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Abstract. The human brain demonstrates a network structure that is
commonly represented using graphs with pseudonym connectome. Tra-
ditionally, connectomes encode only inter-regional connectivity as edges,
while regional information, such as centrality of a node that may be crucial
to the analysis, is usually handled as statistical covariates. This results in
an incomplete encoding of valuable information. In order to alleviate such
problems, we propose an enriched connectome encoding regional proper-
ties of the brain network, such as structural node degree, strength, and
centrality, as node features in addition to representing structural connec-
tivity between regions as weighted edges. We further present an efficient
graph matching algorithm, providing two measures to quantify similarity
between enriched connectomes. We demonstrate the utility of our graph
representation and similarity measures on classifying a traumatic brain
injury dataset. Our results show that the enriched representation combin-
ing nodal features and structural connectivity information with the graph
matching based similarity measures is able to differentiate the groups bet-
ter than the traditional connectome representation.
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1 Introduction

Connectomes can be described as a graph of organized regions and their connec-
tions that putatively have foundational roles in emerging functional and cogni-
tive outcomes [1]. Hence, many analyses in cognition, learning, and brain dis-
eases and disorders investigate the organization of the brain [2]. Graph theoret-
ical approaches such as complex network analysis provide powerful tools to study
structural and functional characteristics of the brain without losing its organiza-
tional features [3].
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In traditional connectomes, when representing the brain as a network, the
nodes of the network correspond to the brain regions, and the edges between
the nodes correspond to connections between those regions. In this approach,
networks encode only inter-regional connectivity. The regional information such
as degree, strength, or centrality that may be crucial to the analysis are usu-
ally treated as confounding factors or covariates. This hinders interpretations
regarding regional changes due to, for instance, an underlying pathology. How-
ever, graph theory facilitates a principled methodology to combine regional char-
acteristics (node features) with interactions between regions (edge features), by
means of annotating nodes of the network [4]. Hence, the first contribution of this
study is to provide a rich brain network representation, an enriched connectome,
that enables inclusion of such nodal features when modeling brain connectivity.

Such a rich representation of brain organization including nodal features
requires a new set of tools such as a similarity measure between these networks
(graphs) which is essential for classification, clustering, or regression tasks [5,6].
As a second contribution, we propose a graph matching algorithm that provides a
similarity measure between brain networks with nodal features. Among several
approaches proposed in the literature to calculate graph similarity over brain
data such as seeded graph matching [7] and graph embedding [8], graph edit dis-
tance (GED) is arguably the most effective method with promising results [9,10].
However, high running time complexity of GED requires use of approximation
techniques such as Hungarian algorithm in [11] and hinders a detailed analysis
of edge features [12]. We approach the graph matching problem as an instance
of the metric labeling problem [13] and provide an efficient approximation algo-
rithm using the primal-dual scheme [14] by extending our previous study [15].
Our graph matching method achieves two goals simultaneously: finding a map-
ping between brain regions of different graphs and computing a similarity score.
The enriched connectome along with the graph-based similarity measure facili-
tates its use in classification of samples and we demonstrate its effective applica-
tion on a traumatic brain injury (TBI) dataset. Results show that our enriched
connectome along with the proposed matching algorithm provides better classi-
fication between the groups than the traditional connectivity based connectome
representation.

2 Materials and Method

2.1 Dataset

Participants: We use a traumatic brain injury dataset consisting 39 patients
(12 female) with moderate-to-severe TBI examined at 3 months post injury and
30 healthy controls (8 female). Age of patients are in [18, 65] years with a mean
of 35 years and standard deviation of 14.7 years, while the age of healthy controls
are in [20, 56] years with a mean and standard deviation of 34.7 and 9.9 years,
respectively. Duration of post-traumatic amnesia of patients, which can be con-
sidered as a measure of trauma severity, has a mean of 26.7 days with a standard
deviation of 21.2 days.
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Data Acquisition and Preprocessing: For each subject, DTI data was
acquired on a Siemens 3T TrioTim scanner with a 8 channel head coil (sin-
gle shot spin echo sequence, TR/TE = 6500/84ms, b = 1000 s/mm2

, 30 gradient
directions). 86 region of interests from the Desikan atlas [16] were extracted to
represent the nodes of the structural network. A mask was defined using voxels
with an FA of at least 0.1 for each subject. Deterministic tractography was per-
formed to generate and select 1 million streamlines, seeded randomly within the
mask. Angle curvature threshold of 60 degrees, and a min and max length thresh-
old of 5 mm and 400 mm were applied, resulting in an 86 × 86 adjacency matrix
of weighted connectivity values, where each element represents the number of
streamlines between regions.

