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GRAIL 2018 Preface

GRAIL 2018 was the 2nd International Workshop on Graphs in Biomedical Image
Analysis, organized as a satellite event of the 21st International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI 2018) in Granada,
Spain. After the success and positive feedback obtained last year, this was the second
time we brought GRAIL to MICCAI, in the spirit of strengthening the links between
graphs and biomedical imaging.

The workshop provides a unique opportunity to meet and discuss both theoretical
advances in graphical methods, as well as the practicality of such methods when
applied to complex biomedical imaging problems. Simultaneously, the workshop seeks
to be an interface to foster future interdisciplinary research including signal processing
and machine learning on graphs.

Graphs and related graph-based modelling have attracted significant research focus
as they enable us to represent complex data and their interactions in a perceptually
meaningful way. With the advent of Big Data in the medical imaging community, the
relevance of graphs as a means to represent data sampled from irregular and
non-Euclidean domains is increasing, together with the development of new inference
and learning methods that operate on such structures. There is a wide range of
well-established and emerging biomedical imaging problems that can benefit from
these advances; we believe that the research presented in this volume constitutes a clear
example of that.

The GRAIL 2018 proceedings contain 5 high-quality papers of 8 to 11 pages that
were pre-selected through a rigorous peer review process. All submissions were peer
reviewed through a double-blind process by at least 2 members of the Program
Committee, comprising 18 experts in the field of graphs in biomedical image analysis.
The accepted manuscripts cover a wide set of graph based medical image analysis
methods and applications, including neuroimaging and brain connectivity, graph
matching algorithms, graphical models for image segmentation, brain modeling
through neuronal networks and deep learning models based on graph convolutions. In
addition to the papers presented in this LNCS volume, the workshop comprised short
abstracts and two keynote presentations from world-renowned experts: Prof. Michael
Bronstein and Prof. Dimitri Van De Ville. We hope this event will foster the devel-
opment of more powerful graph-based models for the analysis of biomedical images.

We wish to thank all the GRAIL 2018 authors for their participation and the
members of the Program Committee for their feedback and commitment to the
workshop. We are very grateful to our sponsors Entelai (https://entelai.com/) and the
UK EPSRC-funded Medical Image Analysis Network (MedIAN - https://www.median.
ac.uk/) for their valuable support.

The proceedings of the workshop are published as a joint LNCS volume alongside
other satellite events organized in conjunction with MICCAI. In addition to the LNCS
volume, to promote transparency, the papers’ reviews and preprints are publicly

https://entelai.com/
https://www.median.ac.uk/
https://www.median.ac.uk/


available on the workshop website (http://grail-miccai.github.io/) together with their
corresponding optional response to reviewers. In addition to the papers, abstracts,
slides, and posters presented during the workshop will be made publicly available on
the GRAIL website.

August 2018 Enzo Ferrante
Sarah Parisot

Aristeidis Sotiras
Bartlomiej Papiez

VIII GRAIL 2018 Preface

http://grail-miccai.github.io/


Organization

Organizing Committee

Enzo Ferrante CONICET and Universidad Nacional del Litoral,
Argentina

Sarah Parisot AimBrain, UK
Aristeidis Sotiras University of Pennsylvania, USA
Bartłomiej Papież University of Oxford, UK

Scientific Committee

Kayhan Batmanghelich University of Pittsburgh
and Carnegie Mellon University, USA

Eugene Belilovsky Inria, France and KU Leuven, Belgium
Siddhartha Chandra Inria, CentraleSupélec, France
Xin Chen The University of Nottingham, UK
Emilie Chouzenoux Inria, CentraleSupélec, France
Puneet K. Dokania Oxford University, UK
Ben Glocker Imperial College London, UK
Ali Gooya University of Sheffield, UK
Mattias Heinrich University of Luebeck, Germany
Lisa Koch ETH Zurich, Switzerland
Evgenios Kornaropoulos University of Cambridge, UK
Sofia Ira Ktena Imperial College London, UK
Georg Langs University of Vienna, Austria and MIT, USA
Jose Ignacio Orlando Medical University of Vienna, Austria
Yusuf Osmanlioglu University of Pennsylvania, USA
Yangming Ou Harvard University, USA
Nikos Paragios Inria, CentraleSupélec, France
Sotirios Tsaftaris University of Edinburgh, UK
Maria Vakalopoulou Inria, CentraleSupélec, France
William Wells III Harvard Medical School, USA



Sponsors

X Organization



Beyond MIC 2018 Preface

Beyond MIC (http://beyondmic.mit.edu) is a full-day workshop on integrating medical
imaging and non-imaging modalities to answer novel clinical and healthcare chal-
lenges. Recent large-scale, multi-site data collection efforts - such as the ADNI, TCIA,
and UK Biobank - and the hospital open-data initiatives are resulting in growing
datasets of medical images. Increasingly, these studies often also include non-imaging
modalities such as electronic health records, insurance data, pathology reports, labo-
ratory tests, and genomic data. Alongside medical images, these rich external sources
of information present an opportunity for improving traditional medical image com-
puting tasks like diagnosis, prediction, and segmentation, as well as facilitate newer
tasks like automatic image annotation. However, these heterogeneous data also poses
unprecedented technical obstacles, including pre-processing different or inconsistent
formats, modeling the complex noise and heterogeneity, jointly handling high
dimensionality and multi-modality, and optimizing computational resources to handle
significantly larger amounts of data.

Machine learning methods tackling data-driven health care problems have been
gaining interest, and workshops specializing on machine learning in health care
typically boast more than 300 attendees from various fields. MICCAI offers an ideal
and timely opportunity to combine this rising interest in data-driven health care with
medical imaging expertise. Beyond MIC assembles researchers of different special-
izations and shared interests in this newly evolving field, facilitating the advancement
of novel methods and technologies. Specifically, the mathematical, statistical, and
algorithmic thinking, and image processing experience of the MICCAI community can
help develop new methods for the analysis of emerging imaging and non-imaging
modalities. Beyond MIC offers an ideal meeting to bridge the gap between the various
communities that can contribute to these solutions. Beyond MIC includes keynote
sessions introducing the state of the art and challenges of the field, as well as
presentations of accepted papers published here, discussing novel methods or new
applications.

August 2018 Adrian V. Dalca
Mert R. Sabuncu

Li Shen

http://beyondmic.mit.edu
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Graph Saliency Maps Through Spectral
Convolutional Networks: Application

to Sex Classification with Brain
Connectivity

Salim Arslan(B), Sofia Ira Ktena, Ben Glocker, and Daniel Rueckert

Biomedical Image Analysis Group, Department of Computing,
Imperial College London, London, UK

s.arslan@imperial.ac.uk

Abstract. Graph convolutional networks (GCNs) allow to apply tradi-
tional convolution operations in non-Euclidean domains, where data are
commonly modelled as irregular graphs. Medical imaging and, in par-
ticular, neuroscience studies often rely on such graph representations,
with brain connectivity networks being a characteristic example, while
ultimately seeking the locus of phenotypic or disease-related differences
in the brain. These regions of interest (ROIs) are, then, considered to
be closely associated with function and/or behaviour. Driven by this, we
explore GCNs for the task of ROI identification and propose a visual
attribution method based on class activation mapping. By undertaking
a sex classification task as proof of concept, we show that this method
can be used to identify salient nodes (brain regions) without prior node
labels. Based on experiments conducted on neuroimaging data of more
than 5000 participants from UK Biobank, we demonstrate the robust-
ness of the proposed method in highlighting reproducible regions across
individuals. We further evaluate the neurobiological relevance of the iden-
tified regions based on evidence from large-scale UK Biobank studies.

1 Introduction

Graph convolutional neural networks (GCNs) have recently gained a lot of atten-
tion, as they allow adapting traditional convolution operations from Euclidean
to irregular domains [1]. Irregular graphs are encountered very often in medi-
cal imaging and neuroscience studies in the form of brain connectivity networks,
supervoxels or meshes. In these cases, applications might entail both node-centric
tasks, e.g. node classification, as well as graph-centric tasks, e.g. graph classifica-
tion or regression. While CNNs have redefined the state-of-the-art in numerous
problems by achieving top performance in diverse computer vision and pattern
recognition tasks, insights into their underlying decision mechanisms and the
impact of the latter on performance are still limited.

Recent works in deep learning address the problem of identifying salient
regions in 2D/3D images in order to visualise determinant patterns for classifi-
cation/regression tasks performed by a CNN and obtain spatial information that
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): GRAIL 2018/Beyond MIC 2018, LNCS 11044, pp. 3–13, 2018.
https://doi.org/10.1007/978-3-030-00689-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00689-1_1&domain=pdf


4 S. Arslan et al.

might be useful for the delineation of regions of interest (ROI) [2]. In the field
of neuroscience, in particular, the identification of the exact locus of disease- or
phenotype-related differences in the brain is commonly sought. Locating brain
areas with a critical role in human behaviour and mapping functions to brain
regions as well as diseases on disruptions to specific structural connections are
among the most important goals in the study of the human connectome.

In this work, we explore GCNs for the task of brain ROI identification. As
proof of concept, we undertake a sex classification task on functional connec-
tivity networks, since there is previous evidence for sex-related differences in
brain connectivity [3]. Characteristically, stronger functional connectivity was
established within the default mode network of female brains, while stronger
functional connectivity was found within the sensorimotor and visual cortices of
male brains [4]. As a result, we consider this a suitable application to demon-
strate the potential of the proposed method for delineating brain regions based
on the attention/sensitivity of the model to the sex of the input subject’s connec-
tivity graph. More specifically, we show that spatially segregated salient regions
can be identified in non-Euclidean space by using class activation mapping [5] on
GCNs, making it possible to effectively map the most important brain regions
for the task under consideration.

Related Work: Graph convolutions have been employed to address both graph-
centric and node-centric problems and can be performed in the spatial [6] or spec-
tral domain [7,8]. In the latter case, convolutions correspond to multiplications
in the graph spectral domain and localised filters can be obtained with Cheby-
shev polynomials [7] or rational complex functions [8]. [9] introduced adaptive
graph convolutions and attention mechanisms for graph- and node-centric tasks,
while in [10] attention mechanisms were employed to assign different weights
to neighbours in node classification tasks with inductive and transductive infer-
ence. Although the latter works focus the attention of the network onto the
most relevant nodes, they overlook the importance/contribution of different fea-
tures/graph elements for the task at hand.

At the same time, visual feature attribution through CNNs has attracted
attention, as it allows identifying salient regions in an input image that lead
a classification network to a certain prediction. It is typically addressed with
gradient and/or activation-based strategies. The former relies on the gradients
of the prediction with respect to the input and attributes saliency to the regions
that have the highest impact on the output [2]. Activation-based methods, on the
other hand, associate feature maps acquired in the final convolutional layer with
particular classes and use weighted activations of the feature maps to identify
salient regions [5]. A recent work addresses the problem from an adversarial
point of view and proposes a visual attribution technique based on Wasserstein
generative adversarial networks [11]. While these methods offer promising results
on Euclidean images, their application to graph-structured data is yet to be
explored.
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Contributions: We propose a visual feature attribution method for graph-
structured data by combining spectral convolutional networks and class acti-
vation mapping [5]. Through a graph classification task, in which each graph
represents a brain connectivity network, we detect and visualise brain regions
that are responsible for the prediction of the classifier, hence providing a new
means of brain ROI identification. As a proof of concept, we derive experiments
in the context of sex differences in functional connectivity. First, we train a
spectral convolutional network classifier and achieve state-of-the-art accuracy in
the prediction of female and male subjects based on their functional connectivity
networks captured at rest. The activations of the feature maps are, then, used for
visual attribution of the nodes, each of which is associated with a brain region.
Using resting-state fMRI (rs-fMRI) data of more than 5000 subjects acquired by
UK Biobank, we show that the proposed method is highly robust in selecting the
same set of brain regions/nodes across subjects and yields highly reproducible
results across multiple runs with different seeds.

2 Method

Figure 1 illustrates the proposed method for identifying brain regions used by
GCNs to predict a subject’s sex based on its functional connectivity. Given an
adjacency matrix that encodes similarities between nodes and a feature matrix
representing a node’s connectivity profile, the proposed method outputs the sex
of the input subject and provides a graph saliency map highlighting the brain
regions/nodes that lead to the corresponding prediction. Finally, we rank brain
regions with respect to their contribution towards driving the model’s prediction
at subject level and compute a population-level saliency map by combining them
across individuals.

Spectral Graph Convolutions: We assume n samples (i.e. subjects), X =
[X1, . . . , Xn]T , with signals defined on a graph structure. Each subject is asso-
ciated with a data matrix Xi ∈ R

dx×dy , where dy is the dimensionality of the
node’s feature vector (i.e. signal), and a label yi ∈ {0, 1}. In order to encode
the structure of the data, we define a weighted graph G = (V,E,W ) where V
is the set of dx = |V | nodes (vertices), E is the set of edges (connections) and
W ∈ R

dx×dx is the weighted adjacency matrix, representing the weight of each
edge, i.e. Wi,j is the weight of the edge connecting vi ∈ V to vj ∈ V .

A convolution in the graph spatial domain corresponds to a multiplication in
the graph spectral domain. Hence, graph filtering operations can be performed
in the spectral domain using the eigenfunctions of the normalised Laplacian of
a graph [12], which is defined as L = Idx

− D− 1
2 WD− 1

2 , where D is the degree
matrix and Idx

the identity matrix. In order to yield filters that are strictly
localised and efficiently computed, Defferrard et al. [7] suggested a polynomial
parametrisation on the Laplacian matrix by means of Chebyshev polynomials.
Chebyshev polynomials are recursively computed using Tk(L) = 2LTk−1(L) −
Tk−2, with T0(L) = 1 and T1(L) = L.
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Fig. 1. Overview of the proposed approach. (A) The input graph is computed using a
brain parcellation and rs-fMRI connectivity signals. (B) Graph convolutional network
model. Convolutional feature maps of the last layer are spatially pooled via global
average pooling (GAP) and connected to a linear sex classifier. (C) Class activation
mapping procedure. (D) Generation of population-level saliency maps.

A polynomial of order K yields strictly K-localised filters. Filtering of a
signal x with a K-localised filter can, then, be performed using:

y = gθ(L) ∗ x =
K∑

k=0

θkTk(L̃)x, (1)

with L̃ = 2
λmax

L−Idx
and λmax denoting the largest eigenvalue of the normalised

Laplacian, L. The output of the lth layer for a sample s in a graph convolutional
network is, then, given by:

yl
s =

Fin∑

i=1

gθl
i
(L)xl

s,i. (2)

For Fout output filter banks and Fin input filter banks, this yields Fin ×Fout

vectors of trainable Chebyshev coefficients θl
i ∈ R

K with xl
s,i denoting the input

feature map i for sample s at layer l. Hence, at each layer the total number of
trainable parameters is Fin × Fout × K.
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Class Activation Mapping: Class activation mapping (CAM) [5] is a tech-
nique used to identify salient regions that assist a CNN to predict a particular
class. It builds on the fact that, even though no supervision is provided on the
object locations, feature maps in various layers of CNNs still provide reliable
localisation information [13], which can be captured via global average pooling
(GAP) in the final convolutional layer [14]. Encoded into a class activation map,
these “spatially-averaged” deep features not only yield approximate locations of
objects, but also provide information about where the attention of the model
focuses when predicting a particular class [5]. In the context of GCNs, CAM is
used to localise discriminative nodes, each associated with a saliency score.

The process for generating class activation maps is illustrated in Fig. 1. Given
a typical GCN model which consists of a series of convolutional layers, a GAP
layer is inserted into the network right after the last convolutional layer. The
spatially-pooled feature maps are connected to a dense layer that produces the
output for a classification task (Fig. 1B). We can then linearly map the weights of
the dense layer onto the corresponding feature maps to generate a class activation
map showing the salient nodes in the graph (Fig. 1C).

More formally, let fi(v) represent the activation of the ith feature map in the
last convolutional layer at node v. For the feature map i, the average pooling
operation is defined as Fi = (1/dz)

∑
v fi(v), where Fi ∈ R and dz is the number

of nodes in the feature map. Thus, for a given class c, the input to the dense layer
is

∑
i wc

i Fi, where wc
i is the corresponding weight of Fi for class c. Intuitively,

wc
i indicates the importance of Fi for class c, therefore, we can use these weights

to compute a class activation map Mc, where each node is represented by a
weighted linear sum of activations, i.e. Mc(v) =

∑
i wc

i fi(v). This map shows
the impact of a node v to the prediction made by the GCN model and, once
projected back onto the brain, can be used to identify the ROIs that are most
relevant for the specific classification task.

Population-Level Saliency Maps: Although CAM provides graph-based
activation maps at subject/class-level, population-level statistics about discrim-
inative brain regions are also important. In order to combine class activation
maps across subjects, we define a simple argmax operation that, for each sub-
ject, returns the index of the k top nodes with the highest activation. These are,
subsequently, averaged across subjects and referenced as the population-level
saliency maps as illustrated in Fig. 1D.

Network Architecture and Training: The details of the GCN architec-
ture are presented in Table 1 and summarised as follows. 5 convolutional layers,
each succeeded by rectified linear (ReLU) non-linearity are used. No pooling is
performed between consecutive layers, as empirical results suggest that reduc-
ing the resolution of the underlying graph does not improve performance. We
apply zero-padding to keep the spatial resolution of the feature maps unchanged
throughout the model. A dropout rate of 0.5 is used in the 2nd, 4th, and 5th

layers. The feature maps of the last layer are spatially averaged and connected
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Table 1. Network architecture of the proposed model. * indicates the use of dropout
for the corresponding convolutional layer.

Layer Input Conv Conv* Conv Conv* Conv* GAP Linear

Channels 55 32 32 64 64 128 128 2

K-order N/A 9 9 9 9 9 N/A N/A

Stride N/A 1 1 1 1 1 N/A N/A

to a linear classifier with softmax output. We employ global average pooling as it
reflects where the attention of the network is focused and substantially reduces
the number of parameters, hence alleviating over-fitting issues [14].

The loss function used to train the model comprises a cross entropy term and
an L2 regularisation term with decay rate of 5e−4. We use an Adam optimiser
with momentum parameters β = [0.9, 0.999] and initialise the training with a
learning rate of 0.001. Training is performed for a fixed number of 500 steps (i.e.
20 epochs), in mini-batches of 200 samples, equally representing each class. We
evaluate the model every 10 steps with an independent validation set, which is
also used to monitor training. Based on this, the learning rate is decayed by a
factor of 0.5, whenever validation accuracy drops in two consecutive evaluation
rounds.

3 Data and Experiments

Dataset and Preprocessing: Imaging data is collected as part of UK
Biobank’s health imaging study (http://www.ukbiobank.ac.uk/), which aims to
acquire imaging data for 100,000 predominantly healthy subjects. The multi-
modal scans together with the vast amount of non-imaging data are publicly
available to assist researchers investigating a wide range of diseases, such as
dementia, arthritis, cancer, and stroke. We conduct our experiments on rs-fMRI
images available for 5430 subjects from the initial data release. Non-imaging
data and medical information are also provided alongside brain scans including
sex, age, genetic data, and many others. The dataset used here consists of 2873
female (aged 40–70 yo, mean 55.38 ± 7.41) and 2557 male (aged 40–70 yo, mean
56.61 ± 7.60) subjects.

Details of data acquisition and preprocessing procedures are given in [15].
Standard preprocessing steps have been applied to rs-fMRI images including
motion correction, high-pass temporal filtering, and gradient distortion correc-
tion. An independent component analysis (ICA)-based approach is used to iden-
tify and remove structural artefacts [15]. Finally, images go through visual qual-
ity control and any preprocessing failures are eliminated.

Brain Parcellation and Network Modelling: A dimensionality reduction
procedure known as “group-PCA” [16] is applied to the preprocessed data to

http://www.ukbiobank.ac.uk/
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obtain a group-average representation. This is fed to group-ICA [17] to par-
cellate the brain into 100 spatially independent, non-contiguous components.
Group-ICA components identified as artefactual (i.e. not neuronally-driven) are
discarded and the remaining d = 55 components are used to estimate a functional
connectivity network for each subject by means of L2-regularised partial corre-
lation between the ICA components’ representative timeseries [18] Each connec-
tivity network corresponds to the data matrix Xi, i.e. dx = dy in our application,
and their average across training subjects is used to define the weighted graph
W , in which only the k = 10 nearest neighbours are retained for each node, so
that the local connectivity structure in the graph is effectively represented.

Experimental Setup: We use stratified 10-fold cross-validation to evaluate
the model with split ratios set to 0.8, 0.1, and 0.1 for training, validation, and
testing, respectively. Cross-validation allows to use all subjects for both train-
ing/validation and testing, while each subject in the dataset is used for testing
exactly once. To further evaluate how the performance varies across different
sets of subjects and how robust the identified salient regions are, we repeat
cross-validation 10 times with different seeds.

4 Results and Discussion

In Table 2 we provide classification results obtained with the GCN classifier.
The presented accuracy rates correspond to the results of all 10 folds for each
run. On average, we achieve a test accuracy of 88.06% across all runs/folds,
with low standard deviation for each run, indicating reproducible classification
performance. While classification is not the end goal of the proposed method, a
high accuracy rate is a prerequisite for robust and reliable activation maps. Yet,
the average performance of our classifier is slightly higher than the state-of-the-
art sex classification accuracy with respect to functional connectivity [19,20].

Figure 2 shows the sex-specific activations for all nodes. As illustrated, the
GCN focuses on the same regions for both classes, with one class (i.e. female)
consistently yielding higher activation than the other (i.e. male). This can be
attributed to the fact that a binary classifier only needs to predict one class, while
every other sample is automatically assigned the remaining class label. The most
important nodes, in descending order, are 21, 5, 13, and 7. As indicated by the
size of their markers, these four nodes are almost always ranked within the top
k = 3 of all nodes with respect to their activations, meaning that all subjects

Table 2. Average sex classification accuracy rates (in %) for each run.

Run 1 2 3 4 5 6 7 8 9 10 Avr

Acc 88.51 88.27 87.64 87.94 87.84 88.01 88.51 88.08 88.05 87.77 88.06

Std 1.57 1.25 1.88 1.30 1.73 1.66 1.54 1.34 1.93 1.06 1.57
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Fig. 2. Sex-specific class activations for all nodes averaged across subjects and runs.
Mean activations are scaled to [0, 1] for better visualisation. The size of the markers
indicates the number of times a node is ranked within the top k = 3 most important,
summed across subjects and runs.

