was determined that convergence occurred
within seven to fifteen iterations for the images discussed in this paper, so a
maximum iteration limit of fifteen was used.

Once a final value had been determined for the iterative thresholding por-
tion of the greater thresholding method, a mask of the X-ray was produced by
isolating all teeth pixels whose grayscale value equaled or exceeded the iterative
value.

Adaptive Thresholding. In order to correctly identify teeth pixels from mis-
cellaneous background, jaw and gum pixels, an adaptive thresholding method
was implemented. The adaptive thresholding method proposed by [8] determined
the threshold value for an image as such; following standard adaptive threshold
implementation, a pixel undergoes thresholding if, with it being the centre pixel
of a window of size I x J pixels, its grayscale value is less than the mean value
of all non-zero pixels within the window. The formula for this is thus

pa
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(4)

In order to account for the varying exposure rates of the X-Rays being tested,
where some teeth would appear darker than background tissue, as well as the
presence of darker regions in teeth which contained dental caries, the threshold
value unique to each image could not be used. Likewise, a general threshold value
for the entire dataset could not be used due to the varying brightness intensities
in each X-Ray arising from the presence of dental fillings or caps.

A hybrid approach was therefore implemented to generate a threshold value
which correctly removed as much of the non-teeth pixels as possible. A global
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threshold was determined by applying the adaptive threshold to the mask images
of 40 images. The average of these thresholds was used to establish the global
threshold value. The same process was applied to each image when it under-
went thresholding to obtain its personal threshold. A final threshold value was
obtained from the weighted sum of these two values where the distribution of
the pixel intensity affected the weights. The initial weight for each threshold was
set to 0.5 on the basis that the global threshold represented the average inten-
sity trend for the dataset and that the personal threshold corrected any slight
deviations. If there was a discrepancy between the two values, such that a 10%
deviation or greater was present, the following rule was applied:

0.6PAT +0.4GAT, if 1-Z4T >=0.1

FT(Za]) = { . GAT
where FT is the final threshold, PAT is the personal adaptive threshold and
GAT is the global adaptive threshold.

2.3 Tooth Separation

Tooth separation was handled in two parts. The potential separation lines are
initially generated through integral projection, which determines the gap regions
between identified teeth. Following this, an evaluation algorithm determines the
line of best fit.

Integral Projection. Integral projection is able to analyze pixel intensities
across an image and detect regions of darker pixels. As such, it provided the
best solution for the detection of gaps between teeth, where the spaces between
two adjacent teeth are easily identifiable from the thresholded mask obtained
in the previous stage. Areas where clusters of black pixels were present between
pairs of adjacent clusters of white pixels were identified as valleys.

Line Selection. Separation lines were calculated using the gap clusters as train-
ing points for a linear regression model. Two variations of the simple linear
regression algorithm were used. The first algorithm was the standard formula
defined as follows:
5 e (@i — %) (i — 7)
g= = ——, ()
> iy (T —T)
_ Doy Y — 3 Dy i > j—1Yi

- 2

: (6)



334 D. Osterloh and S. Viriri

where n denotes the number of points, § denotes the gradient of the slope and
a denotes the y-intercept.

The second formula was a weighted linear regression model which proved
effective in generating a correct separating line in cases where cluster distribution
was favoured in one direction. In cases where there was an equal distribution of
points around the median then the simple linear regression model was used. If
the distribution of points was greater or less than the median then the value of
n in the above equation was calculated to be half the total number of points.

In order to determine the best separation lines, the algorithm proposed by
Frejlichowski and Wanat [13] was adapted to work on periapical X-Rays. The
original algorithm determined separation lines based on the nature of panoramic
X-rays, where all teeth are in view. It uses the uniform nature of teeth sizing
to determine spacing across the entire row of teeth. Due to the nature of the
X-rays being analyzed, where the number and types of teeth present in each
X-Ray varied across each image, the adapted algorithm was required in order to
achieve correct results. By combining the rotation algorithms used in [8,12] with
an altered probability model derived from [13], the new segmentation algorithm
was developed which incorporated both rotational and probabilistic functions.

For segmentation lines where the number of intersection points is equal to,
or greater than, a previously determined optimal line, a new set of acceptance
criteria were introduced. Based on the probability formula implemented in [12],
vertical lines have a higher probability of generating successful segmentation
results. The weighting system judged potential line candidates by using slope
gradient and intersection point percentage relative to the total separation line.
The probability of a line being the best segmentation line was determined by

Wi

P =nWr+ TPacer J| (9)
where P was the probability of the line being correct, n was the number of already
segmented teeth, WT was the assumed width of the previous teeth, WI was the
width of the image, IP are the number of integral projection points representing
gaps between the teeth and J was the projected point of the segmentation line.
The desire of the algorithm was to minimize the value of P where P actually rep-
resents the probability of a line being incorrect. Lines which fall on the projected
segmentation value have a P rating of 0 meaning there is close to 0 probability
of it being incorrect. As segmentation lines move away from the projected point
the value of P increases resulting in unfavourable selection chances.