2.2 Enriched Connectome

Given parcellation of the brain into 86 regions, we constructed a weighted undi-
rected graph with 86 nodes corresponding to brain regions and weighted edges
corresponding to the number of fibers connecting region pairs. We annotate each
node with two set of features. First, we generated a 6 dimensional feature vector
by calculating various graph theoretical measures for each node, namely degree,
strength, betweenness centrality, local efficiency, participation coefficient, and
local assortativity, using the Brain Connectivity Toolbox [17]. While calculating
participation coefficient of nodes, we used association of structural regions with 7
functional systems as described in [18]. Second, we generated an 86 dimensional
feature vector, representing the weighted connectivity of each node to the rest of
the nodes in the graph, where we considered self edges to be nil. In summary, our
graph representation, denoted enriched connectome hereby, incorporates graph
theoretical measures of the connectome along with the weighted connectivity of
the regions that are to be found in network representations. We normalized the
values of each graph theory measure and the edge weights to [0, 1] in order to
make them comparable across subjects.

2.3 Graph Matching Based Similarity Measure

We propose taking a graph matching approach to define a similarity measure
between two enriched connectomes, while providing a mapping between their
nodes. We note that since the brains are parcellated into a common atlas in our
setup, mapping between the regions are known a priori. However, we expect to
get several mismatching nodes between dissimilar enriched connectomes due to
differences in the connectivity of the network, making the similarity of graphs
and the ratio of mismatching nodes effective measures for identifying patients
from controls.

To this end, we evaluate the graph matching as a special case of the metric
labeling problem [13]. Translating the metric labeling into the domain of brain
graphs, the problem reads as follows: Given two enriched connectomes A and
B, find the optimal one-to-one mapping f : A → B between their nodes while
minimizing the following objective function:
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β
∑

a∈A
c(a, f(a)) + (1 − β)

∑

a,a′∈A
w(a, a′) · d(f(a), f(a′)). (1)

The first summation term in (1) is regarded as the assignment cost with c :
A × B → R that determines the cost of mapping a brain region a ∈ A to a
region b ∈ B, which we define as ||v1a − v1b||2 + ||v2a − v2b||2 where v1 and v2
indicate the graph theoretical and edge weight based feature vectors described
earlier, respectively. The second summation term stands for the separation cost,
penalizing strongly connected brain regions a, a′ ∈ A in getting mapped to
loosely connected regions b, b′ ∈ B with w : A × A → R indicating edge weights
in A as a measure of connectivity strength and d : B × B → R indicating the
distance between nodes of B as a measure of proximity between regions which
is defined inversely proportional to the w in B. Thus, the first half of the cost
function encourages mapping each node of A to a node that resembles it most in
B while the second half discourages two strongly connected regions in A getting
mapped to two loosely connected regions in B. The variable β in (1) is a balancing
term to adjust the contribution of the assignment and separation costs to the
objective function which takes values in [0, 1]. Once optimized, summation of
the costs in (1) defines a similarity score between the two graphs.

