
Denny Vrandečić · Kalina Bontcheva
Mari Carmen Suárez-Figueroa
Valentina Presutti · Irene Celino · Marta Sabou
Lucie-Aimée Kaffee · Elena Simperl (Eds.)

 123

LN
CS

 1
11

36

17th International Semantic Web Conference
Monterey, CA, USA, October 8–12, 2018
Proceedings, Part I

The Semantic Web –
ISWC 2018

Lecture Notes in Computer Science 11136

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Denny Vrandečić • Kalina Bontcheva
Mari Carmen Suárez-Figueroa • Valentina Presutti
Irene Celino • Marta Sabou
Lucie-Aimée Kaffee • Elena Simperl (Eds.)

The Semantic Web –

ISWC 2018
17th International Semantic Web Conference
Monterey, CA, USA, October 8–12, 2018
Proceedings, Part I

123

Editors
Denny Vrandečić
Google
San Francisco, CA
USA

Kalina Bontcheva
University of Sheffield
Sheffield
UK

Mari Carmen Suárez-Figueroa
Universidad Politécnica de Madrid (UPM)
Madrid, Madrid
Spain

Valentina Presutti
National Research Council
Rome, Roma
Italy

Irene Celino
Cefriel - Politecnico di Milano
Milan
Italy

Marta Sabou
TU Wien
Vienna
Austria

Lucie-Aimée Kaffee
University of Southampton
Southampton
UK

Elena Simperl
University of Southampton
Southampton
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-00670-9 ISBN 978-3-030-00671-6 (eBook)
https://doi.org/10.1007/978-3-030-00671-6

Library of Congress Control Number: 2018954489

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-9593-2294
http://orcid.org/0000-0001-9962-7193
http://orcid.org/0000-0001-9301-8418
http://orcid.org/0000-0002-1514-8505
http://orcid.org/0000-0003-1722-947X

Preface

Now in its 17th year, the ISWC continues to be a focal point of the Semantic Web
community. Year after year, it brings together researchers and practitioners from all
over the world to present new approaches and findings, share ideas, and discuss
experiences. It features a balanced mix of fundamental research, innovative technology,
scientific artefacts such as ontologies or benchmarks, and applications that showcase
the power of semantics, data, and the Web.

The Web, and all the ideas, technologies, and values that surround it, are at a
crossroads. After several decades of growth and prosperity, it is increasingly seen as a
means to lock-in customers and their data, spread misinformation, and increase
polarization in society. At the same time, there is a palpable sense of excitement as we
witness new voices and developments from the community that are fighting this trend
in various ways – from more open and transparent forms of scholarly publishing and
peer review in some of the workshops featured at the conference to cutting-edge
research and applications on topics such as fake news, semantic coherence, and fact
checking. Against this background, this year we decided to revive the Blue Sky Ideas
track, chaired by Carolina Fortuna and supported by the Computing Community
Consortium, to seek visionary ideas and opportunities for research and innovation,
which are outside the mainstream topics of the conference.

A child of its times, the 17th ISWC featured a stellar, all-female keynote lineup:
Jennifer Golbeck from the University of Maryland talked about human factors in
semantic technologies; Vanessa Evers, University of Twente, introduced us to social
robotics, an area with interesting applications for the models and technologies devel-
oped in our community; while Natasha Noy of Google discussed how we could use
semantics to make structured data on the web more accessible and useful for everyone.

This volume contains the proceedings of ISWC 2018, i.e. papers that were peer
reviewed and accepted into the main conference program, which covered three tracks:
research, resources, and in-use. Altogether, a total of 254 submissions were received,
which were evaluated by 486 reviewers. A total of 62 papers were accepted – 39 for the
research track, 17 for the resources track, and six for the in-use track. The substantial
number of papers in the resources category attests the commitment of the community to
sharing and collaboration and to repeatable, reproducible research.

ISWC has an excellent scientific profile – as such, the research track continues to be
the most popular venue for submissions. This year the track received overall 167 valid
full-paper submissions, which turned into 39 acceptances, leading to an acceptance rate
of 23%. We recruited 272 PC members and 67 sub-reviewers, guided by 17 senior PC
members. Each paper received at least four reviews, including one from a senior PC
member. The papers were assessed for originality, novelty, relevance, and impact of the
research contributions, soundness, rigour and reproducibility, clarity and quality of
presentation, and grounding in the literature. Each paper was then discussed by the PC
chairs and the senior PC members, who helped us reach a consensus.

The resources track promotes the sharing of high-quality information artifacts that
have contributed to the generation of novel scientific work. Resources can be datasets,
ontologies, vocabularies, ontology design patterns, benchmarks, crowdsourcing
designs, software frameworks, workflows, protocols, metrics, among others. The track
is becoming demonstratively more and more important to our community as the
sharing of reusable resources is key to allowing other researchers to compare new
results, reproduce experimental research, and explore new lines of research, in accor-
dance with the FAIR principles for scientific data management. All published resources
must address a set of requirements: persistent URI, canonical citation, license speci-
fication, to mention a few. This year the track received 55 submissions, of which 17
were accepted (31% acceptance rate), covering a wide range of resource types such as
benchmarks, ontologies, datasets, software frameworks, and crowdsourcing designs; a
variety of domains such as music, health, education, drama, and audio; and addressing
multiple problems such as RDF querying, ontology alignment, linked data analytics,
and recommending systems. The reviewing process involved 70 PC members and 9
subreviewers, supported by 8 senior PC members. The average number of reviews per
paper were 3.7 (at least three per paper), plus a meta-review provided by a senior PC
member. Papers were evaluated based on the availability of the resource, its design and
technical quality, impact, and reusability. The review process also included a rebuttal
phase and further discussions among reviewers and senior PC members, who provided
recommendations. Final decisions were taken following a detailed analysis and dis-
cussion of each paper conducted by the program chairs and the senior PC.

The in-use track at ISWC 2018 continued the tradition of demonstrating and
learning from the increasing adoption of Semantic Web technologies outside the
boundaries of research institutions, by providing a forum for the community to explore
the benefits and challenges of applying these technologies in concrete, practical
applications, in contexts ranging from industry to government and science. This year,
the 32 submissions were reviewed by at least three PC members each and assessed in
terms of novelty of the proposed use case or solution, uptake by the target user group,
demonstrated or potential impact, as well as the overall soundness and quality. The PC
consisted of 43 members. It helped us select 6 papers for acceptance, covering different
domains (e.g., healthcare, cultural heritage, industry) and addressing a multitude of
research problems (e.g., data integration, collaborative knowledge management,
recommendations).

The industry track provides an opportunity for industry adopters to highlight and
share the key learnings and new research challenges posed by real-world implemen-
tations. This year we had many exciting submissions from small to large companies
that are making revealing leaps forward in science and engineering by using and
adopting semantic technologies, web of data sources, and knowledge graphs. Each
short submission was reviewed by at least three PC members. We accepted 14 out 27
abstracts that showcased a wide range of real-world industrial strength applications.
The submissions were assessed in terms of the impact of semantics as a competitive
differentiator in industry and discussions on the business value, experiences, insights,
as well obstacles that stand in the way of large-scale adoption of semantic technologies.

VI Preface

The main conference program was complemented by presentations from the journal,
industry, and posters and demos tracks, as well as the Semantic Web Challenge and a
panel on future trends in knowledge graphs.

The conference included a variety of events appreciated by the community, which
created more opportunities to present and discuss emerging ideas, network, learn, and
mentor. Thanks to Amrapali Zaveri and Elena Demidova, the workshops and tutorials
program includes a mix of established topics such as ontology matching and ontology
design patterns alongside newer ones that reflect the commitment of the community to
innovate and help create systems and technologies that people want and deserve,
including re-decentralizing the Semantic Web, augmenting intelligence with humans in
the loop, and a perspective workshop discussing open issues and trends.
Application-centric workshops range from statistics to science to healthcare. The
tutorials covered topics such as ontology modeling, crowdsourcing methods and
metrics, RDF data validation and visualization, as well as knowledge graph machine
learning and applications.

The conference also included a Doctoral Consortium track, which was chaired by
Lalana Kagal and Sabrina Kirrane. The DC afforded PhD students from the Semantic
Web community the opportunity to share their research ideas in a critical but supportive
environment, where they received feedback from senior members of the community.
This year the Program Committee accepted 12 papers for presentation at the event,
while a total of 18 students were selected to participate in the DC poster and demo
session. All student participants were paired with mentors from the PC who provided
guidance on improving their research, producing slides, and giving presentations.

The program was complemented by activities put together by Bo Fu and Anisa Rula
as student coordinators, who secured funding for travel grants, managed the grant
application process, and organized the mentoring lunch alongside other informal
opportunities for students and other newcomers to get to know the community.

Posters and demos are one of the most vibrant parts of every ISWC. This year, the
track was chaired by Marieke van Erp and Medha Atre. It included 40 demos and 39
posters selected from a total of 95 submissions. A minute madness session offered time
to those who wanted to take to the stage to present a brief preview of their poster or
demo to generate interest in the work.

The Semantic Web Challenge has now been a part of ISWC for 15 years. Started as
an open challenge to provide a forum for new and prestigious applications of Semantic
Web technologies, and seconded by a challenge for scalability with the Billion Triple
Challenge since 2003, the challenge was reanimated in 2017 with a new direction, with
fixed datasets, and objective measures allowing for direct comparison of challenge
entries. The 2018 challenge used a partly public, partly private knowledge graph about
company networks owned by Thomson Reuters, and participants were asked to predict
supply chain relations between those companies, using both knowledge in the graph
itself as well as external sources. The best solutions were presented and discussed at the
conference, both in a dedicated plenary session as well as during the poster session.

Delivering a conference is so much more than assembling a program. An event
of the scale and complexity of ISWC requires the help, resources, and time of hundreds
of people, organizers of satellite events, reviewers, volunteers, and sponsors. We are
very grateful to our local team at Stanford University, who have expertly managed

Preface VII

conference facilities, accommodation, registrations, the website, and countless other
details. They made the conference a place we want to be every year and helped us grow
this exciting scientific community.

Our thanks also go to Maribel Acosta, our tireless publicity chair – she played a
critical role in ensuring that all conference activities and updates were communicated
and promoted across mailing lists and on social media. Oana Inel was the metadata
chair this year – her work made sure that all relevant information about the conference
was available in a format that could be used across applications, continuing a tradition
established at this conference many years ago. We are especially thankful to our
proceedings chair, Lucie-Aimée Kaffee, who oversaw the publication of this volume
alongside a number of CEUR proceedings for other tracks.

Sponsorship is crucial to the realization of the conference in its current form. We
had a highly committed trio of sponsorship chairs, Annalisa Gentile, Maria Mal-
eshkova, and Laura Koesten, who went above and beyond to find new ways to engage
with sponsors and promote the conference to them. Thanks to them, the conference
now features a social program that is almost as exciting as the scientific one – including
a jam session accompanying the posters and demos presented on the second day of the
conference and a bike ride from San Jose to Asilomar, the venue of the conference. Our
special thanks go to the Semantic Web Science Association (SWSA) for their con-
tinuing support and guidance and to the organizers of the conference from 2017 and
2016, who were a constant inspiration, role model, and source of practical knowledge.

August 2018 Denny Vrandečić
Kalina Bontcheva

Mari Carmen Suárez-Figueroa
Valentina Presutti

Irene Celino
Marta Sabou

Lucie-Aimée Kaffee
Elena Simperl

VIII Preface

Organization

Organizing Committee
General Chair

Elena Simperl University of Southampton, UK

Local Chair

Rafael Gonçalves Stanford University, USA

Research Track Chairs

Denny Vrandečić Google, Mountain View, USA
Kalina Bontcheva University of Sheffield, UK

Resources Track Chairs

Mari Carmen
Suárez-Figueroa

Universidad Politécnica de Madrid, Spain

Valentina Presutti Italian National Research Council, Italy

In-Use Track Chairs

Irene Celino Cefriel, Italy
Marta Sabou Vienna University of Technology, Austria

Workshop and Tutorial Chairs

Amrapali Zaveri Maastricht University, Netherlands
Elena Demidova L3S Research Center in Hannover, Germany

Poster and Demo Track Chairs

Medha Atre Indian Institute of Technology, India
Marieke van Erp Knaw Humanities Cluster, Netherlands

Journal Track Chairs

Abraham Bernstein University of Zurich, Switzerland
Pascal Hitzler Wright State University, Dayton, USA
Steffen Staab University of Koblenz-Landau, Germany

Industry Track Chairs

Vanessa Lopez IBM Research, Dublin, Ireland
Kavitha Srinivas Rivet Labs, USA

Doctoral Consortium Chairs

Sabrina Kirrane Vienna University of Economics and Business, Austria
Lalana Kagal MIT CSAIL, USA

Semantic Web Challenge Chairs

Heiko Paulheimt University of Mannheim, Germany
Axel Ngonga University of Paderborn, Germany
Dan Bennett Enterprise Data Services at Thomson Reuters, USA

Proceedings Chair

Lucie-Aimée Kaffee University of Southampton, UK

Metadata Chair

Oana Inel Vrije Universiteit Amsterdam, Netherlands

Sponsorship Chairs

Laura Koesten Open Data Institute, UK
Maria Maleshkova Karlsruhe Institute of Technology, Germany
Annalisa Gentile IBM Research, San Jose, USA

Student Coordinators

Bo Fu California State University, Long Beach, USA
Anisa Rula University of Milano-Bicocca, Italy

Publicity Chair

Maribel Acosta Karlsruhe Institute of Technology, Germany

Program Committee
Senior Program Committee – Research Track

Christian Bizer University of Mannheim
Kai-Uwe Sattler TU Ilmenau
Paul Groth Elsevier Labs
Stefan Schlobach Vrije Universiteit Amsterdam
Thomas Lukasiewicz University of Oxford
Steffen Staab Institut WeST, University Koblenz-Landau and WAIS,

University of Southampton
Pascal Hitzler Wright State University
Harith Alani The Open University
Alessandro Moschitti Qatar Computing Research Institute
Claudia d’Amato University of Bari
Vojtěch Svátek University of Economics, Prague

X Organization

Sören Auer TIB Leibniz Information Center for Science
and Technology and University of Hannover

Oscar Corcho Universidad Politécnica de Madrid
Abraham Bernstein University of Zurich
Lalana Kagal MIT
David Martin Nuance Communications
Jose Manuel Gomez Perez Expert System Iberia

Program Committee – Research Track

Maribel Acosta Karlsruhe Institute of Technology
Alessandro Adamou The Open University
Nitish Aggarwal IBM
Harith Alani The Open University
Panos Alexopoulos Textkernel B.V.
Jose Julio Alferes Universidade NOVA de Lisboa
Marjan Alirezaie Orebro University
José Luis Ambite University of Southern California
Renzo Angles Universidad de Talca
Grigoris Antoniou University of Huddersfield
Manuel Atencia Univ. Grenoble Alpes and Inria
Ioannis N. Athanasiadis Wageningen University
Sören Auer TIB Leibniz Information Center for Science

and Technology and University of Hannover
Nathalie Aussenac-Gilles IRIT CNRS
Franz Baader TU Dresden
Payam Barnaghi University of Surrey
Valerio Basile University of Turin
Zohra Bellahsene LIRMM
Michael K. Bergman Cognonto Corporation
Abraham Bernstein University of Zurich
Elisa Bertino Purdue University
Leopoldo Bertossi Carleton University
Christian Bizer University of Mannheim
Fernando Bobillo University of Zaragoza
Kalina Bontcheva The University of Sheffield
Alex Borgida Rutgers University
Mihaela Bornea IBM
Loris Bozzato Fondazione Bruno Kessler
Adrian M. P. Brasoveanu MODUL Technology GmbH
Charalampos Bratsas Aristotle University of Thessaloniki
John Breslin NUI Galway
Carlos Buil Aranda Universidad Técnica Federico Santa María
Gregoire Burel The Open University
Elena Cabrio Université Côte d’Azur, CNRS, Inria, I3S, France
Andrea Calì University of London, Birkbeck College

Organization XI

David Carral TU Dresden
Gerard Casamayor Universitat Pompeu Fabra
Davide Ceolin Vrije Universiteit Amsterdam
Ismail Ilkan Ceylan University of Oxford
Pierre-Antoine Champin LIRIS, Université Claude Bernard Lyon1
Gong Cheng Nanjing University
Christian Chiarcos Universität Frankfurt am Main
Michael Cochez Fraunhofer
Pieter Colpaert Ghent University
Simona Colucci Politecnico di Bari
Olivier Corby Inria
Oscar Corcho Universidad Politécnica de Madrid
Luca Costabello Accenture Labs
Fabio Cozman University of São Paulo
Isabel Cruz University of Illinois at Chicago
Philippe Cudre-Mauroux U. of Fribourg
Bernardo Cuenca Grau University of Oxford
Claudia d’Amato University of Bari
Aba-Sah Dadzie The Open University
Enrico Daga The Open University
Florian Daniel Politecnico di Milano
Laura M. Daniele TNO - Netherlands Organization for Applied Scientific

Research
Victor de Boer Vrije Universiteit Amsterdam
Jeremy Debattista Trinity College Dublin
Thierry Declerck DFKI GmbH
Jaime Delgado Universitat Politècnica de Catalunya
Daniele Dell’Aglio University of Zurich
Emanuele Della Valle Politecnico di Milano
Elena Demidova L3S Research Center
Ronald Denaux University of Leeds, UK
Dennis Diefenbach Université Jean Monet
Stefan Dietze GESIS - Leibniz Institute for the Social Sciences
Ying Ding Indiana University Bloomington
Mauro Dragoni Fondazione Bruno Kessler - FBK-IRST
Michel Dumontier Maastricht University
Henrik Eriksson Linköping University
Vadim Ermolayev Zaporozhye National University
Jérôme Euzenat Inria and Univ. Grenoble Alpes
James Fan HelloVera.ai
Nicola Fanizzi Università degli studi di Bari “Aldo Moro”
Anna Fensel Semantic Technology Institute (STI) Innsbruck,

University of Innsbruck
Alberto Fernandez CETINIA, University Rey Juan Carlos
Javier D. Fernández Vienna University of Economics and Business
Sebastien Ferre Université de Rennes 1

XII Organization

Besnik Fetahu L3S Research Center
Tim Finin University of Maryland, Baltimore County
Lorenz Fischer Sentient Machines
Fabian Flöck GESIS Cologne
Antske Fokkens Vrije Universiteit Amsterdam
Muriel Foulonneau Luxembourg Institute of Science and Technology
Flavius Frasincar Erasmus University Rotterdam
Fred Freitas Universidade Federal de Pernambuco (UFPE)
Adam Funk University of Sheffield
Aldo Gangemi Università di Bologna and CNR-ISTC
Daniel Garijo Information Sciences Institute
Anna Lisa Gentile IBM
Jose Manuel Gomez Perez Expert System Iberia
Rafael S. Gonçalves Stanford University
Gregory Grefenstette IHMC and Biggerpan, Inc.
Paul Groth Elsevier Labs
Tudor Groza The Garvan Institute of Medical Research
Cathal Gurrin Dublin City University
Christophe Guéret Accenture
Peter Haase metaphacts
Armin Haller Australian National University
Harry Halpin World Wide Web Consortium
Karl Hammar Jönköping University
Andreas Harth University Erlangen-Nuremberg
Oktie Hassanzadeh IBM
Tom Heath Open Data Institute
Johannes Heinecke Orange Labs
Andreas Herzig IRIT-CNRS
Pascal Hitzler Wright State University
Aidan Hogan DCC, Universidad de Chile
Laura Hollink Vrije Universiteit Amsterdam
Matthew Horridge Stanford University
Katja Hose Aalborg University
Andreas Hotho University of Wuerzburg
Geert-Jan Houben Delft University of Technology
Wei Hu Nanjing University
Eero Hyvönen Aalto University
Yazmin A. Ibanez-Garcia Institute of Information Systems, TU Wien
Luis Ibanez-Gonzalez University of Southampton
Oana Inel Vrije Universiteit Amsterdam
Mustafa Jarrar Birzeit University
Ernesto Jimenez-Ruiz The Alan Turing Institute
Clement Jonquet University of Montpellier - LIRMM
Lucie-Aimée Kaffee University of Southampton
Lalana Kagal MIT
Martin Kaltenboeck Semantic Web Company

Organization XIII

Mark Kaminski University of Oxford
Pavan Kapanipathi IBM T.J. Watson Research Center
Md. Rezaul Karim Fraunhofer FIT, Germany
Tomi Kauppinen Aalto University School of Science
Takahiro Kawamura Japan Science and Technology Agency
Mayank Kejriwal Information Sciences Institute
Carsten Keßler Aalborg University Copenhagen
Prashant Khare Knowledge Media Institute, Open University, UK
Haklae Kim Samsung Electronics
Sabrina Kirrane Vienna University of Economics and Business - WU

Wien
Matthias Klusch DFKI
Matthias Knorr Universidade NOVA de Lisboa
Stasinos Konstantopoulos NCSR Demokritos
Roman Kontchakov Birkbeck, University of London
Jacek Kopecky University of Portsmouth
Adila A. Krisnadhi Wright State University and Universitas Indonesia
Udo Kruschwitz University of Essex
Tobias Kuhn Vrije Universiteit Amsterdam
Benedikt Kämpgen Empolis Information Management GmbH
Patrick Lambrix Linköping University
Steffen Lamparter Siemens AG, Corporate Technology
Agnieszka Lawrynowicz Poznan University of Technology
Danh Le Phuoc TU Berlin
Chengkai Li University of Texas at Arlington
Juanzi Li Tsinghua University
Nuno Lopes TopQuadrant, Inc.
Chun Lu Université Paris-Sorbonne and Sépage
Markus Luczak-Roesch Victoria University of Wellington
Thomas Lukasiewicz University of Oxford
Carsten Lutz Universität Bremen
Alexander Löser Beuth Hochschule für Technik Berlin
Frederick Maier Institute for Artificial Intelligence
David Martin Nuance Communications
Trevor Martin University of Bristol
Mercedes

Martinez-Gonzalez
University of Valladolid

Miguel A. Martinez-Prieto University of Valladolid
Wolfgang May Universitaet Goettingen
Diana Maynard The University of Sheffield
Franck Michel Université Côte d’Azur, CNRS, I3S
Nandana

Mihindukulasooriya
Universidad Politécnica de Madrid

Riichiro Mizoguchi Japan Advanced Institute of Science and Technology
Marie-Francine Moens Katholieke Universiteit Leuven
Pascal Molli University of Nantes - LS2N

XIV Organization

Gabriela Montoya Aalborg University
Federico Morando Nexa Center for Internet and Society at Politecnico di

Torino
Alessandro Moschitti Qatar Computing Research Institute
Paul Mulholland The Open University
Raghava Mutharaju GE Global Research
Lionel Médini LIRIS lab., University of Lyon
Ralf Möller University of Luebeck
Hubert Naacke Sorbonne Université, UPMC, LIP6
Axel-Cyrille Ngonga

Ngomo
Paderborn University

Andriy Nikolov metaphacts GmbH
Lyndon Nixon MODUL Technology GmbH
Leo Obrst MITRE
Francesco Osborne The Open University
Raul Palma Poznan Supercomputing and Networking Center
Matteo Palmonari University of Milano-Bicocca
Jeff Z. Pan University of Aberdeen
Rahul Parundekar Toyota Info-Technology Center
Bibek Paudel University of Zurich
Heiko Paulheim University of Mannheim
Tassilo Pellegrini University of Applied Sciences St. Pölten
Silvio Peroni University of Bologna
Catia Pesquita LaSIGE, Universidade de Lisboa
Reinhard Pichler Vienna University of Technology
Emmanuel Pietriga Inria
Giuseppe Pirrò Institute for High Performance Computing

and Networking (ICAR-CNR)
Dimitris Plexousakis Institute of Computer Science, FORTH
Mike Pool Goldman Sachs Group
Livia Predoiu University of Oxford
Cédric Pruski Luxembourg Institute of Science and Technology
Yuzhong Qu Nanjing University
Dnyanesh Rajpathak General Motors
Dietrich

Rebholz-Schuhmann
Insight Centre for Data Analytics

Georg Rehm DFKI
Achim Rettinger Karlsruhe Institute of Technology
Martin Rezk Rakuten
German Rigau IXA Group, UPV/EHU
Carlos R. Rivero Rochester Institute of Technology
Giuseppe Rizzo ISMB
Marco Rospocher Fondazione Bruno Kessler
Camille Roth Sciences Po
Marie-Christine Rousset University of Grenoble Alpes
Ana Roxin University of Burgundy, UMR CNRS 6306

Organization XV

Harald Sack FIZ Karlsruhe, Leibniz Institute for Information
Infrastructure & KIT Karlsruhe

Sherif Sakr The University of New South Wales
Angelo Antonio Salatino The Open University
Muhammad Saleem AKSW, University of Leizpig
Cristina Sarasua University of Zurich
Felix Sasaki Lambdawerk
Bahar Sateli Concordia University
Kai-Uwe Sattler TU Ilmenau
Vadim Savenkov Vienna University of Economics and Business (WU)
Marco Luca Sbodio IBM
Johann Schaible GESIS - Leibniz Institute for the Social Sciences
Bernhard Schandl mySugr GmbH
Ansgar Scherp Kiel University and ZBW – Leibniz Information Center

for Economics, Kiel, Germany
Marvin Schiller Ulm University
Stefan Schlobach Vrije Universiteit Amsterdam
Claudia Schon Universität Koblenz-Landau
Marco Schorlemmer Artificial Intelligence Research Institute, IIIA-CSIC
Lutz Schröder Friedrich-Alexander-Universität Erlangen-Nürnberg
Daniel Schwabe PUC-Rio
Erich Schweighofer University of Vienna
Giovanni Semeraro University of Bari
Juan F. Sequeda Capsenta Labs
Luciano Serafini Fondazione Bruno Kessler
Saeedeh Shekarpour University of Dayton
Gerardo Simari Universidad Nacional del Sur and CONICET
Elena Simperl University of Southampton
Hala Skaf-Molli Nantes University
Sebastian Skritek Vienna University of Technology
Monika Solanki University of Oxford
Dezhao Song Thomson Reuters
Steffen Staab Institut WeST, University Koblenz-Landau and WAIS,

University of Southampton
Yannis Stavrakas Institute for the Management of Information Systems
Armando Stellato University of Rome, Tor Vergata
Audun Stolpe Norwegian Defence Research Establishment (FFI)
Umberto Straccia ISTI-CNR
Markus Strohmaier RWTH Aachen University and GESIS
Heiner Stuckenschmidt University of Mannheim
Jing Sun The University of Auckland
York Sure-Vetter Karlsruhe Institute of Technology
Vojtěch Svátek University of Economics, Prague
Marcin Sydow PJIIT and ICS PAS, Warsaw
Mohsen Taheriyan Google
Hideaki Takeda National Institute of Informatics

XVI Organization

Kerry Taylor Australian National University and University
of Surrey

Annette Ten Teije Vrije Universiteit Amsterdam
Kia Teymourian Boston University
Dhavalkumar Thakker University of Bradford
Allan Third The Open University
Krishnaprasad Thirunarayan Wright State University
Ilaria Tiddi The Open University
Thanassis Tiropanis University of Southampton
Konstantin Todorov LIRMM, University of Montpellier
David Toman University of Waterloo
Nicolas Torzec Yahoo
Yannick Toussaint LORIA
Sebastian Tramp eccenca GmbH
Cassia Trojahn UT2J & IRIT
Raphaël Troncy EURECOM
Jürgen Umbrich Vienna University of Economy and Business (WU)
Joerg Unbehauen University of Leipzig
Jacopo Urbani Vrije Universiteit Amsterdam
Herbert Van De Sompel Los Alamos National Laboratory, Research Library
Jacco van Ossenbruggen CWI & VU University Amsterdam
Ruben Verborgh Ghent University – imec
Serena Villata CNRS - Laboratoire d’Informatique, Signaux et

Systèmes de Sophia-Antipolis
Denny Vrandečić Google
Domagoj Vrgoc Pontificia Universidad Católica de Chile
Simon Walk Graz University of Technology
Kewen Wang Griffith University
Zhichun Wang Beijing Normal University
Paul Warren Knowledge Media Institute, Open University, UK
Grant Weddell University of Waterloo
Erik Wilde CA Technologies
Cord Wiljes CITEC, Bielefeld University
Gregory Todd Williams Hulu
Jiewen Wu Institute for InfoComm Research, A*STAR
Yong Yu Shanghai Jiao Tong University
Fouad Zablith American University of Beirut
Ondřej Zamazal University of Economics, Prague
Benjamin Zapilko GESIS - Leibniz Institute for the Social Sciences
Sergej Zerr L3S Research Center
Qingpeng Zhang City University of Hong Kong
Ziqi Zhang Sheffield University
Jun Zhao University of Oxford

Organization XVII

Additional Reviewers – Research Track

Abdel-Qader, Mohammad
Acar, Erman
Akrami, Farahnaz
Allavena, Davide
Angelidis, Iosif
Annane, Amina
Badenes-Olmedo, Carlos
Bakhshandegan Moghaddam, Farshad
Batsakis, Sotiris
Bhardwaj, Akansha
Bilgin, Aysenur
Biswas, Russa
Borgwardt, Stefan
Braun, Tanya
Calleja, Pablo
Chaloux, Julianne
Charalambidis, Angelos
Chaves-Fraga, David
Cheatham, Michelle
Chen, Jiaoyan
Daniel, Ron
Deng, Shumin
Ding, Jiwei
Dudas, Marek
Espinoza, Paola
Frommhold, Marvin
Hildebrandt, Marcel
Hogan, Aidan
Jimenez, Damian
Jouanot, Fabrice
Khosla, Megha
Kilias, Torsten
Kondylakis, Haris

Koopmann, Patrick
Kostylev, Egor V.
Koutraki, Maria
Krieg-Brückner, Bernd
Krishnamurthy, Gangeshwar
Kritikos, Kyriakos
Mireles, Victor
Mogadala, Aditya
Moodley, Kody
Musto, Cataldo
Padhee, Swati
Palumbo, Enrico
Piao, Guangyuan
Priyatna, Freddy
Revenko, Artem
Ribeiro De Azevedo, Ryan
Ringsquandl, Martin
Rodrigues, Cleyton
Rodriguez Muro, Mariano
Rosso, Paolo
Schneider, Rudolf
Shimizu, Cogan
Siciliani, Lucia
Silvestre Vilches, Jorge
Sun, Zequn
Tachmazidis, Ilias
Thoma, Steffen
Umbrich, Jürgen
Volk, Martin
Wielemaker, Jan
Ziebelin, Danielle
Özcep, Özgür Lütfü

Senior Program Committee – Resources Track

Maria Esther Vidal Universidad Simon Bolivar
Valentina Tamma University of Liverpool
Anna Lisa Gentile IBM
Steffen Lohmann Fraunhofer
Aidan Hogan DCC, Universidad de Chile
Serena Villata CNRS - Laboratoire d’Informatique, Signaux et

Systèmes de Sophia-Antipolis
Jorge Gracia University of Zaragoza
Stefan Dietze L3S Research Center

XVIII Organization

Program Committee – Resources Track

Muhammad Intizar Ali Insight Centre for Data Analytics, National University
of Ireland, Galway

Ghislain Auguste
Atemezing

Mondeca

Mattia Atzeni University of Cagliari
Maurizio Atzori University of Cagliari
Elena Cabrio Université Côte d’Azur, CNRS, Inria, I3S
Timothy Clark University of Virginia
Francesco Corcoglioniti University of Trento
Daniele Dell’Aglio University of Zurich
Emanuele Della Valle Politecnico di Milano
Stefan Dietze GESIS - Leibniz Institute for the Social Sciences
Ying Ding Indiana University Bloomington
Mauro Dragoni Fondazione Bruno Kessler - FBK-IRST
Mohnish Dubey University of Bonn
Fajar J. Ekaputra Vienna University of Technology
Diego Esteves University of Bonn
Stefano Faralli University of Mannheim
Mariano Fernández López Universidad San Pablo CEU
Jesualdo Tomás

Fernández-Breis
Universidad de Murcia

Aldo Gangemi Università di Bologna and CNR-ISTC
Anna Lisa Gentile IBM
Claudio Giuliano Fondazione Bruno Kessler
Jose Manuel Gomez-Perez ExpertSystem
Alejandra Gonzalez-Beltran University of Oxford
Rafael S Gonçalves Stanford University
Jorge Gracia University of Zaragoza
Alasdair Gray Heriot-Watt University
Tudor Groza The Garvan Institute of Medical Research
Amelie Gyrard Kno.e.sis - Ohio Center of Excellence in

Knowledge-enabled Computing
Pascal Hitzler Wright State University
Robert Hoehndorf King Abdullah University of Science and Technology
Rinke Hoekstra University of Amsterdam
Aidan Hogan DCC, Universidad de Chile
Antoine Isaac Europeana and VU University Amsterdam
Ernesto Jimenez-Ruiz The Alan Turing Institute
Simon Jupp European Bioinformatics Institute
Tomi Kauppinen Aalto University School of Science
Christoph Lange University of Bonn and Fraunhofer IAIS
Agnieszka Lawrynowicz Poznan University of Technology
Alejandro Llaves Fujitsu Laboratories of Europe
Steffen Lohmann Fraunhofer

Organization XIX

Phillip Lord Newcastle University
Markus Luczak-Roesch Victoria University of Wellington
Maria Maleshkova Karlsruhe Institute of Technology
Fiona McNeill Heriot Watt University
Nandana

Mihindukulasooriya
Universidad Politécnica de Madrid

Raghava Mutharaju GE Global Research
Giulio Napolitano Fraunhofer Institute and University of Bonn
Vinh Nguyen National Library of Medicine, NIH
Andrea Giovanni Nuzzolese University of Bologna
Alessandro Oltramari Bosch Research and Technology Center
Raul Palma Poznan Supercomputing and Networking Center
Bijan Parsia The University of Manchester
Silvio Peroni University of Bologna
María Poveda-Villalón Universidad Politécnica de Madrid
Valentina Presutti CNR - Institute of Cognitive Sciences and Tecnologies
Mariano Rico Universidad Politécnica de Madrid
German Rigau IXA Group, UPV/EHU
Giuseppe Rizzo ISMB
Edna Ruckhaus Universidad Politécnica de Madrid
Anisa Rula University of Milano-Bicocca
Michele Ruta Politecnico di Bari
Satya Sahoo Case Western Reserve University
Cristina Sarasua University of Zurich
Stefan Schlobach Vrije Universiteit Amsterdam
Jodi Schneider University of Illinois Urbana Champaign
Stefan Schulte Vienna University of Technology
Hamed Shariat Yazdi University of Bonn
Elena Simperl University of Southampton
Mari Carmen

Suárez-Figueroa
Universidad Politécnica de Madrid

Valentina Tamma University of Liverpool
Krishnaprasad Thirunarayan Wright State University
Cassia Trojahn UT2J & IRIT
Raphaël Troncy EURECOM
Maria Esther Vidal Universidad Simon Bolivar
Natalia Villanueva-Rosales University of Texas at El Paso
Serena Villata CNRS - Laboratoire d’Informatique, Signaux et

Systèmes de Sophia-Antipolis
Fouad Zablith American University of Beirut
Amrapali Zaveri Maastricht University
Jun Zhao University of Oxford

XX Organization

Additional Reviewers – Resources Track

Bader, Sebastian
Daquino, Marilena
Ebrahimi, Monireh
García-Silva, Andrés
Heling, Lars
Kismihók, Gábor
Nayyeri, Mojtaba

Nechaev, Yaroslav
Pham, Thu Le
Sadeghi, Afshin
Shimizu, Cogan
Weller, Tobias
Zhou, Lu

Program Committee – In-Use Track

Irene Celino Cefriel
Marco Comerio Cefriel
Oscar Corcho Universidad Politécnica de Madrid
Philippe Cudre-Mauroux University of Fribourg
Mathieu D’Aquin Insight Centre for Data Analytics, National University

of Ireland, Galway
Brian Davis Insight Centre for Data Analytics, Galway
Stefan Dietze GESIS - Leibniz Institute for the Social Sciences
Mauro Dragoni Fondazione Bruno Kessler - FBK-IRST
Achille Fokoue IBM
Daniel Garijo Information Sciences Institute
Anna Lisa Gentile IBM
Jose Manuel Gomez-Perez ExpertSystem
Rafael S Gonçalves Stanford University
Paul Groth Elsevier Labs
Tudor Groza The Garvan Institute of Medical Research
Christophe Guéret Accenture
Peter Haase metaphacts
Lucie-Aimée Kaffee University of Southampton
Tomi Kauppinen Aalto University School of Science
Elmar Kiesling Vienna University of Technology
Craig Knoblock University of Southern California
Freddy Lecue Accenture Labs
Vanessa Lopez IBM
Vassil Momtchev Ontotext AD
Andriy Nikolov metaphacts GmbH
Francesco Osborne The Open University
Jeff Z. Pan University of Aberdeen
Artem Revenko Semantic Web Company GmbH
Giuseppe Rizzo ISMB
Dumitru Roman SINTEF
Marta Sabou Vienna University of Technology
Harald Sack FIZ Karlsruhe, Leibniz Institute for Information

Infrastructure and KIT Karlsruhe

Organization XXI

Juan F. Sequeda Capsenta Labs
Elena Simperl University of Southampton
Dezhao Song Thomson Reuters
Thomas Steiner Google
Simon Steyskal Siemens AG Austria
Anna Tordai Elsevier B.V.
Raphaël Troncy EURECOM
Josiane Xavier Parreira Siemens AG Österreich

Additional Reviewers – In-Use Track

Bakhshandegan Moghaddam, Farshad
Chen, Jiaoyan
Fawei, Biralatei
García-Silva, Andrés
Li, Chenxi
Lutov, Artem
Mireles, Victor

Nikolov, Nikolay
Smirnova, Alisa
Tietz, Tabea
Türker, Rima
Zernichow, Bjørn Marius Von
Zhao, Yuting

XXII Organization

Sponsors
Platinum Sponsors

Gold Sponsors

https://www.elsevier.com/ http://www.ibm.com/ https://franz.com/

http://videolectures.net/

https://inovexcorp.com/

https://data.world/ http://www.metaphacts.
com/

https://ontotext.com/

https://www.thomsonreuters.
com/

http://www.oracle.com/

Organization XXIII

https://www.elsevier.com/
http://www.ibm.com/
https://franz.com/
http://videolectures.net/
http://videolectures.net/
https://inovexcorp.com/
https://data.world/
http://www.metaphacts.com/
http://www.metaphacts.com/
https://ontotext.com/
https://www.thomsonreuters.com/
https://www.thomsonreuters.com/
http://www.oracle.com/

Bronze Sponsors

Contributors

Student Travel Award Sponsors

Doctoral Consortium

https://www.google.com/

https://www.nsf.gov/ http://swsa.semanticweb.org/

https://www.journals.elsevier.
com/artificial-intelligence

https://www.springer.com/ https://capsenta.com/ https://www.iospress.nl/

XXIV Organization

https://www.google.com/
https://www.nsf.gov/
http://swsa.semanticweb.org/
https://www.journals.elsevier.com/artificial-intelligence
https://www.journals.elsevier.com/artificial-intelligence
https://www.springer.com/
https://capsenta.com/
https://www.iospress.nl/

Tutorials

ISWC 2018 Workshop
and Tutorial Chairs’ Welcome

Besides the main technical program, ISWC 2018 hosts a selection of workshops and
tutorials on a range of emerging and established topics. The key areas addressed by the
workshop and tutorial programme include core Semantic Web technologies such as
knowledge graphs and scalable knowledge base systems, ontology design and mod-
elling, semantic deep learning and statistics, and well as novel applications of semantic
technologies to audio and music, IoT, robotics, healthcare, social media and social
good topics. Furthermore, several events address the topics on the interface of Semantic
Web technologies and humans, including visualization and interaction paradigms for
Web Data as well as crowdsourcing applications. The workshops and tutorials provide
a setting for focused, intensive scientific exchange among researchers and practitioners
in a variety of formats.

The decision on acceptance of workshops and tutorial proposals was made on the
basis of their overall quality and their appeal to a reasonable fraction of the Semantic
Web community while also targeting diversity of the programme. Overall, we received
31 workshop and tutorial proposals, of which 8 were accepted as full-day events and 17
as half-day events. The full workshop and tutorials programme is available at: http://
iswc2018.semanticweb.org/workshops-tutorials.

We would like to take this opportunity to thank the workshop and tutorial orga-
nizers for their invaluable and inspiring contributions to the ISWC 2018 programme.
We look forward to seeing you in Monterey!

March 2018 Elena Demidova
Amrapali Zaveri

Workshop & Tutorial Chairs

http://iswc2018.semanticweb.org/workshops-tutorials
http://iswc2018.semanticweb.org/workshops-tutorials

Methods and Tools for Modular
Ontology Modeling

Karl Hammar1, Pascal Hitzler2, Cogan Shimizu2,
and Md Kamruzzaman Sarker2

1 Department of Computer Science and Informatics,
Jönköping University, Sweden
karl.hammar@ju.se

2 Data Semantics Lab, Wright State University, USA
{pascal.hitzler,shimizu.5,sarker.3}@wright.edu

Ontology design patterns and other methods for modular ontology engineering have
recently experienced a revival, and several new promising tools and techniques have
been presented. The use of methods for modular ontology development and these
newly developed tools and technologies promise simpler ontology development and
management, in turn furthering increased adoption of ontologies and ontology-based
tech, both within and outside of the semantic web academic environment. This
workshop intends to spread the word about these method and tooling improvements
beyond “the usual crowd”of pattern developers and researchers, for the benefit of the
Semantic Web research community as a whole.

This full-day tutorial targets ontology designers, data publishers, and software
developers interested in employing semantic technologies and ontologies. We present
the state-of-the-art in terms of methods and tools, exemplifying their usage in several
real-world cases. We then tutor the attendees on the use of three sets of related tooling
for modular ontology development, allowing them to try out leading-edge software that
they might otherwise have missed, under the supervision of the tools’ main developers.
We expect that at the end of the day, the attendees will have developed the ability to
independently and with confidence develop ontologies in a modular fashion, using the
tools and techniques showcased in this tutorial.

Validating RDF Data Tutorial

Jose Emilio Labra Gayo1 and Iovka Boneva2

1 University of Oviedo, Spain
labra@uniovi.es

2 Univ. Lille - CRIStAL, F-59000 Lille, France
iovka.boneva@univ-lille1.fr

RDF promises a distributed database of repurposable, machine-readable data. Although
the benefits of RDF for data representation and integration are indisputable, it has not
been embraced by everyday programmers and software architects who care about
safely creating and accessing well-structured data. Semantic web projects still lack
some common tools and methodologies that are available in more conventional settings
to describe and validate data. In particular, relational databases and XML have popular
technologies for defining data schemas and validating data which had no analog in
RDF.

Two technologies have been proposed for RDF validation: Shape Expressions
(ShEx) and Shapes Constraint Language (SHACL).

ShEx was designed as an intuitive and human-friendly high level language for RDF
validation in 2014 [4]. ShEx 2.0 has recently been proposed by the W3C ShEx
community group [3].

SHACL was proposed by the Data Shapes Working Group and accepted as a W3C
Recommendation in July 2017 [1].

In this tutorial we will present both ShEx and SHACL using examples, presenting
the rationales for their designs, a comparison of the two, and some example applica-
tions. The contents of the tutorial will be complemented by the Validating RDF Data
book [2] written by the presenters.

References

1. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL). W3C Proposed
Recommendation, June 2017

2. Labra Gayo, J.E., Prud’hommeaux, E., Boneva, I., Kontokostas, D.: Validating RDF Data.
Morgan & Claypool (2017)

3. Prud’hommeaux, E., Boneva, I., Labra Gayo, J.E., Kellog, G.: Shape Expressions Language
2.0. W3C Community Group Report, Apr 2017

4. Prud’hommeaux, E., Labra, J.E., Solbrig, H.: Shape expressions: an RDF validation and
transformation language. In: 10th International Conference on Semantic Systems, Sept 2014

Hybrid Techniques for Knowledge-Based
NLP - Knowledge Graphs Meet Machine

Learning and All Their Friends

Jose Manuel Gomez-Perez and Ronald Denaux

Expert System, Madrid, Spain
{jmgomez,rdenaux}@expertsystem.com

Many different artificial intelligence techniques can be used to explore and exploit large
document corpora that are available inside organizations and on the Web. While natural
language is symbolic in nature and the first approaches in the field were based on
symbolic and rule-based methods, like ontologies, semantic networks and knowledge
bases, many of the most widely used methods are currently based on statistical
approaches. Each of these two main schools of thought in natural language processing,
knowledge-based and statistical, have their limitations and strengths and there is an
increasing trend that seeks to combine them in complementary ways to get the best of
both worlds. This tutorial covers the foundations and modern practical applications of
knowledge-based and statistical methods and techniques as well as their combination
for the exploitation of large document corpora. Following a practical and hands-on
approach, the tutorial tries to address a number of fundamental questions to achieve this
goal, including: (i) how can machine learning extend previously captured knowledge
explicitly represented as knowledge graphs in cost-efficient and practical ways,
(ii) what are the main building blocks and techniques enabling such hybrid approach to
natural language processing, (iii) how can structured and statistical knowledge repre-
sentations be seamlessly integrated, (iv) how can the quality of the resulting hybrid
representations be inspected and evaluated, and (v) how can this improve the overall
quality and coverage of our knowledge graphs. The tutorial will first focus on the
foundations that can be used to this purpose, including knowledge graphs and word
embeddings, and will then show how these techniques can be effectively combined in
NLP tasks (and other data modalities in addition text) related to research and com-
mercial projects where the instructors currently participate.

Building Enterprise-Ready Knowledge Graph
Applications in the Cloud

Peter Haase1 and Michael Schmidt2

1 metaphacts GmbH, 69190 Walldorf, Germany
ph@metaphacts.com

2 Amazon Web Services, Seattle, WA, USA
schmdtm@amazon.com

Knowledge Graphs are a powerful tool that changes the way we do data integration,
search, analytics, and context-sensitive recommendations. Consisting of large networks
of entities and their semantic relationships, they have been successfully utilized by the
large tech companies, with prominent examples like the Google Knowledge Graph and
Wikidata, which makes community-created knowledge freely accessible. Cloud com-
puting has fundamentally changed the way that organizations build and consume IT
resources, enabling services to be provisioned on-demand in a pay-as-you-go model.
Building Knowledge Graphs in the cloud makes it easy to leverage their powerful
capabilities quickly and cost effectively.

In this tutorial, we cover the fundamentals of building Knowledge Graphs in the
cloud. In comprehensive hands-on exercises we will cover the end-to-end process of
building and utilizing an open Knowledge Graph based on high-quality Linked Open
Data sets, covering all aspects of the Knowledge Graph life cycle including
enterprise-ready data management, integration and interlinking of sources, authoring,
exploration, querying, and search. The hands-on examples will be performed using
prepared individual student accounts set up in the AWS cloud, backed by an
RDF/SPARQL graph database service with an enterprise Knowledge Graph application
platform deployed on top.

Crowdsourcing with CrowdTruth

HarnessingDisagreement inHumanInterpretation
for Ambiguity-Aware Machine Intelligence

Lora Aroyo1, Anca Dumitrache1, Oana Inel1, and Chris Welty2

1 Vrije Universiteit Amsterdam, Netherlands
lora.aroyo@gmail.com, anca.dumitrache@gmail.com,

oana.inel@gmail.com
2 Google Research, New York, USA

cawelty@gmail.com

http://crowdtruth.org

In this tutorial, we introduce the CrowdTruth methodology for crowdsourcing ground
truth by harnessing and interpreting inter-annotator disagreement. CrowdTruth is a
widely used crowdsourcing methodology1 adopted by industrial partners and public
organizations, e.g. Google, IBM, New York Times, The Cleveland Clinic, Crow-
dynews, The Netherlands Institute for Sound and Vision, Rijksmuseum, and in a
multitude of domains, e.g. AI, news, medicine, social media, cultural heritage, social
sciences. The central characteristic of CrowdTruth is harnessing the diversity in human
interpretation to capture the wide range of opinions and perspectives, and thus, provide
more reliable and realistic real-world annotated data for training and evaluating
machine learning components. Unlike other methods, we do not discard dissenting
votes, but incorporate them into a richer and more continuous representation of truth.
The goal of this tutorial is to introduce the Semantic Web audience to a novel approach
to crowdsourcing that takes advantage of the diversity of opinions (human semantics)
inherent to the Web. We believe it is quite timely, as methods that deal with dis-
agreement and diversity in crowdsourcing have become increasingly popular. Creating
this more complex notion of truth contributes directly to the larger discussion on how to
make the Web more reliable, diverse and inclusive.

1 http://crowdtruth.org.

http://crowdtruth.org
http://crowdtruth.org
http://crowdtruth.org

Challenges and Opportunities with Big Linked
Data Visualization

Laura Po

“Enzo Ferrari” Engineering Department, University of Modena
and Reggio Emilia, Italy

laura.po@unimore.it
http://www.dbgroup.unimo.it/laurapo

The Linked Data Principles defined by Tim-Berners Lee promise that a large portion of
Web Data will be usable as one Big interlinked RDF database. Today, we are assisting
at a staggering growth in the production and consumption of Linked Open Data (LOD).
In this scenario, it is crucial to provide intuitive tools for researchers, domain experts,
but also businessmen and citizens to view and interact with increasingly large datasets.
Visual analytics integrates the analytic capabilities of the computer and the abilities
of the human analyst, allowing novel discoveries and empowering individuals to take
control of the analytical process.

This tutorial aims to identify the challenges and opportunities in the representation
of Big Linked Data by reviewing some current approaches for exploring and visual-
izing LOD sources. First, we introduce the problem of finding relevant sources in
catalogues of thousands of datasets, we present the issues related to the understanding
and exploration of unknown sources. We list the difficulties to visualize large datasets
in static or dynamic form. We focus on the practical use of LOD/ RDF browsers and
visualization toolkits and examine the support at big scale. In particular, we experience
the exploration of some LOD datasets by performing searches of growing complexity.
At last, we sketch the main open research challenges with Big Linked Data visual-
ization. By the end of the tutorial, the audience will be able to get started with their own
experiments on the LOD Cloud, to select the most appropriate tool for a defined type of
analysis and they will be aware of the open issues that remain unsolved in the scenario
of the exploration of Big Linked Data.

http://www.dbgroup.unimo.it/laurapo
http://www.dbgroup.unimo.it/laurapo

Contents–Part I

Research Track

Fine-Grained Evaluation of Rule- and Embedding-Based Systems
for Knowledge Graph Completion. 3

Christian Meilicke, Manuel Fink, Yanjie Wang, Daniel Ruffinelli,
Rainer Gemulla, and Heiner Stuckenschmidt

Aligning Knowledge Base and Document Embedding Models
Using Regularized Multi-Task Learning . 21

Matthias Baumgartner, Wen Zhang, Bibek Paudel, Daniele Dell’Aglio,
Huajun Chen, and Abraham Bernstein

Inducing Implicit Relations from Text Using Distantly Supervised
Deep Nets . 38

Michael Glass, Alfio Gliozzo, Oktie Hassanzadeh,
Nandana Mihindukulasooriya, and Gaetano Rossiello

Towards Encoding Time in Text-Based Entity Embeddings 56
Federico Bianchi, Matteo Palmonari, and Debora Nozza

Rule Learning from Knowledge Graphs Guided by Embedding Models 72
Vinh Thinh Ho, Daria Stepanova, Mohamed H. Gad-Elrab,
Evgeny Kharlamov, and Gerhard Weikum

A Novel Ensemble Method for Named Entity Recognition
and Disambiguation Based on Neural Network . 91

Lorenzo Canale, Pasquale Lisena, and Raphaël Troncy

EARL: Joint Entity and Relation Linking for Question Answering
over Knowledge Graphs. 108

Mohnish Dubey, Debayan Banerjee, Debanjan Chaudhuri,
and Jens Lehmann

TSE-NER: An Iterative Approach for Long-Tail Entity Extraction
in Scientific Publications . 127

Sepideh Mesbah, Christoph Lofi, Manuel Valle Torre,
Alessandro Bozzon, and Geert-Jan Houben

An Ontology-Driven Probabilistic Soft Logic Approach to Improve
NLP Entity Annotations. 144

Marco Rospocher

Ontology Driven Extraction of Research Processes 162
Vayianos Pertsas, Panos Constantopoulos, and Ion Androutsopoulos

Enriching Knowledge Bases with Counting Quantifiers 179
Paramita Mirza, Simon Razniewski, Fariz Darari, and Gerhard Weikum

QA4IE: A Question Answering Based Framework
for Information Extraction . 198

Lin Qiu, Hao Zhou, Yanru Qu, Weinan Zhang, Suoheng Li, Shu Rong,
Dongyu Ru, Lihua Qian, Kewei Tu, and Yong Yu

Constructing a Recipe Web from Historical Newspapers 217
Marieke van Erp, Melvin Wevers, and Hugo Huurdeman

Structured Event Entity Resolution in Humanitarian Domains 233
Mayank Kejriwal, Jing Peng, Haotian Zhang, and Pedro Szekely

That’s Interesting, Tell Me More! Finding Descriptive Support Passages
for Knowledge Graph Relationships . 250

Sumit Bhatia, Purusharth Dwivedi, and Avneet Kaur

Exploring RDFS KBs Using Summaries . 268
Georgia Troullinou, Haridimos Kondylakis, Kostas Stefanidis,
and Dimitris Plexousakis

What Is the Cube Root of 27? Question Answering Over CodeOntology 285
Mattia Atzeni and Maurizio Atzori

GraFa: Scalable Faceted Browsing for RDF Graphs. 301
José Moreno-Vega and Aidan Hogan

Semantics and Validation of Recursive SHACL . 318
Julien Corman, Juan L. Reutter, and Ognjen Savković

Certain Answers for SPARQL with Blank Nodes . 337
Daniel Hernández, Claudio Gutierrez, and Aidan Hogan

Efficient Handling of SPARQL OPTIONAL for OBDA. 354
Guohui Xiao, Roman Kontchakov, Benjamin Cogrel, Diego Calvanese,
and Elena Botoeva

Representativeness of Knowledge Bases with the Generalized
Benford’s Law . 374

Arnaud Soulet, Arnaud Giacometti, Béatrice Markhoff,
and Fabian M. Suchanek

Detecting Erroneous Identity Links on the Web Using Network Metrics 391
Joe Raad, Wouter Beek, Frank van Harmelen, Nathalie Pernelle,
and Fatiha Saïs

XXXVI Contents–Part I

SPgen: A Benchmark Generator for Spatial Link Discovery Tools 408
Tzanina Saveta, Irini Fundulaki, Giorgos Flouris,
and Axel-Cyrille Ngonga-Ngomo

Specifying, Monitoring, and Executing Workflows in Linked
Data Environments . 424

Tobias Käfer and Andreas Harth

Mapping Diverse Data to RDF in Practice . 441
Alexandros Chortaras and Giorgos Stamou

A Novel Approach and Practical Algorithms for Ontology Integration 458
Giorgos Stoilos, David Geleta, Jetendr Shamdasani,
and Mohammad Khodadadi

Practical Ontology Pattern Instantiation, Discovery, and Maintenance
with Reasonable Ontology Templates . 477

Martin G. Skjæveland, Daniel P. Lupp, Leif Harald Karlsen,
and Henrik Forssell

Pragmatic Ontology Evolution: Reconciling User Requirements
and Application Performance . 495

Francesco Osborne and Enrico Motta

Towards Empty Answers in SPARQL: Approximating Querying
with RDF Embedding . 513

Meng Wang, Ruijie Wang, Jun Liu, Yihe Chen, Lei Zhang, and Guilin Qi

Query-Based Linked Data Anonymization . 530
Remy Delanaux, Angela Bonifati, Marie-Christine Rousset,
and Romuald Thion

Answering Provenance-Aware Queries on RDF Data Cubes
Under Memory Budgets. 547

Luis Galárraga, Kim Ahlstrøm, Katja Hose, and Torben Bach Pedersen

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 566
Thomas Rebele, Thomas Pellissier Tanon, and Fabian Suchanek

WORQ: Workload-Driven RDF Query Processing. 583
Amgad Madkour, Ahmed M. Aly, and Walid G. Aref

Canonicalisation of Monotone SPARQL Queries. 600
Jaime Salas and Aidan Hogan

Cross-Lingual Classification of Crisis Data. 617
Prashant Khare, Grégoire Burel, Diana Maynard, and Harith Alani

Contents–Part I XXXVII

Measuring Semantic Coherence of a Conversation. 634
Svitlana Vakulenko, Maarten de Rijke, Michael Cochez,
Vadim Savenkov, and Axel Polleres

Combining Truth Discovery and RDF Knowledge Bases to Their
Mutual Advantage. 652

Valentina Beretta, Sébastien Harispe, Sylvie Ranwez,
and Isabelle Mougenot

Content Based Fake News Detection Using Knowledge Graphs 669
Jeff Z. Pan, Siyana Pavlova, Chenxi Li, Ningxi Li, Yangmei Li,
and Jinshuo Liu

Author Index . 685

XXXVIII Contents–Part I

Contents–Part II

Resources Track

DOREMUS: A Graph of Linked Musical Works. 3
Manel Achichi, Pasquale Lisena, Konstantin Todorov, Raphaël Troncy,
and Jean Delahousse

Audio Commons Ontology: A Data Model for an Audio
Content Ecosystem . 20

Miguel Ceriani and György Fazekas

Wiki-MID: A Very Large Multi-domain Interests Dataset of Twitter Users
with Mappings to Wikipedia. 36

Giorgia Di Tommaso, Stefano Faralli, Giovanni Stilo,
and Paola Velardi

HeLiS: An Ontology for Supporting Healthy Lifestyles 53
Mauro Dragoni, Tania Bailoni, Rosa Maimone, and Claudio Eccher

SABINE: A Multi-purpose Dataset of Semantically-Annotated
Social Content . 70

Silvana Castano, Alfio Ferrara, Enrico Gallinucci, Matteo Golfarelli,
Stefano Montanelli, Lorenzo Mosca, Stefano Rizzi, and Cristian Vaccari

Querying Large Knowledge Graphs over Triple Pattern Fragments:
An Empirical Study. 86

Lars Heling, Maribel Acosta, Maria Maleshkova, and York Sure-Vetter

Drammar: A Comprehensive Ontological Resource on Drama. 103
Vincenzo Lombardo, Rossana Damiano, and Antonio Pizzo

The SPAR Ontologies . 119
Silvio Peroni and David Shotton

Browsing Linked Data Catalogs with LODAtlas . 137
Emmanuel Pietriga, Hande Gözükan, Caroline Appert,
Marie Destandau, Šejla Čebirić, François Goasdoué,
and Ioana Manolescu

A Framework to Build Games with a Purpose for Linked
Data Refinement . 154

Gloria Re Calegari, Andrea Fiano, and Irene Celino

VoxEL: A Benchmark Dataset for Multilingual Entity Linking 170
Henry Rosales-Méndez, Aidan Hogan, and Barbara Poblete

The Computer Science Ontology: A Large-Scale Taxonomy
of Research Areas . 187

Angelo A. Salatino, Thiviyan Thanapalasingam, Andrea Mannocci,
Francesco Osborne, and Enrico Motta

DistLODStats: Distributed Computation of RDF Dataset Statistics. 206
Gezim Sejdiu, Ivan Ermilov, Jens Lehmann, and Mohamed Nadjib Mami

Knowledge Integration for Disease Characterization: A Breast
Cancer Example . 223

Oshani Seneviratne, Sabbir M. Rashid, Shruthi Chari,
James P. McCusker, Kristin P. Bennett, James A. Hendler,
and Deborah L. McGuinness

Comunica: A Modular SPARQL Query Engine for the Web 239
Ruben Taelman, Joachim Van Herwegen, Miel Vander Sande,
and Ruben Verborgh

VoCaLS: Vocabulary and Catalog of Linked Streams 256
Riccardo Tommasini, Yehia Abo Sedira, Daniele Dell’Aglio,
Marco Balduini, Muhammad Intizar Ali, Danh Le Phuoc,
Emanuele Della Valle, and Jean-Paul Calbimonte

A Complex Alignment Benchmark: GeoLink Dataset 273
Lu Zhou, Michelle Cheatham, Adila Krisnadhi, and Pascal Hitzler

In-Use Track

Supporting Digital Healthcare Services Using Semantic
Web Technologies. 291

Gintaras Barisevičius, Martin Coste, David Geleta, Damir Juric,
Mohammad Khodadadi, Giorgos Stoilos, and Ilya Zaihrayeu

Semantic Technologies for Healthy Lifestyle Monitoring 307
Mauro Dragoni, Marco Rospocher, Tania Bailoni, Rosa Maimone,
and Claudio Eccher

Reshaping the Knowledge Graph by Connecting Researchers, Data
and Practices in ResearchSpace. 325

Dominic Oldman and Diana Tanase

Ontology-Based Recommendation of Editorial Products 341
Thiviyan Thanapalasingam, Francesco Osborne, Aliaksandr Birukou,
and Enrico Motta

XL Contents–Part II

Synthesizing Knowledge Graphs from Web Sources
with the MINTEþ Framework . 359

Diego Collarana, Mikhail Galkin, Christoph Lange, Simon Scerri,
Sören Auer, and Maria-Esther Vidal

Getting the Most Out of Wikidata: Semantic Technology Usage
in Wikipedia’s Knowledge Graph . 376

Stanislav Malyshev, Markus Krötzsch, Larry González, Julius Gonsior,
and Adrian Bielefeldt

Author Index . 395

Contents–Part II XLI

Research Track

Fine-Grained Evaluation of Rule-
and Embedding-Based Systems

for Knowledge Graph Completion

Christian Meilicke(B), Manuel Fink, Yanjie Wang,
Daniel Ruffinelli, Rainer Gemulla, and Heiner Stuckenschmidt

Research Group Data and Web Science, University of Mannheim,
Mannheim, Germany

christian@informatik.uni-mannheim.de

Abstract. Over the recent years, embedding methods have attracted
increasing focus as a means for knowledge graph completion. Similarly,
rule-based systems have been studied for this task in the past. What
is missing so far is a common evaluation that includes more than one
type of method. We close this gap by comparing representatives of both
types of systems in a frequently used evaluation protocol. Leveraging the
explanatory qualities of rule-based systems, we present a fine-grained
evaluation that gives insight into characteristics of the most popular
datasets and points out the different strengths and shortcomings of the
examined approaches. Our results show that models such as TransE,
RESCAL or HolE have problems in solving certain types of completion
tasks that can be solved by a rule-based approach with high precision. At
the same time, there are other completion tasks that are difficult for rule-
based systems. Motivated by these insights, we combine both families of
approaches via ensemble learning. The results support our assumption
that the two methods complement each other in a beneficial way.

1 Introduction

Knowledge graph completion or link prediction refers to the task of predicting
missing information in a knowledge graph. A knowledge graph is a graph where
a node represents an entity and an edge is annotated with a label that denotes
a relation. A directed edge from s to o labelled with r corresponds to a triple
〈s, r, o〉. Such a triple can be understood as the fact that subject s is in relation
r to object o. As a logical formula we write r(s, o). Often knowledge graphs are
created automatically from incomplete data sources that do not fully capture the
real relations between the entities. The goal of knowledge graph completion is to
use the existing knowledge to find these correct missing links without adding any
wrong information. The current evaluation practice estimates model performance
by the model’s ability to complete incomplete triples like 〈s, r, ?〉 or 〈?, r, o〉
derived from a known fact 〈s, r, o〉. The task in this case consists of generating a
candidate ranking for the empty position that minimizes the amount of wrong
suggestions ranked above the correct ones.
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 3–20, 2018.
https://doi.org/10.1007/978-3-030-00671-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_1&domain=pdf

4 C. Meilicke et al.

Recently, a new family of models for knowledge graph completion has received
increasing attention. These models are based on embedding the knowledge graph
into a low dimensional space. A prominent example is TransE [2], where both
nodes (entities) and edge labels (relations) are mapped to vectors in R

n. Other
examples include RESCAL [9], TransH [16], TransG [17], DistMult [18], HolE [8]
or ProjE [13]. Once the embeddings have been computed, they can be leveraged
to generate a candidate ranking for the missing entity of a completion task.
Over the last years many different models have been proposed that follow this
principle.

In contrast, rule-based approaches learn logical formulas that are the explicit
representation of statistical regularities and dependencies encoded in the knowl-
edge graph. To predict candidates for incomplete triples, the learned rules are
applied to rank candidates based on the confidence of the rules that fired. Works
that focus on embeddings usually do not compare the proposed models with rule-
based methods and vice versa. In this paper, we do not present a substantially
novel method for knowledge graph completion. Instead, we apply AMIE [4], an
existing system for learning rules, as well as our own approach called RuleN to
this problem. The development of RuleN is mainly inspired by the idea of using
a very simple mechanism that can be completely described in the paper. In our
experiments, we have found that on the datasets commonly used for the evalu-
ation of embedding based models, both systems are highly competitive. Among
the many different embedding-based models for which results have been reported
over the recent years (see [6,12]), only few exceptions performed better.

In a rule-based approach each generated candidate comes with an expla-
nation in terms of the rule that generated this candidate. With the help of
these explanations, we analyze the datasets commonly used for the evaluation
of embeddings by partitioning their test set. Each subset is associated with the
type of the rule which generated the correct test triple with high confidence,
e.g., a symmetry or subsumption rule. This analysis sheds light on the charac-
teristics and difficulty of these datasets. Based on this partitioning, we compare
the performance of various rule- and embedding-based approaches (RESCAL [9],
TransE [2] and HoleE [8]) on a fine-grained level. Our results show that a large
fraction of the test cases is covered by simple rules that have a high confidence.
These test cases can be solved easily by a rule-based approach, while the embed-
ding models generate clearly inferior results.

There is also a fraction of test cases that is hard for rule-based approaches.
We use the method from [15] to learn an ensemble including both types of
approaches. Our results show that the ensemble can achieve better results than
the top-performing approach on each dataset used in our experiments. This
confirms our findings that both families of approaches are strong on different
types of completion tasks, which can be leveraged by the ensemble.

2 Related Work

Within this section, we first discuss methods for learning rules. We continue
with approaches that use observed features, which correspond to certain types

Rule- and Embedding-Based Systems for Knowledge Graph Completion 5

of rules, to learn a model. Note that there is no clear distinction between the first
and the second group of approaches. Finally, we explain latent feature models
that are based on the idea of using embeddings and we give some details on the
three models we used in our experiments.

Regarding rule-based methods for relational learning, Quickfoil [19] is a
highly scalable ILP algorithm that mines first order rules for given target rela-
tions. Quickfoil is in principle designed to learn rules that strictly hold. While it
also tolerates a small amount of noise, i.e., it can also learn rules even though
there are some negative examples in the given knowledge base, it cannot learn
rules with a low confidence. However, these rules are also important for ranking
the candidates of a knowledge completion task. In many cases, we may not have
a strict rule, but only weak evidence.

AMIE [4] is an approach for learning rules that is similar to our approach
introduced in the next section as RuleN. It has a different language bias, as
explained in more detail in Sect. 3.1. The main difference is that AMIE com-
putes the confidence based on the whole knowledge graph, while our approach
will compute an approximation that is based on selecting a random sample. It
can be expected that AMIE is complete and that the confidences of AMIE are
precise. This is not the case for RuleN. However, due to the underlying sampling
mechanism RuleN might be able to mine longer path rules. We use AMIE in our
experiments as an alternative approach for learning rules.

The path ranking algorithm [7] (PRA) is based on the idea of using random
walks to find characteristic paths that frequently occur next to links of a target
relation. These paths are used as features in a matrix where each row corresponds
to a pair of entities. By including negative examples generated under the Closed
World Assumption, a logistic regression is performed on the matrix to train a
classifier. The classifier for a relation can then be used to predict the likelihood
of the target relation between two given entities based on the surrounding path
features. The rule bodies in RuleN correspond to the paths in PRA. While
PRA puts a lot of emphasis on learning how to combine the path features with
machine learning, RuleN is simpler in this regard. It uses the path features in a
more conservative way for which it approximates the significance of individual
paths more thoroughly. A more expressive extension of PRA is presented in [5],
where the authors extract further sub-graph features besides paths.

In [10], Niepert proposes Gaifman Models. Gaifman Models are a way of
sampling small subgraphs from a knowledge graph in order to learn a model
that uses first order rules as features. One of the main differences is that the
set of features, which needs to be defined prior to learning the model, comprises
all possible rules of a certain type. Contrary to this, RuleN stores only those
rules for which we found at least one positive example during sampling. In the
experiments presented in [10] the authors use all path features of length 1 and
path features of length 2 that use only one relation in the rule body (e.g., rules
that express transitivity of a relation), which corresponds to a subset of the rules
that AMIE or RuleN can learn.

6 C. Meilicke et al.

Another approach that uses observed features has been proposed in [14]. As
feature set the authors use path features of length 1 and features that reflect how
probable it is for a certain entity to appear in subject/object position of a certain
relation. The latter correspond to the constant rules of RuleN. The authors show
that such a model can score surprisingly well on the commonly used datasets,
which motivates them to propose the FB15k-237 dataset that we will consider
in our experiments. The results are compared against several approaches that
are based on embeddings. This analysis (observed vs. latent features) is similar
to our evaluation effort. However, we use AMIE and RuleN to learn rules that
are more expressive than the feature sets used in [14] and [10] without the need
for negative examples. Furthermore, we perform a more fine-grained evaluation
based on the distinction between different types of completion tasks.

It has already been argued that a simple rule-based approach restricted
to learning inverse relations can achieve state-of-the-art results on WN18 and
FB15k [3]. Our evaluation extends these findings by partitioning the “easy” test
triples into detailed categories, which allow fine-grained insight into the per-
formance of different systems. Also, the Inverse Model in [3] is too simple to
represent the state-of-the-art performance of rule-based systems on FB15-237.

In contrast to methods which exploit observed features or rules, latent feature
models learn representations of the entities and relations from the knowledge
base in a low-dimensional space, such that the structure of the knowledge base
is represented in this latent space. These learned representations are known as
the embeddings of the entities and relations, respectively. The models provide
a score function f(s, r, o) which for a given triple 〈s, r, o〉 reflects the model’s
confidence in the truthfulness of the triple. Based on this, potential candidates
for a given query 〈s, r, ?〉 can be ranked.

Our comparisons in this work focus on bilinear models, which have been suc-
cessful in the standard benchmarks for this task. RESCAL [9] is a factorization-
based bilinear model. It represents entities as vectors ai ∈ R

n, relations as
matrices Rk ∈ R

n×n and has a score function f(s, r, o) = aTs Rrao. HolE [8]
represents entities as vectors ai ∈ R

n, relations as vectors rk ∈ R
n and has a

score function f(s, r, o) = rTr (as � ao), where � refers to the circular correlation
between as and ao. TransE is a translation-based model, which represents enti-
ties as vectors ai ∈ R

n, relations as vectors rk ∈ R
n and has a score function

f(s, r, o) = ‖as + rr − ao‖22.

3 A Simple Rule-Based Approach

In this work, we are interested in understanding which types of rules help in
knowledge base completion and can be applied successfully to the datasets cur-
rently used for evaluating state of the art methods. For this goal, we developed
our own rule-based system RuleN that is simple enough to be described in detail
within this work. It is based on learning the types of rules defined in Sect. 3.1
with a sampling strategy described in Sect. 3.2. In Sect. 3.3 we explain how to
apply the learned rules to rank the candidates for a given completion task.

Rule- and Embedding-Based Systems for Knowledge Graph Completion 7

3.1 Types of Rules

Let r and s refer to relations, x and y to variables that quantify over entities,
and let a be a constant that refers to an entity. RuleN supports the following
types of rules:

r(x1, xn+1) ← s1(x1, x2) ∧ . . . ∧ sn(xn, xn+1) (Pn)
r(x, a) ← ∃y r(x, y) (C)

We call rules of type Pn with n ≥ 1 path rules. Given two entities x1 and
xn+1 that are connected by an r-edge, a path rule describes an alternative path
that leads from x1 to xn+1. Note that a path in this sense may also contain
edges implicitly given by the inverse relations, e.g. s−1

3 (x3, x4) corresponds to
s3(x4, x3). Type C rules are rules with a constant in the head of the rule. The
language bias introduced by these rule types is similar to that of existing systems
such as PRA [7] and AMIE [4] but there are differences. For example, AMIE does
not limit constants to the head of a rule and is in general slightly more expressive.
However, it does not learn rules of type C. Concrete examples for some of these
rule types are shown in the following. These rules have been generated in the
experiments that we report about later.

hyponym(x, y) ← hypernym(y, x) [0.94] (1)
celebrityBreakup(x, y) ← celebrityMarriage(x, y) [0.08] (2)

producedBy(x, z) ← sequel(x, y) ∧ producedBy(y, z) [0.55] (3)
language(x,English) ← ∃y language(x, y) [0.64] (4)

Rule 1 and 2 are examples of type P1. The latter depicts the fact that 8% of
celebrity marriages in that dataset ended in divorce. Rule 3 is an example for
type P2. Rule 4 is an example for rule type C that captures that in 64% of the
cases, the spoken language of a person is English.

3.2 Learning Rules

For a given rule R, let h(R) = r(x, y) denote its head and b(R) denote its body.
As defined in [4], the head coverage is the number of h(R) ∧ b(R) groundings
that can be found in the given knowledge graph, divided by the number of h(R)
groundings. A head coverage close to 100% suggests that the rule can be used to
propose candidates for most completion tasks of relation r. The confidence of a
rule is defined as the number of h(R) ∧ b(R) groundings divided by the number
of b(R) groundings. Confidence tells us how likely it is that a candidate proposal
generated by this rule is correct.

To learn rules for a target relation r, RuleN utilizes a twofold sampling app-
roach instead of a complete search. We first explain the learning of path rules of
maximum length n. Given a target relation r, we need to find rule bodies b(R) for
r(x1, xn+1) ← b(R) that result in helpful rules. The straightforward approach is
to look at all triples 〈a, r, b〉 in the training set and determine all possible paths

8 C. Meilicke et al.

up to length n between a and b each time using an iterative deepening depth-first
search. Using these paths as body for the rule, the confidence can be calculated
in a second step. To speed up this rule finding step, it is only performed for k
(=sample size) triples 〈a, r, b〉. Each rule that is constructed this way has a head
coverage >0. Moreover, the higher the head coverage of a rule, the more likely
it is to be found. For example, a rule with a head coverage of 0.01 will be found
for k = 100 with a probability ≈63.4%. This illustrates that the procedure can
miss rules with a low head coverage.

We apply a similar approach for C rules. Given a target relation r, we
randomly pick k facts 〈a, r, b〉. For each of these facts, we create the rules
r(x, b) ← r(x, y) and r(a, y) ← r(x, y). An example is Rule 4.

In a second step, we compute the confidence of path rules by randomly sam-
pling true body groundings. We then approximate the factual confidence by
dividing the number of groundings for which the head is also true by the total
number of groundings sampled for the body. With respect to a C rule, we simply
pick a sample of r facts and count how often we find a or b in subject and object
position.

3.3 Applying Rules

Given a completion task 〈a, r, ?〉, we select all rules with r in their head. Suppose
that we have learned four relevant rules as shown in Table 1. For each of the three
path rules, we look up all body groundings in the given KB where we replace x
by a, collecting all possible values of the variable y. For the constant rule, the
body is implicitly true when using the rule to make a prediction for the object
position, so it is not checked. What this simply means is that the rule always
predicts the constant c when asked for the object position of r, independent of
the subject.

Table 1. Four relevant rules for the completion task 〈a, r, ?〉 resulting in the ranking
〈g(0.81), d(0.81), e(0.23), f(0.23), c(0.15)〉.

Rule Type Confidence Result

r(x, y) ← s(y, x) P1 0.81 {d, g}
r(x, y) ← r(y, x) P1 0.70 ∅
r(x, y) ← t(x, z) ∧ u(z, y) P2 0.23 {e, f, g}
r(x, c) ← ∃y r(x, y) C 0.15 {c}

A rule can generate one candidate (fourth row), several candidates (first and
third row), or no candidate (second row). There are different ways to aggregate
the results generated by the rules. As a basis, we choose the most robust app-
roach. We define the final score of an entity as the maximum of the confidence
scores of all rules that generated this entity. If a candidate has been generated

Rule- and Embedding-Based Systems for Knowledge Graph Completion 9

by more than one rule, we use the amount of these rules as a secondary sorting
attribute among candidates with the same (maximum) score. Hence g is ranked
before d in the given example. Combining confidences of multiple rules for the
same candidate in a more sophisticated way is difficult due to unknown proba-
bilistic dependencies between rules. For example, we found that an aggregation
based on multiplication distorts the results (e.g., when two rules of which one
subsumes the other fire simultaneously), leading to worse predictions.

4 Experimental Results

Within our experiments we focussed mainly on the three datasets that have
been extensively used to evaluate embedding-based models for knowledge graph
completion: the WordNet dataset WN18 described in [1], the FB15k dataset,
which is a subset of FreeBase, described in [2] and FB15k-237, which has been
designed in [14] as a harder and more realistic variant of the FB15k dataset.
FB15k-237 is also known as FB15KSelected. We published additional evaluation
results for WN18RR, which is a harder variant of WN18 without inverse relations
proposed in [3] online at http://web.informatik.uni-mannheim.de/RuleN/. The
web page contains also the RuleN code and other relevant material.

First, we computed results for the two rule-based systems AMIE and RuleN.
Our results imply that rule-based systems are competitive and that it is easy
to determine settings for them which yield good results. Next, we divided the
datasets into partitions to perform a fine-grained evaluation including TransE,
RESCAL and HolE, as well as AMIE and RuleN. Finally, we evaluated an ensem-
ble of these five systems showing that this is a way to leverage the strengths of
both approaches.

We followed the evaluation protocol proposed in [2]. Each dataset consists of
a training, validation and test set which are used for training, hyperparameter
tuning and evaluation respectively. Each triple 〈s, r, o〉 from the test set results in
two completion tasks 〈?, r, o〉 and 〈s, r, ?〉 that are used to query the systems for
a ranked list of entities for the placeholder. hits@k is the fraction of completion
tasks for which the removed entity was ranked at least at rank k. We only looked
at filtered hits@k, which means that for each completion task, entities other than
the removed one which also result in true triples contained in the dataset, are
ignored in the ranked list. The filtered mean reciprocal rank MRR is calculated
by summing over all completion tasks the reciprocals of the ranks of the removed
candidate after filtering.

4.1 Performance of Rule-Based Approaches

Embedding-based models have hyperparameters which need to be optimized on
a validation dataset. Rule-based systems also have hyperparameters. However,
in our experiments, we found them easy to set for knowledge base completion
even without a validation dataset. As these hyperparameters are typically a
mechanism to tune running time versus completeness of the rule learning process,

http://web.informatik.uni-mannheim.de/RuleN/

10 C. Meilicke et al.

we simply used the most expressive setting that still finishes within a reasonable
time.

The hyperparameters of RuleN are the sample size and the length of the
path rules. For AMIE, we focused on thresholds for support, head coverage, and
rule length. Furthermore, for both systems, it is possible to disable the mining
of rules with constants. In our experiments, we have found that there is indeed a
positive correlation between setting the hyperparameters as liberally as possible
and the prediction performance. (The only exception to this paradigm resulted
in a performance drop of less than 1%.) In Table 2, we show the filtered hits@10
results for increasingly liberal settings for runtimes <10 h on WN18 and FB15k.

RuleN has one sampling parameter that affects the number of mined rules
and one that determines the precision of the confidence calculation. We tied
both to the same value, which we varied between 50 and 1000. It is interesting
to see that there seems to be a limit for the sample size of RuleN above which
the performance remained stable and that it was possible to achieve very good
results already with a low sample size and consequently a low run time. Note
that this enables RuleN to be applicable to very large (in number of entities)
knowledge graphs as long as the number of relations is bounded.

Table 2. Impact of different settings on performance of rule-based systems. For RuleN,
the number in the Setting column denotes the sample size. For AMIE, it shows the
values for support (s) and head coverage (hc) used for the mining of the path and
constant rules respectively. The length of rules with constants was set individually for
AMIE as denoted by the Rule Type column.

Rule type Setting FB15k WN18

hits@10 Learn Apply #Rules hits@10 Learn Apply #Rules

RuleN P12 50 .853 1167s 137s 69k .943 5s 5s 230

P12 100 .859 2491s 165s 96k .943 8s 5s 314

P12 500 .862 6120s 170s 158k .945 22s 5s 693

P12 1000 .862 6492s 207s 177k .945 34s 6s 945

C 1000 .312 1s 25s 94k .05 1s 10s 12k

P12, C 1000 .875 6493s 191s 270k .948 6s 12s 13k

P12[3], C 1000[100] .870 49868s 10272s 917k .958 398s 20s 41k

P123[45], C 1000[100] .958 4103s 151s 54k

AMIE P12, C1 s= 0, hc=0.0/0.01 .858 4889s 1952s 861k .942 17s 4s 352

P123, C2 s= 0, hc=0.0/0.01 .948 868s 29s 4806

An overview on the results that current state of the art approaches achieve
on these two datasets can be found in [12] and [6]. In summary, for WN18 there
are only few approaches that achieved a hits@10 score higher than 95%, e.g.
96.4% (Inverse Model [3]), 96.4% (R-GCN+ [11]), 95.5% (ConvE [3]) and 95.3%
(IRN [12]). The follow-up approaches scored around 92–95%, while there are
still many other approaches that achieved less. For the FB15k dataset there is
a higher variance in the results. The best approaches achieved a hits@10 score
of 92.7% (IRN [12]) and 88.2% (TransG [17]). However the vast majority could
not top a score of 84%. Thus, RuleN and AMIE outperformed the majority of

Rule- and Embedding-Based Systems for Knowledge Graph Completion 11

models for which results have been reported on WN18 and FB15k. On FB15k
there are only few systems that achieved better results and none of them perform
better on WN18. These results show that symbolic representations can compete
with and perform sometimes better than many of the approaches that are based
on embeddings. This insight is not only supported by the good results of RuleN,
but especially by the competitive results of AMIE, which we could use almost
out of the box to generate the presented results.

All experiments were performed on a machine with 4 cores at 2394 MHz and
8 GB memory. Even in the most complex setting reported in Table 2, we were able
to run the rule-based systems in a few hours on FB15k. Runtimes on FB15k-237
were slightly shorter than those on FB15k as it is a subset of it. For the WN18
dataset, there are competitive settings where we finished in less than a minute,
including learning and prediction. It would take much longer on this hardware
setting to train the embedding-based models to competitive performance. In our
experiments, we found that rule-based systems were orders of magnitude faster
to train due to the required hyperparameter search of embedding-based models.
The training and prediction runtimes for a given hyperparameter setting were
comparable to rule-based systems though.

4.2 Dataset Partitioning

In the following we examine each of the datasets in detail. In particular, we ana-
lyze which types of rules are relevant to correctly predict the missing information
in the test sets of these datasets. For that purpose, we restricted RuleN to learn
P1 and P2 rules only. We further distinguish between special sub-types of these
rules as follows:

– We refer to a rule of form r(x, y) ← r(y, x) as a symmetry rule. An example
is married(x, y) ← married(y, x).

– We refer to a rule of form r(x, y) ← s(x, y) with r �= s as an equivalence
rule if the reverse direction s(x, y) ← r(x, y) holds also.1

– We distinguish in the case of equivalence between inverse equivalence,
i.e. r(x, y) ← s(y, x), and plain equivalence. An example for an inverse
equivalence rule is hypernym(x, y) ↔ hyponym(y, x).

– We call any P1 rule that is not a symmetry or (inverse) equivalence rule a
subsumption rule, e.g., cityIn(x, y) ← capitalOf(x, y).

