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Abstract. This paper presents improved weighted measures for a point
cloud segmentation quality evaluation. They provide more reliable and
intuitive appraisal as well as more representative classification charac-
teristics. The new measures are compared with the existing ones: based
on classification, and based on information theory. The experiments and
measures evaluation were performed for the recently outstanding fresh
planes segmentation method. Experiments results showed that newly
elaborated measures provide a researcher with distinguished information
about segmentation output. This paper introduces recommendations for
quality measures adjustment to a particular planar fragments detection
problem, what implies contributions for effective development of such
methods.
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1 Introduction

Point cloud segmentation, being usually a step preceding semantic analysis of
a set, is a task of high interest of many researchers. Besides cases like recognizing
structures within a point cloud [23], hand pose and face segmentation [10–12],
big data visualisation [13] or urban and architectural reconstruction [14], seg-
mentation may be successfully used for compression purposes [22] thanks to
storing objects by means of mathematical formulas instead of thousands of 3D
points. Certainly, these are just a few out of plenty of possibilities where 3D
segmentation contributes.

Beyond any doubt, any algorithm, by definition, is meant to produce a good
or expected results in the context of presumed characteristics. These character-
istics, or rather measures, allowed us to clearly compare algorithms and under-
stand their flaws. That is why a quality measure should be carefully chosen prior
to actual problem and method definition.

In this paper, we introduced two novel measures for segmentation quality
assessment: weighted classification statistics (WCS) - improved version of the
ordinary classification statistics (OCS), and planarity statistics (PS) as an indi-
cator of planes extraction quality. Additional contribution of this paper is eval-
uation of new and existing measures for selected model-based method of planes
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detection (as a reference a recent Li et al. method [3] has been chosen) and
proposal of recommendations concerning particular measures.

2 Related Works

2.1 Planes Segmentation Methods

Among all methods aiming at segmentation of point clouds, Nguyen and Le iden-
tified five main categories, namely: edge-based, region-based, attributes-based,
graph-based, and model-based methods [15]. Current studies focus mainly on
model-based group, especially on the approaches based on random sample con-
sensus (RANSAC). Below, we review above groups briefly to emphasize the main
differences and to justify why recently the most effective Normal Distribution
Transform cell-based RANSAC method, by Li et al. [3], was opted for our exper-
iments.

Edge-based methods are constituted by methods employing gradient- or line-
fitting algorithms for locating interesting points. Bhanu et al. proposed range
images processing for edges extraction [1]. On the other hand, Sappa and Devy
[19] relied on binary edge map generation with scan-lines approximation in
orthogonal directions. These methods are characterized by sensitivity both to
existing noise and non-uniform point distribution.

Region-based algorithms use greedy approach to examine similarity or dis-
tinctiveness in a limited vicinity. Rabbani et al. [18] applied simple region grow-
ing approach taking into account surface normal and points’ connectivity. On the
other hand, Xiao et al. [24] proposed subregion based region growing, where each
subregion is considered as a planar one or not, based on Principal Component
Analysis (PCA) or KLT [25]. Region-based methods, suffer from dependence on
seed point selection as well as from the fact, that decision is made locally, and
it may be not correct from the global point of view.

Generally, segmentation methods based on attributes make use of clustering
algorithms built onto extracted attributes. Mean-shift clustering [6], hierarchical
clustering [7], contextual processing [8] or statistically supported clustering [9]
are cases in point. Limitations of this group are clustering methods constraints
themselves. For k-means clustering, number of clusters need to be known in
advance. On the other hand, for other methods, high noise sensitivity or time
complexity involved with multidimensionality may occur.

Among the algorithms based on graphs, one may find the method making use
of colour information added to laser scans [21] or the method of vicinity graph
presented in [2]. Clearly, graph-based methods may need a complex preprocessing
phase, like training [15].