In their seminal paper, Kleinberg and Tardos presented the following
quadratic optimization formulation for the metric labeling problem which they
showed to be computationally intractable to solve [13]:

min
∑

a∈A
b∈B

c(a, b) · xa,b +
∑

a,a′∈A
b,b′∈B

w(a, a′) · d(b, b′) · xa,b · xa′,b′

s.t.
∑

b∈B xa,b = 1, ∀a ∈ A∑
a∈A xa,b = 1, ∀b ∈ B

xa,b ∈ {0, 1}, ∀a ∈ A, b ∈ B

(2)

where xa,b is an indicator variable taking value 1 if a is mapped to b and 0
otherwise. They also presented a linear programming formulation of the prob-
lem along with an approximation algorithm using hierarchically well-separated
trees (HST), which was inefficient due to the computational time it takes to
build the HSTs and to solve the linear program. Using another integer linear
programming formulation of the problem along with a primal-dual approxima-
tion scheme [14], we recently presented an efficient approximation algorithm for
the traditional metric labeling problem [15]. Here, we extend the latter study
by altering the constraints of the metric labeling to account for the particular
case of matching the enriched connectomes. Traditional metric labeling formula-
tion allows many-to-one matching of the nodes between graphs, that is, several
nodes of the first graph can be mapped to the same node in the second graph.
In the setup of enriched connectomes where the brains are registered to a com-
mon atlas and parcellated into the same number of regions across subjects, it is
known a priori that there should be a one-to-one mapping between the nodes of
the graphs. Motivated by this observation, we impose additional constraints to
the metric labeling formulation to enforce a one-to-one mapping between graphs.
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Our extended version of the metric labeling with the integer linear programming
formulation is as follows:

min
∑

a∈A
b∈B

c(a, b) · xa,b +
∑

a,a′∈A
b,b′∈B

w(a, a′)· d(b, b′) · xa,b,a′,b′

s.t.
∑

b∈A xa,b = 1, ∀a ∈ A∑
a∈B xb,a = 1, ∀b ∈ B∑
a′∈A xa,b,a′,b′ = xa,b, ∀a ∈ A, b, b′ ∈ B∑
b′∈B xa,b,a′,b′ = xa,b, ∀a, a′ ∈ A, b′ ∈ B

xa,b,a′,b′ = xa′,b′,a,b, ∀a �= a′ ∈ A, b �= b′ ∈ B
xa,b ∈ {0, 1}, xa,b,a′,b′ ∈ {0, 1}, ∀a, a′ ∈ A, b, b′ ∈ B.

(3)

Note that, the formulation (3) replaces the quadratic term xa,b ·xa′,b′ in (2) with
the indicator variable xa,b,a′,b′ , introducing O(n4) new variables and O(n3 +n4)
additional constraints relative to the linear programming formulation. Despite
the increase in the size of the problem, this formulation allows applying the
primal-dual scheme to efficiently achieve approximate results.

In order to get a primal-dual approximation algorithm for solving the metric
labeling in its extended version in (3), we first state the dual of the formulation
as follows:

max
∑

a∈A
ya +

∑

b∈B
yb

s.t. ya + yb − ∑
a′∈A ya,b,a′ − ∑

b∈B ya,b,b′ ≤ ca,b, ∀a ∈ A, b ∈ B
ya,b,a′ + ya,b,b′ + ya,b,a′,b′ ≤ wa,a′ · db,b′

ya′,b,a + ya,b,b′ − ya,b,a′,b′ ≤ wa′,a · db,b′

}
, ∀a, a′ ∈ A, b, b′ ∈ B

yp, ya,b,a′ , ya,b,b′ , ya,b,a′,b′ unrestricted, ∀a, a′ ∈ A, b, b′ ∈ B
ya ≥ 0, yb ≥ 0, ∀a ∈ A, b ∈ B

(4)

Since the variables of type ya,b,a′,b′ appears as a summation and a subtraction in
the second type of constraints of (4) which accounts for the balancing constraints
in (3), strictly following the primal-dual method presented in [14] would require
making assignments in tuples since it enforces dual feasibility throughout the
algorithm, resulting in poor performance. As we previously suggested in [15],
we relax the dual feasibility condition for the first type of the dual constraints
that previously became tight and present an efficient primal-dual approximation
algorithm for the problem in Algorithm1.