To accommodate for acceptance of separation lines for impacted or extremely
close adjacent teeth, a second algorithm was used. If more than 60% of the
separation line intersected with teeth pixels then the line was discarded and the
gap was regarded as a space between molar roots.

3 Caries Detection

Caries detection was handled in two stages. Potential regions of interest were
first identified using an edge detector which highlighted all locations where dark
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spots, and by extension possible caries, were present. Once a region of interest
had been defined a novel algorithm was applied to the area in question in order
to assess the validity of the caries flag.

3.1 Blob Detection

After testing several methods, a blob detector was implemented for the detec-
tion of potential caries in the demarcated search space. Regions of possible decay
appeared substantially darker when compared to the surrounding tooth matter,
due to the high contrast of the image from the top and bottom hat transforma-
tion performed during the boundary detection phase. Blob detection algorithms
were able to capitilize on this, owing to their ability to locate local maxima.
The blob detection model proposed by Lindeberg [21] was implemented as it
was not affected by scaling issues which arose from the varying sizes of the teeth
being processed. The model used a Laplacian of the Gaussian approach to detect
darker regions, which was defined as a convolution kernel of the form

x2+y2—202 2=42
——¢

LoG — . — (10)

g

where o was the width of the kernel. This was approximated to a 5 x 5 kernel
for the purposes of implementation defined as

00 1 00
01 2 10
LoG=|12-1621
01 2 10
00 1 00

The use of a 4-connected kernel resulted in some loss of definition around the
edges of the caries clusters which negatively impacted the diagnostic method,
therefore the 8-connected kernel was implemented.

3.2 Caries Analysis

Region of Interest Generation. To achieve the goal of diagnosing whether
dental caries were present with a non-supervised assessment model, image anal-
ysis techniques were implemented in order to assess the regions of interest using
standard dentistry techniques. The depth of the search region was already known
relative to the tooth, falling between 10-15% of the overall width. Teeth were
approximated to fall between 7.5-9.0 mm in width as defined by Chu [22]. Due
to the images being periapical X-rays and not panoramic, the exact tooth being
analyzed was unknown as the X-Rays were taken of varying locations. In order
to approximate the width, the following formula was proposed:

Tvariance Pmaw - Pca cutate
W =Tmax — ( Leutated) (11)

Pvariance
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where W was the estimated width, T" was the width of the tooth and P was the
percentage depth of the search space, determined to be 10-15%. Tyariance Was
obtained by calculating the difference of the maximum and minimum tooth width
values and was determined to be 1.5. The value for P,q.iqance was calculated to be
5 following the same process. This formula was derived using the probability that
teeth which required smaller analysis regions represented the narrower spectrum
of teeth, whereas teeth with wider search regions represented the wider spectrum.

Cluster Analysis. Positive classification of caries from flagged regions of inter-
est required that several acceptance variables were met. A threshold value was
obtained by calculating the mean pixel value of the cluster region. A second
threshold value was also generated by calculating the mean pixel intensity of the
area surrounding the suspected caries region. Due to caries originating in the
enamel of the tooth, the search space was constrained to this region. This was
done primarily to avoid incorrect caries classifications resulting from the darker
dentin region interfering with the assessment algorithm. Calculations were based
on enamel thickness varying from 0.87-1.45mm as defined in Ref. [23]. The
search space was obtained by creating an elliptical region centered along the
perpendicular of the cluster with width equal to double its height and height
defined by:

Evam'ance (Tmam - Tcalculated)
H = Ema.t -

T’uariance (12)
where H was the height of the ellipsis, E was the width of the enamel and T
was the width of the tooth. Fyqriance Was obtained by calculating the difference
of the maximum and minimum enamel width values and was determined to be
0.58.