Most of methods employing a model makes use of RANSAC algorithm. Its
main advantage is inherent robustness against outlying data, unlike the other
methods. Currently, it appears in many variations. Schnabel et al. [20] used
RANSAC for efficient detection of planes, cylinders and spheres. They evaluated
their method by means of correctly detected regions. Oehler et al. [16] combined
RANSAC with Hough transform [17] to increase quality of planes detection.
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Here, the authors identified number of true positives (TP) with 80% overlap
region in order to evaluate their algorithm. Xu et al. [5] evaluated usability of
different functions for weighted RANSAC in terms of their completeness (Eq. 4),
correctness (Eq. 3), and quality (Eq. 5). Calvo et al. [33] engaged k-means strat-
egy together with RANSAC to search for predefined model (like cube or pyramid)
in a point cloud. They evaluated this algorithm by comparing an average angu-
lar deviation between normal vectors detected in a cloud and those known from
a reference set. Finally, Li et al. [3] introduced an improved RANSAC-based
method for uniform space division, which, following authors, presents itself as
the most efficient state-of-art solution. Thus it was selected as a point cloud
reference segmentation method.

The algorithm proposed by Li et al. relies on space division into cells of fixed
size, whose dimensions have to be tuned for point cloud specifically. Cells are
then classified either as planar ones or not. The decision is made on the grounds
of eigenvalues, being the output of PCA procedure. If the ratio of the two greatest
eigenvalues is lower than assumed threshold te, a cell is said to be a planar one
(Eq. 1). For the dataset Room-1 [31], the authors assumed te = 0.01, whereas
for Room-2 dataset [31], they took te = 0.02. The formula for te was determined
by the authors empirically, taking into account that it is influenced by the cell
size s and the noise level ε (Eq. 2).

λ1

λ2
< te. (1)

where λ1 and λ2 are, respectively the greatest, and the middle eigenvalue.

(
ε

s
)2 < te < 0.04. (2)

Subsequently, the authors performed plane segmentation procedure, called NDT-
RANSAC. In short, it consists of RANSAC- like examination of an individual
planar cell. From each planar cell, the minimal set of three points is randomly
taken to construct a hypothetical plane which may differ from that obtained
with PCA. Having calculated a plane parameters, the rest of planar cells are
compared to the current one, in terms of normal vector angular deviation and
relative shift between objects. The plane, obtained by merging coherent patches
is then refined taking into account its consensus set. The authors used verifica-
tion measures based on confusion matrix analysis and they claim the quality of
their segmentation procedure exceeds 88.5% of correctness (Eq. 3) and 85% of
completeness (Eq. 4).

2.2 Current Quality Measures

Classification-Based Measures. Many current researchers, appraise their
methods with confusion matrix analysis, treating the segmentation task
as a kind of classification problem [3–5]. This kind of assessment relies
on calculation of three basic measures using for classification evaluation:
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correctness (also referred to as precision, Eq. 3), completeness (known also as
recall or sensitivity, Eq. 4), and quality (Eq. 5) according to maximum overlap-
ping technique introduced by Awrangjeb and Fraser [32].

correctness =
||TP ||

||TP || + ||FP || (3)

completeness =
||TP ||

||TP || + ||FN || (4)

quality =
||TP ||

||TP || + ||FN || + ||FP || (5)

where || · || states for a cardinality of a set; TP, FP, FN states, respectively, for:
true positives, false positives, and false negatives.

These measures do require unambiguous correspondence finding among
groups of reference clustering Ri, such that R = {R1,R2,R3, ...,Rn} (

⋃n
i=1

Ri = D) and clustering being apprised Oj , where O = {O1,O2,O3, ...,Om}
(
⋃m

j=1 Oj = D). Both clusterings are built over the dataset D. This correspon-
dence is usually determined by searching patches that overlap the most [32],
namely we look for the corresponding clusters Oj and Ri where:

arg maxj
||Oj∩Ri||

||Oj || = arg maxi
||Oj∩Ri||

||Ri|| .