The algorithm starts by initializing indicative variables xa,b, set of unassigned
nodes Â and B̂, and an adjusted assignment cost function φ where the value of
φ(a, b) is initially set to be the assignment cost of a to b (line 1). In each iteration
of the loop in lines 2–7, the algorithm maps a node a to a node b that minimizes
the adjusted assignment cost function φ (lines 3–4). Before proceeding to the
next iteration, assigned nodes a and b are removed from the sets Â and B̂ (line
5) and φ function is updated for each of the unassigned nodes in the set Â by
an amount of separation cost with respect to the recently assigned nodes (line
6). Algorithm iterates until no unassigned node is left in Â.



A Graph Representation and Similarity Measure for Brain Networks 19

Algorithm 1. A primal-dual approximation algorithm for approximating (3)
procedure Graph-match(P, L)

1: ∀a, a′ ∈ A, b ∈ B : xa,b ← 0, Â ← A, B̂ ← B
φ(a, b) ← ca,b

2: while Â �= ∅ do
3: Find a ∈ Â that minimizes φ(a, b) for some b ∈ B̂
4: xa,b ← 1
5: Â ← Â \ {a}, B̂ ← B̂ \ {b}
6: ∀a′ ∈ Â, b′ ∈ B̂ : φ(a′, b′) = φ(a′, b′) + wa,a′ · db,b′

7: end while
8: return X = {xa,b : ∀a ∈ A, b ∈ B}

We note that, φ(a, b) is not updated for a node a once it gets assigned,
rendering the summation

∑
a,b φ(a, b)xa,b to be equal to the similarity score

between the two graphs since it is equal to the value of the objective function in
(4) which in turn is equal to the value of the objective function in (3).

3 Results

Here, we demonstrate the utility of our brain network representation and sim-
ilarity measure on a TBI dataset, where the goal is the binary classification of
subjects into healthy controls and TBI patients. We used k-nearest neighbors
(kNN) classifier.

3.1 TBI Classification

We used nested leave-one-out approach for cross validation, due to limited num-
ber of subjects. For each subject in the dataset, we used the remaining 68 subjects
of the dataset as the training set. Using an inner leave-one-out cross validation
with training set, we decided the balancing parameter β and the number of neigh-
bors k to be used in the nearest neighbor search. Then, we tested each subject
with the learned parameter tuple that achieved best classification accuracy.

For comparison purposes, we performed the experiment using two scenar-
ios. First (baseline), we used only a traditional connectome where we repre-
sented edge weights in a vector form without a graph representation. Similarity
between subjects is calculated using Euclidean distance between these vector-
ized edge weights (denoted L2-dist). Second, we use enriched connectome with
Algorithm 1 (denoted Graph-match). Note that, Graph-match allows regions of
the first graph to get mapped to any one of the regions in the second graph
while L2-dist inherently assumes an identity matching between the nodes of
two graphs. The comparison of two scenarios, i.e., traditional connectome with
L2-dist vs. enriched connectome with Graph-match, facilitates subsequent anal-
ysis and interpretation on regional matches between brains, possibly providing
insights into TBI-induced regional differences.
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Table 1. Classification results from leave-one-out cross validation for the two scenarios:
traditional connectome with L2-dist vs. enriched connectome with Algorithm 1.

Scenario Accuracy Sensitivity Specificity

Traditional connectome & L2-dist 66.7 51.28 86.67

Enriched connectome & Graph-match 72.46 71.19 73.33

Classification performance is presented in Table 1 for the two scenarios, show-
ing overall accuracy, specificity, and sensitivity. Comparing overall accuracy of
the two scenarios suggests that our graph representation with the similarity
measure captures more information to decide about the classification than the
baseline. As suggested from the results, incorporating nodal features into the
representation along with connectivity information improves the classification
accuracy. In addition to this, relaxing node mappings between enriched connec-
tomes in Graph-match makes it possible to capture subtle regional alterations,
possibly associated with injury, which is reflected by the increased classification
performance of Graph-match. We also note that, our approach achieves similar
performance for classifying patients and controls as the sensitivity and specificity
have similar values whereas traditional connectome with L2-dist performs poorly
for classifying patients. The comparison of ROC curves presented in Fig. 1(a)
demonstrates the improved performance of our method over the baseline.