Fig. 3. Left: ICA-based brain parcellation shown in groups of six resting-state net-
works (RSNs), including the default mode network (red). The tree slices shown are,
from top to bottom, sagittal, axial, and coronal, at indices 91, 112, and 91, respectively.
Middle: Connectogram showing the group-averaged functional connectivity between
55 brain regions, which are clustered based on their average population connectiv-
ity. Strongest positive and negative correlations are shown in red and blue, respec-
tively. Image is adapted from http://www.fmrib.ox.ac.uk/ukbiobank/netjs d100/ and
enhanced for better visualisation Right: Population-level saliency maps, combined for
both genders. (Color figure online)

but few are consistently classified according to the connections of these nodes.
While we only provide results for k = 3, the same regions are identified for
lower/higher values of k, with only minimal changes in their occurrence rate, as
shown in Supplementary Fig. 1.

http://www.fmrib.ox.ac.uk/ukbiobank/netjs_d100/
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In order to explore the neurobiological relevance of these results, we refer
to the UK Biobank group-averaged functional connectome [15], which maps
the functional interactions between the 55 brain regions clustered into six rest-
ing state networks (RSNs) according to their average population connectivity
(Fig. 3). RSNs comprise spatially segregated, but functionally connected cortical
regions, that are associated with diverse functions, such as sensory/motor, visual
processing, auditory processing, and memory. Our comparisons to the connec-
tome revealed that regions 21, 5, 13, and 7 (as shown in Fig. 3) are part of
the default mode network (highlighted with red), a spatially distributed cluster
which is activated ‘by default’ during rest. A large-scale study on sex differences
in the human brain [4] has also found evidence that functional connectivity is
stronger for females in the default mode network, which might further indicate
that the identified regions are neurobiologically relevant and reflect sex-specific
characteristics encoded in functional connectivity.

5 Conclusion

In this paper, we have addressed the visual attribution problem in graph-
structured data and proposed an activation-based approach to identify salient
graph nodes using spectral convolutional neural networks. By undertaking a
graph-centric classification task, we showed that a GCN model enhanced with
class activation mapping can be used to identify graph nodes (brain regions),
even in the absence of supervision/labels at the node level. Based on experi-
ments conducted on neuroimaging data from UK Biobank, we demonstrated the
robustness of the proposed method by means of highlighting the same regions
across different subjects/runs using cross validation. We further validated the
neurobiological relevance of the identified ROIs based on evidence from UK
Biobank studies [4,15].

While the potential of the proposed method is demonstrated on functional
networks with rs-fMRI, it can be applied to any graph-structured data and/or
modality. However, its applicability might be limited by several factors, including
the definition and number of nodes (e.g. brain parcellation), network modelling,
as well as node signal choices. It is also important to assess the robustness of the
identified regions by disentangling the effect of the graph structure and the node
features. While the method can successfully localise the salient regions, its lack of
ability to visualise the most important features remains as a limitation compared
to classical linear models. Future work will focus on the applicability of the
method to other graph-centric problems (e.g. regression). For instance, a GCN
model can be trained for age prediction and consequently used to identify brain
regions for which connectivity is most affected with ageing. Another interesting
direction entails extending this work for directed/dynamic, e.g. time-varying,
graphs, as well as using it for biomarker identification.

Acknowledgements. This research has been conducted using the UK Biobank
Resource under Application Number 12579 and funded by the EPSRC Doctoral Prize
Fellowship funding scheme.



12 S. Arslan et al.

References

1. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: going beyond euclidean data. IEEE Sig. Process. Mag. 34(4), 18–42
(2017)

2. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional net-
works: visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034 (2013)

3. Satterthwaite, T.D., Wolf, D.H., et al.: Linked sex differences in cognition and
functional connectivity in youth. Cereb. Cortex 25(9), 2383–2394 (2014)

4. Ritchie, S.J., Cox, S.R., Shen, X., et al.: Sex differences in the adult human brain:
evidence from 5,216 UK Biobank participants. bioRxiv (2017)

5. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2921–2929. IEEE (2016)

6. Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., Bronstein, M.M.: Geo-
metric deep learning on graphs and manifolds using mixture model CNNs. In:
Proceedings of CVPR, vol. 1, p. 3 (2017)

7. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems, pp. 3844–3852 (2016)

8. Levie, R., Monti, F., Bresson, X., Bronstein, M.M.: CayleyNets: graph convo-
lutional neural networks with complex rational spectral filters. arXiv preprint
arXiv:1705.07664 (2017)

9. Zhou, Z., Li, X.: Convolution on graph: a high-order and adaptive approach (2018)
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Abstract. The human brain demonstrates a network structure that is
commonly represented using graphs with pseudonym connectome. Tra-
ditionally, connectomes encode only inter-regional connectivity as edges,
while regional information, such as centrality of a node that may be crucial
to the analysis, is usually handled as statistical covariates. This results in
an incomplete encoding of valuable information. In order to alleviate such
problems, we propose an enriched connectome encoding regional proper-
ties of the brain network, such as structural node degree, strength, and
centrality, as node features in addition to representing structural connec-
tivity between regions as weighted edges. We further present an efficient
graph matching algorithm, providing two measures to quantify similarity
between enriched connectomes. We demonstrate the utility of our graph
representation and similarity measures on classifying a traumatic brain
injury dataset. Our results show that the enriched representation combin-
ing nodal features and structural connectivity information with the graph
matching based similarity measures is able to differentiate the groups bet-
ter than the traditional connectome representation.

Keywords: Annotated brain networks · Brain graphs
Multi-feature representation · Graph matching

1 Introduction

Connectomes can be described as a graph of organized regions and their connec-
tions that putatively have foundational roles in emerging functional and cogni-
tive outcomes [1]. Hence, many analyses in cognition, learning, and brain dis-
eases and disorders investigate the organization of the brain [2]. Graph theoret-
ical approaches such as complex network analysis provide powerful tools to study
structural and functional characteristics of the brain without losing its organiza-
tional features [3].
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In traditional connectomes, when representing the brain as a network, the
nodes of the network correspond to the brain regions, and the edges between
the nodes correspond to connections between those regions. In this approach,
networks encode only inter-regional connectivity. The regional information such
as degree, strength, or centrality that may be crucial to the analysis are usu-
ally treated as confounding factors or covariates. This hinders interpretations
regarding regional changes due to, for instance, an underlying pathology. How-
ever, graph theory facilitates a principled methodology to combine regional char-
acteristics (node features) with interactions between regions (edge features), by
means of annotating nodes of the network [4]. Hence, the first contribution of this
study is to provide a rich brain network representation, an enriched connectome,
that enables inclusion of such nodal features when modeling brain connectivity.

Such a rich representation of brain organization including nodal features
requires a new set of tools such as a similarity measure between these networks
(graphs) which is essential for classification, clustering, or regression tasks [5,6].
As a second contribution, we propose a graph matching algorithm that provides a
similarity measure between brain networks with nodal features. Among several
approaches proposed in the literature to calculate graph similarity over brain
data such as seeded graph matching [7] and graph embedding [8], graph edit dis-
tance (GED) is arguably the most effective method with promising results [9,10].
However, high running time complexity of GED requires use of approximation
techniques such as Hungarian algorithm in [11] and hinders a detailed analysis
of edge features [12]. We approach the graph matching problem as an instance
of the metric labeling problem [13] and provide an efficient approximation algo-
rithm using the primal-dual scheme [14] by extending our previous study [15].
Our graph matching method achieves two goals simultaneously: finding a map-
ping between brain regions of different graphs and computing a similarity score.
The enriched connectome along with the graph-based similarity measure facili-
tates its use in classification of samples and we demonstrate its effective applica-
tion on a traumatic brain injury (TBI) dataset. Results show that our enriched
connectome along with the proposed matching algorithm provides better classi-
fication between the groups than the traditional connectivity based connectome
representation.

2 Materials and Method

2.1 Dataset

Participants: We use a traumatic brain injury dataset consisting 39 patients
(12 female) with moderate-to-severe TBI examined at 3 months post injury and
30 healthy controls (8 female). Age of patients are in [18, 65] years with a mean
of 35 years and standard deviation of 14.7 years, while the age of healthy controls
are in [20, 56] years with a mean and standard deviation of 34.7 and 9.9 years,
respectively. Duration of post-traumatic amnesia of patients, which can be con-
sidered as a measure of trauma severity, has a mean of 26.7 days with a standard
deviation of 21.2 days.
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Data Acquisition and Preprocessing: For each subject, DTI data was
acquired on a Siemens 3T TrioTim scanner with a 8 channel head coil (sin-
gle shot spin echo sequence, TR/TE = 6500/84ms, b = 1000 s/mm2

, 30 gradient
directions). 86 region of interests from the Desikan atlas [16] were extracted to
represent the nodes of the structural network. A mask was defined using voxels
with an FA of at least 0.1 for each subject. Deterministic tractography was per-
formed to generate and select 1 million streamlines, seeded randomly within the
mask. Angle curvature threshold of 60 degrees, and a min and max length thresh-
old of 5 mm and 400 mm were applied, resulting in an 86 × 86 adjacency matrix
of weighted connectivity values, where each element represents the number of
streamlines between regions.

2.2 Enriched Connectome

Given parcellation of the brain into 86 regions, we constructed a weighted undi-
rected graph with 86 nodes corresponding to brain regions and weighted edges
corresponding to the number of fibers connecting region pairs. We annotate each
node with two set of features. First, we generated a 6 dimensional feature vector
by calculating various graph theoretical measures for each node, namely degree,
strength, betweenness centrality, local efficiency, participation coefficient, and
local assortativity, using the Brain Connectivity Toolbox [17]. While calculating
participation coefficient of nodes, we used association of structural regions with 7
functional systems as described in [18]. Second, we generated an 86 dimensional
feature vector, representing the weighted connectivity of each node to the rest of
the nodes in the graph, where we considered self edges to be nil. In summary, our
graph representation, denoted enriched connectome hereby, incorporates graph
theoretical measures of the connectome along with the weighted connectivity of
the regions that are to be found in network representations. We normalized the
values of each graph theory measure and the edge weights to [0, 1] in order to
make them comparable across subjects.

2.3 Graph Matching Based Similarity Measure

We propose taking a graph matching approach to define a similarity measure
between two enriched connectomes, while providing a mapping between their
nodes. We note that since the brains are parcellated into a common atlas in our
setup, mapping between the regions are known a priori. However, we expect to
get several mismatching nodes between dissimilar enriched connectomes due to
differences in the connectivity of the network, making the similarity of graphs
and the ratio of mismatching nodes effective measures for identifying patients
from controls.

To this end, we evaluate the graph matching as a special case of the metric
labeling problem [13]. Translating the metric labeling into the domain of brain
graphs, the problem reads as follows: Given two enriched connectomes A and
B, find the optimal one-to-one mapping f : A → B between their nodes while
minimizing the following objective function:
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β
∑

a∈A
c(a, f(a)) + (1 − β)

∑

a,a′∈A
w(a, a′) · d(f(a), f(a′)). (1)

The first summation term in (1) is regarded as the assignment cost with c :
A × B → R that determines the cost of mapping a brain region a ∈ A to a
region b ∈ B, which we define as ||v1a − v1b||2 + ||v2a − v2b||2 where v1 and v2
indicate the graph theoretical and edge weight based feature vectors described
earlier, respectively. The second summation term stands for the separation cost,
penalizing strongly connected brain regions a, a′ ∈ A in getting mapped to
loosely connected regions b, b′ ∈ B with w : A × A → R indicating edge weights
in A as a measure of connectivity strength and d : B × B → R indicating the
distance between nodes of B as a measure of proximity between regions which
is defined inversely proportional to the w in B. Thus, the first half of the cost
function encourages mapping each node of A to a node that resembles it most in
B while the second half discourages two strongly connected regions in A getting
mapped to two loosely connected regions in B. The variable β in (1) is a balancing
term to adjust the contribution of the assignment and separation costs to the
objective function which takes values in [0, 1]. Once optimized, summation of
the costs in (1) defines a similarity score between the two graphs.

In their seminal paper, Kleinberg and Tardos presented the following
quadratic optimization formulation for the metric labeling problem which they
showed to be computationally intractable to solve [13]:

min
∑

a∈A
b∈B

c(a, b) · xa,b +
∑

a,a′∈A
b,b′∈B

w(a, a′) · d(b, b′) · xa,b · xa′,b′

s.t.
∑

b∈B xa,b = 1, ∀a ∈ A∑
a∈A xa,b = 1, ∀b ∈ B

xa,b ∈ {0, 1}, ∀a ∈ A, b ∈ B

(2)

where xa,b is an indicator variable taking value 1 if a is mapped to b and 0
otherwise. They also presented a linear programming formulation of the prob-
lem along with an approximation algorithm using hierarchically well-separated
trees (HST), which was inefficient due to the computational time it takes to
build the HSTs and to solve the linear program. Using another integer linear
programming formulation of the problem along with a primal-dual approxima-
tion scheme [14], we recently presented an efficient approximation algorithm for
the traditional metric labeling problem [15]. Here, we extend the latter study
by altering the constraints of the metric labeling to account for the particular
case of matching the enriched connectomes. Traditional metric labeling formula-
tion allows many-to-one matching of the nodes between graphs, that is, several
nodes of the first graph can be mapped to the same node in the second graph.
In the setup of enriched connectomes where the brains are registered to a com-
mon atlas and parcellated into the same number of regions across subjects, it is
known a priori that there should be a one-to-one mapping between the nodes of
the graphs. Motivated by this observation, we impose additional constraints to
the metric labeling formulation to enforce a one-to-one mapping between graphs.
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Our extended version of the metric labeling with the integer linear programming
formulation is as follows:

min
∑

a∈A
b∈B

c(a, b) · xa,b +
∑

a,a′∈A
b,b′∈B

w(a, a′)· d(b, b′) · xa,b,a′,b′

s.t.
∑

b∈A xa,b = 1, ∀a ∈ A∑
a∈B xb,a = 1, ∀b ∈ B∑
a′∈A xa,b,a′,b′ = xa,b, ∀a ∈ A, b, b′ ∈ B∑
b′∈B xa,b,a′,b′ = xa,b, ∀a, a′ ∈ A, b′ ∈ B

xa,b,a′,b′ = xa′,b′,a,b, ∀a �= a′ ∈ A, b �= b′ ∈ B
xa,b ∈ {0, 1}, xa,b,a′,b′ ∈ {0, 1}, ∀a, a′ ∈ A, b, b′ ∈ B.

(3)

Note that, the formulation (3) replaces the quadratic term xa,b ·xa′,b′ in (2) with
the indicator variable xa,b,a′,b′ , introducing O(n4) new variables and O(n3 +n4)
additional constraints relative to the linear programming formulation. Despite
the increase in the size of the problem, this formulation allows applying the
primal-dual scheme to efficiently achieve approximate results.

In order to get a primal-dual approximation algorithm for solving the metric
labeling in its extended version in (3), we first state the dual of the formulation
as follows:

max
∑

a∈A
ya +

∑

b∈B
yb

s.t. ya + yb − ∑
a′∈A ya,b,a′ − ∑

b∈B ya,b,b′ ≤ ca,b, ∀a ∈ A, b ∈ B
ya,b,a′ + ya,b,b′ + ya,b,a′,b′ ≤ wa,a′ · db,b′

ya′,b,a + ya,b,b′ − ya,b,a′,b′ ≤ wa′,a · db,b′

}
, ∀a, a′ ∈ A, b, b′ ∈ B

yp, ya,b,a′ , ya,b,b′ , ya,b,a′,b′ unrestricted, ∀a, a′ ∈ A, b, b′ ∈ B
ya ≥ 0, yb ≥ 0, ∀a ∈ A, b ∈ B

(4)

Since the variables of type ya,b,a′,b′ appears as a summation and a subtraction in
the second type of constraints of (4) which accounts for the balancing constraints
in (3), strictly following the primal-dual method presented in [14] would require
making assignments in tuples since it enforces dual feasibility throughout the
algorithm, resulting in poor performance. As we previously suggested in [15],
we relax the dual feasibility condition for the first type of the dual constraints
that previously became tight and present an efficient primal-dual approximation
algorithm for the problem in Algorithm1.

The algorithm starts by initializing indicative variables xa,b, set of unassigned
nodes Â and B̂, and an adjusted assignment cost function φ where the value of
φ(a, b) is initially set to be the assignment cost of a to b (line 1). In each iteration
of the loop in lines 2–7, the algorithm maps a node a to a node b that minimizes
the adjusted assignment cost function φ (lines 3–4). Before proceeding to the
next iteration, assigned nodes a and b are removed from the sets Â and B̂ (line
5) and φ function is updated for each of the unassigned nodes in the set Â by
an amount of separation cost with respect to the recently assigned nodes (line
6). Algorithm iterates until no unassigned node is left in Â.
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Algorithm 1. A primal-dual approximation algorithm for approximating (3)
procedure Graph-match(P, L)

1: ∀a, a′ ∈ A, b ∈ B : xa,b ← 0, Â ← A, B̂ ← B
φ(a, b) ← ca,b

2: while Â �= ∅ do
3: Find a ∈ Â that minimizes φ(a, b) for some b ∈ B̂
4: xa,b ← 1
5: Â ← Â \ {a}, B̂ ← B̂ \ {b}
6: ∀a′ ∈ Â, b′ ∈ B̂ : φ(a′, b′) = φ(a′, b′) + wa,a′ · db,b′

7: end while
8: return X = {xa,b : ∀a ∈ A, b ∈ B}

We note that, φ(a, b) is not updated for a node a once it gets assigned,
rendering the summation

∑
a,b φ(a, b)xa,b to be equal to the similarity score

between the two graphs since it is equal to the value of the objective function in
(4) which in turn is equal to the value of the objective function in (3).

3 Results

Here, we demonstrate the utility of our brain network representation and sim-
ilarity measure on a TBI dataset, where the goal is the binary classification of
subjects into healthy controls and TBI patients. We used k-nearest neighbors
(kNN) classifier.

3.1 TBI Classification

We used nested leave-one-out approach for cross validation, due to limited num-
ber of subjects. For each subject in the dataset, we used the remaining 68 subjects
of the dataset as the training set. Using an inner leave-one-out cross validation
with training set, we decided the balancing parameter β and the number of neigh-
bors k to be used in the nearest neighbor search. Then, we tested each subject
with the learned parameter tuple that achieved best classification accuracy.

For comparison purposes, we performed the experiment using two scenar-
ios. First (baseline), we used only a traditional connectome where we repre-
sented edge weights in a vector form without a graph representation. Similarity
between subjects is calculated using Euclidean distance between these vector-
ized edge weights (denoted L2-dist). Second, we use enriched connectome with
Algorithm 1 (denoted Graph-match). Note that, Graph-match allows regions of
the first graph to get mapped to any one of the regions in the second graph
while L2-dist inherently assumes an identity matching between the nodes of
two graphs. The comparison of two scenarios, i.e., traditional connectome with
L2-dist vs. enriched connectome with Graph-match, facilitates subsequent anal-
ysis and interpretation on regional matches between brains, possibly providing
insights into TBI-induced regional differences.
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Table 1. Classification results from leave-one-out cross validation for the two scenarios:
traditional connectome with L2-dist vs. enriched connectome with Algorithm 1.

Scenario Accuracy Sensitivity Specificity

Traditional connectome & L2-dist 66.7 51.28 86.67

Enriched connectome & Graph-match 72.46 71.19 73.33

Classification performance is presented in Table 1 for the two scenarios, show-
ing overall accuracy, specificity, and sensitivity. Comparing overall accuracy of
the two scenarios suggests that our graph representation with the similarity
measure captures more information to decide about the classification than the
baseline. As suggested from the results, incorporating nodal features into the
representation along with connectivity information improves the classification
accuracy. In addition to this, relaxing node mappings between enriched connec-
tomes in Graph-match makes it possible to capture subtle regional alterations,
possibly associated with injury, which is reflected by the increased classification
performance of Graph-match. We also note that, our approach achieves similar
performance for classifying patients and controls as the sensitivity and specificity
have similar values whereas traditional connectome with L2-dist performs poorly
for classifying patients. The comparison of ROC curves presented in Fig. 1(a)
demonstrates the improved performance of our method over the baseline.

Nested leave-one-out cross validation scheme results in 69 different param-
eter tuples (β, k) for our method and 69 k values for the baseline approach.
In our experiments, we observed that parameter values were mostly consistent
for our method across runs. Specifically, we observed that the inner loop of the
experiment has chosen β = 0.9 without any exception and k = 15 with only five
outliers out of 69 iterations for our method. This can be contrasted to k = 6
being chosen for the baseline approach along with 9 outliers, suggesting the
robustness of our graph matching algorithm.

3.2 Effect of Feature Types

In order to demonstrate the contribution of graph theory measures and edge
weights as node features, in Table 2, classification results for the brain networks
with only graph theoretical features and only edge weights as features are con-
trasted to both feature types being combined in a single brain graph. We observe

Table 2. Classification results of brain graphs with only graph theoretical features and
with only edge weights as features, using Graph-match as the similarity measure.

Node features Accuracy Sensitivity Specificity

Graph theoretical measures alone 42.03 56.41 23.34

Edge weights alone 62.32 46.15 83.34
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Fig. 1. (a) Comparison of ROC curves showing the classification performance of the
baseline and the proposed method. (b) Z-score distribution of the matching accuracy
for controls and patients with respect to the control population.

that combining both feature types improve the classification accuracy by 10%
indicating that enriched connectome maintains more information by combin-
ing various features into a single structure relative to a network having either
one of them as its only nodal feature. We also observe that using edge weights
alone performs better than using graph theoretical measures alone, which can
be attributed to larger number of features present in the former, providing a
better feature set for classification. However, combination of the two providing
an improvement over both of their individual classification accuracies indicate
that the two sets of features represent unique aspects of the connectomics.