Fig. 1. A case of improper correspondence finding with maximum- overlapping method

Nevertheless these metrics consider solely number of clusters classified as
TP, FP or FN. They do not take into account cardinality of overlapping regions,
hence these statistics may be easily far-fetched and results might not be reliable.
Depending on the presumed overlapping threshold (if any), these measures fail
in case of high ratio of FP or FN, or highly unexpected output (see Fig. 1). In
Fig. 1, we may clearly see that, using maximum overlapping strategy, a solid-
line triangle will be associated with a dashed rectangle rather than its actual
counterpart.
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Micro- and Macro- averaging. The other approach for clustering quality
assessment, or its variation applicable for any measures, are techniques being
widely used in machine learning domain for multi-label classification, called
micro- and macro- averaging. They aggregate intermediate results into global
information. Manning et al. [29] defined macro-averaging as arithmetical average
across classes and micro- averaging as weighted mean of multi-label classifica-
tion measures. Hence, we may formally define macro-averaging as the arithmetic
mean of the values and micro-averaged completeness, correctness and quality as
in the Eqs. 7 and 8 [30].

correctness =
∑ ||TP ||

∑
(||TP || + ||FP ||) (6)

completeness =
∑ ||TP ||

∑
(||TP || + ||FN ||) (7)

quality =
∑ ||TP ||

∑
(||TP || + ||FP || + ||FN ||) (8)

where TP,FN,FP states respectively for true positives, false negatives, and false
positives.

Variation of Information. Besides correctness, completeness, and quality
relying solely on the binary decision: does cluster correspond or not, there is
another group of methods for clustering comparison [34] making use of fuzzy cor-
respondences, defined by information theory and information entropy of Shannon
[26] (Eq. 9).

H(R) = −
n∑

i=1

||Ri||
||D|| log2(

||Ri||
||D|| ) (9)

where Ri is the cluster being considered and ||Ri|| stands for its cardinality.
One of measures constructed on the notion of information entropy, is mutual

information I(·, ·). Mutual Information of two random variables O and R
(I(O,R)), as Geĺfand and Yaglom [27] defined, is the amount of information
of O contained within the variable R and may be represented with Eq. 10.

I(O,R) =
∑

j≤m

∑

i≤n

||Ri ∩ Oj ||
||D|| log

||Ri ∩ Oj || · ||D||
||Oj || · ||Ri|| (10)

Mutual Information evaluates many-to-many relations, unlike classification-
based measures relying on one-to-one correspondences. Hence Mutual Infor-
mation provides insight into segmentation result by means of many-to-many
relations. Another method, inspired by information entropy was introduced by
Meilă. She derived measure of Variation of Information (VoI) dedicated for
comparing clusterings. Meilă [28] defined VoI as loss and gain of information
while switching from clustering O to the clustering R.

V oI(O,R) = H(O) + H(R) − 2I(O,R) (11)



178 J. Walczak and A. Wojciechowski

where H(·) is an information entropy (Eq. 9) and I(·, ·) is Mutual Information
(Eq. 10).

Although, VoI is not directly dependent on the number of points ||D||, value of
Variation of Information is constrained with upper bounds according to (12). The
best possible value of VoI, for the perfect clustering (O = R) is zero. Moreover,
it is true metric, unlike Mutual Information.

V oImax(O, C) ≤ log ||D|| (12)

Superiority of VoI over classification- based measures is the fact that no one-to-
one correspondence has to be found a priori. It produces reliable results even in
case of significant clusters’ granulation and partial overlapping. Hence it may be
thought of as fuzzy decision about clusters correspondences rather than binary:
yes or no.

3 New Quality Measures

Since we focus on evaluation of planarity detection methods, by example of Li
et al. [3] approach, four distinguished measures were used.

1. Variation of Information - (VoI)
2. ordinary classification statistics (used in [3]) - (OCS)
3. micro- and macro- weighted classification statistics in terms of overlapping

size (see Subsect. 3.1) - (WCS)
4. micro- and macro- averaged planarity statistics (see Subsect. 3.2) - (PS)

Two last of them, weighted classification statistics (WCS) and planarity statistics
(PS), are newly derived ones as none of the reviewed authors exploited them and
it became the contribution of this paper.