We used RuleN with a sample size of 1000 to learn P1 and P2 rules for both
WN18 and FB15k. Then we removed all rules with a confidence lower than 0.5.
We applied this very restrictive set of rules to the completion tasks defined by
the test sets. For each completion task we applied all relevant rules in descending
order with respect to their confidence. If one of the candidates generated by the

1 We annotate a rule as equivalence rule if it holds in both directions with a similar
confidence. We said that two confidence values are similar if they do not differ more
than 0.05. This is a pragmatic decision, which allows us to define a meaningful
category.

12 C. Meilicke et al.

rule was the entity replaced with a question mark, we marked the completion
task as solved by the type of that specific rule. Note that we did not continue
to check the remaining rules. Thus, we annotated each completion task with
the type of the most confident rule that could solve the task. This annotation
follows the naming convention defined above. If we could not find such a rule,
we annotated the task as Uncovered. It is not the case that a completion task
annotated as Uncovered cannot be correctly predicted by a rule-based approach.
There is still the possibility that it can be correctly solved by a rule with low
confidence or by a rule which is not of type P1 or P2.

0

0.1

0.2

Symmetry
.5 .6 .7 .8 .9 1 ≈ Inverse

Equivalence

.72

.5 .6 .7 .8 .9 1
Subsumption

.5 .6 .7 .8 .9 1
P2

.5 .6 .7 .8 .9 1
Uncovered

Fig. 1. Rule coverage for the WN18 dataset. We truncated the y-axis; the majority of
the test cases are covered by inverse equivalence (72%).

In Fig. 1, we have depicted the results of applying this approach to the WN18
dataset. The dataset has very specific characteristics. Only ≈6.12% of the com-
pletion tasks fall into the Uncovered category. Moreover, the majority of the
tasks is covered by equivalence rules (72.5%). Note that we have grouped the
rules of each type with respect to their confidence in the ranges from (0.5, 0.6]
to (0.9, 1.0]. Here, all of the inverse equivalence rules have a confidence higher
than 0.9. An example of an equivalence rule that dominates the dataset is Rule 1
(together with its reversed counterpart) that we already presented above. The
remaining tasks are covered by symmetry rules. An example for such a rule is
see also(x, y) ← see also(y, x). Again, most of them are highly confident. It is
also interesting to see that subsumption and P2 rules do not help to detect any-
thing that is not already covered by equivalence or symmetry rules with higher
confidence. For that reason, any method that is capable of exploiting equivalence
and symmetry should be able to find the correct candidate for ≈94% of the test
cases.

The results of applying our approach to the FB15k dataset are shown in
Fig. 2. For this dataset we observe a heterogeneous set of rules that covers a
smaller fraction (still 81.6%) of the tasks in the test set. The dataset is still
dominated by equivalence (dark blue) and especially inverse equivalence (light
blue) rules. These rules cover around 60% of all completion tasks. However, we
find now also subsumption rules (6.8%), that are not equivalence or symmetry
rules, and P2 rules (7.3%). Moreover, the fraction of uncovered tasks (18.4%) is
larger compared to WN18, but still rather small.

Rule- and Embedding-Based Systems for Knowledge Graph Completion 13

Fig. 2. Rule coverage for the FB15k dataset. Σ shows the total fraction of a specific
rule type. (Color figure online)

This time, we also analyzed the uncovered tasks in more detail and further
divided it into three subgroups. If such a completion task is based on recon-
structing a triple 〈a, r, b〉, we determined the shortest path between a and b in
the training set. In Fig. 2 we distinguish between 1-hop, 2-hop and other test
cases (where the shortest path between a and b has a length ≥3). Note that for
1-hop and 2-hop test cases there is still a chance that rules of length 1 or 2 can
be used to find the correct candidates. However, since these test cases are not in
one of the other categories, we know that those rules would have a confidence
lower than 50%.

Fig. 3. Rule coverage for the FB15k-237 dataset. 31% of the Uncovered category are
≥2-hop testcases, 69% are 2-hop testcases, and none of them are 1-hop testcases.

The high fraction of test cases covered by simple rules could give the impres-
sion that WN18 and FB15k are too easy. FB15k-237 has been designed in [14]
as a harder variant of the FB15k dataset by making the following two mod-
ifications. First, all (inverse) equivalent relations have been removed from the
dataset resulting in a knowledge graph with 237 remaining relations. Second, the
validation and test sets were changed, such that any triple 〈x, r, y〉 is removed
from it, if there is some other triple 〈x, s, y〉 or 〈y, s, x〉 with s �= r or s = r

14 C. Meilicke et al.

in the training set, i.e. x and y are connected by a direct edge in the training
set. Figure 3 illustrates the impact of these modifications. The first modifica-
tion suppresses any kind of dependencies in the dataset that would be captured
by (inverse) equivalence rules. The second modification is even more aggressive,
because it suppresses any dependencies that could have been exploited by any
kind of P1 rule. These modifications result in a harder dataset, while at the same
time introducing an unrealistic bias. Suppose the test set of a dataset with the
modifications of FB15k-237 contains a completion task like murdered(?, john).
Then it is impossible that the correct murderer of john is his brother, his wife,
his boss, his employee, or any person directly related to him in any way. What
makes this circumstance really problematic is the fact that the training set may
well include examples of murders for which there is another direct relationship
between the subject and object. Hence, any system that correctly learns this
pattern from the examples in the training set will be penalized for it in the com-
mon evaluation format, as including directly related entities in the candidate
ranking for a test case can only worsen the performance but never improve it.
Therefore, results on FB15k-237 need to be taken with a grain of salt, especially
if a system makes any use of P1 rules. Indeed, we found that suppressing all
P1 rules, the performance of AMIE on FB15k-237 actually improved by roughly
2% for hits@10. For the FB15k-237 results presented in this paper, however, we
always used the full rule set.

4.3 Fine-Grained Evaluation

In the following, we present results for each of the annotated subsets. We
used AMIE and RuleN with the most liberal settings described in Table 2.
As approaches that are based on the use of embeddings, we used the methods
TransE [2], RESCAL [9], and HolE [8], for which we did a hyperparameter search
as described in [15]. The so-found best hyperparameters are available online. The
evaluation results are depicted in Tables 3, 4, and 5. The shortcuts Sym, Eq, Sub,
and UC in the table headings refer to the subsets Symmetry, Equivalence, Sub-
sumption and Uncovered. We focus mainly on the FB15k dataset because it
covers completion tasks from all subsets.

The best performing embeddings based system (HolE) achieved only 36% in
terms of hits@1 on FB15k, while AMIE and RuleN achieved 64.7% and 77.2%.
The interesting aspect is not the hits@1 itself, but the pattern that if the rule-
based systems presented the correct candidate within the top 10, it was usually
on the first position. This is not the case for the embedding models. In the
Symmetry category, for example, the first candidate of TransE was always wrong.
We found that for a completion task like 〈a, r, ?〉, the highest ranked entity
was always a itself. This problem with symmetry was less severe for HolE and
RESCAL, however, the tendency is the same.

For the subsets Equivalence, Subsumption, and P2, RuleN and AMIE could
not generate results close to 100% anymore. However, they were still significantly
ahead in terms of hits@10 and especially hits@1 score. On WN18, HolE was a
noteworthy exception as it achieved competitive results to RuleN and AMIE on

Rule- and Embedding-Based Systems for Knowledge Graph Completion 15

Table 3. Fine-grained results for WN18.

All (100%) Sym (21.4%) Eq (72.5%) UC (6.1%)

hits@1 hits@10 hits@1 hits@10 hits@1 hits@10 hits@1 hits@10

AMIE .872 .948 1.00 1.00 .904 1.00 .047 .166

RuleN .945 .958 .999 1.00 .998 1.00 .128 .325

HolE .933 .940 .981 1.00 .998 .999 .011 .039

RESCAL .749 .874 .878 .973 .772 .913 .019 .063

TransE .082 .944 .000 .988 .114 .996 .000 .175

Ensemble .941 .956 1.00 1.00 .998 1.00 .060 .287

Table 4. Fine-grained results for FB15k (h@k refers to hits@k).

All (100%) Sym (7.2%) Eq (60%) Sub (6.8%) P2 (7.3%) UC (18.4%)

h@1 h@10 h@1 h@10 h@1 h@10 h@1 h@10 h@1 h@10 h@1 h@10

AMIE .647 .858 .906 .983 .766 .961 .720 .950 .451 .736 .205 .486

RuleN .772 .870 .992 1.00 .940 .982 .831 .954 .536 .724 .207 .480

HolE .366 .706 .046 .936 .484 .811 .505 .814 .179 .438 .127 .339

RESCAL .267 .600 .126 .768 .308 .638 .333 .645 .288 .546 .158 .416

TransE .031 .796 .000 .852 .039 .893 .024 .884 .019 .661 .027 .479

Ensemble .798 .898 .981 1.00 .957 .992 .895 .982 .575 .797 .258 .562

the mentioned subsets. TransE and RESCAL performed worse. If we look at
the FB15k Uncovered subset, we observed a different pattern. Rule-based and
embedding-based approaches performed on a similar level with respect to the
hits@10 score.

On FB15k-237, AMIE and RuleN outperformed the other approaches only
in the P2 category. The overall results were slightly below the best perform-
ing embedding-based systems RESCAL and TransE as they were superior on
the large Uncovered subset. These different strengths indicate potential for an
ensemble model.

To sum up, some of the approaches that are based on embeddings had rather
specific problems with symmetric relations in our experiments. Furthermore, the
other subsets that can be covered by highly confident path rules of length one
or two, could not be solved reliably by approaches such as TransE, HolE, or
RESCAL. This became more obvious when looking at hits@1 instead of looking
at hits@10. Overall, we observed rule-based approaches to be more precise. Their
top ranked candidate was usually a correct hit (for most categories >50%), while
this was not the case for TransE, HolE, or RESCAL. On the other hand, those
systems held their ground in test cases that are tough for rule-based systems.

16 C. Meilicke et al.

Table 5. Fine-grained results for FB15k-237.

All (100%) P2(14%) UC (86%)

hits@1 hits@10 hits@1 hits@10 hits@1 hits@10

AMIE .174 .409 .437 .656 .131 .368

RuleN .182 .420 .487 .691 .132 .376

HolE .096 .291 .166 .337 .085 .283

RESCAL .167 .418 .342 .546 .138 .397

TransE .106 .430 .191 .579 .092 .405

Ensemble .234 .517 .539 .721 .184 .484

4.4 Ensemble Learning

Given that rule-based and embedding-based approaches use unrelated strategies
and therefore achieve different results on specific categories, we propose to com-
bine both methods to produce predictions with higher quality. The training time
of an ensemble is essentially bottlenecked by the system that requires the most
computational effort since models can be built in parallel. Learning the ensemble
weights is a negligible effort in comparison. Hence, we feel that this approach is
practical given sufficient resources.

We constructed an ensemble that consists of RuleN and AMIE on the one
hand and TransE, HolE and RESCAL on the other hand using linear blending to
combine these models, as suggested in [15]. The goal is to combine the strength of
each model at the relation level. This is in line with our observation that there
are relations for which RuleN or AMIE can learn rules with high confidence,
while there are also relations where it is not possible to learn such rules. We
constructed for each relation a dataset that consisted of all its triples from the
training set as well as an equal amount of negative triples obtained by randomly
perturbing either subject or object. Then a meta learner (logistic regression) was
trained such that the constructed data could be classified correctly, using each
individual model’s normalized score as input feature.

Learning the weights based on the performance on the training set has its
drawbacks. Rule-based systems need access to the training set to infer new knowl-
edge from learned rules. Given this fact, they could trivially replicate all knowl-
edge contained in the training set. To prevent this for each completion task, the
triple that defines this task needs to be temporarily suppressed. Embedding-
based systems, on the other hand, are trained with the primary goal of remem-
bering the training set as good as possible. To establish equal preconditions, a
similar tweak would have to be applied to these systems. However, it is impracti-
cal to do so given their latent knowledge representation. Learning the ensemble
weights on the validation set, i.e., performing link prediction on unseen data,
might be a better alternative. However, in most of the existing works the val-
idation set was used for hyperparameter tuning only. Thus, we refrained from
doing so to prevent doubts about the comparability of the results.

Rule- and Embedding-Based Systems for Knowledge Graph Completion 17

Fig. 4. Hits@k for k = 1 . . . 50 for different systems and ensembles for WN18, FB15k
and FB15k-237. Filtered MRRs are shown below the explanation for each approach in
the order WN18|FB15k|FB15k-237.

18 C. Meilicke et al.

Instead of presenting results in terms of filtered hits@k with a fixed k, we
visualized hits@k for k = 1 . . . 50 in Fig. 4. At the bottom, we also added the fil-
tered mean reciprocal rank (MRR).2 The performance gain of the ensemble over
its best performing member system varied between the different datasets. For
WN18, it achieved slightly inferior results than the best single approach, which
is RuleN. We cannot fully explain the small loss of quality of the ensemble.
It should be noted that the characteristics of WN18 heavily reward rule-based
systems and that this might be an example for the problem described in the
previous paragraph. On FB15k, the ensemble was clearly better than the best
single approach, which was again RuleN. The results of the ensemble were about
3 % points better over the whole range of k. The ensemble was even more ben-
eficial on FB15k-237. This supports our assumption that the performance gain
of the ensemble over its rule-based member systems correlates with the size of
the Uncovered fraction of a data set. The high precision of rule-based systems is
reflected both in the hits@1 score and the MRR. With the exception of WN18,
these scores are further improved by the ensemble.

Additionally, we have analyzed the ensemble weights that have been learned
for FB15k-237. The relation nationality is an example for which RuleN has
high weights. For this relation, RuleN generates many C rules, which reflect
the frequency distribution of the different nationalities (most people are from
the US, followed by UK, and so on). We have also checked other examples of
high weights for rule-based approaches. Most of them were correlated with the
existence of rules with high confidence.

The results of our ensemble support the idea that embedding- and rule-based
approaches perform well on different types of completion tasks, and that it is
fruitful to join predictions of both types of models. This is especially important
for datasets that might have less regularities than the datasets usually used for
evaluation purposes. For such datasets a combination of both families might be
even more beneficial.

5 Conclusion

In this paper, we analyzed rule-based systems for knowledge graph completion
on datasets commonly used to evaluate embedding-based models. The gener-
ated results allow for a comparison with embedding-based approaches for this
task. Besides global measures to rank the different methods, we also classified
test cases of the datasets based on the explanations generated by our rule-based
approach. This partitioning is available for future works. We gained several inter-
esting insights.

– Both AMIE and RuleN are for the most commonly used datasets competitive
to embedding-based approaches. This holds not only with respect to TransE,

2 If a rule-based approach did not rank the candidate, we have set the rank to n/2
where n is the set of all entities. This is the average result of randomly ranking the
candidates.

Rule- and Embedding-Based Systems for Knowledge Graph Completion 19

RESCAL, or HolE, but still holds for the large majority of the models reported
about in [13] and [6]. Only few of these embedding models perform slightly
better.

– Rule-based approaches can deliver an explanation for the generated ranking.
This feature can be used for a fine-grained evaluation and helps to understand
the regularities within and the hardness of a dataset.

– TransE, RESCAL, and HolE have problems in solving specific types of com-
pletion tasks that can be solved easily with rule-based approaches. This
becomes noticeable in particular when looking solely at the top candidate
of the filtered ranking.

– The good results of the rule-based systems are caused by the fact that
the standard datasets are dominated by regularities such as symmetry and
(inverse) equivalence. FB15k-237 is an exception to this due to the specific
way it was constructed.

– It is possible to leverage the outcome of both families of approaches by learn-
ing an ensemble. This ensemble achieves better results than any of its mem-
bers (the WN18 results are a minor deviation).

With this paper, we tried to fill a research gap and shed new light on the
insights gained in previous years. Rule-based approaches perform very well and
are a competitive alternative to models based on embeddings. For that reason,
they should be included as a baseline for the evaluation of knowledge graph
completion methods. Moreover, we recommend conducting the evaluation on a
more fine-grained level like the one we proposed.

References

1. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: A semantic matching energy func-
tion for learning with multi-relational data. Mach. Learn. 94(2), 233–259 (2014)

2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, pp. 2787–2795 (2013)

3. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowl-
edge graph embeddings. CoRR abs/1707.01476 (2017). http://arxiv.org/abs/1707.
01476

4. Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.: AMIE: association rule
mining under incomplete evidence in ontological knowledge bases. In: Proceedings
of the 22nd International Conference on World Wide Web, pp. 413–422. ACM
(2013)

5. Gardner, M., Mitchell, T.M.: Efficient and expressive knowledge base completion
using subgraph feature extraction. In: EMNLP, pp. 1488–1498 (2015)

6. Kadlec, R., Bajgar, O., Kleindienst, J.: Knowledge base completion: baselines strike
back. arXiv preprint arXiv:1705.10744 (2017)

7. Lao, N., Mitchell, T., Cohen, W.W.: Random walk inference and learning in a
large scale knowledge base. In: Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pp. 529–539. Association for Computational
Linguistics (2011)

http://arxiv.org/abs/1707.01476
http://arxiv.org/abs/1707.01476
http://arxiv.org/abs/1705.10744

20 C. Meilicke et al.

8. Nickel, M., Rosasco, L., Poggio, T.A., et al.: Holographic embeddings of knowledge
graphs. In: AAAI, pp. 1955–1961 (2016)

9. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In: ICML, vol. 11, pp. 809–816 (2011)

10. Niepert, M.: Discriminative Gaifman models. In: Advances in Neural Information
Processing Systems, pp. 3405–3413 (2016)

11. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.:
Modeling relational data with graph convolutional networks. In: Gangemi, A., et
al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

12. Shen, Y., Huang, P.S., Chang, M.W., Gao, J.: Traversing knowledge graph in vector
space without symbolic space guidance. arXiv preprint arXiv:1611.04642 (2016)

13. Shi, B., Weninger, T.: ProjE: embedding projection for knowledge graph comple-
tion. In: AAAI, vol. 17, pp. 1236–1242 (2017)

14. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and
text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space
Models and their Compositionality, pp. 57–66 (2015)

15. Wang, Y., Gemulla, R., Li, H.: On multi-relational link prediction with bilin-
ear models. In: Association for the Advancement of Artificial Intelligence, AAAI
(2018). https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16900

16. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI, vol. 14, pp. 1112–1119 (2014)

17. Xiao, H., Huang, M., Zhu, X.: TransG: a generative model for knowledge graph
embedding. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 2316–2325 (2016)

18. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

19. Zeng, Q., Patel, J.M., Page, D.: QuickFOIL: scalable inductive logic programming.
Proc. VLDB Endow. 8(3), 197–208 (2014)

https://doi.org/10.1007/978-3-319-93417-4_38
http://arxiv.org/abs/1611.04642
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16900
http://arxiv.org/abs/1412.6575

Aligning Knowledge Base
and Document Embedding Models

Using Regularized Multi-Task Learning

Matthias Baumgartner1(B), Wen Zhang2,3(B), Bibek Paudel1(B),
Daniele Dell’Aglio1, Huajun Chen2,3, and Abraham Bernstein1

1 Department of Informatics, University of Zurich, Zurich, Switzerland
{baumgartner,bpaudel,dellaglio,bernstein}@ifi.uzh.ch

2 College of Computer Science and Technology, Zhejiang University,
Hangzhou, China

{wenzhang2015,huajunsir}@zju.edu.cn
3 Alibaba-Zhejiang University Joint Institute of Frontier Technologies,

Hangzhou, China

Abstract. Knowledge Bases (KBs) and textual documents contain rich
and complementary information about real-world objects, as well as rela-
tions among them. While text documents describe entities in freeform,
KBs organizes such information in a structured way. This makes these
two information representation forms hard to compare and integrate,
limiting the possibility to use them jointly to improve predictive and
analytical tasks. In this article, we study this problem, and we pro-
pose KADE, a solution based on a regularized multi-task learning of KB
and document embeddings. KADE can potentially incorporate any KB
and document embedding learning method. Our experiments on multiple
datasets and methods show that KADE effectively aligns document and
entities embeddings, while maintaining the characteristics of the embed-
ding models.

1 Introduction

In recent years, the open data and open knowledge movements gain more and
more popularity, deeply changing the Web, with an exponential growth of open
and accessible information. Wikipedia is the most successful example of this
trend: it is among the top-5 most accessed Web sites and offers more than
40 million articles. Based on Wikipedia, several Knowledge Bases (KBs) have
been created, such as FreeBase and DBpedia. Wikidata is a sibling project of
Wikipedia which focuses on the construction of a collaboratively edited KB.

It is therefore natural to ask, how precise and complete information can be
retrieved from such open repositories. One of the main challenges arising from
this question is data integration, where knowledge is usually distributed and

M. Baumgartner, W. Zhang, and B. Paudel contributed equally to this work.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 21–37, 2018.
https://doi.org/10.1007/978-3-030-00671-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_2&domain=pdf

22 M. Baumgartner et al.

complementary, and needs to be combined to get a holistic and common view of
the domain. We can envision two common cases where this challenge is relevant:
when users need open knowledge from different repositories, and when users need
to combine open and private knowledge.

Key to the success of data integration is the alignment process, i.e. the com-
bination of descriptions that refer to the same real-world object. This is because
those descriptions come from data sources that are heterogeneous not only in
content, but also in structure (different aspects of an object can be modelled in
diverse ways) and format, e.g. relational database, text, sound and images. In
this article, we describe the problem of KB entity-document alignment. Different
from previous studies, we assume that the same real-world object is described as
a KB entity and a text document. Note that the goal is not to align an entity with
its surface forms, but rather with a complete document. We move a step towards
the solution by using existing embedding models for KBs and documents.

A first problem we face in our research is how to enable comparison and
contrast of entities and documents. We identify embedding models as a possible
solution. These models represent each entity in a KB, or each document in a
text corpus, by an embedding, a real-valued vector. Embeddings are represented
in vector spaces which preserve some properties, such as similarity. Embeddings
gained popularity in a number of tasks, such as finding similar entities and
predicting new links in KBs, or comparing documents in a corpus.

So far, there are no algorithms to create embeddings starting form descrip-
tions in different formats. Moreover, embeddings generated by different methods
are not comparable out of the box. In this study, we ask if is it possible to rep-
resent embeddings from two different models in the same vector space, which (i)
brings close embeddings describing the same real world object, and (ii) preserves
the main characteristics of the two starting models?

Our main contribution is KADE, a regularized multi-task learning approach
for representing embeddings generated by different models in a common vector
space. KADE is a generic framework and it can potentially work with any pair of
KB and document embedding models. To the best of our knowledge, our study
is the first to present a generic embedding model to deal with this problem.
Our experiments show that KADE integrates heterogeneous embeddings based
on what they describe (intuitively, embeddings describing the same objects are
close), while preserving the semantics of the embedding models it integrates.

2 Related Work

Document Embedding. Paragraph Vector [4], also known as Doc2vec, is a popular
document embedding model, based on Word2vec [6]. It has two variants: Dis-
tributed Memory and Skip Gram. They represent each document by an embed-
ding such that the learned embeddings of similar documents are close in the
embedding space. Document embeddings can also be learned with neural mod-
els like CNN and RNN [3,12], topic models, or matrix factorization. Furthermore,
pre-trained embeddings from multiple models can be combined in an ensemble
using dimensionally reduction techniques [10,20].

Aligning Knowledge Base and Document Embedding Models 23

KB Embedding. Translation-based embedding models like TransE [1],
TransR [5], and TransH [17] have been shown to successfully representing KB
entities. Apart from entities, these models also represent each relation by an
embedding. They aim to improve the link prediction task and treat each triple
as a relation-specific translation. Several other embedding models have since
been introduced [8,15]. RDF2Vec [9] uses the same principle as Word2vec in the
context of a KB and represents each entity by an embedding. Other type of KB
embedding models include neural, tensor and matrix based methods [7].

Combining Text and KB. Several approaches improve KB embeddings by incor-
porating textual information. [14] exploits lexical dependency paths extracted
from entities mentioned in documents. [21] and [16] jointly learn embeddings
of words and entities, by using an alignment loss function based on the co-
occurrence of entity and words in its descriptions, or Wikipedia anchors, respec-
tively. A similar approach has been used for named entity disambiguation [19].
DKRL [18] treats text descriptions as head and tail entities, and ignores the
linguistic similarity while learning KB embeddings.

Further, multiple pre-trained embeddings can be combined into one multi-
modal space. [13] concatenates embeddings of aligned images, words, and KB
entities, then fuses them via dimensionality reduction.

Regularized Multi-Task Learning (MTL). Regularized MTL [2] exploits relat-
edness between multiple tasks to simultaneously learn their models. It enforces
task relatedness by penalizing deviations of individual tasks using regularization.

In contrast to these methods, our goal is to align documents with entities,
while at the same time retaining the properties of both document and KB embed-
dings. Our model is flexible since it does not require a predefined alignment loss
function, and learns by means of regularization through task-specific represen-
tations of documents and KB. It does not depend on the availability of further
linguistic resources like a dependency parser, careful extraction of features like
anchor text, or defining a separate alignment loss function. Our solution aims
at preserving linguistic and structural properties encoded in the document and
KB embeddings respectively, while also representing them in a common space.

3 Preliminaries

Knowledge Bases and Documents. A Knowledge Base K contains triples kj =
{(h, r, t) | h, t ∈ E ; r ∈ R}, where E and R are the sets of entities and relations,
respectively. (h, r, t) indicates that the head entity h and tail entity t are related
by a relation r. Entities in KBs, such as Freebase and DBPedia, describe real-
world objects like places, people, or books.

Text is the most popular way to describe real-world objects. It is usually
organised in documents, which delimit the description to a specific object or
concept, such as a country or a person. Formally, a document d in a corpus D is

24 M. Baumgartner et al.

represented as a sequence 〈w1, . . . , wi, . . . , wnd
〉, where |d| = nd, and wi denotes

a word in the corpus drawn from a word vocabulary W.
For example, Wikipedia contains a textual document about Mike Tom-

lin, the head coach of Pittsburgh Steelers, at https://en.wikipedia.org/wiki/
Mike Tomlin (denoted dmt); FreeBase contains a graph-based description
of Mike Tomlin, here identified by m.0c5f j1, e.g. the triple (m.0c5f j,
current team head coached, m.05tfm) states that Mike Tomlin (the head
entity) is the head coach (the relation) of Pittsburgh Steelers (the tail entity,
m.05tfm).

We name such different forms of information as descriptions of real-world
objects, e.g. dmt and m.0c5f j are two different descriptions of Mike Tomlin.

Embeddings. Embeddings are dense vectors in a continuous vector space which
could be regarded as another representation of descriptions2. Embeddings gained
popularity in recent years, due to their successful applications [3,6,12].

In this study, we consider two families of embedding models: the translation-
based models for Knowledge Bases and the paragraph vector models for doc-
uments. The models of the former family represent KB entities as points in
the continuous vector space, and relations as translations from head entities
to tail entities. Representative models of the former family are TransE [1],
TransH [17] and TransR [5]. TransE defines the score function for a triple (h, r, t)
as: S(h, r, t) = ‖h + r − t‖. TransH and TransR extend TransE to overcome
the limited capability of TransE to encode 1-N, N-1 and N-N relations. They
define the score function for a triple as: S(h, r, t) = ‖h⊥ + r− t⊥‖, in which h⊥
and t⊥ are projected head and tail entities. TransH projects entities to relation
specific hyperplanes with wr as normal vectors, thus h⊥ = h − w�

r hwr and
t⊥ = t − w�

r twr. TransR projects entities from the entity space to the relation
space via relation specific matrices Mr, thus h⊥ = Mrh and t⊥ = Mrt. Let
(h, r, t) be a triple in K, and (h′, r′, t′) be a negative sample, i.e., (h′, r′, t′) is not
in K. The margin-based loss function lKM for (h, r, t) is defined as:

lKM ((h, r, t), (h′, r, t′)) = max(0, (γ + S(h, r, t) − S(h′, r′, t′))), (1)

where γ is a margin. The objective of translation-based models is to
minimize the margin-based loss function for all triples, i.e., LKM (K) =∑

(h,r,t)∈K l((h, r, t), (h′, r, t′)), where (h′, r′, t′) is a negative example sampled
for (h, r, t) during training.

The paragraph vector models represent documents in a continuous vector
space. Examples of models of this family are PV-DM (Distributed Memory) and
PV-SG (Skip Gram or DBOW) [4]. Both models learn embeddings for variable-
length documents, by training to predict words (in PV-DM) or word-contexts
(in PV-SG) in the document. For every document d, the objective of PV-DM is

1 We omit prefixes for the sake of readability.
2 Throughout this paper, we denote vectors in lowercase bold letters and matrices in

uppercase bold letters.

https://en.wikipedia.org/wiki/Mike_Tomlin
https://en.wikipedia.org/wiki/Mike_Tomlin

Aligning Knowledge Base and Document Embedding Models 25

to maximize the average log probability of a target word wt appearing in a given
context ct, conditioned not only on the context words but also on the document:

lDM (d) =
1
nd

nd∑

t=1

log p(wt|d, ct), (2)

where p(wt|d, ct) = σ(b + Ug(d, ct)), and σ(·) is the logistic function, U and
b are weight and bias parameters, and g is constructed by concatenating (or
averaging) its parameters. The PV-SG objective is to maximize lDM defined as:

lDM (d) =
1
nc

nc∑

t=1

log p(ct|d), (3)

where p(ct|d) = σ(b + Ug(ct)). In this way, both PV-DM and PV-SG capture
similarities between documents by using both context and document embed-
dings to maximize the probability of context or target words. As a result, the
embeddings of similar documents are close in the embedding space.

4 Aligning Embedding Models

From Sect. 3, we see that the descriptions of Mike Tomlin in FreeBase and
Wikipedia bring complementary information. There is an intrinsic value in con-
sidering these two descriptions together, since they offer a more complete view
of the person. Embedding models offer a space where descriptions can be con-
trasted and compared, and it is therefore natural to ask ourselves if we can
integrate multiple descriptions by exploiting those models. However, embedding
models represent descriptions in different vector spaces. In other words, while
two embeddings generated by the same model are comparable, two embeddings
generated by different models are not.

We want to study if it is possible to bridge together different embedding mod-
els, while preserving the characteristics of the individual models and enabling
new operations. This operation, that we name alignment, should take into
account two characteristics, namely relatedness and similarity, explained below.

Relatedness. Descriptions of the same real-world object are related. Let T be
a set of descriptions; the document and entity sets (D and E) are two disjoint
subsets of T . We introduce the notion of relatedness, to indicate that two descrip-
tions refers to the same real-world object, as a function rel : T �→ T . rel is a
symmetric relation, i.e. if ti ∈ T relates to tj ∈ T , then the vice versa holds.

Similarity. In addition to relatedness, we intuitively introduce the notion
of similarity. Let’s consider the following example: Pittsburgh Steelers and
San Francisco 49ers are two football teams. They are two real-world objects,
and in the context of a set of real-world objects, we can define a notion of

26 M. Baumgartner et al.

similarity between them. For example, if we consider all the sport teams in the
world, the two teams are similar, since they share several features—they are
football teams, they play in the same nation and in the same leagues. However,
in the context of NFL, the two teams are less similar—they play on different
coasts and have different achievements. From this example, we observe that the
notion of similarity can be relation- or context-specific.

Our proposed model is agnostic to the notions of similarity adopted by indi-
vidual KB and document embedding models. We want our model to be robust to
the choice of individual embedding models. In this way, we only loosely interpret
the model-specific loss functions and choice of similarity measure.

Alignment. The problem we investigate in our research is of aligning the embed-
dings of related descriptions. It is worth stressing, that alignment captures both,
the notion of relatedness and similarity. The goal is to obtain a space where the
embeddings of related descriptions are close (i.e. relatedness), while preserving
the semantics of their original embeddings (i.e., similarity).

Assumptions. In this study, we make the following assumptions. First, related-
ness is defined as a function that relates each entity of E to a document in D,
and vice versa. Formally, we denote this relation with reled and it holds: (i) reled
is injective, (ii) ∀e ∈ E , reled(e) ∈ D and (iii) ∀d ∈ D, reled(d) ∈ E . Based on
reled, we define the entity-document relatedness set as Q = {(e, d) | reled(e) =
d ∧ e ∈ E ∧ d ∈ D}, e.g. (m.0c5f j, dmt) ∈ Q.

The second assumption is based on the fact that, in real scenarios, it often
happens that only some relations between document and entities are known. We
therefore assume that the algorithm can access a relatedness set Q′ ⊂ Q.

In the following, we abuse the notation and we use d and e to indicate embed-
dings when it is clear from the context. When not, we use v(t) to indicate the
embedding of the description (either entity or document) t ∈ T .

5 A Regularized Multi-Task Learning Method for
Aligning Embedding Models

In this section we present KADE, a framework to align Knowledge base and
Document Embedding models. KADE can be separated into three parts, as
shown in Fig. 1: (i) a Knowledge Base embedding model, on the left, where
vectors are denoted by circles, (ii) a document embedding model, on the right,
where vectors are denoted by squares, and (iii) a regularizer process, in the
center.

The construction of the Knowledge Base (or document) embedding model
is represented by the arrows with dashed lines, which represent the moving
direction for entity (or document) embeddings according to the underlying
model. The colors and index numbers in the two models indicate that the
vectors are describing the same real-world object, i.e., (ei, di) ∈ Q, i ∈ [1, 4].

Aligning Knowledge Base and Document Embedding Models 27

Fig. 1. Illustration of the intuition behind KADE. (Color figure online)

Moreover, (e1, d1), (e2, d2) and (e3, d3) are known related entity-document pairs,
i.e., (ei, di) ∈ Q′, i ∈ [1, 3], while the relatedness information of (e4, d4) is not
known, i.e., (e4, d4) ∈ Q and (e4, d4) �∈ Q′.

The regularization process builds an embedding space which represents both,
the document and the KB entity vectors. There are two regularizers: each of them
applies to the training of the document and Knowledge Base embedding, forcing
the related document and the entity vectors to be close in the vector space.
The regularizer process is shown through the arrows with dotted lines, which
represent the moving direction influenced by the related entity-document pairs.
This is done by exploiting the information from Q′, i.e., the regularizer process
cannot use the (e4, d4) pair, since it is not in Q′.

Regularizer for the Knowledge Base Embedding Model. We define KADE’s objec-
tive function LK for a Knowledge Base embedding model as follows:

LK(D, K) =
∑

(h,r,t)∈K
(h′,r,t′)/∈K

(
lKM ((h, r, t), (h′, r, t′))

+ λk

(
‖v(h) − v(reled(h))‖ + ‖v(t) − v(reled(t))‖

+ ‖v(h′) − v(reled(h
′))‖ + ‖v(t′) − v(reled(t

′))‖
))

,

(4)

where lKM is defined in (1), v(reled(e)) is the embedding corresponding to the
document describing e (from the relatedness set), and λk is the regularizer
parameter for the KB embedding model. If the related entity-document pair
is missing in Q′, then the regularization term for that entity is zero.

Regularizer for the Document Embedding Model. Similarly, we define the
KADE’s objective function for a document embedding model as follows:

LD(D,K) =
∑

d∈D

(
lDM (d) + λd‖v(d) − v(reled(d))‖

)
(5)

28 M. Baumgartner et al.

Algorithm 1. Iterative learning of embeddings in KADE
Input: A Knowledge Base K and document corpus D, a KB embedding model

KM and its loss function LKM , a document embedding modem DM and
its loss function LDM , regularizer parameters λK and λD, relatedness
relation reled between entities in K and documents in D, embedding
dimension k, number of iterations num iters, loss threshold ε < 1.0,
iterations per model iter model.

Result: Document embeddings D ∈ R
|D|×k,

Entity embeddings E ∈ R
|E|×k.

1 Initialize E and D along with other model variables according to KM and DM;
set iters = 0, iters model = 0,
loss change = km loss change = dm loss change = 1.

2 while iters ≤ num iters AND loss change > ε do
3 for ikm = 1 ; ikm ≤ iters model ; ikm = ikm + 1 do
4 LKM ← Calculated according to (1);

5 LK(K, D) ← Calculated according to (4) ;

6 Update E and other KM variables using the gradients of LK(K, D);

7 end
8 for idm = 1 ; idm ≤ iters model ; idm = idm + 1 do
9 LDM ← Calculated according to (2);

10 LD(K, D) ← Calculated according to (5);

11 Update D and other DM variables using the gradients of LD(K, D);

12 end
13 if iters > 0 then
14 km loss change ← |prev km loss − LK(K, D)|;
15 dm loss change ← |prev dm loss − LD(K, D)| ;

16 end

17 prev km loss ← LK(K, D) ;

18 prev dm loss ← LD(K, D) ;
19 loss change = max(km loss change, dm loss change);
20 iters ← iters + 1;

21 end

where lDM is the loss function as defined in either (2) or (3), v(reled(d)) is the
embedding for the entity related to d, and λd is the regularizer parameter for
document embedding model. As above, if the related entity-document pair is not
in Q′, then the regularization term for the document is set to zero.

Learning Procedure. The learning procedure of KADE is described in Algo-
rithm1. To learn the complete model, the algorithm trains the document and
the KB embedding models alternately. This is done by using batch stochas-
tic gradient descent, the common training procedure for these kinds of models.
Specifically, one iteration of the learning keeps the KB model fixed and updates
the document model. Within this step, the document model is updated for a

Aligning Knowledge Base and Document Embedding Models 29

given number of iterations. After that, the KB model is updated by keeping the
document model fixed. In a similar way, this step lasts for a given number of
iterations. Then the next iterations of KADE proceeds in a similar fashion, until
convergence or a fixed number of steps.

6 Experimental Evaluation

Hypotheses. Our experiments aim at verifying three hypotheses. The model
learned by KADE retains the characteristics of the document (HP1) and KB
(HP2) embedding models, i.e. it does not break the semantics of the document
and KB models. Additionally, KADE represents documents and KB entities in
the same embedding space such that related documents and entities are close to
each other in that space (HP3).

Table 1. Dataset sizes

FB15k FB40k DBP50

Entities 14, 904 34, 609 24, 624

Relations 1, 341 1, 292 351

Total triples 530, 663 322, 717 34, 609

Train triples 472, 860 258, 175 32, 388

Unique words 35, 649 50, 805 158, 921

Datasets. We consider three open
datasets, which are widely used to
benchmark KB embeddings. Their
properties are summarized in Table 1.
Each of them consists of a Knowledge
Base and a document corpus. Related
documents are known for all entities,
and vice-versa. FB15k [1] is derived
from the most popular 15,000 entities in Freebase. The text corpus is constructed
from the corresponding Wikipedia abstracts. FB40k3 is an alternative to FB15k,
containing about 34,000 Freebase entities. It is sparser than FB15k: it includes
more entities but fewer relations and triples. The text corpus is derived in the
same fashion as for FB15k. DBP50 is provided by [11]. It is extracted from
DBpedia, it has fewer triples than the other datasets, but its documents are
longer and its vocabulary is larger. We apply standard pre-processing steps like
tokenization, normalization and stopword removal on the documents of the three
datasets. The KB triples are split into training and test sets, in a way that
each entity and relation in the test set is also present in the training set. The
relatedness set Q contains pairs of Freebase/DBpedia entities and documents
describing the same real-world object. When not specified, experiments use Q
as known relatedness set. Otherwise, we describe how we built Q′ ⊂ Q.

Methods. As explained in Sect. 3, for documents, we use two Paragraph Vector
models: distributed memory (PV-DM) and skip-gram (PV-SG). For KBs, we
consider TransE, TransH, and TransR. The method configuration is indicated
in parenthesis, e.g. KADE (TransR, PV-SG). We use KADE (TransE, PV-DM)
as our reference configuration, denoted by KADEref. When KB or document
models are trained on their own, we refer to them as Independent models.

3 Available at https://github.com/thunlp/KB2E.

https://github.com/thunlp/KB2E

30 M. Baumgartner et al.

Parameters. The hyperparameters for TransE and TransR are embedding
dimension k, learning rate α, margin γ, and a norm. TransH has an additional
weight parameter C. KADE further introduces the regularizers λk and λd. We
did a preparatory parameter search to find reasonable values for embedding
dimension k and regularizers λk, λd. The search was limited to KADEref on
FB15k and resulted in k = 100, λk = 0.01, and λd = 0.01. For the remaining
parameters, we adopted the values reported by TransE authors [1]: α = 0.01, γ =
1,norm = L1. We used these values for TransH and TransR as well. We adopted
C = 1 for TransH from [16].

The parameters for the document model are the embedding dimension k,
learning rate α, window size w, and number of negative samples nneg. After a
preparatory parameter search, we adopted α = 15, w = 5, neg = 35.

Experiments are iterated 9600 times4, in batches of 5000 samples. KADE
switches between models every ten training batches (iters model in Algo-
rithm1).

Implementation. We use our own implementation of TransE, TransH, TransR,
since some methods do not provide a reference implementation. To assess our
implementations, we ran the link prediction experiments of [1,5,17] with param-
eters values described above. Results are summarized in Table 2. For each model,
the performance of KADE is reasonably close to the originally reported values,
although they do not match exactly. These differences are due to parameter
settings and implementation details: We used the same parameters for all three
methods, while [5,17] optimized such parameters, and we found that slightly dif-
ferent sampling strategies, as implemented in [5], can further improve the result.
Ours, as well as other implementations of TransE5, normalize the embedding
vectors during loss computation. This has a positive effect on performance.

It is worth noting that these slight differences in performance do not affect
the study of our hypotheses, which is to align document and KB embeddings
while retaining the semantics of the original models.

Table 2. Performance of our implementations and published results on KB link pre-
diction. Higher HITS@10 values are better; lower mean rank values are better.

TransE TransH TransR

Ours Bordes [1] Ours Wang [17] Ours Lin [5]

HITS@10 Raw 0.469 0.349 0.459 0.425 0.443 0.438

Filtered 0.712 0.471 0.692 0.585 0.656 0.655

Mean rank Raw 225.410 243.000 234.494 211.000 229.433 226.000

Filtered 86.304 125.000 97.527 84.000 92.689 78.000

4 This matches the number of training runs over the whole dataset reported in [1].
5 https://github.com/thunlp/KB2E.

https://github.com/thunlp/KB2E

Aligning Knowledge Base and Document Embedding Models 31

6.1 HP1: KADE Retains the Document Embedding Model

HP1 states that KADE retains the quality of document embedding models. We
study HP1 by using the document embeddings as features for binary classifiers6.
We report the results of KADEref for FB15k; we had similar results for FB40k.

We first build the category set by retrieving categories from Freebase for each
entity in FB15k. Since each entity is related to a textual document through Q, we
assign categories to the documents. As a result, we retrieved 4,069 categories,
with an average of 46.2 documents per category, a maximum of 14,887 docu-
ments7, and a minimum of one. To have enough positive and negative training
examples for each category, we remove categories that belonged to fewer than
10% or more than 50% documents, resulting in 27 categories, with an average
of 2,400 documents per category (max: 4,483, min: 1,502). For each category
C, we randomly select documents not belonging to C, so that we obtain equal
number of documents in positive and negative classes. Next, we randomly assign
70% documents from each class to the training set and the remaining 30% to
the testing set. Finally, we train a logistic regression classifier for each category
and test the classification accuracy on the testing set. As a result, we train two
classifiers for each category (54 classifiers in total): one related to KADE and
the other one related to the independent document embedding model PV-DM.

We repeated this procedure five times and report the average result (the stan-
dard deviations are small and omitted) in Fig. 2. KADE significantly improves
the classification accuracy on all categories. The average classification accuracy
from KADEref is 0.92, while the one from independent training is 0.80. On many

Fig. 2. Accuracy of binary document classification using KADEref and independently
trained document model. The name of Freebase categories and number of documents
in each category is listed along the vertical bars.

6 We preferred binary over multi-class classification because it is simpler to explain.
7 For the class http://rdf.freebase.com/ns/common.topic.

http://rdf.freebase.com/ns/common.topic

32 M. Baumgartner et al.

categories, embeddings from KADE achieve an accuracy above 0.95, while the
maximum accuracy of embeddings from independent training is 0.89.

The classification accuracy of the document model increases when KADE
uses PV-SG rather than PV-DM. The accuracy in the independent case lifts
to 88%, with a maximum of 98%. It sill holds that KADE improves over the
independent models, even though in many cases the values rougly match.

The results we obtained in this experiment suggest that document embed-
dings learned by KADE are not worse than the one learned by independent doc-
ument embedding models. On the contrary, the document embeddings learned
by KADE perform better in document classification.

6.2 HP2: KADE Retains the KB Embedding Model

The second hypothesis relates to the ability of KADE to maintain the seman-
tics of the KB embedding model used in the alignment process. We study this
hypothesis by performing the link prediction experiment proposed in [1].

Similar to previous studies, for every triple in the test set, we construct cor-
rupted triples by replacing the head (or tail) entity with every other entity in the
Knowledge Base. While testing link prediction, we rank all true and corrupted
triples according to their scores and get the rank of current test triple.

We report the mean rank (MR) of the test triples and the ratio of test triples
in the 10 highest ranked triples (HIT@10). As noted by [1], some corrupted
triples be present in the KB. To cope with this, we report filtered results, where
corrupted triples that are present in the training set are removed.

Table 3. HIT@10 and MR of KADE and independent training. HITS@10 reports the
fraction of true triples in the top 10 predicted triples (higher is better). MR indicates
the position of the original head (or tail) in the ranking (lower is better).

FB15k FB40k DBP50

KADE Indep. KADE Indep. KADE Indep.

TransE HITS@10 Raw 0.470 0.469 0.590 0.583 0.440 0.382

Filtered 0.715 0.712 0.754 0.746 0.469 0.400

Mean rank Raw 221.257 225.410 835.899 962.244 1178.849 2451.215

Filtered 82.053 86.304 471.996 598.209 1130.392 2403.093

TransH HITS@10 Raw 0.456 0.459 0.579 0.571 0.434 0.386

Filtered 0.689 0.692 0.740 0.731 0.463 0.405

Mean rank Raw 233.073 234.494 857.130 1007.940 1174.965 2511.550

Filtered 96.009 97.527 496.215 649.459 1126.766 2463.208

TransR HITS@10 Raw 0.414 0.443 0.554 0.556 0.376 0.374

Filtered 0.651 0.656 0.705 0.711 0.395 0.392

Mean rank Raw 242.700 229.433 928.089 929.848 2414.541 2430.336

Filtered 98.620 92.689 561.778 563.693 2366.314 2382.091

Aligning Knowledge Base and Document Embedding Models 33

Table 3 compares the link prediction performance of KADEref and indepen-
dent training over the datasets. KADEref slightly but consistently outperforms
independent training. While there is always an improvement, it is more pro-
nounced on sparser datasets. We conduct the same experiment with TransH and
TransR with PV-DM as document model. All other parameters and experimental
protocols remain identical. In a few cases KADE embeddings do not outperform
the independent embeddings. However, the difference is small (<7%), compared
to the differences introduced by the method or dataset.

Also in this case, experiments suggest that HP2 holds, and KADE retains
the semantics of the KB embedding models.

6.3 HP3: KADE Aligns KB and Document Embeddings

The first two hypotheses are meant to assess if KADE retains the semantics of
the embedding models. Our last hypothesis takes a different perspective, and it
aims at verifying if the resulting model is effectively aligning entity and document
embeddings. We study this hypothesis in two experiments.

Progression of KADE Training. The first experiment tests if KADE brings doc-
ument and KB entity embeddings into the same embedding space. For this, we
randomly select 100 related entity-document pairs from Q′ and call this set QR.
At different stages of training (i.e. after different numbers of iterations), we take
both document and entity embeddings from QR. Then, we retrieve the most
similar entity embeddings learned by KADE using cosine similarity. In this way,
we get two ranked lists of 100 entities, corresponding to a pair qR ∈ QR: one
retrieved using the document embedding of qR as query, and another using the
entity embedding of qR as query. We compare the changes in set overlap of these
two ranked lists, and rank correlation as the training of KADE proceeds.

Fig. 3. The process of embedding documents and KB entities in the same space, with
KADEref on FB40k. Shaded areas indicate the standard deviations.

Figure 3 shows the results of this experiment for KADEref on the FB40k
dataset. In the early stages of training, set overlap (measured using Jaccard

34 M. Baumgartner et al.

similarity) as well as rank correlation (measured by the Spearman coefficient)
are very low, meaning that the two ranked lists are very different. Both measures
show significant improvements as training progresses, showing that KADE is able
to align the entities of documents and entities in the same space. We repeated
this experiment with the other datasets and we observed a similar behaviour.
The same holds when retrieving the document embeddings instead of entity
embeddings for query pairs in QR.

Alignment Generalization by KADE. This experiment investigates to what
extent KADE generalizes: can KADE align entity-document pairs that are not
available during training, i.e., which are not in Q′? We first introduce the align-
ment score as an evaluation measure, afterwards we present the results.

Given a query document d ∈ D, the alignment model orders all entities e ∈ E
with respect to their similarity to d. Let rd(e) ∈ [1, |E|] denote the rank of entity
e, retrieved for query document d. We define the rank re of a document d in an
analogous way. A perfect alignment model exhibits rd(e) = |E| iff (e, d) ∈ Q, i.e.,
the related entity is ranked highest out of all possible choices. We further define
the normalized version of the ranking measure as rNd (e) = (rd(e)−1)/(|E|−1) ∈
[0, 1]. We define rNe (d) analogously.

For a pool of test documents Dt ⊂ D and test entities Et ⊂ E , we average
the rankings for all document and entity queries (with respect to their related
counterparts) to get the alignment score:

AS := 1/2

(
1

|Et|
∑

e∈Et

rNe [reled(e)] +
1

|Dt|
∑

d∈Dt

rNd [reled(d)]

)

Next, we train KADE with varying sizes of Q′and examine to what extent
embeddings of entity-document pairs in Q \ Q′ are aligned by KADE. Note
that embeddings are still computed for all documents and entities, however, the
document-entity pairs in Q \ Q′ are not regularized by KADE.

Figure 4a show what happens when Q′ varies from 30% to 98% of Q. To
ensure comparability between the different training data sets, we required the
same 2% of Q to be omitted from all cases, and used them to calculate the
alignment score. This results in test sets sizes of 299 (FB15k), 693 (FB40k), and
493 (DBP50).

We compare KADE against a baseline model built with independently con-
structed embeddings for documents and entities to show the impact of regular-
ized multi-task learning. In this baseline model, the alignment is achieved by
projecting document embeddings onto entity embeddings, and vice-versa, i.e.:

∀e ∈ E : e = σ (reled(e)P1 + b1) ∀d ∈ D : d = σ (reled(d)P2 + b2)

The sigmoid function σ allows the model to account for nonlinearity. The pro-
jection matrices P{1,2} and biases b{1,2} are estimated from Q′. The model is
evaluated on FB15k, with the same test set as used for KADE.

Aligning Knowledge Base and Document Embedding Models 35

(a) KADE(TransE, PV-DM) (b) KADE(TransH, PV-DM)

(c) KADE(TransR, PV-DM) (d) KADE(PV-SG) on FB15k

percentage of relatedness set available during training

percentage of relatedness set available during training percentage of relatedness set available during training

percentage of relatedness set available during training

Fig. 4. KADE aligns embeddings of related documents and entities. The x-axis show
the percentage of known related pairs (|Q′|/|Q|). We measure the alignment score on
a fixed set of 2% of Q. In the y-axis, 1 implies that for every query entity (document),
the related document (entity) was retrieved as the first result. 0.5 indicates the random
baseline.

Figure 4a shows that KADE’s performance improves when the size of Q′

increases. This effect reflects that embeddings of test pairs are constrained by
their neighboring documents and entities.

Further, the performance differs across datasets. FB15k shows the best per-
formance. This can be explained by the fact that we optimized the model param-
eters based on this dataset. We further explain this result considering the dataset
density: higher interconnection allows more coherent embedding construction in
the document and entity models.

KADE consistently outperforms the baseline. Although the baseline enhances
with more training data, it only narrowly improves over random guessing
(AS = 0.5). This indicates that independent embedding construction leads to
incompatible spaces and highlights the impact of KADE’s regularized multi-task
learning.

The same experiment is repeated for the other KB or document models.
While the method is exchanged, the experimental setup and all parameters are
maintained. For KB models (Fig. 4b and c), we observe that the influence of the
dataset is much higher than the one of the KB model. This reflects the results
from Table 3. For document models, Fig. 4d shows the effect of using PV-SG
instead of PV-DM. As baseline, KADEref is plotted. Consistent with results
from Sect. 6.1, PV-SG outperforms PV-DM, independent of the KB model. The
effect is more pronounced if the size of Q′ is small.

36 M. Baumgartner et al.

The experiments in this section assess HP3: KADE aligns the embeddings
from different models in a common vector space, built according to the related-
ness among the descriptions.

7 Conclusion and Future Work

In this paper, we introduced KADE, a flexible regularized multi-task learning
method that represents embedding from heterogeneous models in a common
embedding space. We show that KADE can work with different KB or docu-
ment embedding methods. Our experiments showed that the KADE regular-
ization process does not break the semantics of the underlying document and
Knowledge Base embedding models, and in some cases it may even improve their
performance.

Looking at the assumptions we took, we think that a promising and impor-
tant direction of this research is to cope with changes in the set of objects that
are considered. In other words, how can KADE cope with description of new
objects that are added to the document corpus or the KB? KADE makes use of
document embeddings that are pre-trained on a very large corpus. It follows, that
the word embeddings which the model learns are general enough for new and
unseen documents. This means that KADE might use the already computed
document embeddings to find embeddings for new documents. As suggested
in [4], it is possible to learn the embeddings for new documents by keeping the
network weights and other embeddings constant, and updating the gradients of
the document embedding for a few iterations. Similarly, translation-based KB
embedding models cannot deal with new entities out of the box. However, we
believe it may be possible to learn embeddings for unseen KB entities by using
approaches similar to the above one.

Acknowledgements. We would like to thank the SNF Sino Swiss Science and
Technology Cooperation Programme program under contract RiC 01-032014, NSFC
61473260/61673338, and the Swiss Re Institute, in particular Axel Mönkeberg, for
discussions and financial support.

References

1. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

2. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: KDD, pp. 109–117
(2004)

3. Kim, Y.: Convolutional neural networks for sentence classification. In: EMNLP,
pp. 1746–1751. ACL (2014)

4. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. In:
ICML, vol. 32, pp. 1188–1196. JMLR.org (2014)

5. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI, vol. 15, pp. 2181–2187 (2015)

Aligning Knowledge Base and Document Embedding Models 37

6. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: NIPS (2013)

7. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

8. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge
graphs. In: AAAI, pp. 1955–1961. AAAI Press (2016)

9. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In:
Groth, P. (ed.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46523-4 30

10. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low
dimensional manifolds. JMLR 4(Jun), 119–155 (2003)

11. Shi, B., Weninger, T.: Open-world knowledge graph completion. CoRR
abs/1711.03438 (2017)

12. Tang, D., Qin, B., Liu, T.: Document modeling with gated recurrent neural network
for sentiment classification. In: EMNLP, pp. 1422–1432. ACL (2015)

13. Thoma, S., Rettinger, A., Both, F.: Towards holistic concept representations:
embedding relational knowledge, visual attributes, and distributional word seman-
tics. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 694–710.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4 41

14. Toutanova, K., Chen, D., Pantel, P., Poon, H., Choudhury, P., Gamon, M.: Rep-
resenting text for joint embedding of text and knowledge bases. In: EMNLP, pp.
1499–1509. ACL (2015)

15. Trouillon, T., Welbl, J., Riedel, S., Gaussier, E., Bouchard, G.: Complex embed-
dings for simple link prediction. In: ICML, JMLR Workshop and Conference Pro-
ceedings, vol. 48, pp. 2071–2080. JMLR.org (2016)

16. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph and text jointly embed-
ding. In: EMNLP, pp. 1591–1601. ACL (2014)

17. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI, pp. 1112–1119. AAAI Press (2014)

18. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of knowledge
graphs with entity descriptions. In: AAAI, pp. 2659–2665. AAAI Press (2016)

19. Yamada, I., Shindo, H., Takeda, H., Takefuji, Y.: Joint learning of the embedding
of words and entities for named entity disambiguation. In: CoNLL, pp. 250–259.
ACL (2016)

20. Yin, W., Schütze, H.: Learning word meta-embeddings. In: ACL, vol. 1. ACL (2016)
21. Zhong, H., Zhang, J., Wang, Z., Wan, H., Chen, Z.: Aligning knowledge and text

embeddings by entity descriptions. In: EMNLP, pp. 267–272. ACL (2015)

https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1007/978-3-319-68288-4_41

Inducing Implicit Relations from Text
Using Distantly Supervised Deep Nets

Michael Glass1(B), Alfio Gliozzo1, Oktie Hassanzadeh1,
Nandana Mihindukulasooriya2, and Gaetano Rossiello1,3

1 Knowledge Induction and Reasoning Group, IBM Research AI, New York, USA
mrglass@us.ibm.com

2 Ontology Engineering Group, Universidad Politcnica de Madrid, Madrid, Spain
3 Department of Computer Science, University of Bari, Bari, Italy

Abstract. Knowledge Base Population (KBP) is an important problem
in Semantic Web research and a key requirement for successful adoption
of semantic technologies in many applications. In this paper we present
Socrates, a deep learning based solution for Automated Knowledge Base
Population from Text. Socrates does not require manual annotations
which would make the solution hard to adapt to a new domain. Instead,
it exploits a partially populated knowledge base and a large corpus of text
documents to train a set of deep neural network models. As a result of
the training process, the system learns how to identify implicit relations
between entities across a highly heterogeneous set of documents from
various sources, making it suitable for large-scale knowledge extraction
from Web documents. Main contributions of this paper include (a) a
novel approach based on composite contexts to acquire implicit relations
from Title Oriented Documents, and (b) an architecture for unifying rela-
tion extraction using binary, unary, and composite contexts. We provide
an extensive evaluation of the system across three different benchmarks
with different characteristics, showing that our unified framework can
consistently outperform state of the art solutions. Remarkably, Socrates
ranked first in both the knowledge base population and attribute valida-
tion track at the Semantic Web Challenge at ISWC 2017.

Keywords: Knowledge base population · Deep learning
Distant supervision

1 Introduction

Knowledge Base Population (KBP) is a core problem in Semantic Web research
and a key requirement for successful adoption of semantic technologies in many
applications. Given a previously defined schema for a knowledge base, the KBP
problem consists of acquiring entities and relations from the corpus according
to the ontology. The outcome is a knowledge base that can be used to enhance
downstream applications such as search engines and business analytics.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 38–55, 2018.
https://doi.org/10.1007/978-3-030-00671-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_3&domain=pdf

Inducing Implicit Relations from Text Using Distantly Supervised Deep Nets 39

A common approach to Knowledge Base Population is using Information
Extraction (IE) from text, which typically consists of Entity Detection and
Linking (EDL) and Relation Extraction (RE) using models that have been pre-
trained for the types and relations of interest. The main drawback of super-
vised IE is that moving to a new domain requires substantial effort. Building
a new training set requires reading hundreds, if not thousands, of documents
and marking relevant entities and relations in them. This process might take
several weeks of work, sometimes providing unsatisfactory results, mostly due to
very low recall. A key problem is the existence of implicit relations in text, that
occur between entities mentioned across different part of the same document and
sometimes across different documents. The majority of supervised IE systems
are only able to recognize explicit relations within the same sentence.

In this paper, we present Socrates, a KBP solution that addresses the above
problems. Socrates exploits distant supervision [13,20] to minimize domain adap-
tation cost and is able to identify implicit relations between entities to maximize
recall.

Distant supervision can be applied when a partially populated KB for the
target schema and a large domain corpus for the target domain are available,
providing a cost effective alternative to document level supervision. In a distant
supervision approach, the entities and relations in the KB are matched in text
to automatically generate training data. The availability of background knowl-
edge can be used to alleviate, if not eliminate, the need of human supervision
for domain adaptation. This is a common use case observed particularly in busi-
ness settings across different industries, including healthcare, finance, customer
relationship management, and IT support. For example, in the ISWC Semantic
Web Challenge 2017 1 on Knowledge Base Population and Validation, Thompson
Reuters was interested in extending the public part of the PermID dataset2 rep-
resenting popular companies, with information about unseen companies, whose
websites were provided as an input.

Different from most IE systems, Socrates enables the recognition of implicit
relations between entities across different documents, by exploiting the notion
of unary relations, and across different part of the same document, by lever-
aging the notion of composite context sets, presented in Sect. 5.2. This allows
us to substantially increase recall of slot filling queries by capturing implicit
information.

In this paper, we present an extensive evaluation of Socrates in three different
benchmarks. In Sect. 6.1 we evaluate Socrates on the problem of extending the
public part of Thompson Reuters Perm ID with information about new compa-
nies. This dataset has been released by the organizers of the ISWC 2017 Seman-
tic Web Challenge and enables us to test the composite context set approach.
Socrates ranked first in both the Knowledge Base Population and Validation
tasks of the challenge. In Sect. 6.2, we evaluate the ability to extend a sample of
relations in Freebase with information extracted from New York Times articles.

1 http://challenge.semanticweb.org.
2 https://permid.org.

http://challenge.semanticweb.org
https://permid.org

40 M. Glass et al.

To this end, we used a standard benchmark [14] that enables a meaningful com-
parison with state of the art approaches for binary relations, showing significant
improvement over the state of the art. Finally, in Sect. 6.3, we evaluate the abil-
ity to extend DBPedia with information derived from web crawls [6]. Compared
to the previous benchmark, this is a large scale knowledge induction problem
involving hundreds of relations and millions of sentences. This setup enables us
to test the effectiveness of unary relations. Our results show that unary relations,
if combined with binary relations, provide a complementary signal that doubles
the recall of the overall process.

The main contributions of this paper are:

– A novel approach based on composite contexts to acquire implicit relations
from Title Oriented Documents

– An architecture able to combine binary, unary and composite-context relation
extraction.

The rest of the paper is organized as follows: Sect. 2 discusses the existing
work on the knowledge base population problem; Sect. 3 presents the Socrates
framework and introduces composite context sets; Sect. 6 provides a comprehen-
sive evaluation of the Socrates under three different benchmarks, and Sect. 7
draws some conclusions and proposes future work.

2 Related Work

The KBP problem is to induce knowledge graphs from new collections of docu-
ments by just providing the schema of the ontology as an input for the system,
and no document level annotations for training. As an output the system popu-
lates the ontology with new entities and relations identified in text. State of the
art approaches for this task [17,18] usually leverage additional examples pro-
vided by linked open data to train IE analytics, reducing the need for manual
annotations.

Relation extraction using distant supervision has a long history [13,20]. In
distant supervision, first mentions of entities from the knowledge base are located
in text. When two entities are mentioned in the same sentence that sentence
becomes part of the evidence for the relation (if any) between those entities.
The set of sentences mentioning an entity pair is used in a machine learning
model to predict how the entities are related, if at all. In this work, a novel
approach based on unary relations and implicit contexts are presented that is
capable of extracting relations even if the two entities do not appear in the same
sentence.

Deep learning has been applied to binary relation extraction. Both CNN-
based [23] and LSTM-based [21] models have been trained successfully using a
sentence as the unit of context. Recently, cross sentence approaches have been
explored by building paths connecting the two identified arguments through
related entities [24]. These approaches are limited by requiring both entities to be

Inducing Implicit Relations from Text Using Distantly Supervised Deep Nets 41

mentioned in a textual context. The context aggregation approaches of state-of-
the-art neural models, max-pooling [22] and attention [4,11], do not consider that
different contexts may contribute to the prediction in different ways. Instead, the
context pooling only determines the degree of a sentence’s contribution to the
relation prediction. In contrast, the Network-in-Network context aggregation of
Socrates can combine textual evidence with different types of contribution to
the prediction, not just different degrees.

TAC-KBP3 is a long running challenge for knowledge base population. Effec-
tive systems in these competitions combine many approaches such as rule-based
relation extraction, directly supervised linear and neural network extractors, dis-
tantly supervised neural network models [25] and tensor factorization approaches
to relation prediction. Compositional Universal Schema is an approach based
on combining the matrix factorization approach of universal schema [15], with
representations of textual relations produced by an LSTM [2]. The rows of the
universal schema matrix are entity pairs, and will only be supported by a textual
relation if they occur in a sentence together.

Other approaches to relational knowledge induction have used distributed
representations for words or entities and used a model to predict the relation
between two terms based on their semantic vectors [3]. This enables the discovery
of relations between terms that do not co-occur in the same sentence. However,
the distributed representation of the entities is developed from the corpus with-
out any ability to focus on the relations of interest. One example of such work is
LexNET [19], which developed a model using the distributional word vectors of
two terms to predict lexical relations between them (DSh). The term vectors are
concatenated and used as input to a single hidden layer neural network. Unlike
our approach to implicit relations, the term vectors are produced by a standard
relation-independent model of the term’s contexts such as word2vec [12].

3 Socrates Architecture

Socrates is a deep learning based solution for KBP. As an input, Socrates takes a
partially populated knowledge graph and extends it with new entities and facts
identified from a large collection of documents. Socrates is able to answer slot
filling queries about specific entities and does not require additional supervision.

Socrates’ architecture is described in Fig. 1. The input of the system is a
partially populated KB and a large corpus of text. The output of Socrates is an
extended KB, returned as a list of triples with confidence, containing additional
facts extracted by the system. Socrates can also be used to validate relations
provided as an input. In this case, it returns confidence scores for the input
triples by gathering evidence from their textual occurrences.

Optionally, for some entities, Title Oriented Documents (TOD) [5] can be
provided as well. These documents are about specific entities, such as the website
for a specific company or the Wikipedia page for a music band. TODs are used

3 https://tac.nist.gov/2017/KBP/.

https://tac.nist.gov/2017/KBP/

42 M. Glass et al.

Fig. 1. Socrates architecture

to create composite contexts used to predict relations about the title entity.
Socrates does not need manually annotated mentions of entities and relations at
all.

At ingestion time, Socrates parses the input document with an Entity Detec-
tion and Linking (EDL) system. The goal is to match entity mentions in the
corpus to those in the provided KB. EDL is also needed to identify new can-
didate entities to be added to the KB. A simple option for EDL is gazetteer-
based matching. This is effective when labels are provided by the KB, such as
in CC-DBP as described in Subsect. 6.3. However, ad-hoc EDL analytics can be
provided when working on specific domains, for example to recognize telephone
numbers in the ISWC Challenge dataset, or to enable partial match of company
names. Although EDL is an interesting research area and might be trained using
distant supervision in itself, in this paper we take EDL as a prerequisite to be
provided as a pluggable component.

Once EDL is performed, Socrates collects the data needed to train the rela-
tion extraction systems. To this aim, it gathers Context Sets. Context Sets can be
either windows of text, sentences, or composites of multiple parts of a document.

Socrates distinguishes three different types of Context Sets:

Binary context sets are contexts containing two different entities. Binary con-
text sets containing two entities in the ontology related by some relations are
used as positive examples for those relations. While the negative examples
are context sets containing entities not related in the KB.

Unary context sets are contexts containing only one entity, to be used to
train a unary-relation extraction system.

Composite context sets are sets of contexts extracted from multiple discon-
tinuous parts of a document. These contexts can support a relation between
an entity in the title or section header and another entity mentioned in the
body of the document. These are particularly effective for TODs, as described
in Subsect. 5.2.

Inducing Implicit Relations from Text Using Distantly Supervised Deep Nets 43

A closer look at the generated training data can provide insight in the value
of these three types of context sets. Below are example binary contexts relat-
ing an organization to a country. The two arguments are shown in bold. Some
contexts where two entities occur together (relevant contexts) will imply a rela-
tion between them, while others will not. In the first context, Philippines and
Eagle Cement are not textually related. While in the second context, Dyna

Management Services is explicitly stated to be located in Bermuda.

– The company competes with Holcim Philippines, the local unit of Swiss
company LafargeHolcim, and Eagle Cement, a company backed by diver-
sified local conglomerate San Miguel which is aggressively expanding into
infrastructure.

– ... said Richmond, who is vice president of Dyna Management Services,
a Bermuda-based insurance management company.

On the other hand, there are many triples that have no relevant context
using binary extraction, but can be supported with unary extraction. JB Hi-Fi

is a company located in Australia, (unary relation hasLocation:Australia).
Although “JB Hi-Fi” never occurs together with“Australia” in our corpus, we
can gather implicit textual evidence for this relation from its unary relation
context sets. Furthermore, even cases where there is a relevant binary context
set, the contexts may not provide enough or any textual support for the relation,
while the unary context sets might.

– Woolworths, Coles owner Wesfarmers, JB Hi-Fi and Harvey Norman were
also trading higher.

– JB Hi-Fi in talks to buy The Good Guys
– In equities news, protective glove and condom maker Ansell and JB Hi-Fi

are slated to post half year results, while Bitcoin group is expected to list on
ASX.

The key indicators are: “ASX”, which is an Australian stock exchange, and
the other Australian businesses mentioned, such as Woolworths, Wesfarmers,
Harvey Norman, The Good Guys, Ansell and Bitcoin group. There is no strict
logical entailment, indicating JB Hi-Fi is located in Australia, instead there is
textual evidence that makes it probable.

Composite context sets can be constructed when the title, section header
or document metadata is informative for relation prediction. This is typically
true for TODs. In the example below the EDL did not match “TEXAS ELEC-
TRONICS CANADA INC.” to Texas Electroniques Canada Inc. but the
title is still part of the context, so both arguments of the possible headquarters
PhoneNumber relation are present in the constructed context.

– www.texaselec.com Texas Electroniques Canada Inc.
East and Latin America. Read more about us TEXAS ELECTRONICS
CANADA INC. Tel: 514-842-4431 Toll-free: 1-800-387-9696 Fax: 514-842-
8641 E-mail:

www.texaselec.com

44 M. Glass et al.

– www.texaselec.com contact us Texas Electroniques Canada Inc.
contact form below. Our representatives would be glad to help you! Phone:
514-842-4431 Toll-free: 1-800-387-9696 Fax: 514-842-8641 E-mail:

The core KBP technology used by Socrates is a deep learning based binary
relation extraction system, described in Sect. 4. Variants of this approach are
then used to train unary and composite-context KBP systems, all providing
new triples as an output with associated probabilities. As a final step, Socrates
merges triples generated by all the three techniques as explained in Sect. 5.3.

4 Deep Nets for KBP

Socrates uses all the context sets collected from the corpus to train a deep
learning based relation extraction classifier. To this aim, it feeds them into a
deep neural network, described by Fig. 2. This architecture is largely unchanged
for all three types of context sets.

The sentence-to-vector portion of the neural architecture begins by looking
up the words in a word embedding table. The word embeddings are initialized
with word2vec [12] and updated during training. The position of each word
relative to the entity is also looked up in a position embedding table.

co-founded Allen & Shariff in 1993...

CNN: Wx+b

-1 0 0 0 1 2

…

max

…
NiN
…

max

…
other

sentences

Sentence
Aggregation

Sentence To
Vector

-5 -4 -3 -2 -1 0

Fig. 2. Deep learning architecture for relation extraction

Formally, the word embedding matrix is W ∈ R
dw×|V | where dw is the dimen-

sionality of the word embedding and |V | is the size of the vocabulary V . The

www.texaselec.com

Inducing Implicit Relations from Text Using Distantly Supervised Deep Nets 45

position embeddings are P ∈ R
dp×sizep where dp is the dimensionality of the posi-

tion embedding and sizep is the number of different relative positions expressible
through position embeddings.

For a sentence of length m, the word vector at the ith position, vi =
[wi, p

a0
i , pa1i], is the concatenation of its word embedding wi, the position embed-

ding relative to the first argument pa0i and the position embedding relative to
the second argument pa1i . In the case of unary contexts, only a single argument
is used.

A piecewise max-pooled convolution (PCNN) is then applied, with the pieces
defined by the position of the argument (or arguments for binary contexts):
before the (first) argument, the argument (between the arguments), and after
the (second) argument. A fully connected layer then produces the sentence vector
representation. This is a refinement of the Neural Relation Extraction (NRE)
[11] approach to sentence-to-vector mapping. The fully connected layer over the
PCNN is an addition.

Let vi:i+fw indicate the concatenation of word vectors vi, vi+1, ..., vi+fw. The
filter matrix is F ∈ R

fw(dw+2dp)×df , where fw is the filter width. The position of
first and second arguments are indicated by pos0, pos1 respectively. The piecewise
max-pooled convolution is given below:

ci = tanh(F · vi:i+fw + bf)

ps0j = maxi∈[0,pos0](ci,j)

ps1j = maxi∈[pos0,pos1](ci,j)

ps2j = maxi∈[pos1,m)(ci,j)

The sentence vector x is produced by a fully connected layer over the con-
catenated outputs of the piecewise max-pool.

x = tanh(Ls · [ps0, ps1, ps2] + bs)

The weight matrix for the sentence vector representation is Ls ∈ R
3df×ds .

Dropout is applied on the context vector x.
The sentence vector aggregation portion of the neural architecture uses a

Network-in-Network over the sentence vectors. Network-in-Network (NiN) [10]
is an approach of 1 × 1 CNNs to image processing. The width-1 CNN we use
for mention aggregation is an adaptation to a set of sentence vectors. The result
is max-pooled and put through a fully connected layer to produce the score for
each relation. Unlike a maximum aggregation used in many previous works [22]
on binary relation extraction, the evidence from many contexts can be combined
to produce a prediction. Unlike attention-based pooling also used previously for
binary relation extraction [11], the different contexts can contribute to different
aspects, not just different degrees. For example, a prediction that a city is in
France might depend on the conjunction of several facets of textual evidence
linking the city to the French language, the Euro, and Norman history.

46 M. Glass et al.

Formally, the NiN is a width-1 convolution with filter matrix A ∈ Rds×da ,
where da is the dimensionality of the resulting context-set vector.

ai = tanh(A · xi + ba)
paj = maxi∈[0,n)(ai,j)

NiN is an optional layer, the alternative is to simply apply the relation pre-
diction to the sentence vector and take the maximum relation prediction over
all contexts.

The relation prediction layer has weight matrix Lr ∈ R
r×da where r is the

number of relations. The final relation prediction vector is sigmoid(Lr ·pa + br).
The final layer of the network is vector of relation predictions and the inter-

mediate layers are shared. This architecture allows us to efficiently train many
relations, while reusing the feature representations in the intermediate layers
across relations as a form of transfer learning. The predictions of this network
represent the probability for the input entity to belong to each relation.

5 Implicit Relations

In a traditional binary KBP task a triple has a relevant context set if the two enti-
ties occur at least once together in the corpus - where the notion of ‘together’
is typically intra-sentential (within a single sentence). To overcome this issue
Socrates uses a more aggressive approach to generate context sets that enables
us to recognize relations between entities even if they to not occur in the same
sentence. In this section we present our solutions to deal with implicit informa-
tion: unary relations and composite contexts.

5.1 Unary Relations

Unary relations were recently introduced as an approach for gathering implicit
knowledge from text [7]. The basic idea is that in many cases relation extrac-
tion problems can be reduced to sets of simpler and inter-related unary relation
extraction problems. This is possible by providing a specific value to one of the
two arguments, transforming the relations into a set of categories. For exam-
ple, the livesIn relation between persons and countries can be decomposed into
195 relations (one relation for each country), including livesIn:United States,
livesIn:Canada, and so on.

To recognize unary relations we exploit the same deep learning architecture
described in Fig. 2, with the only difference that just one entity is marked in the
input. Each unary relation is then recognized by a specific neuron in the final
layer of the net. A unary relation extraction system is therefore a multi-class,
multi-label classifier that takes an entity as input and returns its probability as
a slot filler for each relation.

Binary and unary approaches are limited in different important respects.
KBP with unary relations can only produce triples when fixing a relation

Inducing Implicit Relations from Text Using Distantly Supervised Deep Nets 47

and argument provides a relatively large corpus extension. Triples such as
〈Barack Obama spouse Michelle Obama〉 cannot be extracted in this way,
since neither Barack nor Michelle Obama have a large set of spouses. The limita-
tion of binary relation extraction is that the arguments must occur together. But
for many triples, such as those relating to a person’s occupation, a film’s genre
or a company’s product type, the second argument is often not given explicitly.

5.2 Composite Contexts

Socrates is also able to process a TOD associated to some input entity and
leverage the focus of the TOD as a component of context. TODs are associated
to specific entities in the KB and usually contain mostly information related to
the entities. In this case, we can work on the assumption that most of the facts
expressed in the documents regards the target entity, even though it has not
been mentioned explicitly near another entity in the body of the document.

Air Compressor & Motor Co

…was founded in January
of 11997 by Robert Jones Sr
and…

History

…

www aircomo com about php

Document
Composite
Context

Metadata

Title

Section Header

Window of
Text

Fig. 3. Construction of composite context

Figure 3 shows the construction of a composite context from a document.
The title is an entity in this case, which will always be in-context for any other
entity in the document. The document metadata, in this case a URL is also part
of any composite context constructed from this document. A section header, if
present, is also placed into the context. The main part of the context is a window
of text around a mention of an entity.

This enables us to define very effective slot filling strategies for entities where
TODs are available. We apply this strategy on the ISWC 2017 KBP challenge,
reporting the best performances.

48 M. Glass et al.

Table 1. Hyperparameters used

Hyperparameter NYT-FB CC-DBP(binary) CC-DBP(unary) SWC-2017

sizep 80 80 80 80

dw 50 50 50 50

dp 5 5 5 5

ds 400 800 400 100

da N/A N/A 400 16

df 1000 3000 1000 3000

fw 3 3 3 3

dropout 0.5 0.5 0.5 0.5

5.3 Final Merger

The relational prediction system considers each prediction for a slot filler, such as
phone number or year founded independently. However, for functional relations,
the slot filling task is to provide either one filler or no prediction. The simplest
approach is to simply assign the confidence of the highest scoring filler as the
confidence for that filler and set a threshold.

An improved approach considers additional features of the prediction such
as the gap between the most confident and second most confident prediction
to determine the final confidence for the slot filler. Socrates uses these features
to estimate a more accurate confidence for its top prediction of a functional
relation.

6 Evaluation

Socrates was evaluated in three different benchmarks: (a) Extending Thompson
Reuters PermID with Company Websites (Sect. 6.1), (b) Extending Freebase
with NYT articles (Sect. 6.2), and (c) Extending DBpedia with Web Crawls
(Sect. 6.3). The hyperparameters used in these experiments are shown in Table 1.

6.1 Extending Thompson Reuters PermID with Company Websites

Socrates was evaluated against the state of the art KBC tools as part of the
ISWC Semantic Web Challenge 2017. The challenge consisted of a knowledge
graph population task (Task 1) and a knowledge based validation task (Task
2). Detailed task descriptions as well as the training/test datasets are available
from the challenge website4.

In order to apply knowledge induction to the challenge we needed to gather
relevant text. We applied an open source crawler to the URLs provided for each
test company. Although some websites did not exist, or did not allow crawling,
4 https://iswc2017.semanticweb.org/calls/iswc-semantic-web-challenge-2017/.

https://iswc2017.semanticweb.org/calls/iswc-semantic-web-challenge-2017/

Inducing Implicit Relations from Text Using Distantly Supervised Deep Nets 49

we were able to get URLs for over 90% of the companies in the test data. We
also crawled websites of 80,000 companies from the training data. The websites
were processed with boilerpipe [9] to extract the text.

Semantic Web Challenge 2017 Results. The evaluations for the challenge
were performed using the GERBIL Benchmark Framework [16]. The results are
shown in Table 2 (Task 1) and Table 3 (Task 2). Two variations of the Socrates
system was evaluated in the challenge. The Socrates-KI system is the results
from the components operating with unstructured text only, while Socrates is
an extension of Socrates-KI results by looking up missing values from three struc-
tured data sources: opencorporates.com, crunchbase.com, and usaspending.gov.
As it can be seen, the extension with structured data results in only a small
improvement in accuracy.

We tuned the confidence thresholds by testing against a subset of the test
data with crowdsourced attribute fillers. Rather than select the optimal threshold
for this dataset, we probed four to eight possible thresholds for each submission.

Table 2. Attribute prediction

F1 [%]

Socrates 55.397

Socrates-KI 54.835

Leopard 53.438

Disco 53.315

YellowPage 46.007

Baseline 45.867

Table 3. Attribute validation

AUC [%]

Socrates-KI 68.014

Leopard 53.088

Baseline 50.000

Document Classification. Because the set of possible countries for a com-
pany’s headquarters is small, we adopted a document classification approach
using logistic regression. For features we used: the bag of words in the company
website, the top level domain (TLD) of the website URL, and the bag of countries
detected in the location recognition and linking phase. To help correct for the
different distribution of countries between train (the public PermID database)
and the test data we removed from training any company whose headquarter’s
country was not in the list of TLDs for test websites.

Attribute Validation. The attribute validation task did not provide the com-
pany website URL as a certainty, but instead gave it as a statement to validate.
Conversely, the country for the company was provided as a known fact.

We addressed the validation of the website URL by string kernel similarity
between the company name and the URL. Since the headquarters country was

https://opencorporates.com/
https://www.crunchbase.com/
https://www.usaspending.gov/

50 M. Glass et al.

given as a known fact, we also checked the top-level-domain (TLD) of the website
against a TLD to country mapping.

For phone numbers and years we ran our deep learning based extractors over
the provided, possibly erroneous, websites. Additionally we checked the country
code for the phone number against the known headquarters country.

Detailed Evaluation and Analysis Using Crowdsourcing. To further
investigate the performance of our system across different attributes and more
deeply analyze the accuracy results, we built our own benchmark using crowd-
sourcing over a sample of 2,000 records from the test data. Note that the outcome
of crowdsourcing was used only for the purposed of this evaluation, i.e., we did
not use the outcome as additional training data and we never included any
portion of the outcome in our GERBIL submissions for the challenge.

The first interesting observation from the crowdsourcing experience was the
difficulty of the task even for humans. We had to make several iterations to
design the Mechanical Turk’s Human Intelligence Tasks or “HITs” in a way that
the outcome had the least noise and the HITs finished in a reasonable amount
of time. Interestingly, the level of agreement between the crowd workers were
comparable to the accuracy of our automated extraction. For phone numbers,
the workers agreed on 730 values (54.6%). For year founded the number of agree-
ments was 935 (69.99%), while for location country the workers agreed on 1,220
values (91.32%).

Using the outcome of crowdsourcing, we evaluated the accuracy of our extrac-
tions over different attributes. Table 4 shows the results of this evaluation. Note
the low precision and recall values for year and phone number attributes. This
is mainly due to the difficulty of finding the right information on the web. An
interesting example is that of a company called “Sterigenics” for which the com-
pany website states the year founded is 1925, Crunchbase.com has 1978 as the
year founded, and the crowd worker provided 2004 as the value. Interestingly,
all these values can be seen as correct, as they belong to various subsidiaries and
branches of the same company.

Table 4. Results on mechanical turk by attribute

True positive count Precision Recall F1

Overall results 1880 0.6775 0.4692 0.5544

Phone number 377 0.4883 0.2822 0.3577

Country 1233 0.9229 0.9229 0.9229

Year founded 270 0.4048 0.2022 0.2697

6.2 Extending Freebase with NYT Articles

A standard benchmark for distantly supervised relation extraction was developed
by Riedel [14] and used in many subsequent works [8,20,22]. The text of New

https://www.crunchbase.com/

Inducing Implicit Relations from Text Using Distantly Supervised Deep Nets 51

York Times was processed with the Stanford NER system and the identified
entities linked by name to Freebase. The task is to predict the instances of 52
relations from the sentences mentioning two arguments.