3.3 Mapping Between Nodes of Graphs

We note that, graph matching provides a mapping between nodes of the two
graphs in addition to the similarity score between them. One might expect the
regions of a brain graph to match their counterparts in another brain graph
(such as, precentral gyrus in one enriched connectome would be expected to
match with the precentral gyrus of another enriched connectome) as the brain
anatomy is similar across people, with occasional mismatches due to subject-
specific differences in connectivity. Leveraging this observation, we define another
similarity measure, denoted matching accuracy, as the ratio of regions that are
accurately matched with their counterparts to total number of regions. Matching
enriched connectome of every subject to the healthy controls, we hypothesize
that the matching accuracy of healthy controls with respect to themselves should
be higher than the matching accuracy of patients with respect to healthy control
population, as structural alterations introduced by TBI is expected to cause
mismatching regions. As shown in Fig. 1(b), we observe a statistically significant
group difference between the patients and controls in their matching accuracy
with respect to the healthy subjects. We also observe that the matching accuracy
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is lower and has a larger variance in patient population, which can be attributed
to altered structural connectivity due to pathology.

4 Conclusions and Future Work

In this paper, we presented an enriched connectome that allows combining mul-
tiple features into a single structure. The nodes in our representation correspond
to the brain regions that are annotated with graph theoretical measures and con-
nectivity of nodes with other nodes as node features, while the edges correspond
to the structural connectivity between regions. We also proposed an efficient
graph matching algorithm providing two similarity measures over our new rep-
resentation, one being a summary measure of overall graph similarity and the
other quantifying the ratio of number of accurately matched regions to total
number of regions. Using the first measure, we showed that proposed enriched
representation provided a better classification than the traditional connectomes,
demonstrating contribution of the nodal features to information about the sam-
ples. Using the second measure, we demonstrated a significantly lower matching
accuracy across patients relative to controls, highlighting trauma induced struc-
tural alterations in brains of patients.

In this study, we utilized features obtained from a single modality, namely
DTI. Our graph representation can easily be extended to combine multiple
modalities (e.g., DTI and fMRI). Adding multiple modalities introduce not only
new nodal features, but also new edge types that will provide even a richer rep-
resentation of the brain organization. Although the data that we used in this
study involves known correspondences between connectomes, our method can
also be applied on connectomes with unknown correspondences, as in subject
specific parcellations.
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Abstract. In large population-based studies and in clinical routine,
tasks like disease diagnosis and progression prediction are inherently
based on a rich set of multi-modal data, including imaging and other sen-
sor data, clinical scores, phenotypes, labels and demographics. However,
missing features, rater bias and inaccurate measurements are typical ail-
ments of real-life medical datasets. Recently, it has been shown that deep
learning with graph convolution neural networks (GCN) can outperform
traditional machine learning in disease classification, but missing fea-
tures remain an open problem. In this work, we follow up on the idea
of modeling multi-modal disease classification as a matrix completion
problem, with simultaneous classification and non-linear imputation of
features. Compared to methods before, we arrange subjects in a graph-
structure and solve classification through geometric matrix completion,
which simulates a heat diffusion process that is learned and solved with a
recurrent neural network. We demonstrate the potential of this method
on the ADNI-based TADPOLE dataset and on the task of predicting
the transition from MCI to Alzheimer’s disease. With an AUC of 0.950
and classification accuracy of 87%, our approach outperforms standard
linear and non-linear classifiers, as well as several state-of-the-art results
in related literature, including a recently proposed GCN-based approach.

1 Introduction

In clinical practice and research, the analysis and diagnosis of complex pheno-
types or disorders along with differentiation of their aetiologies rarely relies on
a single clinical score or data modality, but instead requires input from various
modalities and data sources. This is reflected in large datasets from well-known
multi-centric population studies like the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) and its derived TADPOLE grand challenge1. TADPOLE data,
for example, comprises demographics, neuropsychological scores, functional and
1 http://adni.loni.usc.edu ‖ https://tadpole.grand-challenge.org/.
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morphological features derived from MRI, PET and DTI imaging, genetics, as
well as histochemical analysis of cerebro-spinal fluid. The size and richness of
such datasets makes human interpretation difficult, but it makes them highly
suited for computer-aided diagnosis (CAD) approaches, which are often based on
machine learning (ML) techniques [10,11,16]. Challenging properties for machine
learning include e.g. subjective, inaccurate or noisy measurements or a high num-
ber of features. Linear [11] and non-linear [16] classifiers for CAD show reason-
able success in compensating for such inaccuracies, e.g. when predicting conver-
sion from mild-cognitive-impairment (MCI) to Alzheimer’s disease (AD). Recent
work has further shown that an arrangement of patients in a graph structure
based on demographic similarity [12] can leverage network effects in the cohort
and increase robustness and accuracy of the classification. This is especially valid
when combined with novel methods from geometric deep learning [1], in partic-
ular spectral graph convolutions [7]. Similar to recent successes of deep learning
methods in medical image analysis [8], deep learning on graphs shows promise
for CAD, by modeling connectivity across subjects or features.

Next to noise, a particular problem of real-life, multi-modal clinical datasets is
missing features, e.g. due to restrictions in examination cost, time or patient com-
pliance. Most ML algorithms, including the above-mentioned, require feature-
completeness, which is difficult to address in a principled manner [4]. One inter-
esting alternative to address missing features is to model CAD and disease clas-
sification as a matrix completion problem instead. Matrix completion was pro-
posed in [5] for simultaneously solving the three tasks of multi-label learning,
transductive learning, and feature imputation. Recently, this concept was applied
for CAD in multi-modal medical datasets for the first time [15], for prediction of
MCI-to-AD conversion on ADNI data. The method introduced a pre-computed
feature weighting term and outperformed linear classifiers on their dataset, how-
ever it did not yet leverage any graph-modeled network effects of the population
as in [12]. To this end, several recent works incorporated a geometric graph
structure into the matrix completion problem [6,9,13]. All these methods were
applied on non-medical datasets, e.g. for recommender systems [9]. Hence, their
goal was solely imputation, without classification. Here, we unify previous ideas
in a single stream-lined method that can be trained end-to-end.

Contribution. In this work, we follow up on the idea of modeling multi-modal
CAD as a matrix completion problem [5] with simultaneous imputation and clas-
sification [15]. We leverage cohort network effects by integrating a population
graph with a solution based on geometric deep learning and recurrent neural
networks [9]. For the first time, we demonstrate geometric matrix completion
(GMC) and disease classification from multi-modal medical data, towards MCI-
to-AD prediction from TADPOLE features at baseline examination. In this diffi-
cult task, GMC significantly outperforms regular linear and non-linear machine
learning methods as well as three state-of-the-art results from related works,
including a recent approach based on graph-convolutional neural networks.
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2 Methods

2.1 Dataset and Preprocessing

As an example application, we utilize the ADNI-based TADPOLE dataset, with
the goal of predicting whether an MCI subject will convert to AD given their
baseline information. We select all unique subjects with baseline measurements
from ADNI1, ADNIGO, and ADNI2 in the TADPOLE dataset which were diag-
nosed as MCI including those diagnosed as EMCI and LMCI. Following [15],
we retrospectively label those subjects whose condition progressed to AD within
48 months as cMCI and those whose condition remained stable as sMCI. The
remaining MCI subjects who progressed to AD after month 48 are excluded
from this study. We use multi-modal features from MRI, PET, DTI, and CSF
at baseline, i.e. excluding longitudinal features. We use all numerical features
from this dataset to stack with the labels and include age and gender to build
the graph, following the intuition and methodology from [12].

2.2 Matrix Completion

We will start by describing the matrix completion problem. Suppose there exists
a matrix Y ∈ R

m×n where the values in this matrix are not all known. The goal
is to recover the missing values in this matrix. A well-defined description of this
problem is to assume that the matrix is of low rank [2],

min
X∈Rm×n

rank(X) s. t. xij = yij ,∀ij ∈ Ω, (1)

where X is the m × n matrix with values xij , Ω is the set of known entries
in matrix Y with yij values. However, this rank minimization problem (1) is
known to be computationally intractable. So instead of solving for rank(X), we
can replace it with its convex surrogate known as the nuclear norm ||X||∗ which
is equal to the sum of its singular values [2]. In addition, if the observations in Y
have noise, the equality constraint in Eq. (1) can be replaced with the squared
Frobenius norm ||.||2F [3],

min
X∈Rm×n

||X||∗ +
γ

2
||Ω ◦ (Y − X)||2F, (2)

where Ω is the masking matrix of known entries in Y and ◦ is the Hadamard
product. Alternatively, a factorized solution to the representation of the matrix
X was also introduced in [13,14], as the formulation using the full matrix makes
it hard to scale up to large matrices such as the famous Netflix challenge. Here,
the matrix X ∈ R

m×n is factorized into 2 matrices W and H via SVD, where
W is m × r and H is n × r, with r � min(m,n). Srebro et al. [14] showed that
the nuclear norm minimization problem can then be rewritten as:

min
W,H

1
2
||W||2F +

1
2
||H||2F +

γ

2
||Ω ◦ (WHT − Y)||2F (3)
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Fig. 1. Illustration of the overall approach: the matrix Z comprising incomplete fea-
tures and labels is factorized into Z = WHT . A connectivity graph is defined over
rows W. During optimization, GCNN filters are learned along with RNN parameters
and weight updates for W , towards optimal matrix completion of Z and simultaneous
inference of missing features and labels in the dataset.

2.3 Matrix Completion on Graphs

The previous matrix completion problem can be extended to graphs [6,13]. Given
a matrix Y, we can assume that the rows/columns of this matrix are on the
vertices of the graph [6]. This additional information can then be included into
the matrix completion formulation in Eq. (2) as a regularization term [6]. To
construct the graph, we can use meta-information out of these rows/columns
or use the row/column vectors of this matrix to calculate a similarity metric
between pairs of vertices. Given that every row in the matrix has this meta-
information, Kalofolias et al. [6] showed that we can build an undirected weighted
row graph Gr = (Vr, Er, Ar), with vertices Vr = {1, . . . , m}. Edges Er ⊆ Vr ×Vr

are weighted with non-negative weights represented by an adjacency matrix Ar ∈
R

m×m. The column graph Gc = (Vc, Ec, Ac) is built the same way as the row
graph, where the columns are now the vertices in Gc. Kalofolias et al. [6] showed
that the solution to this problem is equivalent to adding the Dirichlet norms,
||X||2D,r = tr(XTLrX) and ||X||2D,c = tr(XLcX

T ), where Lr and Lc are the
unnormalized row and column graph Laplacian, to Eq. (2),

min
X∈Rm×n

||X||∗ +
γ

2
||Ω ◦ (Y − X)||2F +

αr

2
||X||2D,r +

αc

2
||X||2D,c (4)

The factorized formulation [9,13] of Eq. (4) is

min
W,H

1
2
||W||2D,r +

1
2
||H||2D,c +

γ

2
||Ω ◦ (Y − WHT )||2F (5)

2.4 Geometric Matrix Completion with Separable Recurrent Graph
Neural Networks

In [9], Monti et al. propose to solve the matrix completion problem as a learn-
able diffusion process using Graph Convolutional Neural Networks (GCNN) and
Recurrent Neural Networks (RNN). The main idea here is to use GCNN to
extract features from the matrix and then use LSTMs to learn the diffusion
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process. They argue that combining these two methods allows the network to
predict accurate small changes dX (or dW, dH of the matrices W, H) to the
matrix X. Further details regarding the main ideas in geometric deep learning
have been summarized in a review paper [1], where they elaborate how to extend
convolutional neural networks to graphs. Following [9], we use Chebyshev poly-
nomial basis on the factorized form of the matrix X = WHT to represent the
filters on the respective graph to each matrix W and H. In this work, we only
apply GCNN to the matrix W as we only have a row graph and leave the matrix
H as a changeable variable. Figure 1 illustrates the overall approach.

2.5 Geometric Matrix Completion for Heterogeneous Matrix
Entries

In this work, we propose to solve multi-modal disease classification as a geometric
matrix completion problem. We use a Separable Recurrent GCNN (sRGCNN) [9]
to simultaneously predict the disease and impute missing features on a dataset
which has partially observed features and labels. Following Goldberg et al. [5],
we stack a feature matrix Y ∈ R

m×n and a label matrix T ∈ R
m×c as a matrix

Z ∈ R
m×n+c, where m is the number of subjects, n is the dimension of the

feature matrix, and c is the dimension of the target values. In the TADPOLE
dataset, we stack the m ×n feature matrix to the m× 1 label matrix, where the
feature matrix contains all the numerical features and the label matrix contains
the encoded binary class labels for cMCI and sMCI. We build the graph by using
meta-information from the patients such as their age and gender, similar to [12],
as these information are known to be risk factors for AD. We compare two row
graph construction approaches, first from age and gender information using a
similarity metric [12] and second from age information only, using Euclidean
distance-based k-nearest neighbors. Every node in a graph corresponds to a row
in the matrix W, and the row values to its associated feature vector. Since we
only have a row graph, we leave the matrix H to be updated during backprop-
agation. To run the geometric matrix completion method we use the loss:

�(Θ) =
γa
2

||W||2D,r+
γb
2

||W||2F+
γc
2

||H||2F+
γd
2

||Ωa◦(Z−WHT )||2F+γe(�Ωb
(Z,X)),

(6)
where Θ are the learnable parameters, where Z denotes the target matrix, X

is the approximated matrix, ||.||2D,r denotes the Dirichlet norm on a normalized
row graph Laplacian, Ωa denotes the masking on numerical features, Ωb is the
masking on the classification labels, and � is the binary cross-entropy.

3 Results

We evaluate our approach on multi-modal TADPOLE data (MRI, PET, CSF,
DTI) to predict MCI-to-AD conversion and compare it to several other multi-
modal methods as baseline. We use a stratified 10-fold cross-validation strat-
egy for all methods. Hyperparameters were optimized using Hyperopt2, through
2 http://hyperopt.github.io/hyperopt/.

http://hyperopt.github.io/hyperopt/
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nested cross-validation, targeting classification loss (binary cross-entropy) on a
hold-out validation set (10% in each fold of training data). Following [9], we
use the same sRGCNN architecture with parameters: rank = 156, chebyshev
polynomial order = 18, learning rate = 0.00089, hidden-units = 36, γa = 563.39,
γb = 248.91, γc = 688.85, γd = 97.63, and γe = 890.14.

It is noteworthy that at baseline, the data matrix Y with above-mentioned
features is already feature-incomplete, i.e. only 53% filled. We additionally reduce
the amount of available data randomly to 40%, 30% etc. to 5%. Figure 2 shows a
comprehensive summary of our classification results in terms of area-under-the-
curve (AUC). Methods we compare include mean imputation with random forest
(RF), linear SVM (SVC) and multi-layer-perceptron (MLP), as well as three
reference methods from literature [10,12,15], which operated on slightly different
selections of ADNI subjects and on all available multi-modal features. While
implementations of [10,15] are not publicly available, we tried to re-evaluate the
method [12] using their published code. Unfortunately, despite our best efforts
and hyperparameter optimization on our selection of TADPOLE data, we were
not able to reproduce any AUC value close to their published value. To avoid
any mistake on our side, we provide the reported AUC results rather than the
worse results from our own experiments.

At baseline, our best-performing method with a graph setup based on age and
gender (“GMC age-gender”) [12] achieves classification with an AUC value of
0.950, compared to 0.902 [10], ∼0.87 [12] and 0.851 [15]. In terms of classification
accuracy, we achieved a value of 87%, compared to 82% [10] and 77% [12] (accu-
racy not reported in [15]). Furthermore, our method significantly outperforms
standard classifiers RF, MLP and SVC at all levels of matrix completeness. The
second graph configuration for our method (“GMC age” only) performs signifi-
cantly worse and less stable than (“GMC age-gender”), confirming the usefulness

Fig. 2. Classification results: area under the curve (AUC) of our method, for differ-
ent amounts of feature-completeness and in comparison to linear/non-linear standard
methods, and three state-of-the-art results in literature (Parisot et al. [12], Thung et
al. [15], Moradi et al. [10]).
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of the row graph construction based on the subject-to-subject similarity measure
proposed in [12]. Due to lower complexity of the GMC approach [9], training a
single fold on recent hardware (Tensorflow on Nvidia GTX 1080 Ti) is on average
2x faster (11.8 s) than GCN (25.9 s) [12].

4 Discussion and Conclusion

In this paper, we proposed to view disease classification in multi-modal but
incomplete clinical datasets as a geometric matrix completion problem. As an
exemplary dataset and classification problem, we chose MCI-to-AD prediction.
Our initial results using this method show that GMC outperforms three compet-
itive results from recent literature in terms of AUC and accuracy. At all levels of
additional random dropout of features, GMC also outperforms standard impu-
tation and classifiers (linear and non-linear). There are several limitations which
are worthy to be addressed. Results in Fig. 2 demonstrate that GMC is still sen-
sitive to increasing amounts of feature incompleteness, in particular at feature
presence below 15%. This may be due to our primary objective of disease classi-
fication during hyper-parameter optimization. For the same reason, we did not
evaluate the actual imputation performed by GMC. However, an evaluation in
terms of RMSE and a comparison to principled imputation methods [4] would be
highly interesting, if this loss is somehow incorporated during hyperparameter
optimization. Furthermore, we only evaluated GMC on ADNI data as repre-
sented in the TADPOLE challenge, due to the availability of multiple reference
AUC/accuracy values in literature. As mentioned, however, disease classification
in high-dimensional but incomplete datasets with multiple modalities is an abun-
dant problem in computer-aided medical diagnosis. In this light, we believe that
the promising results obtained through GMC in this study are of high interest
to the community.
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Abstract. In this study, we propose a novel brain parcellation algo-
rithm, called BrainParcel. BrainParcel defines a set of supervoxels by
partitioning a voxel level brain graph into a number of subgraphs, which
are assumed to represent “homogeneous” brain regions with respect to a
predefined criteria. Aforementioned brain graph is constructed by a set of
local meshes, called mesh networks. Then, the supervoxels are obtained
using a graph partitioning algorithm. The supervoxels form partitions
of brain as an alternative to anatomical regions (AAL). Compared to
AAL, supervoxels gather functionally and spatially close voxels. This
study shows that BrainParcel can achieve higher accuracies in cogni-
tive state classification compared to AAL. It has a better representation
power compared to similar brain segmentation methods, reported the
literature.

Keywords: fMRI · Brain partitioning · Mesh model

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is one of the most common
imaging techniques for detecting the activation levels of human brain, during a
cognitive process. fMRI measures the change of oxygen level in the brain with
respect to neural activities. In principle, oxygen dependencies of neuron groups
fluctuate in accordance with the activation and MRI machines can detect those
changes through the scan. An intensity value is recorded at each 1–2 s for a
neuron group called voxel. Each voxel is a cubic volume element around 1–2 mm3

size. Classification of the cognitive stimulus from the voxel intensity values are
called brain decoding and the pioneering studies in this area are called Multi
Voxel Pattern Analysis (MVPA) [9,11]. MVPA involves recognizing the cognitive
states represented by voxel intensity values of fMRI data, using machine learning
techniques. A set of features is extracted from voxel intensity values recorded
during each cognitive task. However, due to the large feature space formed by
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voxels (about 100,000–200,000 voxels per brain volume), dimension reduction
techniques are required, such as, clustering the voxels groups into homogeneous
regions.

Anatomical regions, defined by experimental neuroscience can be used as
brain parcels. In most common approach, called AAL, there are 116 major
regions and each region is assumed to contain voxel groups which work together.
In order to reduce the dimension of the feature space, representative signals
can be selected for each region or average time series can be computed within
each region [1,16]. However, anatomical regions lose the subject-specific and
task dependent information of brain activities. Besides, sizes of the regions vary
extremely and activation levels of voxels may not be homogeneous within an
anatomic region.

In order to partition the voxels into a set of homogeneous regions, well-defined
clustering methods such as k-means [6,7,10], hierarchical clustering [1,4], and
spectral clustering [17,20] can be used. The pros and cons of these clustering
algorithms are widely studied in fMRI literature on a variety of datasets [8,18].
Some studies bring spatially close voxels together considering only the location
information in analogy with the AAL [6]. Although this method improves the
strict norms of AALs, it lacks the functional similarity of voxel time series, which
belongs to the same regions. Recent literature reveals that functionally close
voxels tend to contribute to the same cognitive task, thus, form homogeneous
regions. Therefore, one needs to bring both functionally similar and spatially
contiguous voxels together to define homogeneous brain regions [21]. Similarly,
Wang et al. suggest to combine n-cut segmentation algorithm with simple linear
iterative clustering (SLIC) [21]. Blumensath et al. use region growing for brain
segmentation with functional metrics and spatial constraints between samples
[3]. Bellec et al. also use region growing with functional metrics within the 26
spatial neighborhood in 3-Dimensional space [2]. Background on neuronal activ-
ity, also, supports this idea, such that physically close neurons are in chemical
interaction with each other and this interaction can be interpreted as functional
similarity. With these objectives in mind, many different clustering algorithms
are applied to create data dependent homogeneous brain parcels. Depending on
the predefined distance measure, the clustering algorithms can group spatially
or functionally similar voxels under the same cluster. Craddock et al. adopt this
idea and propose a brain parcellation method, in which they represent the voxels
in a graph structure and used n-cut on a spatially constrained brain graph with
functional edges [5]. In order to achieve spatial contiguity they connected each
voxel to its 26 closest neighbors in 3D space. On the other hand, to accomplish
functional homogeneity, they set edge weights of the graph to the correlation
between the time series of two voxels as follows;

ei,j =

{
corr(vi,vj) , dist(vi,vj) ≤ dt

0 , otherwise,
(1)

where dt is selected to be
√

3 and corr(vi,vj) is the Pearson Correlation between
the intensity values of voxels vi and vj. They, also, remove the edges with cor-
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relation values less than 0.5 to reduce the weak connections. Then, they define
a brain graph G = (V,E), where the set of voxels V = [v1,v2 . . .vN] are the
nodes of the graph, and E = [e1,1, e1,2, . . . eN,N ] are the edge weights computed
according to Eq. 1. They partition the graph G into subgraphs by removing the
edges iteratively using N-cut segmentation method using the following formula,

N cut =

∑
vi∈A,vj∈B ei,j∑
vi∈A,vn∈V ei,n

+

∑
vi∈A,vj∈B ei,j∑
vj∈B,vn∈V ej,n

. (2)

As it is mentioned above, conventional MVPA methods create features sets
from the selected voxel intensity values or use some averaging techniques to rep-
resent each brain region. This approach is quite restrictive to represent cognitive
states. Recent studies suggest to model the relationships among voxels rather
than using voxel intensity values. Ozay et al., demonstrate this idea by suggest-
ing the Mesh Model which is a graph structure that identifies the connectivity
among voxels [15].