Nested leave-one-out cross validation scheme results in 69 different param-
eter tuples (β, k) for our method and 69 k values for the baseline approach.
In our experiments, we observed that parameter values were mostly consistent
for our method across runs. Specifically, we observed that the inner loop of the
experiment has chosen β = 0.9 without any exception and k = 15 with only five
outliers out of 69 iterations for our method. This can be contrasted to k = 6
being chosen for the baseline approach along with 9 outliers, suggesting the
robustness of our graph matching algorithm.

3.2 Effect of Feature Types

In order to demonstrate the contribution of graph theory measures and edge
weights as node features, in Table 2, classification results for the brain networks
with only graph theoretical features and only edge weights as features are con-
trasted to both feature types being combined in a single brain graph. We observe

Table 2. Classification results of brain graphs with only graph theoretical features and
with only edge weights as features, using Graph-match as the similarity measure.

Node features Accuracy Sensitivity Specificity

Graph theoretical measures alone 42.03 56.41 23.34

Edge weights alone 62.32 46.15 83.34
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Fig. 1. (a) Comparison of ROC curves showing the classification performance of the
baseline and the proposed method. (b) Z-score distribution of the matching accuracy
for controls and patients with respect to the control population.

that combining both feature types improve the classification accuracy by 10%
indicating that enriched connectome maintains more information by combin-
ing various features into a single structure relative to a network having either
one of them as its only nodal feature. We also observe that using edge weights
alone performs better than using graph theoretical measures alone, which can
be attributed to larger number of features present in the former, providing a
better feature set for classification. However, combination of the two providing
an improvement over both of their individual classification accuracies indicate
that the two sets of features represent unique aspects of the connectomics.

3.3 Mapping Between Nodes of Graphs

We note that, graph matching provides a mapping between nodes of the two
graphs in addition to the similarity score between them. One might expect the
regions of a brain graph to match their counterparts in another brain graph
(such as, precentral gyrus in one enriched connectome would be expected to
match with the precentral gyrus of another enriched connectome) as the brain
anatomy is similar across people, with occasional mismatches due to subject-
specific differences in connectivity. Leveraging this observation, we define another
similarity measure, denoted matching accuracy, as the ratio of regions that are
accurately matched with their counterparts to total number of regions. Matching
enriched connectome of every subject to the healthy controls, we hypothesize
that the matching accuracy of healthy controls with respect to themselves should
be higher than the matching accuracy of patients with respect to healthy control
population, as structural alterations introduced by TBI is expected to cause
mismatching regions. As shown in Fig. 1(b), we observe a statistically significant
group difference between the patients and controls in their matching accuracy
with respect to the healthy subjects. We also observe that the matching accuracy
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is lower and has a larger variance in patient population, which can be attributed
to altered structural connectivity due to pathology.

4 Conclusions and Future Work

In this paper, we presented an enriched connectome that allows combining mul-
tiple features into a single structure. The nodes in our representation correspond
to the brain regions that are annotated with graph theoretical measures and con-
nectivity of nodes with other nodes as node features, while the edges correspond
to the structural connectivity between regions. We also proposed an efficient
graph matching algorithm providing two similarity measures over our new rep-
resentation, one being a summary measure of overall graph similarity and the
other quantifying the ratio of number of accurately matched regions to total
number of regions. Using the first measure, we showed that proposed enriched
representation provided a better classification than the traditional connectomes,
demonstrating contribution of the nodal features to information about the sam-
ples. Using the second measure, we demonstrated a significantly lower matching
accuracy across patients relative to controls, highlighting trauma induced struc-
tural alterations in brains of patients.

In this study, we utilized features obtained from a single modality, namely
DTI. Our graph representation can easily be extended to combine multiple
modalities (e.g., DTI and fMRI). Adding multiple modalities introduce not only
new nodal features, but also new edge types that will provide even a richer rep-
resentation of the brain organization. Although the data that we used in this
study involves known correspondences between connectomes, our method can
also be applied on connectomes with unknown correspondences, as in subject
specific parcellations.
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