The state-of-the-art for this dataset is NRE’s (Neural Relation Extraction)
PCNN+ATT model (Piecewise Convolutional Neural Network with Attention)
[11]. The binary relation extraction of Socrates is most related to PCNN+ONE,
with the incorporation of type information from the entity recognition, an addi-
tional fully connected layer before the final max-pooling and an increased number
of filters in the sentence-to-vector convolutional layer.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.1 0.2 0.3 0.4 0.5

P
re

ci
si

on

Recall

Socrates Binary PCNN+ATT PCNN+ONE CNN+ATT

Fig. 4. Precision recall curves for KBP on NYT-FB

Figure 4 shows the performance for Socrates’ binary relation extraction on
this dataset compared to the models of NRE. Only the binary model is tested
on this dataset because the dataset is already processed to the point of context
set construction, and only binary contexts are produced. As can be seen from
the precision-recall curve, the model of Socrates improves on the state-of-the-art
in this standard dataset.

6.3 Extending DBpedia with Web Crawls

We also evaluate on a web-scale knowledge base population benchmark that we
called CC-DBP5. It combines the text of Common Crawl6 with the triples from
298 frequent relations in DBpedia [1]. Mentions of DBpedia entities are located
in text by gazetteer matching of the preferred label.
5 https://github.com/IBM/cc-dbp.
6 http://commoncrawl.org.

https://github.com/IBM/cc-dbp
http://commoncrawl.org

52 M. Glass et al.

Figure 5 shows the precision-recall curves for unary only, binary only and the
combined system. The unary and binary systems alone achieve similar perfor-
mance. But they are effective at very different triples. This is shown in the large
gains from combining these complementary approaches. For example, at 0.5 pre-
cision, the combined approach has a recall of more than double (15,750 vs 7,400)
compared to binary alone, which represents over 100% relative improvement.

Fig. 5. Precision recall curves for KBP on CC-DBP

We did not identify TODs in common crawl, so we do not use composite con-
texts for this task. We combine the output of the two systems by, for each triple,
taking the highest confidence from each system. We also ran the PCNN+ATT
model of NRE on this dataset, but without hyperparameter tuning its perfor-
mance was very low.

The recall is given as a triple count rather than a percentage. Traditional
attempts to measure the recall of KBP systems use the set of all triples explicitly
stated in text for the denominator of recall. This is unsuitable for evaluating our
approach because the system is able to make probabilistic predictions based on
implicit and partial textual evidence, thus producing correct triples outside the
classic recall basis.

7 Conclusion and Future Work

Knowledge Base Population is an important research problem in the Seman-
tic Web research and in this paper we presented Socrates, a KBP system able
to capture implicit relations in text. To this aim, we introduced the notion of
unary context sets and implicit context. Socrates was evaluated in three different
benchmarks and we demonstrated that there is a consistent improvement over

Inducing Implicit Relations from Text Using Distantly Supervised Deep Nets 53

the state-of-the-art. Our approach is extremely effective and complements exist-
ing binary relation extraction methods for KBP. Remarkably, Socrates achieved
the best performance on both tasks of the ISWC Semantic Web Challenge 2017.

The different approaches to context set construction we have unified in the
Socrates system provide complementary sources of textual evidence for the pre-
diction of relations. The binary contexts require no assumptions about the type
of document or its structure, but are limited to cases where both arguments
of a relation occur together. Unary contexts provide textual evidence for unary
relations, but unary relations can only be trained when enough fillers exist for
a given relation and fixed argument. Finally, composite contexts still require
both arguments to be mentioned in a single document, but by leveraging the
document structure we remove the limitation of close co-occurrence.

In future work, we plan to explore the use of more advanced forms of entity
detection and linking, including propagating features from the EDL system for-
ward for both unary and binary deep models. In addition we plan to exploit
extracted relations as source of evidence to bootstrap a probabilistic reasoning
approach, with the goal of leveraging ontological constraints from the KB such as
the property domain, range and other axioms. We also plan to develop strategies
for integrating the new triples gathered from textual evidence with new triples
predicted from existing KB relationships by knowledge base completion.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K. (ed.) ASWC/ISWC -2007. LNCS,
vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-76298-0 52

2. Chang, H., et al.: Extracting multilingual relations under limited resources: TAC
2016 cold-start KB construction and slot-filling using compositional universal
schema. In: Proceedings of TAC (2016)

3. Drozd, A., Gladkova, A., Matsuoka, S.: Word embeddings, analogies, and machine
learning: beyond king - man + woman = queen. In: Proceedings of COLING 2016,
the 26th International Conference on Computational Linguistics, pp. 3519–3530
(2016)

4. Feng, X., Guo, J., Qin, B., Liu, T., Liu, Y.: Effective deep memory networks
for distant supervised relation extraction. In: Proceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, 19–25 August 2017, pp. 4002–4008 (2017). https://doi.org/10.24963/
ijcai.2017/559

5. Ferrucci, D., et al.: Building watson: an overview of the DeepQA project. AI Mag.
31(3), 59–79 (2010)

6. Glass, M., Gliozzo, A.: A dataset for web-scale knowledge base population. In:
Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 256–271. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93417-4 17

7. Glass, M., Gliozzo, A.: Discovering implicit knowledge with unary relations.
Preprint (2018). https://ibm.box.com/s/31jqgm5xxjixetee4b1upisxdwbtw12r

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.24963/ijcai.2017/559
https://doi.org/10.24963/ijcai.2017/559
https://doi.org/10.1007/978-3-319-93417-4_17
https://ibm.box.com/s/31jqgm5xxjixetee4b1upisxdwbtw12r

54 M. Glass et al.

8. Hoffmann, R., Zhang, C., Ling, X., Zettlemoyer, L., Weld, D.S.: Knowledge-based
weak supervision for information extraction of overlapping relations. In: Proceed-
ings of the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies, vol. 1, pp. 541–550. Association for Computational
Linguistics (2011)

9. Kohlschütter, C., Fankhauser, P., Nejdl, W.: Boilerplate detection using shallow
text features. In: Proceedings of the Third ACM International Conference on Web
Search and Data Mining, pp. 441–450. WSDM 2010. ACM, New York, NY, USA
(2010). https://doi.org/10.1145/1718487.1718542

10. Lin, M., Chen, Q., Yan, S.: Network in network. arXiv preprint arXiv:1312.4400
(2013)

11. Lin, Y., Shen, S., Liu, Z., Luan, H., Sun, M.: Neural relation extraction with
selective attention over instances. In: Proceedings of ACL (2016)

12. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: Burges, C.J.C., Bot-
tou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural
Information Processing Systems 26, pp. 3111–3119. Curran Associates, Inc. (2013)

13. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extrac-
tion without labeled data. In: Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International Joint Conference on Nat-
ural Language Processing of the AFNLP: Volume 2-Volume 2, pp. 1003–1011.
Association for Computational Linguistics (2009)

14. Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without
labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML
PKDD 2010. LNCS (LNAI), vol. 6323, pp. 148–163. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15939-8 10

15. Riedel, S., Yao, L., McCallum, A., Marlin, B.M.: Relation extraction with matrix
factorization and universal schemas. In: Proceedings of the 2013 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 74–84 (2013)

16. Röder, M., Usbeck, R., Ngomo, A.C.N.: GERBIL-benchmarking named entity
recognition and linking consistently. Semant. Web J. (2018). http://www.semantic-
web-journal.net/system/files/swj1671.pdf

17. Roth, B., Monath, N., Belanger, D., Strubell, E., Verga, P., McCallum, A.: Building
knowledge bases with universal schema: cold start and slot-filling approaches. In:
Proceedings of the Eighth Text Analysis Conference (TAC 2015) (2015)

18. Shin, J., Wu, S., Wang, F., De Sa, C., Zhang, C., Ré, C.: Incremental knowledge
base construction using deepdive. Proc. VLDB Endow. 8(11), 1310–1321 (2015)

19. Shwartz, V., Goldberg, Y., Dagan, I.: Improving hypernymy detection with an
integrated path-based and distributional method. In: Annual Conference of the
Association for Computational Linguistics (ACL), pp. 2389–2398 (2016)

20. Surdeanu, M., Tibshirani, J., Nallapati, R., Manning, C.D.: Multi-instance multi-
label learning for relation extraction. In: Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pp. 455–465. Association for Computational Linguistics (2012)

21. Xu, Y., Mou, L., Li, G., Chen, Y., Peng, H., Jin, Z.: Classifying relations via long
short term memory networks along shortest dependency paths. In: Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing, pp.
1785–1794 (2015)

22. Zeng, D., Liu, K., Chen, Y., Zhao, J.: Distant supervision for relation extraction
via piecewise convolutional neural networks. In: EMNLP, pp. 1753–1762 (2015)

https://doi.org/10.1145/1718487.1718542
http://arxiv.org/abs/1312.4400
https://doi.org/10.1007/978-3-642-15939-8_10
http://www.semantic-web-journal.net/system/files/swj1671.pdf
http://www.semantic-web-journal.net/system/files/swj1671.pdf

Inducing Implicit Relations from Text Using Distantly Supervised Deep Nets 55

23. Zeng, D., Liu, K., Lai, S., Zhou, G., Zhao, J.: Relation classification via convolu-
tional deep neural network. In: Proceedings of COLING 2014, the 25th Interna-
tional Conference on Computational Linguistics: Technical Papers, pp. 2335–2344
(2014)

24. Zeng, W., Lin, Y., Liu, Z., Sun, M.: Incorporating relation paths in neural relation
extraction. arXiv preprint arXiv:1609.07479 (2016)

25. Zhang, Y., et al.: Stanford at TAC KBP 2016: sealing pipeline leaks and under-
standing Chinese. In: Proceedings of TAC (2016)

http://arxiv.org/abs/1609.07479

Towards Encoding Time in Text-Based
Entity Embeddings

Federico Bianchi(B), Matteo Palmonari, and Debora Nozza

University of Milano - Bicocca, Viale Sarca 336, Milan, Italy
{federico.bianchi,palmonari,debora.nozza}@disco.unimib.it

Abstract. Knowledge Graphs (KG) are widely used abstractions to rep-
resent entity-centric knowledge. Approaches to embed entities, entity
types and relations represented in the graph into vector spaces - often
referred to as KG embeddings - have become increasingly popular for
their ability to capture the similarity between entities and support other
reasoning tasks. However, representation of time has received little atten-
tion in these approaches. In this work, we make a first step to encode time
into vector-based entity representations using a text-based KG embed-
ding model named Typed Entity Embeddings (TEEs). In TEEs, each
entity is represented by a vector that represents the entity and its type,
which is learned from entity mentions found in a text corpus. Inspired
by evidence from cognitive sciences and application-oriented concerns,
we propose an approach to encode representations of years into TEEs by
aggregating the representations of the entities that occur in event-based
descriptions of the years. These representations are used to define two
time-aware similarity measures to control the implicit effect of time on
entity similarity. Experimental results show that the linear order of years
obtained using our model is highly correlated with natural time flow and
the effectiveness of the time-aware similarity measure proposed to flatten
the time effect on entity similarity.

1 Introduction

Knowledge Graphs (KGs) provide useful abstractions for representing knowl-
edge, with nodes describing real-world entities and entity types, and labeled
edges representing relations between entities, between types, and between enti-
ties and types. Traditional approaches to represent KGs use graph databases and
semantic web technologies based on the RDF model1. More recently, complemen-
tary models to represent KGs have been proposed, which embed KG elements
such as entities, types and relations into vector spaces of fixed dimensionality
and learn such representations from large amounts of data [1,6,14,19,21,30,32].
We refer to these models as KG embeddings. In KG embeddings, entities are
represented by vectors, and efficient geometric operations can support a variety
of tasks such as the evaluation of similarity between arbitrary entity pairs.

1 https://www.w3.org/RDF/.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 56–71, 2018.
https://doi.org/10.1007/978-3-030-00671-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_4&domain=pdf
https://www.w3.org/RDF/

Towards Encoding Time in Text-Based Entity Embeddings 57

Some approaches generate KG embeddings using structured data as a source,
e.g., relations occurring in the KG, and are mainly targeted at predictive reason-
ing tasks such as link prediction [6,14,32]. Other approaches generate the KG
embeddings from text corpora using methods similar to the ones used to gener-
ate word embeddings [1], under the distributional hypothesis [11]. These models
referred to as text-based KG embeddings in the following, are mainly targeted at
similarity evaluation tasks.

In a previous work, we have presented Typed Entity Embeddings (TEEs) as
one of the latter models [2,4]. In TEEs, embeddings of entities and types are
generated under the following entity-centric reinterpretation of the distributional
hypothesis: entities and types that appear in similar contexts are similar. An
entity linking algorithm [22] is used to find entity mentions in the corpus, while
the KG is used to extract the most specific types of the mentioned entities. Then,
based on the co-occurrence of entities and types in the text corpora two vector
spaces are generated, one for entities and one for types. The direct sum of the
two vector spaces leads to a typed entities space. In this space, each entity is
represented by the concatenation of its vector in the entity space and the vector
of its type. For example, the typed vector of the DBpedia entity dbr:Rome is the
concatenation of the vectors generated for dbr:Rome and dbo:City.

Time is an important aspect in knowledge representation and has been exten-
sively studied in the field of qualitative temporal representation and reason-
ing [15,23,25,31]. In addition, time is essential to human cognition, as people
“place events in time, deciding when they occurred, in which order and on what
scale, whether that of a lifetime or of a few seconds” [8]. Finally, recent work
has investigated temporal word embeddings to study language evolution along
time using diachronic corpora [27]. Thus, we believe that encoding time into KG
embeddings models is an important research objective.

Our work is inspired by evidence found in cognitive science studies as well
as by application-oriented concerns. Time and time perception have been deeply
investigated in the cognitive psychology literature. Since it has been observed
that “the succession of events is an inherent property of our time perception.
Memory is necessary, and the order of these events is fundamental” [26], we may
consider textual descriptions of events found in text corpora as a sort of mem-
ory, and as a source for learning representations of time. Encoding time into KG
embeddings has also several practical applications, in particular when evaluating
entity similarity with text-based KG embeddings, where similarity depends on
entity co-occurrence in similar contexts. Time can sneak into entity similarity in
a way that cannot be controlled, because entities that share a temporal context
are more likely to co-occur in the text (we refer to this implicit effect of time
on entity similarity as to the time effect hypothesis). As a consequence, we may
find that the most similar entity to dbr:Winston Churcill is the little-known
dbr:Harold McMillian. This makes perfect sense, if time is considered when
evaluating the similarity, but if we want to compare UK politician by interna-
tional relevance and fame, rather then by their chronological order, we may prefer
to find also more famous prime ministers like dbr:Margaret Thatcher among

58 F. Bianchi et al.

the most similar entities to dbr:Winston Churcill. If we are able to explicitly
incorporate time into KG embeddings, then we can control its effect when eval-
uating the similarity between entities, boosting or flattening time effect in entity
similarity. Such control over similarity is helpful for example in knowledge explo-
ration applications, which we investigated in previous work [3]. Other potential
applications can be found in time-aware entity recommendations [18,28] (e.g.,
find “related contemporary entities” vs.“related entities in the past” vs. “time-
independent related entities”) and in temporal information retrieval, where it is
important to keep track of the time factor.

To the best of our knowledge, in this paper we propose a first approach to
make time a first-class citizen in KG embeddings. We use the text-based TEEs
model as background and learn explicit representations of temporal entities as
part of this model. In particular, we encode representations of years, i.e., we
embed regular time periods with a yearly granularity. We build year representa-
tions from the textual description of events occurring during each year, which are
available in different web sources2. We generate year representations by aggregat-
ing the representations of the entities that take part in events occurring in those
particular years. These representations are then used to define two parametric
time-aware similarity functions: time-flattening and time-boosting similarities.

In other words, in this paper we tackle the following research challenges:
(1) to generate representations of time periods that are inspired by evidence
found in cognitive psychology for memory being a fundamental aspect in time
representation [26]; (2) to use these representations to control the effect of time
over entity similarity for practical applications. The contributions with respect
to these objectives can be summarized as follows:

– We learn representations of time periods at a yearly granularity starting from
natural language descriptions of events occurring in these periods, showing
that, even if the natural time flow is not explicitly encoded into the model, the
generated year representations are highly correlated with the natural sequence
of years.

– We provide evidence for the time-effect on entity similarity in text-based KG
embeddings.

– We propose two parametric time-aware similarity measures to control the
time effect in entity similarity.

Our approach to encoding time into text-based KG embeddings is explained
in Sect. 2. Experiments to evaluate the time effect, properties of the year repre-
sentations and the time-aware similarities are discussed in Sect. 3. Related work
is discussed in Sect. 4. Conclusions and future work end the paper.

2 Typed Entity Embeddings with Time Periods

We use a minimal definition of Knowledge Graph (KG) as a directed
labeled graph, where nodes are entities or types, and labeled edges represent
2 Examples are Wikipedia pages for years, https://www.onthisday.com/events-by-

year.php and https://www.history.com/this-day-in-history.

https://www.onthisday.com/events-by-year.php
https://www.onthisday.com/events-by-year.php
https://www.history.com/this-day-in-history

Towards Encoding Time in Text-Based Entity Embeddings 59

relations between entities or between types or between entities and types. Rela-
tions between types define a sub-type graph (often a hierarchy). However, the
relations between the entities are not considered for generating the embeddings
in our work. An example of KG, which will be used in the rest of the paper, is
DBpedia, where types are classes in the DBpedia Ontology. For simplicity, we
assume that given an entity we can determine its minimum type (i.e., its most
specific type) using the typing assertions and the sub-type graph. In case an
entity has more minimal types none of which is the minimum, different strategies
can be considered to select one of them as representative type. In DBpedia the
most specific type of entities can be determined by using dedicated resources3.

A Typed Entity Embedding (TEE) with Time Periods consists in:

– A set of typed entities E, which includes a subset Eτ of temporal periods.
– Two embedding functions; φ : E \ Eτ → R

k and one ω : Eτ → R
k.

– A similarity function η : E × E → [0, 1] constructed as operation over the
typed entity vectors.

– A proximity function ρ : E → Eτ that allows us to find the most representing
time period for a given typed entity.

– A time-aware similarity function ψ : E × E → [0, 1] that computes the sim-
ilarity between two typed entities by considering their time distance as a
factor.

In the following, we explain each component of the model more in detail.

2.1 TEEs and Their Generation

The φ embedding function has been intuitively explained in Sect. 1. For more
details we refer to previous work [2,4]. Here we provide some more insights about
the generation process using Fig. 1. As a corpus we use a set of documents, each
one describing an entity in natural language. As shown in the figure, after the
entity mentions are found in a document by an entity linking algorithm, we
generate a second document that consists in the sequence of the entities found
in the corpus text. This document is transformed into a third document, where
entities are replaced by their most specific type, obtaining a sequence of types.
As a result, we have two corpora, one for entities and one for types. At this point
we run word2vec [16] on each corpus to generate Entity Embeddings (EE) and
Type Embeddings (TE) [4] separately. These two embeddings can have different
dimensionality. Finally, for each entity, we concatenate its entity vector with
the vector of its most specific type, thus obtaining a typed entity vector, i.e.,
a Typed Entity Embedding (TEE). Entities of the same type (or of similar
types) are more likely to be closer to each other in the TEE space built upon
this concatenation than in the EE space that consists of entity-only vectors [2].
Given an entity e, we use the bold notation e to refer to its typed entity vector.

3 http://wiki.dbpedia.org/services-resources/documentation/datasets#InstanceTyp
es.

http://wiki.dbpedia.org/services-resources/documentation/datasets#InstanceTypes
http://wiki.dbpedia.org/services-resources/documentation/datasets#InstanceTypes

60 F. Bianchi et al.

Observe that since we have generated the typed entity vector space as the
direct sum of the entity and the type vector spaces, we can easily drop the type-
component in typed entity vectors and use entity vectors without representing
the entity types. We will use these simplified entity vectors in the experiments
discussed in Sect. 3.1.

dbr:Rome

Rome is the capital of Italy
and a special
comune Rome also serves
as the capital of the Lazio
region...

dbr:Rome

dbr:Rome dbr:Italy
dbr:Rome dbr:Lazio...

3

9

2

2

1

2

4

3

5

Replace
Text
With

Entities
Generate

Embeddings

dbr:Rome

dbo:City dbo:Country
dbr:Country
dbo:Administrative_Region
...

Generate
Embeddings

1

6

5

4

3

5

2

3

5

dbo:City dbo:Country dbo:Administrative_Region

1

2

2

8

4

6

2

4

1

dbr:Rome dbr:Italy dbr:Lazio

Replace Each
Entity With

Most Specific
Type

Fig. 1. Entity embedding process: textual content is replaced by entities. Each entity is
replaced with its own type. Embeddings can be then generated using word2vec. Finally
each entity is concatenated to its own type.

2.2 Encoding Temporal Periods into TEEs

In this work, we consider time as a set of connected time periods Eτ , i.e., a
sequence of time periods totally ordered by a relation <τ . We represent time
periods at the year granularity, meaning that each year represents the time period
that spans over the year duration. In the following, we describe the function ω,
which embeds time periods into R

k.
Our main hypothesis is that discrete periods of times can be embedded in

a vector space, where each period is represented by a vector, in such a way
that years that are near in time have similar vectors. A second hypothesis that
drives our approach is that a period of time, e.g., a year, can be described by
the entities that take part in the events that occur during the time period.
For example, years in the first half of the 40 s are characterized by World War
II events and by the entities that had a relevant role in these events. For the
experiments conducted in this paper, we consider textual descriptions of events
that appear in the Wikipedia pages that describe years4.

To generate the representation of a year, we extract entities from the corre-
sponding Wikipedia page and compute the average vector of the entity vectors
defined in the EE space5. In other words, we drop the type component from the
4 E.g., https://en.wikipedia.org/wiki/1943.
5 Our representation of years is independent from the φ embedding function: other

embedding algorithms could be used to compute the entities representation.

https://en.wikipedia.org/wiki/1943

Towards Encoding Time in Text-Based Entity Embeddings 61

typed entity vectors, to use a more entity-centric representation (types occur
more regularly across years). To generate a TEE-compatible representation of
the time periods in the vector space, we concatenate each embedding generated
in the EE space with a vector consisting of 0s of the same dimension of type
vector in TEE. This process is briefly summarized in Fig. 2. Slight variations
of this process are also possible, e.g., different vector aggregation methods, as
discussed in Sect. 2.3. Finally, we empirically found that it is better to consider
only the “Events” section in year Wikipedia pages for entity extraction because
the sections“Births” and “Deaths” produce noisier representations.

1943

WWII: The Soviet
Union announces that
22 German divisions
have been encircled at
Stalingrad, with
175,000 killed...

1943

dbr:World_War_II
dbr:Soviet_Union
dbr:Stalingrad...

Replace Text With Entities

1 1 2 7 3

1 3 2 4 2

2 2 5 2 1

dbr:World_War_II

dbr:Stalingrad

dbr:Soviet_Union

2

1

3

8 6 2 9 21

Embedding for 1943
Aggregation

(average of embeddings)

Vectors of the entities found
in the year description are
averaged to obtain a vector
representation of the year

Fig. 2. Year embedding process.

Since non-temporal and temporal entities (i.e., time periods) are embedded
in the same space, a comparison between entities of these two kinds is possible.
In addition, these representations of time periods are generated using collective
knowledge of what has happened during their time. However, since no explicit
constraints over time ordering are used in the generation process, a natural
question is which relation can be found between the vector-based representations
of time periods and the natural time order. In Fig. 3 we show an example of
the 2D representation of the years from 1900 to 2015 using PCA. Interestingly,
the years seem to follow a natural time order from left to right. A statistical
correlation analysis between the one-dimensional projection of years using PCA
and their natural order confirms this intuition (Kendall τ = 0.80, Spearman
Rank correlation coefficient = 0.94).

2.3 Temporal Embeddings Alternative Configurations

There are different ways to use the entities that are found in the year description:
(1) considering the entities only one time (i.e., as a set of entities); (2) considering
the entities multiple times if they appear more than once (i.e., United States
might appear more than one time in the text); (3) Using TF-IDF on the whole
year corpus to weight each term by its own TF-IDF score and apply this with
(1) and (2). We generated models using all these alternative configurations and
we projected the embeddings into 1D using PCA and compared this ordering
in 1D with the natural flow time order (i.e., the natural sequence from 1900 to
2015) and we obtained that the model that considers each entity only once (1)
is the one that is most correlated to the natural time order. We thus decided to
use this configuration to generate temporal embeddings.

62 F. Bianchi et al.

Fig. 3. Average vectors represented in two dimensions using PCA.

2.4 Time-Aware Similarity Measures

We propose a new way of computing similarity that also considers the temporal
factor in the embeddings. Given an entity e ∈ E is it possible to find its most
representing year in Eτ by considering the functions defined in the model. To
get the most representative year for a given entity we select the most similar
year in Eτ to a given entity.

ρ(e) = argmax
eτ ∈Eτ

cos(φ(e), ω(eτ))

We use eτ to denote the vector of ρ(e), i.e., the closer year to a given entity
in the vector space.

We can now define two time-aware similarity functions: a time-flattened
similarity and a time-boosted similarity. The time-flattened similarity can
be computed using the following formula.

ψ(e1, e2) = αη(e1, e2) − (1 − α)ηn(eτ
1, e

τ
2)

Where e1, e2 are the embeddings of the entities e1, e2, η is the cosine similarity
in the typed entity space, and α is a parameter that can be used to regulate the
weight of the time flattening factor. Time flattening is obtained by subtracting
the temporal similarity ηn of the most representative temporal periods (i.e.,
years) of both entities eτ

1 and eτ
2. The temporal similarity is defined as the

cosine similarity between two years in the typed entity space normalized in the
interval [0, 1] with a max-min approach, by considering the maximum similarity
between two years in the representation and the minimal similarity between two
years in the representation. We adopt this normalization to make the year factor
of the similarity work as a weight factor.

A time-boosted similarity function can be defined analogously by adapting
the formula in such a way that a time-boosting factor is summed to the similarity
between the typed entities:

ψ(e1, e2) = αη(e1, e2) + (1 − α)ηn(eτ
1, e

τ
2)

Towards Encoding Time in Text-Based Entity Embeddings 63

3 Experimental Evaluation

The experiments that we discuss in this section have the following goals: (1) vali-
date the time-effect hypothesis introduced in Sect. 1, that is, that time influences
the distribution of entities in vector spaces, and the rationale behind the gener-
ation of time period representations from those of the entities that take part in
the events that occur during these time periods; (2) evaluate the effectiveness of
the time-aware similarity function.

Experimental Settings (for all the Experiments). Our entity embeddings
were generated using the DBpedia’s abstracts (4M of textual documents) from
the 2016 dump6. We used the skip-gram algorithm for obtaining the entities
embeddings [16]. We used a window of 5 in the algorithm and types and enti-
ties are embedded into 100 dimensional vector spaces. We annotated text using
DBpedia Spotlight [7]. For the year embeddings we decide to concentrate our
experiments on the years from 1900 to 2015. Code and dataset are freely available
online so that experiments can be replicated7.

3.1 Time Effect and Temporal Representations in Text-Based
Entity Embeddings

In a first experiment, we evaluate if the time effect can be noticed in text-based
entity embeddings, i.e., temporal contexts shared by entities have an effect on
their similarity. Then, with a second experiment, we provide evidence that years
that are close in time are more likely to have descriptions that share a larger
number of entities, thus supporting the rationale behind using entity represen-
tations to generate temporal representations. The time effect validated with the
first experiment adds even more substance to this idea, since the time effect
suggests that time is implicitly encoded in entity representations. As a conse-
quence, temporal representations are generated using entity representations that
implicitly encode some temporal characterization. Finally, in a third experiment,
we investigate if the space that jointly represents years (temporal entities) and
other entities can support entity ordering over time, to further evaluate the qual-
ity of the temporal representations and their relation to the representations of
the other entities. We remind that some properties of our model, e.g., the cor-
relation between projection on one dimension of temporal entities and natural
flow of time, have been discussed in Sect. 2.

Classifying World War I and World War II Battles
Our assumption is that entity embeddings share time-based context, and thus
entities that live nearby times are closer to each other in the vector space. We
collect battles from World War I and World War II using the list provided by
Wikipedia military engagements pages8,9. We used a clustering algorithm to
6 http://wiki.dbpedia.org/dbpedia-version-2016-04.
7 https://github.com/vinid/time-aware.
8 https://en.wikipedia.org/wiki/List of World War I battles.
9 https://en.wikipedia.org/wiki/List of military engagements of World War II.

http://wiki.dbpedia.org/dbpedia-version-2016-04
https://github.com/vinid/time-aware
https://en.wikipedia.org/wiki/List_of_World_War_I_battles
https://en.wikipedia.org/wiki/List_of_military_engagements_of_World_War_II

64 F. Bianchi et al.

understand if there is an underlying pattern that puts entities in two different
groups. We use K-means (number of clusters equal to 2 to cluster the vector rep-
resentations of the battles in two different groups represented by the two wars).
We will evaluate the performance of the clustering algorithm by considering how
many years were clustered in the correct group.

Dataset. Our dataset contains 152 battles linked to Wikipedia (and thus DBpe-
dia) from the two different periods 1914–1918 and 1939–1945. 63 battles are from
World War I while 89 are from World War II.

Results. In Table 1 we show the confusion matrix that we obtained after clus-
tering the embedded vectors of the battles with K-Means. Out of 152 samples,
146 were correctly associated to the same cluster, while 8 were classified in the
wrong one. Accuracy is around 95%. Another interesting result is that the two
cluster centroids are closer to the respective war years: the first centroid is near
the years of World War I, while the second centroid is close to the years of World
War II.

Table 1. Confusion matrix for World War I and II clustering.

Actual Values (n = 152) Predicted

World War I World War II

World War I 57 6

World War II 2 87

Adherence to Natural Time Order
Our intuition suggests that the descriptions of contiguous years (e.g. 1943 and
1944) share more entities than the descriptions of years that are not contiguous
(e.g. 1901 and 1992).

Methodology and Dataset. We collect every possible combination of two and
three contiguous years (e.g. 1900–1901, 1901–1902; 1900–1901–1902, 1901–1902–
1903) and we compute the average number of shared entities. We compare the
values of these two samples with the average values of shared entities of every
possible combination of two and three years (e.g. 1902–1992, thus considering
also noncontiguous years).

Evaluation. Results on the average number of shared entities are reported in
Table 2. Pairs and triples of contiguous years have a higher amount of shared
entities with respect to noncontinuous years.

We use the Kolmogorov-Smirnov test to detect if the average number of
shared entities of contiguous years is statistically different from the respective
value for of all the combinations of years. A p-value lower than 0.05 confirms
our hypothesis.

Towards Encoding Time in Text-Based Entity Embeddings 65

Table 2. Average number of shared entities between continuous and non contiguous
years.

Contiguous-2 All-2 Contiguous-3 All-3

Average 55.6 33.5 27.7 12.6

Std 30.3 19.2 13.3 8.22

Relative Ordering of Entities by Time
In this experiment, we show that time actually affects the position of entities in
the space.

Dataset. We pick 101 entities from different groups of people and events (United
States Presidents, British Prime Ministers, French Presidents, Fifa World-Cup
Years, Wars over in 1900, Olympics Events). Entities and groups have been
chosen so as to select pairs of entities for which a chronological order can be
established upon a reasonably objective criterion (e.g., dbr:Barack Obama is
a president elected after dbr:Woodrow Wilson). We acknowledge that ordering
people by considering one single feature is a strong assumption. However, being
prime minister or president is a very discriminant feature for people.

Methodology. For each entity pair, we compare the manually determined rel-
ative order with the order of their most representative years according to our
model. The most representative year of an entity is the the closest year to the
entity in the vector space. We want to show that given two entities e1, e2 ∈ E such
that e1 is known to chronologically come before e2, it is likely that ρ(e1) >τ ρ(e2).
For each pair, we also computed the number of time steps separating the two
entities. This is a measures that indicates a relative distance between two enti-
ties: the number of time steps between Barack Obama and George W. Bush
is 1, because Bush was the US president before Obama, while between Barack
Obama and Bill Clinton it is 2, because Bush was between Obama and Clin-
ton. The same is applied to events like the Fifa World Cup (e.g., the time step
between the 2006 world cup and the 2002 world cup is 1).

Results. The accuracy of the relative orders was 70%. For 217 pairs the model
was not able to decide a relative ordering since ρ(e1) = ρ(e2)10. In Fig. 4, we show
the distribution of correctly relative ordered pairs, incorrect relative ordered
pairs and pairs that the model could not order by time steps involved in the
relative order. The radius of the points is used to indicate the number of time
pairs with a certain time step in each category. It is clear that the farther in
time two entities are, the easier it is to determine a correct relative order. Thus,
time influences the position of entities in the vector space and the estimation
of a relative time order between entities using their representative year is quite
accurate.

10 If for the generation of eτ we consider the average of the nearest 10 years to an entity
all the 902 pairs can be compared and the accuracy reaches 92%.

66 F. Bianchi et al.

Fig. 4. Distribution of correctly and not correctly ordered pairs with the use of EE.

3.2 Time-Aware Similarity

To test time-aware similarity measures we concentrate on time-flattened similar-
ity for two reasons: it is useful to mitigate the time-effect that we have discussed
in the previous experiment and it can be evaluated more objectively using data
available in KGs. Defining what is similar when considering the time variable
is a challenging task. In this experiment we decided to provide a small-scale
experiment on the possible use of the time-flattened similarity by considering
reasonably objective orders is time. A time-flattening similarity should reduce
the effect that a shared temporal context has on finding similar entities. A time-
flattened similarity can be used to find entities that are similar independently
from the temporal context they share. For example, given a prime minister, we
would expect to find many other prime ministers among its most similar entities
if we neglect time, but the time-effect moves many prime ministers down in the
ranking with cosine similarity.

Dataset. In line with other experiments done on similarity and relatedness [12]
we create a dataset containing entities that are related but distant in time. Given
an input entity the task consists in finding similar entities that are distant in
time (e.g., given dbr:Barack Obama, a time-flattened similarity should rank in
higher position the entities dbr:Theodore Roosevelt and dbr:William Howard
Taft). Given a set of 12 prime ministers, the task is therefore to compare the
number of prime ministers found in the 5/10 most similar entities retrieved using
non-time flattened similarity measures and time-flattening similarity measures.
We used prime ministers because this is a salient feature in making entities
“ontologically” similar (e.g., very few entities share this feature). We selected
6 entities representing the most recent US presidents (from a list of the most
recent 19 presidents) and 6 entities representing the most recent British Prime
Ministers (from a list of the most recent 19 prime minister).

Algorithms and Methods. We consider different algorithms to test the time-
flattened similarity: we want to test if our model is actually able to retrieve
entities that are far in time starting from input entities. We select the 100 nearest
entities given an input entity using cosine and order them using time-flattened
similarity. We then compute Precision@K and Recall@K. This task is tested on
both TEE and the EE model: we will compare standard neighborhood of the

Towards Encoding Time in Text-Based Entity Embeddings 67

input entity (based on cosine similarity) and the time-flattened one (considering
the time-flattened similarity).

Baseline. As a Baseline we consider a similarity measure that uses a skip-gram
model trained on a corpus that also contains mentions to entity years11. Time-
flattening in the baseline is computed considering the closest entity year to a
given entity as the most representative year, similarly to what we do in our
similarity. The difference with our representation is that, in this Baseline, the
entity year representations are learned by considering the co-occurrence in text
as in standard embedding models and do not have an explicit representation
generated by a dedicated embedding function like in our model. The tested
models are:

– Time-aware Similarity TEE (TATEE), with time-flattened similarity;
– Similarity TEE (STEE) (standard neighborhood with cosine);
– Time-Aware Similarity EE (TAEE), with time-flattened similarity;
– Similarity EE (SEE) (standard neighborhood with cosine);
– Time-flattened similarity Baseline (Baseline).

Experiments on the time-flattened similarity were run with α = 0.7.

Results. Table 3 shows the results. The use of a time-flattening factor can
improve the retrieval of entities that are distant in time. Models that use types
have an advantaged: the tasks, in fact, consists in finding entities that share more
or less of the same type. However, the performance of the model that does not
use types, but time-flattened (TAEE) is better than the baseline. We can con-
clude that the use of both the TEE model and time-awareness (time-flattening
in this case) allows achieving better performance on this task.

Table 3. Results for time-flattened similarity (0* means small values)

Precision@5 Precision@10 Recall@5 Recall@10

TATEE 0.40 0.40 0.20 0.21

STEE 0.14 0.21 0.07 0.10

TAEE 0.05 0.04 0* 0.01

SEE 0.02 0.02 0* 0.01

Baseline 0.01 0.01 0* 0.01

Qualitative Evaluation. To provide further insights on the behavior of our
time-flattening similarity, we discuss an example in details. If we consider the
entity dbr:Winston Churchill and the top-100 entities more similar to it, recent
but popular British prime ministers are found distant in the TEE model when
retrieved using plain cosine similarity: dbr:Tony Blair and dbr:Gordon Brown
11 https://github.com/idio/wiki2vec.

https://github.com/idio/wiki2vec

68 F. Bianchi et al.

are respectively in the 49th and the 41th position. If we use our time-flattening
similarity, the two entities are found respectively at the 16th and 14th position.
The nearest entity to dbr:Winston Churchill is dbr:Harold Macmillan (Member
of Churchill government and British prime minister two years after Winston
Churchill) if we use plain cosine similarity, and dbr:Margaret Thatcher if we use
our time-flattened similarity.

Time-Flattening/Time-Boosting. In Table 4, we list the top-10 most similar
entities to Barack Obama, when retrieved with time-flattened, plain cosine, and
time-boosted similarity. For time-aware similarities we also show differences for
different values of α, to show the effect of this parameter (remember that 0.7
was used as value in previous experiments). We believe that this example shows
an interesting behavior: removing the time effect with time-flattened similarity
pushes old presidents of the United States in higher positions. Otherwise, if we
use the time-boosted similarity, members of the Obama government and his
rivals during the elections (i.e., John McCain and Mitt Romney) are the ones
pushed in higher positions.

Table 4. Time-flattened and time-boosted similarity on the entity Barack Obama.

Time flattened similarity - time ← Cosine similarity Time boosted similarity → + Time

α = 0.1 α = 0.7 α = 0.7 α = 0.1

G. Ford B. Clinton B. Clinton B. Clinton G. Bush

C. Coolidge Reagan Reagan G. Bush J. Kerry

H. Hoover Carter G. Bush Reagan D. Cheney

Truman Al Gore Carter Kerry McCain

F. Roosevelt Nixon Al Gore D. Cheney Biden

W. Wilson G. Ford Nixon McCain Ron Paul

Eleanor Roosevelt G. Bush J. Kerry Biden H. Humphrey

D. Eisenhower C. Coolidge D. Cheney Carter Romney

W. Harding T. Kennedy McCain Al Gore C. Powell

G. Cleveland H. Hoover Biden Ron Paul W. Mondale

4 Related Work

Qualitative temporal representation and reasoning is a topic covered by a vast
literature in Artificial Intelligence and related fields, for which we refer to several
surveys [23,25,31]. Different mathematical models of time such as point-based vs.
interval-based, linear time vs. branching time, have been proposed [31]. Mod-
els to support reasoning with approximate time intervals have also been pro-
posed [5]. Previous work has surveyed models to represent temporal information
in RDF [23] and reason about time in natural language processing [25]. In our
work, we use a simple model of time as a sequence of regular time periods and
do not tackle logic-based temporal reasoning. Otherwise, none of the previous
approaches has addressed the problem of generating temporal representations

Towards Encoding Time in Text-Based Entity Embeddings 69

from texts. Extraction of temporal information from text (see, e.g., [15]) and
imputation of temporal validity intervals for RDF triples (see, e.g., [24]), are
tasks also very different from the one addressed in this paper.

Many approaches for KG embeddings that consider knowledge graph struc-
ture have been introduced in literature [6,14,19–21,30,32]. For example, TransE
[6] embeds entities in a space in which for each triple (s, p, o), s + p ≈ o holds.
All these methods are able to efficiently represent entities and relations of a KG
into a vector space, but none of them take explicit steps towards the represen-
tation of temporal entities. Other methods have been introduced to represent
temporal information in KGs [9,13,29] and have obtained good results in tasks
like time-aware link prediction. The main difference with our approach is that
we explicitly embed temporal entities inside a vector space.

We used a semantic annotator to extract entities from text. If we consider
Wikipedia, text can be replaced with the use of links as done in other models [1].
Our approach can be generalized to any kind of text, even those that do not
contain links, such as books or newspapers.

Worth mentioning in this context are the works on temporal word embed-
dings [27]. These representations are often called diachronic embeddings [10],
since they start from collections of documents coming from different periods in
times and build and embedding for each of the periods. The study of embeddings
at different points in time has shown that words are subject to a shift in mean-
ing that can be quantified using distance measures between different embeddings
across the vector space. The main difference between our work and theirs is that
we are embedding temporal entities inside a KG, while often the task proposed
in other approaches is to study the changes of meaning in words over during
time [10]. Following this methodology, a recent work on time-aware entity relat-
edness that uses word embeddings learned from a collection of documents that
spans different time periods has been proposed [17].

5 Conclusions and Future Work

In this paper we have presented an approach to encoding temporal periods into
text-based entity embedding models. In particular, we used our previous work to
generate Typed Entity Embeddings (TEEs) from textual descriptions of entities
and encoded into this model the representations of years. These representations
are generated using natural language descriptions of events occurring during the
years. To the best of our knowledge, this is the first attempt to explicitly encode
time into KG embedding models. In addition, we have defined a parametric
time-aware similarity function that can be tuned to boost or flatten the effect of
time when computing the entity similarity.

In our experiments we have shown that time has an effect on entity embed-
dings built from text, thus validating the main hypothesis behind this work.
Then we have tested our time-aware similarity function to show that it can
capture aspects of similarity that other time-agnostic similarity measures can-
not capture. Such a similarity measure can provide novel knowledge exploration
methods where time can be factored when finding entities similar to each other.

70 F. Bianchi et al.

Our results provide a first contribution to the problem of encoding time into
KG embeddings built from text, which poses several challenges that we want
to address in future work. So far, we have considered sequences of regular time
periods at a yearly granularity. An important challenge would be to consider
different granularity levels and, even more important, to study the compositional
nature of temporal representations extracted from text. For example, we would
like to generate a vector for the 70 s by composing vectors of years 197X. More
in general, we would like to investigate how vector-based representations of time
periods can be composed so as to provide a soft account of relations between
time intervals that are considered in qualitative models of temporal reasoning
like Allen algebra.

References

1. Basile, P., Caputo, A., Rossiello, G., Semeraro, G.: Learning to rank entity relat-
edness through embedding-based features. In: Métais, E., Meziane, F., Saraee,
M., Sugumaran, V., Vadera, S. (eds.) NLDB 2016. LNCS, vol. 9612, pp. 471–477.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41754-7 51

2. Bianchi, F., Palmonari, M.: Joint learning of entity and type embeddings for ana-
logical reasoning with entities. In: NL4AI Workshop, Co-located with the Inter-
national Conference of the Italian Association for Artificial Intelligence (AI* IA)
(2017)

3. Bianchi, F., Palmonari, M., Cremaschi, M., Fersini, E.: Actively learning to rank
semantic associations for personalized contextual exploration of knowledge graphs.
In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig,
O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 120–135. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-58068-5 8

4. Bianchi, F., Soto, M., Palmonari, M., Cutrona, V.: Type vector representations
from text: an empirical analysis. In: DL4KGS Workshop, Co-located with the
ESWC (2018)

5. Bittner, T.: Approximate qualitative temporal reasoning. Ann. Math. Artif. Intell.
36(1–2), 39–80 (2002)

6. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: NIPS, pp. 2787–2795 (2013)

7. Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accu-
racy in multilingual entity extraction. In: I-Semantics (2013)

8. Damasio, A.R.: Remembering when. Sci. Am. 287(3), 66–73 (2002)
9. Esteban, C., Tresp, V., Yang, Y., Baier, S., Krompaß, D.: Predicting the co-

evolution of event and knowledge graphs. In: 2016 19th International Conference
on Information Fusion (FUSION), pp. 98–105, July 2016

10. Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal
statistical laws of semantic change. arXiv preprint arXiv:1605.09096 (2016)

11. Harris, Z.S.: Distributional structure. Word 10(2–3), 146–162 (1954)
12. Hoffart, J., Seufert, S., Nguyen, D.B., Theobald, M., Weikum, G.: Kore: keyphrase

overlap relatedness for entity disambiguation. In: CIKM, pp. 545–554. ACM (2012)
13. Jiang, T., et al.: Encoding temporal information for time-aware link prediction. In:

EMNLP, pp. 2350–2354 (2016)
14. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings

for knowledge graph completion. In: AAAI, pp. 2181–2187 (2015)

https://doi.org/10.1007/978-3-319-41754-7_51
https://doi.org/10.1007/978-3-319-58068-5_8
http://arxiv.org/abs/1605.09096

Towards Encoding Time in Text-Based Entity Embeddings 71

15. Ling, X., Weld, D.S.: Temporal information extraction. In: AAAI. vol. 10, pp.
1385–1390 (2010)

16. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119
(2013)

17. Mohapatra, N., Iosifidis, V., Ekbal, A., Dietze, S., Fafalios, P.: Time-aware and
corpus-specific entity relatedness. In: DL4KGS Workshop, Co-located with the
ESWC (2018)

18. Nguyen, T.N., Kanhabua, N., Nejdl, W.: Multiple models for recommending tem-
poral aspects of entities. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol.
10843, pp. 462–480. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93417-4 30

19. Nickel, M., Rosasco, L., Poggio, T.A., et al.: Holographic embeddings of knowledge
graphs. In: AAAI, pp. 1955–1961 (2016)

20. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on
multi-relational data. In: Proceedings of ICML-11, pp. 809–816 (2011)

21. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In:
Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46523-4 30

22. Rizzo, G., Troncy, R.: NERD: a framework for unifying named entity recognition
and disambiguation extraction tools. In: EACL, pp. 73–76. ACL (2012)

23. Rula, A., Palmonari, M., Harth, A., Stadtmüller, S., Maurino, A.: On the diversity
and availability of temporal information in linked open data. In: Cudré-Mauroux,
P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 492–507. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-35176-1 31

24. Rula, A., Palmonari, M., Ngonga Ngomo, A.-C., Gerber, D., Lehmann, J.,
Bühmann, L.: Hybrid acquisition of temporal scopes for RDF data. In: Presutti,
V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC
2014. LNCS, vol. 8465, pp. 488–503. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07443-6 33

25. Sanampudi, S.K., Kumari, G.V.: Temporal reasoning in natural language process-
ing: a survey. Int. J. Comput. Appl. 1(4), 68–72 (2010)

26. Snaider, J., McCall, R., Franklin, S.: Time production and representation in a con-
ceptual and computational cognitive model. Cogn. Syst. Res. 13(1), 59–71 (2012)

27. Szymanski, T.: Temporal word analogies: identifying lexical replacement with
diachronic word embeddings. In: Association for Computational Linguistics, Van-
couver, Canada. ACL, August 2017

28. Tran, N.K., Tran, T., Niederée, C.: Beyond time: dynamic context-aware entity
recommendation. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hit-
zler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 353–368. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-58068-5 22

29. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-Evolve: deep temporal reasoning
for dynamic knowledge graphs. In: ICML, pp. 3462–3471 (2017)

30. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed-
dings for simple link prediction. In: ICML, pp. 2071–2080 (2016)

31. Van Beek, P.: Reasoning about qualitative temporal information. Artif. Intell.
58(1–3), 297–326 (1992)

32. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI, pp. 1112–1119 (2014)

https://doi.org/10.1007/978-3-319-93417-4_30
https://doi.org/10.1007/978-3-319-93417-4_30
https://doi.org/10.1007/978-3-319-46523-4_30
https://doi.org/10.1007/978-3-642-35176-1_31
https://doi.org/10.1007/978-3-319-07443-6_33
https://doi.org/10.1007/978-3-319-07443-6_33
https://doi.org/10.1007/978-3-319-58068-5_22

Rule Learning from Knowledge Graphs
Guided by Embedding Models

Vinh Thinh Ho1, Daria Stepanova1(B), Mohamed H. Gad-Elrab1,
Evgeny Kharlamov2, and Gerhard Weikum1

1 Max Planck Institute for Informatics, Saarbrücken, Germany
dstepano@mpi-inf.mpg.de

2 University of Oxford, Oxford, UK

Abstract. Rules over a Knowledge Graph (KG) capture interpretable
patterns in data and various methods for rule learning have been pro-
posed. Since KGs are inherently incomplete, rules can be used to deduce
missing facts. Statistical measures for learned rules such as confidence
reflect rule quality well when the KG is reasonably complete; however,
these measures might be misleading otherwise. So it is difficult to learn
high-quality rules from the KG alone, and scalability dictates that only
a small set of candidate rules could be generated. Therefore, the rank-
ing and pruning of candidate rules are major problems. To address this
issue, we propose a rule learning method that utilizes probabilistic rep-
resentations of missing facts. In particular, we iteratively extend rules
induced from a KG by relying on feedback from a precomputed embed-
ding model over the KG and external information sources including text
corpora. Experiments on real-world KGs demonstrate the effectiveness
of our novel approach both with respect to the quality of the learned
rules and fact predictions that they produce.

1 Introduction

Motivation. Rules are widely used to represent relationships and dependen-
cies between data items in datasets and to capture the underlying patterns in
data [1,24]. Applications of rules include health-care [37], equipment diagnos-
tics [16,19], telecommunications [18], and commerce [27].To facilitate rule con-
struction, a variety of rule learning methods have been developed, see e.g. [8,17]
for an overview. Moreover, various statistical measures such as confidence,
actionability, and unexpectedness to evaluate the quality of the learned rules
have been proposed.

Rule learning has recently been adapted to the setting of Knowledge Graphs
(KGs) [9,10,32,36] where data is represented as a graph of entities interconnected
via relations and labeled with classes, or more formally as a set of grounded
binary and unary atoms typically referred to as facts. Examples of large-scale
KGs include Wikidata [33], Yago [30], NELL [21], and Google’s KG. Since many
KGs are constructed from semi-structured knowledge, such as Wikipedia, or

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 72–90, 2018.
https://doi.org/10.1007/978-3-030-00671-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_5&domain=pdf

Rule Learning from Knowledge Graphs Guided by Embedding Models 73

harvested from the Web with a combination of statistical and linguistic methods,
they are inherently incomplete [10].

Rules over KGs are of the form head ← body , where head is a binary atom
and body is a conjunction of, possibly negated, binary or unary atoms. When
rules are automatically learned, statistical measures like support and confidence
are used to assess the quality of rules. Most notably, the confidence of a rule is the
fraction of facts predicted by the rule that are indeed true in the KG. However,
this is a meaningful measure for rule quality only when the KG is reasonably
complete. For rules learned from largely incomplete KGs, confidence and other
measures may be misleading, as they do not reflect the patterns in the missing
facts. For example, a KG that knows only (or mostly) male CEOs would yield
a heavily biased rule gender(X ,male) ← isCEO(X ,Y), isCompany(Y), which
does not extend to the entirety of valid facts beyond the KG. Therefore, it is
crucial that rules can be ranked by a meaningful quality measure, which accounts
for KG incompleteness.

Example. Consider a KG about people’s jobs, residence and spouses as well as
office locations and headquarters of companies. Suppose a rule learning method
has computed the following two rules:

r1 : livesIn(X ,Y) ← worksFor(X ,Z), hasOfficeIn(Z ,Y) (1)
r2 : livesIn(Y ,Z) ← marriedTo(X ,Y), livesIn(X ,Z) (2)

The rule r1 is quite noisy, as companies have offices in many cities, but employees
live and work in only one of them, while the rule r2 clearly is of higher quality.
However, depending on how the KG is populated with instances, the rule r1
could nevertheless score higher than r2 in terms of confidence measures. For
example, the KG may contain only a specific subset of company offices and only
people who work for specific companies. If we knew the complete KG, then the
rule r2 should presumably be ranked higher than r1.

Suppose we had a perfect oracle for the true and complete KG. Then we
could learn even more sophisticated rules such as:

r3 : livesIn(X ,Y) ← worksFor(X ,Z), hasHeadquarterIn(Z ,Y),
not locatedIn(Y ,USA)

This rule would capture that most people work in the same city as their employ-
ers’ headquarters, with the USA being an exception (assuming that people there
are used to long commutes). This is an example of a rule that contains a negated
atom in the rule body (so it is no longer a Horn rule) and has a partially grounded
atom with a variable and a constant as its arguments.

Problem. The problem of KG incompleteness has been tackled by methods
that (learn to) predict missing facts for KGs (or actually missing relational

74 V. T. Ho et al.

edges between existing entities). A prominent class of approaches is statistics-
based and includes tensor factorization, e.g. [23] and neural-embedding-based
models, e.g. [2,22]. Intuitively, these approaches turn a KG, possibly augmented
with external sources such as text [38] or log files [29], into a probabilistic rep-
resentation of its entities and relations, known as embeddings, and then predict
the likelihood of missing facts by reasoning over the embeddings (see, e.g. [34]
for a survey).

These kinds of embeddings can complement the given KG and are a potential
asset in overcoming the limitations that arise from incomplete KGs. Consider
the following gedankenexperiment: we compute embeddings from the KG and
external text sources, that can then be used to predict the complete KG that
comprises all valid facts. This would seemingly be the perfect starting point for
learning rules, without the bias and quality problems of the incomplete KG. How-
ever, this scenario is way oversimplified. The embedding-based fact predictions
would themselves be very noisy, yielding also many spurious facts. Moreover, the
computation of all fact predictions and the induction of all possible rules would
come with a big scalability challenge: in practice, we need to restrict ourselves
to computing merely small subsets of likely fact predictions and promising rule
candidates.

Approach. In this work we propose a novel approach for rule learning guided
by external sources that allows to learn high-quality rules from incomplete KGs.
In particular, our method extends rule learning by exploiting probabilistic repre-
sentations of missing facts computed by embedding models of KGs and possibly
other external information sources. We iteratively construct rules over a KG and
collect feedback from a precomputed embedding model, through specific queries
issued to the model for assessing the quality of (partially constructed) rule can-
didates. This way, the rule induction loop is interleaved with the guidance from
the embeddings, and we avoid scalability problems. Our machinery is also more
expressive than many prior works on rule learning from KGs, by allowing non-
monotonic rules with negated atoms as well as partially grounded atoms. Within
this framework, we devise confidence measures that capture rule quality better
than previous techniques and thus improve the ranking of rules.

While enhancing embeddings with precomputed rules or constraints has been
studied in several works [14,15,28,35,35], accounting for embeddings in rule
construction as we propose, has not been considered before to the best of our
knowledge.

Contribution. The salient contributions of our work are as follows:

– We propose a rule learning approach guided by external sources, and show
how to learn high-quality rules by utilizing feedback from embedding models.

– We implement our approach and present extensive experiments on real-world
KGs, demonstrating the effectiveness of our approach with respect to both
the quality of the learned rules and the fact predictions that they produce.

Rule Learning from Knowledge Graphs Guided by Embedding Models 75

– Our code and data are made available to the research community at https://
github.com/hovinhthinh/RuLES.

2 Rule Learning Guided by External Sources

In this section, we first give some necessary preliminaries, then introduce our
framework for rule learning guided by external sources, discuss challenges asso-
ciated with it, and finally propose a concrete instantiation of our framework with
embedding models.

2.1 Background

We assume countable sets R of unary and binary relation names and C of con-
stants. A knowledge graph (KG) G is a finite set of ground atoms a of the form
p(b, c) and c(b) over R ∪ C. With ΣG , the signature of G, we denote elements of
R ∪ C that occur in G.

We define rules over KGs following the standard approach of non-monotonic
logic programs under the answer set semantics [11]. Let X be a countable set
of variables. A rule r is of the form head ← body , where head , or head(r), is
an atom over R ∪ C ∪ X and body, or body(r), is a conjunction of positive and
negative atoms over R ∪ C ∪ X . Finally, body+(r) and body−(r) denote the
atoms that occur in body(r) positively and negatively respectively; that is, the
rule can be written as head(r) ← body+(r),not body−(r). A rule is Horn, if all
head variables occur in the body, and body−(r) is empty.

We define execution of rules with default negation [11] over KGs in the stan-
dard way. More precisely, let G be a KG, r a rule over ΣG , and a be an atom
over ΣG . Then, r |=G a holds if there is a variable assignment that maps atoms
body+(r) in G such that it does not map any of the atoms in body−(r) in G. Then,
let Gr = G ∪ {a | r |=G a}. Intuitively, Gr extends G with edges derived from G by
applying r. Note that to avoid propagating uncertain predictions, given a set of
rules R we execute every rule in R on G independently, i.e., GR =

⋃
r∈R Gr. Given

additional syntactic restrictions on rules in R, which disallow cycles through
negation, consistency is ensured.

2.2 Problem Statement and Proposal of General Solution

Let G be a KG over the signature ΣG = (RG , CG). A probabilistic KG P is a pair
P = (G, f) where f : RG × CG × CG → [0, 1] is a probability function over the
facts over ΣG . We assume f(a) = 1 for each fact a ∈ G, which is already known
to be true.

The goal of our work is to learn rules that not only describe the available
graph G well, but also predict highly probable facts based on the function f .
The key questions now are how to define the quality of a given rule r based on P
and how to exploit this quality during rule learning for pruning out unpromising
rules.

https://github.com/hovinhthinh/RuLES
https://github.com/hovinhthinh/RuLES

76 V. T. Ho et al.

A quality measure μ for rules over probabilistic KGs is a function μ : (r,P) �→
α, where α ∈ [0, 1]. In order to measure the quality μ of r over P we propose:

– to measure the quality μ1 of r over G, where μ1 : (r,G) �→ α ∈ [0, 1],
– to measure the quality μ2 of Gr by relying on Pr = (Gr, f), where

μ2: (G′, (G, f)) �→ α ∈ [0, 1] for G′ ⊇ G is the quality of extension G′ of G
over ΣG given f , and

– to combine the result as the weighted sum.

Formally, we define our hybrid rule quality function μ(r,P) as follows:

μ(r,P) = (1 − λ) × μ1(r,G) + λ × μ2(Gr,P) (3)

In this formula μ1 can be any classical quality measure of rules over the given
KG G. Intuitively, μ2(Gr,P) is the quality of Gr wrt f that allows us to capture
the information about facts missing in G that are relevant for r. The weighting
factor λ, we call it embedding weight, allows one to choose whether to rely more
on the classical measure μ1 or on the measure μ2 of the quality of the extension
Gr of r over G.

Challenges. There are several challenges that one faces when realising our app-
roach. First, given an incomplete G, one has to define f such that (G, f) satisfies
the expectations, i.e., reflects well the probabilities of missing facts. Second, one
has to define μ1 and μ2 that also satisfy the expectations and admit efficient
implementation. Finally, the adaptation of existing rule learning approaches to
account for the probabilistic function f without the loss of scalability is not
trivial. Indeed, materializing f by augmenting G with all possible probabilistic
facts over ΣG and subsequently applying standard rule learning methods on the
obtained graph is not practical. Storing such potentially enormous augmented
graph where many probabilistic facts are irrelevant for the extraction of mean-
ingful rules might be simply infeasible.

2.3 Realization of General Solution

We now describe how we addressed the above stated challenges. In this section,
we present concrete realizations of f , μ1 and μ2, and in Sect. 3 we discuss how
we implemented them and adapted within an end-to-end rule learning system.

Realization of the Probabilistic Function f . We propose to define f by
relying on embeddings of KGs. Embeddings are low-dimensional vector spaces
that represent nodes and edges of KGs and can be used to estimate the likelihood
(not necessary probability) of potentially missing binary atoms using a scoring
function ξ : RG × CG × CG → IR. Examples of concrete scoring functions can be
found, e.g., in [34]. Since embeddings per se are not in the focus of our paper,
we will not give further details on them and refer the reader to [34] for an
overview. Note that our framework is not dependent on a concrete embedding
model. What is important for us is that embeddings can be used to construct

Rule Learning from Knowledge Graphs Guided by Embedding Models 77

Fig. 1. An example knowledge graph.

probabilistic representations [22] of atoms missing in KGs and we use this to
define f .

Consider an auxiliary definition. Given a KG G, and an atom a = p(s, o),
the set Gs consists of a and all atoms a′ that are obtained from a by replacing s
with a constant from ΣG , except for those that are already in G. Then, given a
scoring function ξ, [Gs] is a list of atoms from Gs ordered in the descending order.
Finally, the subject rank [12] of a given ξ, subject rankξ(a) is the position of a
in [Gs]. Analogously,one can define [Go] and the corresponding object rank [12]
of a given ξ, that is, object rankξ(a).

Now we are ready to define the function f for an atom a /∈ G as the average
of its subject and object inverted ranks given ξ [12], i.e.:

fξ(a) = 0.5 × (1/subject rankξ(a) + 1/object rankξ(a))

Note that we assume fξ(a) = 1 for a ∈ G.

Realization of µ1. This measure should reflect the descriptive quality of a
given rule r with respect to G. There are many classical data mining measures
that can be used as μ1, see, e.g. [10,20,31,41] for μ1s proposed specifically for
KGs.

In this work, we selected the following two measures for μ1: confidence and
PCA confidence [10], where PCA stands for the partial completeness assumption,
that can be defined using rule support, r-supp, body support, b-supp, and partial
body support, pb-supp, as follows. Let r : head ← body+,not body− be a rule, x
be the subject variable of the head , and let h denote a head ’s variable assignment
that we with a slight abuse of notation use as a homomorphism on (sets of)
atoms. Then,

r-supp(r,G) = |{h | h(head) ∈ G,∃h′ ⊇ h s.t. h′(body+) ∈ G, h′(body−) 	∈ G}|,
b-supp(r,G) = |{h | ∃h′ ⊇ h s.t. h′(body+) ∈ G, h′(body−) 	∈ G}|,

pb-supp(r,G) = |{h | ∃h′ ⊇ h s.t. h′(body+) ∈ G, h′(body−) 	∈ G, and
∃h′′ s.t. h(x) = h′′(x), h′′(head) ∈ G}|.

78 V. T. Ho et al.

Finally, we are ready to define μ1 as confidence or PCA confidence:

μ1 = conf (r,G) = r-supp(r,G)/b-supp(r,G),
μ1,pca = confpca(r,G) = r-supp(r,G)/pb-supp(r,G).

Intuitively, confidence of a rule is the conditional probability of rule’s head
given its body, while PCA confidence is its generalisation to the open world
assumption (OWA), which does not penalize rules that predict facts p(s, o),
such that p(s, o′) 	∈ G for any o′.

Example 1. Consider the KG G in Fig. 1 and recall the rules r1 and r2 from
Eqs. (1)–(2). For r1, we have conf (r1 ,G) = confpca(r1 ,G) = 3

6 , while for r2 it
holds that conf (r2 ,G) = confpca(r2 ,G) = 1

3 . If Alice was not known to live in
Germany, then confpca(r2 ,G \ {livesIn(Alice,Germany)}) = 1

2 . Finally, for the
following rule with negation:

r4 : livesIn(Y ,Z) ← marriedTo(X ,Y), livesIn(X ,Z),not researcher(X)

stating that married people live together unless one is a researcher, and G′ =
G ∪ {researcher(bob)}, we have conf (r4 ,G′) = confpca(r4 ,G′) = 1

2 .
�

Realization of µ2. There are various ways how one can define the quality
μ2(Gr,P) of Gr. A natural candidate to define the quality of Gr is the probability
of Gr, that is, as μ2(Gr,P) =

∏
a∈Gr

f(a) × ∏
a∈(RG×CG×CG)\Gr

(1 − f(a)). A
disadvantage of such quality measure is that in practice it will be very low, as
the product of many (potentially) small probabilities, and thus Eq. 3 will be
heavily dominated by μ1(r,G). Therefore, we advocate to define μ2(Gr,P) as
the average probability of predicted facts in Gr:

μ2(Gr,P) = (Σa∈Gr\Gf(a))/|Gr\G|.

Example 2. Consider the KG G in Fig. 1, and the rules from Eqs. (1)–(2) with
their confidence values as presented in Example 1. Suppose that a text-enhanced
embedding model produced a relatively accurate estimation of the probabili-
ties of facts over livesIn relation. For example, even though there is no direct
connection between Germany and Berlin within the graph, relying on the liv-
ing places of entities similar to John and hidden semantic relations between
Germany and Berlin such as co-occurrences in text and other linguistic fea-
tures, for the fact a = livesIn(john, berlin) we obtained f(a) = 0.9, while for
a′ = livesIn(john, france), a much lower probability f(a′) = 0.09. These natu-
rally support the predictions of r2 but not those of r1.

Generalising this idea, assume that on the whole dataset we get μ2 (Gr1 ,P) =
0.1 and μ2 (Gr2 ,P) = 0 .8 , where P = (G, f). Thus, for λ = 0.5 we have
μ(r1,P) = (1 − 0.5) × 0.5 + 0.5 × 0.1 = 0.3, while for μ(r2,P) = (1 − 0.5) × 1

3 +
0.5 × 0.8 ≈ 0.57, resulting in the desired ranking of r2 over r1 based on μ.
�

Rule Learning from Knowledge Graphs Guided by Embedding Models 79

Fig. 2. Overview of our system.

3 Approach Description

In this section, we describe our rule learning system with embedding support.
Conceptually, it extends the standard relational association rule learners [10,13]
to also take into account the feedback from embedding models through the
probabilistic function f .

Following common practice [10] we restrict ourselves to rules that are closed,
where every variable appears at least twice (moreover, we extract only rules
whose Horn part is closed), and safe, where variables appearing in the negated
part also appear in the positive part of the rule.

Overview. The input of the system are a KG, possibly a text corpus, and a
set of user specified parameters that are used to terminate rule construction.
These parameters include an embedding weight λ, a minimum threshold for μ1,
a minimum rule support r-supp and other rule-related parameters such as a
maximum number of positive and negative atoms allowed in r. The KG and text
corpus are used to train the embedding model that in turn is used to construct
the probabilistic function f . The rules r are constructed in the iterative fashion,
starting from the head, by adding atoms to its body one after another until at
least one of the termination criteria (that depend on f) is met. In parallel with
the construction of the rule r, the quality μ(r) is computed.

In Fig. 2 we present a high level architecture of our system, where arrows
depict information flow between blocks. The Rule Learning block constructs
rules over the input KG, Rule Evaluation supplies it with quality scores μ for
rules r, using G and f , where f is computed by the Embedding Model block from
G and text.

We now discuss the algorithm behind the Rule Learning block in Fig. 2.
Following [10] we model rules as sequences of atoms, where the first atom is the
head of the rule and other atoms are its body. The algorithm maintains a priority
queue of intermediate rules (see the Rules Queue block in Fig. 2). Initially all
possible binary atoms appearing in G are added to the queue with empty bodies.
At each iteration, a single rule is selected from the queue. If the rule satisfies
the filtering criteria (see the Filer rules block) which we define below, then the
system returns it as an output. If the rule is not filtered, then it is processed with

80 V. T. Ho et al.

one of the refinement operators (see the Refine rules block) that we define below
that expand the rule with one more atom and produce new rule candidates,
which are then pushed into the queue (if not being pushed before). The iterative
process is repeated until the queue is empty. All the reported rules will be finally
ranked by the decreasing order of the hybrid measure μ, computed in Collect
statistics block.

In the remainder of the section we discuss refinement operators and filtering
criteria.

Refinement Operators. We rely on the following three standard refinement
operators [10] that extend rules:

(i) add a positive dangling atom: add a binary positive atom with one fresh
variable and another one appearing in the rule, i.e., shared.

(ii) add a positive instantiated atom: add a binary positive atom with one argu-
ment being a constant and the other one being a shared variable.

(iii) add a positive closing atom: add a binary positive atom with both of its
arguments being shared variables.

Additionally, we introduce two more operators to allow negated atoms in rule
bodies:

(iv) add an exception instantiated atom: add a binary negated atom with one of
its arguments being a constant, and the other one being a shared variable.

(v) add an exception closing atom: add a binary negated atom to the rule with
both of its arguments being shared variables.

These two operators are only applied to closed rules. Moreover, we ensure that
the addition of exception atoms to the rule r : head(r) ← body+(r), should result
in r′ : head(r) ← body+(r),not body−(r), such that

r-supp(head(r) ← body+(r), body−(r),G) = 0.

Intuitively, we aim at adding exceptions that explain the absence of predictions
expected to be in the graph rather then their presence. Thus, the introduced
exceptions should not affect the rule support, i.e., r-supp(r,G) = r-supp(r′,G).

Filtering Criteria. After applying one of the refinement operators to a rule,
a set of candidate rules is obtained. For each candidate rule we first verify that
the hybrid measure μ has increased and discard the rule if it has not. Then, we
compute its h-cover [10] and our novel exception confidence measure e-conf that
are defined as follows:

h-cover(r,G) = r-supp(r,G)/|{h | h(head(r,G)) ∈ G}|,
e-conf(r,G) = conf(r′′,G),

Rule Learning from Knowledge Graphs Guided by Embedding Models 81

where r′′ : body−(r) ← body+(r), not head(r). If the h-cover and e-conf are
below the user specified threshold, then the rule is discarded. Intuitively, h-cover
quantifies the ratio of the known true facts that are implied by the rule. In
contrast, e-conf is the conditional probability of the exception given predictions
produced by the Horn part of r, which helps to disregard insignificant exceptions,
i.e., those that explain the absence in G of only a small fraction of predictions
made by head(r) ← body+(r), as such exceptions likely correspond to noise.
Observe that not all of the filtering criteria are relevant for all rule types. For
example, exception confidence is relevant only for non-monotonic rules to ensure
the quality of the added exceptions.

Finally, note that by exploiting the embedding feedback, we can now dis-
tinguish exceptions from noise. Consider the rule stating that married people
live together. This rule can have several possible exceptions, e.g., either one of
the spouses is a researcher or he/she works at a company, which has headquar-
ter in the US. Whenever the rule is enriched with an exception, naturally, the
support of its body decreases, i.e., the size of Gr goes down. Relying on our
filtering criteria, we aim at adding such negated atoms, that the average quality
of Gr increases, meaning that the introduced negated atoms prevent unlikely
predictions.

4 Evaluation

We have implemented our hybrid rule learning approach in Java within a system
prototype RuLES, and conducted experiments on a Linux machine with 80 cores
and 500 GB RAM. In this section we report the results of our experimental
evaluation, which focuses on (i) the benefits of our hybrid embedding-based rule
quality measure over traditional rule measures; (ii) the effectiveness of RuLES
against the state-of-art Horn rule learning systems; and (iii) the quality of non-
monotonic rules learned by RuLES compared to existing methods.

4.1 Experimental Setup

Datasets. We performed experiments on the following two real world datasets:

– FB15K [2]: a subset of Freebase with 592K binary facts over 15K entities and
1345 relations commonly used for evaluating KG embedding models [34].

– Wiki44K : a dataset with 250K binary facts over 44K entities and 100 rela-
tions, which is a subset of Wikidata dataset from December 2014 used in [10].

In the experiments for each incomplete KG G we need its ideal completion Gi

that would give us a gold standard for evaluating our approach and comparing
it to others. Since obtaining a real life Gi is hard, we used the KGs FB15K and
Wiki44K as reference graphs Gi

appr that approximate Gi. We then constructed G
by randomly selecting 80% of its facts while preserving the distribution of facts
over predicates.

82 V. T. Ho et al.

Embedding Models. We experimented with the three state-of-the-art embed-
ding models: TransE [2], HolE [22], and the text-enhanced SSP [38] model.
We reuse the implementation of TransE, HolE1, and SSP2. TransE and HolE
were trained on G and SSP on G enriched with a textual description for each
entity extracted from Wikidata. We compared the effectiveness of the models
and selected for every KG the best one. Apart from SSP, which showed the best
performance on both KGs, we also selected HolE for FB15K and TransE for
Wiki44K. Note that in this work as a proof of concept we considered some of
the most popular embedding models, but conceptually any model (see [34] for
overview) can be used in our system.

Evaluation Metric. To evaluate the learned rules we use the quality of predic-
tions that they produce when applied on G, i.e., the more correct facts beyond
G a ruleset produces, the better it is. We consider two evaluation settings: closed
world setting (CW) and open world setting (OW). In the CW setting, we define
the prediction precision of a rule r and a set of rules R as:

pred precCW (r) =
|Gr ∩ Gi

appr \ G|
|Gr \ G| , pred precCW (R) =

∑

r∈R

pred precCW (r)

|R| .

In the OW setting, we also take into account the incompleteness of Gi
appr and

consider the quality of predictions outside it by performing a random sampling
and manually annotating the sampled facts relying on Web resources such as
Wikipedia. Thus, we define the OW prediction precision pred precOW for a set
of rules R as follows:

pred precOW (R) =
|G′ ∩ Gi

appr | + |G′\Gi
appr | × accuracy(G′\Gi

appr)
|G′| .

where G′ =
⋃

r∈R Gr\G is the union of predictions generated by rules in R,
and accuracy(S) is the approximated ratio of true facts inside S computed via
manual checking of facts sampled from S. Finally, to evaluate the meaningfulness
of exceptions in a rule (i.e., negated atoms) we compute the revision precision,
which according to [32] is defined as the ratio of incorrect facts in the difference
between predictions produced by the Horn part of a rule and its non-monotonic
version over the total number of predictions in this difference (the higher the
revision precision, the better the rule exceptions) computed per ruleset. Formally,

rev precOW (R) = 1 − |G′′ ∩ Gi
appr | + |G′′\Gi

appr | × accuracy(G′′\Gi
appr)

|G′′| .

where G′′ = GH\GR and H is the set of Horn parts of rules in R. Intuitively,
G′′ contains facts not predicted by the rules in R but predicted by their Horn
versions.
1 https://github.com/mnick/scikit-kge.
2 https://github.com/bookmanhan/Embedding.

https://github.com/mnick/scikit-kge
https://github.com/bookmanhan/Embedding

Rule Learning from Knowledge Graphs Guided by Embedding Models 83

Fig. 3. pred precCW of the top-k rules with various embedding weights.

RuLES Configuration. We run RuLES in several configurations where μ1 is
set to either standard confidence (Conf) or PCA confidence (PCA), and μ2 is
computed based on either TransE, HolE, or SSP models. Through the experi-
ments the configurations are named as μ1-μ2 (e.g. Conf-HolE).

4.2 Embedding-Based Hybrid Quality Function

In this experiment we study the effect of using our hybrid embedding-based
rule measure μ from Eq. 3 on the rule ranking compared to traditional mea-
sures and embedding models independently. We do it by first learning rules
of the form r : h(X,Z) ← p(X,Y), q(Y,Z) from G where r-supp(r ,G) ≥ 10 ,
conf (r ,G) ∈ [0 .1 , 1) and h-cover(r ,G) ≥ 0 .01 . Then, we rank these rules using
Eq. 3 with λ ∈ {0, 0.1, 0.2, . . . , 1}, μ1 ∈ {conf , confpca} and with μ2 that is com-
puted by relying on TransE, HolE and SSP. Note that λ = 0 simulates learning
rules using the standard measure μ1 similar to [10], while λ = 1 corresponds to
ranking rules solely based on the predictions of the embedding models. Config-
uring λ indirectly allows us to compare our hybrid measure to both traditional
measures and quality of embedding models.

84 V. T. Ho et al.

Table 1. pred precCW of the top-k rules learned using different measures.

top-k FB15K Wiki44K

Conf

(λ = 0)

PCA

(λ = 0)

Conf-HolE

(λ = 0.3)

Conf-SSP

(λ = 0.3)

Conf

(λ = 0)

PCA

(λ = 0)

Conf-TransE

(λ = 0.3)

Conf-SSP

(λ = 0.3)

5 0.800 0.638 1.000 1.000 0.800 0.402 0.995 0.968

10 0.900 0.506 1.000 1.000 0.638 0.321 0.863 0.932

20 0.900 0.499 0.950 1.000 0.712 0.357 0.802 0.825

50 0.881 0.410 0.936 0.937 0.670 0.352 0.675 0.674

100 0.855 0.348 0.885 0.895 0.477 0.331 0.474 0.474

200 0.842 0.355 0.870 0.875 – – – –

Figure 3 shows the average prediction precision pred precCW of the top-k
rules ranked using our measure μ for different embedding weights λ (x-axis). In
particular, in Figs. 3a, b, d, and e we observe that combining confidence with
any embedding model increases the average prediction precision for 0 ≤ λ ≤ 0.3.
Moreover, we observe the decrease of prediction precision for 0.4 ≤ λ ≤ 1 and
top-k rules learned from FB15K when k ≥ 20 and from Wiki44K when k ≥ 10.
This shows that the combination of μ1 and μ2 gives noticeable positive effect on
the prediction results. Ranking using hybrid measure with λ around 0.3 achieves
better results than both the traditional rule learning and embedding models.
On the other hand, for μ1 = confpca the precision increases significantly when
combined with embedding models and only decreases slightly for λ = 1 (Figs. 3c
and f). Utilizing confpca instead of conf as μ1 in our hybrid measure is less
effective, since our training data G is randomly sampled breaking the partial
completeness assumption adopted by the PCA confidence.

Table 1 compactly summarizes the average prediction precision of top-k rules
ranked by the standard rule measures and our μ for the best value of λ = 0.3
and highlights the effect of using the better embedding model (text-enhanced
vs standard). We observe that the accuracy of a utilized embedding model is
naturally propagated to the accuracy of the rules that we obtain using our hybrid
ranking measure μ. This demonstrates that the use of a better embedding model
positively effects the quality of learned rules.

4.3 Horn Rule Learning

In this experiment, we compare RuLES under Conf-SSP configuration (with
embedding weight λ = 0.3) with the state-of-art Horn rule learning system
AMIE. We used the default AMIE-PCA configuration with confpca and AMIE-
Conf with conf measures respectively. For a fair comparison, we set the two
configurations of AMIE and our system to generate rules with at most three
positive atoms and filtered them based on minimum confidence of 0.1, head
coverage of 0.01 and rule support of 10 in case of FB15K and 2 in case of
Wiki44K. We then filtered out all rules with conf (r ,G) = 1 , as they do not
produce any predictions.

Table 2 shows the number of facts (see the Facts column) predicted by the
set R of top-k rules in the described settings and their prediction precision

Rule Learning from Knowledge Graphs Guided by Embedding Models 85

Table 2. pred precOW of the top-k rules generated by RuLES and AMIE.

top-k FB15K Wiki44K

AMIE-PCA AMIE-Conf RuLES AMIE-PCA AMIE-Conf RuLES

Facts Prec. Facts Prec. Facts Prec. Facts Prec. Facts Prec. Facts Prec.

20 1029 0.28 82 0.63 44 1.00 185 0.73 91 0.95 3291 0.98

50 1716 0.43 190 0.74 186 0.92 47099 0.10 3594 0.95 6154 0.88

100 3085 0.65 255 0.78 539 0.80 56831 0.20 13870 0.83 13253 0.82

200 10586 0.62 1210 0.83 1205 0.88 82288 0.39 19538 0.72 20408 0.73

500 40050 0.51 2702 0.75 7124 0.95 219264 0.35 124836 0.23 128256 0.48

Table 3. pred precOW of the top-k rules generated by NeuralLP and RuLES.

top-k Family-NeuralLP Family-Conf-TransE

Facts Prec. Facts Prec.

10 3709 0.72 4201 0.68

20 8821 0.53 6957 0.72

30 11337 0.49 9368 0.71

40 14662 0.46 11502 0.72

50 18768 0.40 14547 0.62

pred precOW (R) (see the Prec. column). The size of the random sample outside
Gi

appr is 20. We can observe that on FB15K, RuLES consistently outperforms
both AMIE configurations. The top-20 rules have the highest precision difference
(outperforming AMIE-PCA and AMIE-Conf by 72% and 37% respectively). This
is explained by the fact that the hybrid embedding quality penalizes rules with
higher number of false predictions. For Wiki44K, RuLES is capable of achiev-
ing better precision in most of the cases. Notably, for the top-20 rules RuLES
predicted significantly more facts then competitors yet with a high precision.

In Table 3, we compare RuLES with the recently developed NeuralLP sys-
tem [40]. For this we utilized the Family dataset used by NeuralLP with 28K
facts over 3K entities and 12 relations. Starting from the top-20 rules RuLES
is capable of achieving significantly better precision. For the top-10 rules the
precision of NeuralLP is slightly better, but RuLES predicts many more facts.

More experiments and analysis on different datasets are provided in the tech-
nical report at https://github.com/hovinhthinh/RuLES.

4.4 RuLES for Exception-Aware Rule Learning

In this experiment, we aim at evaluating the effectiveness of RuLES for learning
exception-aware rules. First, consider in Table 4 examples of such rules learned
by RuLES over Wiki44K dataset. The first rule r1 says that a person is a citizen
of the country where his alma mater is located, unless it is a research institution,
since most researchers in universities are foreigners. The second rule r2 states

https://github.com/hovinhthinh/RuLES

86 V. T. Ho et al.

Table 4. Example rules with exception generated by RuLES.

Table 5. pred precOW (left) and rev precOW (right) of the top-k rules learned by
RUMIS and RuLES.

top-k FB15K Wiki44K top-k FB15K Wiki44K

RUMIS RuLES RUMIS RuLES RUMIS RuLES RUMIS RuLES

Facts Prec. Facts Prec. Facts Prec. Facts Prec. Facts Prec. Facts Prec. Facts Prec. Facts Prec.

20 672 0.95 34 0.97 5844 0.93 5640 0.93 20 76 0.70 111 0.68 63 0.47 81 0.94

50 1797 0.94 158 0.99 8585 0.83 13333 0.84 50 126 0.51 435 0.74 191 0.28 611 0.69

100 2672 0.94 434 0.99 21081 0.76 25265 0.81 100 183 0.43 680 0.76 543 0.49 1698 0.79

200 4103 0.87 1155 0.96 50957 0.51 43677 0.67 200 310 0.30 1112 0.87 4861 0.40 3175 0.80

500 13439 0.76 5466 0.90 – – – – 500 1155 0.53 3760 0.59 – – – –

that the scriptwriter of some artistic work is also the scriptwriter of its sequel
unless it is a TV series, which actually reflects the common practice of having
several screenwriters for different seasons. Additionally, r3 encodes that someone
belonged to a noble family if his/her spouse is also from the same noble family,
excluding the Chinese dynasties.

To quantify the quality of RuLES in learning non-monotonic rules, we com-
pare the Conf-SSP configuration of RuLES (with embedding weight λ = 0.3)
with RUMIS [32], which is a revision-based non-monotonic rule learning system,
which extracts rules of the form r : h(X ,Z) ← p(X ,Y), q(Y ,Z),not E , where
E is either e(X,Z) or e(X). For a fair comparison we restricted RuLES to learn
rules of the same form. We configured both systems setting the minimum rule
support threshold to 10 and exception confidence for RuLES to 0.05. To enable
the systems to learn rules with exceptions of the form e(X), we enriched our
KGs with types from original Freebase and Wikidata KGs.

Table 5 (left) reports the number of predictions produced by a rule set R
of top-k non-monotonic rules learned by both systems as well as their precision
pred precOW (R) with a sample of 20 prediction outside Gi

appr. The results show
that RuLES consistently outperforms RUMIS on both datasets. For Wiki44K,
and k ∈ {50, 100}, the top-k rules produced by RuLES predicted more facts than
those induced by the competitor achieving higher overall precision. Regarding
the number of predictions, the converse holds for the FB15K KG; however, the
rules learned by RuLES are still more accurate.

To evaluate the quality of the chosen exceptions, we compare the
rev precOW (R) with a sample of 20 predictions. Observe that in Table 5 (right),
rules induced by RuLES prevented the generation of more facts than RUMIS. In
all of the cases apart from top-20 for FB15K, our system managed to remove a
larger fraction of erroneous predictions. For Wiki44K, RuLES consistently per-
forms twice as good as RUMIS. In conclusion, the guidance from the embedding

Rule Learning from Knowledge Graphs Guided by Embedding Models 87

model exploited in our system gives us hints on which among the possible excep-
tion candidates likely correspond to noise.