Mesh Model (MM) represents intensity values of voxels as a weighted linear
combination of its neighboring voxels, defined on a neighborhood system. The
estimated weights represent the arc weights between the voxels and the voxels
represents a node in the overall brain graph. A star mesh is formed around each
voxel and its p neighbors, independently. In each mesh, the voxel at the center
is called seed-voxel and the surrounding voxels are called neighbors. p nearest
neighbors of voxel vi for cognitive stimulus k are shown as ηp

vi(k)
and they can

be selected spatially (Spatial Mesh Model - SMM) [12,14] or functionally (Func-
tional Mesh Model - FMM) [12,13] such that, spatial neighbors has the smallest
Euclidean distance with the seed-voxel whereas functional neighbors has maxi-
mum functional similarity. Meshes are formed using the full length time series
for voxels, recorded during an fMRI experiment session. Assuming s measure-
ments are taken for each cognitive stimulus, time series of a voxel vi for stimulus
k is an s dimensional vector shown as vi(k) = [vi(k)1,vi(k)2, . . .vi(k)s]. Spa-
tial Mesh Model (SMM) selects the neighbors according to the physical distances
among voxels in 3-dimensional space by Euclidean distance [12,14]. On the other
hand, Functional Mesh Model (FMM), proposed by Onal et al., selects functional
neighbors with the highest p-correlation values obtained by Pearson Correlation
[12,13]. Afterwards, time series of the seed voxel is represented as a weighted
combination of its neighbors by the following equation for each cognitive stimuli:

vi(k) =
∑

vj(k)∈ηp
vi(k)

ai,j,kvj(k) + εi,j , (3)

where ηp
vi(k)

is the p nearest neighbors of voxel vi for sample k and ai,j,k are the
arc weights of the mesh network between the voxels and they are called Mesh Arc
Descriptors (MADs). MADs are estimated using regularized Ridge regression
method by the minimization of error term εi,j . Concatenating each MAD for
each voxel and cognitive task creates a new feature space and classification is
performed on this feature space.
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In this study we combine classical brain parcellation approach proposed by
Craddock et al. and Mesh Model and propose a novel brain parcellation algo-
rithm, called BrainParcel. Unlike current methods, we partition the graph formed
by star meshes and partition this graph into brain regions. We show that brain
partitions obtained by BrainParcel have better representation power than the
partitions obtained by state of the art clustering methods and AAL in cognitive
state classification problem.

Define 
neighborhood 
system among 

voxels

Extract MADs 
among voxels 

Construct 
voxel level 
brain graph

Graph 
Partitioning

Representation 
of supervoxels

Construct 
supervoxel 
level brain 

graph

Classification

Fig. 1. Overall architecture of the BrainPacel algorithm.

2 BrainParcel

Brain parcel is a brain partitioning algorithm that uses graph theoretic
approaches. First, we form a brain graph by ensembling the meshes estimated
around each voxel. Then, we partition this graph using n-cut segmentation algo-
rithm. Each region is represented by the average time series of all voxels in
that region. Then, these representative time series are fed to a machine learn-
ing algorithm to classify the underlying cognitive states. Figure 1 indicates the
stages of suggested BrainParcel method for brain decoding problem. Each stage
is explained in the following subsections.

2.1 Neighborhood System

In order to estimate a star mesh around each voxel independently, we need to
define a neighborhood system. The concept of neighborhood takes an important
place in this study. We inspire from the biological structure of human brain,
where spatially close neurons act together by means of some electro-chemical
interactions. Additionally, experimental evidence indicates that physically far
apart neurons may contribute to the same cognitive process through the brain
connectome. We try to utilize these observations in our brain parcellation model
by defining a neighborhood system around each voxel and employ multiple con-
nections between the neighboring voxels.

Neighborhood of the ith voxel vi, is defined as the set of voxels that are closest
to vi according to a predefined rule. Assuming pc many neighbors around a voxel,
neighborhood of vi is represented by ηpc

vi
.

Letting N be the number of voxels, we define an N−by−N adjacency matrix,
ND, to represent the neighborhood of voxels. Each entry of ND is calculated
as follows;

ND(i, j) =

{
1 , vj ∈ ηpc

vi

0 , otherwise.
(4)
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In this study, we define two types of neighborhood, given below:

Spatial neighborhood ηpc
vi

is defined as the set of voxels, which has the pc

smallest Euclidean distance in 3-Dimensional space to voxel vi. This neighbor-
hood system ensures resulting brain parcels to be spatially contiguous.

Functional neighborhood ηpc
vi

is defined as the set of voxels, which has the
highest pc-Pearson Correlation to voxel vi. This neighborhood system connects
functionally similar voxels, even if they are physically apart from each other.

Note that, selection of the number of neighbors, pc, and the type of the neigh-
borhood system highly effects the rest of the steps of BrainParcel. Specifically,
functional neighborhood relaxes the spatial similarity, selecting the neighboring
voxels which are physically far apart. Therefore, the resulting brain parcels are
not guaranteed to be spatially contiguous. It is very crucial to define a sort of
balance in these two types of neighborhood, so that the resulting brain parcels
consist of functionally similar and spatially contiguous voxels.

2.2 Extracting Mesh Arc Descriptors (MADs) Among Voxels

Each voxel is connected to its neighboring voxels according to one of the above
neighborhood systems to form a star mesh around that voxel. The structure of
star mesh depends on the type of the neighborhood system defined above. The
arc weights of each local mesh are estimated by adopting the mesh model of Onal
et al. [12–14]. As opposed to the current studies, we form the meshes, based on
the complete time series recorded at each voxel rather than forming a different
mesh for each cognitive task. This approach enables us to form a shared brain
partition across all of the cognitive tasks

fMRI technique collects a time series for each voxel, when the subject is
exposed to a cognitive stimulus. In the case of a block experiment design, which
we have used, subjects are exposed to a stimulus for a specific time interval and
the voxel time series over the entire brain volume are collected. Then, after a
rest period, another stimulus is given to the subject. The time series recorded
during a stimulus at ith voxel is represented by the vector vi. Based on the idea
of mesh model, we represent each vi as weighted sum of other voxels in the
ηpc

vi
neighborhood of vi according to Eq. 3. Notice that Mesh Arc Descriptors

(MADs) for classification are calculated per cognitive stimulus. However, we
compute MADs from the entire time series of the voxels. Therefore, k index,
which indicates a specific cognitive task, is removed from Eq. 3, since we compute
MADs for the entire time duration of fMRI recordings. This representation is
carried with a linear equation by the following formula;

vi =
∑

vj∈ηp
vi

ai,jvj + εi,j . (5)

Weights of the representation, called Mesh Arc Descriptors (MADs) are shown
as ai,j and are estimated by Regularized Ridge Regression which minimizes the
mean squared error ε2i,j [12–14].
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2.3 Constructing a Voxel-Level Brain Graph

In order to construct a brain graph from the estimated MADs, we ensemble all
the local meshes under the same graph, Gm = (V,Em). The set of nodes of
this graph correspond the set of voxels V = [v1,v2, . . .vN]. The set of edges
corresponds to set of all MADs, ai,jεEm. Note that, since ai,j �= aj,i, the graph
Gm is directed. On the other hand, the graph partitioning methods, such as
n-cut requires undirected graphs, in which each edge weight, ei,j is represented
by a scalar number. In order to obtain an undirected graph from the directed
graph Gm, a set of heuristic rules are used. Suppose that the mesh is formed
for the voxel vi, and vj is in the neighborhood of vi with mesh arc-weight ai,j .
Edge value ei,j is determined, based on the following rules:

– Case 1: IF vi /∈ ηpc
vj

AND vj ∈ ηpc
vi

THEN ei,j = ai,j

– Case 2: IF vi ∈ ηpc
vj

AND vj ∈ ηpc
vi

THEN this case requires further analysis.
Assuming highly correlated voxels should have a stronger edge between them,
we employ the following thresholding method;
IF corr(vi, vj) ≥ 0, THEN ei,j = max(ai,j , aj,i)
IF corr(vi, vj) < 0, THEN ei,j = min(ai,j , aj,i).

Above rules prune the directed graph Gm to an undirected graph G to be par-
titioned for obtaining homogeneous brain regions, called supervoxels.

2.4 Graph Partitioning for Obtaining Supervoxels

After constituting the brain graph G, n-cut segmentation method is used for
clustering this graph. N-cut is a graph partitioning algorithm which carries a
graph cut method on a given undirected graph. Given G, n-cut cuts the edges
one by one in an iterative manner. With each cut, the graph is split into two
smaller connected components. Letting N be the number of voxels, n-cut method
requires the representative graph G, which is actually an N − by − N adjacency
matrix explained in the previous sections. The number of intended brain parcels
is set to C. With graph cut operations, graph is split into C connected compo-
nents where C ≤ C. Each sample is a member of one of this clusters and assigned
with a cluster index. In other words, n-cut method returns an 1− by −N dimen-
sional vector LC = [lc1, l

c
2, . . . , l

c
N ] where each lci is a number between 1 and C.

The n-cut method, as applied to undirected graph G is called BrainParcel. The
output of this algorithm yields a set of supervoxels, which are homogeneous with
respect to the subgraphs of mesh network.

Recall that, anatomical regions (AAL) produce an experimentally neurosci-
entific parcellation of the brain. In order to compare the brain decoding perfor-
mances, we conducted our experiment, where we form mesh network for both
among anatomical regions and the network formed among supervoxels obtained
at the output of BrainParcel. There are 116 basic brain regions in AAL and
each voxel resides in one and only one region. Let us represent the anatomi-
cally defined region indices of voxels with LA = [la1 , la2 , . . . , laN ], in order to avoid
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confusions. Notice that, with LA we skip all of the brain parcellation steps. Also,
let us call L = [l1, l2, . . . , lN ] to all kinds of brain segmentations; in our case it
means L ⊃ (LC ∩ LA).

2.5 Representation of Supervoxels

We need to calculate a representative signal for each supervoxel. For this purpose,
we take an average among the time series of voxels within each supervoxel. With
C supervoxels, we calculate set of vectors U = [u1,u2, . . . ,uC], where each ui

is the representative vector of supervoxel i and they are calculated as follows;

ui =

∑
lj==i vj∑
lj==i 1

. (6)

In the dataset on which we have performed our experiments, six measure-
ments were taken for each cognitive stimulus. Assuming K stimuli were shown
to each subject, time series of each voxel has a length K = 6K. Therefore, at
the output of the clustering algorithm we construct a data matrix U of size
C − by − K, where each row represents a feature, and each column corresponds
to a cognitive stimulus.

2.6 Constructing Supervoxel-Level Brain Graph

The original area of utilization of the mesh model was to model the relationships
among voxels and use this relationship for decoding the cognitive processes. Both
spatial and functional neighborhoods were considered, and their representation
powers were demonstrated by relatively high recognition performances compared
to the available state of the art network models. Specifically, Functional Mesh
Model (FMM) outperform most of the MVPA and Spatial Mesh Model (SMM)
results. Therefore, we use FMM for classifying the cognitive states.

Data matrix U , defined in the previous section, is feed into the FMM algo-
rithm. Each supervoxel ui is represented by linear combination of its functional
neighbors, the arc weights are estimated at each mesh using Ridge Regression for
each cognitive stimulus. Recall that fMRI collects multiple measurements during
the time course of each cognitive stimulus. In our dataset 6 measurements are
collected for each stimulus, and ui is a vector of length K = 6K for K stimuli.
Let us represent the vector of the stimulus k by ui(k). First, functionally closest
pm neighbors of ui(k); ηpm

ui(k)
, are selected from the supervoxels uj which has the

highest correlation with supervoxel ui according to Pearson Correlation. Then,
the mean square error E(ε2i,j) is minimized to estimate ai,j,k of the Eq. 3. Esti-
mated MADs are concatenated so that they represent a more powerful feature
space compared to the raw fMRI signal intensity values that is used in MVPA
studies. We concatenate all the MADs and represent the stimulus in a feature
space formed by MADs.
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2.7 Classification

MADs estimated at supervoxel-level, are concatenated under a feature vector
for classifying the cognitive states. 6 fold cross validation schema is applied on
the dataset, where at each fold, one run is reserved from the data as a test set.
Logistic regression is used for classification.

3 Experiments

3.1 Dataset

In this study, we use a dataset called “Object Experiment”. This dataset is
recorded by the team of ImageLab of METU members at Bilkent University
UMRAM Center. It consists of 4 subjects in the age of twenties. Each subject is
shown various bird and flower pictures. In between those stimuli, simple math-
ematics questions are shown as transition. There are 6 runs in the experiment
and in each run, 36 pictures are shown to each subject. Thus, there are total
of 216 samples. Number of samples are balanced for the two classes (bird and
flower). Preprocessing of the dataset is carried with the SPM toolbox and the
number of voxels is decreased to 20,000 for each subject. Also, there are 116
labeled anatomical regions, defined under MNI coordinate system [19]. We pro-
vide experimental results, where each given accuracy is the output of a six fold
cross validation. Recall that, each subject is given 6 runs of stimuli. At each fold,
we split a run for testing and use the other 5 runs for training. The reported
accuracies are the average of these 6 folds for each subject.

3.2 Comparative Results

In this section, we provide a comparison between BrainParcel and the parcel-
lation algorithm suggested by Craddock et al. Table 1 shows the classification
performances for various number of parcels. The results are reported after opti-
mizing the mesh sizes empirically. Recall that, functionally constrained systems
that construct the graph with Functional ND neighborhood system does not
provide any spatial integrity within the brain parcels, since the brain graph is
not formed on these grounds. On the other hand, spatially constrained systems
provide both spatial continuity and functional homogeneity since the brain graph
is formed by spatial restrictions and edges are weighted in terms of functional
connectivity.

In Table 1, the first and third column give the best results for the brain par-
cellation method suggested by Craddock et al. (called classical, in the Table), and
the other two gives the results obtained by BrainParcel that we have proposed.
Each row of this table gives the results for a different number of supervoxels
(SV). Notice that spatially constrained BrainParcel gives the best classification
performances in the overall schema.

These results point to the idea that, in order to achieve better represen-
tational power for cognitive state classification, one needs spatially contiguous
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and functionally homogeneous brain parcels, which is accomplished by spatial
BrainParcel. Moreover, recall that we have offered BrainParcel as an alternative
to AAL, which has 116 basic anatomic regions and gives 53% performance on
average. A compatible parcellation scheme consists of 100 super voxels, where,
Spatial BrainParcel results in higher classification accuracies compared to the
other methods.

Table 1. Overall 2-class classification accuracy acquired from the MADs constructed
among super voxels and method suggested by Craddock et al. (called, classical). These
results suggest that Spatial BrainParcel gives higher performances, since it provides
spatial continuity and functional homogeneity within each brain parcel.

# of SV Spatial constraints Functional constraints

Classical BrainParcel Classical BrainParcel

100 67.79 74.00 70.63 73.29

250 72.96 78.71 76.79 77.54

500 75.46 79.42 77.33 77.54

750 77.46 78.04 79.38 77.54

1000 78.08 78.83 79.96 80.08

4 Conclusion

In this study, we offer a brain parcellation methodology, which combines the
spatial and functional connectivity of brain on a novel graph representation. This
approach offers a better alternative to the current brain parcellation methods
in the literature [8,18], for brain decoding problems. BrainParcel uses spectral
clustering methods, which represents the voxel space as a graph formed by mesh
model. Common studies compute the edge weights of the brain graph as the
pairwise correlation between voxels, whereas we computed the edge weights by
estimating them using the mesh model among a group of voxels. Then, brain
graph is partitioned with n-cut segmentation method to generate supervoxels.

As suggested, using task dependent brain parcellation methods enable better
brain decoding performances compared to anatomical regions. Moreover, it is
demonstrated that functional connectivity, united with the spatial contiguity is
the best approach to represent homogeneous brain regions.

Also, results show that using the MADs of the mesh model for classification,
improves the brain decoding performances in all of the experiment setups.

Our study reveals that mesh model not only improves the classification per-
formance, but also creates a brain graph, where the nodes represent homogeneous
super voxels with a better representation power for brain decoding. Although
the performance increase looks relatively small, when the large size of the data
set is considered, the performance boost becomes quite meaningful.

In the future, experimental set up can be refined for parameter selection.
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Abstract. In this study, we propose a neural network approach to cap-
ture the functional connectivities among anatomic brain regions. The
suggested approach estimates a set of brain networks, each of which
represents the connectivity patterns of a cognitive process. We employ
two different architectures of neural networks to extract directed and
undirected brain networks from functional Magnetic Resonance Imaging
(fMRI) data. Then, we use the edge weights of the estimated brain net-
works to train a classifier, namely, Support Vector Machines (SVM) to
label the underlying cognitive process. We compare our brain network
models with popular models, which generate similar functional brain
networks. We observe that both undirected and directed brain networks
surpass the performances of the network models used in the fMRI lit-
erature. We also observe that directed brain networks offer more dis-
criminative features compared to the undirected ones for recognizing the
cognitive processes. The representation power of the suggested brain net-
works are tested in a task-fMRI dataset of Human Connectome Project
and a Complex Problem Solving dataset.

Keywords: Brain graph · Brain decoding · Neural networks

1 Introduction

Brain imaging techniques, such as, functional Magnetic Resonance Imaging
(fMRI) have facilitated the researches to understand the functions of human
brain using machine learning algorithms [14,15,20,25]. In traditional approaches,
such as Multi-Voxel Pattern Analysis (MVPA), the aim was to discriminate cog-
nitive tasks from the fMRI data itself without forming brain graphs and consid-
ering relationship between nodes of graphs. Moreover, Independent Component
Analysis (ICA) and Principal Component Analysis (PCA) have been applied to
obtain better representations. In addition to feature extraction methods, Gen-
eral Linear Model (GLM) and Analysis of Variance (ANOVA) have been used
to select important voxels [20]. None of these approaches take into account the

c© Springer Nature Switzerland AG 2018
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massively connected network structure of the brain [3,4,12,22,26]. Recently, use
of deep learning algorithms have also emerged in several studies [7–9] to clas-
sify cognitive states. Most of these studies mainly focus on using deep learning
methods to extract better representations from fMRI data for brain decoding.

Several studies form brain graphs using voxels or anatomical regions as nodes
and estimate the edge weights of brain graphs with different approaches. Among
them, Richiardi et al. [21] have created undirected functional connectivity graphs
in different frequency subbands. They have employed Pearson correlation coef-
ficient between responses obtained from all region pairs as edge weights and use
these edge weights to perform classification in an audio-visual experiment. Brain
graphs, constructed using pairwise correlations and mutual information as edge
weights, have been used to investigate the differences in networks of healthy
controls and patients with Schizophrenia [11] or Alzheimer’s disease [10,13].
Yet, these studies consider only pairwise relationships while estimating the edge
weights and ignore the locality property of the brain.

Contrary to pairwise relationships, a number of studies have estimated the
relationships among nodes within a local neighborhood. Ozay et. al. [19] and
Firat et al. [6] have formed local meshes around nodes and constructed directed
graphs as ensembles of local meshes. They have applied Levinson-Durbin recur-
sion [24] to estimate the edge weights representing the linear relationship among
voxels and have used these weights to classify the category of words in a work-
ing memory experiment. Similarly, Alchihabi et al. [2] have applied Levinson-
Durbin recursion to estimate the edge weights of local meshes of dynamic brain
network for every brain volume in Complex Problem Solving task and have
explored activation differences between sub-phases of problem solving. While
these studies conserve the locality in the brain, construction of a graph for every
time instant discards temporal relationship among nodes of the graph. Onal et
al. [17,18] have formed directed brain graphs as ensemble of local meshes. They
have estimated the relationships among nodes within a time period considering
the temporal information using ridge regression. Since the spatially neighbor-
ing voxels are usually correlated, linear independence assumption of features
required for closed form solution to the estimation of linear relationship among
voxels is violated. This may result in large errors and inadequate representation.
Since the aforementioned studies form local meshes around each node separately,
associativity is ignored in the resulting brain graphs.

In this study, we propose two brain network models, namely, directed and
undirected Artificial Brain Networks to model the relationships among anatom-
ical regions within a time interval using fMRI signals. In both network models,
we train an artificial neural network to estimate the time series recorded at node
which represent an anatomic region by using the rest of the time series recorded
in the remaining nodes. In our first neural network architecture, called directed
Artificial Brain Networks (dABN), global relationships among nodes are esti-
mated without any constraint whereas in our second architecture of undirected
Artificial Brain Networks (uABN), we apply a weight sharing mechanism to
ensure undirected functional connections.
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We test the validity of our dABN and uABN in two fMRI datasets and com-
pare the classification performances to the other network models available in the
literature. First, we employ the Human Connectome Project (HCP), task-fMRI
(tfMRI) dataset, in which the participants were required to complete 7 different
mental tasks. The second fMRI dataset contains fMRI scans of subjects solving
Tower of London puzzle and has been used to study regional activations of Com-
plex Problem Solving [2,16]. The task recognition performances of the suggested
Artificial Brain Networks are significantly greater than the ones obtained with
state of the art functional connectivity methods.

2 Extraction of Artificial Brain Networks

In this section, we explain how we estimate the edge weights of directed and undi-
rected brain networks using artificial neural networks. Throughout this study, we
represent a brain network by G = (V,E), where V = {v1, v2, v3, . . . , vM}, denotes
the vertices of the network, which represent M = 90 anatomical brain regions,
R = {r1, r2, r3, . . . , rM}. The attribute of each node is the average time series of
BOLD activations. The average BOLD activation of an anatomical region ri at
time t is denoted with bi,t. We use all anatomical regions defined by Anatomical
Atlas Labeling (AAL) [23], except for the ones residing in Cerebellum and Ver-
mis. We represent the edges of the brain network by E = {ei,j |∀vi, vj ∈ V, i �= j}.
The weights of edges depend on the estimation method. We denote the adjacency
matrix which consists of the edge weights, as A, where ai,j represents the weight
of edge from vi to vj , when the network is directed. When the network is undi-
rected the weight of the edge formed between vi and vj is ai,j = aj,i. Sample
representations of directed and undirected brain networks are shown in Figs. 1
and 2, respectively.

s0

s1 s2

s3

Amygdala

Cingulum Occipital

Parietal

Fig. 1. A directed brain network.

s0

s1 s2

s3

Amygdala

Cingulum Occipital

Parietal

Fig. 2. An undirected brain network.