By restricting the search space to this elliptical region, the second thresh-
old value was calculated from neighbouring pixels contained within the enamel
region. The two threshold values were compared to determine if there was a size-
able difference between the suspected caries cluster and the surrounding pixels.
If the cluster was less than 5% darker than the surrounding area the cluster was
discarded and no caries were identified. If the cluster region had a mean more
than 15% darker than the surrounding area the cluster was identified as a caries
region. If the cluster mean was between 5-15% darker, the algorithm proceeded
to determine if the cluster represented a darkening of the X-ray itself or a site of
early caries development. A Sobel operator with a kernel size of 3 was applied
to the elliptical region in order to detect significant gradient changes within the
region. By limiting the kernel size to the minimum possible, it was possible to
apply the operator to any sized region of interest. In order to deal with the
inaccuracies inherent to 3 x 3 Sobel kernels, the Scharr function [24] was used,
defined as two kernels of the form

-3 0 +3 -3 10 -3

G,= |—-100+10 Gy=10 0 0
-3 0 +3 +3 +10 +3
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These kernels were applied to all pixels within the analysis region, resulting
in the transformation of

G = |Ga| + ]Gy (13)

where G was the value of the new pixel. If no edges were detected using this
algorithm, it implied that there were no regions of significant pixel intensity
change within the search region. As such, the cluster was regarded as a darkening
of the X-ray which was initially flagged due to the enhanced contrast brought on
by the top and bottom hat transformations. If, however, an edge was detected,
this represented a region of pixel intensity change not in line with the surrounding
area. As such these areas were denoted as caries.

4 Experimental Results

4.1 Segmentation Results

The success rate of the segmentation method was evaluated based on its ability
to correctly separate teeth in the upper and lower jaw regions individually as
well as the combined results of both regions. This provided both specific results
as to whether the algorithm performed better on a particular jaw region, as well
as a holistic view as to how well it performed on average when looking at both
jaw regions.

Teeth were considered correctly separated if the separation line did not cause
partial separation or division of the teeth. Teeth which were already partial as
a result of being at the edge of the X-ray were considered correctly separated if
no further partiality was caused. Teeth which were not correctly segmented were
either caused as a result of extremely poor contrast in the original image, where
the enhancement techniques could not establish a distinction between teeth and
non-teeth structures, or due to impacted teeth.

A comparison of the results on a jaw specific basis are presented in Table 1.
The results obtained by Oliveira and Nomir and Abdel-Mottaleb are used as a
comparison, due to the similarity of the implemented methods used to achieve
dental segmentation.

Table 1. Region specific segmentation results comparison

Upper Jaw | Lower Jaw
Oliveira [15] 72% 2%
Nomir and Abdel-Mottaleb [8] | 84% 81%
Proposed approach 85% 90%

As can be seen, with a combination of the adapted and novel algorithms
discussed in this paper, the segmentation results improved over existing methods.
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Table 2. Overall segmentation results comparison

Accuracy (%) | Implementation
Nomir and Abdel-Mottaleb [8]|82.5 Thresholding
Said et al. [25] 83 Thresholding
Shah et al. [26] 58.1 Active contour
Phong-Dinh et al. [16] 77.23 Thresholding and integral projection
Oliveira [15] 71.91 Active contour without edge
Lai and Lin [27] 83 Region growing
Proposed approach 87.5 Thresholding and integral projection

Table 2 provides a comparison of the proposed method to other implementations
of the segmentation process, as described in Ref. [16].

These results indicate that the method proposed in this paper offers a notice-
able improvement on existing models. Furthermore, it indicates the diagnostic
algorithm received the greatest quantity of correctly segmented images for eval-
uation.

4.2 Caries Detection Results

A collection of ground truth data was used to evaluate the success rate of the detec-
tion method. The data contained markers for the location of identified caries, as
well as the locations of false positive regions. The false positive regions were defined
as locations along the boundary of each tooth where caries were incorrectly iden-
tified. This occured due to a misinterpretation of the region, either due to the con-
trast of the X-ray, or because a partial set of caries identifiers were present which
led to the algorithm interpreting the results as a caries location.

To determine whether these rates fall within acceptable limits, a comparison
was done against the different diagnostic methods available. These comprised
of caries detection performed by dentists using the Logicon Caries Detector
system, as discussed by Tracy et al. [28], unassisted caries diagnosis by dentists,
as discussed by Dykstra [29], and caries detection preformed by a supervised
learning model, using the method proposed by Oliveira [15]. The results of this
comparison can be seen in Table 3.

Table 3. Caries identification results comparison

Correctly False Missed

categorized (%) | positives (%) | caries (%)
Tracy [28] 94 - 6
Dykstra [29] 60 20 20
Oliveira [15] 98 - 2
Valizadeh et al. [30] |90 - 10
Proposed approach | 96 2 2
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Conclusion

In this paper an unsupervised learning model for caries detection was presented.
The proposed model is implemented using a segmentation method to separate
the X-rays into individual teeth, a boundary detection method to determine the
edges of the teeth for caries analysis and finally a diagnostic algorithm that
assesses the boundary using image analysis techniques. Both the proposed seg-
mentation method and caries detection algorithm obtained favourable results
when compared to similar models due to the novel approaches described in this
paper. As such, the caries detection model outlined in this paper provides a
viable alternative to existing models for use in caries detection.
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