5 Related Work

Inductive Logic Programming (ILP) addresses the problem of rule learning
from data. In its probabilistic setting, given a set of probabilistic examples for
grounded atoms and a target predicate p, the task is to learn rules for predict-
ing probabilities of atoms for p [5,25,26]. which quickly grows to sizes that ILP
methods cannot handle.

A recently proposed differentiable ILP framework [7] has advantages over
traditional ILP in its robustness to noise and errors in the underlying data.
However, [7] requires negative examples, which in our case are hard to get due
to the large KG size. Moreover, [7] is memory-expensive as authors admit, and
cannot scale to the size of modern KGs.

Unsupervised relational association rule learning systems such as [10,13]
induce logical rules from the data by mining frequent patterns and casting them
into rules. In the context of KGs [3,10,32] such approaches address the incom-
pleteness of KGs by exploiting sophisticated measures over the original graph,
possibly enhanced with a schema [6] or constraints on the number of missing
edges [31]. However, these methods do not tap any unstructured information
like we do. Indeed, our hybrid embedding-based measure allows us to conve-
niently account for unstructured information implicitly via embeddings as well
as making use of various graph-based rule metrics.

Exploiting embedding models for rule learning is a new research direction
that has recently gained attention [39,40]. To the best of our knowledge, existing
methods are purely statistics-based, i.e., they reduce the rule learning problem
to algebraic operations on neural-embedding-based representations of a given
KG. The work [39] constructs rules by modeling relation composition as multi-
plication or addition of two relation embeddings. The authors of [40] propose a
differentiable system for learning models defined by sets of first-order rules that
exploits a connection between inference and sparse matrix multiplication [4].
However, existing approaches pose strong restrictions on target rule patterns,
which often prohibit learning interesting rules, e.g. non-chain-like or exception-
aware ones, which we support.

Another line of work concerns enhancing embedding models with rules and
constraints, e.g. [14,15,28,35]. While our direction is related, we pursue a differ-
ent goal of leveraging the feedback from embeddings to improve the quality of
the learned rules. To the best of our knowledge, this idea has not been considered
in any prior work.

6 Conclusion

We presented a method for learning rules that may contain negated atoms from
KGs that dynamically exploits feedback from a precomputed embedding model.

88 V. T. Ho et al.

Our approach is general in that any embedding model can be utilized includ-
ing text-enhanced ones, which indirectly allows us to harness unstructured web
sources for rule learning. We evaluated our approach with various configurations
on real-world datasets and observed significant improvements over state-of-the-
art rule learning systems.

An interesting future direction is to extend our work to more complex non-
monotonic rules with higher-arity predicates, aggregates and existential variables
or disjunctions in rule heads, which is challenging due to inevitable scalability
issues.

Acknowledgements. This work was partially supported by the EPSRC projects
DBOnto, MaSI3 and ED3.

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. SIGMOD Rec. 22(2), 207–216 (1993)

2. Bordes, A., Usunier, N., Garćıa-Durán, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Proceedings of NIPS, pp. 2787–
2795 (2013)

3. Chen, Y., Goldberg, S., Wang, D.Z., Johri, S.S.: Ontological pathfinding. In: SIG-
MOD (2016)

4. Cohen, W.W.: Tensorlog: a differentiable deductive database. CoRR,
abs/1605.06523 (2016)

5. Corapi, D., Sykes, D., Inoue, K., Russo, A.: Probabilistic rule learning in nonmono-
tonic domains. In: Leite, J., Torroni, P., Ågotnes, T., Boella, G., van der Torre, L.
(eds.) CLIMA 2011. LNCS (LNAI), vol. 6814, pp. 243–258. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22359-4 17

6. d’Amato, C., Staab, S., Tettamanzi, A.G., Minh, T.D., Gandon, F.: Ontology
enrichment by discovering multi-relational association rules from ontological knowl-
edge bases. In: SAC, pp. 333–338 (2016)

7. Evans, R., Grefenstette, E.: Learning explanatory rules from noisy data. J. Artif.
Intell. Res. 61, 1–64 (2018)

8. Fürnkranz, J., Kliegr, T.: A brief overview of rule learning. In: Bassiliades, N., Got-
tlob, G., Sadri, F., Paschke, A., Roman, D. (eds.) RuleML 2015. LNCS, vol. 9202,
pp. 54–69. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21542-6 4

9. Gad-Elrab, M.H., Stepanova, D., Urbani, J., Weikum, G.: Exception-enriched rule
learning from knowledge graphs. In: Groth, P., et al. (eds.) ISWC 2016. LNCS,
vol. 9981, pp. 234–251. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46523-4 15

10. Galarraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)

11. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP, pp. 1070–1080. MIT Press (1988)

12. Glorot, X., Bordes, A., Weston, J., Bengio, Y.: A semantic matching energy func-
tion for learning with multi-relational data. CoRR, abs/1301.3485 (2013)

https://doi.org/10.1007/978-3-642-22359-4_17
https://doi.org/10.1007/978-3-319-21542-6_4
https://doi.org/10.1007/978-3-319-46523-4_15
https://doi.org/10.1007/978-3-319-46523-4_15

Rule Learning from Knowledge Graphs Guided by Embedding Models 89

13. Goethals, B., Van den Bussche, J.: Relational association rules: getting Warmer.
In: Hand, D.J., Adams, N.M., Bolton, R.J. (eds.) Pattern Detection and Discovery.
LNCS (LNAI), vol. 2447, pp. 125–139. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45728-3 10

14. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Jointly embedding knowledge
graphs and logical rules. In: EMNLP (2016)

15. Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding
with iterative guidance from soft rules. CoRR, abs/1711.11231 (2017)

16. Kharlamov, E., et al.: Semantic rules for machine diagnostics: execution and man-
agement. In: CIKM, pp. 2131–2134 (2017)

17. Kotsiantis, S., Kanellopoulos, D.: Association rules mining: a recent overview.
GESTS Int. Trans. CS Eng. 32(1), 71–82 (2006)

18. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovering frequent episodes in
sequences. In: KDD 1995 (1995)

19. Mehdi, G., et al.: Semantic rule-based equipment diagnostics. In: d’Amato, C.,
Fernandez, M., Tamma, V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange,
C., Heflin, J. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 314–333. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68204-4 29

20. Duc Tran, M., d’Amato, C., Nguyen, B.T., Tettamanzi, A.G.B.: Comparing rule
evaluation metrics for the evolutionary discovery of multi-relational association
rules in the semantic web. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S.,
Garćıa-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 289–305. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-77553-1 18

21. Mitchell, T., et al.: Never-ending learning. In: AAAI (2015)
22. Nickel, M., Rosasco, L., Poggio, T.A.: Holographic embeddings of knowledge

graphs. In: AAAI (2016)
23. Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on

multi-relational data. In: ICML (2011)
24. Piatetsky-Shapiro, G.: Discovery, analysis, and presentation of strong rules. In:

Knowledge Discovery in Databases, pp. 229–248. AAAI/MIT Press (1991)
25. Raedt, L.D., Dries, A., Thon, I., den Broeck, G.V., Verbeke, M.: Inducing prob-

abilistic relational rules from probabilistic examples. In: IJCAI, pp. 1835–1843.
AAAI Press (2015)

26. Raedt, L.D., Thon, I.: Probabilistic rule learning. In: ILP (2010)
27. Ras, Z.W., Wieczorkowska, A.: Action-rules: how to increase profit of a company.

In: Zighed, D.A., Komorowski, J., Żytkow, J. (eds.) PKDD 2000. LNCS (LNAI),
vol. 1910, pp. 587–592. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45372-5 70

28. Rastogi, P., Poliak, A., Durme, B.V.: Training relation embeddings under logical
constraints. In: KG4IR (2017)

29. Ringsquandl, M., et al.: Event-enhanced learning for knowledge graph completion.
In: ESWC (2018)

30. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
Proceedings of WWW, pp. 697–706 (2007)

31. Tanon, T.P., Stepanova, D., Razniewski, S., Mirza, P., Weikum, G.: Completeness-
aware rule learning from knowledge graphs. In: d’Amato, C. (ed.) ISWC 2017.
LNCS, vol. 10587, pp. 507–525. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68288-4 30

32. Tran, H.D., Stepanova, D., Gad-Elrab, M.H., Lisi, F.A., Weikum, G.: Towards non-
monotonic relational learning from knowledge graphs. In: ILP, pp. 94–107 (2016)

https://doi.org/10.1007/3-540-45728-3_10
https://doi.org/10.1007/3-540-45728-3_10
https://doi.org/10.1007/978-3-319-68204-4_29
https://doi.org/10.1007/978-3-319-77553-1_18
https://doi.org/10.1007/3-540-45372-5_70
https://doi.org/10.1007/3-540-45372-5_70
https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.1007/978-3-319-68288-4_30

90 V. T. Ho et al.

33. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. CACM
57(10), 78–85 (2014)

34. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of
approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017)

35. Wang, Q., Wang, B., Guo, L.: Knowledge base completion using embeddings and
rules. In: IJCAI (2015)

36. Wang, Z., Li, J.: RDF2Rules: Learning rules from RDF knowledge bases by mining
frequent predicate cycles. CoRR, abs/1512.07734 (2015)

37. Wojtusiak, J.: Rule learning in healthcare and health services research. In: Dua, S.,
Acharya, U.R., Dua, P. (eds.) Machine Learning in Healthcare Informatics. ISRL,
vol. 56, pp. 131–145. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-40017-9 7

38. Xiao, H., Huang, M., Meng, L., Zhu, X.: SSP: semantic space projection for knowl-
edge graph embedding with text descriptions. In: AAAI (2017)

39. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for
learning and inference in knowledge bases. CoRR, abs/1412.6575 (2014)

40. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowl-
edge base reasoning. In: NIPS, pp. 2316–2325 (2017)

41. Zupanc, K., Davis, J.: Estimating rule quality for knowledge base completion with
the relationship between coverage assumption. In: WWW 2018, pp. 1073–1081
(2018)

https://doi.org/10.1007/978-3-642-40017-9_7
https://doi.org/10.1007/978-3-642-40017-9_7

A Novel Ensemble Method for Named
Entity Recognition and Disambiguation

Based on Neural Network

Lorenzo Canale1,2, Pasquale Lisena1, and Raphaël Troncy1(B)

1 EURECOM, Sophia Antipolis, France
{canale,lisena,troncy}@eurecom.fr
2 Politecnico di Torino, Turin, Italy

Abstract. Named entity recognition (NER) and disambiguation (NED)
are subtasks of information extraction that aim to recognize named enti-
ties mentioned in text, to assign them pre-defined types, and to link them
with their matching entities in a knowledge base. Many approaches, often
exposed as web APIs, have been proposed to solve these tasks during
the last years. These APIs classify entities using different taxonomies
and disambiguate them with different knowledge bases. In this paper,
we describe Ensemble Nerd, a framework that collects numerous extrac-
tors responses, normalizes them and combines them in order to produce
a final entity list according to the pattern (surface form, type, link). The
presented approach is based on representing the extractors responses
as real-value vectors and on using them as input samples for two Deep
Learning networks: ENNTR (Ensemble Neural Network for Type Recog-
nition) and ENND (Ensemble Neural Network for Disambiguation). We
train these networks using specific gold standards. We show that the
models produced outperform each single extractor responses in terms of
micro and macro F1 measures computed by the GERBIL framework.

1 Introduction

A crucial task in knowledge extraction from textual document consists in the two
complementary tasks of Named Entity Recognition (NER) and Named Entity
Disambiguation (NED), achieving the goal of assigning to parts of text (tokens)
respectively a type – from a pre-defined taxonomy – and a unique identifier –
normally in the form of URI – that points univocally to the referred entity in a
given knowledge base. The combination of these two tasks is often abbreviated
with the acronym NERD [5,6]. The current state of the art offers an interesting
number of NERD extractors. Some of them can be trained by a developer on his
own corpus, while other ones are only accessible as black-box services exposed
via web APIs offering a limited number of parameters.

In terms of NER, each service provides generally its own taxonomy of named
entity types which can be recognised. While they all provide support for three
major types (person, organization, location), they largely differ for more fine-
grained types which makes hard their comparison and combination. In terms
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 91–107, 2018.
https://doi.org/10.1007/978-3-030-00671-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_6&domain=pdf

92 L. Canale et al.

of NED, each extractor can potentially disambiguate entities against specific
knowledge bases (KB), but in practice, they mostly rely on popular ones, namely
DBpedia, Wikidata, Freebase or YAGO. For this reason, comparing and merging
the results of these extractors require some post-processing tasks that typically
rely on mappings between those KBs. This task is however simpler than the
type alignment, because of the large presence of owl:sameAs links between the
different KBs.

In this paper, we present Ensemble Nerd, a multilingual ensemble method
that combines the responses of different NERD extractors. This method relies
on a real-value vectorial representation as input samples for two Deep Learning
networks, ENNTR (Ensemble Neural Network for Type Recognition) and ENND
(Ensemble Neural Network for Disambiguation). The networks provide models
for performing type alignment and named entity linking to a knowledge base.
This strategy is evaluated against some well-known gold standards, showing that
the output of the ensemble outperforms the results of single extractors.

This work aims to answer the following research questions: Can we define
an ensemble method that combines the extractors responses in order to create
a new more powerful extractor? Is it possible to define an ensemble method
that avoids a type alignment step or that computes it automatically, without
any human intervention? Which ensemble method should be adopted to exploit
all the collected information? Considering that extractors return list of named
entities – together with the type and the disambiguation link of each of them –,
how this data can be numerically represented? Can we better understand which
features contribute more to improve the ensemble output response? How depen-
dant is this feature selection of the corpora, language, entity types and what is
the influence of the KB?

The remainder of this paper is organised as follows: Sect. 2 describes some
related work. Section 3 details how we represent the extractors responses, while
Sect. 4 presents the core of the ensemble method. An evaluation is proposed in
Sect. 5, while conclusion and and future work are discussed in Sect. 6.

2 State of the Art

Ensemble methods for the NER and NED tasks have already largely been stud-
ied in the literature. The NERD framework [5,6] allows to compare and eval-
uate some of the most popular named entity extractors. It can analyse any
textual resource published on the web and to extract the named entities that
are detected, typed and disambiguated by various named entity extractor APIs.
For overcoming the different type taxonomies, the authors designed the NERD
ontology which provides a set of mappings between these various classifications
and consequently makes possible an evaluation of the quality of each extractor.
This task was originally a one time modeling exercise: the authors manually
mapped the different taxonomies to the NERD ontology.

NERD-ML, a machine learning approach developed on top of the NERD
framework, combines the responses of single extractors applying alternatively

A Novel Ensemble Method 93

three different algorithms: Naive Bayes (NB), k-Nearest Neighbours (k-NN) and
Support Vector Machines (SVM) [6,11]. It is a more sophisticated and robust
approach that uses machine learning inductive techniques for passing from the
output type of single extractors to the right entity type in a normalized types
set, i.e. the NERD Ontology [7]. FOX [9,10] is a framework that relies on
ensemble learning by integrating and merging the results of four NER tools:
the Stanford Named Entity Recognizer [3], the Illinois Named Entity
Tagger [4], the Ottawa Baseline Information Extraction (Balie) and the
Apache OpenNLP Name Finder. FOX compares the performance of these
tools for a small set of classes namely LOCATION, ORGANIZATION and PER-
SON. For achieving this goal, the entity types of each NER tools is mapped to
these three classes. Given any input text t, FOX processes t with each of the
n tools it integrates. The result of each tool Ti is a piece of annotated text ti,
in which either a specific class or zero (not belonging to the label of a named
entity) is assigned to each token. The tokens in t are then represented as vectors
of length n and are used for getting the final type. The author demonstrates
that a Multi-Layer Perceptron (MLP) gets the best results among a pool of 15
different algorithms [9].

3 Feature Engineering for NERD

Ensemble Nerd currently integrates a set of 8 extractors shown in Table 1. An
extractor can belong to the set T (extractors that perform NER task) or to the
set U (extractors that perform NED task). Currently, TextRazor is the only one
in both sets: T ∩ U = {TextRazor}. All these extractors relies on Wikidata,
Wikipedia or DBpedia for entity disambiguation.

Each extractor produces a list of named entities as response for a specific
input text. From this output, we generate 4 different kinds of feature.

1. Surface form features. They are strictly related to the text used to
extract named entity. The input text is split into tokens and a word embedding

Table 1. Extractor included in Ensemble Nerd. ✓ indicates that the extractor supports
the action (type recognition or named entity disambiguation)

Extractor Type recognition NE disambiguation

AlchemyAPI ✓ ✗

DandelionAPI ✗ ✓

DbSpotlight ✗ ✓

TextRazor ✓ ✓

Babelfy ✗ ✓

MeaningCloud ✓ ✗

ADEL ✓ ✗

OpenCalais ✓ ✗

94 L. Canale et al.

Fig. 1. Example of type taxonomy for a generic extractor.

representation is assigned to each of them. We consider also the stop words,
assigning also to them a real-value vectorial representation. The word vectors
are computed using fastText [1]. We define sx as the real-valued vector associ-
ated to a specific token x:

sx =
[
sx
p |sx

c

]
, dim(sx) = 400 (1)

where | (pipe) is the concatenation operator and dim is the vector dimension.
sx
p , dim(sx

p) = 300, consists in the token embedding computed using the
Wikipedia pre-trained fastText models released by the authors. The model
changes depending on the language used in the text, since all localised Wikipedia
have been used to train language specific models.

sx
c , dim(sx

c) = 100, is the token embedding computed when training fastText
directly on a particular textual corpus – i.e. the one for which we want to perform
the NERD tasks. This means that sx

c does not vary depending on the language
but on the gold standard itself.

2. Type features. Each extractor e ∈ T has its own type taxonomy o which
is a taxonomy of a maximum depth L. In the following, we consider a simple
example of an taxonomy o with just a 2 levels hierarchy (Fig. 1):

1. Level 1 includes three types: PLACE, ORGANIZATION and PERSON.
2. Level 2 includes four types: CITY and MOUNTAIN (subtypes of PLACE)

and ACTOR and MUSICIAN (subtypes of PERSON).

We name Ci the number of different types inside the level i (e.g. C1 = 3).
We infer a one-hot encoding representation for each level as shown in Table 2.

For a generic type τ in the last layer (e.g. ACTOR), the features vector vτ

consists in the concatenation of the one-hot representation of each type founded

A Novel Ensemble Method 95

Table 2. Representation of types through one-hot encoding.

Level 1 Level 2

Type Representation Type Representation

PERSON 001 ACTOR 0001

ORGANIZATION 010 MUSICIAN 0010

PLACE 100 CITY 0100

MOUNTAIN 1000

on the walk from the root to the leaf associate to τ . The features vector for
ACTOR is therefore 0010001, where the first three values 001 derive from PER-
SON and the last four values 0001 derive from ACTOR. Hence, we can state
that dim(vτ) =

∑L
i Ci. If the extractor e ∈ T returns a type that is not the

last level in the hierarchy, as PERSON, we fill the missing vector positions with
0. The features vector vPERSON associated to PERSON is thus 0010000. This
mechanism is extensible to any taxonomy. However the dim(vτ) is different for
each extractor, depending on the taxonomy that it uses.

This procedure can be extended also to extractors that do not perform NER.
A generic extractor e, where e ∈ U ∧ e �∈ T , returns a link for each entity. Fol-
lowing the interlinks between KBs, we can always obtain an entity in Wikidata.
The type of the entity would be the class of this entity in Wikidata, which is the
value of the property instance of (P31)1. Entities might possess multiple types
and for this reason they are represented through K-hot encoding.

For a typed named entity wt with the format (surface form, type),
the type feature vector vwt

e is computed for the extractor e where e ∈ U ∨e ∈ T .
dim(vwt

e) varies accordingly to the considered extractor. In fact, we get a real-
value numerical type representation without a type alignment phase. For this
reason, the number of dimensions that forms the type features vector depends
on the the number of types in the extractor taxonomy.

3. Entity features. These features represent the similarity between two Wiki-
data entities w1 and w2, as a vector of 5 dimensions. The first four dimensions
correspond to semantic knowledge:

1. the first dimension Suri(w1, w2) indicates if the compared entities share the
same URI with a Boolean;

2. the second dimension provides the string similarity between the labels lw1

and lw2 associated to the compared entities:

SLev(w1, w2) = max(1 − dLev(lw1 , lw2)/β, 0), β = 8

where dLev(lw1 , lw2) is the Levenshtein distance between the compared
strings and β is a constant equals to the number of maximum differences
after which the similarity is saturated to 0.

1 https://www.wikidata.org/wiki/Property:P31.

https://www.wikidata.org/wiki/Property:P31

96 L. Canale et al.

3. the third dimension STfIdf (w1, w2) represents the TF-IDF Cosine Similar-
ity between the abstracts associated to the compared entities. This dimension
represents a textual knowledge as in [12];

4. the fourth dimension Socc(w1, w2). value indicates if the compared entities
share the same occupation (P106).2 This property is specific for entities of
type PERSON: this Wikidata class has no other subclasses, as opposed to
the other types. For this reason this similarity dimension greatly helps in
the disambiguation of people with similar names but different professions.
Socc(w1, w2) is set to 1 when the two entities referred to people that have the
same profession, and 0 otherwise (different profession or not a PERSON).

The fifth and last dimension of the vector represents the structural similarity
as in [12]. We define a property set P , containing three properties: subclass of
(P279)3, instance of (P31)4, and part of (P361)5. A subgraph G is extracted
from Wikidata selecting all the triples in which a property in P appears. We
define the distance dw1,w2 between two generic entities w1 and w2 as the shortest
path length that links w1 and w2 in G. Then, we compute the maximum distance
between two nodes in the graph G, defining it as dmax. We assess the structural
similarity between w1 and w2 as:

Sstc(w1, w2) = −dw1,w2

dmax
+ 1

The total similarity between w1 and w2 can be expressed as:

S(w1,w2) = [Suri(w1, w2), SLev(w1, w2), STfIdf (w1, w2), Socc(w1, w2), Sstc(w1, w2)]

(2)

The choice of representing the similarity between two entities as a real-value
vectors rather than using an entity embedding is in line with our goal of rep-
resenting how the extractors differ in the prediction rather than directly repre-
senting an entity. This approach avoids to compute embeddings on the whole
Wikidata KB. We rely on interlinks between KBs for guaranteeing that we can
always compare Wikidata entities. This causes the risk that no Wikidata entity
exists for the source one, i.e. because the information is not present. However,
this case is very rare (Table 3) in all the considered benchmarks in the evaluation,
thanks to the reliance of all the involved extractors on Wikidata, Wikipedia or
DBpedia, which containing similar information. This would become a limit when
using different KBs (e.g. thematic ones), not fully interlinkable to Wikidata and
for which a loss in information should be taken in account.

4. Score features. Some extractors return scores representing either the con-
fidence or the saliency for each named entity. For each extractor e ∈ K, wk is

2 https://www.wikidata.org/wiki/Property:P106.
3 https://www.wikidata.org/wiki/Property:P279.
4 https://www.wikidata.org/wiki/Property:P31.
5 https://www.wikidata.org/wiki/Property:P361.

https://www.wikidata.org/wiki/Property:P106
https://www.wikidata.org/wiki/Property:P279
https://www.wikidata.org/wiki/Property:P31
https://www.wikidata.org/wiki/Property:P361

A Novel Ensemble Method 97

Table 3. Coverage of matching against Wikipedia of disambiguated entity in the
ground truth.

Extractor Disambiguation KB WD coverage

Dandelion Wikipedia 99%

DBSpotlight DBpedia Fr 98%

TextRazor Wikidata 100%

Babelfy DBpedia 100%

a named entity score with the format (surface form, scores). We define
vwk

e as the features vector representing the scores for wk and the extractor e.
dim(vwk

e) depends on the considered extractors, more precisely on the number
of scores returned by it.

4 Ensemble NERD: ENNTR and ENND

Our experimental ensemble method relies on two Neural Networks that receive
in input the features described in the previous Section. We respectively name
them with the acronyms Ensemble Neural Network for Type Recog-
nition (ENNTR) and Ensemble Neural Network for Disambiguation
(ENND). For both networks, the hyper parameter optimization was done using
Grid Search.

These networks architectures come after a series of previous experiments
that involved LSTM and BiLSTM, receiving a complete vector including all the
features as input sample. A really slow training, the ease of network overfitting
to the sample input, and huge difference in dimensionality (and so in impact to
the results) between the different features were some of the reasons for which we
have abandoned these approaches.

Ensemble Neural Network for Type Recognition (ENNTR). We con-
sider a generic ground truth GT formed by N textual fragments (e.g. sentences),
such that we can split each fragment in tokens. Xi is the ordered list of tokens
for fragment i. Concatenating the lists Xi, we get a list X, that is the ordered
list of tokens for the whole corpus. We call x a generic token in X.

GT associates a type in a taxonomy oGt to each token x. We identify the
neural network target as Yt. The number of samples in Yt is equal to the total
number of tokens: dim(Yt) = dim(X). The neural network goal is to assign the
right type to each token and its architecture is represented in Fig. 2.

ENNTR has an output layer O formed by H = card(oGT) neurons, where
card(oGT) is the number of different types (or cardinality) in oGT . As a conse-
quence, each value returned by a neuron in the output layer corresponds to the
probability that a token x belongs to a specific type. Hence, each target sample
yt is a vector formed by H values, where each value corresponds to a type and
a neuron. In Fig. 2, we are assuming that H = 4.

98 L. Canale et al.

Fig. 2. ENNTR architecture

ENNTR presents many input layers. Using the same notation used in Sect. 3,
T is the set of extractors that return type information, K is the set of extractors
that return score information, U is the set of extractors that perform disam-
biguation. Defining I as the set of input layers of ENNTR, we can identify four
different types of input layer depending on the kind of features being input.

I = IT ∪ IK ∪ IU ∪ IS

|I| = |IT | + |IK | + |IU | + |IS | = |T ∪ U | + |K| + 1 + 1

All the input layers works at token level, so that the features at entity level
defined in Sect. 3 requires a transformation to token-level. The surface form of
an entity w (e.g. Barack Obama) can be tokenised, producing the list of tokens
Xw (e.g. [Barack, Obama]). The feature vector of token x is equal to the one of
an entity w if x is a token in Xw. Otherwise it is equal to a padding vector d ,
of the same dimension and containing only 0 values.

In particular, IT receives in input a type features vector txe , computed like:

txe =
{
vwt

e if x ∈ Xwt

dt if x /∈ Xwt
(3)

dt = [0, ..., 0], dim(dk) == dim(vwt

e)

Similarly, IK receives in input a type features vector kx
e , computed like:

kx
e =

{
vwk

e if x ∈ Xwk

dk if x /∈ Xwk

(4)

dk = [0, ..., 0], dim(dk) == dim(vwk

e)

A Novel Ensemble Method 99

The Wikidata entity ux
e for the token x is:

ux
e =

{
uwu

e if x ∈ Xwu

NAN if x /∈ Xwu
(5)

The layers IU receive in input the entity features vector ux , computed for a
token x as:

ux = [S(ux
1 , u

x
1), S(ux

1 , ux
2), ..., S(ux

P , ux
P)]

Finally, the input layers IS receive the surface features vector sx without any
further transformation.

Each input layer In is fully connected with a layer Mn. Mn, like O, is com-
posed by H neurons, where H is the number of types in the ground truth. The
activation of neurons in Mn is linear.

In this first part of the network, each In – composed by a different number
of neurons depending on the related features vector – is mapped on H neu-
rons in Mn. This avoids that the neural network privileges features vectors with
higher dimension – it happens directly concatenating different features vectors.
This part of the network can be considered as an alignment block since it
automatically map the types between the extractors and the ground truth tax-
onomy. This is pretty similar to the Inductive Entity Typing Alignment work
described in [7], with the difference that the alignment step is learned by a fully
connected layer. Differently from previous works [9,10], the approach does not
need any preliminary alignment and recognition, because they are part of the
same network.

The last part of the network is the ensemble block. Mk layers are concate-
nated forming a new layer R. |oGT | is the number of types in the ground truth,
|I| the number of input layers and |P | the number of neurons in R:

|P | = |oGT | · |I|
R is fully connected to the output layer O. The activation of the neurons in

O is linear. This means that ENNTR finally consists in a linear combinations
of features: the key is the way in which the features are generated and entered
in the network. The values vh of the H output neurons in O correspond to
the probability that a given type is correct. We take the highest value vmax

between them and if it is greater than a threshold θ, we set the type related
to its neuron as the predicted one. The final output of the ensemble method is
a list of predicted type lp for each token x. In a final step, sequences of token
which belong to the same type are merged to a single entity, similarly to [9,10].

Ensemble Neural Network for Disambiguation (ENND). We consider a
ground truth GT , similar to the one seen for ENNTR, that this time associates
a Wikidata entity identifier (URI) to each token. We identify the target as Yd.

The ENND architecture is represented in Fig. 3. Differently from related
work, the goal of the network would not be to directly predict the right dis-
ambiguated entity, but to determine if the predicted entity by an extractor
e, where e ∈ U , is correct or not. For this reason, the number of samples in

100 L. Canale et al.

Fig. 3. ENND architecture

target Yd is not equal to the number of tokens. For each token x, each extractor
e returns a predicted entity ux

e : we call Cx the set of predicted entities for the
token x, and vx the correct entity; |Cx| ≤ |U | because more extractors could
predict the same entity. For each candidate cx,j ∈ Cx, where 0 < j ≤ |Cx|, we
generate a target sample yd ∈ Yd:

yd =
{

1 if cx,j = vx

0 if cx,j �= vx

The output layer O contains a single neuron that should converge to yd.
The O activation is a sigmoid. Naming I the set of input layers of ENND, two
different types of input can be identified depending on the kind of features.

I = IU ∪ IT

|I| = |IU | + |IT | = 1 + |T ∪ U |
The entity similarity features enter through IU . We define cx,j as a candidate

entity for the token x. For each target sample yd, we compute a similarity features
sample ux,j as:

ux,j = [S(cx,j , u
x
1)|S(cx,j , u

x
2)|...|S(cx,j , u

x
R)] where R = card(U)

dim(ux,j) = dim(S(w1,w2)) · card(U)

A Novel Ensemble Method 101

The input layers IT receive in input the the type feature vector twe , computed
with the same method used for ENNTR. IT layers are fully connected to the
layers Mn as in ENNTR. Mn is formed by H neurons, where H is an hyper-
parameter, set to 4 during our experiment. As for ENNTR, the Mn activation
is linear.

After this step, the IU layer and the Mk layers are concatenated in a new layer
R. In this layer, some neurons represent the type information, some other the
entity features. This combination aims to exploit the fact that some extractors
better disambiguate on certain types. The number of neurons in R is equal to
dim(ux,j) + |T ∪ U | · H.

The last part of the network is composed by two dense layers6 and the output
layer O discussed before. The activation functions of the dense layers cannot be
a softmax function since the number of candidates – and so is the number of
neurons in the output layer – is variable according to each specific token. We so
opted for the Scaled Exponential Linear Units (selu):

selu(x) = λ

{
x if x > 0

αex − α if x ≤ 0

The loss function used to train the network is the Mean Square Error, that
gives slightly better results and similar training time if compared to MSE.

The neural network goal is to determine the probability that an entity candi-
date is right. In fact, for each sample, we get an output value that corresponds to
this probability. ox,j corresponds to the output value of the input sample asso-
ciated to the candidate entity j for token x. We select the candidate associated
with the highest value ox,max among all output values

{
ox,1, ox,2, ..., ox,card(Cx)

}
.

Defining a threshold τd, if ox,max > τd, we can select as predicted entity for token
x the one related to ox,max. Otherwise, we consider that the token x is not part
of a named entity. This process of candidate selection returns the list zp of
predicted Wikidata entities identifiers at token level. In a final step, sequences
of tokens which belong to the same Wikidata entity identifiers are merged to a
single entity. Ap represents the predicted corpus of annotated fragments.

5 Experiment and Evaluation

We developed an implementation of the two neural networks using Keras.7 In
order to make our approach comparable with the state of the art, our evaluation
relies on well-known corpora and metrics, which have been already applied to
related work. Moreover, we evaluate our approach on a new gold standard that
we provide to the community.

6 A dense layer is a layer fully connected to the previous one.
7 The source code is available at https://github.com/D2KLab/ensemble-nerd,

together with the documentation for accessing the live demo at http://enerd.
eurecom.fr.

https://github.com/D2KLab/ensemble-nerd
http://enerd.eurecom.fr
http://enerd.eurecom.fr

102 L. Canale et al.

– OKE2016: annotated corpus of English textual resources, created for the
2016 OKE Challenge. The types set contains 4 different tags.8 This ground
truth disambiguates the entities using DBpedia. The ensemble technique we
use for scoring is averaging, but not boosting or bagging.

– AIDA/CoNLL: English corpus and contains assignments of entities to the
mentions of named entities, linked to DBpedia. This dataset does not infer
types for NEs and can only be used for evaluating NED.

– NexGenTV corpus:9 dataset composed of 77 annotated fragments of tran-
scripts from politician television debates in French.10 Each fragment lasts in
average 2 min. The corpus is split in 64 training and 13 test samples. The list
of types includes 13 different labels.11 Entities are disambiguated through
Wikidata.

Table 4. OKE2016 corpus NER Evaluation

Token based Entity based

fsc pre rec fsc pre rec

adel 0.87 0.88 0.87 0.84 0.85 0.83

alchemy 0.79 0.93 0.68 0.88 0.92 0.86

babelfy 0.66 0.88 0.7 0.74 0.79 0.7

dandelion 0.64 0.89 0.51 0.78 0.83 0.75

dbspotlight 0.59 0.75 0.49 0.6 0.77 0.52

meaning cloud 0.59 0.91 0.44 0.72 0.78 0.69

opencalais 0.56 0.97 0.39 0.69 0.71 0.68

textrazor 0.74 0.86 0.65 0.77 0.81 0.74

ensemble 0.91 0.91 0.91 0.94 0.95 0.92

ensemble (I = IT) 0.88 0.91 0.85 0.88 0.92 0.84

ensemble (I = IS) 0.50 0.53 0.47 0.50 0.52 0.48

ensemble (I = IU) 0.44 0.47 0.41 0.43 0.43 0.43

ensemble (I = IK) 0.37 0.40 0.34 0.38 0.40 0.36

Type Recognition. For each gold standard GT , two different kinds of score
are computed. The token based scores have been used in [9,10]. From GT , a list
of target types lt with dimension |X| is extracted. We can obtain from ENNTR
the list of predicted types lp. For each type tGT in GT , we compute precision

8 PERSON, ORGANIZATION, PLACE, ROLE.
9 http://enerd.eurecom.fr/data/training data/nexgen tv corpus/.

10 The debates are in the context of the 2017 French presidential election.
11 PERSON, ORGANIZATION, GEOGRAPHICAL POINT, TIME, TIME INTER-

VAL, NUMBER, QUANTITY, OCCURRENCE, EVENT, INTELLECTUAL
WORK, ROLE, GROUP OF HUMANS and OCCUPATION.

http://enerd.eurecom.fr/data/training_data/nexgen_tv_corpus/

A Novel Ensemble Method 103

Precision(lt, lp, tGT), recall Recall(lt, lp, tGT) and F1 score F1(lt, lp, tGT). Then,
we compute micro averaged measures Precisionmicro(lt, lp), Recallmicro(lt, lp)
and F1micro(lt, lp) [8].

The entity based scores follow the definition of precision and recall coming
from the MUC-7 test scoring [2]. Given At and Ap as the annotated fragment
in GT , the computed measures are Precisionbrat(At, Ap), Recallbrat(At, Ap) and
F1brat(At, Ap).

The computed scores for OKE2016 and NexGenTv corpora are reported in
Tables 4 and 5. The tables show also the same metrics applied to single extrac-
tors, after that their output types have been mapped to the ones of GT through
the alignment block of ENNTR. For both token and entity scores, the ensemble
method outperforms the single extractors for all metrics.

Table 5. NexGenTv corpus NER evaluation

Token based Entity based

fsc pre rec fsc pre rec

adel 0.68 0.84 0.57 0.75 0.83 0.7

alchemy 0.80 0.83 0.77 0.87 0.97 0.81

babelfy 0.55 0.83 0.41 0.65 0.74 0.59

dandelion 0.26 0.69 0.16 0.51 0.69 0.42

dbspotlight 0.48 0.75 0.34 0.5 0.61 0.45

meaning cloud 0.82 0.88 0.77 0.8 0.87 0.76

opencalais 0.58 0.81 0.45 0.81 0.9 0.76

textrazor 0.81 0.89 0.74 0.75 0.8 0.72

ensemble 0.94 0.97 0.91 0.92 0.98 0.87

ensemble (I = IT) 0.87 0.91 0.83 0.89 0.93 0.85

ensemble (I = IS) 0.54 0.58 0.50 0.53 0.56 0.50

ensemble (I = IU) 0.47 0.49 0.45 0.46 0.47 0.45

ensemble (I = IK) 0.40 0.42 0.38 0.39 0.40 0.38

In order to identify the most impacting features in the obtained results,
ENTTR has been sequentially adapted and retrained in order to receive in input
only a specific kind of features, i.e. only IT , IK , IU or IS . The tokens based
scores for these new trained networks reveals that the type features IT are the
only ones that, used alone as input, continue to make ENTRR outperforming
single extractors, as can be expected given the type recognition goal. The other
feature kinds, while having a lower impact, are still improving the final results
when combined in the ensemble.

104 L. Canale et al.

Entity Linking. We evaluate the entity linking for both OKE2016,
AIDA/CoNLL and NexGenTv corpora using the GERBIL framework12 and in
particular micro and macro scores for the experiment type “Disambiguate to
Knowledge Base” (D2KB). The computed scores are reported in Tables 6 and 7;
the ensemble method outperforms again the single extractors that it integrates
for all metrics. As for type recognition, we repeated the experiment using only
a specific kind of features, in order to show the feature impact. In such case,
the most influential features are the entity ones IU . However, the impact of type
features IT is still crucial because its absence reduce drastically the improvement
of the ensemble method with respect to the single extractors.

Tables 8 and 9 compare the NED extractors presented on GERBIL with our
ensemble. For OKE2016, PBOH is the only tool which obtains a better score
However this extractors reaches very low scores for AIDA/CoNLL, while our

Table 6. GERBIL Micro scores on OKE2016, NexGenTV and AIDA/CoNLL corpus

OKE2016 NEXGEN AIDA

fsc pre rec fsc pre rec fsc pre rec

babelfy 0.54 0.64 0.47 0.51 0.51 0.51 0.66 0.70 0.62

dandelion 0.59 0.77 0.48 0.34 0.50 0.26 0.45 0.66 0.34

dbspotlight 0.39 0.53 0.30 0.38 0.29 0.54 0.47 0.65 0.36

textrazor 0.53 0.78 0.40 0.61 0.55 0.69 0.62 0.57 0.53

ensemble 0.66 0.88 0.52 0.69 0.70 0.64 0.68 0.79 0.60

ensemble (I = IU) 0.59 0.80 0.47 0.59 0.60 0.58 0.55 0.60 0.50

ensemble (I = IT) 0.41 0.45 0.38 0.42 0.47 0.38 0.48 0.52 0.45

Table 7. GERBIL Macro scores on OKE2016, NexGenTV and AIDA/CoNLL corpus

OKE2016 NEXGEN AIDA

fsc pre rec fsc pre rec fsc pre rec

babelfy 0.54 0.65 0.47 0.51 0.52 0.51 0.60 0.65 0.57

dandelion 0.59 0.76 0.49 0.35 0.50 0.27 0.43 0.52 0.37

dbspotlight 0.39 0.52 0.32 0.38 0.29 0.55 0.45 0.63 0.37

textrazor 0.54 0.77 0.42 0.61 0.54 0.71 0.57 0.78 0.45

ensemble 0.65 0.86 0.53 0.67 0.69 0.64 0.68 0.76 0.61

ensemble (I = IU) 0.59 0.77 0.48 0.59 0.59 0.59 0.55 0.59 0.51

ensemble (I = IT) 0.42 0.44 0.40 0.41 0.42 0.40 0.49 0.51 0.47

12 GERBIL is a general Linked Data benchmarking that offers an easy-to-use web-
based platform for the agile comparison of annotators using multiple datasets and
uniform measuring approaches.

A Novel Ensemble Method 105

Table 8. GERBIL scores on OKE2016

Micro scores Macro scores

fsc pre rec fsc pre rec

agdistis 0.50 0.50 0.50 0.52 0.52 0.52

aida 0.49 0.63 0.41 0.5 0.64 0.42

dexter 0.44 0.92 0.29 0.43 0.81 0.31

fox 0.48 0.77 0.35 0.47 0.69 0.37

freme ner 0.31 0.57 0.21 0.26 0.27 0.25

kea 0.64 0.67 0.61 0.63 0.66 0.61

pboh 0.69 0.69 0.69 0.69 0.69 0.69

ensemble 0.66 0.88 0.52 0.65 0.86 0.53

Table 9. GERBIL scores on AIDA-CoNLL

Micro scores Macro scores

fsc pre rec fsc pre rec

agdistis 0.58 0.58 0.58 0.59 0.59 0.59

aida 0.00 0.00 0.00 0.00 0.00 0.00

dexter 0.51 0.76 0.38 0.47 0.75 0.36

fox 0.57 0.63 0.51 0.56 0.64 0.51

freme ner 0.38 0.62 0.27 0.29 0.30 0.27

kea 0.60 0.65 0.56 0.59 0.63 0.56

pboh 0.00 0.00 0.00 0.00 0.00 0.00

ensemble 0.68 0.79 0.60 0.68 0.76 0.61

ensemble still continues to have good performances. For the NexGenTV dataset,
we cannot compare the other NERD extractors because the majority of them
perform NED only for the English language.

6 Conclusion and Future Work

In this paper, we presented two multilingual ensemble methods which combine
the responses of web services (extractors) performing Named Entity Recognition
and Disambiguation. The method relies on two Neural Networks that outper-
form the single extractors respectively in NER and NED tasks. Furthermore, the
NER network allows to avoid the manually type alignment between the type tax-
onomies of each extractor and the ground truth taxonomy. We demonstrated the
importance of the features generation for the success of these ensemble methods.
In terms of NER, the type features play most of the work in the ensemble. For
the NED task, while entity features have the greater impact, only a combination

106 L. Canale et al.

with type features really improve the effectiveness of the ensemble method with
respect to single extractor predictions.

As future work, we plan to enhance the input feature set with Part of Speech
tags features that would be assigned to each token. We also aim to vary the
neural network architecture, and in particular, we are planning to replace the
dense layer receiving the surface features with a BiLSTM, which would also take
in consideration the context in which the tokens are sequentially appearing.
Finally, all the neural networks models have been trained when all extractors
APIs were reachable. A training that involves some samples which simulates
the extractors failures and unavailability would make the network models more
robust to API failures.

Acknowledgements. This work has been partially supported by the French National
Research Agency (ANR) within the ASRAEL project (ANR-15-CE23-0018), the French
Fonds Unique Interministériel (FUI) within the NexGen-TV project and the European
Union’s Horizon 2020 research and innovation programme via the project MeMAD
(GA 780069).

References

1. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. arXiv preprint arXiv:1607.04606 (2016)

2. Chinchor, N.: Appendix B: MUC-7 test scores introduction. In: Seventh Message
Understanding Conference (MUC-7), Fairfax, Virginia, USA (1998)

3. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by Gibbs sampling. In: 43rd Annual Meeting on
Association for Computational Linguistics (ACL), Ann Arbor, Michigan, USA, pp.
363–370 (2005)

4. Ratinov, L., Roth, D.: Design challenges and misconceptions in named entity
recognition. In: 13th Conference on Computational Natural Language Learning
(CoNLL), Boulder, Colorado, USA, pp. 147–155, June 2009

5. Rizzo, G., Troncy, R.: NERD: a framework for unifying named entity recognition
and disambiguation extraction tools. In: 13th Conference of the European Chapter
of the Association for Computational Linguistics (EACL), Avignon, France, pp.
73–76 (2012)

6. Rizzo, G., van Erp, M., Troncy, R.: Benchmarking the extraction and disambigua-
tion of named entities on the semantic web. In: 9th International Conference on
Language Resources and Evaluation (LREC), Reykjavik, Iceland (2014)

7. Rizzo, G., van Erp, M., Troncy, R.: Inductive entity typing alignment. In: 1st
International Workshop on Linked Data for Information Extraction (LD4IE), Riva
del Garda, Italy (2014)

8. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput.
Surv. 34(1), 1–47 (2002)

9. Speck, R., Ngonga Ngomo, A.-C.: Ensemble learning of named entity recogni-
tion algorithms using multilayer perceptron for the multilingual web of data. In:
9th International Conference on Knowledge Capture (K-CAP), Austin, TX, USA
(2017)

http://arxiv.org/abs/1607.04606

A Novel Ensemble Method 107

10. Speck, R., Ngonga Ngomo, A.-C.: Ensemble learning for named entity recognition.
In: Mika, P. (ed.) ISWC 2014 Part I. LNCS, vol. 8796, pp. 519–534. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11964-9 33

11. van Erp, M., Rizzo, G., Troncy, R.: Learning with the web: spotting named entities
on the intersection of NERD and machine learning. In: 3rd International Workshop
on Making Sense of Microposts (#MSM), Concept Extraction Challenge, Rio de
Janeiro, Brazil (2013)

12. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.-Y.: Collaborative knowledge
base embedding for recommender systems. In: 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, Cal-
ifornia, USA, pp. 353–362 (2016)

https://doi.org/10.1007/978-3-319-11964-9_33

EARL: Joint Entity and Relation Linking
for Question Answering over Knowledge

Graphs

Mohnish Dubey1,2(B), Debayan Banerjee1,
Debanjan Chaudhuri1,2, and Jens Lehmann1,2

1 Smart Data Analytics Group (SDA), University of Bonn, Bonn, Germany
{dubey,chaudhur,jens.lehmann}@cs.uni-bonn.de, debayan@uni-bonn.de

2 Fraunhofer IAIS, Bonn, Germany
jens.lehmann@iais.fraunhofer.de

Abstract. Many question answering systems over knowledge graphs
rely on entity and relation linking components in order to connect the
natural language input to the underlying knowledge graph. Traditionally,
entity linking and relation linking have been performed either as depen-
dent sequential tasks or as independent parallel tasks. In this paper, we
propose a framework called EARL, which performs entity linking and
relation linking as a joint task. EARL implements two different solution
strategies for which we provide a comparative analysis in this paper:
The first strategy is a formalisation of the joint entity and relation link-
ing tasks as an instance of the Generalised Travelling Salesman Problem
(GTSP). In order to be computationally feasible, we employ approxi-
mate GTSP solvers. The second strategy uses machine learning in order
to exploit the connection density between nodes in the knowledge graph.
It relies on three base features and re-ranking steps in order to predict
entities and relations. We compare the strategies and evaluate them on
a dataset with 5000 questions. Both strategies significantly outperform
the current state-of-the-art approaches for entity and relation linking.

Keywords: Entity linking · Relation linking · GTSP
Question answering

1 Introduction

Question answering over knowledge graphs (KGs) is an active research area con-
cerned with techniques that allow obtaining information from knowledge graphs
based on natural language input. Specifically, Semantic Question Answering
(SQA) as defined in [8] is the task of users asking questions in natural language
(NL) to which they receive a concise answer generated by a formal query over a
KG.

Semantic question answering systems can be a fully rule based systems [4]
or end-to-end machine learning based systems [19]. The main challenges faced
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 108–126, 2018.
https://doi.org/10.1007/978-3-030-00671-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_7&domain=pdf

EARL 109

Fig. 1. An excerpt of the subdivision knowledge graph for the example question “Where
was the founder of Tesla and Space X born?”. Note that both entities and relations are
nodes in the graph.

in SQA are (i) entity identification and linking, (ii) relation identification and
linking, (iii) query intent identification and (iv) formal query generation.

Some QA systems have achieved good performance on simple questions [11],
i.e. those questions which can be answered by linking to at most one relation and
at most one entity in the KG. Recently, the focus has shifted towards complex
questions [30], comprising of multiple entities and relations.

Usually, all entities and relations need to be correctly linked to the knowledge
graph in order to generate the correct formal query and successfully answer
the question of a user. Hence, it is crucial to perform the linking process with
high accuracy and this is a major bottleneck for the widespread adoption of
current SQA systems. In most entity linking systems [12,26], disambiguation is
performed by looking at other entities present in the input text. However, in the
case of natural language questions (short text fragments) the number of other
entities for disambiguation is not high. Therefore, it is potentially beneficial to
consider entity and relation candidates for the input questions in combination,
to maximise the usable evidence for the candidate selection process. To achieve
this, we propose EARL (Entity and Relation Linker), a system for jointly linking
entities and relations in a question to a knowledge graph. EARL treats entity
linking and relation linking as a single task and thus aims to reduce the error
caused by the dependent steps.

EARL uses the knowledge graph to jointly disambiguate entity and relations:
It obtains the context for entity disambiguation by observing the relations sur-
rounding the entity. Similarly, it obtains the context for relation disambiguation
by looking at the surrounding entities. The system supports multiple entities and
relations occurring in complex questions. EARL implements two different solu-
tion strategies: The first strategy is a formalisation of the joint entity and rela-
tion linking tasks as an instance of the Generalised Travelling Salesman Problem
(GTSP). Since the problem is NP-hard, we employ approximate GTSP solvers.
The second strategy uses machine learning in order to exploit the connection
density between nodes in the KG. It relies on three base features and re-ranking
steps in order to predict entities and relations. We compare the strategies and
evaluate them on a dataset with 5000 questions. Both strategies outperform the
current state-of-the-art approaches for entity and relation linking.

110 M. Dubey et al.

Let us consider an example to explain the underlying idea: “Where was the
founder of Tesla and SpaceX born?”. Here, the entity linker needs to perform
disambiguation for the keyword “Tesla” between the scientist “Nikola Tesla”
and the car company “Tesla Motors”. EARL uses all other entities and rela-
tions (SpaceX, founder, born) present in the query. It does this by analysing the
subdivision graph of the knowledge graph fragment containing the candidates
for relevant entities and relations. While performing the joint analysis (Fig. 1),
EARL detects that there is no likely combination of candidates, which supports
the disambiguation of “Tesla” as “Nikola Tesla”, whereas there is a plausible
combination of candidates for the car company “Tesla Motors”.

Overall, our contributions in this paper are as follows:

1. The framework EARL, where GTSP solver or Connection Density can be
used for joint linking of entities and relations (Sect. 4).

2. A formalisation of the joint entity and relation linking problem as an instance
of the Generalised Travelling Salesman (GTSP) problem (Sect. 4.2).

3. An implementation of the GTSP strategy using approximate GTSP solvers.
4. A “Connection Density” formalisation and implementation of the joint entity

and relation linking problem as a machine learning task (Sect. 4.3).
5. An adaptive E/R learning module, which can correct errors occurring across

different modules (Sect. 4.3).
6. A comparative analysis of both strategies - GTSP and connection density

(Table 2).
7. A fully annotated version of the 5000 question LC-QuAD data-set, where

entity and relations are linked to the KG.
8. A large set of labels for DBpedia predicates and entities covering the syntactic

and semantic variations.1

The paper is organised into the following sections: (2) Related Work outlining
some of the major contributions in entity and relation linking used in question
answering; (3) Problem Statement, where we discuss the problem in depth and
our hypotheses for the solution; (4) the architecture of EARL including prepro-
cessing steps followed by (i) a GTSP solver or (ii) a connection density approach;
(5) Evaluation, with various evaluation criteria and results; (6) Discussion; and
(7) Conclusion.

2 Related Work

The entity and relation linking challenge has attracted a wide variety of solutions
over time. Linking natural language phrases to DBpedia resources, Spotlight [12]
breaks down the process of entity spotting into four phases. It identifies the entity
using a list of surface forms and then generates DBpedia resources candidates.
It then disambiguates the entity based on surrounding context. AGDISTIS [26]
follows the inherent structure of the target knowledge base more closely to solve

1 Dataset available at https://github.com/AskNowQA/EARL.

https://github.com/AskNowQA/EARL

EARL 111

Table 1. State of the art for Entity and Relation linking in question answering

Linking

approach

QA system Advantage Disadvantage

Sequential [2,4,21] -Reduces candidate search space

for Relation Linking

-Relation Linking information

cannot be exploited in Entity

Linking process

-Allows schema verification - Errors in Entity Linking

cannot be overcome

Parallel [16,27,28] - Lower runtime - Entity Linking process cannot

use information from Relation

Linking process and vice versa

- Re-ranking of Entities possible

based on Relation Linking

- Does not allow schema

verification

Joint (with

limited

candidate set)

[1,30] - Potentially high accuracy - Complexity increase

- Reduces error propagation - Larger search space

- Better disambiguation

- Allows schema verification

- Allows re-ranking

the problem. Being a graph-based disambiguation system, AGDISTIS performs
disambiguation based on the hop-distance between the candidates for the entities
in a given text, where multiple entities are present. Babelfy [13] uses word sense
disambiguation for entity linking. On the other hand, S-MART [29] is often
appropriated as an entity linking system over Freebase resources. It generates
multiple regression trees and then applies sophisticated structured prediction
techniques to link entities to resources.

As relation linking is generally considered to be a problem-specific task, only
a few general purpose relation linking systems are in use. Iterative bootstrap-
ping strategies for extracting RDF resources from unstructured text have been
explored in BOA [5] and PATTY [15]. It consists of natural language patterns
corresponding to relations present in the knowledge graph. Word embedding
models are also frequently used to overcome the linguistic gap for relation link-
ing. RelMatch [20] improves the accuracy of the PATTY dataset for relation
linking. There are tools such as ReMatch [14] which uses wordnet similarity for
relation linking.

Many QA systems use an out-of-the-box entity linker, often one of the afore-
mentioned ones. These tools are not tailor-made for questions and are instead
trained on large text corpora, typically devoid of questions. This may create sev-
eral problems as questions do not span over more than one sentence, thereby ren-
dering context-based disambiguation relatively ineffective. Further, graph based
systems rely on the presence of multiple entities in the source text and disam-
biguate them based on each other. This becomes difficult when dealing with
questions, as they seldom consist of multiple entity.

Thus, to avoid the issues mentioned, a variety of approaches have been
employed for entity and relation linking for question answering. Semantic parsing-
based systems such as AskNow [4] and TBSL [25] first link the entities and

112 M. Dubey et al.

generate a list of candidate relations based on the identified resources. They
use several string and semantic similarity techniques to finally select the correct
entity and relation candidates for the question. In these systems, the process
of relation linking depends on linking the entities. Generating entity and rela-
tion candidates has also been explored by [30], which uses these candidates to
create staged query graphs, and later re-ranks them based on textual similarity
between the query and the target question, computed by a Siamese architecture-
based neural network. There are some QA systems such as Xser [28], which
performs relation linking independent of entity linking. STAGG [30] takes the
top 10 entities given by the entity linker and tries to build query-subgraph chains
corresponding to the question. This approach considers a ranked list of entity
candidates from the entity linker and chooses the best candidate based on the
query subgraph formed. Generally, semantic parsing based systems treat entity
and relation linking as separate tasks which can be observed in the generalised
pipeline of Frankenstein [21] and OKBQA www.okbqa.org/.

3 Overview and Preliminaries

3.1 Overview and Research Questions

As discussed previously, in question answering the tasks of entity and relation
linking are performed either sequentially or in parallel. In sequential systems,
usually the entity linking task is performed first, followed by relation linking.
As a consequence, information in the relation linking phase cannot be exploited
during entity linking in this case. In parallel systems, entity and relation linking
are performed independently. While this is efficient in terms of runtime per-
formance, the entity linking process cannot benefit from further information
obtained during relation linking and vice versa. We illustrate the advantages
and disadvantages of both approaches, as well as the systems following them, in
Table 1. Our main contribution in this paper is the provision of a system, which
takes candidates for entity and relation linking as input and performs a joint
optimisation selecting the best combination of entity and relation candidates.

Postulates. We have three postulates, which we want to verify based on our
approach:

H1: Given candidate lists of entities and relations from a question, the correct
solution is a cycle of minimal cost that visits exactly one candidate from each
list.
H2: Given candidate lists of entities and relations from a question, the correct
candidates exhibit relatively dense and short-hop connections among them-
selves in the knowledge graph compared to wrong candidate sets.
H3: Jointly linking entity and relation leads to higher accuracy compared to
performing these tasks separately.

We will re-visit all of these postulates in the evaluation section of the paper.

www.okbqa.org/

EARL 113

3.2 Preliminaries

We will first introduce basic notions from graph theory:

Definition 1 (Graph). A (simple, undirected) graph is an ordered pair G =
(V,E) where V is a set whose elements are called vertices and E is a set of pairs
of vertices which is called edges.

Definition 2 (Knowledge Graph). Within the scope of this paper, we define
a knowledge graph as a labelled directed multi-graph. A labelled directed multi-
graph is a tuple KG = (V,E,L) where V is a set called vertices, L is a set of
edge labels and E ⊆ V × L × V is a set of ordered triples.

It should be noted that our definition of knowledge graphs captures basic
aspects of RDF datasets as well as property graphs [6]. The knowledge graph
vertices represent entities and the edges represent relationships between those
entities (Fig. 2).

Definition 3 (Subdivision Graph). The subdivision graph [24] S(G) of a
graph G is the graph obtained from G by replacing each edge e = (u, v) of G by
a new vertex we and 2 new edges (u,we) and (v, we).

Fig. 2. EARL architecture: In the disambiguation phase one may choose either Con-
nection Density or GTSP. In cases where training data is not available beforehand
GTSP works better.

4 EARL

In general, entity linking is a two step process. The first step is to identify
and spot the span of the entity. The second step is to disambiguate or link the
entity to the knowledge graph. For linking, the candidates are generated for the
spotted span of the entity and then the best candidate is chosen for the linking.
These two steps are similarly followed in standard relation linking approaches.
In our approach, we first spot the spans of entities and relations. After that, the
(disambiguation) linking task is performed jointly for both entities and relations.

In this section we first discuss the step of span detection of entity and relation
in natural language question and candidate list generation. We perform the
disambiguation by two different approaches, which are discussed later in this
section.

114 M. Dubey et al.

4.1 Candidate Generation Steps

4.1.1 Shallow Parsing
Given a question, extract all keyword phrases out. EARL uses SENNA [3] as the
keyword extractor. We also remove stop words from the question at this stage.
In example question “Where was the founder of Tesla and SpaceX born?” we
identify <founder, Tesla, SpaceX, born> as our keyword phrases.

4.1.2 E/R Prediction
Once keyword phrases are extracted from the questions, the next step in EARL
is to predict whether each of these is an entity or a relation. We use a character
embedding based long-short term memory network (LSTM) to do the same. The
network is trained using labels for entity and relation in the knowledge graph.
For handling out of vocabulary words [17], and also to encode the knowledge
graph structure in the network, we take a multi-task learning approach with
hard parameter sharing. Our model is trained on a custom loss given by:

E = (1 − α) ∗ EBCE + α ∗ EED (1)

where, EBCE is the binary cross entropy loss for the learning objective of a phrase
being an entity or a relation and EEd is the squared eucledian distance between
the predicted embedding and the correct embedding for that label. The value
of α is empirically selected as 0.25. We use pre-trained label embeddings from
RDF2Vec [18] which are trained on knowledge graphs. RDF2Vec provides latent
representation for entities and relations in RDF graphs. It efficiently captures
the semantic relatedness between entities and relations.

We use a hidden layer size of 128 for the LSTM, followed by two dense layers
of sizes 512 and 256 respectively. A dropout value of 0.5 is used in the dense
layers. The network is trained using Adam optimizer [9] with a learning rate of
0.0001 and a batch size of 128. Going back to the example, this module identifies
“founder” and “born” as relations, “Tesla” and “SpaceX” as entities.

4.1.3 Candidate List Generation
This module retrieves a candidate list for each keyword identified in the nat-
ural language question by the shallow parser. To retrieve the top candidates
for a keyword we create an Elasticsearch2 index of URI-label pairs. Since EARL
requires an exhaustive list of labels for a URI in the knowledge graph, we expand
the labels. We used Wikidata labels for entities which are in same-as relation
in the knowledge base. For relations we require labels which were semantically
equivalent (such as writer, author) for which we took synonyms from the Oxford
Dictionary API3. To cover grammatical variations of a particular label, we added
inflections from fastText4. We avoid any bias held towards or against popular
entities and relations.
2 https://www.elastic.co/products/elasticsearch.
3 https://developer.oxforddictionaries.com/.
4 https://fasttext.cc/.

https://www.elastic.co/products/elasticsearch
https://developer.oxforddictionaries.com/
https://fasttext.cc/

EARL 115

The output of these pre-processing steps are (i) set of keywords from the
question, (ii) every keyword is identified either as relation or entity, (iii) for
every keyword there is a set of candidate URIs from the knowledge graph.

4.2 Using GTSP for Disambiguation

At this point we may use either a GTSP based solution or Connection Density
(later explained in Sect. 4.3) for disambiguation. We start with the formalisation
for GTSP based solution.

The entity and relation linking process can be formalised via spotting and
candidate generation functions as follows: Let S be the set of all strings. We
assume that there is a function spot : S → 2S which maps a string s (the
input question) to a set K of substrings of s. We call this set K the keywords
occurring in our input. Moreover, we assume there is a function candKG : K →
2V ∪L which maps each keyword to a set of candidate node and edge labels
for our knowledge graph G = (V,E,L). The goal of joint entity and relation
linking is to find combinations of candidates, which are closely related. How
closely nodes are related is modelled by a cost function costKG : (V ∪ L) ×
(V ∪ L) → [0, 1]. Lower values indicate closer relationships. According to our
first postulate, we aim to encode graph distances in the cost function to reward
those combinations of entities and relations, which are located close to each other
in the input knowledge graph. To be able to consider distances between both
relations and entities, we transform the knowledge graph into its subdivision
graph (see Definition 3). This subdivision graph allows us to elegantly define the
distance function as illustrated in Fig. 4.

Given the knowledge graph KG and the functions spot, cand and cost, we
can cast the problem of joint entity and relation linking as an instance of the
Generalised Travelling Salesman (GTSP) problem: We construct a graph G with
V =

⋃
k∈K cand(k). Each node set cand(k) is called a cluster in this vertex set.

The GTSP problem is to find a subset V ′ = (v1, . . . , vn) of V which contains
exactly one node from each cluster and the total cost

∑n−1
i=1 cost(vi, vi+1) is

minimal with respect to all such subsets. Please note that in our formalisation
of the GTSP, we do not require V ′ to be a cycle, i.e. v1 and vn can be different.
Moreover, we do not require clusters to be disjoint, i.e. different keywords can
have overlapping candidate sets.

Figure 3 illustrates the problem formulation. Each candidate set for a key-
word forms a cluster in the graph. The weight of each edge in this graph is given
by the cost function, which includes the distance between the nodes in the sub-
division graph of the input knowledge graph as well as the confidence scores of
the candidates. The GTSP requires the solution to visit one element per cluster
and minimises the overall distance.

Approximate GTSP Solvers. In order to solve the joint entity and relation
linking problem, the corresponding GTSP instance needs to be solved. Unfor-
tunately, the GTSP is NP-hard [10] and hence it is intractable. However, since

116 M. Dubey et al.

Fig. 3. Using GTSP for disambiguation: The bold line represents the solution offered
by the GTSP solver. Each edge represents an existing connection in the knowledge
graph. The edge weight is equal to the number of hops between the two nodes in
the knowledge graph. We also add the index search ranks of the two nodes the edges
connect to the edge weight when solving for GTSP.

GTSP can be reduced to standard TSP, several polynomial approximation algo-
rithms exist to solve GTSP. The state-of-the-art approximate GTSP solver is the
Lin–Kernighan–Helsgaun algorithm [7]. Here, a GTSP instance is transformed
into standard asymmetric TSP instances using the Noon-Bean transformation.
It allows the heuristic TSP solver LKH to be used for solving the initial GTSP.
Among LKH’s characteristics, its use of 1-tree approximation for determining a
candidate edge set, the extension of the basic search step, and effective rules for
directing and pruning the search contribute to its efficiency.

While a GTSP based solution would be suitable for solving the joint entity
and relation linking problem, it has the drawback that it can only provide the
best candidate for each keyword given the list of candidates. Most approximate
GTSP solutions do not explore all possible paths and nodes and hence a compre-
hensive scoring and re-ranking of nodes is not possible. Ideally, we would like to
go beyond this and re-rank all candidates for a given keyword. This would open
up new opportunities from a QA perspective, i.e. a user could be presented with
a sorted list of multiple possible answers to select from.

4.3 Using Connection Density for Disambiguation

As discussed earlier, once the candidate list generation is achieved, EARL offers
two independent modules for the entity and relation linking. In the previous
Subsect. 4.2 we discussed one approach using GTSP. In this subsection we will
discuss the second approach for disambiguation using Connection Density, which
works as an alternative to the GTSP approach. We have also compared the two
methods in Table 2.

EARL 117

Table 2. Comparison of GTSP based approach and Connection density for Disam-
biguation

GTSP Connection Density

Requires no training data Requires data to train the XGBoost
classifier

The approximate GSTP LKH solution
is only able to return the top result as
not all possible paths are explored

Returns a list of all possible candidates
in order of score

Time complexity of LKH is O(nL2)
where n = number of nodes in graph,
L = number of clusters in graph of

Time complexity is O(N2L2) where
N = number of nodes per cluster,
L = number of clusters in graph

Relies on identifying the path with
minimum cost

Depends on identifying dense and
short-hop connections

4.3.1 Formalisation of Connection Density
For identified keywords in a question we have the set K as defined earlier. For
each keyword Ki we have list Li which consists of all the candidate uris generated
by text search. We have n such candidate lists for each question given by, L =
{L1, L2, L3, ..., Ln}. We consider a probable candidate cim ∈ Li, where m is the
total number of candidates to be considered per keyword, which is the same as
the number of items in each list.

Fig. 4. Connection Density with example: The dotted lines represent corresponding
connections between the nodes in the knowledge base.

The hop distance dKGhops(cki , c
o
j) ∈ Z

+ is number of hops between cki and coj
in the subdivision knowledge graph. If the shortest path from cki and coj requires
the traversal of h edges then dKGhops(cki , c

o
j) = h.

Connection Density is based on the three features: Text similarity based
initial Rank of the List item (Ri) Connection-Count (C) and Hop-Count (H).

118 M. Dubey et al.

Initial Rank of the List (Ri), is generated by retrieving the candidates from
the search index via text search. This is achieved in the preprocessing steps as
mentioned in the Sect. 4. Further, to define C we introduce dConnect.

dConnect(cki , c
o
j) =

{
1 if dKGhops(cki , c

o
j) � 2

0 otherwise
(2)

The Connection-Count C for an candidate c, is the number of connections
from c to candidates in all the other lists divided by the total number n of key-
words spotted. We consider nodes at hop counts of greater than 2 disconnected
because nodes too far away from each other in the knowledge base do not carry
meaningful semantic connection to each other.

C(cki) = 1/n
∑

o|o�=k

j=m∑

j=1

dConnect(cki , c
o
j) (3)

The Hop-Count H for a candidate c, is the sum of distances from c to all the
other candidates in all the other lists divided by the total number of keywords
spotted.

H(cki) = 1/n
∑

o|o�=k

j=m∑

j=1

dKGhops(cki , c
o
j) (4)

4.3.2 Candidate Re-ranking
H, C and Ri constitute our feature space X . This feature space is used to find
the most relevant candidate given a set of candidates for an identified keyword
in the question. We use a machine learning classifier to learn the probability
of being the most suitable candidate c̄i given the set of candidates. The final
list Rf is obtained by re-ranking the candidate lists based on the probability
assigned by the classifier. Ideally, c̄i should be the top-most candidate in Rf .

The training data consists of the features H, C and Ri and a label 1 if the
candidate is the correct, 0 otherwise. For the testing, we apply the learned func-
tion from the classifier f on X for every candidate ∈ ci and get a probability
score for being the most suitable candidate. We perform experiments with three
different classifiers, namely extreme gradient boosting(xgboost), SVM (with a
linear kernel) and logistic regression to re-rank the candidates. The experiments
are done using a 5-fold cross-validation strategy where, for each fold we train the
classifier on the training set and observe the mean reciprocal rank (MRR) of c̄i

on the testing set after re-ranking the candidate lists based on the assigned prob-
ability. The average MRR on 5-fold cross-validation for the three classifiers are
0.905, 0.704 and 0.794 respectively. Hence, we use xgboost as the final classifier
in our subsequent experiments for re-ranking.

EARL 119

4.3.3 Algorithm
We now present a pseudo-code version of the algorithm to calculate the two
features: Connection Density algorithm is used for finding hop count and con-
nection count for each candidate node. We then pass these features to a classifier
for scoring and ranking This algorithm (Algorithm 1 Connection Density) has a
time complexity given by O(N2L2) where N is the number of keywords and L
is the number of candidates for each keyword.

Algorithm 1. Connection Density
function : ConnectionDensity()
input : L , with n number of keywords // an array of arrays

output : Hop-Count H, Connection-Count C
1 dConnectCounter = { } // Count for connections from and to each node

2 dHopCounter = { } // Similarly hop counts for each node

3 foreach La ∈ L do
4 foreach cai ∈ La do
5 dConnectCounter[cai] = 0 // Initialising the dictionary

6 dHopCounter[cai] = 0

7 foreach (La, Lb) ∈ L do
8 foreach cai ∈ La do

9 foreach cbj ∈ Lb do

10 if dKGhops(cai ,c
b
j) <= 2 then

11 dConnectCounter[cai] += 1

12 dConnectCounter[cbj] += 1

13 dHopCounter[cai] += dKGhops(cai ,c
b
j)

14 dHopCounter[cbj] += dKGhops(cai ,c
b
j)

15 foreach (ci, score) ∈ dConnectCounter do
16 C(ci) = dConnectCounter(ci)/n // Normalisation with respect to

number of keywords spotted

17 foreach (ci, score) ∈ dHopCounter do
18 H(ci) = dHopCounter(ci)/n

19 return (Hop-Count H, Connection-Count C)

4.4 Adaptive E/R Learning

EARL uses a series of sequential modules with little to no feedback across them.
Hence, the errors in one module propagate down the line. To trammel this, we
implement an adaptive approach especially for curbing the errors made in the pre-
processing modules. While conducting experiments, it was observed that most
of the errors are in the shallow parsing phase, mainly because of grammatical
errors in LC-QuAD which directly affects the consecutive E/R prediction and
candidate selection steps. If the E/R prediction is erroneous, it will search in a

120 M. Dubey et al.

Fig. 5. Adaptive E/R learning

wrong Elasticsearch index for probable candidate list generation. In such a case
none of the candidates ∈ ci for a keyword would contain c̄i as is reflected by the
probabilities assigned to ci by the re-ranker module. If the maximum probability
assigned to ci is less than a very small threshold value, empirically chosen as 0.01,
we re-do the steps from ER prediction after altering the original prediction. If
the initial assigned probability is entity, we change it to relation and vice-versa,
example Fig. 5. This module is empirically evaluated in Table 5.

5 Evaluation

Data Set: LC-QuAD [23] is the largest complex questions data set available for
QA over KGs. We have annotated this data set to create a gold label data set
for entity and relation linking, i.e. each question now contains the correct KG
entity and relation URIs with their respective text spans in the question. This
annotation was done in a semi-automated process and subsequently manually
verified. The annotated dataset of 5000 questions is publicly available at https://
figshare.com/projects/EARL/28218.

5.1 Experiment 1: Comparison of GTSP, LKH and Connection
Density

Aim: We evaluate hypotheses (H1 and H2) that the connection density and
GTSP can be used for joint linking task. We also evaluate the LKH approxima-
tion solution of GTSP for doing this task. We compare the time complexity of
the three different approaches.

Results: Connection density results in a similar accuracy as that of an exact
GTSP solution with a better time complexity (see Table 3). Connection density
has worse time complexity than approximate GTSP solver LKH if we assume the
best case of equal cluster sizes for LKH. However, it provides a better accuracy.
Moreover, the average time taken in EARL using connection density (including
the candidate generation step) is 0.42 s per question. Further observing Table 3,
we can see that the brute force GTSP solution and Connection Density have simi-
lar accuracy, but the brute force GTSP solution has exponential time complexity.
The approximate solution LKH has polynomial run time, but its accuracy drops

https://figshare.com/projects/EARL/28218
https://figshare.com/projects/EARL/28218

EARL 121

Table 3. Empirical comparison of Connection Density and GTSP: n = number of
nodes in graph; L = number of clusters in graph; N = number of nodes per cluster;
top K results retrieved from ElasticSearch.

Approach Accuracy (K = 30) Accuracy (K = 10) Time complexity

Brute Force GTSP 0.61 0.62 O(n22n)

LKH - GTSP 0.59 0.58 O(nL2)

Connection Density 0.61 0.62 O(N2L2)

compared to the brute force GTSP solution. Moreover, from a question answer-
ing perspective the ranked list offered by the Connection Density approach is
useful since it can be presented to the user as a list of possible correct solu-
tions or used by subsequent processing steps of a QA system. Hence, for further
experiments in this section we used the connection density approach.

5.2 Experiment 2: Evaluating Joint Connectivity and Re-ranker

Aim: Evaluating the performance of Connection Density for predicting the cor-
rect entity and relation candidates from a set of possible E-R candidates. Here
we evaluate hypothesis H2, the correct candidates exhibit relatively dense and
short-hop connections.

Table 4. Evaluation of joint linking performance

Value of k Rf based on Ri Rf based on C,H Rf based on Ri, C,H
k = 10 0.543 0.689 0.708

k = 30 0.544 0.666 0.735

k = 50 0.543 0.617 0.737

k = 100 0.540 0.534 0.733

k∗ = 10 0.568 0.864 0.905

k∗ = 30 0.554 0.779 0.864

k∗ = 50 0.549 0.708 0.852

k∗ = 50 0.545 0.603 0.817

Metrics: We use the mean reciprocal rank of the correct candidate c̄i for each
entity/relation in the query. From the probable candidate list generation step, we
fetch a list of top candidates for each identified phrase in a query with a k value
of 10, 30, 50 and 100, where k is the number of results from text search for each
keyword spotted. To evaluate the robustness of our classifier and features we
perform two tests. (i) On the top half of Table 4 we re-rank the top k candidates
returned from the previous step. (ii) On the bottom half of Table 4 we artificially

122 M. Dubey et al.

insert the correct candidate into each list to purely test re-ranking abilities of
our system (this portion of the table contains k∗ as the number of items in each
candidate list). We inject the correct uris at the lowest rank (see k∗), if it was
not retrieved in the top k results from previous step.

Results: The results in Table 4 depict that our algorithm is able to successfully
re-rank the correct URIs if the correct ones are already present. In case correct
URIs were missing in the candidate list, we inserted URIs artificially as the last
candidate. The MRR then increased from 0.568 to 0.905.

5.3 Experiment 3: Evaluating Entity Linking

Aim: To evaluate the performance of EARL with other state-of-the-art systems
on the entity linking task. This also evaluates our hypothesis H3.

Metrics: We are reporting the performance on accuracy. Accuracy is defined
by the ratio of the correctly identified entities over the total number of entities
present.

Result: EARL performs better entity linking than the other systems (Table 5),
namely Babelfy, DBpediaSpotlight, TextRazor and AGDISTIS + FOX (limited
to entity types - LOC, PER, ORG). We conducted this test on the LC-QuAD
and QALD-7 dataset5. The value of k is set to 30 while re-ranking and fetching
the most probable entity.

Table 5. Evaluating EARL’s Entity Linking performance

System Accuracy LC-QuAD Accuracy - QALD

FOX [22] + AGDISTIS [26] 0.36 0.30

DBpediaSpotlight [12] 0.40 0.42

TextRazora 0.52 0.53

Babelfy [13] 0.56 0.56

EARL without adaptive learning 0.61 0.55

EARL with adaptive learning 0.65 0.57
ahttps://www.textrazor.com/.

5.4 Experiment 4: Evaluating Relation Linking

Aim: Given a question, the task is to the perform relation linking in the question.
This also evaluates our hypothesis H3.

Metrics: We use the same accuracy metric as in the Experiment 3.

5 https://project-hobbit.eu/challenges/qald2017/.

https://www.textrazor.com/
https://project-hobbit.eu/challenges/qald2017/

EARL 123

Results: As reported in Table 6, EARL outperforms other approaches we could
run on LC-QuAD and QALD. The large difference in accuracy of relation-linking
over LC-QuAD over QALD, is due to the face that LC-QuAD has 82% questions
with more than one relation, thus detecting relation phrases in the question was
difficult.

Table 6. Evaluating EARL’s Relation Linking performance

System Accuracy LC-QuAD Accuracy - QALD

ReMatch [14] 0.12 0.31

RelMatch [20] 0.15 0.29

EARL without adaptive learning 0.32 0.45

EARL with adaptive learning 0.36 0.47

6 Discussion

Our analysis shows that we have provided two tractable (polynomial with respect
to the number of clusters and the elements per cluster) approaches of solving
the joint entity and relation linking problem. We experimently achieve similar
accuracy as the exact GTSP solution with both LKH-GTSP and Connection
Density with better time complexity, which allows us to use the system in QA
engines in practice. It must be noted that one of the salient features of LKH-
GTSP is that it requires no training data for the disambiguation module while
on the other hand Connection Density performs better given training data for its
XGBoost classifier. While the system was tested on DBpedia, it is not restricted
to a particular knowledge graph.

There are some limitations: The current approach does not tackle questions
with hidden relations, such as “How many shows does HBO have?”. Here the
semantic understanding of the corresponding SPARQL query is to count all
TV shows (dbo:TelevisionShow) which are owned by (dbo:company) the HBO
(dbr:HBO). Here dbo:company is the hidden relation which we do not attempt
to link. However, it could be argued that this problem goes beyond the scope of
relation linking and could be better handled by the query generation phase of a
semantic QA system.

Another limitation is that EARL cannot be used as inference tool for entities
as required by some questions. For example Taikonaut is an astronaut with
Chinese nationality. The system can only link taikonaut to dbr:Astronaut, but
additional information can not be captured. It should be noted, however, that
EARL can tackle the problem of the “lexical gap” to a great extent as it uses
synonyms via the grammar inflection forms.

Our approaches of LKH-GTSP and Connection Density both have poly-
nomial and approximately similar time complexities. EARL with either Con-
nection Density or LKH-GTSP can process a question in a few hundred

124 M. Dubey et al.

milliseconds on a standard desktop computer on average. The result logs,
experimental setup and source code of our system are publicly available at:
https://github.com/AskNowQA/EARL.

7 Conclusions and Future Work

Here we propose EARL, a framework for joint entity and relation linking. We
provided two strategies for joint linking - one based on reducing the problem to
an instance of the Generalised Travelling Salesman problem and the other based
on a connection density based machine learning approach. Our experiments on
QA benchmarks resulted in accuracies which are significantly above the results of
current state-of-the-art approaches for entity and relation linking. In future, we
will improve the candidate generation phase to ensure that a higher proportion
of correct candidates are retrieved.

Acknowledgement. This work is supported by the funding received from the EU
H2020 projects WDAqua (ITN, GA. 642795) and HOBBIT (GA. 688227).

References

1. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from
question-answer pairs. In: EMNLP, vol. 2, p. 6 (2013)

2. Both, A., Diefenbach, D., Singh, K., Shekarpour, S., Cherix, D., Lange, C.: Qanary
– a methodology for vocabulary-driven open question answering systems. In: Sack,
H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC
2016. LNCS, vol. 9678, pp. 625–641. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-34129-3 38

3. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.:
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12(Aug),
2493–2537 (2011)

4. Dubey, M., Dasgupta, S., Sharma, A., Höffner, K., Lehmann, J.: AskNow: a frame-
work for natural language query formalization in SPARQL. In: Sack, H., Blomqvist,
E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS,
vol. 9678, pp. 300–316. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
34129-3 19

5. Gerber, D., Ngomo, A.-C.N.: Bootstrapping the linked data web. In: 1st Workshop
on Web Scale Knowledge Extraction@ ISWC, vol. 2011 (2011)

6. Gubichev, A., Then, M.: Graph pattern matching: do we have to reinvent the
wheel? In: Proceedings of Workshop on GRAph Data. ACM (2014)

7. Helsgaun, K.: Solving the equality generalized traveling salesman problem using the
Lin-Kernighan-Helsgaun algorithm. Math. Program. Comput. 7, 269–287 (2015)

8. Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., Ngonga Ngomo, A.-C.:
Survey on challenges of question answering in the semantic web. Semant. Web 8(6),
895–920 (2017)

9. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

https://github.com/AskNowQA/EARL
https://doi.org/10.1007/978-3-319-34129-3_38
https://doi.org/10.1007/978-3-319-34129-3_38
https://doi.org/10.1007/978-3-319-34129-3_19
https://doi.org/10.1007/978-3-319-34129-3_19
http://arxiv.org/abs/1412.6980

EARL 125

10. Laporte, G., Mercure, H., Nobert, Y.: Generalized travelling salesman problem
through n sets of nodes: the asymmetrical case. Discrete Appl. Math. 18(2), 185–
197 (1987)

11. Lukovnikov, D., Fischer, A., Lehmann, J., Auer, S.: Neural network-based question
answering over knowledge graphs on word and character level. In: Proceedings of
the 26th International Conference on World Wide Web, pp. 1211–1220 (2017)

12. Mendes, P.N., Jakob, M., Garćıa-Silva, A., Bizer, C.: DBpedia spotlight: shedding
light on the web of documents. In: Proceedings of the 7th International Conference
on Semantic Systems, pp. 1–8. ACM (2011)

13. Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambigua-
tion: a unified approach. Trans. Assoc. Comput. Linguist. (2014)

14. Mulang, I.O., Singh, K., Orlandi, F.: Matching natural language relations to knowl-
edge graph properties for question answering. In: Proceedings of the 13th Interna-
tional Conference on Semantic Systems, pp. 89–96. ACM (2017)

15. Nakashole, N., Weikum, G., Suchanek, F.: Patty: a taxonomy of relational pat-
terns with semantic types. In: Proceedings of the EMNLP 2012, pp. 1135–1145.
Association for Computational Linguistics (2012)

16. Park, S., Kwon, S., Kim, B., Lee, G.G.: ISOFT at QALD-5: hybrid question answer-
ing system over linked data and text data. In: CLEF (Working Notes) (2015)

17. Pinter, Y., Guthrie, R., Eisenstein, J.: Mimicking word embeddings using subword
RNNs. In: EMNLP, pp. 102–112 (2017)

18. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In:
Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46523-4 30

19. Serban, I.V., et al.: Generating factoid questions with recurrent neural networks:
the 30m factoid question-answer corpus. arXiv preprint arXiv:1603.06807 (2016)

20. Singh, K., et al.: Capturing knowledge in semantically-typed relational patterns to
enhance relation linking. In: Proceedings of the Knowledge Capture Conference, p.
31. ACM (2017)

21. Singh, K., et al.: Why reinvent the wheel: let’s build question answering systems
together. In: Proceedings of the 2018 World Wide Web Conference on World Wide
Web, pp. 1247–1256. International World Wide Web Conferences Steering Com-
mittee (2018)

22. Speck, R., Ngonga Ngomo, A.-C.: Ensemble learning for named entity recognition.
In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 519–534. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11964-9 33

23. Trivedi, P., Maheshwari, G., Dubey, M., Lehmann, J.: LC-QuAD: a corpus for
complex question answering over knowledge graphs. In: d’Amato, C., et al. (eds.)
ISWC 2017. LNCS, vol. 10588, pp. 210–218. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-68204-4 22

24. Trudeau, R.J.: Introduction to Graph Theory (corrected, enlarged republication.
ed.) (1993)

25. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Gerber, D., Cimiano,
P.: Template-based question answering over RDF data. In: Proceedings of the 21st
International Conference on World Wide Web, pp. 639–648. ACM (2012)

26. Usbeck, R., et al.: AGDISTIS - graph-based disambiguation of named entities using
linked data. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 457–471.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9 29

27. Veyseh, A.P.B.: Cross-lingual question answering using common semantic space.
In: TextGraphs@ NAACL-HLT, pp. 15–19 (2016)

https://doi.org/10.1007/978-3-319-46523-4_30
http://arxiv.org/abs/1603.06807
https://doi.org/10.1007/978-3-319-11964-9_33
https://doi.org/10.1007/978-3-319-68204-4_22
https://doi.org/10.1007/978-3-319-68204-4_22
https://doi.org/10.1007/978-3-319-11964-9_29

126 M. Dubey et al.

28. Xu, K., Zhang, S., Feng, Y., Zhao, D.: Answering natural language questions via
phrasal semantic parsing. In: Zong, C., Nie, J.Y., Zhao, D., Feng, Y. (eds.) Nat-
ural Language Processing and Chinese Computing. CCIS, vol. 496, pp. 333–344.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45924-9 30

29. Yang, Y., Chang, M.-W.: S-mart: novel tree-based structured learning algorithms
applied to tweet entity linking. In: ACL 2015 (2015)

30. Yih, W.-T., Chang, M.-W., He, X., Gao, J.: Semantic parsing via staged query
graph generation: question answering with knowledge base. In: Proceedings of the
53rd ACL Conference, vol. 1, pp. 1321–1331 (2015)

https://doi.org/10.1007/978-3-662-45924-9_30

TSE-NER: An Iterative Approach
for Long-Tail Entity Extraction

in Scientific Publications

Sepideh Mesbah(B), Christoph Lofi, Manuel Valle Torre, Alessandro Bozzon,
and Geert-Jan Houben

Delft University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands
{s.mesbah,c.lofi,m.valletorre,a.bozzon,g.j.p.m.houben}@tudelft.nl

Abstract. Named Entity Recognition and Typing (NER/NET) is a
challenging task, especially with long-tail entities such as the ones found
in scientific publications. These entities (e.g. “WebKB”,“StatSnowball”)
are rare, often relevant only in specific knowledge domains, yet important
for retrieval and exploration purposes. State-of-the-art NER approaches
employ supervised machine learning models, trained on expensive type-
labeled data laboriously produced by human annotators. A common
workaround is the generation of labeled training data from knowledge
bases; this approach is not suitable for long-tail entity types that are, by
definition, scarcely represented in KBs. This paper presents an iterative
approach for training NER and NET classifiers in scientific publications
that relies on minimal human input, namely a small seed set of instances
for the targeted entity type. We introduce different strategies for train-
ing data extraction, semantic expansion, and result entity filtering. We
evaluate our approach on scientific publications, focusing on the long-tail
entities types Datasets, Methods in computer science publications, and
Proteins in biomedical publications.