We temporally partition the fMRI signal into chunks with length L recorded
during each cognitive process. The fMRI time series at each chunk is used to esti-
mate a network to represent the spatio-temporal relationship among anatomic
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regions. Then, the cognitive process k of subject s is described as a consecutive
list (T s

k ) of brain networks, formed for each chunk within time interval [t, t + L],
where T s

k = {G1, G2, . . . , GCk
}. Note that, Ck is the number of chunks obtained

for cognitive process k and equals to �Nk/L�, where Nk denotes the number
of measurements recorded for cognitive process k. Since we obtain a different
network for each duration of length L for a cognitive process of length Nk, this
approach estimates a dynamic network for the cognitive process, assuming that
Nk is sufficiently large.

For a given time interval [t, t + L], weights of incoming edges to vertex vi is
defined by an M dimensional vector, ai = [ai,1, ai,2 . . . ai,M ]. Note that the ith
entry ai,i = 0, which implies that a node does not have an edge value into itself.
These edge weights define the linear dependency of activation, bi,t, of region ri
at time t to the activations of the remaining regions, bj,t for a time interval
t′ ∈ {t, t + L}

bi,t′ =
M∑

j �=i,j=1

ai,jbj,t′ + εt′ = b̂i,t′ + εt′ ∀t′ ∈ {t, t + L} (1)

where b̂i,t′ is the estimated value of bi,t′ at time t′ with error rate εt′ , which
is the difference between the real and estimated activation. Note that each node
is connected to the rest of M −1 nodes each of which corresponding to anatomic
regions.

2.1 Directed Artificial Brain Networks (dABN)

In fully connected directed networks, we define two distinct edges between all
pairs of vertices, E = {ei,j , ej,i|vi, vj ∈ V, i �= j} where ei,j denotes an edge from
vi to vj . The weights of the edge pairs are not to be symmetrical, ai,j �= aj,i.

The neural network we design to estimate edge weights consists of an input
layer and an output layer. For every edge in the brain network, we have an
equivalent weight in the neural network, such that weight between inputi and
outputj , wi,j is assumed to be an estimate for the weight, ai,j of the edge from
vi to vj , in the artificial brain network.

We employ a regularization term λ to increase generalization capability of
the model and minimize the expected value of sum of squared error through
time. Loss of an output node outputi is defined as,

Loss(outputi) = E((bi,t′ −
M∑

j �=i,j=1

wi,jbj,t′)2) + λwT
i wi, (2)

where wi,j denotes the neural network weight between inputi and outputj and
E(.) is the expectation operator taken over time interval [t, t + L]. For each train-
ing step of the neural network, e, gradient descent is applied for the optimization
of the weights as in Eq. (3) with empirically chosen learning rate, α. The whole
system is trained for an empirically selected number of epochs (Fig. 3).
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Fig. 3. Directed Artificial Brain Network architecture.

w
(e)
i,j ← w

(e−1)
ij − α

∂Loss(outputi)
∂wi,j

. (3)

After training, the weights of neural network are assigned to edge weights of
the corresponding brain graph, ai,j ← wi,j ,∀i,j .

2.2 Undirected Artificial Brain Network (uABN)

In undirected brain networks, similar to directed brain network, we define double
connections between every pair of vertices E = {ei,j , ej,i|vi, vj ∈ V, i �= j}.
However, in order to make the network undirected, we must satisfy the constraint
that twin (opposite) edges have the equal weights, ai,j = aj,i. In order to assure
th’s property in the neural network explained in the previous section, we use a
weight sharing mechanism and keep the weights of the twin (opposite) edges in
the neural network equal through the learning process, such that wi,j = wj,i.
The proposed architecture is shown at Fig. 4.

We use Eq. (2) for undirected Artificial Brain Networks. The weight matrix
of uABN is initialized symmetrically, wi,j = wj,i and in order to satisfy the
symmetry constraint through training epochs, we define the following update
rule for the weights, wi,j and wj,i at epoch e.

w
(e)
i,j = w

(e)
j,i ← w

(e−1)
i,j − 1

2
α

[
∂Loss(outputi)

∂wi, j
+

∂Loss(outputj)
∂wi,j

]
. (4)

Again, after an empirically determined number of epochs, the weights of edges
in the undirected graph is assigned to the neural network weights, ai,j ← wi,j .

2.3 Baseline Methods

In this subsection, we briefly describe the popular methods that have been used
to build functional connectivity graphs, in order to provide some comparison for
the suggested Artificial Brain Network.
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Fig. 4. Neural network structure to create undirected Artificial Brain Networks (con-
nections with the same colors are shared).

Pearson Correlation. In their work, Richiardi et al. [21] defined the func-
tional connectivity between two anatomic regions as pair-wise Pearson correla-
tion coefficients computed between the average activations of these regions in a
time interval. The edge weights are calculated by,

ρbi,t,L,bj,t,L =
cov(bi,t,L,bj,t,L)

σbi,t,L
σbj,t,L

, (5)

where bi,t,L = [bi,t, bi,(t+1), . . . , bi,(t+L)] represents the average time series of
BOLD activations of region i between time t and t + L, cov() defines the covari-
ance, and σs represents the standard deviation of time series s. This approach
assumes that the pair of similar time series represent the same cognitive process
measured by fMRI signals.

Closed Form Ridge Regression. In order to generate brain networks with
the method proposed in [18], we estimate the activation of a region from the
activations of its neighboring regions in a time interval [t, t + L]. We minimize
the loss function in Eq. 2 using closed form solution for ridge regression. The loss
function is minimized with respect to the edge weights outgoing from a vertex vi,
ai = [ai,1, ai,2 . . . ai,M ] and the following closed form solution of ridge regression
is obtained:

ai = (BTB + λI)−1BTbi,t,L, (6)

where B is an L × (M − 1) matrix, whose columns consist of the average BOLD
activations of anatomic regions except for the region ri in the time interval [t, t+
L] such that column j of matrix B is bj,t,L. λ ∈ R represents the regularization
parameter.
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3 Experiments and Results

In order to examine the representation power of the suggested Artificial Brain
Networks, we compare them with the baseline methods, presented in the previous
subsection, on two different fMRI dataset. The comparison is done by measuring
the cognitive task classification performances of all the models.

3.1 Human Connectome Project (HCP) Experiment

In Human Connectome Project dataset, 808 subjects attended 7 sessions of fMRI
scanning in each of which the subjects were required to complete a different
cognitive task with various durations, namely, Emotion Processing, Gambling,
Language, Motor, Relational Processing, Social Cognition, and Working Mem-
ory. We aim to discriminate these 7 tasks using the edge weights of the formed
brain graphs.

In the experiments, the learning rate α was empirically chosen as α = 10−5

for both dABN and uABN and window size is chosen as L = 40. We tested
the directed and undirected Artificial Brain Networks and Ridge Regression
method using various λ values. Since computation of Pearson correlation does
not require any hyper parameter estimation, a single result is obtained for the
Pearson correlation method.

After estimating the Artificial Brain Networks and forming the feature vec-
tors from edge weights of the brain networks, we performed within-subject and
across-subject experiments using Support Vector Machines with linear kernel.
During the within-subjects experiments, we performed 3-fold cross validation
using only the samples of a single subject. Table 1 shows the average of within-
subject experiment results over 807 subjects, when the classification is performed
using a single subject brain network of 7 tasks. During the across-subject experi-
ments, we performed 3-fold cross validation using the samples obtained from 807
subjects. For each fold we employed the samples from 538 subjects to train and
269 subject to test the classifier. Table 2 shows the across-subject experiment
results.

Table 1. Within-subject performances of brain networks on HCP dataset.

λ Pearson corr. Ridge reg. dABN uABN

Mean Std Mean Std Mean Std Mean Std

0 0.7194 0.16 - - 0.7435 0.13 0.5918 0.13

32 0.7194 0.16 0.7957 0.11 0.9133 0.08 0.913 0.08

64 0.7194 0.16 0.8304 0.11 0.9406 0.07 0.9402 0.07

128 0.7194 0.16 0.8377 0.11 0.9463 0.06 0.9462 0.07

256 0.7194 0.16 0.8119 0.12 0.9313 0.08 0.9307 0.08

512 0.7194 0.16 0.7462 0.13 0.8852 0.1 0.8849 0.1
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Table 2. Across-subject performances of brain networks on HCP dataset.

λ Pearson corr. Ridge reg. dABN uABN

Mean Std Mean Std Mean Std Mean Std

0 0.7524 0.01 - - 0.6654 0.01 0.5681 0.01

32 0.7524 0.01 0.8027 0.01 0.8153 0.00 0.8123 0.00

64 0.7524 0.01 0.8223 0.00 0.8312 0.01 0.8297 0.01

128 0.7524 0.01 0.8370 0.01 0.8401 0.01 0.8393 0.01

256 0.7524 0.01 0.8461 0.01 0.8410 0.01 0.8406 0.00

512 0.7524 0.01 0.8466 0.01 0.8357 0.01 0.8357 0.01

Table 1 shows that in within subject experiments our methods, dABN and
uABN, have the best performances in classifying the cognitive task under differ-
ent λ values, furthermore performances of directed networks are slightly better
than undirected ones. It can be observed that as λ increases, generalization of
our models also increase up to λ = 128.

Table 2 shows that our methods outperforms the others within a range of
lambdas, λ = {32, 64, 128}. Pearson Correlation results in the best accuracy
when no regularization is applied to Artificial Brain Networks. Closed Form
Ridge Regression solution offers more discriminative power in higher λ values.

3.2 Tower of London (TOL) Experiment

We also test the validity of the suggested Artificial Brain Network on a rela-
tively more difficult fMRI dataset, recorded when the subjects solve Tower of
London (TOL) problem. TOL is a puzzle game which has been used to study
complex problem solving tasks in human brain. TOL dataset used in our experi-
ments contains fMRI measurements of 18 subjects attending 4 session of problem
solving experiment. In the fMRI experiments, subjects were asked to solve 18
different puzzles on computerized version of TOL problem [16]. There are two
labeled subtask of problem solving with varying time periods namely, planning
and execution phases.

As the nature of the data is not compatible with a sliding window approach
and the dimensionality is too high for a computational model, in the study of
Alchihabi et al. [1], a series of preprocessing steps were suggested for the TOL
dataset. In this study, we employ the first two steps of their pipeline. In the first
step called voxel selection and regrouping, a feature selection method is applied
on time series of voxels to select the “important” ones. Then, the activations
of the selected voxels in the same region are averaged to obtain the activity
of corresponding region. As a result, a more informative and lower dimensional
representation is achieved. In the second step, bi-cubic spline interpolation is
applied to every consecutive brain volumes and a number of new brain volumes
are inserted between two brain volumes to increase temporal resolution. For the
details of interpolation, refer to [1]. In this study, the optimal number of volumes
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inserted between two consecutive brain volumes are found empirically and it is
set to 4. Therefore, the time resolution of the data is increased four times.

We applied the above-mentioned preprocessing steps to all of the 72 ses-
sions in the dataset. After the voxel selection phase, number of regions contain-
ing selected voxels is much less than 116 regions. Note that, we discard regions
located in Cerebellum and Vermis. Window size for this dataset was set to L = 5,
since there are at least 5 measurements for every sub-phase after the interpola-
tion. The neural network parameters used in our experiments are α = 10−6 and
#epochs = 10. Table 3 shows the mean and standard deviation of classification
accuracies obtained with our method and the base-line methods. Similar to HCP
experiments, we slided non-overlapping windows on the measurements and we
performed 3-fold cross validation during TOL experiments.

Table 3. Across-subject performances of mesh networks on TOL dataset.

λ Pearson corr. Ridge reg. dABN uABN

Mean Std Mean Std Mean Std Mean Std

0 0.6119 0.09 - - 0.8914 0.11 0.8499 0.12

32 0.6119 0.09 0.6688 0.10 0.8913 0.11 0.8499 0.12

64 0.6119 0.09 0.6651 0.10 0.8914 0.11 0.8499 0.12

128 0.6119 0.09 0.6679 0.10 0.8906 0.11 0.8499 0.12

256 0.6119 0.09 0.6685 0.10 0.8905 0.11 0.8500 0.12

512 0.6119 0.09 0.6705 0.10 0.8912 0.11 0.8498 0.12

Table 3 shows that using Artificial Brain Networks gives better performances
than using Pearson Correlation and Closed Form Ridge Regression methods in
classifying sub-phases of complex problem solving under various regularization
parameters. We observe that decoding performances of directed brain networks
outperforms those of undirected brain networks.

4 Discussion and Future Work

In this study, we introduce a network representation of fMRI signals, recorded
when the subjects perform a cognitive task. We show that the suggested Artifi-
cial Brain Network estimated from the average activations of anatomic regions
using an artificial neural network leads to a powerful representation to discrim-
inate cognitive processes. Compared to the brain networks obtained by ridge
regression, the suggested Artificial Brain Network achieves more discriminative
features. The success of the suggested brain network can be attributed to the
iterative nature of the neural network algorithms to optimize the loss function,
which avoids the singularity problems of Ridge Regression.

In most of the studies, it is customary to represent functional brain con-
nectivities as an undirected graphs. However, in this study, we observe that the
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directed network representations capture more discriminative features compared
to the undirected ones in brain decoding problems.

In this study, we consider complete brain graphs where all regions are
assumed to have connections to each other. A sparser brain representation can
be computationally more efficient and neuro-scientifically more accurate. As a
future work, we aim to estimate more efficient brain network representations by
employing some sparsity parameters in the artificial neural networks.

It is well-known that brain processes the information in various frequency
bands. [5,21] applied discrete wavelet transform before creating connectivity
graphs. A similar approach can be taken for a more complete temporal informa-
tion in brain decoding problems.
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Abstract. In this work, we consider the problem of predicting the
course of a progressive disease, such as cancer or Alzheimer’s. Progressive
diseases often start with mild symptoms that might precede a diagnosis,
and each patient follows their own trajectory. Patient trajectories exhibit
wild variability, which can be associated with many factors such as geno-
type, age, or sex. An additional layer of complexity is that, in real life,
the amount and type of data available for each patient can differ sig-
nificantly. For example, for one patient we might have no prior history,
whereas for another patient we might have detailed clinical assessments
obtained at multiple prior time-points. This paper presents a proba-
bilistic model that can handle multiple modalities (including images and
clinical assessments) and variable patient histories with irregular timings
and missing entries, to predict clinical scores at future time-points. We
use a sigmoidal function to model latent disease progression, which gives
rise to clinical observations in our generative model. We implemented
an approximate Bayesian inference strategy on the proposed model to
estimate the parameters on data from a large population of subjects. Fur-
thermore, the Bayesian framework enables the model to automatically
fine-tune its predictions based on historical observations that might be
available on the test subject. We applied our method to a longitudi-
nal Alzheimer’s disease dataset with more than 3,000 subjects [1] with
comparisons against several benchmarks.

1 Introduction

Many progressive disorders, such as Alzheimer‘s disease (AD) [2], begin with
mild symptoms that often precede diagnosis, and follow a patient-specific clini-
cal trajectory that can be influenced by genetic and/or other factors. Therapeutic
interventions, if available, are usually more effective in the earliest stages of a
progressive disease. Therefore, tracking and predicting disease progression, par-
ticularly during the mild stages, is one of the primary objectives of personalized
medicine.

In this paper, we are motivated by the real-world clinical setting where each
individual is at risk and thus monitored for a specific progressive disease, such as
AD. Furthermore, we assume that each individual might pay zero, one, or more

c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): GRAIL 2018/Beyond MIC 2018, LNCS 11044, pp. 57–65, 2018.
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visits to the clinic. In each clinical visit, various biomarkers or assessments (cor-
related with the disease and/or its progression) are obtained. Example biomarker
modalities include brain MRI scans, PET scans, blood tests, and cognitive test
scores. The number and timing of the visits, and the exact types of data collected
at each visit can be planned to be standardized, but often vary wildly between
patients in practice. An ideal clinical prediction tool should be able to deal with
this heterogeneity and compute accurate forecasts for arbitrary time horizons.

We present a probabilistic disease progression model that elegantly handles
the aforementioned challenges of longitudinal clinical settings: data missingness,
variable timing and number of visits, and multi-modal data (i.e., data of different
types). The backbone of our model is a latent sigmoidal curve that captures the
dynamics of the unobserved pathology, which is reflected in time-varying clini-
cal assessments. Sigmoid curves are conceptually useful abstractions that fit well
a wide range of dynamic physical and biological phenomena, including disease
progression [3–5], which exhibit a floor and ceiling effect. In our framework, the
sigmoid allows us to model the temporal correlation in longitudinal measure-
ments and capture the dependence between the different tests and assessments,
which are assumed to be generated conditionally independently from the latent
state. We implemented an approximate Bayesian inference strategy on the pro-
posed model and applied it to a large-scale longitudinal AD dataset [1].

In our experiments, we considered three target variables, which are widely
used cognitive and clinical assessments associated with AD: the Mini Mental
State Examination (MMSE) [6], the Alzheimer’s Disease Assessment Scale Cog-
nitive Subscale (ADAS-COG) [7], and the Clinical Dementia Rating Sum of
Boxes (CDR-SB) [8]. We trained and evaluated the proposed model on a lon-
gitudinal dataset with more than 3,000 subjects that included healthy controls
(cognitively normal elderly individuals), subjects with mild cognitive impairment
(MCI, a clinical stage that indicates high risk for dementia), and patients with
AD. We provide a detailed analysis of prediction accuracy achieved with the
proposed model and alternative benchmark methods under different scenarios
that involve varying the past available visits and future time windows. In all our
comparisons, the proposed model achieves significantly and substantially better
accuracy for all target biomarkers.

2 Methods

2.1 Model

Let us first describe our notation and present our model. Assume we are given
n subjects. xi ∈ R

d×1 denotes subject i’s d-dimensional attribute vector. In our
experiments, this vector contains APOE genotype (encoded as number of E4
alleles, which can be 0, 1 or 2) [9], education (in years) [10], sex (0 for female
and 1 for male) [11] and two well-established neuroanatomical biomarkers of
AD computed from a baseline MRI scan (namely total hippocampal [12] and
ventricular volume [13] normalized by brain size). The MRI biomarkers capture
so-called “brain reserve” [14]. Let yk

i ∈ R
vi×1 represent the values of the the
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k’th dynamic (i.e., time-varying) target variable at vi different clinical visits.
ti = [ti1, · · · , tivi

] ∈ R
vi×1 denotes a vector of the age of subject i at these visits.

The number and timing of the visits can vary across subjects. In general, we
will assume k ∈ {1, · · · ,m}. In our experiments, we consider 3 target variables:
MMSE, ADAS-COG or CDRSB and thus m = 3. We use dk

i = [dki1, · · · , dkivi
]

to denote subject i’s latent trajectory values associated with the k’th target
variable. We assume each dkij ∈ [0, 1], with lower values corresponding to milder
stages. As we describe below, the target variable, which is a clinical assessment,
will be assumed to be a noisy observation of this latent variable. We model the
latent trajectory of dk

i as a sigmoid function of time (i.e., age), parameterized by
a target- and subject-specific inflection point pki ∈ R and a subject-specific slope
parameter si ∈ R. We assume that the slopes of the latent sigmoids associated
with each target are coupled for each subject, yet the inflection points differ,
which correspond to an average lag between the dynamics of target variables.
This is consistent with the hypothesized biomarker trajectories of AD [3]. How-
ever, it would be easy to relax this assumption by allowing each target variable
to have its own slope.

We assume the inflection points {pki } and slopes {si} are random variables
drawn from Gaussian priors with means equal to linear functions of subject-
specific attributes xi: pki ∼ N (vTxi + ak, σ

2
p), si ∼ N (wTxi + b, σ2

s), where
ak ∈ R is associated with the k’th target (accounting for different time lags
between target dynamics), while v,w ∈ R

d×1, and b, σp, σs ∈ R are general
parameters. Here and henceforth N (μ, σ2) denotes a Gaussian with mean μ
and variance σ2. Given si and pki , the latent value dkij associated with the k’th
target is computed by evaluating the sigmoid at tij , dkij = 1

1+exp(−(tij−pk
i )si)

.

The inflection point pki marks the age at which the rate of change achieves its
maximum, which is equal to si/4.

Finally, we assume that the target variable value yk
ij is a linear function of the

latent state dkij corrupted by additive zero-mean independent Gaussian noise:

yk
ij ∼ N (ckdkij + hk, σ

2
k), (1)

where ck, hk, and σk ∈ R are universal (not subject-specific) parameters associ-
ated with the k’th target variable. We refer to Eq. (1) as an observation model.

2.2 Inference

In this section, we discuss how to train the proposed model and apply it during
test time.

Training: Let us use Θ to denote the parameter set of our model:

Θ = {w, b, σp, σs,v, {ak, ck, hk, σk}k=1,··· ,m}.

The goal of training is to estimate the model parameters Θ given data from
n subjects: {yi,xi, ti}i=1,...,n. Here, yi = [y1

i . . .ym
i ] ∈ R

vi×m denotes m target
values of the ith subject for vi visits.
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We estimate Θ via maximizing the likelihood function:
n∏

i=1

P (yi|xi, ti;Θ).

We use the standard notation of p(y|x) to indicate the probability density func-
tion of the random variable Y (evaluated at y) conditioned on the random vari-
able X taking on the value x. Also, parameters not treated as random variables
are collected on the right hand side of “;”.