3.1 Weighted Classification Statistics

Weighted classification statistics (WCS) measure is influenced by the number of
common part between a reference cluster and the best fitting resulting cluster not
being associated yet. In the Fig. 2 we may see correspondence found between a
reference cluster (dashed border) and an output cluster (solid line rectangle). The
correspondence is found with maximum common-part strategy. In that image
(Fig. 2), TP is the cardinality of the inner white region, strips signify region
whose cardinality is said to be FP, and the number of points belonging to grey
region pose the number of FN.

To clearly state it, for each reference cluster Ri ∈ R the set of remaining out-
put clusters is searched to identify the cluster Oj ∈ O whose the largest number
of points lies within Ri. Having found one-to-one correspondence between the
reference Ri and the output cluster Oj , TP, FP, and FN are calculated. True
positives are thought of as the common part between corresponding clusters.
The number of false positives (Eq. 13) is calculated as a difference between sum
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Fig. 2. Idea of WCS measure. The dashed lines state for a reference cluster, solid line
borders identify output cluster. White region is said to be TP, grey area- FN, and
stripped region- FP

of cardinalities of the output clustering Oj ∈ O′ (assuming some clusters of O
may be rejected O′ ⊂ O) and the number of TP. False negatives (Eq. 14) are
calculated as a difference of the whole set cardinality ||D|| and the number of
TP. This way of calculating local clustering characteristics gives us appraisal of
an individual result influenced by overlapping size.

Contrary to the OCS, a significance of correspondence in the case presented
in the Fig. 1 will be properly diminished with respect to the size of overlapping
part. In the Fig. 2 one may see, that value of WCS will vary much whereas OCS
may still indicate the same values.

||FP || =
⋃

Oj∈O′
||Oj || − ||TP || where O′ ⊂ O (13)

||FN || = ||D|| − ||TP || (14)

3.2 Planarity Statistics

Planarity statistics (PS) measure supplies the estimation of actual planar frag-
ments detection without penalty for division of fragments which constitute the
one actual plane (Fig. 3). Penalty is put only for those points of an output cluster
which exceed a reference plane and those of an output cluster which do not have
their counterpart in a reference one. It identifies TP, FP, and FN as in the Fig. 3,
where inner white region describes TP, strips signify FP, and gray region- FN.
Everything under the condition that overlapping part of a single output cluster
has to be at the level of, at least, 50% to consider a part of a cluster as TP.

4 Results and Discussion

Experiments were carried out for the dataset Room-1 [31] down-sampled
to the size of 121,988 points, and for Room-2 [31] built of 292,997 points.
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Fig. 3. Idea of planarity statistics (PS) appraisal. The dashed lines state for a reference
cluster, solid line borders identify output clusters

Two reference clusterings, for each room dataset, were manually labelled. The
detailed clusterings identified as much planar fragments as it was perceptu-
ally justified, whereas general clusterings, resembled the reference clusterings
of Li et al. [3].

For Room-1, the first, more exact and detailed clustering, including signifi-
cantly more planar clusters, contained 73 groups of points, whereas the second
one - general, only 10 clusters. For Room-2, detailed clustering had 32 groups of
points, and general included only 7 clusters. Experiment configuration was like
that used in the Li’s method [3] (see Table 1) and reflected semantic characteris-
tics of considered rooms. Detailed clusterings reflected all perceptually perceived
planar fragments, whereas general, less detailed, clusterings reflected mainly the
largest planar fragments. Different number of clusters, though possible, were not
considered.