1 Introduction

The growth of domain-specific knowledge available as digital text demands
more effective methods for querying, accessing, and exploring document col-
lections. Scientific publications are a compelling example: online digital libraries
(e.g. IEEE Xplore) contain hundreds of thousands documents; yet, the avail-
able retrieval functionality is often limited to keyword/faceted search on shallow
meta-data (e.g. title, terms in abstract). A query like retrieve the publications
that used a social media dataset for food recipe recommendation is bound to
return unsatisfactory results1.

Named entities, obtained through an analysis of a document’s content, are an
effective way to achieve better retrieval and exploration capabilities. Automatic
Named Entity Recognition and Typing (NER/NET) is essential to unlock and
1 https://scholar.google.de/scholar?q=publications+using++social+media+datasets

+for+food+recipes+recommendation.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 127–143, 2018.
https://doi.org/10.1007/978-3-030-00671-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_8&domain=pdf
https://scholar.google.de/scholar?q=publications+using++social+media+datasets+for+food+recipes+recommendation
https://scholar.google.de/scholar?q=publications+using++social+media+datasets+for+food+recipes+recommendation

128 S. Mesbah et al.

mine the knowledge contained in digital libraries, as most smaller domains lack
the resources for manual annotation work.

To perform well, state-of-the-art NER/NET methods [3,4,11] either require
comprehensive domain knowledge (e.g. to specify matching rules), or rely on a
large amount of human-labeled training data for machine learning. Both solu-
tions are expensive and time-consuming.

A cheaper alternative is to generate labeled training data by obtaining exist-
ing instances of the targeted entity type from Knowledge Bases (KBs) [3]. This
of course requires that the desired entity type is well-covered in the KB.

Problem Statement. While achieving impressive performance with high-recall
named entities (e.g. locations and age) [11], generic NER/NETs show their limits
with domain-specific and long-tail entity types. Consider the following sentence:
“We evaluated the performance of SimFusion+ on the WebKB dataset”. Despite
WebKB2 being a popular dataset in the Web research community, generic
NERs (e.g. Textrazor3) mistype it as an Organization instead of the domain-
specific entity type Dataset. The entity SimFusion+ of type Software is missed
completely.

Literature [20,26,27] shows that training of domain-specific NER/NETs is
still an open challenge for two main reasons: (1) the long-tail nature of such entity
types, both in existing knowledge bases and in the targeted document collections
[22]; and (2) the high cost associated with the creation of hand-crafted rules, or
human-labeled training datasets for supervised machine learning techniques. Few
approaches addressed these problems by relying on bootstrapping [27] or Entity
Expansion [3,11] techniques, achieving promising performance. However, how
to train high-performance long-tail Entity Extraction and Typing with minimal
human supervision remains an open research question.

Original Contribution. We contribute TSE-NER, an iterative approach for
training NER/NET classifiers for long-tail entity types that exploits Term and
Sentence Expansion, extensively expanding on [16]. TSE-NER relies on minimal
human input – a seed set of instances of the targeted entity type. We intro-
duce different strategies for training data extraction, semantic expansion, and
result entity filtering. Different combinations of these strategies allow to tune
the technique for either higher recall or higher precision scenarios.

We performed extensive evaluations comparing to state-of-the-art methods,
and assess several sentence expansion and term filtering strategies. As our core
use case, we focus on 15,994 data science publications from 10 conference series
with the Dataset (e.g. Imagenet) and data processing Methods (e.g. LSTM) long-
tail entity types. We show that our approach is able to consistently outperform
state-of-the-art low-cost supervision methods, even with small amount of train-
ing information: with a seed set of 100 entities, our approach can achieve pre-
cision up to 0.91 when tuned for precision, and recall up to 0.41 when tuned
for recall, or 0.77 and 0.30 for a balanced setting. When applied in an iterative

2 http://www.cs.cmu.edu/∼WebKB/.
3 https://www.textrazor.com/.

http://www.cs.cmu.edu/~WebKB/
https://www.textrazor.com/

TSE-NER: An Iterative Approach for Long-Tail Entity Extraction 129

fashion, our approach can achieve comparable performance with an initial seed
set of only 5 entities. We show that sentence expansion and filtering strategies
can provide a spectrum of performance profiles, suitable for different retrieval
applications such as search (high precision) and exploration (high recall).

To study the performance of TSE-NER across scientific domains, we pro-
cessed 4,525 biomedical publications focusing on Protein (e.g. Myoglobin) entity
type. Evaluation on the Craft corpus [2] shows that TSE-NER can achieve per-
formance comparable to existing dictionary-based systems, and obtain precision
up to 0.40 and recall up to 0.28 with just 25 seed terms. TSE-NER is imple-
mented in the SmartPub platform [17]; its source code is available on the com-
panion Website [18], and its application shown in the video screencast at the
following address: https://youtu.be/zLLMwOT5sZc.

Outline. The remainder of the paper is organized as follows. In Sect. 2 we cover
related work. Section 3 presents our approach, and describes alternative data
expansion and entity filtering strategies. The experimental setup and results are
presented in Sect. 4. Section 5 concludes.

2 Related Work

A considerable amount of literature published in recent years addressed the deep
analysis of text. Common approaches for deep analysis of publications rely on
techniques such as bootstrapping [27], word-frequency analysis [25], probabilistic
methods like Latent Dirichlet Allocation [8], etc. In contrast to current research
[25] which limits the analysis of a publication’s content to its title, abstract,
references, and authors, we extract entity instances from the much richer full
text. In addition, our method does not rely on existing knowledge bases [20,23]
and it is not based on selecting the most frequent keywords [25]. More recent
research [26] used both corpus-level statistics and local syntactic patterns of
scientific publications to identify entities of interest. Our method uses only a
small set of seed names (i.e 5–100), and automatically trained distributed word
representations to train a NER in iterative steps (i.e. 2–3).

Entity Instances Extraction. Named Entity Recognition (NER) has been
applied to identify both entity types of general interest (e.g. Person, Location,
Cell, Brand, etc.) as well as for specific domains (e.g., medicine or other domain
where resources for training a NER are easily available). NERs rely on different
approaches such as dictionary-based, rule-based, machine-learning [26] or hybrid
(combination of rule based and machine learning) [29] techniques. Despite its
high accuracy, a major drawback of dictionary-based approaches is that they
require an exhaustive dictionary of domain terms, which are expensive to create
and many smaller domains lack the resources to do so. The same holds for rule-
based techniques, which rely on formal languages to express rules and require
comprehensive domain knowledge and time to create.

Bootstrapping and Entity Set Expansion. Most current NERs are based
on Machine Learning techniques, which require a large corpus of labeled training

https://youtu.be/zLLMwOT5sZc

130 S. Mesbah et al.

text [9]. Again, the high costs of data annotation is one of the main challenges
in adopting specialized NER for rare entity types in specialized domains [26]. In
recent years, many attempts have been made to reduce annotation costs. Active
learning techniques have been proposed, asking users to annotate a small part
of a text for machine learning methods [7].

Transfer learning techniques [21] use the knowledge gained from one domain
and apply it to a different but related named entity type. Co-training [1]
starts with a small amount of manually annotated supervised training data and
attempt to increase the amount of annotated data. In contrast to previous work,
we are not dependent on manually annotated supervised training data [1]; we do
not require a large training corpus [21] for transfer learning; also, our approach
differs from works on high-recall entity extractors (e.g. with regular expression
extractors) for detecting entity types such as location and age [11].

Entity Set Expansion is a technique finding similar entities to a given small
set of seed entities [3,6,11]. Bootstrapping [27] is another approach similar to our
method that uses seed terms and extracts features such as unigrams, bigrams,
left unigram, closest verb, etc. These are used to annotate more concept men-
tions which leads to extracting new features. This step operates in an iterative
fashion until no new features are detected. Our approach is inspired by Entity
Set Expansion and bootstrapping, but relies on different expansion strategies
and does not require concepts already being available in knowledge bases [3].

3 Approach

The TSE-NER (Term and Sentence Expansion) approach for domain-specific
long-tail entity recognition is organized in five steps, as shown in Fig. 1.

1 An initial set of seed terms is used to identify a set of sentences used as
initial training data (Sect. 3.1). 2 Expansion strategies can be used to expand
the set of initial seed terms, and the training data sentences (Sect. 3.2). 3 The
Training Data Annotation step annotates the training data using the (possibly
expanded) seed terms set (Sect. 3.3). 4 A new Named Entity Recognizer (NER)
is trained using the annotated training data, and the newly trained NER is
applied on the corpus to detect a candidate set of entities (Sect. 3.4). 5 The
Filtering step refines the set candidate entities set, to improve the quality of
outputted Verified Terms set (Sect. 3.5).

Fig. 1. Overview of the domain-specific long-tail named entities recognition approach.

TSE-NER: An Iterative Approach for Long-Tail Entity Extraction 131

TSE-NER operates under the hypothesis that there are recurring patterns in
the mentions of domain-specific named entities, and that they appear in similar
contexts. If this hypothesis holds, by training a classifier on the texts containing
the entities, we are able to extract the instances of the entity type of interest.
The process can be iterated, by repeating the first step using the newly detected
terms as seeds to generate new training data. We rely on the following concepts
(some are only relevant for the evaluation, and could be omitted in setups where
evaluation is not necessary). The companion website [18] provides a complete
unified algorithm covering the TSE-based NER training workflow.

Known Entity Terms Tall:= Tseed ∪Ttest: This represents a manually created
set of instances of the entity type for which a NER classifier is to be trained. In
this work, we split this set into a set of seed terms Tseed used for training, and
test terms Ttest used for evaluation purposes. In a real-life scenario not requiring
a formal evaluation, of course only the seed terms would be necessary. Tseed may
be small. In this work we consider seed sets 5 ≤ |Tseed| ≤ 100. Creating Tseed is
the only manual input required for NER training in our approach.

Document Corpus Dall:= {d1, ..., d|D|}: This is the complete document corpus
available to our system. Parts of it can potentially be used for training, others
for testing. Each document is considered to be a sequence of sentences.

All Sentences Sall := {s|s ∈ d∧ d ∈ Dall}: This represents all sentences of the
whole document corpus. Each sentence is considered to be a sequence of terms.

Test Sentences Stest :=
⋃

t∈Ttest
{s|s ∈ Sall ∧ t ∈ s}: These are all sentences

containing any term from the test set, and they need to to be excluded from any
training in order to ensure the validity of our later evaluations, resulting in the
set of Development Sentences S := Sall \ Stest.

In the following, we introduce the iterative version of our approach, repre-
senting the current iteration number as i whereas initially i = 0. Each iteration
i uses its own term list Ti, which initially is T0 ⊆ Tseed (the size of the subset of
Tseed depends on the desired use case, as discussed in Sect. 4.3).

3.1 Training Data Extraction

As a first step, a set of training data sentences Si for the current iteration is
created by extracting suitable sentences from S. At this stage, this is realized by
selecting all sentences containing any of the seed terms. Therefore, Si provides
examples of the positive classification class as they are guaranteed to contain a
desired entity instance. To better capture the usage context of the seed entity,
we also extract surrounding sentences in the text: Si := ∪t∈Ti

{s|s ∈ S ∧ (t ∈
s ∨ t ∈ successor(s) ∨ t ∈ predecessor(s))}.

3.2 Expansion

The small size of the seed term set Tseed has two obvious shortcoming that can
greatly hinder the accuracy and recall of the trained NERs: (1) the amount

132 S. Mesbah et al.

of training data sentences Si is limited; and (2) there are only few examples of
mentions of the entity instances of the given type. In addition, the generalization
capability of the NER for identifying new named entities can also be affected:
an insufficient amount of positive examples can lead to entities of the targeted
type being labeled negatively; while the extraction of sentences in the training
data that are related to seed terms will cause a shortage of negative examples.
To account for these issues, we designed two expansion strategies.

Term Expansion (TE). Term Expansion is designed to increase the num-
ber of known instances of the desired entity type before training the NER. An
expanded set of entities will provide more positive examples in the training
data, thus ideally improving the precision of the NER. In scientific documents,
it is common for domain-specific named entities to be in close proximity, e.g. to
enumerate alternative solutions, or list technical artifacts. The Term Expansion
(TE) strategy is therefore designed to test and exploit this hypothesis.

We introduce the interface expandTerms(termss), with termss ⊆ termsi.
While many different implementations for this interface are possible, in this work
we use semantic similarity : terms which are semantically similar to terms in the
seed list should be included in the expansion. For example, given the dataset
seed terms Clueweb and cim-10, the expansion should add similar terms like
trec-2005.

We exploit the distributional hypothesis [10] stating that terms frequently
occurring in similar context are semantically related, using the popular word2vec
implementation of skip-n-gram word embeddings [19]. In essence, word2vec
embeds each term of a large document corpus into low-dimensional vector space
(100 dimensions in our case), and the cosine distance between two vectors has
been shown to be a high-quality approximation of semantic relatedness [14]. In
our implementation, we trained the word2vec model on the whole development
sentence collection S, as described in [19], learning all uni- and bigram word
vectors of all terms in the corpus. Then, in its most basic version, we select
all terms from all sentences, and cluster them with respect to their embedding
vectors using K-means clustering. Silhouette analysis is used to find the optimal
number k of clusters. Finally, clusters that contain at least one of the seed terms
are considered to (only) contain entities the same type (e.g Dataset).

Algorithm 1. TE using Semantic Relatedness
function expandTerms(termss)

Tentity := {t|t ∈ s ∧ s ∈ S ∧ isEntity(t)}
� All entities in S

clusters := cluster(word2vec(Tentity))
� Cluster the embeddings

clusterscorrect := {c|c ∈ clusters ∧ t ∈ termss
∧t ∈ c}
� Select clusters containing any initial term

return
⋃

c∈clusterscorrect
end function

Initial experiments have
shown that this naive app-
roach is slow, and that it can
potentially introduce many
false positives due to (1) the
large number of considered
terms, and (2) the sometimes
faulty assumption that all
terms in cluster are indeed
similar as word2vec related-
ness is not always reliable for
similarity measurements [14].

TSE-NER: An Iterative Approach for Long-Tail Entity Extraction 133

To improve, in the following we only consider terms which are likely to be named
entities by using NLTK entity detection to obtain a list of all entities Eall con-
tained in S4. This results in the Algorithm 1.

Sentence Expansion (SE). A second (optional) measure to increase the size
and variety of the training set is the Sentence Expansion (SE) strategy. It
addresses the problem of the over-representation of positive examples resulting
from selecting only sentences with instances of the desired type (see Sect. 3.1).
The goal is to include negatives sentences not containing instances of the desired
type, but are still very similar in semantics and vocabulary.

We rely on doc2vec document embeddings [13], a variant of word2vec, to learn
vector representations of all sentences. For each sentence in S, we use the cosine
distance to discover the most similar sentences filtered to those not containing
any known instance of the targeted type. As such sentences might contain an
unknown instance of that type, we always combine SE with term expansion to
minimize the risk of accidentally mislabeling them as negative examples.

3.3 Training Data Annotation

The annotation of training data from the (expanded) seed terms is performed
automatically, with no human intervention. After obtaining an (expanded) set
of instances Ti (the current term list) and training sentences Si, we annotate
each term ATi

:= annotateTi
(Si) in all training sentences if they are a positive

instance of the targeted entity type, i.e. if the term ∈ Ti. Using ATi
, any state-

of-the-art supervised NER can be trained.

3.4 NER Training

For training a new NERi, we used the Stanford NER tagger5 to train a Con-
ditional Random Field (CRF) model. As the focus of this paper is the process
of training data generation, we do not consider additional algorithms. CRF has
shown to be an effective technique on different NER tasks [12]; the goal of CRF
is to learn the hidden structure of an input sequence. This is done by defining a
set of feature functions (e.g. word features, current position of the word labels of
the nearby word), assigning them weights and transforming them to a probabil-
ity to detect the output label of a given entity. The features used in the training
of the model are listed in the companion website. After a NER for the current
iteration Ni is trained, it is used to annotate the whole development corpus S,
i.e. ANERi

:= annotateNERi
(S). All positively annotated terms are considered

newly discovered instances of our desired type.

4 NLTK entity detection is based on grammatical context. It does not perform any
typing, and due to it’s simplicity, has high recall values.

5 https://github.com/dat/stanford-ner.

https://github.com/dat/stanford-ner

134 S. Mesbah et al.

3.5 Filtering

After applying the NER to the development corpus, we obtain a list of new can-
didate terms. As our process relied on several steps which might have introduced
noise and false positives (like the expansion steps, but also the NER itself), the
goal of this last (optional) step is to filter out candidate terms that are unlikely
of the targeted type using a set of external heuristics with different assumptions:

Wordnet + Stopwords (WS) Filtering. In the domain-specific language of
scientific documents, it is common for named entities to be “proper” of that
domain (like Simlex-999), or to be expressed as acronyms (like Clueweb, SVM,
RCV). In this strategy, named entities are assumed to be not relevant if they are
part of the “common” English language, either as proper nouns (e.g. software,
database, figure), or a Stopwords (e.g. on, at). This is achieved by performing
lookup operations in WordNet6 and in common lists of stopwords7. As both
sources focus on general English language, only domain-specific terms should be
preserved.

Similar Terms (ST) Filtering. In order to distinguish between different entity
types that pertain to a given domain (e.g. SVM is of type Method, while Clueweb
is of type Dataset), this filtering strategy employs an approach similar to the
one used in the Term Expansion (TE) strategy. The idea is to cluster entities
based on their embedding feature using K-means clustering, and keep all the
entities that appear in the cluster that contains a seed term.

Pointwise Mutual Information (PMI) Filtering. This filtering strategy
adopts a semantic similarity measure derived from the number of times two given
keywords appear together in a sentence in our corpus. The heuristic behind this
filter is vaguely inspired by Hearst Patterns [24], as we manually compile a list of
context terms/patterns CX which likely indicate the presence of an instance of
our desired class (e.g., “we evaluate on x” typically indicates a dataset). Unlike
the other filters, it does increase the manual resource costs for training.

Given a set of candidate entities CTi and the context term set CX, we
measure the PMI between them using log N(ct,cx)

N(ct)N(cx) with ct ∈ CTi ∧ cx ∈ CX,
and N(ct, cx) being the number of sentences in which both a candidate entity
(ct) and a given keyword (t) occur (analogously, N(ct) counts the number of
occurrences of ct). Finally, candidate terms are filtered and excluded if their
PMI value is below a given threshold value.

Knowledge Base Lookup (KBL) Filtering. Our target are long-tail domain-
specific entities, i.e. entities that are not part of existing knowledge bases. Named
entities that could be linked to a knowledge base could be assumed incorrect,
and therefore amenable to exclusion from the final named entity set. In the KBL
approach we exclude the entities that have a reference in the DBpedia.

6 http://wordnet.princeton.edu/.
7 http://www.nltk.org/book/ch02.html.

http://wordnet.princeton.edu/
http://www.nltk.org/book/ch02.html

TSE-NER: An Iterative Approach for Long-Tail Entity Extraction 135

Ensemble (EN) Filtering. Different filtering strategies are likely to remove
different named entities. To reduce the likelihood of misclassification, the Ensem-
ble (EN) filtering strategy combines the judgment of multiple filtering strategies,
to preserve candidate entities that are considered correct by one or more strat-
egy. Intuitively, if each strategy makes different errors, then a combination of
the filters’ judgment can reduce the total error. We preserve the entities that are
passed through two out of three selected filtering strategies.

4 Evaluation

This section reports on an empirical evaluation to assess the performance of the
approach (and its variants) described in Sect. 3, and the ability to utilize it for
long-tail named entity recognition. Sect. 4.1 describes the experimental set-up,
followed by the results (Sect. 4.2), and their discussion (Sect. 4.3).

4.1 Experimental Setup

Corpora. Our main evaluation, shown in the following sections, is performed on
the data science (15,994 papers from 10 conference series) domain. To assess the
performance of TSE-NER in other scientific domains, at the end of the section
we describe an experiment over 4,525 publications from 10 biomedical journals.
The full description of the corpora is described in the companion Web site [18].
Publications are processed using GROBID [15], to extract a structured full-text
representation of their content.

Long Tail Entity Types Selection. Scientific publications contain a large
quantity of long-tail named entities. Focusing on the data science domain, we
address the entity types Dataset (i.e. dataset presented or used in a publi-
cation), and Methods (i.e. algorithms – novel or pre-existing – used to cre-
ate/enrich/analyze a dataset). Both entities types are scarcely represented in
existing knowledge bases8. To evaluate the performance of our approach, we cre-
ate a set of 150 seed instances Tall for each targeted type, collected public from
public websites9.

For each type, 50 of those are selected as test terms for that type Ttest, while
100 are used as seed terms Tseed.

Evaluation Dataset. As discussed in Sect. 3, in the training process all test
sentences Stest (i.e. sentences mentioning terms in Ttest) in the corpus Dall are
removed. For evaluation, we manually created a type-annotated test set: for

8 In DBPedia, the type dbo:database features 989 instances, but mostly related to
biology, economy, and history. The type dbo:software contain names of several
algorithms, but the list is clearly incomplete.

9 For instance: https://github.com/caesar0301/awesome-public-datasets. The full list
of seed entity instances, as well as the list of sources are available on the companion
Website.

https://github.com/caesar0301/awesome-public-datasets

136 S. Mesbah et al.

each test term, we select all sentences in which they are contained including
any adjacent sentence, forming the set of annotated sentences Sannotated :=
∪t∈Ttest

{s|s ∈ Stest∧(t ∈ s∨ t ∈ successor(s) ∨ t ∈ predecessor(s))}. An expert
annotator labeled each term as an instance of the target type to create the test
annotation set used for evaluation Atest := annotateexpert(Sannotated).

Algorithm 2. Evaluation Protocol
function evaluate(seed size)

T ⊆seed size Tseed

NERfinal := longtailT rain(T, Sall)
Afinal := annotateNERfinal(Sannotated)

result := analyze(Afinal, Atest)
end function

Details of statistics on sen-
tences used for training and test-
ing can be found in the companion
Web site. For training, depend-
ing on the seed set size between
5 and 100, we used between 198
and 2863 sentences for the dataset
entity type and 617 to 18545 sen-
tences for the Method entity type.

For testing 50 seed terms were used for both dataset (i.e. 3149 sentences) and
method (i.e. 1097 sentences) entity type. The evaluation protocol is described in
Algorithm 2, where the seed size values can be initialized with different values.
Our analysis was not limited to the 50 test seed terms, we further evaluated 200
entities recognized by TSE-NER via a pooling technique.

4.2 Results

For a given entity type (Dataset and Method), we test the performance with
differently sized seed sets and expansion strategies to create the training data
for generating the NER model, and different filtering strategies. We report the
performance of the basic WS, PMI, and EN strategies, plus a combination of
the WS, ST, and KBL strategies, as listed in Table 1. The complete evaluation
results for all the seed set size and the filtering techniques can be found in the
companion Web site. We investigate iterative performance, and results on the
manually annotated test from the previous section.

Tables 1 and 2 summarize the performance achieved for Dataset and Method
entity types. In Table 2, the No Expansion and Term Expansion figures for the
Method type are omitted for brevity’s sake. Our approach is able to achieve
excellent precision [89% – 91%] with both entity types, and good recall (up to
41%) with the Dataset type. The lower recall obtained with the Method type
can be explained with the greater diversity (in terms of n-grams and use of
acronyms) of method names.

The expansion strategies lead to an average +200% (SE – Dataset) and
+300% (TE – Dataset) increase in recall, thus demonstrating their effective-
ness for generalization. On average, filtering decrease recall, but with precision
improvements up to +20% (PM – Method). These are promising figures, con-
sidering the minimal human supervision involved in the training of the NERs.
We can also show the different trade-offs our approach can strike: different con-
figurations of filtering and expansion lead to different results with respect to
precision and recall values, allowing for example a high-precision slightly-lower

TSE-NER: An Iterative Approach for Long-Tail Entity Extraction 137

recall setup for a digital library, and a higher recall lower precision setup for a
Web retrieval system.

Expansion Strategies. Expansion strategies increase the size and variety of
training datasets, thus improving the precision and recall. Both strategies achieve
the expected results, although with different performance increase: compared
to NE strategy, both TE and SE achieve a considerable performance boost
(µ = +190%) for recall, but at cost of lower precision (µ = −8.7%). We account
the better recall performance of TE to the contextual similarity (and proximity)
of named entities of the same type in technical documents (e.g. Gov2, Robust04,
ClueWeb and Wt10g). The precision decrease in TE can be accounted to treating
some terms incorrectly as positive instances due to their presence in the same
embedding clusters as the seed terms (see also Sect. 3.2). The SE strategy shows
lower recall (µ = +210% over NE), but with less precision loss (µ = −5.2% than
NE). We account this positive behaviour to the presence of more quality negative
examples, helping to maintain the generalization capabilities of the NER, while
refining the quality of its recognition.

Filtering Strategies. We observe no significant improvement in precision with
the WS filtering approach. Manual inspection of results reveal that most of the
false positives are already domain-specific terms (e.g. Pagerank, Overcite for
Dataset, and NDCG for Method) which are not included in Wordnet, but that are
of the wrong type. SS slightly increases the precision by keeping only the entities
that appear in the same cluster as the seed names; however, this comes at a cost,

Table 1. Dataset entity type: precision/recall/F-score on evaluation dataset. Legend:
NE – No Expansion; TE – Term Expansion; SE – Sentence Expansion; NF – No
Filtering; WS – Wordnet + StopWords; SS – Similar Terms + WS; KS – Knowledge
Base Lookup + SS; PM – Point-wise Mutual Information; EN – Ensemble.

Table 2. Method entity type: precision/recall/F-score. Legend as in Table 1.

138 S. Mesbah et al.

as the recall is also penalized by the exclusion of entities of interest that are in
other clusters. KB excludes popular entities that are contained in the knowledge
base (e.g. Wordnet, Dailymed), but also some rare entities that are mistyped.

For instance, the Dataset entities Ratebeer10 or Jester can be retrieved
from DBpedia using the lookup search, although the result points to another
entity. This is a clear limitation with the adopted lookup technique, which could
be avoided with a more precise implementation of the lookup function. PMI
usually gets the highest precision; the strategy proved effective in removing false
positives, but penalizes recall by excluding entities that do not appear with the
words in the context list CX. For instance, Unigene (Dataset) often appears
in with the term data source, which is not in our context list and thus filtered
out. The EN strategy keeps only the entities that are preserved by two out of
three (WS, KB and PMI) filtering strategies. While reducing the number of false
positives, this proves to be too restrictive; for instance Dataset names such as
Yelp, Twitter, Foursquare and Nasdaq are removed by both the WS and KB
strategies.

Seed Set Size. We randomly initialize T ⊆ Tseed with |T | = 5, 10, 25, 50, 100
(see Algorithm 2). We execute the evaluation cycle 10 times for each size of T ,
and again vary expansion and filtering strategies. The recall performance sharply
increase with the number of seeds term (µ = +340% from 5 to 100 seeds): this
is due to the increase in the number of sentences available for NER training,
and is an expected behaviour. The decrease in precision is an average of −6%
from 5 to 100 seeds, with an average value of −5.1% for Dataset and −6.9% for
Methods. Noteworthy are the good performance with as little as 5 seed entities
(Datasets: 0.25 F-score with TE strategy and no filtering).

Iterative NER Training. Figure 2 shows the result of the iterative NER train-
ing using Sentence Expansion with 5 seeds. We report the results with the PMI
(Dataset) and EN (Methods) filtering, as they are the ones offering the most
balanced performance in both precision and recall. Despite the small initial seed
seed, it is possible to achieve precision and recall comparable to the ones obtained
with an initial set of 100 seeds in only 2 iterations.

Fig. 2. Dataset (L) and Method (R) entity: iterative NER training using 5 initial seeds.

10 http://lookup.dbpedia.org/api/search/KeywordSearch?QueryClass=&QueryString
=ratebeer.

http://lookup.dbpedia.org/api/search/KeywordSearch?QueryClass=&QueryString=ratebeer
http://lookup.dbpedia.org/api/search/KeywordSearch?QueryClass=&QueryString=ratebeer

TSE-NER: An Iterative Approach for Long-Tail Entity Extraction 139

Fig. 3. Dataset (L) and Method (R): precision and recall for ranked top 10, 25, 50, 100
and 200 entities, varying seeds sizes.

Analysis of Recognized Entities. To widen the scope of our evaluation, we
extended our result analysis beyond the 150 named entities in Tall. We manually
investigated up-to-now unknown named entities which have been recognized by
the NER after training. We applied a method inspired by the pooling technique
typically used in information retrieval research: given a list of seed terms Tseed

of a given type, and a list of recognized potential filtered terms FT of an yet
unknown type, the idea is to rank the items in the list of candidate terms FT
according to their embedding similarity to the items in the seed set Tseed and
collect the top K. As a result, the obtained precision and recall measurements are
only approximate values. The similarity is measured based on the cosine similar-
ity between the word2vec embedding vectors. Each entity in the lists has been
manually checked by an expert. Figure 3 shows the precision and recall of the top
K = 10, 25, 50, 100, and 200 retrieved entities using the SE approach. As in the
previous experiment, we used the PMI and EN filtering strategies respectively
for Dataset and Method types. Precision performance are consistently high at all
level of recall. Note that we randomly selected T ⊆ Tseed with —T—=5,25,100
seed terms and used them to train the NER using the SE strategy. Variations
in precision performance in Fig. 3 are therefore accountable on the initial seed
term used in each configuration (seed terms might bring in more false positives).

The Dataset entities mslr-web10 (a benchmark collection for learning to rank
method) and ace2004 (ACE 2004 Multilingual Training Corpus); and Method
entities such as TimedTextTank and StatSnowball are a sample of extracted enti-
ties. More examples can be found in the companion website. Some examples of
incorrect detected entities are due to ambiguous nature of the sentence. Consider
the following sentence: “The implementation of scikitlearn toolkit was adopted
for these methods”, since it is similar to a sentence that contains a method entity,
the entity scikitlearn was detected as a method although its a software library.
In another sentence: “The Research Support Libraries Programme (RSLP) Col-
lection Description Project developed a model.”, RSPL (a project) was detected
as a dataset due to its surrounding words (e.g. collection, libraries).

Comparison with State-of-the-Art. We compared our method with: (1) the
BootStrapping (BS) based concept extraction approach [27], a commonly used
state-of-the-art technique in scientific literature; the experiments where executed

140 S. Mesbah et al.

with the code and the parameters (k, n, t) to (2000, 200, 2) provided in [27], and
with 100 seeds. And, (2) improved and expanded Hearst Pattern (HP) [24] for
automatically building or extending knowledge bases extracting type-instance
relations e.g., X such as Y as in “we used datasets such as twitter”. Intuitively,
the performance of BS decreases with less number of seed terms. For the HP
we kept type-instance pairs related to dataset or method (i.e. the context words
in CX). Experiments on our evaluation dataset shown that TSE-NER achieved
better performance in terms of precision/recall/fscore for the dataset entity type
(0.77/0.30/0.43) compared to BS (0.08/0.13/0.10) and HP (0.92/0.15/0.27) as
well as for the method entity (TSE-NER: 0.68/0.15/0.25, BS : 0.11/0.32/0.16,
HP : 0.64/0.04/0.07). The high precision and low recall in HP is explained by
the limited set of HP patterns. We infer that different expansion strategies aug-
ment the performance of our technique compared to the BS which just relies on
features such as unigrams, bigrams, closest verb, etc. Finally we also evaluated
the performance of traditional supervised annotation. The supervised approach
can achieve precision/recall/f-score of 0.82/0.35/0.49 for dataset entity type and
0.70/0.17/0.28 for method entity type using training data from 100 seeds.

Biomedical Domain. To test the performance of TSE-NER on another
domain, we processed 4,525 biomedical publications from 10 journals focusing
on the Protein entity type. The seed terms were selected from the protein ontol-
ogy.11 We excluded test terms appearing in the Craft corpus [2] (a manually
annotated corpus containing 67 full-text biomedical journals) and kept only those
with references in the publications (see companion site). We randomly initial-
ized T ⊆ Tseed with |T | = 5, 25, 100 and employed the SE strategy and a simple
WS filtering. The evaluation cycle has been executed 10 times for each size of
T , and results are averaged. TSE-NER can achieve precision/recall/f-score of
0.57/0.08/0.14 using 5 seeds, 0.40/0.28/0.32 using 25 seeds, and 0.38/0.46/0.41
with 100 seeds. The latter results are comparable to extensive dictionary-based
systems [28] (0.44/0.43/0.43) [5] (0.57/0.57/0.57) where existing ontologies in
the biomedical domain are used for matching Protein entities of the text.

4.3 Discussion

The design goal of the TSE-NER approach was minimizing the training costs
in scenarios where the targeted entity types are rare, and little to no resources
(for manual annotations) are available. In these cases, relying on dictionaries or
knowledge-bases is not feasible, and common techniques like supervised learning
cannot be applied. We believe to have successfully reached that goal, as we
could show that even with small seed lists Tseed with little as 5 or 25 terms,
high-precision NERs could be trained.

Nonetheless, this ease-of-training comes at a price: recall values are low, and
are unlikely to be able to compete with known much more elaborately trained
NERs for popular types. However, by selecting different configurations for filter-
ing and expansion, recall can be moderately improved at the cost of precision.
11 http://obofoundry.org/ontology/pr.html.

http://obofoundry.org/ontology/pr.html

TSE-NER: An Iterative Approach for Long-Tail Entity Extraction 141

Also, the effectiveness of such changes of configurations seems to slightly differ
between the Dataset and Method entity types. As a result, we cannot identify
one clear best configuration as TSE-NER seems to benefit from some entity
type-specific tuning. However, this also provides some flexibility to tune with
respect to different quality and application requirements.

Furthermore, some of our underlying assumptions, heuristics and implemen-
tation choices, are designed as a simplistic prove-of-concepts, and deserve further
discussion and refinement. As an example, consider WS WordNet filtering: we
assumed domain-specific named entities would not be part of common English
language. While this is true for many relevant domain-specific entities, several
datasets (for instance) do indeed carry common names like the census dataset.
For a production system, more complex implementations and tailored crafting is
necessary for reaching better performance values. Another restriction is related
to the core heuristics found in the term and sentence expansion, where we assume
that similar types of entities occur in similar contexts – which is not necessarily
always the case.

Threats To Validity. Our evaluation has been performed on an extensive doc-
ument corpus, covering two distinctively different domains. However, we focused
only on a limited set of entity types. The hypothesis described in Sect. 3 hold for
Datasets, Methods, and Proteins, but further experiments are needed for other
entity types in the same domains (e.g. Software) or in other domains. Despite the
good performance achieved, it could already be noted that even between those
three types, no single TSE-NER configuration is clearly the best. In order to
obtain a complete understanding of the full capabilities, limitations, and trade-
offs of our approach, more studies addressing additional domains and entity
types are necessary.

5 Conclusion

We presented a novel approach for the extraction of domain-specific long-tail
entities from scientific publications. A limiting factor in this scenario is the lack
of resources and/or available explicit knowledge to allow for established NER
training techniques. We explored techniques able to limit the reliance on human
supervision, resulting in an iterative approach that requires only a small set
of seed terms of the targeted type. Our core contributions, in addition to the
overall approach, are a set of expansion strategies exploiting semantic relatedness
between terms to increase the size and labelling quality of the generated training
dataset, as well as several filtering techniques to control the noise.

In our evaluation, we could show that we can reach a precision of up to 0.91,
or a recall of up to 0.41 – a good result considering the very cheap training costs.
Furthermore, we could show that recall can be traded for more precision to a
moderate extend by changing the configuration of our NER training process.

For future work, additional evaluation addressing more domains and entity
types is of importance to better understand the range of applicability of our app-
roach. Also, many of our currently still simplistic heuristics and implementation
choices can benefit from (domain-specific) improvement and optimization.

142 S. Mesbah et al.

References

1. Agerri, R., Rigau, G.: Robust multilingual named entity recognition with shallow
semi-supervised features. Artif. Intell. 238, 63–82 (2016)

2. Bada, M., et al.: Concept annotation in the craft corpus. BMC bioinf. 13(1), 161
(2012)

3. Brambilla, M., Ceri, S., Della Valle, E., Volonterio, R., Acero Salazar, F.X.:
Extracting emerging knowledge from social media. In: International Conference
on World Wide Web, pp. 795–804 (2017)

4. Derczynski, L., Nichols, E., van Erp, M., Limsopatham, N.: Results of the
WNUT2017 shared task on novel and emerging entity recognition. In: Proceed-
ings of the 3rd Workshop on Noisy User-Generated Text, pp. 140–147 (2017)

5. Funk, C., et al.: Large-scale biomedical concept recognition: an evaluation of cur-
rent automatic annotators and their parameters. BMC bioinf. 15(1), 59 (2014)

6. Garćıa-Pablos, A., Cuadros, M., Rigau, G.: W2VLDA: almost unsupervised system
for aspect based sentiment analysis. Expert Syst. Appl. 91, 127–137 (2018)

7. Goldberg, S., Wang, D.Z., Grant, C.: A probabilistically integrated system for
crowd-assisted text labeling and extraction. J. Data Inf. Qual. (JDIQ) 8(2), 10
(2017)

8. Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Nat. Acad. Sci.
101(suppl 1), 5228–5235 (2004)

9. Habibi, M., Weber, L., Neves, M., Wiegandt, D.L., Leser, U.: Deep learning with
word embeddings improves biomedical named entity recognition. Bioinformatics
33(14), i37–i48 (2017)

10. Harris, Z.: Distributional structure. Word 10, 146–162 (1954)
11. Kejriwal, M., Szekely, P.: Information extraction in illicit web domains. In: Inter-

national Conference on World Wide Web, pp. 997–1006 (2017)
12. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic

models for segmenting and labeling sequence data. In: International Conference on
Machine Learning, vol. 951, pp. 282–289 (2001)

13. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning (ICML-14), pp. 1188–1196 (2014)

14. Lofi, C.: Measuring semantic similarity and relatedness with distributional and
knowledge-based approaches. Inf. Media Tech. 10(3), 493–501 (2015)

15. Lopez, P.: GROBID: combining automatic bibliographic data recognition and term
extraction for scholarship publications. In: Agosti, M., Borbinha, J., Kapidakis, S.,
Papatheodorou, C., Tsakonas, G. (eds.) ECDL 2009. LNCS, vol. 5714, pp. 473–474.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04346-8 62

16. Mesbah, S., Fragkeskos, K., Lofi, C., Bozzon, A., Houben, G.-J.: Semantic anno-
tation of data processing pipelines in scientific publications. In: Blomqvist, E.,
Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC
2017. LNCS, vol. 10249, pp. 321–336. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-58068-5 20

17. Mesbah, S., Lofi, C., Bozzon, A., Houben, G.-J.: SmartPub: a platform for long-tail
entity extraction from scientific publications. In: The Web Conference (2018)

18. Mesbah, S., Lofi, C., Bozzon, A., Houben, G.-J.: TSE-NER companion page (2018).
https://sites.google.com/view/iswc2018/

19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

https://doi.org/10.1007/978-3-642-04346-8_62
https://doi.org/10.1007/978-3-319-58068-5_20
https://doi.org/10.1007/978-3-319-58068-5_20
https://sites.google.com/view/iswc2018/

TSE-NER: An Iterative Approach for Long-Tail Entity Extraction 143

20. Osborne, F., de Ribaupierre, H., Motta, E.: TechMiner: extracting technologies
from academic publications. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali,
F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 463–479. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-49004-5 30

21. Qu, L., Ferraro, G., Zhou, L., Hou, W., Baldwin, T.: Named entity recognition for
novel types by transfer learning. In: EMNLP (2016)

22. Reinanda, R., Meij, E., de Rijke, M.: Document filtering for long-tail entities. In:
Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management, pp. 771–780. ACM (2016)

23. Sateli, B., Witte, R.: What’s in this paper?: Combining rhetorical entities with
linked open data for semantic literature querying. In: International Conference on
World Wide Web, pp. 1023–1028 (2015)

24. Seitner, J., et al.: A large database of hypernymy relations extracted from the web.
In: LREC (2016)

25. Shubankar, K., Singh, A., Pudi, V.: A frequent keyword-set based algorithm for
topic modeling and clustering of research papers. In: 2011 3rd Conference on Data
Mining and Optimization (DMO), pp. 96–102. IEEE (2011)

26. Siddiqui, T., Ren, X., Parameswaran, A., Han, J.: FacetGist: collective extrac-
tion of document facets in large technical corpora. In: International Conference on
Information and Knowledge Management, pp. 871–880. ACM (2016)

27. Tsai, C.-T., Kundu, G., Roth, D.: Concept-based analysis of scientific literature.
In: International Conference on Information Knowledge Management. ACM (2013)

28. Tseytlin, E., Mitchell, K., Legowski, E., Corrigan, J., Chavan, G., Jacobson, R.S.:
Noble-flexible concept recognition for large-scale biomedical natural language pro-
cessing. BMC bioinf. 17(1), 32 (2016)

29. Tuarob, S., Bhatia, S., Mitra, P., Giles, C.L.: Algorithmseer: a system for extracting
and searching for algorithms in scholarly big data. IEEE Trans. Big Data 2(1), 3–17
(2016)

https://doi.org/10.1007/978-3-319-49004-5_30

An Ontology-Driven Probabilistic Soft
Logic Approach to Improve NLP Entity

Annotations

Marco Rospocher(B)

Fondazione Bruno Kessler – IRST, Via Sommarive 18, 38123 Trento, Italy
rospocher@fbk.eu

Abstract. Many approaches for Knowledge Extraction and Ontology
Population rely on well-known Natural Language Processing (NLP)
tasks, such as Named Entity Recognition and Classification (NERC)
and Entity Linking (EL), to identify and semantically characterize the
entities mentioned in natural language text. Despite being intrinsically
related, the analyses performed by these tasks differ, and combining
their output may result in NLP annotations that are implausible or
even conflicting considering common world knowledge about entities.
In this paper we present a Probabilistic Soft Logic (PSL) model that
leverages ontological entity classes to relate NLP annotations from dif-
ferent tasks insisting on the same entity mentions. The intuition behind
the model is that an annotation likely implies some ontological classes
on the entity identified by the mention, and annotations from differ-
ent tasks on the same mention have to share more or less the same
implied entity classes. In a setting with various NLP tools returning
multiple, confidence-weighted, candidate annotations on a single men-
tion, the model can be operationally applied to compare the different
annotation combinations, and to possibly revise the tools’ best anno-
tation choice. We experimented applying the model with the candidate
annotations produced by two state-of-the-art tools for NERC and EL,
on three different datasets. The results show that the joint “a posteriori”
annotation revision suggested by our PSL model consistently improves
the original scores of the two tools.

1 Introduction

The problem of identifying and semantically characterizing the entities men-
tioned in a natural language text has been extensively investigated over the
years. Several Natural Language Processing (NLP) tasks have been defined and
investigated. Some of them, such as Named Entity Recognition and Classification
(NERC) and Entity Linking (EL), directly tackle the problem of recognizing the
entities in a text, characterizing them according to some predefined categories
(NERC) or disambiguating them with respect to a reference Knowledge Base
(EL). Other tasks, though conducting different analyses than explicitly identify-
ing entities, may also contribute to their characterization: an example is Semantic
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 144–161, 2018.
https://doi.org/10.1007/978-3-030-00671-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_9&domain=pdf

An Ontology-Driven Probabilistic Soft Logic Approach 145

Role Labeling (SRL), the task of identifying the role (e.g., seller, buyer, goods)
of words, and thus also entities, in a sentence.

Several tools have been proposed to effectively perform these tasks. However,
despite the good performances on the single tasks, when combining them, as for
instance in Knowledge Extraction frameworks (e.g., NewsReader [1], PIKES [2]),
the output of these tools may result in unlikely or even contradictory informa-
tion. Consider for instance the sentence “Lincoln is based in Michigan.”. Here,
the entity mention“Lincoln” refers to the company “Lincoln Motor Company”.1

However, using two state-of-the-art NLP tools, one for NERC (Stanford NER2)
and one for EL (DBpedia Spotlight3), the first correctly identifies “Lincoln” as
an organization, while the second wrongly links it to the DBpedia entity cor-
responding to“Abraham Lincoln”. As another example, on the sentence “San
Jose is one of the strongest hockey team.”, the NERC tool wrongly identifies
the mention“San Jose” as a location, while the EL one correctly links it to the
entity “San Jose Sharks”.4

In this paper we present PSL4EA, a novel approach based on Probabilistic
Soft Logic (PSL) that, leveraging ontological background knowledge, enables
relating the entity annotations produced by different NLP tools on the same
entity mentions, and to assess their coherence. In a nutshell, given the mention
of an entity in a text, the proposed PSL model enables:

1. to express the ontological entity classes of the background knowledge likely
implied by the involved annotations; and,

2. to assess the coherence of the annotations, as the extent to which they share
the same implied ontological entity classes.

If available, information on the confidence of the tools on the provided anno-
tations can be included in the model, and it is taken in consideration when
assessing the coherence of the annotations. As a consequence, if the considered
tools provide multiple candidate annotations — i.e., alternative annotations on
the same mention, weighted with a confidence score — the model can be applied
to select the combination of annotations (one for each tool) that maximizes the
annotation coherence in light of their confidences, possibly overruling the best
candidate choices of the tools.

We present the creation of the model for a concrete scenario involving NERC
and EL annotations, leveraging YAGO [3] as background ontological knowledge.
To assess the effectiveness of the approach, we applied the model on the can-
didate annotations produced by two state-of-the-art tools for NERC (Stanford
NER [4]) and EL (DBpedia Spotlight [5]), on three reference evaluation datasets
(AIDA CoNLL-YAGO [6], MEANTIME [7], TAC-KBP [8]), showing experi-
mentally that the joint annotation revision suggested by the model consistently

1 https://en.wikipedia.org/wiki/Lincoln Motor Company (last accessed on April 1,
2018).

2 http://nlp.stanford.edu:8080/corenlp/ (last accessed on April 1, 2018).
3 http://demo.dbpedia-spotlight.org/ (last accessed on April 1, 2018).
4 https://en.wikipedia.org/wiki/San Jose Sharks (last accessed on April 1, 2018).

https://en.wikipedia.org/wiki/Lincoln_Motor_Company
http://nlp.stanford.edu:8080/corenlp/
http://demo.dbpedia-spotlight.org/
https://en.wikipedia.org/wiki/San_Jose_Sharks

146 M. Rospocher

improves the scores of the considered tools. We also discuss how to extend the
model to (entity) annotations beyond NERC and EL.

While PSL was previously applied [9] for Knowledge Graph Identification
(i.e., deriving a knowledge graph from triples automatically extracted from text),
to the best of our knowledge this is the first work exploiting this powerful
framework, with ontological knowledge, to assess the coherence and to improve
NLP entity annotations. Differently from other approaches that have investi-
gated jointly trained NERC and EL models (e.g., [10,11]), PSL4EA works “a
posteriori” on the annotations for the considered tasks, leveraging ontological
knowledge. This makes the approach applicable to many existing NLP tools for
entity annotation.

The paper is structured as follows. Section 2 briefly recaps the main aspects of
Probabilistic Soft Logic. Section 3 presents our novel, ontology-driven PSL app-
roach for jointly assessing the coherence and revising NLP annotations. Section 4
reports the empirical assessment of using PSL4EA to improve the performances
of Stanford NER and DBpedia Spotlight on three reference datasets for NERC
and EL. Section 5 discusses some aspects of the proposed approach, including
the extension to other (entity) annotation types (e.g., Semantic Role Labeling).
Section 6 compares with relevant related works, while Sect. 7 concludes.

2 Background on Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) [12] is a powerful, general-purpose probabilis-
tic programming language that enables users to specify rich probabilistic mod-
els over continuous variables. It is a statistical relational learning framework
that uses first-order logic to compactly define Markov networks, and comes with
methods for performing efficient probabilistic inference for the resulting mod-
els. Differently from other related works, variables in PSL are continuous in the
range [0, 1] rather than binary.

A PSL program consists of a PSL model and some data. A PSL model is
composed of a set of weighted if-then, first-order logic rules, such as:

1.2 : WorksFor(b, c)&BossOf(b, e) → WorksFor(e, c) (1)

stating that employees are likely to work for the same company as their boss.
Here: 1.2 is the weight of the rule; b, c, and e are universally-quantified variables;
WorksFor and BossOf are predicates; WorksFor(b, c) is an atom; the part on the
left of the arrow is called body, while the part on the right is named head. The
grounding of a rule is the substitution of variables in the rule’s atoms with
constants (e.g., the ground atom WorksFor(B,C) results by assigning constants
B and C to variables b and c), and ground atoms take a soft-truth value in the
range [0, 1].

To compute soft-truth values for logical formulas, PSL adopts Lukasiewicz
t-norm and co-norm to provide a relaxation of the logical conjunction (∧), dis-
junction (∨) and negation(¬). Let I (interpretation) be an assignment of soft-
truth values to ground atoms, and let a1 and a2 be two ground atoms, we have:

An Ontology-Driven Probabilistic Soft Logic Approach 147

I(a1) ∧ I(a2) =max{I(a1) + I(a2) − 1, 0}
I(a1) ∨ I(a2) =min{I(a1) + I(a2), 1}

¬I(a1) = 1 − I(a1)
(2)

Given a rule r, with body rb and head rh, r is said to be satisfied if and only if
I(rb) ≤ I(rh). For instance, with I(WorksFor(B,C)) = 0.6, I(BossOf(B,E)) =
0.6 and I(WorksFor(E,C)) = 0.5, rule (1) is satisfied. Otherwise, PSL defines
a distance to satisfaction d(r) = max{0, I(rb) − I(rh)}, capturing how far
a rule is from being satisfied. For instance, with I(WorksFor(B,C)) = 0.8,
I(BossOf(B,E)) = 0.9 and I(WorksFor(E,C)) = 0.3, rule (1) has a distance
to satisfaction equal to 0.4.

By leveraging the distance to satisfaction, PSL defines a probability
distribution

f(I) =
1

Z
exp

[
−

∑
r∈R

wrd(r)p
]

(3)

over interpretations, where Z is a normalization constant, wr is the weight of
rule r, R is the set of all rules, and p ∈ {1, 2} identifies a linear or quadratic loss
function.

Different inference tasks can be investigated on a PSL program. One relevant
for this paper is Most Probable Explanation (MPE) inference and corresponds to
finding the overall interpretation with the maximum probability (i.e., the most
likely soft-truth values of unknown ground atoms) given a set of known ground
atoms. That is, the interpretation that minimizes the distance to satisfaction by
trying to satisfy all rules as much as possible.

3 A PSL Model for NERC and EL

In this section, we outline PSL4EA (PSL for Entity Annotations), the PSL
model we propose to jointly assess the coherence, and possibly revise, the entity
annotations produced for some NLP tasks. We present the approach focusing on
the two typical NLP tasks for entity annotation,5 namely:

– Named Entity Recognition and Classification (NERC): the task of
labeling mentions in a text that refer to named things such as persons, organi-
zations, etc., and choosing their type according to some predefined categories
(e.g., PER, ORG);

– Entity Linking (EL): the task of aligning an entity mention in a text to its
corresponding entity in a Knowledge Base (e.g., YAGO [3], DBpedia [13]).

The approach is based on the assumption that, given the mention of a named
entity in a text, the entity can be typed with all its ontological classes6 defined
in a given Knowledge Base K, our ontological background knowledge.
5 The extension to other types of entity annotations is discussed later in Sect. 5.
6 Typically, an entity is typed with many ontological classes, cf. rdf:type assertions

from YAGO on http://dbpedia.org/page/Lincoln Motor Company (last accessed on
April 1, 2018).

http://dbpedia.org/page/Lincoln_Motor_Company

148 M. Rospocher

We discuss the general case where we have multiple alternative annotations
(candidates) for each task on the same mention. That is, given a mention M ,
and assuming to have nN NERC and nE EL candidates on M , we indicate with
AN

1 , . . . , AN
nN

and AE
1 , . . . , AE

nE
the NERC and EL candidates, while w(M,Ai

j)
indicates the confidence score assigned to annotation Ai

j on mention M .
The PSL model comprises two parts: the first one exploiting the relation

between NLP annotations and ontological classes from the background knowl-
edge; and, the second one capturing the coherence of the NLP annotations via
these ontological classes.

3.1 Classes Implied by NLP Annotations

The intuition behind this part of the model is that given an annotation for an
entity mention, if this annotation is compatible with some ontological classes of
the background knowledge, then the ontological classes characterizing the entity
should be among them.

Given a mention M and a NERC annotation AN
i , we define the rule:

w(M,AN
i) : AnnN (M,AN

i)& ImpClN (AN
i , c) → ClAnnN (M,AN

i , c) (4)

where:

– AnnN (x, y) relates a mention x to a NERC annotation y. The grounding of
the predicate has value 1 if the mention is annotated with that NERC type,
0 otherwise;

– ImpClN (x, y) captures to which extent seeing a certain NERC annotation x
implies that the entity is typed with the ontological class y. This quantity
can be learned from gold data (see Sect. 3.1);

– ClAnnN (x, y, z) captures that mention x corresponds to an entity that is
instance of class z due to annotation y.

For the first two predicates, the soft-truth value of the atoms is known (input
data), while the value for the ground atoms of ClAnnN has to be determined
by the model. Furthermore, the rule is partly grounded, i.e., the only variable
is the ontological class c. Given a mention M on which we have nN NERC
candidates, we have nN such rules, one for each candidate, weighted according
to the corresponding confidence score.

Similarly, given a mention M and an EL annotation AE
i , we define the rule:

w(M,AE
i) : AnnE(M,AE

i)& ImpClE(AE
i , c) → ClAnnE(M,AE

i , c) (5)

where AnnE(x, y), ImpClE(x, y), ClAnnE(x, y, z) are defined analogously to the
NERC case. Again, note that we have nE such rules.

Determining ImpClN and ImpClE . ImpClN (x, y) captures the “likelihood”
that a certain NERC annotation implies an ontological class. The higher the
soft-truth value for a given NERC type x and ontological class y, the higher are
the chances that if an entity mention is NERC annotated with x, than the entity

An Ontology-Driven Probabilistic Soft Logic Approach 149

is an instance of class y. To determine ImpClN (x, y) we assume the availability
of a gold standard corpus G where each entity mention is annotated with both
(i) its NERC type and (ii) all its ontological classes from the background knowl-
edge, or, alternatively, an annotation deterministically alignable to them (e.g.,
an EL annotation, with the entity typed according to the ontological classes).
We then use G as data for another PSL program, with rules:

1.0 :GoldN (m, t)& ImpClN (t, c) → GoldC(m, c)
1.0 :GoldN (m, t)&¬ImpClN (t, c) → ¬GoldC(m, c)

(6)

where GoldN (m, t) is 1 if mention m is annotated with t in G, and 0 otherwise,
while GoldC(m, c) is 1 if c is one of the ontological classes of the entity denoted
by the mention m, and 0 otherwise. That is, the soft-truth values of the ground
atoms of GoldC and GoldN are known, while the value for the ground atoms of
ImpClN has to be determined by this specific model. Note that two rules are used
in (6): they respectively account for the cases where mentions, NERC annotated
with a type t, are annotated (i) also with class c, and (ii) not with class c, so
to properly capture the “likelihood” that a NERC type implies some classes but
not others.

The model has to estimate ImpClN for all possible NERC types and ontolog-
ical classes. While all possible NERC types are typically occurring in G, some
very specific class c of the background knowledge K may be observed few times
(or even not at all) in it. However, especially for coarse-grain NERC types such
as the classical 4-type (PER, ORG, LOC, MISC) model, there is little benefit in
considering rarely observed, very specific ontological classes. We thus restrict our
attention to popular classes, those observed at least n̄ times (an hyperparameter
of our approach) in G, typically general classes in the class taxonomy, filtering
out any remaining class in K.

For EL, if the entities in the target EL Knowledge Base and the background
knowledge K are aligned,7 the soft-truth value of the ImpClE atoms can be
deterministically obtained via such alignment: ImpClE(x, y) has soft-truth value
1 if y is one of the ontological classes of the entity z corresponding to x in the
alignment, 0 otherwise.8

3.2 Annotation Coherence via Classes

The second part of the PSL model puts in relation the predicates ClAnnN and
ClAnnE via ontological classes:

w1 :ClAnnN (m, t, c)&ClAnnE(m, e, c) → AnnPSL(m, t, e)
w2 :ClAnnN (m, t, c)&¬ClAnnE(m, e, c) → ¬AnnPSL(m, t, e)
w3 :¬ClAnnN (m, t, c)&ClAnnE(m, e, c) → ¬AnnPSL(m, t, e)

(7)

7 This clearly includes the special case where the EL Knowledge Base is actually K.
8 This assumes that K contains complete information about entity classes (closed-

world assumption), which usually holds for the most general classes in the class
taxonomy.

150 M. Rospocher

where AnnPSL is the predicate we use to estimate the coherence of a couple of
NERC and EL candidate annotations on a given mention. The intuition here
is that a NERC and an EL annotation implying the same classes9 from the
ontological background knowledge are likely to be coherent, and thus the soft-
truth value of the corresponding AnnPSL atom should be higher than when the
annotations imply different classes. Note that these rules are not grounded. Rule
weights w1, w2, w3 are hyperparameters of our approach: the higher their values,
the stronger the satisfaction of those rules — and hence coherence enforcement —
is accounted for during inference.

Note that the two parts of the model have one important distinctive feature:
for the actual construction of the model, the first part is dynamic, in the sense
that the (partially-grounded) rules are instantiated based on the actual annota-
tions and confidence scores available, while the second part is static, with rules
involving only variables (and no constants) and thus defined once for all.

Fig. 1. Instantiation of the PSL model for the sentence “Lincoln is based in Michigan.”

Figure 1 shows an example of instantiation of the model on the sentence
“Lincoln is based in Michigan.”, with two mentions m1 = Lincoln and m2 =
Michigan (shortened for compactness to L and M, respectively), and assuming
to have two NERC (ORG [0.9], PER [0.1]) and three EL (A. Lincoln [0.5],
Lincoln MC [0.3], Lincoln UK [0.2]) confidence-weighted candidates on the first,
and three NERC (LOC [0.9], PER [0.05], ORG [0.05]) and two EL (Michigan
[0.9], U. of Michigan [0.1]) confidence-weighted candidates on the second.

9 Note that, for a given grounding of m, t and e, the value of AnnPSL results from the
contribution of several classes c.

An Ontology-Driven Probabilistic Soft Logic Approach 151

The PSL model is further complemented with negative priors, i.e., additional
rules stating that by default all open ground atoms (i.e., whose value has to be
determined by the model) of investigated predicates (ClAnnN , ClAnnE , AnnPSL)
have 0 soft-truth value.

By running MPE inference on the model, we can compute the soft-truth
value of all the ground atoms of AnnPSL. Intuitively, the higher this value, the
more likely a NERC annotation and an EL annotation are coherent on the given
mention, with the combination of candidates scoring the highest value being the
best NERC and EL annotation for the model, in light of their original confidence
scores and the ontological knowledge.

By comparing the soft-truth value of the resulting AnnPSL ground atoms
with a threshold value θ (an hyperparameter of our approach), we can decide
to which extent to rely on the prediction of the model, especially when revising
(and possibly overruling) the best-choice candidate annotations proposed by
some NERC and EL tools.

4 Evaluation

We conduct an evaluation, in a scenario where both NERC and EL analyses are
run, to show that our PSL approach, leveraging some ontological background
knowledge and applied “a posteriori” on the confidence-weighted candidate anno-
tations returned by a NERC tool and a EL tool, suggests better annotations
than the highest score ones independently returned by the given tools. The data
used by the PSL model (including the soft-truth values for ImpClN and ImpClE
ground atoms), the evaluation package (excluding copyrighted dataset material),
and additional result tables are available on the PSL4EA web-folder.10

4.1 Background Knowledge and Tools

As background knowledge we use YAGO [3]. We materialize, applying
RDFpro [14], all the inferable classes for an entity based on the YAGO TBox
(e.g., subclass axioms), obtaining class information for 6,016,695 entities taken
from a taxonomy of 568,255 classes.

To produce the NERC and EL annotations, we exploit two state-of-the-art
tools:

– Stanford NER [4]: a reference tool for NERC. We use Stanford NER
with the traditional CoNLL 2003 model consisting of 4 NERC types: Loca-
tion (LOC), Person (PER), Organization (ORG), and Miscellaneous (MISC).
By default, Stanford NER returns the best NERC labeling of a sentence, but
it can be instructed to provide many alternative weighted NERC labelings of
a sentence, from which it is possible to derive NERC candidates (and their
confidences) for a mention;

10 http://pikes.fbk.eu/psl4ea.html.

http://pikes.fbk.eu/psl4ea.html

152 M. Rospocher

– DBpedia Spotlight [5]: a reference tool for EL that uses DBpedia [13] as
target knowledge base. Via its candidates service, DBpedia Spotlight can be
instructed to return ten EL candidates (and their confidences) for a given
mention.

4.2 Datasets

To verify the capability of our approach to generalize over different annotated
data, we use three distinct datasets in our evaluation. They consist of textual
documents together with gold-standard annotations, both for NERC and EL:11

– AIDA CoNLL-YAGO [6]: it consists of 1,393 English news articles from
Reuters, hand-annotated with named entity types (PER, ORG, LOC, MISC)
and YAGO2 entities (and Wikipedia page URLs). It is organized in three
parts: eng.train (946 docs), eng.testa (216 docs), eng.testb (231 docs);

– MEANTIME [7]: it consists of 480 news articles from Wikinews, in four
languages. In our evaluation, we only use all the 120 articles of the English
section. The dataset includes manual annotations (limited to the first 5 sen-
tences of the articles) for named entity types (only PER, ORG, LOC) and
DBpedia entities;

– TAC-KBP [8]: it consists of 2,231 English documents (news article, news-
group and blog posts, forum discussions).
For each document, it is known that all the mentions of one or a few query
entities can be linked to a certain Wikipedia page and to a specific NERC
type (only PER, ORG, LOC), thus giving rise to a (partially) annotated gold
standard for NERC and EL.

4.3 Research Question and Evaluation Measures

We address the following research question:

Does the ontology-driven PSL4EA a posteriori joint revision of Stanford
NER and DBpedia Spotlight annotations improve their NERC and EL per-
formances?

In investigating this research question, we remark that by construction the PSL
model relies on the mentions detected by the NLP tools used, so the model may
revise the NERC types and/or the EL entities proposed by the tools, but does
not alter other aspects such as the mention span (i.e., the textual tokens that
constitute the mention). As such, meaningful measures for our evaluation are
the following ones, typically adopted in NERC and EL evaluation campaigns:

11 We choose these datasets, among many available ones for NERC and for EL as they
have both NERC and EL annotations that can be used to evaluate the improvement
on both tasks.

An Ontology-Driven Probabilistic Soft Logic Approach 153

– type: a mention is counted as correct if it has the same span and NERC
type as a gold annotation. It is the measure used in the CoNLL2003 NER
evaluation, and corresponds to strong typed mention match in the TAC-
KBP official scorer;12

– link: a mention is counted as correct if it has the same span and EL entity
as a gold annotation. It corresponds to strong link match in the TAC-KBP
official scorer;

– type+link: an entity mention is counted as correct if it has the same
span, NERC type, and EL entity as a gold annotation. It corresponds to
strong typed link match in the TAC-KBP official scorer.

For evaluating the performance on these measures, we use the standard metrics,
namely precision (P), recall (R), and F1, computed using the TAC-KBP official
scorer on the predicted and gold standard annotations as follow:

– true positives (TP) = predicted annotations, in the gold standard;
– false positives (FP) = predicted annotations, not in the gold standard;
– false negatives (FN) = gold standard annotations, not predicted;
– P = TP

TP+FP , R = TP
TP+FN and F1 = 2·P ·R

P+R .

4.4 Evaluation Procedure

We use AIDA eng.train as the gold standard G for determining ImpClN —
Table 1 provides, for each NERC type, an overview of the YAGO classes of
the top 10 soft-truth value ground atoms of ImpClN — while ImpClE is deter-
ministically obtained directly via the DBpedia-YAGO alignment. We use AIDA
eng.testa to optimize the PSL4EA model hyperparameters (cf. Sect. 3), namely
n̄ (=200),13 w1, w2, w3 (=10.0), and θ (=0.2). We adopt the quadratic loss func-
tion (cf. Eq. (3)).

All datasets are preprocessed in order to use entity URIs from the same
version of DBpedia (namely, 2016-04) as the used DBpedia Spotlight version. In
particular, the Wikipedia URLs in AIDA and TAC-KBP are aligned to the 2016-
04 DBpedia URIs via DBpedia’s ‘Redirects’, ‘Revision URIs’, and ‘Wikipedia
Links’ datasets.

The experiment is conducted comparing the metric scores for the consid-
ered measures in two settings, without (standard) and with (with PSL4EA)
the contribution of the PSL4EA model: in the standard setting we annotate
the documents of the three corpora directly using the highest confidence score
NERC type and EL entity proposed by Stanford NER and DBpedia spotlight;
instead, in the with PSL4EA setting, the PSL4EA model picks, among all the
confidence-weighted candidate annotations returned by the tools on the same

12 https://github.com/wikilinks/neleval (last accessed on April 1, 2018).
13 With n̄ = 200, the background knowledge used in the model is reduced to 214 YAGO

classes.

https://github.com/wikilinks/neleval

154 M. Rospocher

Table 1. Top 10 YAGO classes for each NERC type according to the soft-truth value
(in parentheses) of ImpClN ground atoms learned from AIDA eng.train.

NERC type YAGO classes

PER PhysicalEntity100001930 (.991), CausalAgent100007347 (.988),
Object100002684 (.963), YagoLegalActorGeo (.963),
Whole100003553 (.962), YagoLegalActor (.961),
LivingThing100004258 (.960), Organism100004475 (.960),
Person100007846 (.960), WikicatLivingPeople (.850)

ORG YagoPermanentlyLocatedEntity (.945), Abstraction100002137
(.945), YagoLegalActorGeo (.938), YagoLegalActor (.925),
Group100031264 (.924), SocialGroup107950920 (.923),
Organization108008335 (.914), Association108049401 (.642),
Club108227214 (.637), Unit108189659 (.340)

LOC YagoPermanentlyLocatedEntity (.986), YagoLegalActorGeo
(.967), PhysicalEntity100001930 (.909), Object100002684
(.907), YagoGeoEntity (.905), Location100027167 (.889),
Region108630985 (.883), District108552138 (.866),
AdministrativeDistrict108491826 (.865), Country108544813
(.524)

MISC YagoPermanentlyLocatedEntity (.843), YagoLegalActorGeo
(.679), PhysicalEntity100001930 (.614), Object100002684
(.609), YagoGeoEntity (.591), Location100027167 (.572),
Region108630985 (.571), AdministrativeDistrict108491826
(.568), District108552138 (.568), Country108544813 (.549)

mention, the 〈NERC type, EL entity〉 combination with the highest soft-truth
value for AnnPSL.14

We remark that our approach is not a complete NER+EL solution on its own
but relies on annotations provided by NERC and EL tools (e.g., Stanford NER
and DBpedia Spotlight as in the considered experiment), revised “a posteriori”
using ontological knowledge. Therefore, in line with the investigated research
question, we focus our study on comparing the scores between the two afore-
mentioned settings, rather than analyzing the absolute scores obtained, which
inherently depend also on the performances of the tools providing the candidate
annotations (i.e., changing the tools would likely results in different overall P ,
R, and F1 scores).

Furthermore, as some datasets are only partially annotated (e.g., TAC-KBP),
in the paper we focus the evaluation only on the mentions detected by the tools
(i.e., annotated with NERC and/or EL) — which we recall are the same in both
settings — that are in the gold standard, in order to better compare performances
across the different datasets, and to avoid obtaining scores, namely P and F1,

14 If the highest soft-truth value on a mention is below the threshold θ, the approach
falls back to the best NERC and EL candidate annotations suggested by the tools
on it.

An Ontology-Driven Probabilistic Soft Logic Approach 155

overly biased by FP in both settings. For completeness, scores considering all
mentions returned by the tools as well as macro-averaged variants (by document,
by NERC type) are provided on the web-folder.

4.5 Results and Discussion

Table 2 reports precision, recall, and F1 (micro-averaged) for the evaluation mea-
sures on all the datasets, for both settings considered.

For all the metrics computed over the three datasets, the scores are con-
sistently higher in the with PSL4EA setting than in the standard one, with
improvements ranging from .004 to .032. Most of the improvements (24 out of
27) are statistically significant (p < 0.05) according the Approximate Random-
ization test. Similar outcomes (cf. PSL4EA web-folder for all the detailed data)
are observed when:

– considering all mentions returned by the tools (rather than just those in the
gold standard): improvements ranging from .003 to .025;

– macro-averaging by document: improvements ranging from .003 to .029;
– macro-averaging by NERC type: improvements ranging from .003 to .020.

Improvements for type+link (from .010 to .032), besides being all statistically
significant, are always higher than the ones for the other two measures (type
and link), thus confirming that the model is particularly effective in proposing,
for a given mention, the correct 〈NERC, EL〉 annotation combination among the
available candidates.

Table 2. Precision, recall, and F1 scores for type, link, and type+link measures for
both settings on the three datasets (number of gold standard mentions in parentheses).
Score differences (with PSL4EA − standard) are reported, with statistical significance
ones marked in bold.

P R F1 P R F1 P R F1

AIDA (5616)
standard .943 .875 .908 .662 .652 .656 .634 .625 .630

with .947 .879 .912 .670 .659 .665 .646 .635 .640
.004 .004 .004 .008 .007 .009 .012 .010 .010

MEANTIME (792)
standard .882 .695 .777 .703 .556 .621 .635 .502 .561

with .902 .711 .795 .714 .564 .630 .667 .527 .589
.020 .016 .018 .011 .008 .009 .032 .025 .028

TAC-KBP (4969)
standard .911 .652 .760 .401 .423 .412 .367 .386 .376

with .925 .662 .772 .408 .430 .419 .384 .404 .394
.014 .010 .012 .007 .007 .007 .017 .018 .018

Analyzing more in detail the results, it is worth remarking that the model
used for the evaluation, while trained only on AIDA eng.train, performs rea-
sonably well also on the other two datasets, as confirmed by the substantially

156 M. Rospocher

higher scores for the with PSL4EA setting over the standard one, with statistical
significant improvements in most of the cases. This may suggest that the instan-
tiated model generalizes well over different document collections, something we
plan to further confirm with additional experiments in future work.

Summing up, the results on multiple datasets show that exploiting the
PSL4EA model to “a posteriori” revise the annotations provided by Stanford
NER and DBpedia Spotlight allows to consistently improve their NERC and EL
scores, and thus we can positively answer our research question.

5 Discussion

Peculiarity of the PSL4EA model with respect to other PSL applica-
tions. PSL has been applied for different structural relational learning tasks,
including the distillation of a Knowledge Graph from candidate relation triples
extracted from text [9]. In that work, the authors encode the confidence score
of extracted relation triples as the soft-truth value of the corresponding atoms,
instead of rule weights like in PSL4EA. We experimented also with such configu-
ration for the NERC and EL joint annotation revision setting, achieving however
worse performances than modeling confidences as rule weights.

Applicability to Other NERC and EL Tools. In the experiments discussed
in Sect. 4, we applied PSL4EA to jointly revise the NERC and EL annotations
produced by Stanford NER and DBpedia Spotlight. However, we remark that
PSL4EA works on NERC and EL candidate annotations, and thus its applica-
bility is not limited only to those specific tools. Indeed, the model used for the
evaluation can be applied as-is to any couple of NERC and EL tools provided
that: (i) the NERC tool annotates with the 4-type CoNLL2003 NERC categories
(or its popular 3-type version omitting MISC); and, (ii) the EL tool annotates
with DBpedia URIs. Clearly, the model can be adapted to other NERC cate-
gories and EL reference Knowledge Bases, revising ImpClN and ImpClE .

Implementation and Performances. We implemented the PSL4EA app-
roach used in the evaluation as a Java module15 of PIKES [2], an open-source
knowledge extraction framework exploiting several NLP analyses, including
NERC (via Stanford NER) and EL (via DBpedia Spotlight). For the PSL infer-
ence, we use the open-source Java PSL software [12].16 In details, the module
(i) builds a PSL model and data dynamically for each named entity mention
having both NERC and EL annotations, (ii) performs MPE inference, and (iii)
saves the results in the PIKES output. Computationally, the performances of
the module are roughly comparable to the annotation costs.17

Extension to Other Types of Entity Annotations. In Sect. 3 we presented
an ontology-driven PSL model for assessing the coherence and jointly revising
15 To be distributed with the next PIKES release.
16 https://github.com/linqs/psl.
17 Note that substantial improvements of running time performances can be achieved

with further engineering and optimization, out-of-scope for the purposes of this work.

https://github.com/linqs/psl

An Ontology-Driven Probabilistic Soft Logic Approach 157

NERC and EL annotations. That model can be extended to other typologies
of annotations, that may involve (named) entities. Here we briefly discuss some
ideas on how these additional annotations could contribute to the model, leaving
the actual development of the model (and its evaluation) to future work.

Semantic Role Labeling (SRL) is the task of finding the semantic role of each
argument of each (verbal or nominal) predicate in a sentence. For instance, in
the sentence “Sergio Mattarella is the president of Italy”,“president” evokes a
Leadership frame (according to FrameNet [15]), and has two arguments, “Sergio
Mattarella” (with role Leader) and“Italy” (with role Governed). Clearly, role
annotations may contribute to further characterize entities, and, similarly to
NERC and EL, they may imply some ontological classes. For instance, a Leader
role annotation is more likely to occur on the mention of an entity of type
“Leader109623038” in YAGO than an entity of type“Airplane102691156”. We
can thus think to include role annotations in PSL4EA with rules similar to the
ones for NERC and EL:

w(M,AR
i) : AnnR(M,AR

i)& ImpClR(AR
i , c) → ClAnnR(M,AR

i , c) (8)

where predicate ImpClR, capturing the ontological classes implied by role anno-
tations, can be learned from data as described in Sect. 3.1.18 However, to more
precisely handle SRL annotations, the PSL model should be further extended
to capture the fact that role annotations on different mentions (e.g., the Leader
on“Sergio Mattarella” and the Governed on “Italy” in the example considered)
but originating from the same predicate have to be related (i.e., selecting one
candidate on one mention may affect the candidates on the others). Further-
more, the addition of the SRL annotations requires the extension of the rules
ensuring the annotation coherence — cf. (7).

Another typology of annotation that may extend the PSL4EA model is entity
coreference, i.e., the task of identifying that two or more mentions in a text refer
to the same entity. Coreference should instruct the model to propagate the same
annotations on all coreferring mentions, as suggested by the following rule for
two coreferring mentions:

wC(M1,M2) : AnnPSL(M1, t, e)&Coref(M1,M2) → AnnPSL(M2, t, e) (9)

where Coref(M1,M2) and wC(M1,M2) capture the coreference annotation and
its confidence.

6 Related Work

We briefly overview some literature works related to our contribution.

PSL Application to Knowledge Extraction and NLP. Probabilistic Soft
Logic has been applied for some information extraction and NLP tasks. In [9] the
18 A dataset to derive such information is presented in [16], where FrameNet frame

elements (i.e., roles) are related to “compatible” WordNet synsets, which in turns
can be directly mapped to YAGO classes.

158 M. Rospocher

authors apply PSL for Knowledge Graph Identification (KGI), that is the task
of distilling a knowledge graph from the noisy output (subject-predicate-object
triples) of information extractors (cf. also later in this section). The approach
combines different strategies (e.g., entity classification, relational link prediction)
together with constraints from existing ontologies. In [17] PSL is used to combine
logical and distributional representations of natural-language meaning for the
task of semantic textual similarity (STS). In [18] PSL is exploited to classify
events mentioned in text leveraging event-event associations and fine-grained
entity types. In [19] PSL is applied for the lexical inference problem, i.e., to
guess unknown word meaning by leveraging linguistic and contextual features.

In our work PSL is applied to assess the coherence and revise entity annota-
tions, exploiting ontological background knowledge. We are not aware of other
works applying PSL to specifically improve NLP annotations.

NLP Annotation Improvement. Some previous works have tackled the prob-
lem of improving the performances of some NLP tasks by leveraging or combin-
ing related analyses, focusing mainly on NERC and EL. In some works, one
NLP analysis is used to influence the performance of another NLP task, in a
pipeline, one-direction fashion. For instance, in [10,20] named entities are firstly
recognized (NERC) and used to influence the entity disambiguation step (EL).
Joint models for multiple tasks, in particular for NERC and EL, have also been
developed, applying different techniques such as re-ranking mechanisms [21],
conditional random field (CRF) extensions [22], semi-Markov structured linear
classifiers [23], and probabilistic graphical models [11]. In [24], a joint model
implemented as a structured CRF has been proposed, where NERC and EL
analyses are complemented by coreference information.

Our work differs from all these approaches under several aspects. First, our
approach is not a complete joint NERC and EL solution, but it works a posteriori
on produced candidate annotations. This makes our approach applicable to many
existing NERC and EL approaches as-is (i.e., without re-training their models
or changing their implementations) granted they provide confidence-weighted
candidate annotations. Second, it does not impose a directionality on the influ-
ence between the considered tasks, like in approaches such as [10,20]. Third, our
approach stands out for the central role of the ontological background knowl-
edge, exploited as “interlingua” to assess the coherence of the annotations from
different NLP tasks. This is similar to the approach adopted by JPARK [25],
where a pure probabilistic model — derived from some conditional independence
assumptions, and leveraging class sets rather than individual class contributions
like in PSL4EA— is used to revise entity annotations.

Knowledge Graph Construction. Approaches for Knowledge Graph con-
struction from text (e.g., Google’s Knowledge Vault [26] and DeepDive [27])
have tackled the problem of determining the correctness of large sets of poten-
tially noisy subject-predicate-object triples, obtained via information extractors
from various types of content (e.g., documents, tables). Some of these works
exploit ontological knowledge to constrain the selection of the extracted candi-
date triples. In NELL (Never-Ending Language Learning) [28], ontological con-

An Ontology-Driven Probabilistic Soft Logic Approach 159

straints (e.g., a person cannot be a city) are used to filter the extracted triples.
In other works, ontological knowledge is integrated directly in a probabilistic
model, together with the confidence values of extractor candidates, such as in
[29] (exploiting Markov Logic Networks) and the previously discussed PSL app-
roach in [9]. Instead, a MAX-SAT algorithm is proposed in [30], to select high
confidence triples that maximize the number of satisfied ontological constraints.

Our work differs from all these approaches and it is not directly comparable
with them. To begin with, our approach works at the level of NLP annota-
tions, rather than triples typically returned by relation extractors, and aims at
improving the coherence of these annotations on a given mention, rather filter-
ing extracted triples in order to be compliant with or to maximize the given
set of ontological constraints. Furthermore, in all these approaches the relation
extractors are aligned by construction with the relations and classes of the ontol-
ogy used for constraining the triple selection, while in our work determining the
ontological knowledge classes likely implied by the annotations is part of the
problem and encoded into the PSL model.

7 Conclusions

In this paper we presented PSL4EA, an approach based on Probabilistic Soft
Logic that, leveraging ontological background knowledge, aims at improving the
joint annotation of entity mentions by NLP tools, for tasks such as NERC and
EL. NLP annotations for different tasks are mapped to ontological classes of a
common background knowledge, then exploited to jointly assess the annotation
coherence. Given confidence-weighted candidate annotations by multiple NLP
tools for different tasks on the same textual entity mention, PSL4EA can be
operationally applied to jointly revise the best annotation choices performed
by the tools, in light of the coherence of the candidate annotations via the
ontological knowledge.

We developed the approach for NERC and EL, leveraging YAGO as ontolog-
ical background knowledge. We experimented with the model on the NERC and
EL candidate annotations provided by two state-of-the-art tools, Stanford NER
and DBpedia Spotlight, on three distinct reference datasets. The results show
the capability of PSL4EA to jointly improve their annotations, as confirmed by
the higher scores on all measures and metrics when applying the model.

As discussed in the paper, our future work mainly aims at concretely extend-
ing the proposed model to other NLP annotations than NERC and EL, starting
with SRL and entity coreference. Furthermore, for the NERC and EL scenario,
we plan to experiment with different training sets, possibly produced by combin-
ing different datasets, in order to further improve the generality and represen-
tativeness of the model obtained using the training part of the AIDA CoNLL-
YAGO dataset.

Acknowledgments. The author would like to thank Dr. Francesco Corcoglioniti for
some useful suggestions and fruitful discussions while developing the idea.