Now, let us focus on the likelihood of each subject:

P (yi|xi, ti;Θ) =
∫ ∫ ⎡

⎣
vi∏

j=1

p(yij |si,pi, tij)

⎤

⎦ p(si,pi|xi;Θ)dsidpi,

with p(si,pi|xi;Θ)T = p(si|xi;Θ)p(pi|xi;Θ)T .
Instead of the computationally challenging Eq. (2), we use variational approx-

imation [15] and maximize the expected lower bound objective (ELBO):

F (Θ, {γi}) =
n∑

i=1

Eq(
vi∑

j=1

m∑

k=1

T log p(yk
ij |si, pki , tij ;Θ))

− Eq(log q(si; γi)) − Eq(log q(pi; γi)), (2)

where q(si; γi) = N(μsi, σ
2
si) and q(pi; γi)) = N(μpi,Σpi = ΓT

piΓpi) are
proxy distributions that approximate the true posteriors p(si|yi,xi;Θ) and
p(pi|yi,xi;Θ), respectively. During training, we use gradient-ascent to itera-
tively optimize Eq. 2 and solve for the optimal model parameters Θ∗ and the
optimal parameters of the proxy distributions {γ∗

i }. The expectation in the first
term is with respect to the proxy distributions and can be approximated via
Monte Carlo sampling:

Eq(
∑

k

∑

j

log p(yk
ij |si, pki , tij ;Θ)) ≈ 1

S

∑

j

S∑

s=1

log p(yij |s(s)i ,p(s)
i , tij ;Θ), (3)

where s
(s)
i and p(s)

i are samples drawn using the “re-parameterization trick.”
I.e., s

(s)
i = η(s)σsi + μsi and p(s)

i = ΓT
piε

(s) + μpi, where η(s) ∈ R and ε(s) ∈
Rm×1 are realizations of the auxiliary random variables, independently drawn
from zero-mean standard Gaussians, N(0, 1) and N(0, I), respectively. The “re-
parameterization trick” allows us to differentiate the ELBO (or more accurately,
its approximation that uses Eq. 3) with respect to γi.

E.g.:

∂s
(s)
i

∂σsi
= η(s), and

∂s
(s)
i

∂μsi
= 1.

Testing. During test time, we are interested in computing the posterior distri-
bution of yn+1 for a new subject with xn+1 at an arbitrary time-point (age) t.
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We drop the second sub-script, i.e., j index, of yn+1 to emphasize that we will
be computing these posterior probabilities at many different (often future) time-
points. There are two types of test subjects: those with no history of visits
(scenario 1), and those with at least one prior clinical visit (scenario 2). For sce-
nario 2, we will use {y(n+1)j , t(n+1)j}j=1,...,vn+1 to collectively denote the vn+1

historical observations and their corresponding visit times. We fix Θ∗ to the
values obtained from training. In scenario 1, we use Eq. (eq:ELBO) to com-
pute the posterior. In the second scenario, we will first maximize the ELBO of
Eq. (2) with respect to γn+1 and evaluated for the observations on the new sub-
ject {y(n+1)j , t(n+1)j} and attribute vector: xn+1. We then proceed to use these
approximate q distributions in Eq. (2), replacing p(s|xi;Θ∗) and p(pk|xi;Θ∗), to
evaluate the posterior distribution for an arbitrary time-point t conditioned on
past observations.

3 Experiments

Dataset. We use a dataset of 3,057 subjects (baseline age 73.3 ± 17.2 years)
collected by ADNI [1] to empirically validate and demonstrate the proposed
model. This dataset contained multiple clinical visits per subject, during which
thorough cognitive and symptomatic assessments were conducted. In our exper-
iments, we used MMSE, ADAS-COG and CDR-SB as three target variables.
MMSE has a range between 0 (impaired) and 30 (healthy), whereas ADAS-COG
takes on values between 0 (healthy) to 70 (severe), and CDR-SB varies from 0
(healthy) to 18 (severe). The first two (MMSE and ADAS-COG) are general cog-
nitive assessments that track and predict dementia, while CDR-SB is a clinical
score that measures the severity of dementia-associated symptoms. In addition
to the target variables, we utilized individual-level traits associated with AD:
age, APOE genotype (number of E4 alleles), sex, and education (in years). We
also used baseline brain MRI scans to derive two anatomical biomarkers of AD:
total hippocampal and ventricle volume normalized by brain size. These imag-
ing biomarkers were automatically computed with FreeSurfer [16] and quality
controlled as previously described [17].

3.1 Experimental Setup

Benchmark Methods. In our experiments, we compare the proposed method
to the following benchmarks:

1. Global: A 4-parameter (scale, bias, inflection, and slope) sigmoidal model
that was fit on all training data (least-squares).

2. Sex-specific: Same as “Global” but separate for males and females.
3. APOE-specific: Same as “Global”, but separate for three groups defined by

APOE-E4 allele count {0, 1, 2}.
4. Sex- and APOE-specific: Same as “Global”, but separate for each sex and

APOE group.
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5. Linear mixed effects (LME) model: A linear regression model with
subject-specific attributes (xi) as fixed effects, and time and bias term as
a random effects. This LME model, commonly used to capture longitudinal
dynamics, allows each subject to deviate from the average trajectory deter-
mined by its attributes by shifts in slope and offset.

6. Subject-specific linear model: Least-squares fit of a linear model on each
subject’s historical data. When there is only one past visit, we adopt a carry-
forward extrapolation.

Implementation of Proposed Method. We coded in Python 1, using the
Edward library [18], which is in turn built on TensorFlow [19]. We used a 20-
fold cross-validation strategy in all our experiments. We first partitioned the
data into 20 non-overlapping, roughly equally-sized sets of subjects. In each of
the 20 folds, we reserved one of the partitions as the independent test set. Out
of the remaining 19 partitions, one was set aside as a validation set, while the
rest were combined into a training set. The training set was used to estimate the
model parameters, i.e., Θ∗, while performance on the validation set was used
to select hyper-parameters, such as step size in the optimization and evaluate
random initializations. Finally, test performance was computed on the test set.
We report results averaged across 20 folds.

3.2 Results and Discussion

We first show quantitative prediction results for all methods and target vari-
ables (MMSE, ADAS-COG, and CDRSB). In the following, we consider several
prediction scenarios. In the first scenario, we vary the number of past visits
available on test subjects (i.e., vn+1). In general, we expect this variation to
influence the LME and subject-specific linear model benchmarks, in addition to
the proposed model. These methods fine-tune their predictions based on histor-
ical observations available on test data. With more test observations, we expect
them to achieve better accuracy. All other benchmarks are fixed after training
and thus their performance should not improve with increasing number of past
observations. In the second scenario, we fix the number of past observations on
test subjects and vary the prediction horizon. In general, all models’ predictions
should be less accurate for more distant future time-points.

Varying the Number of Past Visits. Figure 1 shows the MMSE, ADAS-COG
and CDRSB prediction accuracies (mean and standard deviation of absolute
error). We observe that the performance of the training-fixed benchmarks (1–4)
worsen slightly as the number of past visits increases. This is likely because the
training data contains more samples at early times (i.e., relatively younger ages),
partially because most subjects drop out by their 4th visit. Therefore, a model
trained on these data is expected to be less accurate for older ages.

The adaptive benchmarks (5–6) and the proposed model, on the other hand,
overcome this handicap to achieve better accuracy with more past visits. As we
1 The code of this work is available at https://github.com/zyy123jy/kdd.

https://github.com/zyy123jy/kdd
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Fig. 1. Absolute error (mean and standard derivation) of all methods for predicting
MMSE, ADAS-COG and CDRSB, as a function of number of past visits available on
test subjects.

Fig. 2. Absolute error (mean and standard derivation) of all methods for predicting
MMSE, ADAS-COG and CDRSB. We used two points from each test subject as past
observations and varied the time horizon for prediction.

discussed above, this is largely because these techniques exploit test observa-
tions to fine-tune their models. The subject-level linear model (benchmark 6),
in fact, is an extreme example, where the predictions are computed merely by
extrapolating from historical observations without relying on training data.

Finally, the proposed model achieves a significantly and substantially better
accuracy than all benchmarks (all paired permutation p-values < pmax = 0.04).
The subject-specific benchmark (6) exhibits the largest variance implying the
quality of performance varies wildly across subjects. Overall, the training-fixed
benchmarks perform the worst. In general the proposed model’s variance is
among the smallest, indicating consistency in prediction accuracy.

Varying the Time Horizon. In order to evaluate how prediction performance
changes as a function of the time horizon, we evaluated the methods for different
future time-points. In this empirical scenario, we assume that each test subject
has 2 past clinical assessments (obtained at baseline and month 6). Our goal is
to predict MMSE, ADAS-COG and CDRSB scores at later time-points (starting
at 12 months after baseline, up to 36 months). Based on the longitudinal study
protocol, we considered 6 month intervals and assigned the actual visits to the
closest 6-month bucket.

Figure 2 shows prediction accuracies of all considered methods. The proposed
method performs significantly (all paired permutation p-values < pmax = 0.03)
and substantially better than all other methods, with the difference increasing
from the short term (12 months) to long term (36 months). For the benchmark
models, prediction accuracy tends to drop more dramatically for longer time
horizons. As above, training-fixed benchmarks perform the worst.
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4 Conclusion

We presented a probabilistic, latent disease progression model for capturing
the dynamics of the underlying pathology that is often shaped by risk factors
such as genotype. Our work was motivated by real-world clinical applications,
where irregular visiting patterns, missing variables, and inconsistent multi-modal
assessments are ubiquitous. We applied the proposed method on a large dataset
of Alzheimer’s disease for predicting clinical scores at varying time horizons
with promising results. Future work will conduct a more detailed analysis of
our proposed model. We are also interested in exploring the use of modern neu-
ral network based methods, such as Recurrent Neural Networks [20], for this
application.
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R01AG053949, and 1R21AG050122, and the NSF NeuroNex grant 1707312. We used
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Abstract. Functional connectivities in the brain explain how different
brain regions interact with each other when conducting a specific activ-
ity. Canonical correlation analysis (CCA) based models, have been used
to detect correlations and to analyze brain connectivities which further
help explore how the brain works. However, the data representation of
CCA lacks label related information and may be limited when applied
to functional connectivity study. Collaborative regression was proposed
to address the limitation of CCA by combining correlation analysis and
regression. However, both prediction and correlation are sacrificed as
linear collaborative regression use the same set of projections on both
correlation and regression. We propose a novel method, deep collabora-
tive learning (DCL), to address the limitations of CCA and collaborative
regression. DCL improves collaborative regression by combining correla-
tion analysis and label information using deep networks, which may lead
to better performance both for classification/prediction and for correla-
tion detection. Results demonstrated the out-performance of DCL over
other conventional models in terms of classification accuracy. Experi-
ments showed the difference of brain connectivities between different age
groups may be more significant than that between different cognition
groups.

Keywords: Canonical correlation · Deep network · fMRI
Functional connectivity

1 Introduction

Brain connectivity depicts the functional relations between different brain
regions [1]. Investigating time-varying dynamic changes in brain connectivity
has been increasingly studied in recent years [2]. Many works [3–5] have stud-
ied brain connectivity and investigated how brain connectivity changes during
adolescence and how it differs between different age groups, e.g., children and
young adults.
c© Springer Nature Switzerland AG 2018
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A number of statistical learning models, e.g. group independent component
analysis [6] and canonical correlation analysis (CCA) [7], have been applied
to multi-modal study to analyze complimentary information between different
imaging modalities and also applied to imaging-genetic study to detect interac-
tions between genetic factors [8], e.g. single nucleotide polymorphisms (SNP),
and endo-phenotypes, e.g., functional magnetic resonance imaging (fMRI).
Among these methods, CCA has been widely used to detect multivariate cor-
relations between two datasets. CCA reduces data dimensionality by projecting
higher dimensional data into lower dimensional spaces. Many variants of CCA,
e.g., multiple CCA [9], multi-set CCA [10], sparse CCA [11], structured sparse
CCA [12], have been developed to address more specific challenges in real data
applications. Despite the wide application of CCA, canonical variables lack label
related information, which may be a limitation to CCA’s application and restrict
the interpretation of its output. To address the limitation, Gross et al. [13] pro-
posed a model, collaborative regression, which identifies label related correlations
by incorporating regression into CCA’s objective function. However, according
to the simulation results in [13], collaborative regression may result in poor per-
formance for prediction. This may be due to the restriction on coefficient vectors
which requires the projection of correlation and that of the regression to be in
the same direction.

In this paper, we proposed a novel model, deep collaborative learning (DCL),
which addresses the limitation of collaborative regression by combining correla-
tion analysis and regression method via deep networks which may lead to higher
classification accuracies and better correlation detection. The performance of
DCL model was verified by the experiments in our work. In addition, many
interesting discoveries about brain connectivity were found.

The rest of the paper is organized as follows. The limitation of existing meth-
ods and how the proposed model addresses the limitations were introduced
in Sect. 2. Section 3 introduces the collection and preprocessing of brain con-
nectivity data. Conclusions and discussion of the results and possible limita-
tions/extensions of the work were in Sect. 4.

2 Method

2.1 Overview of Linear Canonical Correlation Analysis (CCA)

Canonical correlation analysis (CCA) [7] is a model widely used for analyzing
linear correlations between two data. It projects original data into the optimal
directions (canonical loading vectors) with the highest Pearson correlation.

Suppose we have two data matrices X1 ∈ R
n×p,X2 ∈ R

n×q, CCA seeks two
projection matrices U1 and U2 by optimizing the following objective function

(U∗
1 , U∗

2 ) = argmax
U1,U2

Trace
(
U ′
1Σ12U2

)
(1)

subject to U ′
1Σ11U1 = U ′

2Σ22U2 = In; where U1 ∈ R
p×k,

U2 ∈ R
q×k, k = min(rank(X1), rank(X2)), Σij := X ′

iXj
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2.2 Deep CCA

Deep CCA was proposed by Andrew et al. [14] to detect nonlinear cross-data
correlations. As illustrated in Fig. 1(a), deep CCA introduces a deep network
representation before applying CCA framework. Unlike linear CCA, which seeks
the optimal loading matrices U1, U2, deep CCA seeks the optimal network rep-
resentation f1(X1), f2(X2), as shown in Eq. (2).

(f∗
1 , f∗

2 ) = argmax
f1,f2

{
max
U1,U2

U ′
1f

′
1(X1)f2(X2)U2

‖f1(X1)U1‖2‖f2(X2)U2‖2
}

(2)

where f1, f2 are two deep networks as illustrated in Fig. 1(a).

Fig. 1. A figure showing the work-flows of deep CCA and deep collaborative learning.
Data X1, X2 are input; deep networks f1, f2 work on X1, X2 and yield H1, H2 as
output, to which CCA is or collaborative regression was applied subsequently. For deep
CCA, the optimization problem is to find the optimal network f̂1, f̂2 with the highest
canonical correlation. For deep collaborative learning, the optimization problem is to
find the optimal network f̂1, f̂2 which give both the highest canonical correlation and
the smallest prediction error

The introduction of deep network representation leads to a more flexible
ability to detect both linear and nonlinear correlations. According to experiments
on both speech data and handwritten digits data [14], deep CCA’s representation
was more correlated than that by other correlation analysis methods, e.g., linear
CCA, kernel CCA.

2.3 Deep Collaborative Learning (DCL)

CCA, as well as deep CCA, is a method of data representation. However, CCA
based methods have not found wide application compared with PCA based meth-
ods. As a method of dimension reduction, CCA’s output (canonical variables)
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lacks connections to label information and the detected correlations may be dif-
ficult to interpret consequently. To address the limitation of CCA, Gross et al.
[13] proposed a new model, called collaborative regression, whose formulation is
shown in (3). Specifically, given a label data Y ∈ R

n×1, collaborative regression
maximizes the following objective function

(u∗
1, u

∗
2) = argmax

u1,u2

b1‖X2u2 − X1u1‖2 (3)

+ b2‖Y − X1u1‖2 + b3‖Y − X2u2‖2
Collaborative regression addresses CCA’s limitations by taking advantage of
label information so that it can detect canonical correlations which are label
related. However, according to the simulation in [13], collaborative regression
may lead to poor performance in terms of classification accuracies and there-
fore may not be suitable for brain connectivity study. This may be due to the
coupled restriction on coefficient vectors u1, u2 which requires the projection of
correlation and that of the regression to be in the same direction.

To address these limitations of both CCA and collaborative regression
method, we propose a novel model, deep collaborative learning (DCL), which
incorporates regression into CCA in an uncoupled way via deep networks. Sup-
pose we have two modality data X1 ∈ R

n×p,X2 ∈ R
n×q and a label data

Y ∈ R
n×1, where n denotes sample size (number of subjects) and p, q are the

dimensionality of feature of X1,X2 respectively. The formulation of deep collab-
orative learning is shown in Eqs. (4) and (5) and its framework is illustrated in
Fig. 1(b).

(H∗
1 ,H∗

2 ) = argmax
H1,H2

{max
U1,U2

Trace(U ′
1H

′
1H2U2) + max

β1
Trace(β′

1H
′
1Y )‖Y ‖−1

2 (4)

+ max
β2

Trace(β′
2H

′
2Y )‖Y ‖−1

2 }

= argmax
H1,H2

{‖Σ
− 1

2
11 Σ12Σ

− 1
2

22 ‖tr + Trace(Σ− 1
2

11 H ′
1Y )‖Y ‖−1

2 (5)

+ Trace(Σ− 1
2

22 H ′
2Y )‖Y ‖−1

2 }

where H1 = f1(X1) ∈ R
n×r, H2 = f2(X2) ∈ R

n×s; f1, f2 are two deep networks
as illustrated in Fig. 1(b); Σij := H ′

iHj ; and ‖A‖tr := Trace(
√

A′A) = Σσi;
U1, U2 in Eq. (4) subject to U ′

1Σ11U1 = U ′
2Σ22U2 = I.

As shown in Eqs. (4) and (5), deep collaborative learning seeks the opti-
mal network representation H1 = f1(X1),H2 = f2(X2) instead of the optimal
projection vectors u1, u2, β1, β2 and the coupled restriction can be relaxed con-
sequently. Relaxation of the coupled restriction leads to a better performance
on both prediction/classification and correlation analysis compared with linear
collaborative regression.
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3 Application to Brain Connectivity Study

3.1 Introduction of Brain Connectivity

We next apply the DCL model to the study of brain connectivity and devel-
opment. Brain connectivity depicts the anatomical or functional associations
between different brain regions or nodes [1]. It is of interest to investigate how
brain connectivity changes during adolescence and how it differs between differ-
ent age groups, e.g., children, young adults, which may further contributes to the
study of normal and pathological brain development. The proposed model, deep
collaborative learning, is a network representation based model which can detect
signals having both strong correlations (reflecting brain connectivity) and good
discriminative power (reflecting differences between age groups) and therefore is
very suitable for the study of brain connectivity and development.

3.2 Brain Connectivity Data

Several brain fMRI modalities from the Philadelphia Neurodevelopmental
Cohort (PNC) [15] were used in the experiments. PNC cohort is a large-scale
collaborative study between the Brain Behavior Laboratory at the University
of Pennsylvania and the Children’s Hospital of Philadelphia. It contains multi-
modal neuroimaging data (e.g., fMRI, diffusion tensor imaging) and multiple
genetic factors (e.g., singular nucleotide polymorphisms of SNPs) from adoles-
cents aged from 8 to 21 years. There were three types of fMRI data in PNC cohort
which were collected during different task states: resting-state fMRI (rs-fMRI),
emotion task fMRI (emoid t-fMRI), and nback task fMRI (nback t-fMRI). Two
types of labels, age and Wide Range Achievement Test (WRAT) score [16], which
is a measure of comprehensive cognitive ability, were used for classification and
correlation analysis.

3.3 Results

We compared the performance of the DCL model to that of CCA, deep CCA
(DCCA), collaborative regression (CR) for both age classification and the clas-
sification of cognitive ability. For age groups, the top 20% (in terms of age)
subjects were extracted as young adults group (aged 18 to 22) while the bot-
tom 20% were extracted as children group (aged 8 to 11). For cognitive ability
group, the top 20% (assess via the WRAT score) of individuals were extracted as
a high cognition group (WRAT 114–145) while the bottom 20% were extracted
as a low cognition group (WRAT 55–89). Data were separated into a train-
ing set (60%) and a testing set (40%). The training set was used for DCL’s
network training and the trained network was applied to testing set for classi-
fication subsequently. All preprocessing methods, including data augmentation,
data standardization, etc., were performed on training set and testing set sep-
arately. All hyper-parameters, including momentum, activation function type,
learning rate, decay rate, batch size, maximum epochs, the number of layers,
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Fig. 2. A figure showing the comparison of the performances of different methods
on classifying different age groups (young adults (aged 18–22) vs. children (aged 8–
11)). The full names of the methods are deep CCA (DCCA), collaborative regression
(CR), deep collaborative learning (DCL). The numbers appearing in the figure were
classification accuracies (%).

Fig. 3. A figure showing the comparison of the performances of different methods on
classifying high/low WRAT scores (cognitive ability). The full names of the meth-
ods can be found in the caption of Fig. 2. The numbers appearing in the figure were
classification accuracies (%).

the number of nodes in each layer, and the dimensionality of canonical vari-
ables, were chosen using grid search based on the training data. To verify the
performance of the DCL model, we also included the results of other competitive
methods, including deep CCA and collaborative regression (CR). As CCA based
methods require at least two datasets as input, different data-pair combinations
were used as data input: rs-fMRI and nback t-fMRI (rest-nback); rs-fMRI and
emoid t-fMRI (rest-emoid); nback t-fMRI and emoid t-fMRI (rest-emoid). For
each data combination, we tested the performance of deep CCA, CR, and DCL,
and the results were shown in Fig. 2 (classifying age groups) and Fig. 3 (classi-
fying WRAT groups). We only included accuracy as a criterion for evaluating
classification performance as the two groups had balanced numbers of subjects
(top 20% versus bottom 20%).

From Figs. 2 and 3, the proposed model, deep collaborative learning, achieved
higher classification accuracies than two CCA based models and collaborative
regression for both classifying age groups and classifying cognition groups, which
may be a result of the nonlinear representation of deep network and the combina-
tion of prediction and correlation detection. Collaborative regression performed
better than deep CCA but worse than DCL in terms of classification, which
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may be due to the incorporation of label information. The high classification
accuracy (over 90%) indicates that different age groups (e.g. young adults and
children) and different cognition groups (high WRAT scores and low WRAT
scores) may exhibit different brain functional connectivity patterns and func-
tional brain connectivity might be used as a finger-print to identify different
subjects. In addition, it can also be seen from Figs. 2 and 3 that the classifica-
tion accuracy of age groups is higher than that of cognition groups which might
be due to the fact that age is a fixed phenotype while cognition score is just a
rough measure which is not as accurate and consistent as age.