Table 1. Values of parameters of the method by Li et al. [3] used during experiments

Parameter Value for Room-1 Value for Room-2

Cell size 0.5 0.5

te 0.01 0.02

max. plane shift 0.08 0.076

max. angle deviation between normals 15o 15o

Analysing quality measures, applied for classification tests performed for the
planarity detection procedure introduced in [3], we may notice how considered
measures reflected selected aspects of the datasets classification procedure. As
the output of our experiments, we have examined four classification quality mea-
sures: Variation of Information (VoI), ordinary classification statistics (OCS),
and those introduced in this paper: weighted classification statistics (WCS), and
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planarity statistics (PS). Experiments were conducted for the general clustering
of the reference sets (see Table 2) - similar to that used by Li et al., and for the
detailed clustering of the reference sets (see Table 4). We have also compared
values of OCS and WCS for general clusterings with switched values of te -
clustering method parameter, as to evaluate usability of the proposed measures
(Table 3).

Table 2. Values of measures for Room-1 and Room-2 datasets for Li’s method [3]
obtained by applying general clustering and suggested values of te (te = 0.01 for
Room-1 and te = 0.02 for Room-2)

Measure Value for Room-1 Value for Room-2

VoI 1.01 0.70

OCS Correctness 90.00% 44.44%

Completeness 75.00% 57.14%

Quality 69.23% 33.33%

WCS Correctness Micro-averaged 85.68% 75.12%

Macro-averaged 74.50% 74.73%

Completeness Micro-averaged 95.61% 81.36%

Macro-averaged 89.03% 80.12%

Quality Micro-averaged 82.44% 64.10%

Macro-averaged 72.21% 71.49%

PS Correctness Micro-averaged 92.02% 91.96%

Macro-averaged 86.69% 91.43%

Completeness Micro-averaged 82.95% 59.56%

Macro-averaged 98.25% 99.97%

Quality Micro-averaged 77.39% 56.62%

Macro-averaged 85.18% 91.42%

Values of OCS for general clustering of reference sets are close to these, pre-
sented by Li et al. [3]. On the other hand, the OCS values for detailed clustering
of reference sets (see Table 4) differ much, but it is clear, since we provide much
more detailed clustering. We may think that all output clusters have found their
reference counterpart. But there are many planar fragments skipped by the algo-
rithm [3], like a chair or a suitcase. Hence some reference clusters do not have
their corresponding clusters in the output, what obviously leads to low complete-
ness indicator. On the other hand, WCS values seems to vary a lot from OCS
(Table 4). Correctness values of WCS, lower than that of OCS, point out that
corresponding reference and output clusters do not overlap perfectly and may be
shifted with respect to each other. On the other hand, very high completeness
values inform us about low number of FN. This might be interpreted in such
a way that larger planes found proper counterpart and smaller reference clusters
were not associated.
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Table 3. Values of measures for Room-1 and Room-2 datasets for Li’s method [3]
obtained by applying general clustering and switched values of te (te = 0.02 for Room-
1 and te = 0.01 for Room-2)

Measure Value for Room-1 Value for Room-2

VoI 1.34 2.16

OCS Correctness 100.0% 66.67%

Completeness 66.67% 57.14%

Quality 66.67% 44.44%

WCS Correctness Micro-averaged 84.90% 62.69%

Macro- averaged 74.68% 62.40%

Completeness Micro-averaged 86.80% 48.29%

Macro-averaged 84.58% 54.06%

Quality Micro-averaged 75.19% 37.51%

Macro-averaged 69.42% 46.69%

PS Correctness Micro-averaged 92.17% 82.00%

Macro-averaged 89.12% 84.02%

Completeness Micro-averaged 72.61% 42.14%

Macro-averaged 93.81% 84.66%

Quality Micro-averaged 68.40% 38.57%

Macro-averaged 83.67% 69.92%

Table 4. Values of measures for Room-1 and Room-2 datasets for Li’s method [3]
obtained by applying detailed reference clustering