160 M. Rospocher

References

1. Vossen, P., et al.: NewsReader: using knowledge resources in a cross-lingual reading
machine to generate more knowledge from massive streams of news. Knowl.-Based
Syst. 110, 60–85 (2016). https://doi.org/10.1016/j.knosys.2016.07.013

2. Corcoglioniti, F., Rospocher, M., Aprosio, A.P.: Frame-based ontology population
with PIKES. IEEE Trans. Knowl. Data Eng. 28(12), 3261–3275 (2016)

3. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and
temporally enhanced knowledge base from wikipedia. Artif. Intell. 194, 28–61
(2013)

4. Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into
information extraction systems by Gibbs sampling. In: Proceedings of ACL 2005,
pp. 363–370 (2005)

5. Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accu-
racy in multilingual entity extraction. In: Proceedings of I-Semantics (2013)

6. Hoffart, J., et al.: Robust disambiguation of named entities in text. In: Proceedings
of EMNLP 2011 (2011)

7. Minard, A.L., et al.: MEANTIME, the newsreader multilingual event and time
corpus. In: Proceedings of LREC 2016 (2016)

8. Ji, H., Grishman, R., Dang, H.: Overview of the TAC2011 knowledge base popu-
lation track. In: TAC 2011 Proceedings Papers (2011)

9. Pujara, J., Miao, H., Getoor, L., Cohen, W.: Knowledge graph identification. In:
Alani, H. (ed.) ISWC 2013. LNCS, vol. 8218, pp. 542–557. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41335-3 34

10. Stern, R., Sagot, B., Béchet, F.: A joint named entity recognition and entity linking
system. In: Proceedings of HYBRID 2012, pp. 52–60 (2012)

11. Nguyen, D.B., Theobald, M., Weikum, G.: J-NERD: joint named entity recognition
and disambiguation with rich linguistic features. TACL 4, 215–229 (2016)

12. Bach, S.H., Broecheler, M., Huang, B., Getoor, L.: Hinge-loss Markov random fields
and probabilistic soft logic. J. Mach. Learn. Res. (JMLR) 18(109), 1–67 (2017)

13. Lehmann, J., et al.: Dbpedia - a large-scale, multilingual knowledge base extracted
from Wikipedia. Semant. Web 6(2), 167–195 (2015)

14. Corcoglioniti, F., Rospocher, M., Mostarda, M., Amadori, M.: Processing billions
of RDF triples on a single machine using streaming and sorting. In: Proceedings of
the 30th Annual ACM Symposium on Applied Computing. SAC 2015, pp. 368–375.
ACM (2015)

15. Baker, C.F., Fillmore, C.J., Lowe, J.B.: The Berkeley FrameNet Project. In: Pro-
ceedings of ACL 1998, pp. 86–90 (1998)

16. Tonelli, S., Bryl, V., Giuliano, C., Serafini, L.: Investigating the semantics of frame
elements. In: ten Teije, A. (ed.) EKAW 2012. LNCS (LNAI), vol. 7603, pp. 130–143.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33876-2 13

17. Beltagy, I., Erk, K., Mooney, R.J.: Probabilistic soft logic for semantic textual sim-
ilarity. In: Proceedings of the 52nd Annual Meeting of the Association for Compu-
tational Linguistics (ACL-14), Baltimore, MD, pp. 1210–1219 (2014)

18. Liu, S., Liu, K., He, S., Zhao, J.: A probabilistic soft logic based approach to
exploiting latent and global information in event classification. In: AAAI, pp. 2993–
2999. AAAI Press (2016)

19. Wang, W.C., Ku, L.W.: Identifying Chinese lexical inference using probabilistic
soft logic. In: 2016 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), pp. 737–743, August 2016

https://doi.org/10.1016/j.knosys.2016.07.013
https://doi.org/10.1007/978-3-642-41335-3_34
https://doi.org/10.1007/978-3-642-33876-2_13

An Ontology-Driven Probabilistic Soft Logic Approach 161

20. Plu, J., Rizzo, G., Troncy, R.: A hybrid approach for entity recognition and linking.
In: Gandon, F., Cabrio, E., Stankovic, M., Zimmermann, A. (eds.) SemWebEval
2015. CCIS, vol. 548, pp. 28–39. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25518-7 3

21. Sil, A., Yates, A.: Re-ranking for joint named-entity recognition and linking. In:
Proceedings of CIKM 2013, pp. 2369–2374 (2013)

22. Luo, G., Huang, X., Lin, C.Y., Nie, Z.: Joint named entity recognition and disam-
biguation. In: Proceedings of EMNLP 2015, pp. 879–888 (2015)

23. Leaman, R., Lu, Z.: TaggerOne: joint named entity recognition and normalization
with semi-Markov models. Bioinformatics 32(18), 2839–2846 (2016)

24. Durrett, G., Klein, D.: A joint model for entity analysis: coreference, typing, and
linking. TACL 2, 477–490 (2014)

25. Rospocher, M., Corcoglioniti, F.: Joint posterior revision of NLP annotations via
ontological knowledge. In: Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18, pp. 4316–4322 (2018). https://doi.
org/10.24963/ijcai.2018/600

26. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge
fusion. In: Proceedings of ACM KDD 2014, pp. 601–610 (2014)

27. De Sa, C., et al.: DeepDive: declarative knowledge base construction. SIGMOD
Rec. 45(1), 60–67 (2016)

28. Mitchell, T., et al.: Never-ending learning. In: Proceedings of AAAI-15 (2015)
29. Jiang, S., Lowd, D., Dou, D.: Learning to refine an automatically extracted knowl-

edge base using markov logic. In: Proceedings of ICDM 2012, pp. 912–917 (2012)
30. Suchanek, F.M., Sozio, M., Weikum, G.: SOFIE: a self-organizing framework for

information extraction. In: WWW 2009 (2009)

https://doi.org/10.1007/978-3-319-25518-7_3
https://doi.org/10.1007/978-3-319-25518-7_3
https://doi.org/10.24963/ijcai.2018/600
https://doi.org/10.24963/ijcai.2018/600

Ontology Driven Extraction of Research
Processes

Vayianos Pertsas1(&), Panos Constantopoulos1,2,
and Ion Androutsopoulos1,2

1 Department of Informatics, Athens University of Economics and Business,
Athens, Greece

{vpertsas,panosc,ion}@aueb.gr
2 Digital Curation Unit, IMSI - Athena Research Centre, Athens, Greece

Abstract. We address the automatic extraction from publications of two key
concepts for representing research processes: the concept of research activity
and the sequence relation between successive activities. These representations
are driven by the Scholarly Ontology, specifically conceived for documenting
research processes. Unlike usual named entity recognition and relation extrac-
tion tasks, we are facing textual descriptions of activities of widely variable
length, while pairs of successive activities often span multiple sentences. We
developed and experimented with several sliding window classifiers using
Logistic Regression, SVMs, and Random Forests, as well as a two-stage
pipeline classifier. Our classifiers employ task-specific features, as well as word,
part-of-speech and dependency embeddings, engineered to exploit distinctive
traits of research publications written in English. The extracted activities and
sequences are associated with other relevant information from publication
metadata and stored as RDF triples in a knowledge base. Evaluation on datasets
from three disciplines, Digital Humanities, Bioinformatics, and Medicine, shows
very promising performance.

Keywords: Ontology population � Information extraction
Machine learning methodologies � Linked data

1 Introduction

The steep increase of scientific publications in every major discipline [1] makes it
increasingly difficult for experts to maintain an overview of their domain, increases the
risk of missing new work or reinventing solutions, and makes it harder to relate ideas
from different domains [2]. This situation could be significantly alleviated by sup-
porting queries such as: find all papers that address a given problem; how was the
problem solved; which methods are employed by whom in addressing particular tasks;
etc. Answering queries like these essentially requires access to information about
research processes. Such information could be compiled interactively, or automatically
extracted from research publications, finally offered in a structured form suitable for

© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 162–178, 2018.
https://doi.org/10.1007/978-3-030-00671-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_10&domain=pdf

supporting semantic queries. It is to be noted that search engines widely used by
researchers, such as Google Scholar1, Scopus2 or Semantic Scholar3, mostly leverage
article metadata, while knowledge expressed in the actual text is only exploited in a
shallow manner mostly by matching query terms to documents [3].

Understanding and encoding the knowledge contained in research articles is a
complex task which poses several challenges. For instance, in order to extract the
context of the research reported in an article (who is involved, what are their interests,
affiliations, etc.), information from the metadata of the article must be extracted, ana-
lyzed and mapped onto a schema, so that activities, entities etc. extracted from the text
of the article can be placed in the right context. Furthermore, the actual text of pub-
lications needs to be processed in order for activities, entities, and more generally
concepts relevant to the documentation of research processes to be identified, extracted
and associated according to predefined relation types of the same schema.

In this paper we address the problem of automatically extracting from publications,
in the English language, two key concepts for representing research processes: the
concept of research activity and the sequence relation between successive activities.
We associate the information extracted from the texts of the articles with relevant
information previously extracted from the articles’ metadata or other digital reposito-
ries, and publish the resulting information in the form of RDF triples adhering to
Linked Data standards. We consider these to be the first steps towards populating an
ontology specifically designed for modeling research processes and practices [4], thus
generating a research process documentation knowledge base.

Research activities and sequence relations manifest themselves in texts in ways that
need to be specifically taken into account in order to achieve satisfactory extraction
performance. For example, unlike usual named entities (e.g., persons, locations),
research activities have textual descriptions of widely variable length, while pairs of
successive (in time) activities often span multiple sentences, unlike simpler relation
extraction tasks. We engineered several task-specific features exploiting the semantic
context of the ontology being populated, syntactic dependencies of words and other
syntactic structure information, which we combined with word embeddings. The latter
are dense vector representations of words that can be produced in an unsupervised
manner from unlabeled corpora and have proved instrumental in many Natural Lan-
guage Processing (NLP) tasks in the past years [5, 6]. We actually employ three kinds
of embeddings: word embeddings, part-of-speech (POS) tag embeddings, and depen-
dency embeddings, all pre-trained for the domain of research processes, following the
example of [7] where the first two kinds were combined.

We developed and compared several sliding window classifiers4, thus exploring the
activity and sequence extraction tasks along three dimensions:

(1) Processing granularity. We tested the effectiveness of classification at three levels
of granularity: token-, sentence- and chunk-based classification.

1 https://scholar.google.com/.
2 https://www.elsevier.com/solutions/scopus.
3 https://www.semanticscholar.org.
4 Our software and data will be available at: http://nemo.dcu.gr/resources/.

Ontology Driven Extraction of Research Processes 163

https://scholar.google.com/
https://www.elsevier.com/solutions/scopus
https://www.semanticscholar.org
http://nemo.dcu.gr/resources/

(2) Feature space. The usual NLP practices were extended with the special task-
specific features we developed and we assessed their effectiveness.

(3) Machine learning (ML) method. We developed classifiers employing Logistic
Regression (LR) [8], linear Support Vector Machines (SVM) [9], and Random
Forests (RF) [10], as well as a two-stage pipeline combination.

The performance of these classifiers was evaluated with datasets from three dif-
ferent disciplines: Digital Humanities, Bioinformatics, and Medicine. We measured
Precision, Recall and F1 scores in token- and entity-based evaluations with very
promising results, indicating the potential for creating a reliable research process
knowledge base. The results also confirmed the contribution of the specially designed
features in achieving that performance. We view the methods presented in this paper as
strong baselines for extending our work to extracting other entities and relations
describing research processes (e.g. goals, methods employed, propositions, etc.), and
for experimenting with other classifiers (e.g., CRFs [11]), especially deep learning-
based ones (e.g., RNNs, CNNs [12]) when larger datasets become available.

The rest of this paper proceeds as follows: in Sect. 2 we present related work and
explain how our task is different; in Sect. 3 we describe the methodology and exper-
imental setup; in Sect. 4 we discuss the evaluation experiments and their results; and
we conclude in Sect. 5.

2 Related Work

To the best of our knowledge, the task of extracting variable-length textual descriptions
of research activities from publications, and associating them on the basis of sequential
order as inferred from the text, has not been addressed in previous work. That said,
however, information extraction (IE) from scientific papers has attracted a lot of interest
over the past years, as testified by the recent creation of a challenge on Scientific
Information Extraction (ScienceIE) [3], the ACL RD-TEC Reference Dataset for
Terminology Extraction and Classification [13], or domain-specific competitions such
as BioCreAtIve5. Recent works deal with the extraction of key-phrases denoting tasks,
scientific methods and materials from research documents [14, 15], the association of
the extracted entities with Linked Data [16–18], or the recognition of biomedical
entities such as genes [19, 20]. They use features based on surface form, POS tags, or
word embeddings and they employ classifiers such as SVMs, CRFs or neural networks,
to extract key-phrases and named entities from text, as well as binary lexical semantic
relations (synonym-of, hyponym-of).

In [21], key-phrases denoting the “Focus”, “Technique” and “Domain” of the
articles are identified on the basis of syntactic patterns matched via rules to the
dependency tree of each sentence in article abstracts. In [22], rule-based methods are
employed in understanding the dynamics preceding the creation of new topics. In [23],
sentences from abstracts in the domains of clinical trials and biomedicine are classified

5 http://biocreative.sourceforge.net/index.html.

164 V. Pertsas et al.

http://biocreative.sourceforge.net/index.html

in categories, such as introduction, purpose, method, results and conclusion, using
various bag-of-words or bag-of-n-grams representations.

A specialized system for extracting specific elements from legal contracts [7] uses
sliding window classifiers and handcrafted features combined with word and POS tag
embeddings to extract contract elements such as title, date, signatories’ names, etc.

In [24, 25], portions of text mentioning specific papers are extracted and relations to
the corresponding citations are generated using rule based approaches or features that
deal mainly with the surface form or structural aspects of text (e.g., they examine the
existence of specific POS tags or lexical terms that indicate references, other citations,
etc. in the current or previous sentence). In [26], authors and organizations are iden-
tified in scientific papers via CRFs using features that mainly deal with token surface
form (lower/upper case, presence in gazetteers, font size, etc.) or structural text char-
acteristics (appearance in sections/paragraphs, first word in line, etc.). The extracted
entities are then interrelated by further extracting the hasAffiliation property. For that,
an SVM with Gaussian kernel is used with features related to the author affiliation
markers and the distance of extracted strings.

In other works related to action sequencing, such as [27], the authors create
abstractions of action sentences based on a predefined template and then cluster those
abstractions together based on a functional similarity measure. In [28], the authors use
deep reinforcement learning, in order to extract sequences of labeled actions from
sentences; each action is represented by arguments constructed from the verb and its
object (e.g., cook (rice)) and the sequencing relations can be selected or eliminated
based on their type (i.e., optional, exclusive or essential). In [29], the authors use a
predefined list of names to map their action descriptions and interpret them as action
sequences, or to generate navigational action descriptions using an encoder-aligner-
decoder structure. Unlike the above methods, we identify and associate actions that are
not expressed by single words or mapped to a fixed template or list of names. Instead,
in our work actions have complex textual representations of variable length and cannot
be labeled with words from a name-list. Moreover, we are not confined to deriving
sequence relations from single lexical keywords. Instead, sequence relations are
inferred from a combination of the actual textual context of activities along with
structural properties of the text (e.g., relative positions of the entities in the texts).

In all of the approaches reviewed above, IE from text is addressed using either rules
or ML methods based on features that handle mainly the surface form of words dis-
regarding other information, such as attributes derived from syntactic dependencies or
more complex syntactic patterns. ML methods of that kind perform inadequately in
extracting research activities from text, as suggested by the evaluation of our baseline
method that uses similar features. This behavior can be attributed to the following
characteristics of the task at hand:

– Research activities are entities manifesting themselves only by their textual
description and not by any specific nomenclature. Furthermore, their textual
description does not follow any specific surface form.

– The textual chunks representing research activities can be of arbitrary length. This
has been observed to exceed 50 tokens, which is significantly higher than the
lengths of entity names in common Named Entity Recognition (NER).

Ontology Driven Extraction of Research Processes 165

– Unlike other NER tasks, the surface form of the tokens inside the textual description
of a research activity can vary so much, that it is insignificant for the purpose of
extracting activities.

– Contrary to common NER tasks, where the extracted entities cover only a small
portion of a sentence, research activities may cover almost entire sentences, and
even more than one sentence. Here we restrict our investigation to activities con-
tained in one sentence each. Multi-sentence activities are usually composed of
smaller ones. The hierarchical decomposition of those composite activities even-
tually leads to simple single-sentence ones.

– Sequence relations between activities cannot be detected solely from lexical cues in
the text. Other attributes of the activities, including their relative position in text,
actual textual description, etc., are also employed to improve classification.

The main contributions of the work reported here are:

– The way we address the complexity of the particular task by combining information
from the ontology (e.g., available relation types, constraints on their domain and
range), task-specific embeddings of words, POS tags, and syntactic dependencies,
features detecting special syntactic sequences of words and their order of appear-
ance in texts, specialized features dealing with lexico-syntactic patterns, as opposed
to just word surface form, currently employed in other works related to extracting
knowledge from scientific literature.

– The proposed methods are applicable to any scientific domain, since no domain-
specific lexica or training corpora are required, and they are demonstrated with test
sets from three disciplines, capturing a variety of writing styles.

– Our methods yield higher performance compared to common NER or rule-based
solutions, as evidenced by comparing to the baselines, which is notable especially
considering the fact that the limited sizes of the datasets we had available do not
allow for more sophisticated ML approaches (such as deep learning methods).

Furthermore, we show how –based on the semantics from an ontology, specifically
designed to represent research processes [4] - information extracted from text can be
associated with knowledge from article metadata and other sources (such as ORCID6)
as part of creating a comprehensive research process knowledge base.

3 Setup and Methodology

We use as schema for research process knowledge bases the Scholarly Ontology
(SO) [4], a domain-independent ontology of scholarly/scientific work. A specialization,
in fact precursor, of SO already applied to the domain of Digital Humanities is the
NeDiMAH Methods Ontology (NeMO) [30]. A brief overview of SO core concepts is
given in the following section. For a full account see [4].

6 https://orcid.org.

166 V. Pertsas et al.

https://orcid.org

3.1 Conceptual Framework: The Scholarly Ontology

Figure 1 shows the core concepts and relations in SO. The rationale behind the
ontology is to support documenting “who does what, when, and how” in a given
scholarly domain. The ontology is built around the central notion of activity and
combines three perspectives: the agency perspective, concerning actors and inten-
tionality; the procedure perspective, concerning the intellectual framework and orga-
nization of work; and the resource perspective, concerning the material and immaterial
objects consumed, used or produced in the course of activities.

Activity concerns real events that have occurred in the form of intentional acts
carried out by actors. The instances of the Activity class are real processes with specific
results, as opposed to those of the Method class, which are specifications, procedures,
or recipes for carrying out activities so as to address specific goals. Sequence and
composition of activities are represented by the follows and partOf relations respec-
tively. Actor instances are entities capable of performing intentional acts that they can
be accounted or referenced for. They can participate in activities, actively or passively,
in one or more roles. Subclasses of Actor are the classes Person and Group, repre-
senting individual persons and collective entities respectively. Further specializations
of Group are the classes Organization and ResearchTeam. ContentItem comprises
information resources, regardless of their physical carrier, in human readable form
(with images, tables, articles, bibliographic references, etc. being specializations of
ContentItem class). Assertion includes all kinds of assertions in the scholarly domain
and captures the intellectual essence of scholarly activity, comprising propositions
resulting from activities and can be supportedBy evidence provided by content items.
Finally, the class Topic comprises thematic keywords which function as tags
expressing the subject of methods, the topic of content items, research interests of
actors, etc.

In this paper, we focus on extracting from text and automatically populating two
key concepts of the ontology: (i) Activity, a unary predicate denoting research processes

Fig. 1. Scholarly ontology core

Ontology Driven Extraction of Research Processes 167

such as a biological experiment, an archeological excavation, an anthropological or
medical study, etc. and (ii) follows, a binary predicate denoting the sequence relation
between two successive activities. Figure 2 shows an example of textual chunks rep-
resenting research activities -highlighted- and their sequence relations.

3.2 The Dataset

An unlabeled dataset obtained from 50,000 open-access research papers was used in
order to create embeddings. The dataset consisted of approximately 10,000,000 sen-
tences after metadata cleaning and parsing using spaCy7, yielding 300,000,000 tokens
and eventually a vocabulary of approx. 1,000,000 unique words (types). Word, part-of-
speech tag (POS) and dependency (DEP) embeddings were generated from the above.
Specifically: 100-dimensional word embeddings were produced using the Gensim
implementation of word2vec8 (skip-gram model); 25-dimensional POS embeddings
were produced by replacing each token by its corresponding POS tag before running
word2vec; and 25-dimensional DEP embeddings were produced by replacing each
token by the label of the (unique) arc linking the token to its head in the dependency
tree. Our experiments with other general-purpose, publicly available embeddings, such
as those trained on the Common Crawl corpus using GloVe9, or those trained on
Wikipedia articles with word2vec, showed inferior performance compared to our
domain-specific embeddings. This can be attributed to the fact that our embeddings are
trained exclusively on scholarly articles, thus capturing the idiosyncrasies of scholarly
writing styles.

To train and evaluate our machine learning methods, we used research articles
randomly selected using APIs from publishers such as Springer and Elsevier, or by
scraping online journals such as the Digital Humanitites Quarterly. To annotate the

Fig. 2. Activities and sequential relations

7 https://spacy.io/.
8 https://radimrehurek.com/gensim/.
9 https://nlp.stanford.edu/projects/glove/.

168 V. Pertsas et al.

https://spacy.io/
https://radimrehurek.com/gensim/
https://nlp.stanford.edu/projects/glove/

dataset with ground truth, we used human annotators, appropriately trained in the use
of SO. Guidelines and examples were provided to the annotators.

The training set, comprising texts from 50 research articles covering 9 research
domains, was annotated by two post-graduate students. Three annotation trials (one
article annotated by both annotators per trial, followed by discussion) were initially
performed. Inter-annotator agreement was 81% kappa statistic, measured on 5 articles
annotated by both annotators at the end of the annotation trials. Subsequently, the
remaining articles were annotated by one annotator each. The annotation of the training
set yielded approx. 1,000 sequence relations and 1,700 activities comprising approx.
31,000 tokens. For hyper-parameter tuning we used 3-fold cross-validation.

For testing, we used articles from three disciplines, Digital Humanities (DH),
Bioinformatics (BIOINF) and Medicine (MED), to expose our classifiers, trained on a
generic set, to a wide variety of writing styles. Three test sets, 15 articles per discipline,
were annotated by two expert -per discipline- annotators. The annotators were trained
on 5 articles per discipline, annotated by both annotators, with discussion after anno-
tating each article. Inter-annotator agreement was 81%, 83% and 85% kappa for DH,
BIOINF and MED, respectively, for the fifth article of each discipline. The remaining
articles were annotated by one annotator each. For each test set, human annotation
produced approx. 600 activities containing approx. 10,000 tokens. Concerning
sequence relations, human annotation produced approx. 200 relations for DH, 500 for
BIOINF, and 600 for MED. The differences in the numbers can be attributed to the
granularity of activities and the writing style prevalent in each research field.

3.3 Extracting Research Activities

Seven sliding window classifiers (SWC) and a two-stage pipeline classifier were
implemented for extracting research activities (Table 1). They all perform token-based
classification by examining each token t and its surrounding tokens in a fixed-size
window, and classifying t as positive if it is part of a phrase expressing a research
activity, or negative otherwise. The size of the window was set at 30 tokens around t (a
total of 30 + 30 + 1 = 61 tokens) following hyper-parameter tuning. Zero-padding was
used to represent tokens exceeding the sentence boundary. Each window of tokens was
turned into a feature vector representing the token t being classified. We experimented
with Logistic Regression, linear Support Vector Machines and Random Forests, with
different feature specifications as detailed below. We use the notation M.E.F or M.E.F.
F to denote the resulting classifiers, where M denotes the learning method used, E the
embeddings and F the special features.

The first and second classifiers, LR.WP.B and SVM.WP.B, use Logistic Recres-
sion (LR) and linear SVM respectively, while they both employ 139 features: 125
derived from the 100- and 25-dimensional vectors of the word and POS embeddings
(WP), and another 14 binary hand-crafted features labeled “basic” (B) that deal with the
surface form of tokens. Of those features, 7 capture specific token surface forms (title,
capitalized, digit, punctuation mark, etc.), while the other 7 determine whether the
token’s lexical form indicates neighboring activities. For example, words that indicate
sequencing of events (‘first’, ‘afterwards’, ‘finally’, etc.), specialization (‘concretely’,

Ontology Driven Extraction of Research Processes 169

‘specifically’, etc.), causality (‘for’, ‘to’, etc.,), etc. The total number of features in the
window is: 61 � 139 = 8,479.

The third and fourth classifiers, LR.WPD.BS and SVM.WPD.BS, differ from the
first two in that they extend the embeddings-related features with 25 originating from
DEP embeddings (WPD) and the special features with 10 binary “smart” features
(BS) related to special syntactic structures. The latter are meant to capture the inclusion
of a token in patterns suggesting activities, either directly, such as sub-sentences with
verb in past tense and subject in first person (e.g.: “we performed stylistic analysis”), or
indirectly, such as sub-sentences with causal modifiers indicating goals of neighboring
activities (e.g. “[ACT: performed stylistic analysis], in order [GOAL: to recognize each
characteristic]”). The total number of features is now 61 � (139 + 25 + 10) = 10,614.

The fifth classifier, RF.PD.BS, employs Random Forests (RF) and uses 51 one-hot
features representing POS tags and 71 one-hot features representing DEP tags (PD),
rather than embeddings. It also uses the same binary features (14 “basic” and 10
“smart”) as the third and fourth classifiers. The total number of features in the sliding
window is 61 � (14 + 10 + 57 + 71) = 9,272.

The sixth and seventh classifiers, LR.PD.S.BS and SVM.PD.S.BS, are like the
third and fourth with the difference that: (a) they omit features related to word
embeddings, and (b) they account for the syntactic sequence (S) of words, i.e., the
sequence from the syntactic dependency of the word to its head and the head of its
head, thus encoding joint information for 3 tokens instead of just one. As an example of
such a syntactic sequence, consider in the first sentence of Fig. 2, the word “conduct”,
with its syntactic head “order” and the syntactic head of its head “in”. The total number
of features in the sliding window is now 61 � (10 + 14 + 50) � 3 = 13,542.

In addition to the above classifiers we implemented a two-stage pipeline (see
Fig. 3). The first classifier, SVM.WPD.BS, is trained on all the sentences of the
training set, as before, but now performs sentence classification instead of token
classification, i.e., detects only the existence of research activities in the sentence
without identifying their boundaries. For the first classifier, each sentence is represented
using averaged word/POS/DEP embeddings of the contained tokens. This produces a
vector of 100 or 25 features derived from the 100-dimensional word embeddings or the
25-dimensional POS or DEP embeddings respectively, keeping the number of
features/dimensions independent from the actual number of tokens in the sentence. In
addition, we used 14 binary features for representing the existence or absence inside the
sentence of the -previously described- special syntactic patterns and lexical forms that
provide indirect activity identifiers. For the second classifier, we used SVM.PD.S.BS,
but now trained only on sentences containing at least one research activity. This
performs token-based classification and determines the boundaries of the chunks
describing research activities in the sentences classified as positives by the first clas-
sifier. The intuition behind the pipeline is that, by splitting the task into two simpler
sub-tasks, each separate classifier will achieve high enough accuracy for their con-
catenation to produce better results, which was proven correct in the evaluation.

170 V. Pertsas et al.

3.4 Extracting Sequence Relations

Extracting sequence relations requires examining all plausible activity pairs. For every
pair of extracted activities, the text chunk bounded by these two entities, [act1, …,
act2], is treated as expressing a candidate sequence relation. A maximum chunk length
of 500 tokens, set during hyper-parameter tuning, serves to restrict the search to a
reasonable set of candidates excluding pairs of too distant entities unlikely to be
sequential, yet including pairs of entities from neighboring paragraphs or sections with
reasonable chance of being related. A classifier then determines whether the bounding
activities of the chunk satisfy the property follows.

Each chunk is represented using averaged word/POS/DEP embeddings of the
tokens in the chunk together with 11 special features: 5 that examine certain structural
properties of the chunks (act1 and act2 are in the same sentence/adjacent
sentences/same paragraph; other entities intervene; the chunk contains conjuncts, like
the word “and”, syntactically associated with tokens inside the boundary entities); 3 for
act1 and 3 for act2 that examine the entire sentence(s) containing each one of them in
order to capture possible sequence indicators (e.g. the words “then” and “Afterwards”
in Fig. 2) referring to act1 and act2, even when they are not inside the chunk bounded
by act1 and act2 or the individual chunks representing act1 and act2 respectively.

We implemented three classifiers for extracting sequence relations between activ-
ities. The first sequence extractor, LR.WPD.B, uses Logistic Regression and 161
features per chunk: 100 features for the averaged word embeddings of the tokens in the
chunk, 25 for the averaged POS, 25 for the averaged DEP embeddings, 5 for structural
chunk properties and 6 for sequence indicators, as discussed above. The second
extractor, SVM.WPD.B, uses the same features, but with a linear SVM. The third
extractor, RF.PD.B, uses Random Forests (RF) and the per-dimension sum of the one-
hot encodings of the POS and DEP tags of each token in the chunk. We also exper-
imented with the average and the TF-IDF-weighted average of the encodings, but
without better results in either case.

3.5 Background Context Integration and URI Creation

Having extracted research activities and their sequence relations, we attach to them
contextual information obtained from the metadata of the publications. Specifically, we
have created mappings that currently support the association of article metadata from
two major publishers (Springer and Elsevier) with relevant SO classes such as par-
ticipants in the research processes (the authors of the paper), their interests (author
keywords) and their personal information (affiliations, email, etc.), the ContentItem that
they are documented in (the research articles), etc. We also provide integration through
API with ORCID, a non-for-profit organization for assigning unique, persistent IDs to

Fig. 3. Activity extraction pipeline

Ontology Driven Extraction of Research Processes 171

researchers, so that (i) the ORCID id of each person can be used for duplicate detection
and (ii) additional information regarding related projects, funding or biography can be
retrieved through the ORCID repository.

The research process knowledge base is created by encoding the extracted infor-
mation as RDF triples adhering to Linked Data principles and the RDFS10 and NIF11

models. For entities with a proper name, such as Persons, Organizations, Articles and
Topics, their URIs are derived by combining the namespace of the knowledge base, the
entity type according to SO, and a unique id provided by the entity name (such as
ORCID id or email for persons, article id, topic name, etc.). For activities and sequence
relations, URIs are generated by combining the namespace of the knowledge base, the
entity type according to SO, the source of extraction (publication id) and the two offsets
identifying the boundaries of the extracted entity inside the text, thus ensuring that each
URI is unique. A small excerpt of the knowledge base is shown in Fig. 4. Based on our
measurements, information extracted from 50 articles translates roughly to 100,000
triples, this being highly dependent on the writing style and the discipline. Indicative
running times (on a PC with an Intel i7, 16 GB RAM) for the entire process are approx.
100 s/article.

4 Evaluation

In general, metadata association has exhibited very good performance since it relies
solely on pre-constructed mappings between fixed schemas. Few isolated incidents
(lower than 1%) of improper association were due to errors in XML/HTML tags in the
article (e.g., an empty or misplaced bracket) and can be treated with additional escape
rules as part of the general debugging process.

Regarding the information extraction from text, we evaluated the performance of all
the classifiers by measuring Precision, Recall and F1 scores. After window-size
selection and hyper-parameter tuning using 3-fold cross-validation on the training set,
all the classifiers were trained on the entire training set. As previously mentioned, we

Fig. 4. Excerpt from the produced RDF triples

10 https://www.w3.org/TR/rdf-schema/.
11 http://persistence.uni-leipzig.org/nlp2rdf/.

172 V. Pertsas et al.

https://www.w3.org/TR/rdf-schema/
http://persistence.uni-leipzig.org/nlp2rdf/

used three different test sets, DH, BIOINF, and MED, presumably representing dif-
ferent writing styles, as well as their combination (ALL Test Set).

Approximate Randomization Tests (ART) [32] between every classifier and the
relevant baseline were carried out to ensure the statistical significance of the tests.
Classifiers were grouped in zones of statistically similar results (shown by dividing
lines in Tables 1 and 3) and ARTs were run on every combination of methods from
different zones in order to ensure that the difference between any two measurements is
statistically significant given our test sets. The Bonferroni correction was used to adjust
the threshold (p-value) from the default 0.05 to 0.00625 for activity extraction and
0.0125 for sequence relation extraction, since we compared more than two systems. All
pair combinations gave probabilities below the above thresholds in ARTs, therefore all
the results shown are statistically significant.

4.1 Research Activity Extraction Evaluation

The evaluation of activity extraction methods involves comparing classifier results
against a reference standard produced by human annotators on the basis of Precision,
Recall and F1 scores calculated as usual12. In addition, we compare the classifiers with
a “baseline” method, similar to those commonly used in NER tasks [7], with a smaller
sliding window of 15 tokens (7 left, the central token t, 7 right), 100 features for word
embeddings, 25 features for POS embeddings and 14 “basic” binary features for sur-
face form representation, in total 15 � (125 + 14) = 2,085 features. The baseline uses
a linear SVM trained on the same training set, as this has proved experimentally to
perform slightly better than LR and RF. Two groups of comparisons are made: token-
based and entity-based.

In token-based evaluation, a true positive (TP) is a token correctly classified as part
of a chunk representing a research activity, a false positive (FP) is a token incorrectly
classified as part of a research activity, and a false negative (FN) is a token incorrectly
classified as non-part of a research activity. Results of the token-based evaluation for
each test set are shown in Table 1. Regarding the pipeline classifier which consists of a
sentence- and a token-based classifier in tandem, detailed per stage and aggregate
performance results are shown in Table 2. The aggregate scores of the pipeline are also
shown in Table 1 for comparison with the other methods.

The Pipeline classifier achieved the highest scores on every test set and criterion.
The aggregate performance of the pipeline is inferior to that of the individual stages
(see Table 2) due to error propagation, since the sentences that are wrongly classified in
the first classifier are fed as input into the second. The baseline, on the other hand,
performed worse than all the other classifiers on every test set and criterion. This can
mainly be attributed to two factors: (a) the difference in the size of the sliding window
(as indicated from the performance increase between the baseline and the SVM.WP.B);
and (b) the use of the DEP embeddings and the “smart” features. Moreover, word
embeddings do not add much to the overall improvement of the classification, as
suggested by the performance of the RF.PD.BS, LR.PD.S.BS and SVM.PD.S.BS

12 P ¼ TP
TPþFP ;R ¼ TP

TPþFN ;F1 ¼ 2�P�R
PþR .

Ontology Driven Extraction of Research Processes 173

classifiers, as word embeddings can be replaced by other contextual information
regarding the syntactic sequence of tokens. Therefore, the distinctive features of the
methods we developed prove to contribute significantly to the performance of research
activity extraction.

In entity-based evaluation, each maximal sequence of consecutive positive tokens
is considered as a research activity (“entity”). Ideally, an entity is correctly predicted by
a classifier only if it matches 100% with one annotated by humans, counting as errors
even the slightest deviations. In practice, a close match suffices, especially in cases
where the extracted entities are very long. A threshold of 86% was automatically
selected by averaging the Levenshtein distances of a sample of 100 pairs of overlap-
ping strings (a predicted and a gold entity in each pair) for which the annotators
indicated that the overlap was sufficient. This translated roughly into a difference of 1-5
tokens (including punctuation marks) at the boundaries of each entity. Consequently, in
entity-based evaluation a true positive (TP) is a predicted string that matches a refer-
ence standard string by at least 86%; a false positive (FP) is an un-matched predicted
string; and a false negative (FN) is an un-matched reference standard string. Results of
the entity-based evaluation are shown in Table 3.

The RF.PD.BS and Pipeline classifiers compete for best performance in the case of
entity-based evaluation with similar results on most test sets. The baseline again per-
forms worse than all other methods. Performance results in entity-based evaluation are

Table 1. Token-based evaluation

DH test set BIOINF test set MED test set ALL test set
P R F1 P R F1 P R F1 P R F1

Baseline 0.54 0.30 0.38 0.76 0.50 0.60 0.76 0.62 0.69 0.72 0.50 0.59
1 LR.WP.B 0.62 0.44 0.52 0.79 0.59 0.68 0.79 0.66 0.72 0.75 0.58 0.65
2 SVM.WP.B 0.60 0.50 0.54 0.80 0.66 0.72 0.78 0.68 0.73 0.74 0.63 0.68
3 LR.WPD.BS 0.78 0.76 0.77 0.83 0.81 0.82 0.88 0.83 0.85 0.84 0.80 0.82
4 SVM.WPD.BS 0.76 0.80 0.78 0.83 0.83 0.83 0.87 0.85 0.86 0.83 0.83 0.83
5 RF.PD.BS 0.79 0.80 0.80 0.85 0.83 0.84 0.89 0.83 0.86 0.85 0.82 0.83
6 LR.PD.S.BS 0.77 0.79 0.78 0.82 0.83 0.83 0.88 0.88 0.88 0.83 0.84 0.84
7 SVM.PD.S.BS 0.79 0.82 0.80 0.84 0.84 0.84 0.89 0.89 0.89 0.85 0.85 0.85
8 SVM-Pipeline 0.83 0.82 0.82 0.87 0.89 0.88 0.90 0.93 0.92 0.87 0.89 0.88

Table 2. Pipeline evaluation

DH test set BIOINF test set MED test set ALL test set

Entity identification: P R F1 P R F1 P R F1 P R F1
SVM.WPD.BS 0.90 0.89 0.89 0.96 0.94 0.95 0.96 0.96 0.96 0.94 0.93 0.94
Boundary detection:
SVM.PD.S.BS 0.92 0.89 0.90 0.92 0.95 0.94 0.95 0.96 0.95 0.93 0.94 0.93
Pipeline:
SVM-Pipeline 0.83 0.82 0.82 0.87 0.89 0.88 0.90 0.93 0.92 0.87 0.89 0.88

174 V. Pertsas et al.

inferior to those in token-based evaluation. Error analysis showed that this can be
attributed to tokens occurring in entity chunks incorrectly classified as not being
research activities; this causes the split of the original entity into smaller ones, in turn
producing additional errors (1 FN for the undetected original entity and 1 FP for each
smaller entity). Consider, for instance, the second sentence in Fig. 2. Had the classifier
produced 0 for the token “to” inside the sentence, the activity “compared the P, R and
F1 scores from the previous experiment to those from the SVM evaluation” would have
been split into two smaller entities: “compared the P, R and F1 scores from the previous
experiment” and “those from the SVM evaluation”. Since each of the new smaller
entities matches the original by less than 86%, the resulting misclassification would
give 2 FPs for the smaller activities and 1 FN for the original.

The performance decrease in entity evaluation was found to vary among domains.
Indeed, a 6.9% average decrease in F1 scores was observed with the DH test set, while
the decrease was 14.5% with the BIOINF test set, and 15.9% with MED. Error analysis
indicates that this can be attributed mainly to the differences in writing style. For
example, in the DH test set, the research activity entities were found to have smaller
size and contain fewer “error prone” tokens (such as acronyms or formulas) that could
cause individual token misclassification and thus split of the entity chunk.

4.2 Sequence Relation Extraction Evaluation

The evaluation of sequence relation extraction methods involves comparing the pre-
dicted relations among the reference standard entities in each test set with those pro-
duced by the human annotators on the basis of Precision, Recall and F1 scores calculated
as usual. A true positive (TP) is a chunk [act1,…, act2] for which the classifier correctly
predicted the follows (act2, act1) property; a false positive (FP) is a chunk for which
follows (act2, act1) was incorrectly predicted; and a false negative (FN) is a chunk for
which follows (act2, act1) incorrectly failed to be predicted. Classifier performance is
also compared with that of a simple baseline method that assigns a sequence relation to
all adjacent activities in a paragraph and activities connected by sequence cue words
(e.g., “then”, “subsequently”). Results are shown in Table 4.

Table 3. Entity-based evaluation

DH test set BIOINF test set MED test set ALL test set
P R F1 P R F1 P R F1 P R F1

Baseline 0.16 0.30 0.20 0.23 0.60 0.34 0.28 0.76 0.40 0.23 0.60 0.33
1 LR.WP.B 0.48 0.60 0.53 0.56 0.72 0.63 0.52 0.74 0.62 0.53 0.70 0.60
2 SVM.WP.B 0.42 0.64 0.50 0.54 0.76 0.63 0.51 0.78 0.62 0.50 0.74 0.60
3 LR.WPD.BS 0.58 0.80 0.67 0.57 0.80 0.66 0.58 0.82 0.68 0.58 0.80 0.67
4 SVM.WPD.BS 0.54 0.82 0.65 0.55 0.79 0.65 0.57 0.83 0.67 0.55 0.81 0.66
5 LR.PD.S.BS 0.59 0.82 0.69 0.58 0.78 0.66 0.60 0.84 0.70 0.59 0.81 0.68
6 SVM.PD.S.BS 0.61 0.83 0.70 0.62 0.76 0.68 0.61 0.83 0.70 0.61 0.80 0.70
7 RF.PD.BS 0.68 0.79 0.73 0.66 0.78 0.72 0.66 0.83 0.74 0.67 0.80 0.73
8 SVM-Pipeline 0.64 0.83 0.73 0.62 0.84 0.72 0.60 0.86 0.71 0.62 0.85 0.72

Ontology Driven Extraction of Research Processes 175

In sequence relation extraction, RF.PD.B performed best in BIOINF, MED and
overall (F1: 0.86, 0.92 and 0.89 respectively), while for the DH test set the forerunner
was LR.WPD.B (F1: 0.88). Error analysis suggests that misclassifications are mostly
due to adjacent sentences containing multiple activities, a situation more frequent in
DH and BIOINF. For example, consider the excerpt: “[act1: Two-thirds of the
extracted bootstrap samples were used for constructing the model] and then [act2: the
other one-third were used for testing]. To calculate variable importance, we first [act3:
put down the out-of-bag cases] and [act4: counted the number of votes cast for the
correct class], and then [act5: randomly permuted the values of variable root j in the
out-of-bag cases]”. One classifier associated act3 and act4 of the second sentence with
the last activity of the first sentence (act2), and another associated the first entity of the
second sentence (act3) with each entity in the first (act1, act2). These predicted
associations are treated as wrong because, by definition, follows only holds for im-
mediately successive activities, with no others in between. Classifiers also tended to fail
to detect activity sequences in texts where activities were sparse (e.g., no adjacent
paragraphs with at least one activity each), probably because of the large size of text
between activities and the structure (not adjacent paragraphs).

5 Conclusion

We addressed the automatic extraction from the text of publications of two core ele-
ments of research processes, research activities and their sequence relations, as a basic
step towards populating research process knowledge bases complying to an ontology
for research process documentation, the Scholarly Ontology (SO). We showed that the
complexity of the task demands more complex feature engineering than usual NER
tasks. We implemented and tested several sliding window classifiers employing fea-
tures specifically designed to deal with particular lexical, syntactic, structural and
semantic aspects of textual context. Alternative implementations were compared using
linear SVMs, Logistic Regression, and Random Forests, as well as a two-stage pipeline
classifier specifically configured for the task of activity extraction.

The classifiers were evaluated against a reference standard produced by human
annotators, with three different test sets from three domains (Digital Humanities,
Bioinformatics and Medicine) and very promising results: overall F1 score 0.88 for
research activity extraction in token-based evaluation and 0.73 in entity-based evalu-
ation, and 0.89 for sequence relation extraction. The classifiers were also compared

Table 4. Relation extraction evaluation

DH test set BIOINF test set MED test set ALL test set

P R F1 P R F1 P R F1 P R F1

Baseline 0.62 0.72 0.67 0.65 0.89 0.76 0.59 0.92 0.72 0.62 0.88 0.72
1 LR(WPD)E-AVG-B 0.87 0.90 0.88 0.85 0.58 0.69 0.94 0.69 0.80 0.87 0.77 0.82
2 SVM(WPD)E-AVG-B 0.80 0.93 0.86 0.83 0.65 0.73 0.91 0.75 0.82 0.84 0.80 0.84
3 RF(PD)1H-SUM-B 0.81 0.93 0.87 0.87 0.85 0.86 0.94 0.90 0.92 0.88 0.89 0.89

176 V. Pertsas et al.

with simpler baselines which were configured without the special features of this work
and with smaller sliding window size closer to those used in common NER tasks. The
baseline classifiers were consistently inferior in both activity and sequence relation
extraction, an additional evidence in support of the effectiveness of the special features
and window width we employed. We also showed how contextual information from
article metadata and other sources such as ORCID can be associated with the extracted
entities according to the Scholarly Ontology and stored as RDF triples adhering to
Linked Data standards.

Future work includes extracting further concepts for documenting research pro-
cesses according to the Scholarly Ontology, such as goals, research questions,
propositions, methods, etc., along with their corresponding relations (such as partOf,
employs, hasObjective, etc.) and experimenting with more complex classifiers (e.g.
CNNs or RNNs [12]) when additional larger training datasets become available.

References

1. Bornmann, L., Mutz, R.: Growth rates of modern science: a bibliometric analysis based on
the number of publications. J. Assoc. Inf. Sci. Technol. Technol. 66, 2215–2222 (2015)

2. Renear, A.H., Palmer, C.L.: Strategic reading, ontologies, and the future of scientific
publishing. Science 325, 828–832 (2009)

3. Augenstein, I., Das, M., Riedel, S., Vikraman, L., McCallum, A.: SemEval 2017 Task 10:
ScienceIE, pp. 546–555 (2017)

4. Pertsas, V., Constantopoulos, P.: Scholarly ontology: modelling scholarly practices. Int.
J. Digit. Libraries. 18, 173–190 (2017)

5. Levy, O., Goldberg, Y.: Linguistic regularities in sparse and explicit word representations.
In: CoNLL, pp. 171–180 (2014)

6. Levy, O., Goldberg, Y., Dagan, I.: Improving distributional similarity with lessons learned
from word embeddings. Trans. ACL 3, 211–225 (2015)

7. Chalkidis, I., Michos, A., Androutsopoulos, I.: Extracting contract elements. In: ICAIL,
pp. 19–28, London (2017)

8. McCullagh, P., Nelder, J.A.: Generalized Linear Models, Chapman and Hall London – New
York (1983). 261 S

9. Cristianini, N., Shawe-Taylor, J.: An introduction to support vector machines and other
kernel-based learning methods. Cambridge University Press, Cambridge (2000). ISBN 0-
521-78019-5

10. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
11. Lafferty, J., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models

for segmenting and labeling sequence data. In: ICML 2001. vol. 8, pp. 282–289 (2001)
12. Goldberg, Y.: A primer on neural network models for natural language processing. J. Artif.

Intell. Res. 57, 345–420 (2016)
13. QasemiZadeh, B., Schumann, A.-K.: The ACL RD-TEC 2.0: a language resource for

evaluating term extraction and entity recognition methods. In: LREC, pp. 1862–1868 (2016)
14. Lee, L.-H., Lee, K.-C., Tseng, Y.-H.: The NTNU System at SemEval-2017 Task 10:

extracting keyphrases and relations from scientific publications using multiple CRFs. In:
11th International Workshop on SemEval-2017, pp. 950–954 (2017)

15. Luan, Y., Ostendorf, M., Hajishirzi, H.: Scientific Information Extraction with Semi-
supervised Neural Tagging, pp. 2631–2641. arXiv:1708.06075 (2017)

Ontology Driven Extraction of Research Processes 177

http://arxiv.org/abs/1708.06075

16. Sateli, B., Witte, R.: What’s in this paper? Combining rhetorical entities with linked open
data for semantic literature querying. In: ICWWW ACM, pp. 1023–1028 (2015). https://doi.
org/10.1145/2740908.2742022

17. Osborne, F., de Ribaupierre, H., Motta, E.: TechMiner: extracting technologies from
academic publications. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW
2016. LNCS (LNAI), vol. 10024, pp. 463–479. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-49004-5_30

18. Sateli, B., Witte, R.: Semantic representation of scientific literature: bringing claims,
contributions and named entities onto the Linked Open Data cloud. PeerJ Comput. Sci. 1,
e37 (2015)

19. Song, Y., Yi, E., Kim, E., Lee, G.G., Park, S.J.: POSBIOTM-NER: a machine learning
approach for bio-named entity recognition (2004). Doi=10.1.1.101.1165

20. Plake, C., et al.: A support vector classifier for gene name recognition. In: BioCreAtIvE
Workshop, Granada, Spain, pp. 1–5 (2004)

21. Gupta, S., Manning, C.: Analyzing the dynamics of research by extracting key aspects of
scientific papers. In: IJCNLP, pp. 1–9 (2011)

22. Salatino, A.A., Osborne, F., Motta, E.: How are topics born? Understanding the research
dynamics preceding the emergence of new areas. PeerJ Comput. Sci. 3, e119 (2017)

23. Ruch, P., et al.: Using argumentation to extract key sentences from biomedical abstracts. Int.
J. Med. Inform. 76, 195–200 (2007)

24. Di Iorio, A., Nuzzolese, A.G., Peroni, S.: Towards the automatic identification of the nature
of citations. In: CEUR Workshop Proceedings, pp. 63–74 (2013)

25. Athar, A., Teufel, S.: Context-enhanced citation sentiment detection. In: NAACL HLT 2012,
pp. 597–601 (2012)

26. Do, H.H.N., Chandrasekaran, M.K., Cho, P.S., Kan, M.-Y.: Extracting and matching authors
and affiliations in scholarly documents. In: ACM/IEEE-CS - JCDL 2013, pp. 219–228
(2013)

27. Lindsay, A., Read, J., Ferreira, J.F., Hayton, T., Porteous, J., Gregory, P.: Framer: planning
models from natural language action descriptions. In: ICAPS, pp. 434–442 (2017)

28. Feng, W., Zhuo, H.H., Kambhampati, S.: Extracting Action Sequences from Texts Based on
Deep Reinforcement Learning. arXiv:1803.02632 (2018)

29. Mei, H., Bansal, M., Walter, M.R.: Listen, Attend, and Walk: Neural Mapping of
Navigational Instructions to Action Sequences. arXiv:1506.04089 (2015)

30. Pertsas, V., Christodoulou, T., Dallas, C., Constantopoulos, P., Papachristopoulos, L.,
Hughes, L.: Contextualized integration of digital humanities research: using the NeMO
ontology of digital humanities methods. In: Digital Humanities 2016: Conference Abstracts,
pp. 161–163. Jagiellonian University & Pedagogical University (2016)

31. Yeh, A.: More accurate tests for the statistical significance of result differences. In:
COLING. vol. 2, pp. 947–953 (2000)

178 V. Pertsas et al.

http://dx.doi.org/10.1145/2740908.2742022
http://dx.doi.org/10.1145/2740908.2742022
http://dx.doi.org/10.1007/978-3-319-49004-5_30
http://dx.doi.org/10.1007/978-3-319-49004-5_30
http://arxiv.org/abs/1803.02632
http://arxiv.org/abs/1506.04089

Enriching Knowledge Bases
with Counting Quantifiers

Paramita Mirza1(B), Simon Razniewski1, Fariz Darari2,
and Gerhard Weikum1

1 Max Planck Institute for Informatics, Saarbrücken, Germany
{paramita,srazniew,weikum}@mpi-inf.mpg.de

2 Universitas Indonesia, Depok, Indonesia
fariz@cs.ui.ac.id

Abstract. Information extraction traditionally focuses on extracting
relations between identifiable entities, such as 〈Monterey, locatedIn,
California〉. Yet, texts often also contain Counting information, stat-
ing that a subject is in a specific relation with a number of objects,
without mentioning the objects themselves, for example, “California is
divided into 58 counties”. Such counting quantifiers can help in a variety
of tasks such as query answering or knowledge base curation, but are
neglected by prior work.

This paper develops the first full-fledged system for extracting count-
ing information from text, called CINEX. We employ distant supervision
using fact counts from a knowledge base as training seeds, and develop
novel techniques for dealing with several challenges: (i) non-maximal
training seeds due to the incompleteness of knowledge bases, (ii) sparse
and skewed observations in text sources, and (iii) high diversity of lin-
guistic patterns. Experiments with five human-evaluated relations show
that CINEX can achieve 60% average precision for extracting counting
information. In a large-scale experiment, we demonstrate the potential
for knowledge base enrichment by applying CINEX to 2,474 frequent
relations in Wikidata. CINEX can assert the existence of 2.5M facts for
110 distinct relations, which is 28% more than the existing Wikidata
facts for these relations.

1 Introduction

Motivation. General-purpose knowledge bases (KBs) like Wikidata, DBpedia
or YAGO [1,31,35] find increasing use in applications such as question answering,
entity search or document enrichment, and their automated construction from
Internet sources has been greatly advanced. So far, information extraction (IE) to
this end has focused on fully qualified subject-predicate-object (SPO) facts such
as 〈Monterey, locatedIn, California〉. However, texts often contain only counting
information: the number of objects that stand in a specific relation with a certain
entity, without mentioning the objects themselves. Examples are: “California is
divided into 58 counties”, “Clint Eastwood directed more than twenty movies”
or “Trump has three sons and two daughters”.
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 179–197, 2018.
https://doi.org/10.1007/978-3-030-00671-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_11&domain=pdf

180 P. Mirza et al.

This kind of knowledge can be codified into an extension of existentially
quantified formulas known in AI and logics as counting quantifiers (CQs): they
assert the existence of a specific number of SPO triples without fully knowing
the triples themselves. Counting information can substantially extend the scope
and value of knowledge bases. First, they allow accurate answers for queries that
involve counts (e.g., number of counties per US state) or existential quantifiers
(e.g., directors who made at least 5 movies). Second, an important use case is
KB curation [8,34]. KBs are notoriously incomplete, contain erroneous triples,
and are limited in keeping up with the pace of real-world changes. Counting
information helps to identify gaps and inaccuracies. For example, knowing the
exact number of counties in California or a lower bound for the number of films
directed by Eastwood are important cues to complete and enrich a KB.

State-of-the-Art and Challenges. The predominant approach to extracting
facts for KB population is distant supervision, using seeds for the SPO triples of
interest (e.g., [21,32]). The seeds are usually taken from an initial KB or are man-
ually compiled. Spotting the seeds in a text corpus (e.g., Clint Eastwood, directed
and Gran Torino) then allows learning patterns for relations (e.g., “director of”
or “〈someone〉’s masterpiece”), which in turn lead to observing new fact candi-
dates. This methodology is known as the pattern-relation duality principle [2].

Distant supervision is a natural approach for extracting counting infor-
mation as well: the cardinality of distinct O arguments for a given SP pair,
n := |{O |SPO ∈ KB}|, serves as a seed for the counting assertion, 〈S, P,∃n〉.
However, it is more challenging than traditional SPO-fact extraction and needs
to cope with several issues:

(1) Non-maximal seeds: Unlike for SPO-fact extraction, the incompleteness of
KBs not only leads to a reduction in the number of seeds, but to seeds that
systematically underestimate the count of facts that are valid in reality. For
example, a KB that knows only a subset of Trump’s children, say three
out of five, leads to a non-maximal seed that may reward spurious patterns
like “owns three golf resorts” at the cost of patterns like “his five children”.
Even worse, KBs often have complete blanks on certain relations, e.g., not
knowing any of Eastwood’s movies despite labeling his occupation as film
director and film producer (https://www.wikidata.org/wiki/Q43203).

(2) Sparse and skewed observations: For many relations, counting information is
expressed in text in a sparse and highly skewed way. For example, the non-
existence of children is rarely mentioned. For musicians, the first Grammy
someone has won often has more mentions than later ones, hence giving
undue weight to the pattern “his/her first award”. The number of members
in a music band is often around four, which makes it hard to learn patterns
for very large or very small bands.

(3) Linguistic diversity: Counting information can be expressed in a variety of
linguistic forms like

(i) explicit numerals as cardinal numbers (e.g., “has five children”),
(ii) lower bounds via ordinal numbers (e.g., “her third husband”),

https://www.wikidata.org/wiki/Q43203

Enriching Knowledge Bases with Counting Quantifiers 181

(iii) number-related noun phrases such as ‘twins’ or ‘quartet’,
(iv) existence-proving articles as in “has a child”,
(v) non-existence adverbs such as ‘never’ and ‘without’.

Open IE methods [18] cannot cope with these challenges. For example, the
sentence “Trump has five children” would typically result in the triple 〈Trump,
has, five children〉, failing to recognize that ‘five’ is a numeric modifier of ‘chil-
dren’. On the other hand, IE methods with pre-specified relations for KB popu-
lation (e.g., NELL [23]) capture relevant O values only for few relations specified
to have numeric literals as their range, such as numberofkilledinbombing or earth-
quakecasualtiesnumber (http://rtw.ml.cmu.edu/rtw/kbbrowser/).

Approach and Contributions. In this paper, we develop the first full-fledged
system for Counting Information Extraction, called CINEX. Our method is
based on machine learning for sequence labeling, judiciously designed to cope
with the outlined challenges. We leverage distant supervision from fact counts in
a given KB, but devise special techniques to handle non-maximal seeds, sparse-
ness and skew in observing count information in text, and linguistic diversity
of patterns. We counter non-maximal seeds (Challenge 1) by relaxing match-
ing conditions for numbers higher than KB counts, and by reducing the train-
ing to popular, more complete entities. Sparseness and skew (Challenge 2) are
addressed by discounting uninformative numbers using entropy measures. Lin-
guistic variance (Challenge 3) is handled by careful consolidation of detected
mentions. We devise both a traditional feature-based conditional random field
(CRF) and a bi-directional LSTM-CRF model using TensorFlow, finding that
both perform roughly comparable, although the traditional approach is more
robust when dealing with noisy training data.

The salient original contributions of this paper are:

• The methodology of our extraction system, CINEX.
• An empirical evaluation with five manually annotated relations, showing 60%

precision on average.
• An application and large-scale experimental study of CINEX on 2,474 fre-

quent relations of Wikidata, showing that counting information can extend
the SPO facts in Wikidata for 110 distinct relations by 28%.

• Code and data made available to the research community on Github.1

The remainder of this paper is structured as follows. In Sect. 2 we specify
the scope of counting quantifiers and discuss the incompleteness of KBs, using
Wikidata as a reference point. Section 3 presents our methodology for extract-
ing counting information at large scale, which we then detail in Sects. 4 and 5.
Section 6 gives experimental results on the quality of our extraction method,
with a particular focus on how CINEX can enrich the Wikidata KB in Sect. 6.4.
Section 7 discusses related work.

1 https://github.com/paramitamirza/CINEX.

http://rtw.ml.cmu.edu/rtw/kbbrowser/
https://github.com/paramitamirza/CINEX

182 P. Mirza et al.

2 Counting Information in Knowledge Bases

Counting quantifiers for a KB with SPO triples are statements on a subset
of the SPO arguments. We focus on the dominant case of quantification of O
arguments for a given SP pair. We write counting statements as 〈S, P,∃n〉, where
S is the subject, P is the predicate and n is a natural number (including zero).
For instance, the statement that President Garfield has 7 children would be
written as 〈Garfield , hasChild ,∃7〉. In the OWL description logics, this statement
is written as:

ClassAssertion(ObjectExactCardinality(7 :hasChild) :Garfield)

Wikidata. To illustrate how today’s KBs deal with counting information, we
briefly discuss the case of Wikidata, presumably the world’s largest and best
curated publicly available KB. Wikidata already contains counting relations for
a few topics such as numberOfChildren, numberOfSeasons (of a TV series), or
numberOfHouseholds (of an administrative entity). This information can coexist
with fully qualified SPO facts. Regarding children, for example, Wikidata knows
4 out of the 7 children of President Garfield by name, and knows that he had
7 in total (see Fig. 1). However, the numberOfChildren predicate is asserted for
only 0.2% of persons in Wikidata so far. Even the child property is asserted for
only 2.2% of persons, creating uncertainty about whether the others have no
children or whether Wikidata does not know about them.

Fig. 1. SPO facts and counting information in Wikidata.

Counting information is beneficial for search and question answering, for
example to answer “Which US presidents were married twice?” We analyzed
the number of questions in the TREC 2003, 2004 and 2007 QA test datasets [4],
and found that 5% to 10% of the questions (typically starting with “How many”)
fall into this category.

Potential for KB Enrichment. To quantitatively assess the gap in Wikidata,
for which counting information can contribute to KB enrichment, we had one
expert read the Wikipedia articles of 200 randomly selected people, with the task
of comparing the text-borne counting information on the hasChild relation with

Enriching Knowledge Bases with Counting Quantifiers 183

the explicitly stated children names. The expert was instructed to look at two
kinds of cues: (i) explicit numerals expressing counting information, (ii) counting
names of children mentioned in the article. We compare these numbers against
(iii) the Wikidata SPO triples for the person’s hasChild predicate. Note that
approach (ii) corresponds to what standard IE aims to achieve (i.e., extracting
full triples and then counting).

We found that counting information via numerals allows the discovery of
children counts for 12% of all test entities, while names of children are only
mentioned for 7%, and Wikidata contains facts about children for only 2.5%. As
for the total number of children, counting information asserts the existence of
twice as many children, i.e., 0.35 children per person, as spotting and counting
children names (0.18), and even eleven times more than Wikidata currently
knows of (0.03).

3 System Overview

The CINEX system aims to solve the following problem:

Problem 1 (Counting Quantifier Extraction). Given a text about a sub-
ject S, and a predicate P , the task of counting quantifier (CQ) extraction is to
determine the number of objects with which S stands in relation regarding P .

For instance, given the sentence “Trump has three sons and two daughters”, the
output for the predicate numberOfChildren should be 5.

Fig. 2. Overview of the CINEX system.

Figure 2 gives a pictorial overview of the system architecture of CINEX. We
split the overall task into two main components: the recognition of counting
information and the consolidation of intermediate results into the final output
of counting quantifiers. These components are presented in Sects. 4 and 5, respec-
tively.

CINEX utilizes seeds from Wikidata in a judicious way in order to train a
model for CQ recognition, using one of two options: a conditional random field
(CRF) or a bidirectional LSTM neural network. When applied to new text, the
output of the recognition model is a set of CQ candidates, which are often fairly

184 P. Mirza et al.

noisy, though. Subsequently, the second stage of CINEX – CQ consolidation –
cleans and aggregates the counting information and produces the final output
of CINEX. The resulting CQ triples could potentially be added to a knowledge
base such as Wikidata.

4 Counting Quantifier Recognition

The first stage of CINEX aims to recognize counting information in text, this
way collecting a pool of CQ candidates for further cleaning and consolidation.
We cast the CQ recognition into a sequence labeling task, operating on a per-
sentence basis and learned separately for each predicate P . We are interested in
counting information for a given subject-predicate (SP) pair and assume that
the subject is already identified by the sentence context (e.g., the main entity
featured in a document, like a Wikipedia article about S or S’s homepage on
the Web). Furthermore, we assume that the input sentence is pre-processed
by detecting terms that indicate counting information: cardinals, ordinals and
number-related terms (numterms).

Task 1 (Counting Quantifier Recognition). Given a sentence about subject
S and predicate P containing at least one cardinal, ordinal or number-related
term (numterm), the task of CQ recognition is to label each token of the sentence
with one of the following tag: (i) count, for denoting a CQ mention, (ii) comp,
for denoting compositional cues and (iii) o, for others.

The following shows an example:

sentence Jolie brought her twins , one daughter and three adopted children to the gala .
pre-processed Jolie brought her numterm , cardinal daughter and cardinal adopted children to the gala .
output tags O O O count comp count O comp count O O O O O O

Sequence Labeling Models. Our problem resembles the Named Entity
Recognition (NER) task, with Conditional Random Fields (CRFs) being a typ-
ical choice of sequence labeling models. In order to generalize patterns beyond
specific numeric values/tokens, we pre-process sentences to lift these specific
tokens into placeholders cardinal, ordinal and numeric term (numterm). For
instance, the sentence “Donald Trump has three children from his first wife.”
becomes “Donald Trump has cardinal children from his ordinal wife.”

CINEX learns one sequence labeling model for each predicate of interest (e.g.,
with separate models for children and spouses). We have devised solutions based
on two sequence labeling methods:

1. Feature-based model. We constructed a CRF-based sequence classifier using
CRF++ [14] with n-gram features (up to pentagrams), taking into account
lemmas and placeholders (e.g., {Trump, have, cardinal, child, from})
instead of the original tokens.

Enriching Knowledge Bases with Counting Quantifiers 185

2. Neural model. We adopt the bidirectional LSTM-CRF architecture proposed
in [15] using TensorFlow, presently the state-of-the-art method for sequence-
to-sequence learning, to build our sequence labeling model. The neural archi-
tecture takes into account words, placeholders and character embeddings to
represent the input sequence. The neural model should be able to exploit,
for example, that word embeddings for ‘children’, ‘daughters’ and ‘sons’ are
close to each other in the embedding space. Furthermore, word embeddings
for out-of-vocabulary words such as ‘ennealogy’ can be generated via charac-
ter embeddings, recovering similarity to e.g. ‘pentalogy’.

Incompleteness-Aware Distant Supervision. We employ distant supervi-
sion to generate training data, as common in relation extraction [3,21,32]. Given
a knowledge base (KB) relation P , for each entity S in the KB that appears as
the subject of P , we retrieve (i) the triple count |〈S, P, ∗〉| from the KB and
(ii) sentences about S containing candidate mentions, e.g., cardinal numerals.
Candidate mentions that are equal to or representing the triple count will be
labelled with the tag count denoting counting quantifier mentions, i.e., as pos-
itive examples. Otherwise, candidate mentions will be labeled with the O tag,
i.e., as negative examples, like any other non-candidate mentions (e.g., non-
numerals). We built separate training data for each relation P of interest.

Incomplete information from the KB used as the ground truth may nega-
tively affect the quality of training data resulting from the distant supervision
approach. To mitigate the effect that KB incompleteness has on training data
quality, we investigated filtering the ground truth based on subject popularity,
according to the number of stored KB triples for that subject, which is also
highly correlated with other popularity measures like PageRank or Wikipedia
article length. For example, for 10 random entities from the 99th, 90th and
80th percentile w.r.t. popularity, the mean difference between Wikidata children
counts and a manually established ground truth from Wikipedia is 0.8, 1.5 and
2.4, respectively. Assuming that popularity and completeness are correlated in
general, we can thus trade training data quantity for quality by disregarding less
popular entities during training.

Candidate counts that are higher than the KB count are normally considered
as not expressing the object count for the relation of interest, i.e., as negative
training examples. But this can also happen to mentions that actually express the
correct count, when the KB is incomplete and only knows counts lower than the
correct one. Our remedy is to treat mentions higher than KB counts neither as
positive nor as negative examples, but to simply exclude them from the training
set. However, there is the need to maintain enough negative examples; otherwise,
the classifier would get overly optimistic. For this purpose we utilize upper bound
information of triple counts specific to each relation, i.e., the triple count at 99th
percentile (e.g., 3 for number of spouses), as found in the KB. A higher count
mention will then still be treated as a negative example if it is deemed to be
impossible to represent count information for the relation in question.

186 P. Mirza et al.

Furthermore, the more frequent a certain number occurs in a text, the more
probable it is to occur in various contexts. As a way to give the classifier less
noisy training examples, we ignore sentences that contain count mentions of
numbers that have a low entropy in the given text, even when they represent
the actual object count. This way we ensure that the models only learn from
correct number mentions in the right context.

Linguistic Diversity. As mentioned in the introduction, there are several ways
to express count information in natural language text, cardinals and ordinals
being only the most obvious ones.

Number-Related Terms. We exploited the relatedTo relation in ConceptNet [29]
for collecting around 1,200 terms related to numbers. The terms are split into
two groups, those having Latin/Greek prefixes2 and those not having them. For
the first group, we generated a list of Latin/Greek prefixes (e.g., quadr-) and a
list of possible suffixes (e.g., -plets). When generating training data, a term with
Latin/Greek affixes was labeled with the positive count tag if its prefix matched
the triple count. For feature-based models we also replaced such terms in the
input with placeholders numterm appended with their Latin/Greek suffixes,
while we use the original tokens for neural models.

From the second group we manually selected 15 terms that were especially
strongly associated with specific counts (e.g., twins, dozen). During preprocess-
ing, these terms are then either replaced with corresponding terms/phrases con-
taining cardinal numbers, e.g., thrice → three times and a dozen → twelve, or
replaced with corresponding Latin/Greek suffix placeholders (e.g. numterm-

plets for twins).

Indefinite Articles. Indefinite articles (i.e., ‘a’, ‘an’) are similar to the ordinal
first insofar as they can express the existence of at least one object. We initially
planned to treat them this way, yet due to their overwhelming frequency our
classifiers could not cope with them. Thus we now disregard them in the training
stage and only consider them as candidate mentions when applying the learned
models, by replacing them with the cardinal placeholder, and treating them
as the mention one.

Compositionality. To account for compositional mentions occurring in one
sentence, we introduce an extra label, compositionality tag (comp), for the
sequence labeling models. During training data generation, we identify consec-
utive candidate tokens with label count such that (i) the sum of their values
is equal to the triple count and (ii) there exist compositional cues (commas and
‘and’) in between, which are then tagged with the comp label.

2 http://phrontistery.info/numbers.html.

http://phrontistery.info/numbers.html

Enriching Knowledge Bases with Counting Quantifiers 187

5 Counting Quantifier Consolidation

Once tokens expressing counting or compositionality information have been iden-
tified, these need to be consolidated into a single prediction for the number of
objects.

Task 2 (Counting Quantifier Consolidation). For a given subject S and
predicate P , the input to this second stage is a set of token lists, where each
token list consists of words/numbers and their corresponding input and output
labels (i.e., cardinal, ordinal, numterm, count or comp) and at least one token is
tagged cardinal, ordinal or numterm. The desired output is a single number for
the counting quantifier for S and P , that is, the correct number of objects for S
and P .

For example, for the pair 〈AngelinaJolie, hasChild〉, the following token lists
may have been detected (annotated as counting information and [compositional
cues], with confidences as subscripts):

l1: Angelina has a grand total of six0.4 children together: three0.3 biological
[and]0.6 three0.5 adopted.

l2: The arrival of the first0.5 biological child of Jolie and Pitt caused an excited
flurry with fans.

l3: On July 12, 2008, she gave birth to twins0.8: a0.1 son, Knox Léon, [and]0.5
a0.2 daughter, Vivienne Marcheline.

We use the following algorithm to consolidate the counting quantifier (CQ)
candidates from these labeled token lists.

Algorithm 1 (Mention Consolidation)

1. Sum up compositional mentions. Mentions having compositional cues in
between are summed up, and their confidence score is set to the highest con-
fidence score of the mentions.

2. Select prediction per type. For multiple mentions of type cardinal and number-
related term, only the mention with the highest confidence is retained if it is
above a certain threshold, with compositional mentions treated like cardinals.
For ordinals, we always select the highest ordinal available in the candidate
pool, regardless of the confidence scores.

3. Rank mention types. In the last step, the final prediction is chosen based on
the preference ncardinal � nnumterm � nordinal � narticle, i.e., whenever a
cardinal mention exists, it is returned as final answer, otherwise a number-
related term, ordinal or article.

In the example above, in the first step, the two mentions of three in s1 are
summed up to one mention 60.5, and the two indefinite articles in s3 are combined
into 20.2. In the second step, 60.5 is chosen as highest-confidence cardinal, twins0.8
as highest ranking numterm (with numerical value 2), and first0.5 as highest
ranking ordinal. In the last step, the cardinal 60.5 or the term twins0.8 is chosen
as final prediction, depending on whether the confidence threshold is below 0.5
or not.

188 P. Mirza et al.

Confidence Scores. We interpret marginal probabilities given by CRFs, i.e.,
the probability of a token labeled with a certain tag resulting from forward-
backward inference, as the confidence scores of identified mentions. When a CRF
layer is not applied on top of the neural models, the probabilities are simply given
by the softmax output layer.

Count Zero. We so far only considered counting information for counts greater
than zero. Reliably recognizing subjects without objects is difficult for two rea-
sons, (i) because reliable training data is even harder to come by, and (ii) because
the count zero is neither expressed via cardinals nor ordinals or indefinite arti-
cles. We thus consider count zero only in passing, focusing on two especially
frequent ways to express it: (i) determiners ‘no’ and ‘any’ (used in negation)
and (ii) non-existence-proving adverbs ‘without’ and ‘never’. We approach their
labeling in a manner similar to the identification of count information via indefi-
nite articles, i.e., not using the count quantifier cues for training but considering
them when applying the models.

We performed text preprocessing beforehand to ensure that the non-existence
cues can be discovered by the learned models. This preprocessing step includes
transforming sentences containing ‘not-any’, ‘never’ and ‘without’ into sentences
containing ‘no’ and ‘0’, for example:

They didn’t have any children → They have no children

He has never been married → He has been married 0 times
The marriage was without children → The marriage was with no children.

Finally, textual occurrences of ‘no’ and ‘0’ are replaced with cardinal and
treated as count zero.

6 Experiments

6.1 Experimental Setup

Dataset. We chose Wikidata as our source KB and Wikipedia pages about
given subject entities as our source text for the distant supervision approach.3

While some Wikidata properties are self-explanatory, like child or spouse, some
others are overloaded, i.e., used in highly diverse domains with different seman-
tics depending on the type of the subject entities, e.g. has part. Thus, we define
relations in our experiments as pairs of a Wikidata subject type/class and a
Wikidata property. We focus on five diverse relations (listed in Table 1 under
the Relation column) using the four Wikidata properties already used in [22],
but using two specific Wikidata classes for the overloaded has part property, i.e.,
series of creative works and musical ensemble. We use four sets of entities for
training and evaluation:

3 Both in their version as of March 20, 2017.

Enriching Knowledge Bases with Counting Quantifiers 189

Table 1. Number of Wikidata instances as subjects (#Subject) of each relation in the
training set.

Wikidata subject class Wikidata property Relation #Subjects

series of creative works (Q7725310) has part (P527) containsWork 642

musical ensemble (Q2088357) has part (P527) hasMember 8,901

admin. territ. entity (Q56061) contains admin. territ. entity (P150) containsAdmin 6,266

human (Q5) child (P40) hasChild 40,145

human (Q5) spouse (P26) hasSpouse 45,261

1. Training set : For each relation, all subject entities with an English Wikipedia
page that have at least one object in Wikidata, except those used for devel-
opment and testing (counts are shown in Table 1).

2. Manual test set : 200 entities per relation randomly chosen from the training
set (i.e., have at least one object).

3. Automated test set : 200 of the 10% most popular entities per relation removed
from the training set (i.e., have at least one object).

4. Zero-count test set : 64 and 168 entities for the hasChild and hasSpouse rela-
tions, respectively, which are entities in Wikidata having child (P40) and
spouse (P26) properties set to the special value no-value.

For the manual test set we manually annotated mentions in text that correspond
to counting quantifiers, and established the correct object count from Wikipedia.
The automated test set is used for parameter tuning of the neural models, and as
silver standard for evaluating our system beyond the 5 gold-annotated relations.
For evaluating zero-count quantifier detection, we use two relations for which
manually created data from Wikidata is available.

Hyperparameters. We set 0.1 as the confidence score threshold in the mention
consolidation task (Sect. 5), after experimenting with varying values. For training
the neural models, we employed Adam [12] with a learning rate of 0.001. Using
stochastic gradient descent (SGD) with a gradient clipping of 5.0 as reported
in [15] results in worse performance. The LSTM network uses a single layer with
300 dimensions. The hidden dimension of the forward and backward character
LSTMs are 100. We set the dropout rate to 0.5. We also use GloVe pre-trained
embeddings [26] to initialize our lookup table.

6.2 Evaluation

Evaluation Scheme. We evaluate our system, CINEX (Counting Information
Extraction), on quantifier recognition, quantifier consolidation, and on the end-
to-end task with the following metrics:

We use precision, recall and F1-score to evaluate how well the system can
identify counting information in a given text. For entities for which the system
recognized at least one counting quantifier (CQ) candidate, we then measure
precision in choosing the correct final CQ. Finally, we evaluate the system for

190 P. Mirza et al.

Table 2. Performance of CINEX on recognizing counting quantifier mentions, with dif-
ferent architectures and in comparison with the baseline. Highest F1-score per relation
in boldface.

Relation Baseline [22]

CINEX

CRF biLSTM biLSTM-CRF

P R F1 P R F1 P R F1 P R F1

containsWork 22.4 24.0 23.1 61.9 29.3 39.8 61.1 19.6 29.6 54.9 28.9 37.8

hasMember 1.5 4.3 2.2 55.7 56.5 56.1 38.2 18.8 25.2 35.9 33.3 34.6

containsAdmin 51.1 64.3 57.0 72.5 82.9 77.3 78.4 82.9 80.6 78.7 84.3 81.4

hasChild 6.4 49.4 11.4 54.5 44.4 49.0 33.9 11.7 17.4 26.1 14.8 18.9

hasSpouse 1.9 12.1 3.3 58.2 67.2 62.4 20.4 36.2 26.1 27.1 32.8 29.7

Table 3. Performance of CINEX-CRF on recognizing counting quantifier mentions,
per mention type. Numt. stands for number-related terms, Art. for indefinite articles.
Baseline comparison is only for cardinals (highest F1-score per relation in boldface).

Relation

Baseline [22] CINEX-CRF (per type)

Cardinals Cardinals Numt.+Art. Ordinals

P R F1 P R F1 P R F1 P R F1

containsWork 22.4 77.8 34.8 60.0 18.3 28.1 53.1 98.1 68.9 77.6 19.9 31.7

hasMember 1.5 25.0 2.9 50.0 33.3 40.0 55.7 64.2 59.6 100 25.0 40.0

containsAdmin 51.1 64.3 57.0 84.1 82.9 83.5 0 0 0 0 0 0

hasChild 6.4 72.7 11.8 75.6 56.9 64.9 24.3 100 39.1 7.7 2.3 3.5

hasSpouse 1.9 87.5 3.7 76.9 90.9 83.3 0 0 0 85.3 63.0 72.5

the end-to-end task in terms of coverage, i.e., for how many subject entities the
system can extract correct object counts from text, and Mean Absolute Error
(MAE), to understand how much system predictions deviate from the truth.

Quantifier Recognition. We report in Table 2 the performance results of dif-
ferent architectures w.r.t. precision, recall and F1-score. We also compare our
system with the best performing method for extracting cardinals reported in [22]
as baseline. As one can see, feature-based CRF models are the most robust
sequence labeling approach across relations for this task, although the neural
models achieve higher F1-score with 3.3 percentage point difference for contain-
sAdmin. Adding a CRF layer on top of bidirectional LSTM models improves
performance across relations, although this architecture still fails to beat the
feature-based CRF models in most cases. We conjecture that this is due to neu-
ral models being much more prone to overfitting to noisy distantly supervised
training data. Still, both feature-based and neural models consistently outper-
form the baseline by a large margin, in particular w.r.t. precision.

In Table 3 we split this analysis further by mention type. This provides a
more fair comparison with the baseline that only considers cardinal numbers.
Still, CINEX-CRF achieves a higher precision on all relations, and a higher F1-

Enriching Knowledge Bases with Counting Quantifiers 191

Table 4. Performance of CINEX-CRF in consolidating counting quantifier mentions
w.r.t. precision (P), coverage (Cov) and MAE. Numt. stands for number-related terms,
Art. for articles. Results per type show contribution (Contr) to overall output and
precision of individual types.

Relation
Baseline [22]

CINEX-CRF
CINEX-CRF (per type)

Cardinals Numt.+Art. Ordinals

P Cov MAE P Cov MAE P Contr P Contr P Contr

containsWork 42.0 29.0 3.7 49.2 29.0 2.6 55.0 33.9 62.5 40.7 20.0 25.4

hasMember 11.8 6.0 3.8 64.3 18.0 1.2 62.5 28.6 65.0 71.4 0 0

containsAdmin 51.8 14.5 7.3 78.6 22.0 1.7 85.7 87.5 33.3 10.7 0 1.8

hasChild 37.0 22.0 2.2 50.0 19.5 2.3 67.3 70.5 6.3 20.5 14.3 9.0

hasSpouse 26.8 11.0 1.3 58.1 12.5 0.5 75.0 18.6 43.8 37.2 63.2 44.2

hasZeroChild 92.3 18.8 -

hasZeroSpouse 71.9 13.7 -

score on 4 out of 5. We also see variety within the mention types and relations,
ordinals for instance being well picked up for hasSpouse, but badly for hasChild.

Quantifier Consolidation. Table 4 shows the performance of CINEX-CRF,
our best performing system for recognizing counting information, on the con-
solidation and end-to-end task. We report the results broken down per mention
type, as well as in overall.

Table 5. Examples of correct and incorrect predictions by CINEX-CRF.

Relation Subject #O Predicted counting quantifiers

C
or
re
ct

containsWork The Heroes of Olympus 5 The Heroes of Olympus is a pentalogy of adventure... 5
hasMember Siria 2 The music duo Siria is composed of... 2
containsAdmin Gusevsky District 5 ...was subdivided into one urban settlement and four rural settlements. 5
hasChild Hanna Neumann 5 Four of her five children became mathematicians... 5
hasSpouse Hannelore Schroth 3 Her third marriage to a lawyer produced a son... 3

In
co
rr
ec
t containsWork Scandal (TV series) 7 ...this season was split into two runs, the first consisting of ten episodes. 10

hasMember Ladysmith Black Mambazo 9 ...Mazibuko (the eldest of the six brothers) joined Mambazo... 6
containsAdmin Cottbus 4 Cottbus has a football team called FC Energie Cottbus... 1
hasChild Barack Obama 2 The couple’s first daughter, Malia Ann, was born on July 4, 1998. 1
hasSpouse Ruth Williams Khama 1 ...and twins Anthony and Tshekedi were born in Bechuanaland... 2

In predicting counting quantifiers through recognizing cardinals in text,
CINEX-CRF achieves 55–85% precision. This is a considerable improvement
(up to 48.9 percentage points) compared to the baseline [22]. Although the base-
line yields a comparable coverage, its low precision suggests that it has difficulties
to pick up correct context and produces some matches only by chance.

Number-related terms and articles are beneficial in improving coverage par-
ticularly for containsWork and hasMember, yet produce low precision results
for hasChild, possibly due to spurious indefinite articles frequently identified as
counting quantifiers. Overall, taking compositionality as well as mention types

192 P. Mirza et al.

Table 6. KB enrichment potential for 40 relations, showing only relations with accu-
racy (Acc) >50% and coverage (Cov) >5%.

Wikidata subject class Wikidata property P Cov #Existing

facts

#Missing

facts

KB increase

duo has part 88.9 26.7 561 51 9.1%

rock band has part 78.6 18.3 1,148 187 16.3%

band has part 70.2 16.5 9,342 3,905 41.8%

township of China contains admin 100.0 63.0 7,254 19 0.3%

municipality with town

privileges

contains admin 100.0 13.7 3,343 25 0.7%

amphoe (subdivision of

Thailand)

contains admin 98.0 63.2 6,226 1,032 16.6%

town in China contains admin 97.8 29.0 38,894 377 1.0%

canton of France

(until 2015)

contains admin 97.2 38.5 9,191 189 2.1%

county of China contains admin 89.5 35.7 22,401 236 1.1%

District of China contains admin 88.9 35.6 11,828 170 1.4%

municipality of the Czech

Republic

contains admin 76.9 5.0 8,279 184 2.2%

fictional human child 100.0 9.1 327 141 43.1%

race horse child 87.0 27.4 1,800 1,742 96.8%

mythological Greek

character

child 85.7 21.4 624 44 7.1%

human biblical figure child 66.7 16.7 274 42 15.3%

human child 58.8 28.5 73,527 117,942 160.4%

human spouse 61.4 17.5 50,373 48,778 96.8%

Total (over all 40) 224,216 173,256 77.3%

other than cardinals into account improve both accuracy and coverage of the
system, with MAE of not more than 2.6 across relations. The performance of
CINEX-CRF on predicting non-existence of objects is reported in the last two
rows of Table 4. We obtain a high accuracy of 92.3% for hasChild and 71.9% for
hasSpouse.

Qualitative Analysis. Table 5 lists notable examples of correct and incor-
rect predictions. Errors for hasMember and hasSpouse are sometimes caused by
wrongly labelled mentions that are related instead with other relations, e.g.,
musical ensemble members and siblings. For some relations, understanding the
fine-grained types of subject entities may help in choosing the correct context
of counting quantifiers. For instance, a TV series consists of seasons while a
specific season of the series contains episodes.