4 Discussion and Conclusion

In the work we propose a new model, DCL, which captures label related corre-
lations and performs well on classification by combining correlation analysis and
regression using deep networks. According to the results, DCL performed bet-
ter than deep CCA and collaborative regression, which may demonstrate that
the relaxation of restriction on projections using deep networks help achieve
higher classification accuracies. The superior power of DCL on both correlation
detection and classification makes DCL a suitable model for brain connectiv-
ity study, whose research interest focuses on analyzing correlations of functional
networks and how different subject groups exhibit different brain connectivity
patterns. From the results, both different age groups and different cognition
groups exhibit significant differences in brain connectivities. In addition, brain
connectivity tends to be more discriminative when used to classify age groups
than to classify WRAT/cognition groups. The framework of DCL can be easily
extended to more than three datasets integration as in [17] and may become more
suitable to deal with brain imaging data if replacing fully connected networks
with convolutional neural networks.
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Abstract. Alzheimer’s disease (AD) is the only major cause of mortality in the
world without an effective disease modifying treatment. Evidence supporting the
so called “disconnection hypothesis” suggests that functional connectivity
biomarkers may have clinical potential for early detection of AD. However,
known issues with low test-retest reliability and signal to noise in functional
connectivity may prevent accuracy and subsequent predictive capacity. We
validate the utility of a novel principal component based diagnostic identifia-
bility framework to increase separation in functional connectivity across the
Alzheimer’s spectrum by identifying and reconstructing FC using only AD
sensitive components or connectivity modes. We show that this framework
(1) increases test-retest correspondence and (2) allows for better separation, in
functional connectivity, of diagnostic groups both at the whole brain and indi-
vidual resting state network level. Finally, we evaluate a posteriori the associ-
ation between connectivity mode weights with longitudinal neurocognitive
outcomes.

Keywords: Alzheimer’s disease � Functional connectivity
Principal component analysis � Resting state fMRI

1 Introduction

Developing biomarkers for early detection of Alzheimer’s disease (AD) is of critical
importance as researchers believe clinical trial failures are in part due to testing of
therapeutic agents too late in the disease [1]. The AD disconnection syndrome
hypothesis [2] posits that AD spreads via propagation of dysfunctional signaling,
indicating that functional connectivity (FC) biomarkers have potential for early
detection. Despite this potential, known issues with high amounts of variability in
acquisition and preprocessing of resting state fMRI, and ultimately low disease-related
signal to noise ratio in FC [3], remain a critical barrier to incorporating FC as a clinical
biomarker of AD. Recent work validated the utility of group level principal component
analysis (PCA) to denoise FC by reconstructing subject level FC using PCs which
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optimized test-retest reliability through a measurement denominated differential iden-
tifiability [4]. Building on this work, we expand the utility of the framework to increase
separation across diagnostic groups in the AD spectrum by reconstructing individual
FC using AD sensitive PCs. We identify AD sensitive PCs using a novel diagnostic
identifiability metric (D). We evaluate the proposed method with data from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI2/GO) using group balanced, boot-
strapped random sampling.

2 Methods

2.1 Subject Demographics

Of the original 200 ADNI2/GO individuals with resting state fMRI scans, subjects were
excluded if they (1) had only extended resting state scans, (2) had no Amyloid status
provided, (3) were cognitively impaired, but Amyloid-beta protein negative (Ab−)
negative, and/or had (4) over 30% of fMRI time points censored (see Sect. 2.2). The
final sample included 82 individuals. Only Ab positive (Ab+) individuals were included
in cognitively impaired groups to avoid confounding by non-AD neurodegenerative
pathologies. Subjects were sorted into 5 diagnostic groups using criterion from
ADNI2/GO and Ab positivity: (1) normal controls (CNAß−, n = 15), (2) pre-clinical AD
(CNAß+, n = 12), (3) early mild cognitive impairment (EMCIAß+, n = 22), (4) late mild
cognitive impairment (LMCIAß+, n = 12), and (5) dementia (ADAß+, n = 21). Ab status
was determined using either mean PET standard uptake value ratio cutoff (Florbe-
tapir > 1.1, University of Berkley) or CSF Aß levels [5]. Composite scores were cal-
culated for visuospatial, memory, executive function, and language domains [6] from
the ANDI2/GO battery. No demographic group effects were observed. All neurocog-
nitive domain scores exhibited a significant group effect (Table 1).

Table 1. Demographics and neurocognitive comparisons of diagnostic groups.

Variable CNAß−

(n = 14)
CNAß+

(n = 12)
EMCIAß+
(n = 22)

LMCIAß+
(n = 13)

ADAß+

(n = 21)

Age (Years) (SD) 74.2 (8.8) 75.9 (7.0) 72.6 (5.2) 73.3 (6.1) 73.5 (7.6)
Sex (% F) 64.2 41.7 50 61.6 42.9
Years of education (SD) 16.7 (2.3) 15.8 (2.6) 15.2 (2.6) 16 (1.8) 15.4 (2.6)

Visuospatial domain score
(SD)**

9.7 (0.61) 9.3 (0.9) 9.4 (0.9) 83 (2.3) 7.4 (2.1)

Language domain score
(SD)**

49.2 (4.2) 48.8 (4.4) 46.2 (5.8) 43.1 (8.0) 34.8 (9.6)

Memory domain score (SD)** 125.4 (41.1) 142 (34.5) 104.9 (46.6) 81.0 (36.7) 34.2 (21.8)
Executive function domain
score (SD)**

99.0 (26.8) 117.6 (27.4) 135.0 (48.6) 166.3 (102.0) 284.6 (101.0)

**Significant group effect (Chi-square or ANOVA as appropriate, a = 0.05)
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2.2 fMRI Data Processing

MRI scans used for construction of FC matrices included T1-weighted MPRAGE scans
and EPI fMRI scans from the initial visit in ADNI2/GO (www.adni-info.org for pro-
tocols). fMRI scans were processed in MATLAB using an FSL based pipeline fol-
lowing processing guidelines by Power et al. [7] and described in detail in Amico et al.
[8]. Subjects with over 30% of volumes censored due to motion were discarded to
ensure data quality. For purposes of denoising FC matrices [4], processed fMRI time
series were split into halves, representing “test” and “retest” sessions.

2.3 Test-Retest Identifiability and Construction and of Individual FC
Matrices

For each subject, two FC matrices were created from the “test” and “retest” halves of
the fMRI time-series. FC nodes were defined using a 286 region parcellation [9], as
detailed in Amico et al. [8]. Functional connectivity matrices were derived by calcu-
lating the pairwise Pearson correlation coefficient (rij) between the mean fMRI time-
series of all nodes. “Test” and “retest” FCs were de-noised by using group level PCA to
maximize test-retest differential identifiability (Idiff) [4]. The “identifiability matrix”
I was defined as the matrix of pairwise correlations (square, non-symmetric) between
the subjects’ FCtest and FCretest. The dimension of I is N2, where N is the number of
subjects in the cohort. Self-identifiability, (Iself, Eq. 1), was defined to be the average of
the main diagonal elements of I, consisting of correlations between FCtest and FCretest

from the same subjects. Iothers (Eq. 2), was defined as average of the off-diagonal
elements of matrix I, consisting of correlations between FCtest and FCretest of different
subjects. Differential identifiability (Idiff, Eq. 3) was defined as the difference between
Iself and Iothers.

Iself ¼ 1
N

X

i¼j

Ii;j ð1Þ

Iothers ¼ 1
N

X

i 6¼j

Ii;j ð2Þ

Idiff ¼ 100 � ðIself � IothersÞ ð3Þ

Group level PCA [10] was applied in the FC domain, on a data matrix (Y1)
containing vectorized FCtest and FCretest (upper triangular) from all subjects. PCs
throughout this paper will be numbered in order of variance explained. The number of
PCs estimated was constrained to 2 * N, the rank of the data matrix Y1. Following
decomposition, PCs were iteratively added in order of variance explained. Denoised
FCtest and FCretest matrices were reconstructed using the number of PCs (n) that
maximized Idiff (Eq. 3), while maintaining a minimum Iothers value of 0.4, such that
between-subject FC was neither overly correlated (loss of valid inter-subject vari-
ability) nor overly orthogonal (inter-subject variability dominated by noise). This was
done because the ADNI2/GO fMRI data was noisier than data on which this method
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was previously implemented, as evidenced by a much lower original between-subject
FC correlation (Iothers 0.22 ADNI vs. 0.4 Human Connectome Project rs-fMRI [14]).
Therefore, not setting a minimum threshold for Iothers led to the algorithm picking PCs
that were “specialized” to specific subjects. The threshold 0.4 was specifically chosen
because it reflected average Iothers values seen in FCs from previous data, on which this
method was implemented [4].

Final, de-noised FC matrices were computed as the average of FCtest and FCretest.
Nodes were assigned to 9 resting state subnetworks (RSN/RSNs), visual (VIS),
somato-motor (SM), dorsal attention (DA), ventral attention (VA), limbic (L), fronto-
parietal (FP), and default mode network (DMN) [11] with the additional subcortical
(SUB) and cerebellar (CER).

2.4 Diagnostic Identifiability

With the goal of early detection in mind, we hypothesized that FC in non-dementia
groups would become significantly less identifiable from FC in ADAbþ with increased
diagnostic proximity to ADAbþ . Figure 1 delineates the work flow for finding AD
sensitive PCs using a novel diagnostic identifiability metric (D), which quantifies
differentiability in connectivity between each non-dementia group (g) and ADAbþ and
is calculated from the correlation matrix (I) of Y2. Dg was defined as the average
correlation within a non-dementia group, corr(g, g), minus the average correlation
between that non-dementia group and ADAbþ , corr(g, ADAbþ ). D, rather than variance
explained, was used to filter components, as it was hypothesized that early disease
changes likely do not account for a large portion of between subject variance.

Dg ¼ corr g; gð Þ � corr g;ADAbþ
� � ð4Þ

Group level PCA was again performed on the matrix Y2. Here, the number of PCs
was constrained to n = 35 PCs, the rank of the Y2 matrix. Y2 was iteratively recon-
structed using a subset of the n PCs, selected based on maximizing Dg. Starting with
PC1, PC2…n were iteratively added based on their influence on average (Dg). At each
iteration, the PCj* which most improved mean (Dg) upon its addition to previously
selected PCs, was selected. To avoid results driven by a subset of the population or by
differences in sample sizes between groups, the cohort was randomly sampled 30 times,
following total cohort PCA, in a group balanced fashion (nsample = 50; ng = 10). The
number of bootstraps was chosen to allow adequate estimation of the Dg distribution
while keeping run-time of the algorithm, reasonable. Bootstrapped distributions of Dg

were generated for each number of PCs. The number of PCs (n*) which maximized
average (Dg) was found. AD sensitive PCs were defined as those which appeared
within the n* most influential PCs with the greatest frequency across samples. Final FC
matrices were re-constructed using only AD sensitive PCs.
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n� ¼ n; at argmaxnð1g
X

g

DgÞ ð5Þ

Additionally, Dg curves were estimated and disease sensitive PCs were identified
for the 9 RSNs individually, by calculating IRSN using the subset of connections where
at least one of the nodes in the connection was part of the RSN.

2.5 Statistical Validation and Association with Neurocognitive Outcomes

Due to the small number of bootstraps, differences between Dg distributions were
assessed at n* PCs by checking if the median of one distribution was an outlier relative
to a reference distribution using non-parametric confidence intervals defined with the
median and interquartile range (IQR). First, Dg distributions from each RSN were
compared to those from WB. Next, WB and RSN Dg distributions were compared to a
corresponding null model. Null models for the WB and each RSN were constructed by
randomly permuting diagnostic group membership among individuals selected at each
bootstrap, such that Dg for the null model represented identifiability of a random
heterogeneous group from a random heterogeneous reference group. Finally, individual
D values (Di) were calculated for each subject using FC reconstructed with the n* PCs.
ANOVA (a < 0.05) with follow up pairwise tests, was performed on WB Di distri-
butions to test for a group effect. Stepwise regressions (F-test, a = 0.05), starting with
gender, age and education, were be used to test for associations between the n* PC
weights and longitudinal changes in neurocognitive outcomes (0, 1, 2 years post
imaging).

3 Results

3.1 Test-Retest Identifiability

Figure 2 details the results of denoising FC using differential test-retest differential
identifiability. An optimal reconstruction based on the first n = 35 PCs (in decreasing
order of explained variance) was chosen (Fig. 2A). Iself increased from 0.52 to 0.92

Fig. 1. Diagnostic identifiability workflow.
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(Fig. 2A–B) while Iothers increased from 0.20 to 0.40 (Fig. 2A–B). Idiff increased from
38% to 57% (Fig. 2A–B).

3.2 Diagnostic Identifiability

WB average (Dg) peaked at n* = 11 components which explained 58.82% of the
variance in the denoised FC data (Fig. 3A, Table 2). At n* PCs, LMCIAß+ was the only
group who that did not exhibit significantly increased Dg from the null model. At n*
components, Di distributions exhibited a significant group effect. Di decreased with
diagnostic proximity to ADAß+ (Fig. 3B). Between-subject correlation in FC increased
from 0.41 to 0.71 after reconstruction with n* PCs (Fig. 3B). Of the 9 RSNs, the L
network exhibited significantly greater DRSN as compared to WB (Table 2). Like WB,
LMCIAß+ was the only group that did not exhibit significantly greater RSN Dg than the
null model, with the exceptions of SM where EMCIAß+ was additionally not signifi-
cantly different from the null model and L where all non-dementia groups exhibited
greater Dg than the null model (Table 2). Eight of eleven PCs were identified as disease
sensitive in all 9 RSNs and WB (Table 2).

Four PCs exhibited significant associations with various neurocognitive domain
scores (Table 3). Visuospatial domain scores were associated with PC 17 at 1 year post
imaging and PC 9 at 2 years post imaging. Memory domain scores were associated
with PC 32 at 1 year post imaging and PC 7 at 2 years post imaging. Language domain
scores were associated with PC 23 at 0 year post imaging and PC 7 at 1 years post
imaging. Finally, PC 17 was associated with executive domain scores at 1 and 2 years
post imaging.

Fig. 2. (A) Iself, Iothers, and Idiff across the range of # PCs. (B) I matrices for original and
denoised FC matrices. (C) Example original FC matrix versus denoised FC matrix.
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Fig. 3. (A-left) Whole brain Dg across all possible number of PCs. (A-right) Individual Dg

values at n* = 11 PCs. Distributions showing significant differences (t-test, p < 0.05) are
delineated using lines. (B) Original I matrix versus I matrix reconstructed using disease sensitive
PCs. (C) Example original FC matrix versus FC matrix reconstructed using disease sensitive PCs.

Table 2. Diagnostic identifiability summary.

RSN CNAß− CNAß+ EMCIAß+ LMCIAß+ Mean n Var (%)

WB 11.35** 9.75** 7.85** 2.60 7.89 11 58.82
VIS 13.21** 10.33** 8.11** 2.75 8.60 10 57.23
SM 9.82** 12.96** 7.30 4.43 8.62 10 57.26
DA 12.16** 11.24** 8.09** 3.37 8.71 13 62.19
VA 10.74** 11.65** 7.96** 2.33 8.17 10 57.26
L 17.18** 13.76** 11.97** 6.28** 12.30 8 54.50
FP 12.07** 10.25** 9.34** 2.70 8.59 11 58.82
DMN 12.09** 10.20** 8.39** 2.84 8.38 11 58.82
SUB 14.17** 11.66** 9.93** 4.33 10.02 9 55.78
CER 13.29** 12.85** 9.72** 5.67 10.38 10 57.26

**Median outside CI null model, Median outside CI WB mean (Dg)

Table 3. Associations of n* PC weights with neurocognitive composite domain scores.
Stepwise regressions (F-test, a < 0.05) were used to assess the relationship of neurocognitive
composite domain scores with PC weights, with age, gender, and education starting in the base
model; p values are reported for the whole model, adjusted-R2 is reported for the model.

Time points Visuospatial Memory Language Executive
PC p R2 PC p R2 PC p R2 PC p R2

0 – – – – – – 23 0.040 0.19 – – –

1 17 0.001 0.53 32 0.032 0.31 7 0.025 0.31 17 0.004 0.48
2 9 0.020 0.46 7 0.044 0.20 – – – 17 0.013 0.36
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4 Limitations, Future Work, and Conclusions

We present here a two stage PCA based framework to improve the detection of AD
signatures in whole-brain functional connectivity. We first use recently proposed test-
retest differential identifiability to denoise subject-level functional connectomes and
consequently reduce dimensionality of functional connectomes. We subsequently
introduce and validate the concept of PCA based differential diagnostic identifiability to
increase AD signal to background in functional connectivity. The result of a significant
diagnostic group effect in diagnostic differential identifiability shows that FC contains
AD signature, even at early stages of disease. The finding of increased diagnostic
identifiability in Limbic regions, known to be associated with memory processes and
known to be affected in AD, further validates this finding. Finally, we show that PC
weights from AD sensitive principal components are correlated to longitudinal neu-
rocognitive outcomes. In addition to the work presented here, we plan to delve further
into the meaning of the PCs themselves. AD sensitive PCs did not appear to be specific
to individual RSNs, as the same PCs were consistently AD sensitive across RSNs.
Furthermore, several PCs were associated with multiple neurocognitive domains.
Therefore, AD sensitive PCs may characterize global brain changes related to AD.
However, spatial representation of PCs and relationship of PCs with network properties
need to be explored to further assess this. Finally, to further validate these promising
results, this methodology needs to be applied to a larger cohort. With ADNI3 data
becoming available (*300 subjects already scanned), on which all subjects underwent
resting state fMRI, we will be able to further validate findings and further improve
identification and characterization of AD sensitive PCs based on whole brain functional
connectomes. This dual decomposition/reconstruction framework makes forward pro-
gress in exploiting the clinical potential of functional connectivity based biomarkers.
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Abstract. Nowadays, a lot of scientific efforts are concentrated on the
diagnosis of Alzheimers Disease (AD) applying deep learning methods
to neuroimaging data. Even for 2017, there were published more than
hundred papers dedicated to AD diagnosis, whereas only a few works
considered a problem of mild cognitive impairments (MCI) conversion to
AD. However, the conversion prediction is an important problem since
approximately 15% of patients with MCI converges to AD every year.
In the current work, we are focusing on the conversion prediction using
brain Magnetic Resonance Imaging and clinical data, such as demograph-
ics, cognitive assessments, genetic, and biochemical markers. First of all,
we applied state-of-the-art deep learning algorithms on the neuroimaging
data and compared these results with two machine learning algorithms
that we fit on the clinical data. As a result, the models trained on the
clinical data outperform the deep learning algorithms applied to the MR
images. To explore the impact of neuroimaging further, we trained a
deep feed-forward embedding using similarity learning with Histogram
loss on all available MRIs and obtained 64-dimensional vector repre-
sentation of neuroimaging data. The use of learned representation from
the deep embedding allowed to increase the quality of prediction based
on the neuroimaging. Finally, the current results on this dataset show
that the neuroimaging does have an effect on conversion prediction, how-
ever cannot noticeably increase the quality of the prediction. The best
results of predicting MCI-to-AD conversion are provided by XGBoost
algorithm trained on the clinical and embedding data. The resulting
accuracy is ACC = 0.76 ± 0.01 and the area under the ROC curve –
ROC AUC = 0.86 ± 0.01.

Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the inves-
tigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/
wp-content/uploads/how to apply/ADNI Acknowledgement List.pdf.
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1 Introduction

Alzheimer’s Disease is irreversible progressive brain disorder mostly occurring in
the middle or late life. At the same time, there is a transitional phase between the
normal aging and dementia symptoms called mild cognitive impairment (MCI).
People with MCI are at increased risk of AD development – approximately 15%
of them converge to dementia every year. That’s why, the early diagnosis of
Alzheimer’s Disease would allow patients to take preventive measures to tem-
porarily slow the disease progression [10].

Neuroimaging is a variety of methods and technologies that reveal the struc-
ture and functions of brain. It includes Computer Tomography (CT), structural
and functional Magnetic Resonance Imaging (sMRI and fMRI respectively) and
etc. With a growth of deep learning applications in data analysis, neuroimag-
ing is extensively used in many medical tasks such as image segmentation [1],
diagnosis classification [11] and prediction of disease progression [5].

In the recent years, there were published a vast number of papers dedicated to
classification of healthy controls from AD using deep learning approach applied
to neuroimaging. However, only a few works considered predicting conversion of
MCI to AD [5,6,8], which is a more complicated and clinically relevant problem.
To classify stable and converged MCI the authors of [6] used different clini-
cal biomarkers and complex feature maps extracted from neuroimaging. This
method inherit the main drawbacks from manual feature extraction procedure.
Cheng et al. in [5] consider the joint multi-domain learning for early diagnosis
of AD to boost the learning performance. In this work, we are focusing on the
conversion prediction using clinical and neuroimaging data. In addition, we want
to explore the individual impact of different data types on the prediction per-
formance for different prediction intervals. Finally, we obtain low-dimensional
representation of high-dimensional MR brain images from a deep feed-forward
embedding that is trained on the whole ADNI cohort.

2 Data

In this work, we use data obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database [2]. We choose patients that are diagnosed as nor-
mal controls (NC), mild cognitive impairments (MCI), and Alzheimer’s Disease
(AD). For each patient, we take visits for which both MR images and clinical
data are available. The total number of available data samples is 8809.

Clinical Data. ADNI provides clinical information about each subject includ-
ing recruitment, demographics, physical examinations, and cognitive assessment
data. We add genetic and biospecimen data (cerebrospinal fluid concentration,
blood, and urine) to the clinical dataset. The full list of attributes is available
on the official ADNI website [2].
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Neuroimaging Data. For the analysis, we take structural T1-weighted Mag-
netic Resonance Imaging (MRI), since they are available for all patients and
for the most their visits. We fetch preprocessed images from ADNI database
with the following preprocessing pipeline descriptions: “MPR; GradWarp;
B1 Correction; N3; Scaled” and “MT1; GradWarp; N3m”. These images
have different shapes and orientations and contain skull and other organs that
might spoil a predictive performance. Thus, we apply the following preprocessing
pipeline for the collected neuroimaging dataset. For the Brain extraction [3] and
N4 bias correction [13] steps, we run ANTs Cortical Thickness Pipeline [14] for
all available MR images. Then, we apply an affine transform, so that all brain
images have the same orientation - RAS (Left - Right, Posterior - Anterior,
Superior - Inferior). After the brain extraction step, the MRIs contain a lot of
black voxels around the brain. We crop all images to the maximal extracted brain
size, which is computed beforehand. Ultimately, all MR images in the dataset
have a size of (150, 208, 173). To increase a batch size that can be fitted to the
Graphics Processing Unit (GPU), we downsample the dataset with the factor of
2 for each dimension, so that the resulting shape is (75, 104, 87).