Measure Value for Room-1 Value for Room-2

VoI 1.69 2.78

OCS Correctness 80.00% 55.55%

Completeness 10.96% 15.62%

Quality 10.67% 13.88%

WCS Correctness Micro-averaged 70.85% 45.33%

Macro-averaged 67.24% 43.03%

Completeness Micro-averaged 99.69% 79.99%

Macro- averaged 99.02% 78.08%

Quality Micro-averaged 70.70% 40.71%

Macro-averaged 67.13% 38.13%

PS Correctness Micro-averaged 83.78% 75.38%

Macro-averaged 81.46% 77.43%

Completeness Micro-averaged 71.62% 32.62%

Macro-averaged 99.94% 92.27%

Quality Micro-averaged 62.91% 29.48%

Macro-averaged 81.43% 71.97%
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High values of PS for Room-1, both micro- and macro- averaged, suggest
that planar fragments, mainly, do not contain many disturbing points from other
planar patches. For Room-2 we may see poorer values of micro-averaged com-
pleteness and quality of PS. From this, we may suspect that the Li’s method [3]
finds only basic planes in Room-2 like a wall, a ceiling, or a floor.

Let us compare values of measures between Tables 2 and 3, where values
of te were switched. Values of OCS indicate increase of correctness and fall of
completeness and quality. These values indicate that, approximately, one more
correct correspondence was found (TP) but number of undetected reference clus-
ters (FN) grew. WCS values give us more information. For Room-1, micro- and
macro- averaged correctness remain virtually equal, what suggests that actually
numbers of TP and FP have not changed much- the same correspondences were
found. On the other hand, fluctuations in WCS completeness and quality tell us
that number of FN increased for larger fragments (clusters of more points). For
Room-2 we may see slightly different tendency. Values of correctness and qual-
ity increased and the completeness remained the same. This would suggest that
te = 0.01 for Room-2 suits better than te = 0.02. However, values of OCS and
PS indicate something opposite. Actually, fewer points from larger and smaller
clusters were grouped correctly.

Having analysed results presented in the Tables 2 and 4, several conclusions
may be withdrawn. First of all, ordinary classification statistics might be useful
for tasks of clusters counting, for instance, how many roofs terrestrial laser scan
contains or how many potential walls we have in our indoor scan. OCS provides
quantitative evaluation of an output clustering. On the other hand, if we would
like to know how well our resulting clusters fit a reference set, we need a qualita-
tive measure, supported by WCS. This measure allows a researcher to construct a
method that focuses on maximizing overlapping parts for major clusters, whereas
penalty put onto undetected small regions is accordingly smaller. This measure
may be valuable for compression purposes, where we expect an algorithm to
reduce size, most of all of the greatest regions, preserving at the same time the
highest possible quality. Measuring PS, in turn, gives us insight into the process
of space division. Regardless to the approach we use for space division, either
hierarchical or uniform, it has to supply sufficiently small patches that only one
plane is contained therein. Planarity statistics let us appraise whether space was
divided enough to enable then the proper segments aggregation.

Comparing values of both - general and detailed clusterings (respectively,
Tables 2 and 4), one may noticed that values of OCS differ a lot, when number
of reference clusters has changed. The opposite tendency we may see for our
measures: WCS and PS, which indicate quantitative evaluation, which regardless
to the reasonable changes of number of reference clusters, point out similar
assessment of the method.
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5 Conclusions

In this paper, we presented two new measures used for sophisticated assessment
of planes detection methods, namely: weighted classification statistics and pla-
narity statistics. These measures were compared with two, the most popu-
lar ones. The results of the performed experiments indicate benefits of the
introduced measures, because they focus on different aspects of segmentation
and supplement classical approach. Whereas OCS may sometimes indicate bet-
ter results, WCS clearly suggest deterioration of clustering. Planarity statistics
show how good planes we found, regardless to the fact how many of them were
considered. Thanks to that, we may estimate if partition is sufficient to cover
each plane. On the other hand, weighted classification statistics provide us with
the information how big regions were found correctly. Since each measure has its
own application, we provided also recommendations concerning using particular
measures for dedicated purposes.
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