Notable is also the low precision of ordinals shown in Table 4. A main reason
is that ordinals only reliably express lower bounds (see e.g. fourth incorrect
example). If one considers ordinals as correct whenever they are not higher than
the true count, the reported precision scores increase from 14.3–63.2% to 85.7–
89.5%.

Enriching Knowledge Bases with Counting Quantifiers 193

6.3 KB Enrichment Potential

In this section we return to our original goal of enlarging the number of facts
known to exist. We investigate the potential of CINEX on 40 relations, by focus-
ing on the 4 previously used Wikidata properties, but looking at the up to
10 most frequent subject classes of entities using each property. For each rela-
tion, we then perform automated evaluation of CINEX as described in Sect. 6.1.
In Table 6, we report relations for which CINEX-CRF gave precision >0.5 and
coverage >0.05. For each relation we report the number of existing facts in Wiki-
data, and the existence of how many more facts we can infer from the counting
quantifiers. For instance, we can derive the existence of 160.4% more children
relationships than currently stored. In sum, CINEX is able to identify the exis-
tence of 173K more facts than Wikidata currently knows, thus increasing the
existential knowledge of Wikidata for these 40 relations by 77.3%.

We also applied CINEX to all human entities to find out how many subjects
are found to have no objects w.r.t. the hasChild and hasSpouse relations, finding
1,648 instances for children and 557 for spouses. These assertions increase the
existing known zero cases in Wikidata for both relations by a factor of 25.8 and
3.3, respectively.

Table 7. Classes along with relations for which count information could be retrieved
best.

Human Creative works Admin.

territorial

Musical ensemble Organization Transport. facility

occupation nominated for contains

settlement

has part subsidiary connecting line

employer genre contains admin.

territorial

nominated for founded by adjacent station

influenced by cast member capital of record label - -

award received screenwriter member of award received - -

child voice actor sister city genre - -

6.4 Count Information Across KB Relations

So far we only evaluated CINEX on four manually chosen Wikidata properties.
In this section we investigate to which extent counting quantifiers are present
for arbitrary relations, and to which extent they can be extracted by CINEX.

To this end, we collected all Wikidata properties that were interest-
ing, i.e., were not asserted to be single-value4, had a functionality degree
(#subjects/#triples) of less than 0.98 [10], and were used by at least 500 sub-
jects, obtaining 267 properties in total. For each of these properties, we identified
the 10 most frequent entity classes used as subjects, resulting in a total of 2,474
relations. For each relation, we then performed automated evaluation of CINEX
as described in Sect. 6.1, finding 110 relations for which CINEX gave precision
>50% and coverage >5%.
4 Properties having the constraint https://www.wikidata.org/wiki/Q19474404.

https://www.wikidata.org/wiki/Q19474404

194 P. Mirza et al.

Among the frequent classes (grouped by theme) of subjects for which we
can mine counting quantifiers from the corresponding Wikipedia pages are:
human (including twin, fictional human, biblical figure and mythological Greek
character), creative works (e.g., film, television series), administrative territorial
entity (e.g., country, municipality), musical ensemble (e.g., band, duo), organiza-
tion (e.g., business enterprise, nonprofit organization) and transportation facility
(e.g., metro station, train station). We show in Table 7 the top 5 Wikidata prop-
erties for each mentioned subject type. Other notable relations include: <battle,
participant>, <human spaceflight, crew member> and <star, child astronomical
body>.

In terms of KB enrichment, CINEX was able to extract a total of 851K
counting quantifier facts, which in turn state the existence of 2.5M facts not
yet asserted for these 110 <Wikidata class, Wikidata property> pairs. These
existential facts, provided on Github, increase the number of facts known to
exist for these relations by 28.3%.

7 Related Work

Knowledge bases have seen a rise of attention in recent years. Aside from a
few manual efforts like Wikidata, the construction of these knowledge bases is
usually done via automated information extraction, focusing either on structured
data (DBpedia [1], YAGO [31]), or on unstructured contents from the web.
For the latter, directions include extracting arbitrary facts without predefined
schema, called Open IE [6,19,23], and extracting triples based on well-defined
knowledge base relations [13,25,33], in which the distant supervision approach
is widely used [3,21,32]. The idea of distant supervision is to use facts from an
existing KB in order to label sentences as positive/negative training samples,
depending on whether the entities from the existing facts occur in them or not.
A major challenge for distant supervision is knowledge base incompleteness: If
the KB used for labeling the training data misses facts, candidates may wrongly
be classified as negative samples, reducing the quality of the learning process.
Approaches to mitigate this effect include heavily under-sampling the negative
evidence [27,33], to learn only from positive samples [20], or to use heuristics in
selecting negative samples [9,10], yet these do not help with potentially wrong
seed counts.

Most works on information extraction focus on relations that link entities, like
〈Trump, presidentOf, USA〉, or that store String or measurement values. Count-
ing quantifiers have received comparably little attention. Numbers, a major con-
struct for expressing counts, were investigated mostly in the context of temporal
information, e.g. to enrich facts with timestamps/durations [16,30], or in the con-
text of quantities and measures like 〈MtEverest, height, 8848mt〉 [11,17,24,28].
In contrast, terms that express counting quantifiers are either extracted incor-
rectly by state-of-the-art Open-IE systems, or not at all. While NELL, for
instance, knows 13 relations about the number of casualties and injuries in dis-
asters, they all contain only seed facts and no learned facts. In [22], which we use

Enriching Knowledge Bases with Counting Quantifiers 195

as baseline for our experiments, we have proposed a single-stage process for iden-
tifying numbers that express relation counts. Yet, we there only consider explicit
cardinals and do not tackle training data incompleteness nor compositionality,
thus achieving only moderate precision and coverage.

While a few counting qualifier predicates such as number of children, number
of seasons (of a TV series) or number of households (of a territory) already
exist in Wikidata, it should be noted that a proper interpretation of counting
quantifiers requires to go beyond the standard open-world assumption of the
Semantic Web, as they allow to infer negative information. Appropriate models
require to combine open-world and closed-world reasoning, as does for instance
the local closed-world assumption [5,7].

8 Conclusions

We have proposed to enrich KBs with counting quantifiers, and discussed the
challenges that set counting quantifier extraction apart from standard informa-
tion extraction. In particular, we showed that it is imperative to consider the
compositionality of counts, and their expression in non-numeric form. We have
shown that our system, CINEX, can extract counting quantifiers with 60% aver-
age precision on five relations, and when applied to a large set of relations, it is
possible to extend the number of facts known to exist in 110 of them by 28%. We
believe that the extraction of counting quantifiers opens interesting avenues for
tasks such as question answering, information extraction or KB curation. Our
data and code are available at https://github.com/paramitamirza/CINEX.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

2. Brin, S.: Extracting patterns and relations from the World Wide Web. In: WebDB
(1998)

3. Craven, M., Kumlien, J., et al.: Constructing biological knowledge bases by extract-
ing information from text sources. In: ISMB (1999)

4. Dang, H.T., Kelly, D., Lin, J.J.: Overview of the TREC 2007 question answering
track. TREC 7, 63 (2007)

5. Darari, F., Nutt, W., Pirrò, G., Razniewski, S.: Completeness statements about
RDF data sources and their use for query answering. In: Alani, H., et al. (eds.)
ISWC 2013. LNCS, vol. 8218, pp. 66–83. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41335-3 5

6. Del Corro, L., Gemulla, R.: ClausIE: clause-based open information extraction. In:
WWW (2013)

7. Denecker, M., Cortés-Calabuig, A., Bruynooghe, M., Arieli, O.: Towards a logical
reconstruction of a theory for locally closed databases. ACM Trans. Database Syst.
35(3) (2010)

https://github.com/paramitamirza/CINEX
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-642-41335-3_5
https://doi.org/10.1007/978-3-642-41335-3_5

196 P. Mirza et al.

8. Dong, X.L., et al.: From data fusion to knowledge fusion. PVLDB 7(10), 881–892
(2014)

9. Dong, X.L., et al.: Knowledge vault: a web-scale approach to probabilistic knowl-
edge fusion. In: KDD (2014)

10. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)

11. Ibrahim, Y., Riedewald, M., Weikum, G.: Making sense of entities and quantities
in web tables. In: CIKM (2016)

12. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980
(2014)

13. Koch, M., Gilmer, J., Soderland, S., Weld, D.S.: Type-aware distantly supervised
relation extraction with linked arguments. In: EMNLP (2014)

14. Kudo, T.: CRF++: Yet another CRF toolkit (2005). https://sourceforge.net/
projects/crfpp/

15. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. In: NAACL (2016)

16. Ling, X., Weld, D.S.: Temporal information extraction. In: AAAI (2010)
17. Madaan, A., Mittal, A., Mausam, G.R., Ramakrishnan, G., Sarawagi, S.: Numerical

relation extraction with minimal supervision. In: AAAI (2016)
18. Mausam: Open information extraction systems and downstream applications. In:

IJCAI (2016)
19. Mausam, Schmitz, M., Soderland, S., Bart, R., Etzioni, O.: Open language learning

for information extraction. In: EMNLP (2012)
20. Min, B., Grishman, R., Wan, L., Wang, C., Gondek, D.: Distant supervision for

relation extraction with an incomplete knowledge base. In: HLT-NAACL (2013)
21. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extrac-

tion without labeled data. In: ACL/IJCNLP (2009)
22. Mirza, P., Razniewski, S., Darari, F., Weikum, G.: Cardinal virtues: extracting

relation cardinalities from text. In: ACL 2017 (Short Papers) (2017)
23. Mitchell, T.M., et al.: Never-ending learning. In: AAAI (2015)
24. Neumaier, S., Umbrich, J., Parreira, J.X., Polleres, A.: Multi-level semantic

labelling of numerical values. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol.
9981, pp. 428–445. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46523-4 26

25. Palomares, T., Ahres, Y., Kangaspunta, J., Ré, C.: Wikipedia knowledge graph
with DeepDive. In: ICWSM (2016)

26. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word repre-
sentation. In: EMNLP (2014)

27. Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without
labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML
PKDD 2010. LNCS (LNAI), vol. 6323, pp. 148–163. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15939-8 10

28. Saha, S., Pal, H., Mausam: Bootstrapping for numerical open IE. In: ACL (2017)
29. Speer, R., Havasi, C.: Representing general relational knowledge in ConceptNet 5.

In: LREC (2012)
30. Strötgen, J., Gertz, M.: Heideltime: high quality rule-based extraction and nor-

malization of temporal expressions. In: SemEval Workshop (2010)
31. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge.

In: WWW (2007)
32. Suchanek, F.M., Sozio, M., Weikum, G.: SOFIE: a self-organizing framework for

information extraction. In: WWW (2009)

http://arxiv.org/abs/1412.6980
https://sourceforge.net/projects/crfpp/
https://sourceforge.net/projects/crfpp/
https://doi.org/10.1007/978-3-319-46523-4_26
https://doi.org/10.1007/978-3-319-46523-4_26
https://doi.org/10.1007/978-3-642-15939-8_10

Enriching Knowledge Bases with Counting Quantifiers 197

33. Surdeanu, M., Tibshirani, J., Nallapati, R., Manning, C.D.: Multi-instance multi-
label learning for relation extraction. In: ACL (2012)

34. Tan, C.H., Agichtein, E., Ipeirotis, P., Gabrilovich, E.: Trust, but verify: predicting
contribution quality for knowledge base construction and curation. In: WSDM
(2014)

35. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. In:
CACM (2014)

QA4IE: A Question Answering Based
Framework for Information Extraction

Lin Qiu1(B), Hao Zhou1, Yanru Qu1, Weinan Zhang1, Suoheng Li2,
Shu Rong2, Dongyu Ru1, Lihua Qian1, Kewei Tu3, and Yong Yu1

1 Shanghai Jiao Tong University, Shanghai, China
{lqiu,kevinqu,maxru,qianlihua,yyu}@apex.sjtu.edu.cn,

{zhou1998,wnzhang}@sjtu.edu.cn
2 Yitu Tech, Shanghai, China

{suoheng.li,shu.rong}@yitu-inc.com
3 ShanghaiTech University, Shanghai, China

tukw@shanghaitech.edu.cn

Abstract. Information Extraction (IE) refers to automatically extract-
ing structured relation tuples from unstructured texts. Common IE solu-
tions, including Relation Extraction (RE) and open IE systems, can
hardly handle cross-sentence tuples, and are severely restricted by limited
relation types as well as informal relation specifications (e.g., free-text
based relation tuples). In order to overcome these weaknesses, we pro-
pose a novel IE framework named QA4IE, which leverages the flexible
question answering (QA) approaches to produce high quality relation
triples across sentences. Based on the framework, we develop a large IE
benchmark with high quality human evaluation. This benchmark con-
tains 293K documents, 2M golden relation triples, and 636 relation types.
We compare our system with some IE baselines on our benchmark and
the results show that our system achieves great improvements.

1 Introduction and Background

Information Extraction (IE), which refers to extracting structured information
(i.e., relation tuples) from unstructured text, is the key problem in making use
of large-scale texts. High quality extracted relation tuples can be used in various
downstream applications such as Knowledge Base Population [16], Knowledge
Graph Acquisition [22], and Natural Language Understanding. However, existing
IE systems still cannot produce high-quality relation tuples to effectively support
downstream applications.

1.1 Previous IE Systems

Most of previous IE systems can be divided into Relation Extraction (RE) based
systems [27,51] and Open IE systems [3,8,36].

Early work on RE decomposes the problem into Named Entity Recognition
(NER) and relation classification. With the recent development of neural net-
works (NN), NN based NER models [18,26] and relation classification models [48]
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 198–216, 2018.
https://doi.org/10.1007/978-3-030-00671-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_12&domain=pdf

QA4IE: A Question Answering Based Framework for Information Extraction 199

show better performance than previous handcrafted feature based methods. The
recently proposed RE systems [33,52] try to jointly perform entity recognition
and relation extraction to improve the performance. One limitation of existing
RE benchmarks, e.g., NYT [34], Wiki-KBP [23] and BioInfer [31], is that they
only involve 24, 19 and 94 relation types respectively comparing with thousands
of relation types in knowledge bases such as DBpedia [4,6]. Besides, existing RE
systems can only extract relation tuples from a single sentence while the cross-
sentence information is ignored. Therefore, existing RE based systems are not
powerful enough to support downstream applications in terms of performance
or scalability.

On the other hand, early work on Open IE is mainly based on bootstrap-
ping and pattern learning methods [2]. Recent work incorporates lexical features
and sentence parsing results to automatically build a large number of pattern
templates, based on which the systems can extract relation tuples from an input
sentence [3,8,36]. An obvious weakness is that the extracted relations are formed
by free texts which means they may be polysemous or synonymous and thus
cannot be directly used without disambiguation and aggregation. The extracted
free-text relations also bring extra manual evaluation cost, and how to automat-
ically evaluate different Open IE systems fairly is an open problem. Stanovsky
and Dagan [41] try to solve this problem by creating an Open IE benchmark with
the help of QA-SRL annotations [10]. Nevertheless, the benchmark only involves
10K golden relation tuples. Hence, Open IE in its current form cannot provide a
satisfactory solution to high-quality IE that supports downstream applications.

There are some recently proposed IE approaches which try to incorporate
Question Answering (QA) techniques into IE. Levy et al. [21] propose to reduce
the RE problem to answering simple reading comprehension questions. They
build a question template for each relation type, and by asking questions with
a relevant sentence and the first entity given, they can obtain relation triples
from the sentence corresponding to the relation type and the first entity. Roth
et al. [35] further improve the model performance on a similar problem setting.
However, these approaches focus on sentence level relation argument extractions
and do not provide a full-stack solution to general IE. In particular, they do
not provide a solution to extract the first entity and its corresponding relation
types before applying QA. Besides, sentence level relation extraction ignores the
information across sentences such as coreference and inference between sentences,
which greatly reduces the information extracted from the documents.

1.2 QA4IE Framework

To overcome the above weaknesses of existing IE systems, we propose a novel IE
framework named QA4IE to perform document level general IE with the help of
state-of-the-art approaches in Question Answering (QA) and Machine Reading
Comprehension (MRC) area.

The input of QA4IE is a document D with an existing knowledge base K
and the output is a set of relation triples R = {ei, rij , ej} in D where ei and ej
are two individual entities and rij is their relation. We ignore the adverbials and

200 L. Qiu et al.

only consider the entity pairs and their relations as in standard RE settings. Note
that we process the entire document as a whole instead of processing individual
sentences separately as in previous systems. As shown in Fig. 1, our QA4IE
framework consists of four key steps:

1. Recognize all the candidate entities in the input document D according to the
knowledge base K. These entities serve as the first entity ei in the relation
triples R.

2. For each candidate entity ei, discover the potential relations/properties as rij
from the knowledge base K.

3. Given a candidate entity-relation or entity-property pair {ei, rij} as a query,
find the corresponding entity or value ej in the input document D using a
QA system. The query here can be directly formed by the word sequence of
{ei, rij}, or built from templates as in [21].

4. Since the results of step 3 are formed by free texts in the input document D,
we need to link the results to the knowledge base K.

Fig. 1. An overview of our QA4IE framework.

This framework determines each of the three elements in relation triples step
by step. Step 1 is equivalent to named entity recognition (NER), and state-of-
the-art NER systems [25,26] can achieve over 0.91 F1-score on CoNLL’03 [43],

QA4IE: A Question Answering Based Framework for Information Extraction 201

a well-known NER benchmark. For attribution discovery in step 2, we can take
advantage of existing knowledge base ontologies such as Wikipedia Ontology to
obtain a candidate relation/property list according to NER results in step 1.
Besides, there is also some existing work on attribution discovery [20,49] and
ontology construction [9] that can be used to solve the problem in step 2. The
most difficult part in our framework is step 3 in which we need to find the entity
(or value) ej in document D according to the previous entity-relation (or entity-
property) pair {ei, rij}. Inspired by recent success in QA and MRC [37,46,47],
we propose to solve step 3 in the setting of SQuAD [32] which is a very popular
QA task. The problem setting of SQuAD is that given a document D̃ and a
question q, output a segment of text a in D̃ as the answer to the question. In
our framework, we assign the input document D as D̃ and the entity-relation
(or entity-property) pair {ei, rij} as q, and then we can get the answer a with
a QA model. Finally in step 4, since the QA model can only produce answers
formed by input free texts, we need to link the answer a to an entity ej in
the knowledge base K, and the entity ej will form the target relation triple
as {ei, rij , ej}. Existing Entity Linking (EL) systems [28,38] directly solve this
problem especially when we have high quality QA results from step 3.

As mentioned above, step 1, 2 and 4 in the QA4IE framework can be solved by
existing work. Therefore, in this paper, we mainly focus on step 3. According to
the recent progress in QA and MRC, deep neural networks are very good at solv-
ing this kind of problem with a large-scale dataset to train the network. However,
all previous IE benchmarks [41] are too small to train neural network models
typically used in QA, and thus we need to build a large benchmark. Inspired by
WikiReading [12], a recent large-scale QA benchmark over Wikipedia, we find
that the articles in Wikipedia together with the high quality triples in knowl-
edge bases such as Wikidata [45] and DBpedia can form the supervision we
need. Therefore, we build a large scale benchmark named QA4IE benchmark
which consists of 293K Wikipedia articles and 2M golden relation triples with
636 different relation types.

Recent success on QA and MRC is mainly attributed to advanced deep learn-
ing architectures such as attention-based and memory-augmented neural net-
works [5,42] and the availability of large-scale datasets [11,13] especially SQuAD.
The differences between step 3 and SQuAD can be summarized as follows. First,
the answer to the question in SQuAD is restricted to a continuous segment of
the input text, but in QA4IE, we remove this constraint which may reduce the
number of target relation triples. Second, in existing QA and MRC benchmarks,
the input documents are not very long and the questions may be complex and
difficult to understand by the model, while in QA4IE, the input documents may
be longer but the questions formed by entity-relation (or entity-property) pair
are much simpler. Therefore, in our model, we incorporate Pointer Networks [44]
to adapt to the answers formed by any words within the document in any order
as well as Self-Matching Networks [47] to enhance the ability on modeling longer
input documents.

202 L. Qiu et al.

1.3 Contributions

The contributions of this paper are as follows:

1. We propose a novel IE framework named QA4IE to overcome the weaknesses
of existing IE systems. As we discussed above, the problem of step 1, 2 and 4
can be solved by existing work and we propose to solve the problem of step 3
with QA models.

2. To train a high quality neural network QA model, we build a large IE bench-
mark in QA style named QA4IE benchmark which consists of 293K Wikipedia
articles and 2 million golden relation triples with 636 different relation types.

3. To adapt QA models to the IE problem, we propose an approach that
enhances existing QA models with Pointer Networks and Self-Matching Net-
works.

4. We compare our model with IE baselines on our QA4IE benchmark and
achieve a great improvement over previous baselines.

5. We open source our code and benchmark for repeatable experiments and
further study of IE.1

2 QA4IE Benchmark Construction

This section briefly presents the construction pipeline of QA4IE benchmark to
solve the problem of step 3 as in our framework (Fig. 1). Existing largest IE
benchmark [41] is created with the help of QA-SRL annotations [10] which con-
sists of 3.2K sentences and 10K golden extractions. Following this idea, we study
recent large-scale QA and MRC datasets and find that WikiReading [12] creates
a large-scale QA dataset based on Wikipedia articles and WikiData relation
triples [45]. However, we observe about 11% of QA pairs with errors such as
wrong answer locations or mismatch between answer string and answer words.
Besides, there are over 50% of QA pairs with the answer involving words out
of the input text or containing multiple answers. We consider these cases out of
the problem scope of this paper and only focus on the information within the
input text.

Therefore, we choose to build the benchmark referring the implementation
of WikiReading based on Wikipedia articles and golden triples from Wikidata
and DBpedia [4,6]. Specifically, we build our QA4IE benchmark in the following
steps.

Dump and Preprocessing. We dump the English Wikipedia articles with
Wikidata knowledge base and match each article with its corresponding relation
triples according to its title. After cleaning data by removing low frequency
tokens and special characters, we obtain over 4M articles and 18M triples with
over 800 relation types.

1 Our source code and benchmark datasets can be found at https://github.com/SJTU-
lqiu/QA4IE.

https://github.com/SJTU-lqiu/QA4IE
https://github.com/SJTU-lqiu/QA4IE

QA4IE: A Question Answering Based Framework for Information Extraction 203

Clipping. We discard the triples with multiple entities (or values) for ej
(account for about 6%, e.g., a book may have multiple authors). Besides, we
discard the triples with any word in ej out of the corresponding article (account
for about 50%). After this step, we obtain about 3.5M articles and 9M triples
with 636 relation types.

Incorporating DBpedia. Unlike WikiData, DBpedia is constructed automati-
cally without human verification. Relations and properties in DBpedia are coarse
and noisy. Thus we fix the existing 636 relation types in WikiData and build
a projection from DBpedia relations to these 636 relation types. We manually
find 148 relations which can be projected to a WikiData relation out of 2064
DBpedia relations. Then we gather all the DBpedia triples with the first entity
is corresponding to one of the above 3.5M articles and the relation is one of the
projected 148 relations. After the same clipping process as above and remov-
ing the repetitive triples, we obtain 394K additional triples in 302K existing
Wikipedia articles.

Distillation. Since our benchmark is for IE, we prefer the articles with more
golden triples involved by assuming that Wikipedia articles with more annotated
triples are more informative and better annotated. Therefore, we figure out the
distribution of the number of golden triples in articles and decide to discard the
articles with less than 6 golden triples (account for about 80%). After this step,
we obtain about 200K articles and 1.4M triples with 636 relation types.

Query and Answer Assignment. For each golden triple {ei, rij , ej}, we assign
the relation/property rij as the query and the entity ej as the answer because
the Wikipedia article and its corresponding golden triples are all about the same
entity ei which is unnecessary in the queries. Besides, we find the location of each
ej in the corresponding article as the answer location. As we discussed in Sect. 1,
we do not restrict ej to a continuous segment in the article as required in SQuAD.
Thus we first try to detect a matched span for each ej and assign this span as
the answer location. Then for each of the rest ej which has no matched span, we
search a matched sub-sequence in the article and assign the index sequence as
the answer location. We name them span-triples and seq-triples respectively.
Note that each triple will have an answer location because we have discarded
the triples with unseen words in ej and if we can find multiple answer locations,
all of them will be assigned as ground truths.

Dataset Splitting. For comparing the performance on span-triples and seq-
triples, we set up two different datasets named QA4IE-SPAN and QA4IE-SEQ.
In QA4IE-SPAN, only articles with all span-triples are involved, while in QA4IE-
SEQ, articles with seq-triples are also involved. For studying the influence of the
article length as longer articles are normally more difficult to model by LSTMs,
we split the articles according to the article length. We name the set of articles
with lengths shorter than 400 as S, lengths between 400 and 700 as M, lengths
greater than 700 as L. Therefore we obtain 6 different datasets named QA4IE-
SPAN-S/M/L and QA4IE-SEQ-S/M/L. A 5/1/5 splitting of train/dev/test

204 L. Qiu et al.

Table 1. Detailed statistics of QA4IE benchmark.

S M L Total

SPAN # Docs 52898 29352 65124 147374

Triples 342361 195944 457509 995814

SEQ # Docs 52559 29188 64385 146132

Triples 341820 196138 457033 994991

Seq-triples 46521 27176 57507 131204

%Seq-triples 13.61 13.86 12.58 13.19

Table 2. Comparison between existing IE benchmarks and QA benchmarks. The first
two are IE benchmarks and the rest four are QA benchmarks.

Dataset Source #Docs #Triples/queries Remarks

QA4IE
benchmark

Wikipedia/
WikiData/
DBpedia

293K 2M Automatical
generation

Open IE [41] WSJ/Wikipedia 3.2K 10K Generated
from QA-SRL
annotations

Zero-Shot
Benchmark [21]

Wikipedia/WikiData N/A 30M Sentence level
docs, only 120
relation types

WikiReading [12] Wikipedia/WikiData 4.7M 18.58M 11% errors,
50% out of
document
answers

SQuAD [32] Wikipedia 536 100K Crowdsourced,
span answers
only

CNN/Daily
mail [11]

CNN/Daily mail 300K 1.4M Semi-synthetic
cloze-style
query

CBT [13] Children’s book 688K 688K Semi-synthetic
cloze-style
query

sets is performed. The detailed statistics of QA4IE benchmark are provided
in Table 1.

We further compare our QA4IE benchmark with some existing IE and QA
benchmarks in Table 2. One can observe that QA4IE benchmark is much larger
than previous IE and QA benchmarks except for WikiReading and Zero-Shot
Benchmark. However, as we mentioned at the beginning of Sect. 2, WikiReading
is problematic for IE settings. Besides, Zero-Shot Benchmark is a sentence-level

QA4IE: A Question Answering Based Framework for Information Extraction 205

Fig. 2. An overview of our QA model.

dataset and we have described the disadvantage of ignoring information across
sentences at Sect. 1.1. Thus to our best knowledge, QA4IE benchmark is the
largest document level IE benchmark and it can be easily extended if we change
our distillation strategy.

3 Question Answering Model

In this section, we describe our Question Answering model for IE. The model
overview is illustrated in Fig. 2. The input of our model are the words in the
input text x[1], . . . , x[n] and query q[1], . . . , q[n]. We concatenate pre-trained
word embeddings from GloVe [30] and character embeddings trained by Char-
CNN [17] to represent input words. The 2d-dimension embedding vectors of input
text x1, . . . , xn and query q1, . . . , qn are then fed into a Highway Layer [40] to
improve the capability of word embeddings and character embeddings as

gt = sigmoid (Wgxt + bg)
st = relu (Wxxt + bx)
ut = gt � st + (1 − gt) � xt.

(1)

Here Wg,Wx ∈ R
d×2d and bg, bx ∈ R

d are trainable weights, ut is a
d-dimension vector. The function relu is the rectified linear units [19] and �

206 L. Qiu et al.

is element-wise multiply over two vectors. The same Highway Layer is applied
to qt and produces vt.

Next, ut and vt are fed into a Bi-Directional Long Short-Term Memory Net-
work (BiLSTM) [14] respectively in order to model the temporal interactions
between sequence words:

u
′
t = BiLSTM(u

′
t−1, ut)

v
′
t = BiLSTM(v

′
t−1, vt).

(2)

Here we obtain U = [u
′
1, . . . , u

′
n] ∈ R

2d×n and V = [v
′
1, . . . , v

′
m] ∈ R

2d×m.
Then we feed U and V into the attention flow layer [37] to model the interactions
between the input text and query. We obtain the 8d-dimension query-aware
context embedding vectors h1, . . . , hn as the result.

After modeling interactions between the input text and queries, we need to
enhance the interactions within the input text words themselves especially for
the longer text in IE settings. Therefore, we introduce Self-Matching Layer [47]
in our model as

ot = BiLSTM(ot−1, [ht, ct])

stj = wT tanh(Whhj + W̃hht)

αt
i = exp(sti)/Σn

j=1exp(stj)

ct = Σn
i=1α

t
ihi.

(3)

Here Wh, W̃h ∈ R
d×8d and w ∈ R

d are trainable weights, [h, c] is vec-
tor concatenation across row. Besides, αt

i is the attention weight from the tth

word to the ith word and ct is the enhanced contextual embeddings over the
tth word in the input text. We obtain the 2d-dimension query-aware and self-
enhanced embeddings of input text after this step. Finally we feed the embeddings
O = [o1, . . . , on] into a Pointer Network [44] to decode the answer sequence as

pt = LSTM(pt−1, ct)

stj = wT tanh(Wooj + Wppt−1)

βt
i = exp(sti)/Σn

j=1exp(stj)

ct = Σn
i=1β

t
ioi.

(4)

The initial state of LSTM p0 is on. We can then model the probability of the
tth token at by

P(at|a1, . . . , at−1,O) = (βt
1, β

t
2, . . . , β

t
n, βt

n+1)

P(at
i) � P(at = i|a1, . . . , at−1,O) = βt

i . (5)

Here βt
n+1 denotes the probability of generating the “eos” symbol since the

decoder also needs to determine when to stop. Therefore, the probability of
generating the answer sequence a is as follows

P(a|O) =
∏

t

P(at|a1, . . . , at−1,O). (6)

QA4IE: A Question Answering Based Framework for Information Extraction 207

Given the supervision of answer sequence y = (y1, . . . , yL), we can write
down the loss function of our model as

L(θ) = −
L∑

t=1

log P(at
yt

). (7)

Table 3. Comparison of QA models on SQuAD datasets. We only include the single
model results on the dev set from published papers.

Dev Set

Span model EM/F1

LR baseline [32] 40.0/51.0

Match-LSTM [46] 64.1/73.9

BiDAF [37] 67.7/77.3

R-Net [47] 71.1/79.5

MEMEN [29] 71.0/80.4

M-Reader + RL [15] 72.1/81.6

SAN [24] 76.2/84.1

Sequence model

Match-LSTM (Seq) [46] 54.4/68.2

Our model 61.7/72.5

To train our model, we minimize the loss function L(θ) based on training
examples.

4 Experiments

4.1 Experimental Setup

We build our QA4IE benchmark following the steps described in Sect. 2. In
experiments, we train and evaluate our QA models on the corresponding train
and test sets while the hyper-parameters are tuned on dev sets. In order to
make our experiments more informative, we also evaluate our model on SQuAD
dataset [32].

The preprocessing of our QA4IE benchmark and SQuAD dataset are all
performed with the open source code from [37]. We use 100 1D filters with
width 5 to construct the CharCNN in our char embedding layer. We set the
hidden size d = 100 for all the hidden states in our model. The optimizer we use
is the AdaDelta optimizer [50] with an initial learning rate of 2. A dropout [39]
rate of 0.2 is applied in all the CNN, LSTM and linear transformation layers

208 L. Qiu et al.

in our model during training. For SQuAD dataset and our small sized QA4IE-
SPAN/SEQ-S datasets, we set the max length of input texts as 400 and a mini-
batch size of 20. For middle sized (and large sized) QA4IE datasets, we set the
max length as 700 (800) and batch size as 7 (5). We introduce an early stopping
in training process after 10 epochs. Our model is trained on a GTX 1080 Ti
GPU and it takes about 14 h on small sized QA4IE datasets. We implement our
model with TensorFlow [1] and optimize the computational expensive LSTM
layers with LSTMBlockFusedCell2.

4.2 Results in QA Settings

We first perform experiments in QA settings to evaluate our QA model on both
SQuAD dataset and QA4IE benchmark. Since our goal is to solve IE, not QA,
the motivation of this part of experiments is to evaluate the performance of our
model and make a comparison between QA4IE benchmark and existing datasets.
Two metrics are introduced in the SQuAD dataset: Exact Match (EM) and F1-
score. EM measures the percentage that the model prediction matches one of
the ground truth answers exactly while F1-score measures the overlap between
the prediction and ground truth answers. Our QA4IE benchmark also adopts
these two metrics.

Table 3 presents the results of our QA model on SQuAD dataset. Our model
outperforms the previous sequence model but is not competitive with span mod-
els because it is designed to produce sequence answers in IE settings while base-
line span models are designed to produce span answers for SQuAD dataset.

Table 4. Comparison of QA models on 6 datasets of our QA4IE benchmark. The
BiDAF model cannot work on our SEQ datasets thus the results are N/A.

Model SPAN-S SPAN-M SPAN-L SEQ-S SEQ-M SEQ-L

EM/F1 EM/F1 EM/F1 EM/F1 EM/F1 EM/F1

BiDAF [37] 88.89/90.89 82.37/85.04 68.00/70.29 N/A N/A N/A

Match-LSTM [46]85.88/88.21 79.19/82.05 66.87/70.44 89.60/91.95 83.57/87.40 62.64/68.98

Our model 91.53/93.1986.04/88.6570.86/74.5191.20/93.0485.52/88.4371.96/76.11

The comparison between our QA model and two baseline QA models on
our QA4IE benchmark is shown in Table 4. For training of both baseline QA
models,3 we use the same configuration of max input length as our model and
tune the rest of hyper-parameters on dev sets. Our model outperforms these two
baselines on all 6 datasets. The performance is good on S and M datasets but
worse for longer documents. As we mentioned in Sect. 4.1, we set the max input

2 https://www.tensorflow.org/api docs/python/tf/contrib/rnn/
LSTMBlockFusedCell.

3 The code of BiDAF is from https://github.com/allenai/bi-att-flow.
The code of Match-LSTM is from https://github.com/fuhuamosi/MatchLstm.

https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/LSTMBlockFusedCell
https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/LSTMBlockFusedCell
https://github.com/allenai/bi-att-flow
https://github.com/fuhuamosi/MatchLstm

QA4IE: A Question Answering Based Framework for Information Extraction 209

length as 800 and ignore the rest words on L datasets. Actually, there are 11%
of queries with no answers in the first 800 words in our benchmark. Processing
longer documents is a tough problem [7] and we leave this to our future work.

Table 5. Model ablation on QA4IE-SEQ-S. The first line is our original model and
each of the following lines is the original model with a component ablated.

EM/F1 Training hours

Our original model 91.20/93.04 14

− Char embedding 89.78/91.76 14

− Highway 90.04/91.97 14

− Self Matching 89.55/91.60 10

− LSTMBlockFusedCell 90

To study the improvement of each component in our model, we present model
ablation study results in Table 5. We do not involve Attention Flow Layer and
Pointer Network Decoder as they cannot be replaced by other architectures with
the model still working. We can observe that the first three components can
effectively improve the performance but Self Matching Layer makes the train-
ing more computationally expensive by 40%. Besides, the LSTMBlockFusedCell
works effectively and accelerates the training process by 6 times without influ-
encing the performance.

4.3 Results in IE Settings

In this subsection, we put our QA model in the entire pipeline of our QA4IE
framework (Fig. 1) and evaluate the framework in IE settings. Existing IE sys-
tems are all free-text based Open IE systems, so we need to manually evaluate
the free-text based results in order to compare our model with the baselines.
Therefore, we conduct experiments on a small dataset, the dev set of QA4IE-
SPAN-S which consists of 4393 documents and 28501 ground truth queries.

Our QA4IE benchmark is based on Wikipedia articles and all the ground
truth triples of each article have the same first entity (i.e. the title of the article).
Thus, we can directly use the title of the article as the first entity of each triple
without performing step 1 (entity recognition) in our framework. Besides, all
the ground truth triples in our benchmark are from knowledge base where they
are disambiguated and aggregated in the first place, and therefore step 4 (entity
linking) is very simple and we do not evaluate it in our experiments.

A major difference between QA settings and IE settings is that in QA set-
tings, each query corresponds to an answer, while in the QA4IE framework, the
QA model take a candidate entity-relation (or entity-property) pair as the query
and it needs to tell whether an answer to the query can be found in the input
text. We can consider the IE settings here as performing step 2 and then step 3
in the QA4IE framework.

210 L. Qiu et al.

In step 2, we need to build a candidate query list for each article in the
dataset. Instead of incorporating existing ontology or knowledge base, we use
a simple but effective way to build the candidate query list of an article. Since
we have a ground truth query list with labeled answers of each article, we can
add all the neighboring queries of each ground truth query into the query list.
The neighboring queries are defined as two queries that co-occur in the same
ground truth query list of any articles in the dataset. We transform the dev set
of QA4IE-SPAN-S above by adding neighboring queries into the query list. After
this step, the number of queries grows to 426336, and only 28501 of them are
ground truth queries labeled with an answer.

Fig. 3. Precision-recall curves with two confidence scores on the dev set of QA4IE-
SPAN-S.

In step 3, we require our QA model to output a confidence score along with
the answer to each candidate query. Our QA model produces no answer to a
query when the confidence score is less than a threshold δ or the output is an
“eos” symbol. For the answers with a confidence score ≥δ, we evaluate them by
the EM measurement with ground truth answers and count the true positive
samples in order to calculate the precision and recall under the threshold δ.
Specifically, we try two confidence scores calculated as follows:

Scoremul =
L∏

t=1

P(at
it), Scoreavg =

L∑

t=1

P(at
it)/L, (8)

where (a1
i1

, . . . , aL
iL

) is the answer sequence and P(at
i) is defined in

Eq. (5).Scoremul is equivalent to the training loss in Eq. (7) and Scoreavg takes
the answer length into account.

The precision-recall curves of our framework based on the two confidence
scores are plotted in Fig. 3. We can observe that the EM rate we achieve in QA
settings is actually the best recall (91.87) in this curve (by setting δ = 0). The
best F1-scores of the two curves are 29.97 (precision = 21.61, recall = 48.85,
δ = 0.91) for Scoremul and 31.05 (precision = 23.93, recall = 44.21, δ = 0.97)
for Scoreavg. Scoreavg is better than Scoremul, which suggests that the answer
length should be taken into account.

QA4IE: A Question Answering Based Framework for Information Extraction 211

Table 6. Results of three Open IE baselines on the dev set of QA4IE-SPAN-S.

Open IE 4 Stanford IE ClauseIE

#Extracted triples 32309 120147 75078

#After filtering 487 467 554

#True positive 403 301 133

We then evaluate existing IE systems on the dev set of QA4IE-SPAN-S and
empirically compare them with our framework. Note that while [21] is closely
related to our work, we cannot fairly compare our framework with [21] because
their systems are in the sentence level and require additional negative samples
for training. [35] is also related to our work, but their dataset and code have
not been published yet. Therefore, we choose to evaluate three popular Open IE
systems, Open IE 4 [36], Stanford IE [3] and ClauseIE [8].

Since Open IE systems take a single sentence as input and output a set of free-
text based triples, we need to find the sentences involving ground truth answers
and feed the sentences into the Open IE systems. In the dev set of QA4IE-
SPAN-S, there are 28501 queries with 44449 answer locations labeled in the 4393
documents. By feeding the 44449 sentences into the Open IE systems, we obtain
a set of extracted triples from each sentence. We calculate the number of true
positive samples by first filtering out triples with less than 20% words overlapping
with ground truth answers and then asking two human annotators to verify
the remaining triples independently. Since in the experiments, our framework is
given the ground-truth first entity of each triple (the title of the corresponding
Wikipedia article) while the baseline systems do not have this information, we
ask our human annotators to ignore the mistakes on the first entities when
evaluating triples produced by the baseline systems to offset this disadvantage.
For example, the 3rd case of ClauseIE and the 4th case of Open IE 4 in Table 7
are all labeled as correct by our annotators even though the first entities are
pronouns. The two human annotators reached an agreement on 191 out of 195
randomly selected cases.

The evaluation results of the three Open IE baselines are shown in Table 6.
We can observe that most of the extracted triples are not related to ground
truths and the precision and recall are all very low (around 1%) although we
have already helped the baseline systems locate the sentences containing ground
truth answers.

4.4 Case Study

In this subsection, we perform case studies of IE settings in Table 7 to better
understand the models and benchmarks. The baseline Open IE systems produce
triples by analyzing the subjects, predicates and objects in input sentences, and
thus our annotators lower the bar of accepting triples. However, the analysis
on semantic roles and parsing trees cannot work very well on complicated input

212 L. Qiu et al.

Table 7. Case study of three Open IE baselines and our framework on dev set of
QA4IE-SPAN-S, the results of baselines are judged by two human annotators while
the results of our framework are measured by Exact Match with ground truth. The
triples in red indicate the wrong cases.

Input Sentence Ground Truth Triple Open IE 4 Stanford IE ClauseIE Ours

Dieter Kesten was born on 9 June 1914 at
Gelsenkirchen.

(Dieter Kesten; date of
birth; 9 June 1914)

(Dieter Kesten; was
born; on 9 June 1914
at Gelsenkirchen)

(Dieter Kesten; was
born on; 9 June 1914)

(Dieter Kesten; was
born; on 9 June 1914)

(Dieter Kesten; date of
birth; 9 June 1914)

Hamilton died on 2 March 1625 at
Whitehall, London, from a fever and
was buried in the family mausoleum at
Hamilton, on 2 September of that year.

(James Hamilton; date
of death; 2 March
1625)

(Hamilton; died; on 2
March 1625 at White-
hall)

(Hamilton; died on; 2
September)
(Hamilton; died on; 2
March 1625)

(Hamilton; died on; 2)
(James Hamilton; date
of death; 2 March
1625)

She attended Texas A&M University,
where she swam for the Texas A&M
Aggies swimming and diving team in
National Collegiate Athletic Association
(NCAA) competition from 2011 to 2014.

(Breeja Larson; mem-
ber of sports team;
Texas A&M Aggies)

(She; attended; Texas
A&M University)

(She; attended; M
University)

(She; attended; Texas
A&M University)
(she; swam; for the
Texas A&M Aggies
swimming and diving
team)

(Breeja Larson; mem-
ber of sports team;
Texas A&M Aggies)

His grave and memorial are at Balbeggie
Churchyard, St. Martin’s, near Perth,
Scotland.

(John Simpson; place
of death; St. Martin’s)

(His grave and memo-
rial; are; at Balbeggie
Churchyard, St. Mar-
tin’s, near Perth)

(Perth; near Church-
yard is; St. Martin’s)

(Balbeggie
Churchyard near
Perth Scotland; is; St.
Martin’s)

(John Simpson; place
of death; Balbeggie
Churchyard)

He served in the British Army and was
wounded in World War I.

(William Dobbie;
conflict; World War I)

(He; was wounded; in
World War I)

(He; was wounded in;
World War I)

(He; was wounded; in
World War I)

(William Dobbie;
conflict; World War I)

sentences like the 2nd and the 3rd cases. Besides, the baseline systems can hardly
solve the last two cases which require inference on input sentences.

Our framework works very well on this dataset with the QA measurements
EM = 91.87 and F1 = 93.53 and the IE measurements can be found in Fig. 3.
Most of the error cases are the fourth case which is acceptable by human anno-
tators. Note that our framework takes the whole document as the input while
the baseline systems take the individual sentence as the input, which means the
experiment setting is much more difficult for our framework.

4.5 Human Evaluation on QA4IE Benchmark

Finally, we perform a human evaluation on our QA4IE benchmark to verify the
reliability of former experiments. The evaluation metrics are as follows:

Triple Accuracy is to check whether each ground truth triple is accurate (one
cannot find conflicts between the ground truth triple and the corresponding
article) because the ground truth triples from WikiData and DBpedia may be
incorrect or incomplete.

Contextual Consistency is to check whether the context of each answer loca-
tion is consistent with the corresponding ground truth triple (one can infer from
the context to obtain the ground truth triple) because we keep all matched
answer locations as ground truths but some of them may be irrelevant with the
corresponding triple.

Triple Consistency is to check whether there is at least one answer location
that is contextually consistent for each ground truth triple. It can be calculated
by counting the results of Contextual Consistency.

We randomly sample 25 articles respectively from the 6 datasets (in total
of 1002 ground truth triples with 2691 labeled answer locations) and let two

QA4IE: A Question Answering Based Framework for Information Extraction 213

human annotators label the Triple Accuracy for each ground truth triple and
the Contextual Consistency for each answer location. The two human annotators
reached an agreement on 131 of 132 randomly selected Triple Accuracy cases
and on 229 of 234 randomly selected Contextual Consistency cases. The human
evaluation results are shown in Table 8. We can find that the Triple Accuracy
and the Triple Consistency is acceptable while the Contextual Consistency still
needs to be improved. The Contextual Consistency problem is a weakness of
distant supervision, and we leave this to our future work.

Table 8. Human evaluation on QA4IE benchmark.

SPAN-S SPAN-M SPAN-L SEQ-S SEQ-M SEQ-L Total

Triple
accuracy

98.8% 96.9% 98.1% 97.1% 96.2% 97.8% 97.5%

161/163 154/159 159/162 170/175 152/158 181/185 977/1002

Contextual
consistency

78.6% 65.1% 70.3% 75.4% 73.9% 82.4% 74.6%

195/248 239/367 494/703 230/305 264/357 586/711 2008/2691

Triple
consistency

93.3% 87.4% 91.4% 92.0% 92.4% 92.4% 91.5%

152/163 139/159 148/162 161/175 146/158 171/185 917/1002

5 Conclusion

In this paper, we propose a novel QA based IE framework named QA4IE to
address the weaknesses of previous IE solutions. In our framework (Fig. 1), we
divide the complicated IE problem into four steps and show that the step 1, 2
and 4 can be solved well enough by existing work. For the most difficult step
3, we transform it to a QA problem and solve it with our QA model. To train
this QA model, we construct a large IE benchmark named QA4IE benchmark
that consists of 293K documents and 2 million golden relation triples with 636
different relation types. To our best knowledge, our QA4IE benchmark is the
largest document level IE benchmark. We compare our system with existing
best IE baseline systems on our QA4IE benchmark and the results show that
our system achieves a great improvement over baseline systems.

For the future work, we plan to solve the triples with multiple entities as
the second entity, which is excluded from problem scope in this paper. Besides,
processing longer documents and improving the quality of our benchmark are
all challenging problems as we mentioned previously. We hope this work can
provide new thoughts for the area of information extraction.

214 L. Qiu et al.

Acknowledgements. W. Zhang is the corresponding author of this paper. The
work done by SJTU is sponsored by National Natural Science Foundation of China
(61632017, 61702327, 61772333) and Shanghai Sailing Program (17YF1428200).

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI,
vol. 16, pp. 265–283 (2016)

2. Agichtein, E., Gravano, L.: Snowball: extracting relations from large plain-text
collections. In: Proceedings of the Fifth ACM Conference on Digital Libraries, pp.
85–94. ACM (2000)

3. Angeli, G., Premkumar, M.J.J., Manning, C.D.: Leveraging linguistic structure for
open domain information extraction. In: ACL, vol. 1, pp. 344–354 (2015)

4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K. (ed.) ASWC/ISWC -2007. LNCS,
vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-76298-0 52

5. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: International Conference on Learning Representations
(ICLR) (2015)

6. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hell-
mann, S.: Dbpedia-a crystallization point for the web of data. Web Semant. Sci.
Serv. Agents World Wide Web 7(3), 154–165 (2009)

7. Chen, D., Fisch, A., Weston, J., Bordes, A.: Reading Wikipedia to answer open-
domain questions. In: ACL, vol. 1, pp. 1870–1879 (2017)

8. Del Corro, L., Gemulla, R.: ClausIE: clause-based open information extraction. In:
Proceedings of International Conference on World Wide Web, pp. 355–366 (2013)

9. Gupta, R., Halevy, A., Wang, X., Whang, S.E., Wu, F.: Biperpedia: an ontology
for search applications. Proc. VLDB Endow. 7(7), 505–516 (2014)

10. He, L., Lewis, M., Zettlemoyer, L.: Question-answer driven semantic role labeling:
using natural language to annotate natural language. In: EMNLP, pp. 643–653
(2015)

11. Hermann, K.M., et al.: Teaching machines to read and comprehend. In: Advances
in Neural Information Processing Systems, pp. 1693–1701 (2015)

12. Hewlett, D., et al.: WikiReading: a novel large-scale language understanding task
over Wikipedia. In: ACL, vol. 1, pp. 1535–1545 (2016)

13. Hill, F., Bordes, A., Chopra, S., Weston, J.: The goldilocks principle: read-
ing children’s books with explicit memory representations. arXiv preprint
arXiv:1511.02301 (2015)

14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–1780 (1997)

15. Hu, M., Peng, Y., Qiu, X.: Reinforced mnemonic reader for machine comprehen-
sion. CoRR, abs/1705.02798 (2017)

16. Ji, H., Grishman, R.: Knowledge base population: successful approaches and chal-
lenges. In: ACL, pp. 1148–1158 (2011)

17. Kim, Y., Jernite, Y., Sontag, D., Rush, A.M.: Character-aware neural language
models. In: AAAI, pp. 2741–2749 (2016)

18. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. In: Proceedings of NAACL-HLT, pp.
260–270 (2016)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
http://arxiv.org/abs/1511.02301

QA4IE: A Question Answering Based Framework for Information Extraction 215

19. Le, Q.V., Jaitly, N., Hinton, G.E.: A simple way to initialize recurrent networks of
rectified linear units. arXiv preprint arXiv:1504.00941 (2015)

20. Lee, T., Wang, Z., Wang, H., Hwang, S.W.: Attribute extraction and scoring: a
probabilistic approach. In: 29th International Conference on Data Engineering, pp.
194–205 (2013)

21. Levy, O., Seo, M., Choi, E., Zettlemoyer, L.: Zero-shot relation extraction via
reading comprehension. In: CoNLL, pp. 333–342 (2017)

22. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI, vol. 15, pp. 2181–2187 (2015)

23. Ling, X., Weld, D.S.: Fine-grained entity recognition. In: AAAI (2012)
24. Liu, X., Shen, Y., Duh, K., Gao, J.: Stochastic answer networks for machine reading

comprehension. arXiv preprint arXiv:1712.03556 (2017)
25. Luo, G., Huang, X., Lin, C.Y., Nie, Z.: Joint entity recognition and disambiguation.

In: EMNLP, pp. 879–888 (2015)
26. Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-

CRF. In: ACL, vol. 1, pp. 1064–1074 (2016)
27. Mintz, M., Bills, S., Snow, R., Jurafsky, D.: Distant supervision for relation extrac-

tion without labeled data. In: ACL, pp. 1003–1011 (2009)
28. Moro, A., Raganato, A., Navigli, R.: Entity linking meets word sense disambigua-

tion: a unified approach. TACL 2, 231–244 (2014)
29. Pan, B., Li, H., Zhao, Z., Cao, B., Cai, D., He, X.: MEMEN: multi-layer

embedding with memory networks for machine comprehension. arXiv preprint
arXiv:1707.09098 (2017)

30. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word represen-
tation. In: EMNLP, pp. 1532–1543 (2014)

31. Pyysalo, S., Ginter, F., Heimonen, J., Björne, J., Boberg, J., Järvinen, J., Salakoski,
T.: BioInfer: a corpus for information extraction in the biomedical domain. BMC
Bioinform. 8(1), 50 (2007)

32. Rajpurkar, P., Zhang, J., Lopyrev, K., Liang, P.: SQuAD: 100,000+ questions for
machine comprehension of text. In: EMNLP, pp. 2383–2392 (2016)

33. Ren, X., et al.: CoType: joint extraction of typed entities and relations with knowl-
edge bases. In: Proceedings of the 26th International Conference on World Wide
Web, pp. 1015–1024 (2017)

34. Riedel, S., Yao, L., McCallum, A.: Modeling relations and their mentions without
labeled text. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML
PKDD 2010. LNCS (LNAI), vol. 6323, pp. 148–163. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15939-8 10

35. Roth, B., Conforti, C., Poerner, N., Karn, S., Schütze, H.: Neural architectures for
open-type relation argument extraction. arXiv preprint arXiv:1803.01707 (2018)

36. Schmitz, M., Bart, R., Soderland, S., Etzioni, O., et al.: Open language learning
for information extraction. In: EMNLP, pp. 523–534 (2012)

37. Seo, M., Kembhavi, A., Farhadi, A., Hajishirzi, H.: Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603 (2016)

38. Shen, W., Wang, J., Han, J.: Entity linking with a knowledge base: issues, tech-
niques, and solutions. IEEE Trans. Knowl. Data Eng. 27(2), 443–460 (2015)

39. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929–1958 (2014)

40. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint
arXiv:1505.00387 (2015)

http://arxiv.org/abs/1504.00941
http://arxiv.org/abs/1712.03556
http://arxiv.org/abs/1707.09098
https://doi.org/10.1007/978-3-642-15939-8_10
http://arxiv.org/abs/1803.01707
http://arxiv.org/abs/1611.01603
http://arxiv.org/abs/1505.00387

216 L. Qiu et al.

41. Stanovsky, G., Dagan, I.: Creating a large benchmark for open information extrac-
tion. In: EMNLP, pp. 2300–2305 (2016)

42. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In:
Advances in Neural Information Processing Systems, pp. 2440–2448 (2015)

43. Tjong Kim Sang, E.F., De Meulder, F.: Introduction to the CoNLL-2003 shared
task: language-independent named entity recognition. In: Proceedings of NAACL-
HLT, pp. 142–147 (2003)

44. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural
Information Processing Systems, pp. 2692–2700 (2015)

45. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

46. Wang, S., Jiang, J.: Machine comprehension using match-LSTM and answer
pointer. arXiv preprint arXiv:1608.07905 (2016)

47. Wang, W., Yang, N., Wei, F., Chang, B., Zhou, M.: Gated self-matching networks
for reading comprehension and question answering. In: ACL, vol. 1, pp. 189–198
(2017)

48. Xu, K., Feng, Y., Huang, S., Zhao, D.: Semantic relation classification via convo-
lutional neural networks with simple negative sampling. In: EMNLP, pp. 536–540
(2015)

49. Yahya, M., Whang, S., Gupta, R., Halevy, A.: ReNoun: fact extraction for nominal
attributes. In: EMNLP, pp. 325–335 (2014)

50. Zeiler, M.D.: ADADELTA: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

51. Zeng, D., Liu, K., Chen, Y., Zhao, J.: Distant supervision for relation extraction
via piecewise convolutional neural networks. In: EMNLP, pp. 1753–1762 (2015)

52. Zheng, S., Wang, F., Bao, H., Hao, Y., Zhou, P., Xu, B.: Joint extraction of entities
and relations based on a novel tagging scheme. In: ACL, vol. 1, pp. 1227–1236
(2017)

http://arxiv.org/abs/1608.07905
http://arxiv.org/abs/1212.5701

Constructing a Recipe Web
from Historical Newspapers

Marieke van Erp1(B), Melvin Wevers1, and Hugo Huurdeman2

1 KNAW Humanities Cluster, DHLab, Amsterdam, The Netherlands
{marieke.van.erp,melvin.wevers}@dh.huc.knaw.nl

2 Universiteit van Amsterdam, Amsterdam, The Netherlands
h.c.huurdeman@uva.nl

Abstract. Historical newspapers provide a lens on customs and habits
of the past. For example, recipes published in newspapers highlight what
and how we ate and thought about food. The challenge here is that
newspaper data is often unstructured and highly varied. Digitised his-
torical newspapers add an additional challenge, namely that of fluctu-
ations in OCR quality. Therefore, it is difficult to locate and extract
recipes from them. We present our approach based on distant supervi-
sion and automatically extracted lexicons to identify recipes in digitised
historical newspapers, to generate recipe tags, and to extract ingredient
information. We provide OCR quality indicators and their impact on
the extraction process. We enrich the recipes with links to information
on the ingredients. Our research shows how natural language processing,
machine learning, and semantic web can be combined to construct a rich
dataset from heterogeneous newspapers for the historical analysis of food
culture.

Keywords: Natural language processing · Information extraction
Food history · Digitised newspapers · Digital humanities

1 Introduction

There is no dearth of structured recipes available online (cf. Epicurious, Food-
network.com).1 Recipes can also be found in non-structured form in digitized
newspapers and magazines. Because of their diachronic nature, these recipes
can offer valuable insights into the evolution of food customs, making them of
particular interest to historians and ethnologists. However, their lack of struc-
ture and varying OCR quality make it more difficult to identify, extract, and use
these recipes for analysis. In this paper, we present our work on extracting and
enriching recipes from a collection of Dutch historical newspapers (1945–1995).

Scholars in the humanities and social sciences approach what, how, when,
where, and why we consume as constitutive signifiers of national and local iden-
tities [1]. Diachronic analyses of recipes offer insights into changes in food cul-
ture, shedding light on “analyses of everyday culture, the changing foundations
1 http://www.epicurious.com, http://www.foodnetwork.com.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 217–232, 2018.
https://doi.org/10.1007/978-3-030-00671-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_13&domain=pdf
http://www.epicurious.com
http://www.foodnetwork.com

218 M. van Erp et al.

of nations in a globalising world, and of food and drink as subjects of objects
of consumption within the dynamic material worlds of late capitalism and late
modernity [2].” Van Otterloo argues that the perception of a typical Dutch food
culture formed during the 1950s. She also claims that it is difficult to get an
overview of all the ideas and perceptions of food and the consumption of food.
Computational approaches, however, are able to process large amounts of data
and can possibly extract a more comprehensive overview of developments of
ideas associated with food.

Newspapers function as transceivers; they are both producer and messen-
ger of public discourse [3,4]. In other words, newspapers both reflect and shape
prevailing ideas and tastes in particular periods. Recipes have been part of news-
papers at least since the late nineteenth century. In addition, newspapers also
contain reports containing views on daily life and customs in a national context.
This information regularly appeared in recipes, offering an understanding of food
cultures of the past. On the whole, this makes newspapers an invaluable source
for studies of food culture.

However, recipes in digitised newspapers are not easily accessible. For
instance, a query using the search term ‘recept’ (recipe) not only retrieves arti-
cles containing food recipes, but also recipes for homemade remedies and articles
mentioning doctor’s prescriptions—the same word in Dutch. Furthermore, not
all articles that include recipes include the term ‘recipe.’ Due to noise introduced
in the digitisation process and the diachronic language variation, standard infor-
mation extraction methods perform poorly on such data. This paper addresses
these issues and presents our method and experiments for (1) automatically iden-
tifying recipes in newspapers using a classification algorithm, (2) classifying the
recipes using a multi-label classifier, (3) extracting ingredients, quantities and
units using automatically extracted lexicons, and (4) linking the ingredients to
information on their origins. In all steps, we investigate methods for which we can
automatically generate training data (via distant supervision) or automatically
extracted lexicons from domain-specific and generic resources. This approach
also lowers the threshold to transfer the approaches to other domains. Further-
more, we evaluate the quality of the OCR and of our extraction process. All
annotations, including the OCR quality indicators, are made available, enabling
researchers to gain insights into the quality of the extracted information.

Our contributions are twofold: (1) a distant supervised method for extracting,
structuring and enriching recipes from newspapers; (2) a dataset consisting of
27,411 historical recipes extracted from Dutch newspapers (1945–1995), which
can be used for further research.

Our software, experiments and data can be found at: https://github.com/
DHLab-nl/historical-recipe-web. Due to copyright restrictions, the text from the
newspaper articles is not included, but can be retrieved via the document IDs.

The remainder of this paper is structured as follows. In Sect. 2, we discuss
the background and related work. In Sect. 3, we describe the datasets used in
this work. Our extraction, structuring and enrichment pipeline and evaluation
are described in Sect. 4. Statistics on our historical recipes dataset are presented

https://github.com/DHLab-nl/historical-recipe-web
https://github.com/DHLab-nl/historical-recipe-web

Constructing a Recipe Web from Historical Newspapers 219

in Sect. 5. We discuss strengths and limitations of our approach in Sect. 6 and
conclude with directions for future work in Sect. 7.

2 Related Work

The food domain has recently gained some attention in the AI community as a
versatile application domain. Various recipe databases are available for research
purposes, such as [5] and [6]. These can, for example, be used for the construction
of recipe workflows containing specific actions to be carried out [7,8].

Recipe extraction and classification is clearly a multilingual research domain,
as [8,9] show by taking Japanese and Italian as their domains, respectively. [10]
enrich German recipes with category tags. We apply this type of tag classification
in Subsect. 4.3, but we amend the feature selection to fit our dataset. Closer to
our work is the extraction of ingredients and quantities and units from recipes
such as presented in [9] and [11]. However, the main difference with our work is
that their corpora are digital-born and thus not affected by fluctuations in text
quality from the digitisation process as our corpus is (which also holds for [5–8]).

We take inspiration from [9] concerning the use of different lexicons for the
extraction of ingredients (see Subsect. 4.4). The fluctuation in digitisation quality
of our corpus affects our options for the application of standard natural language
processing tools. There is some work on information extraction from noisy OCR
data, such as [12] who investigate the impact of error rates from different OCR
engines in a Named Entity Recognition (NER) task using a dictionary, regular
expressions, a Maximum Entropy Markov Model, a CRF, and a combination of
the approaches. For Dutch ingredient, quantity and unit extraction, there is no
training data available as there is for NER. Therefore, we focus on dictionary
and regular expression-based methods for that part of our research.

In the Semantic Web domain, the two main dedicated food datasets we found
were Open Food Facts2, an open collaborative database containing information
about food in English and French and Foodpedia, a linked dataset contain-
ing Russian food products [13]. Although there are dedicated recipe vocabular-
ies such as the BBC Food Ontology3, and the Food Ontology4, the number of
datasets using those is limited, not open, or not easily findable.

Some examples of analyses that rich food datasets can provide can be found
in [14], which presents an exploratory interface for comparing 487 chocolate
chip cookie recipes collected from the Web. Restaurant menus also provide a
window into social status as a linguistic analysis of 6,511 restaurant menus by [15]
shows. They found that more expensive restaurants use longer and more foreign
words. As different newspapers target different audiences, our dataset may also
provide such insights, but the core goal of this research paper is to investigate
the extent to which distant supervised methods can be used to identify, classify,
and structure recipes from a historical newspaper corpus.
2 https://world.openfoodfacts.org/data.
3 https://www.bbc.co.uk/ontologies/fo.
4 http://data.lirmm.fr/ontologies/food.

https://world.openfoodfacts.org/data
https://www.bbc.co.uk/ontologies/fo
http://data.lirmm.fr/ontologies/food

220 M. van Erp et al.

3 Data

Using Optical Layout Recognition, pages have been segmented into separate
articles, available as images and OCR’ed text. The quality of the digitised text
varies throughout the corpus. The age and quality of the original material are
important determinants of the ability of the software to recognise the text; hence,
older newspapers contain more errors than more recent papers.

The National Library of the Netherlands allows researchers to access data
through an API and selected parts of the corpus are available as downloadable
data dumps.5 Access to the source material enables more substantial analyses,
which are not possible on resources that are solely accessible through web search
interfaces such as the Library of Congress’ Chronicling America Corpus.6

In addition to our dataset of newspapers, we used a corpus of structured
recipes to bootstrap the extraction of ingredients and to train a multi-label
classifier to tag the historical recipes. This additional corpus consists of approx-
imately 16,000 recipes from Allerhande, the recipe resource from the oldest and
one of the largest Dutch supermarket chains.7 Its recipes have been marked up
with schema.org information8 as well as tags, nutritional information, the source
of publication, and ratings.

Data Selection. We selected four recently-digitised newspapers because of their
higher OCR quality. These newspapers are the liberal NRC handelsblad (1970–
1994), the social-democratic Amsterdam-based newspaper Het Parool (1946–
1995), the Catholic Volkskrant (1950–1995) and the Protestant newspaper Trouw
(1950–1995). Table 1 details the descriptive statistics of our dataset.9

Apart from their higher OCR quality, the historical period represented by
the selected newspapers is of particular interest for research into Dutch food
culture. The period after the Second World War exhibited rapid modernisation
and industralisation. The recipes might show how these processes affected food
culture and perceptions of cooking within households. The Netherlands also wel-
comed people from its former colonies Indonesia and Surinam as well as migrant
workers from Morocco and Turkey. These migrant communities introduced new
recipes and styles of cooking to the Netherlands. We argue that a dataset of
historical recipes and their descriptions can be used to better understand how
these cuisines were perceived and appropriated in the Netherlands [1,16–18].

5 Due to copyright restrictions, a user agreement is required for newspapers published
after 1876.

6 https://chroniclingamerica.loc.gov/.
7 https://www.ah.nl/allerhande/.
8 http://schema.org.
9 Note that the decreased type-token ratio for the NRC suggests that the OCR qual-

ity in this newspaper is probably the lowest. Of these four newspapers, NRC was
digitised first, which might explain the lower OCR quality.

https://chroniclingamerica.loc.gov/
https://www.ah.nl/allerhande/
http://schema.org

Constructing a Recipe Web from Historical Newspapers 221

Table 1. Statistics of the four selected historical newspapers: number of pages, number
of articles, the number of unique tokens (types), the number of tokens in total (tokens)
and token to type ratio (TTR)

Pages Articles Types Tokens TTR

Parool 14,194 2,380,697 23,651,078 612,036,106 0.039

Volkskrant 13,628 2,248,652 28,616,758 744,275,792 0.038

NRC 7,199 947,198 11,735,250 489,397,816 0.024

Trouw 13,891 2,578,731 24,520,472 656,941,631 0.037

4 Constructing the Historical Recipe Web

In our workflow, we first generate lists of ingredients, recipe tags, and recipe
descriptions from the structured recipe background dataset (Allerhande). We
use this dataset to train a recipe tag classifier (described in Subsect. 4.3) and to
bootstrap an ingredient and quantities and units extractor (described in Sub-
sect. 4.4). The first step includes the detection of historical recipes using a seed
list and the training of a recipe classifier based on historical recipes (describe in
Subsect. 4.1). Then, we tag the historical recipes using our tag classifier and we
extract the ingredient and quantify information from them. Finally, we enrich
the set of structured historical recipes by linking the ingredients to DBpedia,
recovering their scientific name, if available, and linking the ingredients to the
Global Biodiversity Information Facility to obtain their origin.

4.1 Recipe Identification

From the four newspapers, we selected articles that include the tokens ‘recept’
or ‘recepten’ and one of the following tokens: ‘gram, kilogram, pond, keuken,
koken, kook, bakken, eetlepel, gerecht, theelepel, snijden’ (recipe, recipes, gram,
kilogram, pound, kitchen, cooking, cook, baking, tablespoon, dish, teaspoon,
cut). We then manually annotated which of these articles were actually recipes
(Table 2). Some recipes are part of a larger article describing an entire menu. In
such cases, we treated the article as a single recipe.

Table 2. Results of recipe annotation from seed tokens

Correct False Total

Volkskrant 1,526 796 2,322

Parool 1,481 971 2,452

Trouw 2,568 926 3,494

NRC 1,913 753 2,666

Total 7,488 3,466 10,954

222 M. van Erp et al.

Table 3. f1, precision, and recall of the recipe classifier

f1 Precision Recall

articles 0.97 0.96 0.97

recipes 0.95 0.96 0.95

Next, we created a training set of the articles annotated as recipes, articles
falsely extracted as recipes, and 24,000 articles randomly selected from the four
newspapers bar the articles annotated as recipes. This dataset was used to train
a recipe classifier. After removing the search terms used for the initial query to
improve the performance of the classifier, we transformed the text into a TF-
IDF feature space based on unigrams and bigrams. On this feature space, we
trained three classifiers: a multinomial Naive Bayes, a Support Vector Machine
(SVM) with Stochastic Gradient Descent (SGD), and a Linear Support Vector
Classification using cross-validated randomized search on hyperparameters. The
latter scored the best with an accuracy score of 0.96 using a 5-fold cross validation
(see Fig. 3 for precision, recall, and f1 scores) (Table 3).

After applying the trained classifier to the four sets of newspaper articles,
the number of recipes found increased drastically, especially for earlier periods,
yielding 27,411 articles of which we have a high confidence that they are recipes.
Using the classifier resulted in an almost six-fold increase over the initial seed
list (see Fig. 1).

4.2 OCR Quality of the Recipe Dataset

While the Delpher newspaper data was digitised and OCR’ed relatively recently,
the OCR quality is not perfect. To get an indication of the OCR quality, we per-
formed a lexicon-based OCR quality check developed at the Dutch Language
Institute.10 This method checks what proportion of tokens present in an article
occurs in a range of historical lexicons.11 Most OCR software will give an indi-
cation of the certainty of its decisions by attaching a score to a document or
batch of documents. However, these scores often give an indication of the errors
at the character level, while for our purpose, it is more useful to know how many
words (or tokens) are correct in a text, as information extraction techniques do
not read as easily over character errors than humans do.

Figure 2 shows the results of this measure on the different newspapers (left)
and per 5-year interval (right). Fortunately, the majority of the texts scores about
80%, although there is some difference between the newspapers and the different
time periods. The scores are also provided in the historical recipe dataset, such
that researchers can choose to exclude articles with a lower OCR score.

10 https://ivdnt.org/the-dutch-language-institute.
11 https://www.digitisation.eu/tools-resources/language-resources/historical-and-nam

ed-entities-lexica-of-dutch/.

https://ivdnt.org/the-dutch-language-institute
https://www.digitisation.eu/tools-resources/language-resources/historical-and-named-entities-lexica-of-dutch/
https://www.digitisation.eu/tools-resources/language-resources/historical-and-named-entities-lexica-of-dutch/

Constructing a Recipe Web from Historical Newspapers 223

Fig. 1. Retrieved articles using seed list (blue) and using classifier (orange) (Color
figure online)

Fig. 2. Lexicon-based OCR quality indicators per newspaper (left) and per five-year
period (right)

4.3 Tag Classifier

To categorise the recipes, we trained a multi-label classifier using the tags asso-
ciated with recipes in the Allerhande dataset. Recipes in the Allerhande dataset
are tagged with one, two, or three tags drawn from a set of 69 tags. These tags
either indicate the type of dish (Thai, American, Italian), type of diet (Vege-
tarian, Healthy, Lactose-free), occasion (Christmas, Easter), or style of cooking
(Grilling, Baking, Oven, Fast, Budget).

After initial training of the classifier on all tags, we removed tags with an
accuracy score < 0.1, tags occurring in fewer than fifty recipes, and those that
were specific to the Allerhande set such as ‘advertorial’ and ‘wat eten we van-
daag’ (what’s for dinner today). Also, we grouped together similar tags, such
as ‘healthy’ and ‘slim’, and ‘without meat/fish’ and ‘vegetarian’. These steps
resulted in a set of 36 tags.

As input variables, we used the title, description, and cooking instruction
fields from the Allerhande set. From this text we removed the names of tags to
make the classifier less sensitive to the presence of these words. After converting
the text into a TF-IDF feature space with an ngram range of (1, 5), we trained
a OneVsRest Classifier balanced Linear SVC. The overall accuracy score of the

224 M. van Erp et al.

Fig. 3. Accuracy scores per tag of tag classifier on Allerhande dataset

classifier is 0.75. The Hamming Loss is 0.014, and the average F2 test score:
0.82. Figure 3 shows the scores per tag based on the Allerhande training set.

Subsequently, we applied the tag classifier to the annotated recipes extracted
from the historical newspapers. Figure 4 shows the number of tags found in this
dataset. In the bar chart, we find that a small set of tags were found relatively
often, while others were infrequently found, or not at all. This suggests that
some tags are quite specific to the Allerhande data and do not generalize quite
well. On the other hand, tags such as ‘vegetarian’, ‘italian’, ‘asian’, and the
more specific ‘thai’, ‘grilling’, and ‘deep frying’ were found with high accuracy
in historical recipes.

For evaluation, we constructed a dataset of 100 recipes for every tag and
100 recipes that were not tagged. If tags appeared in fewer than 100 recipes, we
selected all these recipes, for the other cases we took a sample. The tagged set
included 1,197 recipes. We manually annotated recipes with the tags: ‘italian’,
‘vegetarian’, and ‘asian’. These tags occurred relatively often and were easier to
tag since they were less ambiguous than for instance, ‘budget’. For these tags, the
tagger scored relatively well (Table 4). During manual tagging, we also noticed
that recipes tagged as ‘asian’ did not receive the more specific tags ‘japanese’,
‘indonesian’, ‘chinese’, or ‘thai’, even though they were described as such. The
low recall for ‘vegetarian’ partly stems from the fact that in the Allerhande
desserts, while often vegetarian, are almost never tagged as such. We annotated
these recipes as ‘vegetarian’. An interesting find was also that a recipe described
as ‘vegetarian’ in a newspaper article was not tagged as ‘vegetarian’ by our
tagger. Here the classifier was actually correct, since the recipe used chicken and
trasi, a spice paste made of fermented shrimp. This perhaps suggests a changing
concept of vegetarian food.

Constructing a Recipe Web from Historical Newspapers 225

Table 4. Evaluation of tagger on historical recipes

Precision Recall Accuracy f1

Asian 0.97 0.72 0.95 0.83

Italian 0.83 0.84 0.96 0.84

Vegetarian 0.78 0.45 0.78 0.57

Fig. 4. Frequency of tags found in historical recipes

4.4 Ingredient and Quantity Extraction

Figure 5 illustrates some of the difficulties in extracting information from a digi-
tised newspaper source. As the scan of the newspaper page shows (left), some
of the text on the right-hand side is difficult to read because of the fold of the
newspaper, resulting in gaps or misrecognised characters in the OCR output
(top right). We have annotated the ingredients that do not contain any errors
in blue, potential ingredients contained in strings with OCR errors in pink, and
quantities in green. Interestingly, not all ingredients are precisely quantified, such
as ‘a pinch’ (literally ‘a knife’s point’ in Dutch). This makes it difficult to, for
example, compute the nutritional value of the dish, even if the OCR was perfect
and all ingredients and quantities could be recognised correctly.

To evaluate the ingredient and quantity extraction, we selected a random
stratified sample from the recipe set created using seed list in Subsect. 4.1. The
sample consists of 100 articles (1.35% of the set) following the same distribution
over newspapers and time periods.

Ingredients, quantities and units in the sampled recipes were annotated using
the Recogito annotation tool.12 Furthermore, ingredients that contained OCR
errors were marked separately to gain insight into the proportion of ingredients
affected by these errors. Three annotators contributed to the gold standard. Six

12 http://recogito.pelagios.org/.

http://recogito.pelagios.org/

226 M. van Erp et al.

Fig. 5. Example of a newspaper recipe scan, its resulting OCR’ed text, marked up with
ingredients that our approach should be able to recognise (blue), potential ingredients
(pink) and quantities (green) as well as the recipe’s English translation. Source: NRC
Handelsblad 24 April 1988, page 20, https://resolver.kb.nl/resolve?urn=KBNRC01:
000029338:mpeg21:a0179 (Color figure online)

articles were annotated by all three annotators for which we computed Krippen-
dorff’s alpha to measure inter-annotator agreement, yielding a score of 0.85 [19].
Overall, the agreement is high, but we do see disagreement on whether or not
parentheses are included and for the OCR category particularly it is unclear
when a garbled-up word starts and ends. For example, in one instance Annota-
tor 1 annotated j ◦ ar,anen’ and Annotator 2: ◦ar,anen’.13

Ingredient Extraction. Many of the recipes do not follow a structured for-
mat where the ingredients are presented at the start of the article (as web-based
recipes or formal cookbooks usually do). Segmenting the articles into ‘ingredient’
and ‘description’ paragraphs is therefore not an option. Experiments with stan-
dard NLP tools to identify noun chunks and part-of-speech tags are not robust
against the OCR variation in our corpus. Therefore, ingredients are extracted
using a dictionary-based tagger. We generate several ingredients lists inspired
by [9]. In that work, a domain specific resource was used to bootstrap ingredi-
ents from AGROVOC14 and a combination of three generic resources based on
WordNet [20]. As a Dutch version of AGROVOC does not exist, we used the
Allerhande corpus to generate a list of unique ingredients consisting of 2,723
food stuffs ranging from ‘uien’ (onions) to ‘Ben Jerry’s Cinnamon Buns ijs’ (Ben
Jerry’s Cinnamon Buns ice cream).
13 The article actually stated ‘4 bananen’.
14 http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-th

esaurus.

https://resolver.kb.nl/resolve?urn=KBNRC01:000029338:mpeg21:a0179
https://resolver.kb.nl/resolve?urn=KBNRC01:000029338:mpeg21:a0179
http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus
http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus

Constructing a Recipe Web from Historical Newspapers 227

We compared the Allerhande list to lists of ingredients from two generic
datasets: Dutch DBpedia and Open Dutch Wordnet. From DBpedia, we select
resources in the categories ‘food’ and ‘lists of food’.15 After excluding some cat-
egories (e.g. “List of Belgian Beers”, which contained a fair few mentions of
breweries), 2,642 potential ingredients remained. Singular nouns were automati-
cally expanded with plural forms using the pattern library.16 This yielded a total
of 4,110 ingredients. From Open Dutch WordNet, we selected lexemes with the
superclass ‘Food’ or ‘Plant’, yielding 1,602 entries, which were also automatically
expanded to their plural forms, added up to 3,204 ingredients.

Table 5 presents the results of four types of ingredients extraction: (1) exact
match using the entire list of ingredients; (2) exact match using only ingredi-
ents harvested from DBpedia; (3) exact match using ingredients harvested from
WordNet; and (4) exact match using the combined lists (AH-DBP-WN). In an
effort to tackle spelling variations and OCR errors, we experimented with fuzzy
matching, but this only decreased performance by introducing more noise and
no gains in recall.

Some ingredients may be mentioned several times in the recipe but we only
note each ingredient once, thus performing a type analysis rather than a token
analysis. Our gold standard contains 1,538 ingredients without OCR errors and
the annotators identified 150 strings denoting ingredients containing OCR errors.

Error Analysis. The low recall stems from insufficient coverage of the ingre-
dient lists, but simply adding ingredients would not yield 100% recall as there
is also variation in parts of ingredients, e.g. ‘brandneteltopjes’ (tips of nettles)
or ‘kabeljauwkoppen’ (cod heads). Furthermore, recipes occassionally mention
ingredients by referring to a brand name, e.g. ‘Delfiatablet’ (a brand of butter),
or by describing a foreign foodstuff, e.g. ‘warka-vellen’ (Moroccan phyllo).

Errors in precision stem from noise in the lexicons. For example, the Aller-
hande ingredients list contains ‘aardappelsalade’ (potato salad) and ‘chocolade-
cake’ (chocolate cake), whereas in newspaper article this is the name of the final
product. The annotators were instructed to only annotate the base ingredient
and not its shape. For example, in ‘kokend water’ (boiling water) only ‘water’ is
annotated. This decision was made to keep close to unprocessed ingredients and
not have to account for variant such as chopped, diced, sliced, grated, etcetera.
These variants, however, do occur in the Allerhande ingredients list. In addi-
tion to names of dishes, the DBpedia and WordNet lists contain cooking actions
such as ‘fruiten’ (sautée) and other related terms such as ‘dier’ (animal), ‘blikje’
(can), and ‘ingrediënten’ (ingredients). This notwithstanding, our setup is to
test the extent to which automatically harvested lexicons can be used for ingre-
dient extraction. Some cleanup would improve the precision, but for the recall an
automatically bootstrapped lexicon, or a statistical method will probably yield
better results.

15 http://nl.dbpedia.org/resource/Categorie:Voedsel; http://nl.dbpedia.org/resource/
Categorie:Lijsten van voedsel. The resources typed with dbo:Food are mostly beers.

16 https://www.clips.uantwerpen.be/pages/pattern-nl.

http://nl.dbpedia.org/resource/Categorie:Voedsel
http://nl.dbpedia.org/resource/Categorie:Lijsten_van_voedsel
http://nl.dbpedia.org/resource/Categorie:Lijsten_van_voedsel
https://www.clips.uantwerpen.be/pages/pattern-nl

228 M. van Erp et al.

Table 5. Results of ingredients extraction from recipes. ‘Clean ingredients’ denotes
results on ingredients without OCR errors, ‘With OCR errors’ denotes results including
OCR errors. The number of correct items is the same for both sets as no new mentions
from the set of OCR errors was retrieved.

Clean ingredients With OCR errors

Precision Recall f1 Correct Precision Recall f1

Allerhande 0.70 0.65 0.67 998 0.70 0.59 0.64

DBpedia 0.60 0.33 0.47 513 0.60 0.30 0.45

WordNet 0.62 0.50 0.56 764 0.62 0.45 0.54

AH-DBP-WN 0.56 0.75 0.66 1,154 0.56 0.68 0.62

Quantity and Unit Extraction. Quantities and units are extracted using a
regular expression that utilises a list of 91 units generated from the Allerhande
dataset containing terms such as ‘kilogram’ and ‘liter’, but also ‘pakje’ (package)
and ‘pot’ (jar). The units were pluralised automatically yielding 182 instances.
The matcher checks for an occurrence of one or more digits followed by a unit
or a digit followed by an ingredient. This quantity extraction method correctly
identified 312 units with a precision of 0.74, a recall of 0.51, and an F1 of 0.62.

Error Analysis. Precision errors are often caused by half matches, e.g. recogni-
tion of ‘4 pot’ (4 jar) where the full annotation states ‘4 potten’. Part-of-speech
tagging might resolve some of these problems, if the available taggers can be
made more robust in dealing with OCR errors. The case for recall is more com-
plex. On the one hand, the units lexicon can be expanded with variations on,
for instance, pieces, wine glasses, layers, and tea cups. However, we also found
some quite poetic variations on quantities and units expressions, such as ‘een
paar royale slagen met de pepermolen’ (a couple of generous twists on the pep-
per grinder), ‘een niet kinderachtige hoeveelheid’ (a not childish amount), and
‘een snuf snuf’ (a sniff sniff). The use of these variants might be distinctive of
particular historical periods.

Table 6. Results of ingredient to DBpedia linking

Precision Recall f1 Unique Scientific dbpedia-en

String match 95.56 (280) 10.77 (293) 53.17 293 37 293

Spotlight 85.45 (1,034) 44.47 (1,210) 64.96 438 76 397

4.5 Linking Recipe Elements

The food on our plates is often sourced from all corners of the world. To gain
an insight into the different localities from which our ingredients originated,
we linked items in our Allerhande ingredients list to the Global Biodiversity

Constructing a Recipe Web from Historical Newspapers 229

Information Facility (GBIF).17 This resource gives information about different
species and their native range. To establish these links, we first collected an
ingredient’s scientific name from DBpedia, which was then queried in GBIF to
obtain its origin. In this step, we also created links between our ingredient list
and DBpedia, through which we also obtained links to the English DBpedia.
We use two different approaches to generate these links: a simple string match
and DBpedia spotlight [21]. The resulting links (Table 6) were judged by one
annotator.

Error Analysis. The precision on the string match is naturally quite high, only
in cases where ingredient names are ambiguous this fails. DBpedia Spotlight has
more trouble, as it has a higher coverage. It, for example, links ‘salsa’ to salsa
dancing instead of the sauce. Its increase in recall over the string match method is
thanks to its access to synonyms such as “Zwaardherik” for ‘Rucola’ (arugula).
There are still quite some ingredients for which no link was found. Some are
quite surprising, such as the lack of a link for ‘aardbeien’ (strawberries), but
for ingredients such as ‘Amelander verse sladressing’ (Amelander fresh salad
dressing) or ‘kippenbouillontablet’ (chicken stock cube) this is not surprising.
For many of the processed food items, such as cheese, there is no scientific name
and corresponding GBIF entry. There are other interesting sources to relate
these to, such as consumer price indices, but we leave this for future work.