Conversion Dataset. To predict the MCI-to-AD conversion, we need to
remove patients that are normal controls (NC) or have Alzheimer’s Disease from
the screening visit.

For the stable MCI, we consider participants that have not converged to AD
for the known time-period. We also drop several last visits that are inside the
prediction horizon, since the future for that patients is not known and they may
converge to AD in the next visits.

For the converged MCI, we select participants that were diagnosed as MCI
in earlier sessions and as AD later. We take visits that are within five year
prediction interval. The total number of stable and converged patients are 532
and 327 correspondingly. The number of samples for two classes are 1764 and
1016.

3 Method

3.1 Clinical Data

For the classification based on clinical data, we use two machine learning algo-
rithms: Logistic Regression and XGBoost. The first one is a linear method which
is widely used in many practical applications because of its good interpretability
and relative simplicity. The second method is an efficient implementation of gra-
dient boosting on decision trees, which is a powerful machine learning algorithm
that can catch nonlinear patterns in data [4].

3.2 Neuroimaging Data

Convolutional Neural Networks (CNN) have recently made a great breakthrough
in the image classification and recognition tasks. Deep CNNs automatically
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extract and combine from low- to high-level features from images and estimate
target values in the end-to-end fashion. In this work, we use two deep archi-
tectures: VGG [12] and ResNet [7], that showed state-of-the-art performance in
ImageNet classification challenge in 2014 and 2015 correspondingly. We general-
ize these architectures to the three-dimensional input size of MR images in the
same way as was proposed in [11].

VoxCNN. The VGG-like network consists of ten 3D convolutional blocks, each
of which consists of three 3D-convolutional layers with 3× 3×3 filter sizes, batch
normalization and ReLU nonlinearity. Then, we use max pooling layer with
2× 2×2 kernel size to reduce the size of data propagated through the network.
At the end of the net, there are three fully-connected layers with batch nor-
malization and dropout layers in-between. For the experiments, we used the
probability p = 0.7 of a neuron to be turned off. After the last fully-connected
layer, there is softmax activation function to compute probabilities for each class.

ResNet3D. For the ResNet-like architecture, we use 6 residual blocks, each
of which represents a sum of identity mapping and a stack of two convolutions
with 3× 3x3 filter size and 64 or 128 filters, batch normalization and ReLU. The
convolutional layers from the standard ResNet are replaced with 3D ConvBlocks
in the same way as we did for VoxCNN. We reduce the spacial size using three
convolutions with strides 2× 2×2 before the residual blocks and one maximum
pooling layer with 5× 5×5 kernel size before the fully-connected layer. Dropout
with p = 0.7 and batch normalization are also used after the first fully-connected
layer. At the end of the network, there is a second fully-connected layer with
softmax activation to produce output probabilities.

4 Experiments

4.1 Setup

For the experiments with conversion prediction based on the neuroimaging data,
we minimize a weighted binary cross-entropy loss function with balanced class
weights. We use Nesterov momentum optimizer with initial learning rate 10−3

and scheduling learning rate policy: we decrease the learning rate ten-fold after
30 and 50 epochs. The batch sizes for ResNet3D and VoxCNN are 128 and 512
correspondingly. These numbers are chosen so that the full batch can be fitted
to the GPU. The total number of epochs is 70.

4.2 Validation

To assess the classification performance more accurately, we run 5-fold group
cross-validation with five different folds. As a group label, we use participant’s
ID to prevent the cases when different scans of one patient are simultaneously
in train and test sets.
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For neuroimaging data, on each step of cross-validation procedure, we train
a separate neural network on a train set, use a validation set for early stopping
and changing learning rate, and test the network model on a hold-out subset.

For hyperparameter tuning of Logistic Regression and XGBoost methods,
another nested group cross-validation procedure is used.

We report the following metrics: accuracy, the area under the receiver oper-
ating characteristic curve (ROC AUC), sensitivity, specificity, and average pre-
cision.

4.3 Conversion Prediction

There are several ways how the disease progression problem can be formulated.
In this work, we use binary classification setting to predict the fact of conversion
within a five year interval: class 0 - stable MCI, class 1 - converged MCI. In
other words, given a participant’s visit, we would like to answer the question,
whether an individual will converge to AD within the considered interval or not.

4.4 Embedding Learning

For conversion prediction, we used only 25% of all available MR images. To make
use of all available data, we learn a deep feed-forward embedding on the whole
neuroimaging dataset and, then, use it as a fixed feature extractor. We exploit
the extracted features for conversion prediction task, as shown in Fig. 1.

(a) Current approach (b) Deep embedding approach

Fig. 1. Two approaches for conversion prediction task. (a) In the current approach,
only 25% of all available MR images are used for the conversion prediction. (b) The
embedding is trained on the whole MRI dataset and, then, used for feature extraction.
We use the extracted features for the conversion prediction task.

Deep embedding is an approach, when complex high-dimensional input data
are mapped into a smaller size semantic subspace preserving the most relevant
information about the data. Generally, the mapping is learned from a large
amount of supervised data. During the training process, semantically related
samples are getting closer than semantically unrelated ones in the semantic sub-
space. To learn deep feed-forward embedding we use ResNet3D architecture up to
the last fully connected layer. We add a fully connected layer with 64 output units
and L2-normalization layer to the network. We use Histogram loss proposed in
[15] as a training criteria, which is parameter-free batch loss function that firstly
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estimates two distributions of distances between matching and non-matching
pairs and, secondly, computes the overlap between these two distributions. Once
the deep embedding is trained, we use it to extract the embedded features: all
images from the conversion dataset are propagated through the network and
64-dimensional vector representations are obtained.

5 Results

The results of the conversion prediction are shown in Table 1. For the considered
interval, the quality of prediction based on clinical data is significantly higher
than one on the neuroimaging. On the neuroimaging, two network architectures
provide comparative results for all experiments, although ResNet3D slightly out-
performs VoxCNN. For the clinical data, the performance of XGBoost is slightly
better than one of Logistic Regression model.

The results also show that the use of learned deep embedding helps increase
the quality of prediction based on MR images, although it is still worse than one
on the clinical data.

To investigate whether the neuroimaging data can add some new relevant
information to the clinical data and, thereby, improve the prediction, we include
extracted features from the embedding to the clinical ones. As can be seen from
the results, the quality of prediction using clinical and embedding data is slightly
higher than for clinical data, although still it is the same within the standard
deviation.

Table 1. Conversion prediction results

Data/Method ACC ROC AUC AV PREC SENS SPEC

Clinical data/Log Reg .76 ± .01 .85 ± .01 .73 ± .05 .80 ± .03 .74 ± .02

Clinical data/XGBoost .76 ± .01 .85 ± .01 .73 ± .03 .76 ± .02 .77 ± .01

Neuroimaging/VoxCNN .61 ± .02 .70 ± .03 .52 ± .05 .70 ± .04 .56 ± .02

Neuroimaging/ResNet3D .62 ± .01 .70 ± .02 .53 ± .02 .75 ± .03 .54 ± .01

Embedding/Log Reg .69 ± .01 .71 ± .01 .54 ± .03 .60 ± .01 .75 ± .03

Embedding/XGBoost .67 ± .02 .73 ± .01 .57 ± .02 .70 ± .02 .65 ± .05

Clinic. + Embed./Log Reg .76 ± .02 .86 ± .02 .73 ± .03 .84 ± .02 .72 ± .03

Clinic. + Embed./XGBoost .76 ± .01 .86 ± .01 .73 ± .02 .88 ± .03 .70 ± .03

Figure 2 shows the resulting representation from the learned deep embedding
on a hold-out set. We applied T-SNE algorithm proposed in [9] to map our 64-
dimensional feature vectors into 2-dimensional ones. In Fig. 2a, there are three
clusters, each of which corresponds to one of the diagnoses: NC, MCI, or AD.
From Fig. 2b and d can be seen that the separation between NC and AD is better
than separation between MCI and AD.
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(a) Clusters (b) NC / AD density estima-
tion

(c) sMCI / cMCI density es-
timation

(d) MCI / AD density esti-
mation

Fig. 2. Embedding visualization: (a) clusters in the embedded space, (b) Kernel Den-
sity Estimation (KDE) of NC and AD distributions, (c) KDE of stable and converged
MCI distributions, (d) KDE of MCI and AD distributions.

The next observation from Fig. 2a is that MCI cluster is spread between
normal controls (NC) and Alzheimer’s Disease (AD). Since we know which MCI
patient will converge to AD (cMCI) and which will not (sMCI), we plot the
densities of stable and converged MCI. Figure 2c shows that these two groups
of MCIs are quite good separated in the embedded space. The main mass of
converged MCIs is closer to the AD cluster, whereas the stable MCIs are closer
to the normal controls.

6 Conclusion

In this work, a problem of conversion prediction from mild cognitive impairment
(MCI) to Alzheimer’s Disease (AD) was considered. We collected, preprocessed
and analyzed the clinical and neuroimaging data. We applied the state-of-the-
art methods for image classification on the neuroimaging data and compared the
quality of classification with the several machine learning methods trained on the
clinical data. The results of the experiments showed that the clinical data allow
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to obtain a better prediction quality than the neuroimaging and these models
can be used for conversion prediction task.

We enhanced the performance on the neuroimaging data by training a deep
feed-forward embedding. The embedding increased the quality of forecast, how-
ever, it is still worse than the clinical data yield. We further investigate the
question whether the neuroimaging is able to add some new information for
conversion prediction or not. According to the results on the current dataset,
neuroimaging does have an effect on the conversion prediction, however it can-
not noticeably increase the quality of the prediction when clinical data are used.
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Russian Science Foundation grant 17-11-0139.
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Abstract. Anorexia nervosa (AN) and body dysmorphic disorder (BDD) share
several phenomenological features including distorted perception of appearance,
obsessions/compulsions, and limited insight. They also show partially over-
lapping patterns of brain activation, white matter connectivity, and electro-
physiological responses. These markers have also shown associations with
symptom severity within each disorder. We aimed to determine: (a) if, cross-
diagnostically, neural activity and connectivity predict dimensional clinical
phenotypes, and (b) the relative contribution of multimodal markers to these
predictions beyond demographics and psychometrics, in a multivariate context.
We used functional magnetic resonance imaging (fMRI) data from a visual task,
graph theory metrics of white matter connectivity from diffusor tensor imaging,
anxiety and depression psychometric scores, and demographics to predict
dimensional phenotypes of insight and obsession/compulsions across a sample
of unmedicated adults with BDD (n = 29) and weight-restored AN (n = 24).
The multivariate model that included fMRI and white matter connectivity
data performed significantly better in predicting both insight and
obsessions/compulsions than a model only including demographics and psy-
chometrics. These results demonstrate the utility of neurobiologically-based
markers to predict important clinical phenotypes. The findings also contribute to
understanding potential cross-diagnostic substrates for these phenotypes in these
related but nosologically discrete disorders.
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1 Introduction

Anorexia nervosa (AN) and body dysmorphic disorder (BDD) are psychiatric disorders
with a high risk of morbidity and mortality [1]. Core symptoms of AN include reduced
caloric intake, low body weight, fear of becoming fat, and disturbed experience of one’s
body or weight; in BDD these include preoccupation with perceived defects in
appearance and repetitive behaviors to check, fix, change, or hide aspects of their
appearance [1].

AN and BDD are categorized as an eating disorder and as an obsessive-compulsive
related disorder, respectively, yet they share phenomenological features such as dis-
torted perception of appearance, poor insight [2, 3], and obsessive and compulsive
symptoms [4]. Of those with AN, 25–39% are diagnosed with lifetime BDD; 32% of
those with BDD will have a lifetime eating disorder [5, 6]. Additionally, 30% of those
with BDD have weight-related appearance concerns (e.g. their cheeks or thighs being
too fat) [7]. Similarities have raised the question of whether one disorder should be
considered a subtype of the other, or that they share pathological features [8].

The few studies that have directly compared the neurobiology of AN and BDD
demonstrate overlapping and distinct patterns of neural activity and connectivity [9, 10].
Several of these studies have also examined associations between neural markers and
clinical symptoms. N170 ERP amplitude correlated with insight in BDD but not in AN
[10]. Insight was correlated with a graph theory networkmeasure, normalized path length
(NPL), in white matter in AN but not in BDD [3, 10]. Studies in BDD have shown
associations between obsessions and compulsions and activation in prefrontal, striatal,
and visual regions [11]; with connectivity in the orbitofrontal cortex [12]; and with
whole-brain white matter connectivity (global efficiency) [13]. Insight in BDD is asso-
ciated with regional white matter diffusion in tracts relevant to visual processing [14].

Whether common phenotypic symptom profiles are associated with underlying
brain activation patterns and white matter structural properties remains unexplored.
This is relevant, as psychiatric disorders once assumed to be causally independent have
been found to have common genetic variant risks [15]. Such relationships could inform
underlying shared or unique neurobiological and brain-behavior relationships con-
tributing to dimensional phenotypes. Accordingly, a goal of this study was to determine
if, cross-diagnostically, neural activity and connectivity patterns predict dimensional
phenotypes. Potential clinical value of this would be at the cost of obtaining neu-
roimaging markers, which is not part of standard clinical practice; thus, a second goal
was to determine the relative predictive contribution of imaging markers beyond
demographic and psychometric data. We hypothesized that neural activity and con-
nectivity patterns would significantly predict insight and obsession/compulsion phe-
notypes across AN and BDD, and would provide additional significant predictive value
beyond demographics and psychometrics, in a multivariate context.
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2 Methods

2.1 Participants

Fifty-three individuals participated, between the ages of 14 and 38. Twenty-nine met
Diagnostic and Statistical Manual (DSM-IV) [16] criteria for BDD, and 24 for AN,
aside from being weight-restored (BMI � 18.5) to avoid confounds of starvation state
(Table 1).

Participants were free from psychoactive medications for at least 8 weeks. For
detailed inclusion and exclusion criteria please see our previous publications [3, 9, 10].

2.2 Psychometrics

All received clinician-rated scales: the Brown Assessment of Beliefs Scale (BABS)
[17] (higher scores indicate worse insight), the Hamilton Anxiety Rating Scale
(HAMA) [18], and the Montgomery-Asberg Depression Scale (MADRS) [19]. To
measure obsession and compulsions, the BDD group received the BDD version of the
Yale-Brown Obsessive Compulsive Scale (BDD-YBOCS) [20] and the AN group
received a version of the Yale-Brown-Cornell Eating Disorder Scale (YBC-EDS) [21]
modified to match the BDD-YBOCS on total numbers of items and a single avoidance
and a single insight item. To generate a single regression for predicting obsessions/
compulsions, we aggregated data from both groups into one outcome variable, the
“YBC/BDD-YBOCS.” HAMA. and MADRS were correlated (r = 0.78) so we col-
lapsed them into one metric, “HAMADRS,” by using the first principal component,
which explained 82% of the variance.

2.3 Overview and Rationale of Variable Selection

A goal was to create a prediction model to understand multivariate relationships
between insight and obsessions/compulsions across AN and BDD, with functional and
structural brain measures, psychometrics, and demographics. We used structural
(DTI) and functional (fMRI) data, anxiety and depression (HAMADRS), insight

Table 1. Demographics. Errors are standard deviation.

Variable AN BDD P

Number of participants 24 29 N/A
Age (years) 21 ± 5 23 ± 5 0.17
Sex: female 23/24 (96%) 26/29 (90%) 0.62
Illness duration (log months) 3.7 ± 1.2 4.6 ± 0.7 0.01
BMI 20 ± 2 22 ± 3 0.02
Lowest lifetime BMI 16 ± 2 N/A N/A
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(BABS), and obsessions/compulsions (BDD-YBOCS and modified YBC-EDS) rat-
ings. From DTI, we used NPL to provide a summarized metric of global white matter
network connectivity. We included fMRI data from a task of viewing images of bodies,
and faces (visual stimuli that are relevant to participants’ appearance concerns) and
houses (which are unrelated to appearance concerns).

2.4 fMRI Data

We collected fMRI data on a 3T scanner as participants matched high, normal, and low
spatial-frequency images of others’ bodies, faces, and houses, as previously described
[9, 22]. To derive a signal metric per network, we extracted network coherence values
from three networks of interest: primary visual (PV), higher order visual (HV), and
salience networks [22]. We collected 64 gradient direction diffusion-weighted images,
with b = 1000 s/mm2 and one minimally diffusion-weighted scan. Graph theory met-
rics were calculated from deterministic tractography-derived connectivity matrices
using Freesurfer (Martinos Center for Biomedical Imaging, USA) parcellation of T1
images, as previously described [3]. Shortest path length between each pair of nodes
was averaged over all nodes to obtain the characteristic path length (CPL). The nor-
malized path length (NPL) is the ratio of observed CPL to the CPL of an identically
sized but randomly connected network [23].

2.5 Missing Data Imputation with Multiple Imputation

We addressed missing data using multiple imputation [24, 25]. We had data for 100%
of participants for HAMA/MADRS, 85% of the BABS, 100% of DTI, and 68% of
fMRI. We conservatively assumed that data were missing completely at random,
namely, unrelated to diagnosis and severity of illness. We used a transformed-linear
multivariate model to estimate the covariance of variables, with illness duration
modeled as log-linear. We chose this imputation strategy as there was insufficient
evidence to suggest that non-linear trends existed, and insufficient data to reliably
estimate nonlinear terms within each model. Missing values were imputed 20 inde-
pendent times based on posterior probabilities of the estimate of the missing data using
this multivariate transformed-linear model. The initial values were cold-deck imputed
and, to improve exploration of the whole parameter space and reduce tendencies to fall
into local minima due to the relatively small dataset, the estimated covariance was
multiplied by an exponentially decaying dispersion term with magnitude of 1% after
100 iterations. Each imputation consisted of 400 iterations, although most imputed
datasets converged within 200 iterations.
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2.6 Statistical Modeling

Linear associations of demographic (age, sex, BMI), clinical variables (AN or BDD
diagnosis, the log of illness duration), psychometric scores (HAMADRS, and BABS
for the YBC/BDD-YBOCS model), and MRI features (NPL; salience, HV, PV
coherence values) with the cross-diagnostic clinical phenotypes of BABS and
YBC/BDD-YBOCS (separately) were evaluated using multivariate linear regression.
Log-likelihood tests evaluated if including MRI-based features significantly improved
the model as compared to only demographic and clinical variables; or demographic,
clinical variables and psychometric scores. Primary predicted outcomes were BABS
and YBC/BDD-YBOCS; imputation and regression modeling of each were performed
separately.

3 Results

3.1 BABS

Model predictions using just demographic variables were significantly different from a
constant model (deviance difference 280.7, df = 4, p = 10−59). MRI-based features
significantly improved the model as compared to just demographic and clinical vari-
ables (deviance difference 89.1, df = 5, p = 10−17); and a model including demo-
graphic, clinical variables and HAMADRS (deviance difference 83.5, df = 4,
p = 10−17, Fig. 1A). The only factor that trended towards individually significant
association was group; the BDD group having a 3.8 higher score than AN (SE 2.2,
p = 0.08, Fig. 1B).

3.2 YBC/BDD-YBOCS

Model predictions using just demographic variables significantly differed from a
constant model (deviance difference 798.7, df = 4, p = 10−171). MRI-based features
significantly improved the model compared to including just demographic and clinical
variables (deviance difference 550.5, df = 6, p = 10−115); and a model including
demographic, clinical variables, and psychometric scores (deviance difference 233.4,
df = 4, p = 10−49, Fig. 1C). The only factors that had significant individual associa-
tions were group, with the BDD group having a 8.2 higher score (SE 2.7, p = 0.003,
Fig. 1D) and HAMADRS with a unit effect of 6.4 (SE 2.5, p = 0.01).
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4 Discussion and Conclusions

A multivariate model that included brain structure and function, psychometrics, and
demographics demonstrated significant predictions for both insight and
obsessions/compulsions. Moreover, neuroimaging-derived data significantly improved
the predictive ability of the model beyond the psychometric and demographic data.

Results suggest that brain structure and function, anxiety and depression, and
demographic variables contribute to poor insight across AN and BDD. NPL appeared
to contribute more, individually, to predicting insight and obsessions/compulsions than
did activation in visual and salience networks. However, inherent to this multivariate
analysis is the possibility of complex relationships between variables that do not lend
themselves to being disentangled and interpreted in terms of contributions of individual
parts.

Fig. 1. Model performance and features. A. Performance of the BABS model in predicting
participants’ observed values. B. Feature weights and errors from the BABS model.
C. Performance of the YBC/BDD-YBOCS model in predicting participants’ observed values.
D. Feature weights and errors from the YBC/BDD-YBOCS model. An asterisk signifies
p < 0.05.
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Models with neurobiological variables were better predictors over the reduced
models. This provides early promise that neuroimaging markers might provide clinical
utility for predicting dimensional severity of phenotypes across disorders, longitudi-
nally. This requires verification in larger, and longitudinal, studies and those that target
specific patient cohorts such as those in early stages of illness or at-risk, to prove
pragmatic utility. This is important due to additional costs with neuroimaging.

The sample size limited our ability to include other potentially informative neu-
robiological and demographic variables. Other statistical modeling approaches—such
as training on broader sets of whole-brain activation and connectivity features in a more
data-driven manner—could also be applied with larger samples and may improve
predictive performance. We had missing data, although we mitigated this by using
multiple imputation. We modified the YBC to match the BDD-YBOCS, although the
validity and reliability of this modified version has not been tested.

Results shed light on possible shared neurobiological contributors to symptoms in
AN and BDD, including white matter network organization indexing long-distance
efficiency of brain connections and connectivity within higher- and lower-order visual
and salience networks. A tentative model is one in which the combination of specific
patterns of visual processing of symptom-related stimuli, combined with specific pat-
terns of white matter network “scaffolding” for how this information integrates across
the brain, in the context of anxiety/depression and specific demographics, contributes to
worse insight and obsession/compulsion symptoms. A strength of the current analysis
is that, as opposed to previous univariate analyses, the functional and structural neu-
robiological contributors are integrated in a more realistically complex context of
variable symptom severity and clinical variables. Our dimensional approach also cir-
cumvents limitations of categorical diagnostic categories [26]. This study provides
early proof-of-concept for multimodal neurobiological, psychometric, and demo-
graphic variables to understand contributors to cross-diagnostic phenotypes and
potentially to predict dimensional symptom profiles.
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