5 Dutch Historical Recipe Web

Our extracted and enriched historical recipes dataset of over 27k recipes and over
365k ingredients can for example be used to investigate ingredient combinations
in different time periods or popular tags in different newspapers. Table 7 shows
the statistics of our recipes dataset.

It should be noted that the newspaper dataset does not include all published
newspapers, so any comparative or proportional analyses derived from the news-
paper corpus or our dataset will have to take this into account. Recipes may be
repeated, but differences in OCR performance makes detecting the same recipe
not trivial.

Table 7. Statistics of Dutch historical recipe web

Recipes Tags Ingredients Quantities DBpedia Scientific GBIF

Parool 4,440 5,221 46,685 11,620 2,423 277 170

Volkskrant 13,270 16,962 185,872 56,626 7,395 730 349

NRC 3,764 4,943 59,717 17,738 1,850 282 142

Trouw 5,937 7,353 72,859 21,880 3,232 368 168

Total 27,411 34,479 365,133 107,864 14,900 1,657 829

17 https://www.gbif.org/.

https://www.gbif.org/

230 M. van Erp et al.

6 Discussion

In this paper, we focused on distant supervision approaches to detect and clas-
sify recipes from newspapers; to extract ingredients, quantities and units; and
to add links to external datasets. The obtained scores show that for the iden-
tification and classification tasks, this works quite well, as the recipes from our
seed datasets generalise well over to the newspapers dataset.

For the more fine-grained extraction and enrichment, i.e. the ingredients,
quantities, units and external links, there are clear limitations to using available
lexicons and resources. Although ingredients are not as infinite a set as, for
example, named entities, our newspaper dataset shows enough variation to affect
the performance of the approach. As the OCR quality affects standard natural
language processing tools, such as part-of-speech tagging or noun chunking, it is
difficult to bootstrap patterns from the dataset to grow the lexicons. Solutions
can be sought in (a) only working with those articles that obtain a high OCR
score, (b) cleaning up the OCR, or (c) training NLP systems to deal with noisy
text. In our dataset, the OCR lexical coverage scores are provided, so researchers
can choose to only use those articles in their analyses. Correcting the OCR is
difficult, in particular with images that are already difficult to read for humans,
but some tools are becoming available such as PICCL.18

7 Conclusions and Future Work

We presented a distant supervised method and experiments to construct a recipe
dataset from historical newspapers. To the best of our knowledge, we are the first
to combine natural language processing, machine learning, and semantic web for
information extraction from noisy OCR data. Our evaluations show that articles
denoting recipes can be identified with an F1 score of 0.96, tags can be assigned
with F2 scores between 0.57 and 0.84, ingredients can be identified with an F1 of
0.67, quantities and units with an F1 of 0.62 and link with an F1 of 0.64. These
results leave room for improvement, but the approach does not require manually
labeled training data. The resulting 27,411 recipes can be used by (humanities)
researchers interested in food culture to more easily access relevant sources. We
will continue to expand this dataset with additional newspapers and time periods
and explore diachronic lexicons and machine learning methods to improve the
classification and extraction.

The lexicon-based method that was used for the ingredients and quantities
and units extraction is limited by the scope of available lexicons and cleanliness.
The Allerhande lexicon, which was derived from schema.org ingredient elements,
shows that such markup allows flexibility on the content provider’s side, but
makes it difficult to repurpose, for example, to use as an ingredients lexicon.
Furthermore, the coverage of the Dutch DBpedia in the food domain was also
lower and less well-structured than expected.

18 https://github.com/LanguageMachines/PICCL.

https://github.com/LanguageMachines/PICCL

Constructing a Recipe Web from Historical Newspapers 231

We have also assessed the impact of OCR errors in the newspapers corpus by
providing an indication of the article’s lexical coverage and by annotating OCR
problems in the ingredients lists in our evaluation dataset. The use of PICCL
and other methods will be investigated to improve the quality of the sources.

As our method relies on distant supervision and automatically extracted
lexicons, it can easily be ported to other domains to construct similar datasets
from (historical) newspapers or magazines such as sport reports or music reviews.

The dataset, software and experiments described in this paper can be found
at: https://github.com/DHLab-nl/historical-recipe-web

Acknowledgements. The authors thank the National Library of the Netherlands for
making available the newspaper collection for research purposes as well as for organising
the HackaLOD hackathon with Rijksmuseum and Netwerk Digitaal Erfgoed where this
project got started. We thank Jesse de Does for the OCR quality measure, Marten
Postma and Emiel van Miltenburg for querying Open Dutch WordNet, and Richard
Zijdeman for fruitful discussions on the dataset concept. No Hawaiian pizzas were
consumed during the writing of this paper.

References

1. van Otterloo, A.H.: Eten en eetlust in Nederland, 1840–1990: een historisch-
sociologische studie. B. Bakker, Amsterdam (1990)

2. Wilson, T.M. (ed.): Food, Drink and Identity In Europe. European studies. Rodopi,
Amsterdam (2006)

3. Schudson, M.: The Power of News. Harvard University Press, Cambridge (1982)
4. Marchand, R.: Advertising the American Dream: Making Way for Modernity, 1920–

1940. University of California Press, Berkeley (1985)
5. Harashima, J., Ariga, M., Murata, K., Ioki, M.: A large-scale recipe and meal

data collection as infrastructure for food research. In: Proceedings of the Tenth
International Conference on Language Resources and Evaluation (LREC 2016).
European Language Resources Association (ELRA), Paris, May 2016

6. Tasse, D., Smith, N.A.: SOUR CREAM: toward semantic processing of recipes.
Technical report CMU-LTI-08-005, Carnegie Mellon University, Pittsburgh, PA
(2008)

7. Maeta, H., Sasada, T., Mori, S.: A framework for recipe text interpretation. In:
Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, Adjunct Publication. ACM, pp. 553–558 (2014)

8. Mori, S., Maeta, H., Yamakata, Y., Sasada, T.: Flow graph corpus from recipe
texts. In: Proceedings of the Ninth International Conference on Language
Resources and Evaluation (LREC 2014). European Language Resources Associ-
ation (ELRA), Reykjavik, May 2014

9. Mazzei, A.: On the lexical coverage of some resources on Italian cooking recipes.
In: Proceedings of CLiC-it 2014, First Italian Conference on Computational Lin-
guistics, pp. 254–259 (2014)

10. Kicherer, H., Dittrich, M., Grebe, L., Scheible, C., Klinger, R.: What you use,
not what you do: automatic classification of recipes. In: Frasincar, F., Ittoo, A.,
Nguyen, L.M., Métais, E. (eds.) NLDB 2017. LNCS, vol. 10260, pp. 197–209.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59569-6 22

https://github.com/DHLab-nl/historical-recipe-web
https://doi.org/10.1007/978-3-319-59569-6_22

232 M. van Erp et al.

11. Greene, E.: Extracting structured data from recipes using conditional random
fields. The New York Times Open Blog (2015)

12. Packer, T.L., et al.: Extracting person names from diverse and noisy OCR text.
In: Proceedings of the Fourth Workshop on Analytics for Noisy Unstructured Text
Data, pp. 19–26. ACM (2010)

13. Kolchin, M., Chistyakov, A., Lapaev, M., Khaydarova, R.: FOODpedia: Russian
food products as a linked data dataset. In: Gandon, F., Guéret, C., Villata, S., Bres-
lin, J., Faron-Zucker, C., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9341,
pp. 87–90. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25639-9 17

14. Chang, M., Hare, V.M., Kim, J., Agrawala, M.: RecipeScape: mining and analyzing
diverse processes in cooking recipes. In: Proceedings of the 2017 CHI Conference
Extended Abstracts on Human Factors in Computing Systems, pp. 1524–1531.
ACM (2017)

15. Jurafsky, D., Chahuneau, V., Routledge, B., Smith, N.: Linguistic markers
of status in food culture: Bordieu’s distinction in a menu corpus. J. Cult.
Anal. (2016). http://culturalanalytics.org/2016/10/linguistic-markers-of-status-
in-food-culture-bourdieus-distinction-in-a-menu-corpus/

16. Schuyt, K., Taverne, E.: Dutch Culture in a European Perspective: 1950, Prosperity
and Welfare. Palgrave Macmillan, Basingstoke (2004)

17. Hoving, I., Dibbits, H., Schrover, M., eds.: Cultuur en migratie in Nederland. Veran-
deringen in het Alledaagse, 1950–2000. Sdu Uitgevers, The Hague (2005)

18. Schot, J., Rip, A., Lintsen, H. (eds.): Technology and the Making of the Nether-
lands: The Age of Contested Modernization, 1890–1970. MIT Press, Cambridge
(2010)

19. Krippendorff, K.: Computing krippendorff’s alpha-reliability (2011)
20. Postma, M., van Miltenburg, E., Segers, R., Schoen, A., Vossen, P.: Open Dutch

WordNet. In: Proceedings of the Eight Global WordNet Conference, Bucharest,
Romania (2016)

21. Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accu-
racy in multilingual entity extraction. In: Proceedings of the 9th International
Conference on Semantic Systems (I-Semantics) (2013)

https://doi.org/10.1007/978-3-319-25639-9_17
http://culturalanalytics.org/2016/10/linguistic-markers-of-status-in-food-culture-bourdieus-distinction-in-a-menu-corpus/
http://culturalanalytics.org/2016/10/linguistic-markers-of-status-in-food-culture-bourdieus-distinction-in-a-menu-corpus/

Structured Event Entity Resolution
in Humanitarian Domains

Mayank Kejriwal(B), Jing Peng, Haotian Zhang, and Pedro Szekely

USC Information Sciences Institute, Marina Del Rey, USA
kejriwal@isi.edu

Abstract. In domains such as humanitarian assistance and disaster
relief (HADR), events, rather than named entities, are the primary focus
of analysts and aid officials. An important problem that must be solved
to provide situational awareness to aid providers is automatic cluster-
ing of sub-events that refer to the same underlying event. An effective
solution to the problem requires judicious use of both domain-specific
and semantic information, as well as statistical methods like deep neural
embeddings. In this paper, we present an approach, AugSEER (Aug-
mented feature sets for Structured Event Entity Resolution), that com-
bines advances in deep neural embeddings both on text and graph data
with minimally supervised inputs from domain experts. AugSEER can
operate in both online and batch scenarios. On five real-world HADR
datasets, AugSEER is found, on average, to outperform the next best
baseline result by almost 15% on the cluster purity metric and by 3% on
the F1-Measure metric. In contrast, text-based approaches are found to
perform poorly, demonstrating the importance of semantic information
in devising a good solution. We also use sub-event clustering visualiza-
tions to illustrate the qualitative potential of AugSEER.

Keywords: Events · Structured event resolution
Hybrid embeddings · Crisis informatics
Humanitarian and disaster relief · Clustering

1 Introduction

As the devastating consequences of recent disasters such as Hurricanes Irma and
Harvey illustrate, effective mobilizing of resources and personnel is an important
problem, with technology playing an increasingly important role, both in taking
preventive action (e.g., evacuations) and dealing with the disaster’s aftermath [6],
[8]. The impact of disasters, and other events with a humanitarian dimension, is
global: according to the 2016 Human Development report [7], conflicts, disasters
and natural resources constitute key global concerns, with more than 21.3 million
people (roughly the population of Australia) being affected by the refugee crisis
alone. Technology can play an important role in alleviating this suffering by
equipping HADR analysts with situational awareness [20]. Situational awareness

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 233–249, 2018.
https://doi.org/10.1007/978-3-030-00671-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_14&domain=pdf

234 M. Kejriwal et al.

is a broad notion, involving analytics that can cover text, sentiments, entities
and spatio-temporal information. Examples include entity-centric search and
aggregate sentiment analyses that help pinpoint emerging hotspots [10]. In some
cases, posthoc analysis also needs to be conducted, perhaps by performing batch
analytics on newswire or social media collected over a time interval.

For a continuously deployed system to conduct even basic event-centric anal-
ysis, at global scales of space and over arbitrary periods of time, the structured
event entity resolution (SEER) problem needs to be solved. Along with named
entities, HADR ontologies (whether simple or complex), also include event enti-
ties as first-class citizens. Event entities tend to be semi-structured objects that
are sometimes extracted from documents, but (in the HADR space) can also be
entire document fragments. This is especially the case when considering hetero-
geneous corpora such as specialized newswire (e.g. an article describing a single
incident or event), social media and SMS. Events can span multiple days, week or
in some cases (such as the Syrian refugee crisis), years. For posthoc analysis (the
batch mode), users input their own heterogeneous corpus, usually collected over
a multi-year period of time, and desire semi-automatic non-overlapping event
clustering as a first step. In this sense, each data item is a ‘sub-event’, and a
collection of sub-events represent a ‘resolved’ event.

Adequately solving the SEER problem involves several challenges not
completely addressed by modern or classic text classification and clustering
approaches. First, in addition to being relatively robust to errors, a good SEER
system must handle the topical flux (more generally, called concept drift) that
an evolving event exhibits across documents, space and time, often in unprece-
dented ways. As an example, consider the case of the Haiti earthquake in 2010.
In an initial set of documents describing this disaster, the topics were primar-
ily along the lines of earthquakes and landslides. In later documents, the key
issues were humanitarian aid, politics and an unfortunate Cholera outbreak due
to waste mismanagement by rescuers. Experiments described later show that
topic modeling methods (or more recently, document embeddings) yield poor
performance by themselves as they are not able to deduce that all of these cir-
cumstances relate to the same situation, namely a localized disaster in Haiti that
has its origins in the earthquake.

The case above suggests that, barring large quantities of training data, a
multi-pronged i.e. statistical-semantic approach may be necessary to address
the SEER problem. In this paper, we present AugSEER, an approach that can
judiciously accommodate both domain expertise and recent advances in neural
representation learning to respond to users in online and batch modes. AugSEER
is continuously running and minimally supervised. It interfaces directly both
with a Neon engine that powers an interactive GUI, and with a NoSQL database
that stores a knowledge graph of both named and event entities, (translated and
original) texts, and NLP analytics such as sentiment analysis (Fig. 1). The GUI
and the overall system (called THOR1) is already undergoing user studies with

1 Text-enabled Humanitarian Operations in Real-time.

Structured Event Entity Resolution in Humanitarian Domains 235

Fig. 1. A schematic of the overall HADR situational awareness system (THOR) within
which AugSEER (the focus in this paper) is embedded.

real-world analysts, and is able to incorporate NLP outputs from independent
state-of-the-art systems.

Contributions. We introduce and model the Structured Event Entity Resolu-
tion (SEER) problem, motivated by rapid mobilization of resources in the HADR
domain. To the best of our knowledge, SEER is a difficult, socially consequen-
tial AI challenge not addressed by existing work. Second, we present AugSEER,
which uses a hybrid combination of feature sets, both manually defined and
automatically constructed using neural vector space embeddings, to address the
SEER problem in both online and batch modes. AugSEER supports the online
more like this mode by framing the SEER problem as a probabilistic binary
classification task. To support the batch setting (e.g., for posthoc analyses),
AugSEER uses a combination of classification and spectral clustering. AugSEER
is also minimally supervised, being able to achieve reasonably accurate results
using 30% (or fewer) training labels. To the best of our knowledge, this is the
first application to demonstrate empirical utility from combining feature sub-
spaces in a manner that has not been attempted in prior work on neural embed-
dings. Third, we rigorously evaluate multiple aspects of AugSEER on five HADR
datasets encompassing diverse events, using clustering and classification metrics
in tandem with visualizations.

2 Related Work

Feature embeddings have become popular in the AI and knowledge discovery
communities in recent years, with vector space embeddings developed for words,
sentences, documents, nodes in networks and graphs, particularly knowledge
graphs, along with embeddings of the entire graph itself. Many recent models
either adapt or extend the skip-gram model, used first for word2vec [13], or
in the case of knowledge graph embeddings, surveyed by [21], use hand-crafted
energy functions to optimize performance on applications such as triples ranking.

236 M. Kejriwal et al.

Other similar kinds of graph embeddings have also been proposed in the broader
community (see [1] for a recent synthesis).

Our work is different from the above for several reasons. First, none of the
embedding papers cited above attempt to combine manual features with graph
and text-based feature embeddings in an effort to improve performance as well
as allow the domain expert (in an unusual domain like HADR) to exert a level
of control over the machine learning process. In general, AI research in the
HADR domain has been limited; far more attention has been paid instead to
good data management techniques [6], [8]. As [8] describe, only a handful of free
systems exist for powerful HADR analytics, and none cover the SEER problem.
Examples of specific work in HADR, but with much narrower scope than this
paper, include ‘social sensing’ of earthquakes [18], and location extraction [9],
both on Twitter data. To the best of our knowledge, no existing HADR system
has fully leveraged recent advances in neural embeddings.

Second, existing work on entity resolution and linking is typically limited to
resolving atomic entities like persons or organizations [4]. In contrast, we are
attempting to resolve an entire event, which is a complex data structure with
auxiliary information sets like words and entities. To the best of our knowl-
edge, this is the first paper that presents a minimally supervised approach for
addressing the SEER problem in a socially consequential domain like HADR.

We also note that, in contrast with graph-theoretic communities, the NLP
community majorly focuses on text-centric techniques for a similar problem,
namely event co-reference resolution [15], [11]. Events in the NLP community
tend to be strictly typed according to a shallow schema, and are extracted from
documents with corresponding information such as actors and dates. In contrast,
our techniques make no such assumptions, since they are unrealistic in HADR.
For example, a news article may discuss an event several hours or days after it
strikes, while social media could be instantaneous. Often, location information is
not available, and many document fragments that our approach takes as input
may not even be ‘events’ in the NLP sense. Most importantly, we are clustering
entire semi-structured objects, and not just sentences or triggers that are embed-
ded within a larger textual context. This makes the problem more challenging,
and as we describe later, text-only methods perform poorly in many cases.

3 Structured Event Entity Resolution (SEER)

We assume a set of situation frames, where a situation frame is intuitively defined
as the finest-grained unit of data collected in that HADR problem domain. A
situation frame may include such artifacts as SMS messages, intelligence frag-
ments or even social media. Many NLP tasks are performed at the level of
situation frames, following which the outputs (such as named entities) are used
to enrich the situation frame further. A simple, but representative illustration,
of this enrichment and the various artifacts involved, can be seen in Fig. 2. In

Structured Event Entity Resolution in Humanitarian Domains 237

particular, the situation frame is itself part of an event ontology, which captures
the core elements of the analyses2.

Given a set of situation frames, the SEER problem can be defined as inferring
(whether automatic or not) Same Event relationships between situation frames.
The Same Event relationship is currently assumed to have equivalence class (i.e.
reflexive, symmetric and transitive) semantics, although future work may relax
the transitivity assumption. Given these assumptions, each connected compo-
nent (in the knowledge sub-graph where situation frames are nodes, and edges
exist between frames if they are part of the same event) is called a resolved event
cluster. The ultimate goal of a batch SEER system is to recover such clusters
from a given dump of situation frames. In an (alternative) online setting, also
called more like this, users (typically interactively) select a single situation frame
as query, sometimes preceded by keyword search, and desire related frames that
provide more insight into the broader event described by the query.

Fig. 2. A schematic illustrating the key representational details of the event ontology
and event knowledge graph (EKG) for supporting solutions to the SEER problem.

While the online and batch modes are related, there are several challenges in
solving either one. First, raw HADR frames are not only highly heterogeneous
in terms of information content and quality, but in low-resource regions of the
world (where such technology would have maximal impact), come in a com-
putationally under-studied language like Uighyur [5]. As a first step, machine
translation (MT) algorithms have to be executed to automatically translate the
text into English [19]. The resulting translated text is noisy, because MT algo-
rithms for such languages are not as well developed as for English. Next, because

2 Although not fully described herein, the ontology is quite rich in practice, and
includes inferential elements like sentiments and offsets (for extraction provenance).

238 M. Kejriwal et al.

named entities are important, both for SEER and for situational analytics, a
named entity recognition system has to be executed [3], following which, dupli-
cate named entities have to be resolved. However, highly accurate, automatic
entity resolution [4] is far from solved, despite decades of research from the AI
community.

Finally, because each disaster event tends to be unique compared to other dis-
aster events, building a representative training set, and automating the solution
completely using static machine learning modules, is also difficult. An example
illustrating how text, topics and entities are collectively important, but can also
näıvely interact to give misleading results, is in the case of the earthquake in
Turkey in 2011. Around the time the earthquake struck Turkey, the country was
also dealing with the Syrian refugee crisis. Frames describing either crisis tended
to have similar statistical, entity and word profiles. For example, aid agencies,
like the UN, or governmental entities like the Turkish army, were common to
both crises. In the next section, we describe AugSEER, which is an approach
that attempts to capture the important interactions between various situation
frame attributes that can lead to accurate Same Event inference even when
distinctions are fine-grained.

4 Approach

We note that the clustering in SEER is challenging (and different from ordinary
non-semantic clustering) precisely because of the arbitrary scales of time and
space involved, since at such scales, multiple, unrelated disasters are present in
the corpus. In the example we described earlier, the earthquake that hit Turkey
in 2011 was contemporaneous with the (still ongoing) Syrian refugee crisis. Also,
not every disaster is consequential enough to make international headlines, or
is in an English-speaking region. An important HADR problem is to gener-
ate meaningful results even in low-resource, minimally supervised environments.
Ideally, an analyst would like to obtain robust situational awareness on each
HADR-relevant event in such an environment with little technical expertise.

In order to learn good representations for addressing the HADR-specific chal-
lenges of the SEER problem, AugSEER relies heavily on an augmented feature
set that relies on recent advances in latent space embedding models (both for
text and graphs [2], [1]) as well as on a small set of similarity features that
captures the intuitions of domain experts. More details are provided below.

Manually Crafted Features. Domain experts, who have studied the HADR
problem over several years, understand that the text alone does not adequately
convey all relevant information about an event to statistical methods. Instead,
one must also rely on auxiliary information sets, such as extracted entities. Based
on initial data exploration and feature engineering, we devised ten real-valued
feature functions (Table 1), where each feature function is a similarity function
that applies to some information set of a pair (D1,D2) of situation frames.

We consider three similarity functions, namely cosine similarity on TFIDF,
cosine similarity on latent space embeddings derived using the paragraph2Vec

Structured Event Entity Resolution in Humanitarian Domains 239

Table 1. Manually crafted feature descriptions. Each feature is computed on a pair of
situation frames (D1 and D2).

Name Description

TFIDF{W,E} The respective cosine similarities based on bag-of-words and bag-of-
entities TFIDF representations of the text fields of D1 and D2

TFIDFavg The average of TFIDFW and TFIDFE

DV{W,E,avg} Same as above, except using text embedding (rather than TFIDF)
representations [2].

JAC{L,O,P} The Jaccard similarity between the {location, organization, person}
extracted entity sets of D1 and D2

JACall The Jaccard similarity between the set of all entities extracted from
D1 and D2

algorithm [2], and Jaccard similarity. We consider two information sets, namely
the set of entities extracted from each frame, and the tokens in the text. In the
case of Jaccard similarity, we do not consider the text as an information set, but
we do consider finer-grained sets like differently typed entities. Descriptions are
provided in Table 1.

Importantly, unlike the (subsequently described) node embedding and text
embedding features, the manually crafted features are computed for the texts in
each pair of situation frames. This makes the features inherently more suited to
the more like this online setting than to the clustering setting, to which their
application and scalability is not obvious.

Node Embedding Features. Entities play an important role in the HADR
domain, as many key events revolve around a specific set of persons, locations
and organizations, some of which might be latent (i.e. not explicitly mentioned in
the text). On the other hand, some entities might be wrongly extracted or typed
due to imperfections in the underlying extraction system. Features relevant to
explicitly extracted entities can be captured by the manual features. However,
those features cannot capture latent information, and are also not good at dis-
tinguishing which entities might prove to be more important to the problem at
hand. Instead, to capture the special nature of entities, we construct an undi-
rected entity-SF bipartite graph from the corpus by (1) assigning a unique node
in the situation frame (SF) layer to each frame D, and (2) assigning a unique
node in the entity layer to the pair (E, T), where T is the type (e.g. person) of
an entity E extracted from the text of at least one situation frame. Edges in this
bipartite network are created by linking an entity node to each frame node from
which the entity was extracted.

Next, we execute a model inspired by the skip-gram based DeepWalk algo-
rithm on the constructed network to obtain an embedding for each situation
frame and each entity [17]. DeepWalk was originally designed for learning node
representations in unweighted social networks like YouTube and Flickr. In this
paper, we use its philosophy for learning entity-centric frame embeddings by

240 M. Kejriwal et al.

first sampling nodes from the bipartite graph and initiating a constant number
of random walks from the node; and then treating each random walk like a list
of tokens that can be embedded using skip-gram. More details on the skip-gram
model and on DeepWalk may be found in the respective papers [13], [17]. We
denote the entity-centric node embedding of D, obtained through the procedure
described above, as DN (boldface indicating vectorization). Note that, because
of connectivity and co-occurrence information about extracted entities across
the corpus, entities that have not been explicitly extracted can also influence
DN owing to the continuous representations learned by DeepWalk in a dense
real-valued vector space.

Text Embedding Features. Finally, to capture statistical signals in the text,
we use skip-gram based document embeddings (also called Paragraph2Vec or
PV) first described in [2]. Specifically, we tokenize the machine-translated (if in
a foreign language) text of a situation frame using a standard set of delimiters,
convert all words to lower-case, and feed each list of tokens to the PV algorithm.
For a frame D, we denote the text embedding feature vector as DT . These
embeddings are also used in computing DV features in Table 1 for frame pairs.

4.1 Classification and Clustering

AugSEER supports the SEER problem both in batch and online settings. The
latter is a pairing problem, whereby a domain expert uses the system in a more
like this manner by first specifying a situation frame as input and then expecting
the system to retrieve other situation frames (possibly with other constraints
specified in the GUI, like keywords or entities, but not discussed herein) that
refer to the same underlying event. In AugSEER, we frame this as a probabilistic
binary classification problem on pairs of frames, whereby the pair should have
higher probability of a positive label if they represent two sub-events resolving
to the same underlying event.

In a supervised setting, given a labeled set of positive and negative pairs, we
construct an augmented feature vector for a pair (D1,D2) by (1) computing the
ten manual features on the pair, (2) concatenating the node embedding feature
vectors of D1 and D2, and (3) concatenating the text embedding feature vectors
of D1 and D2. The final feature vector is itself a concatenated combination of all
three feature sets. A classifier C is trained using the labeled data, and applied on
the test data. Based on these scores (i.e. the positive class probability output by
C per test item), a ranked list of relevant situation frames can be interactively
shown to the HADR domain expert using the system.

In a supervised batch setting, the user inputs a document dump into THOR
and expects clusters of situation frames, such that each cluster describes an
event. As Fig. 1 illustrates, the documents first undergo processing through var-
ious components (e.g., NLP components like entity recognition and machine
translation) that precede THOR. While clustering can generally be either super-
vised or unsupervised, it is supervised in this case because a user has specific
cluster semantics (and granularity) in mind. If this were not the case, one could

Structured Event Entity Resolution in Humanitarian Domains 241

also achieve a ‘good’ clustering by executing a topic modeling algorithm like
LDA. In early trials, this was found to yield poor results in terms of capturing
events, due to topical flux within event clusters; see, for example, the case of the
Haiti earthquake in the introduction.

Instead, AugSEER combines spectral clustering with the classification scheme
described earlier in a supervised setting [14]. Given a set D of frames, the input
to AugSEER is a |D × D| affinity matrix. We assume training sets TP and TN

respectively of positive and negative pairs, exactly like with classification. As a
first step, we train the classifier C on the training sets. For efficiency reasons,
we use either the (concatenated) node embedding or text embedding feature
representations (not both) and we do not use the manual features3. The second
step is to construct a symmetric affinity matrix A as follows. For a cell Aij in
the matrix indexed by (i, j), we use the following assignment function:

Aij =

⎧
⎪⎨

⎪⎩

1 if (Di,Dj) ∈ TP

0 if (Di,Dj) ∈ TN

C(Di,Dj) if (Di,Dj) /∈ TP ∪ TN

(1)

We assume that the classifier C outputs the probability of the statement
(Di,Dj) ∈ TP . Note that spectral clustering, like many other well-known clus-
tering algorithms like k-Means, requires the desired number of clusters as a
hyperparameter. Because AugSEER is a tunable system designed to assist users
in exploring events (not in giving final single-point outputs), we allow the user
to set this number, but also provide guidance through validation. In evaluations,
this value is set at the number of clusters in the ground-truth, both for AugSEER
and baselines.

5 Experiments

AugSEER has been in development for almost a year, and several evaluations
have been conducted. We evaluate the algorithmic potential of AugSEER on the
SEER task, both quantitatively and through qualitative visualizations.

5.1 Datasets

We evaluate AugSEER on five HADR datasets described in Table 2. Each dataset
is derived from real-world disasters, of which details were publicly published on,
and scraped from, the Relief Web Processed portal4. The datasets describe dif-
ferent HADR categories and are quite diverse in their information content. In
addition, we also consider a global dataset that combines the information in
Datasets 1–5. We use this dataset both for exploring the generalization poten-
tial of the system, as well as the loss in performance when we do not combine
3 A more technical reason is that we can visualize the representations this way using

an algorithm like t-SNE [12], as we illustrate subsequently.
4 http://reliefweb.int/.

http://reliefweb.int/

242 M. Kejriwal et al.

Table 2. Dataset (and gold standard) details. pos. stands for positively labeled. Column
5 separately breaks down PER/ORG/LOC entity mentions. The average number of
frames per cluster in datasets 1–5 are 3, 11, 4, 6 and 5 resp.

ID Dominant themes Unique
frames

Unique
pos. pairs

Unique entity
mentions

Unique
words

Clusters

1 Floods 234 535 972/1,069/1,398 13,108 74

2 Earthquakes/landslides 424 11,425 1,559/1,855/1,394 18,735 38

3 Cyclones/hurricanes 101 276 372/534/440 7,479 25

4 Disease-
related/tropical

135 1,401 508/513/434 8,495 21

5 Miscellaneous 461 5,117 1,554/1,512/1,576 18,689 85

feature sets into an ensemble. Note that, to ensure a fair evaluation, the machine
translation and named entity recognition outputs are already provided by the
program for each situation frame in the datasets, in addition to the (not used)
original, non-translated text.

Negatively labeled pairs for the classification task were generated as follows.
Using each frame D in the corpus as a ‘query’, we computed a ranked list of all
other frames in the corpus using a simple bag-of-words approach on the trans-
lated text. We computed the rank of the last frame Di that describes the same
event as D. All documents between rank 1 and i not describing the same event
as D were paired with D and assigned a negative label. After computing such
pairs using all documents as queries, and removing duplicate pairs, we sampled
about 400,000 negative pairs (20x the total number of positive pairs in Datasets
1–5) as the negatively labeled evaluation corpus, shared among Datasets 1–5, as
described subsequently.

5.2 Preliminaries

We simulate the more like this use-case by using each frame in an event cluster
as a query, and by framing the problem of ‘pairing’ the query frame with relevant
sub-event frames as a binary classification task (described earlier in Sect. 4.1).

Parameter Tuning. We used the Python sklearn library implementations for
Random Forest (RF) and Logistic Regression (LogReg) classifiers, and for spec-
tral clustering. The gensim package in Python was used both for paragraph2Vec,
as well as the word2vec model that feeds into the DeepWalk node embedding.
The best hyperparameters for LogReg were found using the LogisticRegres-
sionCV class in sklearn that uses cross-validation (on the training set), and
using grid search with cross-validation for RF.

Training Protocol. Training percentages vary with the experiment as described
later, but training is always balanced. Namely, once |TD| is fixed for a given exper-
iment, we sample |TN | pairs from the large negative pairs corpus described earlier
in Sect. 5.1. The rest of the corpus is always used for testing. Because of sampling,

Structured Event Entity Resolution in Humanitarian Domains 243

all experiments are conducted over ten trials, and averages are reported. We use
the unpaired (two sample) Student t-test for computing statistical significance
of the best performance against the next best alternative.

Metrics. Like with other entity resolution scenarios, precision, recall and their
F1-Measure metrics on the positive class are used to report classification accu-
racy. For evaluating clustering, we use both the cluster purity and F1-Measure
metrics. Given a cluster where each data item (i.e. a frame) has a label (withheld
during clustering), in this case the underlying event that the frame is a part of,
we compute cluster purity by taking the ratio of the number of frames having
the majority label divided by the cluster size. F1-Measure can be computed by
using the set of all pairs of frames sharing a cluster as the set of positives, and
comparing against the known set of true positives to obtain the precision and
recall (and by extension, their F1-Measure), similar to classification. We note
that for all metrics, the higher the score, the better the performance.

5.3 Baselines

AugSEER involves a number of different interacting components both in clas-
sification and clustering settings. To illustrate that many of these components
are jointly necessary for achieving good performance, we considered a range of
competitive alternatives. We note that, because the SEER problem has not been
studied in detail in the research literature (see Sect. 2), especially in the HADR
domain, there are no direct SEER baselines available.

Classification. We consider three alternative feature-sets (or combinations) as
baselines: only the manual features (M), only the DeepWalk features on the
bipartite entity-frame network (N), and a combination of the two (MN). We
also consider the PV text embedding baseline (T) in isolation, along with other
text-only baselines like bag-of-words and topic models (using LDA), but all text-
only baselines consistently under-performed the alternatives described above by
significant margins. The full system includes all three feature sets (MNT).

Clustering. We tried several alternate clustering models, including Gaussian
mixture models and agglomerative clustering, and found the latter to work best.
We use both average (agg-avg) and complete (agg-c) linking when performing
agglomerative clustering. Results are reported separately for node embedding
and text embedding features. We also use unsupervised spectral clustering using
node embeddings in a cosine similarity affinity space (spec-N) as a baseline, to
investigate the effects of supervision in AugSEER’s model of supervised spectral
clustering. We also explored using the latter with TFIDF representations, but
performance significantly declined, and we do not report those results herein.

5.4 Results

Four different sets of quantitative experiments, described below, were conducted
to test the online and batch potential of AugSEER.

244 M. Kejriwal et al.

Experiment 1. For the very first set of experiments, we drew on standard find-
ings that focus primarily on text and textual contexts, whether using embeddings
or bag-of-words baselines. We considered both the classification and clustering
settings, and describe the latter here (results were consistent for both). First, we
built a supervised affinity matrix in the manner described in Sect. 4.1, using text
embeddings, followed by spectral clustering. Across ten trials, the F1-Measure
was only 10.73%, while cluster purity was higher at 71.6%. We also used cosine
similarity to build an unsupervised affinity matrix, and while F1 was better
for TFIDF (21.48%), the F1 for text embeddings was only 9.24%, almost 1.5%
lower than for the supervised setting. Compared to the results described later,
these results illustrate the non-viability of using text only, whether in low or high
dimensional spaces, for addressing the challenges of SEER in the HADR domain.
Alternatives like topic models, as well as alternate choices of word embeddings
(e.g., PV vs. fastText), did not yield significant differences.

Experiment 2. For the second set of experiments, we tested the performance of
AugSEER by using 30% and 15% of the positive samples in the global dataset for
(balanced) training, and the rest for testing. We used both the Logistic Regres-
sion and Random Forest classifiers (with best hyperparameters determined using
cross validation) with all the baseline feature sets mentioned earlier. The average
best5 F1-Measures over ten trials are reported in Table 3.

Table 3. F1-Measure results on the global dataset. MNT is the full feature set ensemble
implemented in AugSEER.

Classifier (Training %) MNT MN M N

LogReg (30%) 0.4982 0.4924 0.4185 0.2570

LogReg (15%) 0.5120 0.5075 0.4439 0.2847

RF (30%) 0.7725 0.7737 0.4165 0.7729

RF (15%) 0.7423 0.7296 0.4359 0.7155

To test how the performance varied by the disaster theme, we used 30%
of each dataset in Table 2 for training, and the other 70% for testing (over 10
trials). While we do not reproduce the full table herein, an absolute F1-measure
improvement, using RF, was achieved by AugSEER (MNT) in the range of 0.8–
18% for all five parts over the next best baseline (MN). We note that these
results far outperform the text-only results6 presented in Experiment 1.

Of the results in Table 3, RF (15%) and LogReg (15%) are significant at the
99% and 90% levels respectively. In other cases, there is no significant difference
between MN and MNT. This provides some indication that all three feature

5 By best, we mean that we chose the classifier threshold for all systems such that
F1-measure achieved by that system was maximized in that trial at that threshold.

6 Using average best F1 reporting and the 30% training methodology.

Structured Event Entity Resolution in Humanitarian Domains 245

Table 4. Precision/recall/F1-Measure scores testing generalization of AugSEER
(MNT and MN). All results are statistically significant at the 99% confidence level.
LogRef (MNT), which is all bold, performs uniformly worse than LogReg (MN), omit-
ted here due to space.

Training
Dataset

Test
Datasets

RF (MNT) RF (MN) LogReg (MN)

1 2+3+4+5 0.223/0.494/0.307 0.320/0.494/0.393 0.228/0.296/0.275

2 1+3+4+5 0.587/0.150/0.238 0.614/0.163/0.258 0.272/0.228/0.248

3 1+2+4+5 0.294/0.474/0.363 0.339/0.475/0.395 0.271/0.300/0.284

4 1+2+3+5 0.166/0.457/0.243 0.205/0.390/0.268 0.257/0.205/0.228

5 1+2+3+4 0.186/0.483/0.268 0.209/0.506/0.296 0.156/0.225/0.184

Table 5. Cluster purity scores using either node embeddings/text embeddings in a
cosine similarity space (agg-*) or affinity matrix (AugSEER), except spec-N (only
node embedding results reported).

ID agg-av agg-c AugSEER spec-N

1 0.611/ 0.415 0.633/ 0.402 0.671/ 0.633 0.556

2 0.718/ 0.384 0.723/ 0.410 0.920/ 0.880 0.678

3 0.644/ 0.426 0.634/ 0.416 0.792/ 0.822 0.624

4 0.748/ 0.496 0.704/ 0.578 0.963/ 0.852 0.644

5 0.639/ 0.475 0.641/ 0.456 0.755/ 0.592 0.522

sets have merit, with the effects more dramatic for Logistic Regression than for
Random Forest. Overall, the node embedding feature vectors DN are found to
be especially instrumental, illustrating the importance of entities, both latent
and explicit, for the SEER task. The good absolute performance of RF over
LogReg, even after cross-validation, provides further evidence for the importance
of robust feature combinations. Additionally, RF is able to generalize without
overfitting, when given more training data (unlike LogReg, which clearly starts
overfitting in the 30% setting, compared to the 15% setting). We tried other
classifiers like SVM, and found that they underperformed RF as well.

Experiment 3. We isolate the generalization ability of different feature sets in a
setting resembling transfer learning [16]. We used one of the datasets in Table 2
as positively labeled training data, and the others for testing. We used the same
negatively labeled dataset described in Sect. 5.1 for all experiments. Maximal
performance was found to be achieved across all settings with balanced training.
This resulted in five training/testing paradigms. We report the average (over ten
trials7) best F1-Measure achieved, along with corresponding precision and recall

7 Because of balanced training, we had to randomly sample the negative training set;
the positive set remained constant per trial.

246 M. Kejriwal et al.

Fig. 3. t-SNE visualizations of all datasets using node/text embeddings (for visual
purposes, the same color is sometimes re-used to represent different events). Dimensions
have no intrinsic meaning in t-SNE [12].

Structured Event Entity Resolution in Humanitarian Domains 247

in Table 4, limiting results to only the two best performing systems, which were
always MN and MNT.

Similar to Table 3, we find that the two feature combinations perform sim-
ilarly, but the trend is reversed. The text embeddings, which weakly increased
the power of the classifier in the first experiment, have negative influence in this
experiment. This experiment offers a cautionary lesson in naively transferring
text embeddings, even in domains that seem somewhat similar (every dataset
is from an HADR domain). If the data in the training phase does not suffi-
ciently represent the test data (true in this experiment, but not the previous
experiment), text embeddings can reduce F1-Measure by as much as 5%.

Experiment 4. We evaluate AugSEER in the batch/posthoc analysis setting.
Using 30% positively labeled pairs in a (balanced training) supervised setting,
and the RF classifier, we test AugSEER’s performance against the agglomerative
clustering baselines (using both average and complete link functions) as well as
unsupervised spectral clustering (spec-N). In all cases, AugSEER outperforms
rival methods on the cluster purity metric by a considerable margin8, both when
using node and text embeddings. When using the F1-Measure metric, a similar
trend is observed, but with narrower improvements (3% average improvement,
rather than the 15% achieved using cluster purity). In the next section, we use
visualizations to emphasize that the latent space model and representation that
AugSEER employs for entities has considerable influence on performance.

Visualization Experiments. Visualization is an important function in
AugSEER as it is primarily a cognitive system designed to facilitate rapid sit-
uational awareness in both military and civilian situations. All visualizations
described in this section employ the unsupervised t-SNE algorithm [12]. In an
actual deployment, we use THOR (Fig. 1) for an interactive interface. Figure 3
shows that clusters for all datasets achieve an intuitive separation into different
events when using the entity-document node embedding representation, but not
the text embedding representation, supporting the hypothesis that entities and
semantics are fundamental in addressing SEER challenges.

6 Conclusion

This paper presented AugSEER, a statistical-semantic approach for addressing
structured event-entity resolution. AugSEER supports a combination of graph
and text embeddings, and manually devised feature sets to achieve 77% high-
est F1-Measure on a challenging classification problem, using only 30% labeled
training data. Similar results are achieved in the clustering scenario. AugSEER
has also been implemented into a broader HADR system called THOR (Fig. 1)
that is designed to ingest noisy NLP outputs and assist HADR field analysts in
real-time in low-resource environments9.
8 All results in Table 5 are statistically significant at the 99% level, except AugSEER

node embedding results on Dataset 1.
9 THOR was recently demonstrated in an academic venue also: https://www2018.

thewebconf.org/program/demos-track/.

https://www2018.thewebconf.org/program/demos-track/
https://www2018.thewebconf.org/program/demos-track/

248 M. Kejriwal et al.

Acknowledgements. The authors gratefully acknowledge the ongoing support and
funding of the DARPA LORELEI program, and the aid of our partner collaborators
and users in providing detailed analysis. The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of DARPA, AFRL, or the
U.S. Government.

References

1. Cai, H., Zheng, V.W., Chang, K.: A comprehensive survey of graph embedding:
problems, techniques and applications. In: IEEE Transactions on Knowledge and
Data Engineering (2018)

2. Dai, A.M., Olah, C., Le, Q.V.: Document embedding with paragraph vectors. arXiv
preprint arXiv:1507.07998 (2015)

3. Finkel, J.R., Manning, C.D.: Nested named entity recognition. In: Proceedings of
the 2009 Conference on Empirical Methods in Natural Language Processing, vol.
1, pp. 141–150. Association for Computational Linguistics (2009)

4. Getoor, L., Machanavajjhala, A.: Entity resolution: theory, practice & open chal-
lenges. Proc. VLDB Endow. 5(12), 2018–2019 (2012)

5. Hahn, R.F.: Modern uighur language research in China: four recent contributions
examined. Cent. Asiat. J. 30(1/2), 35–54 (1986)

6. Hristidis, V., Chen, S.-C., Li, T., Luis, S., Deng, Y.: Survey of data management
and analysis in disaster situations. J. Syst. Softw. 83(10), 1701–1714 (2010)

7. Jahan, S.: Human Development Report 2016: Human Development for Everyone.
United Nations Development Programme (UNDP), New York (2016)

8. Li, T., et al.: Data-driven techniques in disaster information management. ACM
Comput. Surv. (CSUR) 50(1), 1 (2017)

9. Lingad, J., Karimi, S., Yin, J.: Location extraction from disaster-related
microblogs. In: Proceedings of the 22nd International Conference on World Wide
Web, pp. 1017–1020. ACM (2013)

10. Liu, B., Zhang, L.: A survey of opinion mining and sentiment analysis. In: Aggar-
wal, C., Zhai, C. (eds.) Mining Text Data. Springer, Boston (2012). https://doi.
org/10.1007/978-1-4614-3223-4 13

11. Lu, J., Ng, V.: Joint learning for event coreference resolution. In: Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), vol. 1, pp. 90–101 (2017)

12. Maaten, Lvd, Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9,
2579–2605 (2008)

13. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems, pp. 3111–3119 (2013)

14. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algo-
rithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

15. Ng, V.: Machine learning for entity coreference resolution: a retrospective look at
two decades of research. In: AAAI, pp. 4877–4884 (2017)

16. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng.
22(10), 1345–1359 (2010)

17. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

http://arxiv.org/abs/1507.07998
https://doi.org/10.1007/978-1-4614-3223-4_13
https://doi.org/10.1007/978-1-4614-3223-4_13

Structured Event Entity Resolution in Humanitarian Domains 249

18. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time
event detection by social sensors. In: Proceedings of the 19th International Con-
ference on World Wide Web, pp. 851–860. ACM, 2010

19. Vandeghinste, V., Schuurman, I., Carl, M., Markantonatou, S., Badia, T.: METIS-
II: machine translation for low resource languages. In: Proceedings of LREC 2006
(2006)

20. Verma, S., et al.: Natural language processing to the rescue? extracting “situational
awareness” tweets during mass emergency. In: ICWSM (2011)

21. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of
approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743
(2017)

That’s Interesting, Tell Me More! Finding
Descriptive Support Passages

for Knowledge Graph Relationships

Sumit Bhatia1(B), Purusharth Dwivedi2, and Avneet Kaur2

1 IBM Research AI, Delhi, India
sumitbhatia@in.ibm.com
2 IIIT Delhi, Delhi, India

{purusharth14081,avneet14027}@iiitd.ac.in

Abstract. We address the problem of finding descriptive explanations
of facts stored in a knowledge graph. This is important in high-risk
domains such as healthcare, intelligence, etc. where users need additional
information for decision making and is especially crucial for applications
that rely on automatically constructed knowledge graphs where machine-
learned systems extract facts from an input corpus and working of the
extractors is opaque to the end-user. We follow an approach inspired
from information retrieval and propose a simple, yet effective and effi-
cient solution that takes into account passage level as well as document
level properties to produce a ranked list of passages describing a given
input relation. We test our approach using Wikidata as the knowledge
base and Wikipedia as the source corpus and report results of user studies
conducted to study the effectiveness of our proposed model.

1 Introduction

Knowledge Graphs are becoming increasingly important in knowledge and data
management applications as they afford a semantic structure to the underlying
data. They form crucial components of modern web search engines, state-of-the-
art question answering systems such as IBM Watson, and are used in a variety
of applications in domains as diverse as healthcare [28], finance [33], media [16],
cybersecurity [21], etc. Entities are the fundamental units of knowledge graphs
and are often presented to users as a result of a search query, or are used in
applications such as exploratory search where users can search about entities of
interest and browse their important relationships [19]. For various critical appli-
cations such as exploring interactions between genes and drugs [14], intelligence
applications [36], etc., users may want some additional description or support-
ing evidence that provides some explanation of the relationship presented to
them in order to build confidence in their decision making process. Even for
generic information search or browsing activities the entities and relationships
presented to the user may be unknown to her and thus, she may not be able
to fully appreciate the relevance of information presented to her by the system.
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 250–267, 2018.
https://doi.org/10.1007/978-3-030-00671-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_15&domain=pdf

That’s Interesting, Tell Me More! Finding Descriptive Support Passages 251

As an example, consider the relationship triple <H. R. McMaster, military rank,
Lieutenant General> and its following description as extracted by our proposed
approach (Sect. 3).

...In February 2014, Defense Secretary Chuck Hagel nominated McMas-
ter for Lieutenant General and in July 2014, McMaster pinned on his
third star when he began his duties as Deputy Commanding General of the
Training and Doctrine Command and Director of TRADOCs Army Capa-
bilities Integration Center. Army Chief of Staff General Martin Dempsey
remarked in 2011 that McMaster was “probably our best Brigadier Gen-
eral. McMaster made Times list of the 100 most influential people in the
world in April 2014...

An end-user who does not know that Mr. McMaster is a US Army officer
may find the above fact much more useful when presented with the accompa-
nying supporting description rather than presenting the fact alone. It may also
help build his trust and confidence in the system. In fact, it has been found
that in scenarios where users are dealing with uncertain information, use of
natural language descriptions helps in the decision making process [15]. In web
search engines, usefulness of small text snippets to improve end-user experience
is well studied [10]. Likewise, in context of scientific digital libraries, it has been
found that accompanying figures, tables, etc. with small textual descriptions
helps users in judging their importance [5,35]. Therefore, we posit that provid-
ing users with small textual explanations of the relationships may help their
understanding, build their confidence in the system and help them in accom-
plishing their intended tasks. We believe that such a capability is even more
crucial for systems that rely on knowledge graphs that are constructed automat-
ically [29], especially using deep neural networks [37] where interpretability is a
big issue.

In this work, we describe a probabilistic method based on language models to
extract supporting passages from an underlying text corpus that provide descrip-
tive explanations of a knowledge graph relationship (Sect. 3). Given an input rela-
tionship, our model takes into account passage-level and document-level evidence
to rank different passages in the order of their relevance to the input relationship.
Previous works on explainability of knowledge graph data have mainly focused
on explaining how two entities in a graph may be related and the explanations
are often in the form of a set of common entities or paths connecting the two
entities [1,12,31] and thus, suffer from the same issues as discussed above. Efforts
on generating textual descriptions of relationships have also focused mainly on
template based methods where given a set of facts and an underlying text corpus,
different templates are learned that could be used for representing the relation-
ship [2,43]. For example, for relations of type <X, dateOfBirth, Y >, sentence
templates such as “X was born on Y” are learned. However, such sentences offer
textual representations of the input relationship rather than a supporting expla-
nation which is the main focus of our work. We propose an approach that is
simple, effective, and unsupervised, and thus, can be easily adopted by differ-
ent systems. We implemented and evaluated our approach using Wikipedia as

252 S. Bhatia et al.

our background text corpus and Wikidata as our knowledge base and results
obtained through user studies conducted to study the effectiveness of our pro-
posed techniques are encouraging (Sect. 4). The query and result sets generated
by this work are also being made available for the community. We also discuss
the strengths and limitations of our proposed approach and lay down directions
for future work (Sect. 5).

2 Related Work

We provide a brief overview of related work categorized under two broad cate-
gories. First we provide an overview of most relevant papers that have looked at
generating small textual descriptions of results in different search scenarios such
as web search, academic search, etc. Next, we focus on works that have addressed
the problem of explaining relatedness between knowledge graph entities through
both graph-based and textual summaries.

2.1 Supporting Search Results with Textual Descriptions

User studies conducted by Tombros and Sanderson [41] have shown that in doc-
ument retrieval systems, presenting users with short textual summaries describ-
ing the retrieved documents help them judge the importance and utility of the
results much better and faster. Likewise, in Web Search Engines, it is a com-
mon practice to present results along with a small textual summary or snippet
extracted from the web page [42] and the positive influence of snippets on end-
user experience and behavior is well studied [10]. Metzger et al. [26] proposed
a semantic aware document-retrieval method that transforms a given keyword
query into RDF statements, and ranks documents based on their relevance to the
statements. Further, the sentences matching RDF statements in the documents
are extracted and presented as snippets to the user [11]. In context of aca-
demic search engines such as CiteSeer and Google Scholar, Bhatia and Mitra [6]
studied the problem of generating small descriptions of document-elements (fig-
ures, tables, and pseudo-codes) present in academic papers to help users quickly
decide their importance without having to read the whole paper. Similarly, snip-
pets have been found useful for XML search systems [20] and ontology search
systems [30] where small textual descriptions have helped users select the most
suitable results for their information needs.

2.2 Explaining Knowledge Graph Relationships

Graph-Based Approaches: On receiving an entity query, Web search engines
such as Google, Bing, etc. often show a list of related entities on the search
page or in a separate entity box populated by information derived from the
underlying knowledge base. However, it is not always apparent to the users
how the suggested entities are connected to the input entity. Fang et al. [12]

That’s Interesting, Tell Me More! Finding Descriptive Support Passages 253

describe their system REX that takes as input two knowledge graph entities
and produces a ranked list of relationships between the two entities efficiently.
Bhatia et al. [3] proposed a relationship ranking function that takes into account
features such as entity popularity, affinity between the input entities and strength
of different relationships between them. Pirrò [31] considered the problem of
explaining how two entities in a knowledge graph might be related as a sub-graph
finding problem where the sub-graph consists of nodes and edges in the set of
paths between the two input entities. Thus, the explanation of the relatedness
between two entities is provided by means of shared entities and relationships
between them. Aggarwal et al. [1] considered the task of explaining relationships
between two entities as a path-ranking problem and propose a scoring mechanism
to identify informative and discriminative paths.

Text Based Approaches: In context of web search where the systems present
entities as part of search results, Blanco and Zaragoza [8] studied the problem of
finding support sentences for explaining why an output entity is considered rele-
vant to the original ad-hoc text query by the user. Saldanha et al. [34] addressed
the problem of generating descriptions of lesser known companies and describe
a template based approach to create such descriptions by generating sentences
from RDF triples found in DBPedia and Freebase about the company. These sen-
tences are generated by utilizing the RDF triples and corresponding Wikipedia
sentences for known companies and learning templates such as “<company> was
founded by <founder>”. Voskarides et al. [44] describe a learning to rank based
sentence extraction and ranking method to find human readable descriptions of
a relationship between two knowledge graph entities. Their follow-up work [43]
tackles the problem using a template based approach. For a given relationship
type, they identify representative sentences describing some of the relationship
instances and then generating textual description of other instances of the same
relationship type by selecting a suitable template and filling it with appropri-
ate entities. Such template based approaches requires manual construction of
templates for each relationship type that may be difficult for many practical
applications. For example, Wikidata contains more than 1600 unique relation-
ships types, DBPedia contains more than 2800 relationship types. The problem
is exacerbated in domain specific knowledge graphs where domain knowledge is
required for generating appropriate templates. Further, machine learning of such
templates or other learning based methods require significant amount of training
data and it may not always be feasible due to lack of such data and thus, may
only be useful for a few specific relationship types.

3 Proposed Approach

Let us consider a relationship R =<s, r, t> in a knowledge Graph K where s and
t correspond to the source and target nodes (entities), respectively, and r is the
relationship edge label. Let P be the set of passages extracted from an underlying

254 S. Bhatia et al.

text corpus1. We wish to rank the passage p ∈ P based on the probability that
it contains a descriptive explanation of R. Mathematically, having observed the
relationship R, we are interested in computing the probability that passage p is
relevant to R, i.e., P (p|R). By application of Bayes’ Theorem, we have:

P (p|R) =
P (p) × P (R|p)

P (R)
∝ P (p) × P (R|p) (1)

Here, P (R) in the denominator has been ignored as it will be same for all
the passages p ∈ P . The component P (p) can be interpreted as the prior prob-
ability of the passage p being of interest. Note that this prior is independent
of the relationship (query) and can be used to model certain domain specific
characteristics based on the application requirements. For example, in a med-
ical domain application, passages coming from a peer-reviewed article can be
assigned a higher prior than passages coming from a non-authoritative article.
In this work, we are focused on the general performance of the framework and
hence, we assume a uniform prior as is common in information retrieval [25,
Chap. 12] and thus, P (p) can also be ignored for ranking purposes. With these
assumptions and assuming conditional independence of three components of the
relationship R (namely, s, r, and t), Eq. 1 reduces as follows.

P (p|R) ∝ P (s|p) × P (t|p)
︸ ︷︷ ︸

entity
probability

× P (r|p)
︸ ︷︷ ︸

relationship
probability

(2)

Here, P (s|p) and P (t|p) represent the probability of observing mentions of
source and target entities, s and t, respectively in the passage p. Likewise, P (r|p)
represents the probability that relation label r is being described in passage p.
In order to compute these probabilities, we adapt the query likelihood model
based on multinomial unigram language model [25] that computes probability
of generating a query given a text document. We can treat each passage in P as
our source document and compute the probabilities of generating the entities s, t
and relation r as specified in Eq. 2. Note that the names of entities s and t and
relationship label r consist of multiple individual words and assuming conditional
independence of terms, we can simplify Eq. 2 as follows.

P (p|R) ∝
∏

w∈S∪T∪R

P (w|p), (3)

Here, S, and T are the sets of terms in names of source entity s and target
entity t, respectively, and R is the set of terms representing the relationship r.
Note that relationship labels in knowledge graphs are often created like vari-
able names (bornOn, citizen of, etc.) that are generally not used in standard
written vocabulary. Further, a given relationship may be described by different
1 Given a text corpus, there are multiple ways of extracting passages and the approach

for ranking these passages is independent of the way passages are extracted. We detail
our choice of passage extraction method in the section on experiments (Sect. 4).

That’s Interesting, Tell Me More! Finding Descriptive Support Passages 255

synonymous terms (occupation, profession, etc.). Therefore, to account for these
variations, R can be constructed by using a set of synonyms representing a given
relationship type. In this work, we have chosen relationship label aliases provided
by Wikidata to obtain a set of terms that could be used for representing a given
relationship type. For example, for the label date of birth, the list of aliases
as provided by Wikidata2 includes born on, birthday, DOB, etc. We note that
depending upon the application at hand, different domain specific synonyms can
also be used for this purpose.

Another important consideration is that a typical passage is only a few sen-
tences long. As a result, a given passage alone may not have sufficient infor-
mation to reliably approximate the probability of observing a term from the
passage due to data sparsity issues. The probabilities are over estimated for the
terms that are present in the passage and are under estimated for the terms that
are not present in the passage. This is especially exacerbated in case of entity
names (nouns) that are often mentioned as corresponding pronouns (his, her,
she, etc.). As a result, a highly useful passage may get a very low score if the
entity of interest is mentioned by its pronoun in the passage. Likewise, it is pos-
sible that a non-relevant passage may get a very high score because of multiple
occurrences of just one or two terms in the passage. In order to account for such
imbalances, the probability estimations are smoothed by adding document and
collection level statistics. Consequently, the unigram language model of passage
p is then modeled as a mixture of passage, document, and collection (corpus)
language models, respectively, as follows:

P (w|p) = P (w|ΘMM) (4)
= λ1 P (w|Θp)

︸ ︷︷ ︸

passage-level
evidence

+λ2 P (w|Θd)
︸ ︷︷ ︸

document-level
evidence

+λ3 P (w|Θc)
︸ ︷︷ ︸

collection-level
evidence

(5)

where, λ1 + λ2 + λ3 = 1. We set λ1 = 0.6, λ2 = λ3 = 0.2 for our experiments.
The values are chosen to give relatively more weight to passage level evidence
and use document and collection level evidence as normalizing factors.

Modeling the entity probabilities and smoothing as just described serves mul-
tiple objectives. First, it helps overcome the sparsity problem due to the short
length of the passage. Second, the document level evidence gives a higher score
to passages that come from documents that talk more about the entities involved
in input relationship. Thus, passages coming from documents that are majorly
about the involved entities are given a higher weight by the ranking function
described in Eq. 5. Also note that such a formulation also addresses the problem
of co-reference resolution [17] to some extent and can be interpreted as a prob-
abilistic variant of the heuristic used by Wu and Weld [46] that replaces most
frequent pronouns in Wikipedia article with article title. Lastly, the collection
level evidence is also important as it plays the role of a reference or background

2 Details of date of birth relationship label (also called as property in Wikidata):
https://www.wikidata.org/wiki/Property:P569.

https://www.wikidata.org/wiki/Property:P569

256 S. Bhatia et al.

language model and provides term weighing similar to inverse document fre-
quency (IDF) [48].

The individual probabilities in Eq. 5 can be computed by using the statistics
from passage, document, and collection as follows:

Passage Evidence: P (w|θp) =
count(w, p) + 1

|p| + |V | (6)

Document Evidence: P (w|θd) =
count(w, d) + 1

|d| + |V | (7)

Collection Evidence: P (w|θc) =
count(w, c)

|C| (8)

Here, V is the vocabulary of the corpus and | · | indicates the size of the set. Note
that we have added the constant one in Eqs. 6 and 7 to prevent zero probabilities
for terms that may not be present in the respective passage or document. Further,
the denominators are chosen so that the sum of probabilities over the entire
vocabulary is one. Also note that the additive factor is not required in the
collection model as all the terms in the vocabulary are present in the collection
by definition.

4 Experimental Evaluation

4.1 Data Description

In this section we discuss the dataset used in our experiments and how the queries
and relevance judgments were obtained. The resulting resources (queries, results,
and relevance judgments, and parameters used) are being made available to the
community through our git repository3.

Relationship Queries: We need relationship triples of the form <s,r,t> that
will constitute our query relationships for which the supporting passages need
to be retrieved from the underlying corpus. In order to create such a query
set, we selected titles of the top 25 most viewed pages4 each for the months
of January–April, 2017. From these 100 (25 for each month) page titles, we
retained only those that correspond to named entities by manually filtering out
titles like List of Black Mirror episodes, Deaths in 2017, etc. That gave us a
total of 80 unique entities. Next, we used Wikidata5 as our knowledge base and
retrieved all relationships of the entities selected previously using the SPARQL
end-points provided by Wikidata. From all these retrieved relationships, we man-
ually filtered out the relationships that were not in English language, were of
type instance of and subclass of, and, where the target entity was not a named
entity. This resulted in a final set of 1250 unique relationship triples from which
we selected 150 triples at random as our final relationship query set that was
used in subsequent experiments.
3 https://github.com/sumit-research/kg-support-passages.
4 https://en.wikipedia.org/wiki/Wikipedia:Top 25 Report.
5 https://www.wikidata.org/wiki/Wikidata:Main Page.

https://github.com/sumit-research/kg-support-passages
https://en.wikipedia.org/wiki/Wikipedia:Top_25_Report
https://www.wikidata.org/wiki/Wikidata:Main_Page

That’s Interesting, Tell Me More! Finding Descriptive Support Passages 257

Source Corpus and Passages: We chose Wikipedia6 as our underlying cor-
pus. There are multiple ways to extract a set of passages given a text corpus such
as utilizing the document structure and paragraph or section markers present in
the documents itself. However, the passages thus extracted are usually very long,
often running into tens of sentences. Further, while such paragraph or section
markers are available for well-structured corpora such as Wikipedia, they may
not always be available for different source documents. More importantly, such
long passages may be detrimental to the end-user experience as they consume
valuable screen real estate and reading them requires significant additional efforts
from users. Another option is to use text segmentation methods such as TextTil-
ing [18] that segment the input text into topically coherent passages. However,
such approaches require significant pre-processing efforts, especially for large
corpora (few millions of documents) often encountered in real world applica-
tions. In practice, simple (and fast) segmentation of input text into fixed length,
overlapping passages using a sliding window approach is found to be equally
effective [4,22,39,40], if not better, and is the approach we also take. Use of
overlapping passages is also encouraged as it reduces the chances of relevant
information getting split between two consecutive passages [9]. Therefore, we
split the input text of each document into overlapping passages of three con-
secutive sentences using a sliding window of size three as suggested by Spangler
et al. [38]. This resulted in about 80.5 million extracted passages that constitute
our source set of passages (set P in Sect. 3). Note that one drawback of such
a pre-processing is that multiple overlapping passages containing a highly rel-
evant sentence can all appear in top positions in the final ranked list, thereby
artificially boosting the proportion of relevant passages and at the same time,
causing a degraded user experience due to repetitive results. Therefore, we per-
form a post-processing step where such repetitions are detected and only the
highest scoring passage is retained and the rest of the overlapping passages are
removed from the final ranked list.

In order to compute the different passage, document, and collection based
statistics, we used the Indri toolkit provided by the Lemur project7. The toolkit
offers capabilities to query and index a collection of documents, and APIs to com-
pute term statistics required for language model based computations described
in our ranking function (Eq. 5). Specifically, we created two indexes using Indri –
a passage index of all the extracted passages to compute passage level statistics
and an article index of all the Wikipedia articles (about 5.34 million articles)
to compute document and collection level statistics. A standard stopword list
provided by the Onix text retrieval toolkit8 was used to filter out common stop
words and stemming was performed using Porter’s [32]. The parameter files
used for creating and querying the indexes can be found in our git repository.

6 Specifically, we used the dump of 20th April, 2017.
7 https://www.lemurproject.org/.
8 http://www.lextek.com/manuals/onix/stopwords1.html.

https://www.lemurproject.org/
http://www.lextek.com/manuals/onix/stopwords1.html

258 S. Bhatia et al.

Baseline Methods: We use the inference network based generative passage
retrieval algorithm implemented in Indri [27] as our first baseline method (Inf.
N/w). This is a state-of-the-art passage retrieval method and is often chosen as
a baseline for various research tasks related to passage retrieval [45,47]. Given
a query, this method finds documents that are relevant for the query and then
extracts specific continuous portions of text from the documents that are highly
relevant for the query. Given an input relationship tuple <s,r,t>, the input
query to Indri consists of all the terms in source and target entity names and
relationship description. Next, as our second baseline method, we add query
expansion [25, Chap. 9] on top of the first baseline by using relationship aliases
(as described in Sect. 3). We denote this baseline as Inf. N/w+Rel.Exp in subse-
quent discussions. Note that for passage retrieval, Indri requires passage length
as an input parameter. For comparison purposes, we specify the length of pas-
sages to be returned by Indri as 600 characters as this is the average length of
passages extracted by our proposed approach. Further, note that due to fixed
length of the passages retrieved, it is possible that the retrieved passaged are
often truncated and thus, have incomplete sentences. In order to overcome this
shortcoming, such truncated sentences are completed in a post-processing step
so that the extracted passages are well-formed.

4.2 Effectiveness Evaluation

In order to study the effectiveness of our proposed approach for finding high
quality descriptive passages, we selected a random set of 50 relationship triples
from the set of 150 triples described above. For each of these 50 triples, we
retrieved the top five passages from the corpus ranked by our ranking function
(Eq. 5). We also obtained five passages for each relationship triple by the two
baseline methods. This resulted in 695 unique <query,passage> pairs. Note that
this number is less than 750 (50 queries × 3 methods × 5 passages) because in
some cases, the same passage was retrieved by multiple methods.

Next, we took the help of three human evaluators to evaluate the quality and
correctness of the passages retrieved by the baselines and our proposed method.
The evaluators were advanced graduate students in Computer Science, not asso-
ciated with the project, and had good command of the English language. The
evaluators worked independently of each other and were compensated monetarily
for their efforts.

For each of the 50 queries used in this study, all the extracted passages for
that query by the three methods were presented to the evaluators in a random-
ized order and they were not informed which passage was retrieved by which
method. The evaluators were asked to rate each passage on three point scale –
0 if the passage is incorrect, irrelevant or not at all useful; 1 if the passage con-
tains the relationship but is only partially relevant and does not provide a good
explanation; and 2 if the passage is correct and highly relevant and provides a
good explanation. All three evaluators provided their judgments for all the 695
<query, passage> pairs.

That’s Interesting, Tell Me More! Finding Descriptive Support Passages 259

Table 1. Distribution of the labels assigned by the three evaluators. There were a
total of 695 <query, passage> pairs and each evaluator provided judgments for all 695
pairs. Last column reports the results after combining all the judgments where the final
rating of a <query, passage> pair was decided after taking the majority vote.

Evaluator 1 Evaluator 2 Evaluator 3 Final

Non-relevant 406 438 444 449

Partially-relevant 41 11 43 12

Relevant 248 246 208 234

Inter Annotator Agreement: We used Fleiss’ Kappa coefficient [13] to mea-
sure the agreement between the three evaluators. The value of Kappa coefficient
was computed to be 0.67, indicating substantial agreement. For 695 <query,
passage> pairs, all three evaluators agreed on the label 545 times, two evaluators
provided the same label 130 times and for 20 pairs, all three evaluators provided
different ratings. In case of conflict, the final label for a <query, passage> pair
was decided by the majority vote and 20 pairs where all three evaluators dis-
agreed were assigned a label of 0 (irrelevant). Table 1 provides further details
about the distribution of evaluations provided by the three evaluators.

Results: Table 2 compares the three approaches by using precision, precision at
rank 1 (P@1), and mean reciprocal rank (MRR). While precision measures how
many of the passages extracted by each method are relevant, P@1 and MRR
measure the ability of the respective methods to identify a relevant passage as
the top-ranked passage. This is important because in real world applications, due
to limited screen real estate and to minimize users’ efforts, we want to present
the best results at the top position. As can be observed, the proposed approach
achieves a P@1 of 0.86 compared to 0.251 and 0.165 for the baseline methods.
Similar out-performance is observed in the case of MRR values. Further, we
note that the proposed approach achieves an overall precision of 0.727 compared
to 0.156 and 0.088 for the baselines. Next, for a fine-grained analysis, Table 3
provides the distribution of passages marked as irrelevant, partially relevant, and
highly relevant for the three approaches. We note that for the proposed approach,
only about 16% of the passages were found to be irrelevant by the evaluators
compared to about 80% for the baseline approaches. These results indicate not
only that the proposed approach is able to retrieve a lot more relevant passages
describing the input query relationship (as indicated by precision), it is also able
to offer relevant results at top positions (as indicated by P@1 and MRR values).

A surprising observation from these results is the poor performance of the
Inf. N/w+Rel. Exp. baseline method, even when compared with the plain Inf.
N/w method. Aliases of relationship labels were incorporated in order to enable
the Inf. N/w method to identify passages where variations of relationship terms
are used. However, on analysis of the retrieved passages, we observed that addi-
tion of the alias terms led to retrieval of many passages that talked about the

260 S. Bhatia et al.

relationship label in general. For example, for the query <Mariah Carey, spouse,
Nick Cannon>, the following passage is retrieved that talks about the concept
of spouse in general.

Wife: Intro A wife is a female partner in a continuing marital relationship.
A wife may also be referred to as a spouse, which is a gender-neutral term.
The term continues to be applied to a woman who has separated from her
partner, and ceases to be applied to such a woman only when her marriage
has come to an end, following a legally recognized divorce or the death of
her spouse. On the death of her partner, a wife is referred to as a widow,
but not after she is divorced from her partner.

Evidently, the above passage contains multiple mentions of different aliases
of the spouse of relationship9 and thus, this passage got a very high score. This
example illustrates the strength of the proposed approach that avoids such a
dominance of certain terms in the passage by incorporating the document and
collection level evidences in the ranking function (Eq. 5) that assigns lower score
to passages from documents that contain little or no information about the
entities involved in the relationship.

4.3 Preference Evaluation

In this section, we describe the experiment conducted to study the preferences
of end-users when passages extracted by different approaches are presented to
them side by side. We chose only the Inf. N.w baseline for comparison with the
proposed approach due to its superior performance compared with the other
baseline method. For this experiment, we used the full set of 150 relationship
tuples (Sect. 4.1) and recruited 3 undergraduate computer science students that
were not associated with this project and were compensated monetarily for their
efforts. For each query, the top scored passages extracted by the baseline and
our proposed approach were presented to the evaluators side by side and they
were asked to chose from one of the following four options: (i) both passages
are equally good/useful, (ii) both passages are equally bad, (iii) passage on

Table 2. Performance of the baseline methods and proposed approach as measured by
precision, P@1, and MRR.

P@1 Precision MRR

Inf. N/w 0.251 0.156 0.272

Inf. N/w + Rel. Exp. 0.165 0.088 0.144

Proposed approach 0.860 0.727 0.805

9 Aliases of spouse include husband, wife, married to, consort, partner, marry, mar-
riage, partner, married, wedded to, wed, and life partner. https://www.wikidata.
org/wiki/Property:P26.

https://www.wikidata.org/wiki/Property:P26
https://www.wikidata.org/wiki/Property:P26

That’s Interesting, Tell Me More! Finding Descriptive Support Passages 261

Table 3. Distribution of judgment labels for the baseline and proposed approach. Note
that the total number of passages for proposed approach is 246 instead of 250 because
some passages appeared for more than one query.

No. of passages marked as

Irrelevant Partially-relevant Highly relevant

Inf. N/w 198 4 43

Inf. N/w + Rel. Exp. 210 3 32

Proposed method 41 5 159

the left offer a better description, and (iv) passage on the right offers a better
description. Note that the order in which the passages were presented to the
evaluators was randomized and they were not informed of the method that
produced a specific passage. Each evaluator provided preference judgments for
50 relationships. The results are summarized in Table 4. As can be seen from the
results, for an overwhelming majority of the time, all the evaluators preferred
the passages extracted by the proposed approach. Overall, more than 50% of
the times, passages retrieved by the proposed approach were preferred (73 out
of 150) whereas the passages retrieved by the baseline method was preferred only
11 times.

5 Discussions

In this section, we provide some representative examples to illustrate the
strengths and weaknesses of our proposed approach and discuss possible future
directions of research. Consider the relationship <John Cena, nickname, The
Protoype>, for which the passages as produced by the baseline and our pro-
posed approach are as follows.

Baseline: A prototype is something that is representative of a category of
things, or an early engineering version of something to be tested. Prototype
may also refer to: Automobiles. Citroën Prototype C, a range of vehicles

Table 4. Comparative evaluations provided by the three evaluators when presented
with top passages from the baseline and proposed approach side by side. Each evaluator
provided evaluations for 50 relationship queries.

Both not useful Both equally useful Baseline Proposed

Evaluator 1 14 13 3 20

Evaluator 2 6 17 2 25

Evaluator 3 10 6 6 28

Total 30 36 11 73

262 S. Bhatia et al.

created by Citroën from 1955 to 1956 Citroën Prototype Y, a project of
replacement of the Citroën Ami studied by Citroën in the early seventies
Daytona Prototype, a sports ca.
Proposed approach: In 2001, Cena signed a developmental contract with
the WWF and was assigned to its developmental territory Ohio Valley
Wrestling (OVW). During his time there, Cena wrestled under the ring
name The Prototype and held the OVW Heavyweight Championship for
three months and the OVW Southern Tag Team Championship (with Rico
Constantino) for two months. Throughout 2001, Cena would receive four
tryouts for the WWF main roster, as he wrestled multiple enhancement
talent wrestlers on both WWF house shows and in dark matches before
WWF television events.

Note that the first passage contains multiple occurrences of the word pro-
totype which is also a less frequent word in the corpus, and thus was highly
ranked by the baseline approach. On the other hand, the passage produced by
the proposed approach is able to correctly identify a good passage even though
it only had one occurrence of prototype. One reason for this passage getting a
very high score is the document level component of the ranking function (Eq. 5).
This passage comes from the Wikipedia article about John Cena and thus, its
score was boosted by the document-evidence component.

Error Analysis: By further analyzing the passages extracted by the proposed
approach and feedback from the evaluators, we observed two major characteris-
tics of the passages that were not rated as relevant by the evaluators. In the first
category, while the extracted passage does talk about the entities involved, it
does not provide any description of the relationship specified in the query. Con-
sider the following passage for the relationship <Alan Comes, employer, Fox
News>.

...Goldlines television advertising includes cable networks such as CNN,
CNBC, Fox News, History International and Fox Business. Goldline has
also been the sponsor of the shows of a number of conservative radio and
television hosts, including The American Advisor, and The Glenn Beck
Program, The Laura Ingraham Show, The Fred Thompson Show, The
Huckabee Report, The Lars Larson Show, The Monica Crowley Show, The
Mark Levin Show, and The Alan Colmes Show. In 2009, Goldline incor-
rectly labeled Glenn Beck as a paid spokesman on its website which raised
concerns with his employer, Fox News, which prohibit such a relationship;
they later corrected it to radio sponsor...

This passage got a high score by the proposed scoring function because it talks
about Fox News and Alan Comes and the originating document also has other
mentions of Fox News. However, it does not provide any description about the
employment of Alan Comes at Fox News. Instead, it provides a lot of unnecessary
information to the user.

That’s Interesting, Tell Me More! Finding Descriptive Support Passages 263

The other type of passages that were not judged relevant by the evalua-
tors were the ones that made an indirect reference to the relationship query.
Consider the following passage for the query <Warren Beatty, occupation, Film
Producer>.

In 1994, Astin directed and co-produced (with his wife, Christine Astin)
the short film Kangaroo Court, which received an Academy Award nomi-
nation for Best Live Action Short Film. Astin continued to appear in films
throughout the 1990s, including the Showtime science fiction film Harrison
Bergeron (1995), the Gulf War film Courage Under Fire (1996), and the
Warren Beatty political satire Bulworth (1998). After The Goonies, Astin
appeared in several more films, including the Disney made-for-TV movie,
The B. R. A

Here again, the passage contains a lot of unnecessary information and only con-
tains a fleeting reference to Warren Beatty and the movie Bulworth. There is
no explicit mention here that Warren Beatty is a film producer and thus, the
evaluators did not find this passage to be very informative.

Directions for Future Work: In the present work, we focused on relationship
triples between two named entities. It will be interesting to extend the proposed
models to triples where the target is a data value instead of a named entity
(e.g. <Burj Khalifa, height, 828 metres>). This is a challenging problem as the
information in text could be present in multiple formats (numbers, text, etc.) as
well as in different units. Another aspect of our proposed approach that merits
further research is handling of negations. For example, consider the relationship
<X, spouseOf, Y > and a sentence, X is not wife of Y. Such a sentence will also
be considered a relevant sentence by our method even though it offers negative
evidence of the fact under consideration. However, handling negations in text is
a hard problem and is an active area of research [23]. One related interesting
application of our proposed approach that is worth exploring further is in fact
checking systems such as DeFacto [24] where the users could query for supporting
evidence for facts presented to them and can evaluate if the information shown
to them is correct.

Another direction for future work is to combine the proposed approach
with existing methods for entity search and recommendation [7] and path rank-
ing [1,12,31], and offer textual descriptions for how two entities in the knowl-
edge graph may be related. Such techniques will be useful for discovery and
exploratory search based applications and may improve end-user experience by
offering human readable explanations of systems’ graphical output.

6 Conclusions

We studied the problem of providing descriptive explanations for relationships
in a knowledge graph and described a probabilistic method for ranking passages

264 S. Bhatia et al.

derived from an input corpus in order of their relevance to the input relation-
ship. The proposed method is simple, effective, and outperformed state-of-the-art
baseline methods in user studies conducted for evaluating the effectiveness of our
proposed approach. We presented some representative examples to illustrate the
strengths and weaknesses of our approach and provided directions for future
work.

References

1. Aggarwal, N., Bhatia, S., Misra, V.: Connecting the dots: explaining relationships
between unconnected entities in a knowledge graph. In: Sack, H., Rizzo, G., Stein-
metz, N., Mladenić, D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989,
pp. 35–39. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47602-5 8

2. Althoff, T., Dong, X.L., Murphy, K., Alai, S., Dang, V., Zhang, W.: Timemachine:
timeline generation for knowledge-base entities. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
19–28. ACM (2015)

3. Bhatia, S., Goel, A., Bowen, E., Jain, A.: Separating wheat from the chaff – a
relationship ranking algorithm. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić,
D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 79–83. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47602-5 17

4. Bhatia, S., He, B., He, Q., Spangler, S.: A scalable approach for performing prox-
imal search for verbose patent search queries. In: Proceedings of the 21st ACM
International Conference on Information and Knowledge Management, pp. 2603–
2606. ACM (2012)

5. Bhatia, S., Lahiri, S., Mitra, P.: Generating synopses for document-element search.
In: Proceedings of the 18th ACM Conference on Information and Knowledge Man-
agement, CIKM 2009, pp. 2003–2006. ACM, New York (2009)

6. Bhatia, S., Mitra, P.: Summarizing figures, tables, and algorithms in scientific
publications to augment search results. ACM Trans. Inf. Syst. 30(1), 3:1–3:24
(2012)

7. Bhatia, S., Vishwakarma, H.: Know thy neighbors, and more! Studying the role of
context in entity recommendation. In: Proceedings of the 29th ACM Conference
on Hypertext and Social Media, HT 2018, ACM, New York (2018)

8. Blanco, R., Zaragoza, H.: Finding support sentences for entities. In: Proceedings
of the 33rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 339–346. ACM (2010)

9. Callan, J.P.: Passage-level evidence in document retrieval. In: Croft, B.W., van
Rijsbergen, C.J. (eds.) SIGIR 1949. Springer, London (1994)

10. Clarke, C.L., Agichtein, E., Dumais, S., White, R.W.: The influence of caption fea-
tures on clickthrough patterns in web search. In: Proceedings of the 30th Annual
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 135–142. ACM (2007)

11. Elbassuoni, S., Hose, K., Metzger, S., Schenkel, R.: ROXXI: reviving witness doc-
uments to explore extracted information. Proc. VLDB Endowment 3(1–2), 1589–
1592 (2010)

12. Fang, L., Sarma, A.D., Yu, C., Bohannon, P.: REX: explaining relationships
between entity pairs. Proc. VLDB Endowment 5(3), 241–252 (2011)

https://doi.org/10.1007/978-3-319-47602-5_8
https://doi.org/10.1007/978-3-319-47602-5_17

That’s Interesting, Tell Me More! Finding Descriptive Support Passages 265

13. Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull.
76(5), 378 (1971)

14. Fokoue, A., Sadoghi, M., Hassanzadeh, O., Zhang, P.: Predicting drug-drug interac-
tions through large-scale similarity-based link prediction. In: Sack, H., Blomqvist,
E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS,
vol. 9678, pp. 774–789. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
34129-3 47

15. Gkatzia, D., Lemon, O., Rieser, V.: Natural language generation enhances human
decision-making with uncertain information. In: Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics, ACL 2016, 7–12 August
2016, Berlin, Germany, vol. 2 (2016). Short Papers

16. Gutiérrez-Cuellar, J., Gómez-Pérez, J.M.: Havas 18 labs: a knowledge graph for
innovation in the media industry. In: Polleres, A., Castro, A.G., Benjamins, R.
(eds.) International Semantic Web Conference (Industry Track), CEUR Workshop
Proceedings, vol. 1383 (2014)

17. Hajishirzi, H., Zilles, L., Weld, D.S., Zettlemoyer, L.: Joint coreference resolution
and named-entity linking with multi-pass sieves. In: Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language Processing, pp. 289–299 (2013)

18. Hearst, M.A.: Texttiling: segmenting text into multi-paragraph subtopic passages.
Comput. Linguis. 23(1), 33–64 (1997)

19. Heim, P., Lohmann, S., Stegemann, T.: Interactive relationship discovery via the
semantic web. In: Aroyo, L., et al. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 303–
317. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13486-9 21

20. Huang, Y., Liu, Z., Chen, Y.: Query biased snippet generation in xml search. In:
Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data, pp. 315–326. ACM (2008)

21. Iannacone, M., et al.: Developing an ontology for cyber security knowledge graphs.
In: Proceedings of the 10th Annual Cyber and Information Security Research Con-
ference, CISR 2015, pp. 12:1–12:4. ACM, New York (2015)

22. Khalid, M.A., Verberne, S.: Passage retrieval for question answering using slid-
ing windows. In: Coling 2008: Proceedings of the 2nd workshop on Information
Retrieval for Question Answering, pp. 26–33. Association for Computational Lin-
guistics (2008)

23. Konstantinova, N., De Sousa, S.C., Dı́az, N.P.C., López, M.J.M., Taboada, M.,
Mitkov, R.: A review corpus annotated for negation, speculation and their scope.
In: LREC, pp. 3190–3195 (2012)

24. Lehmann, J., Gerber, D., Morsey, M., Ngonga Ngomo, A.-C.: DeFacto - deep fact
validation. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp.
312–327. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-
1 20

25. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

26. Metzger, S., Elbassuoni, S., Hose, K., Schenkel, R.: S3K: seeking statement-
supporting top-k witnesses. In: Proceedings of the 20th ACM International Con-
ference on Information and Knowledge Management, pp. 37–46. ACM (2011)

27. Metzler, D., Croft, W.: Combining the language model and inference network
approaches to retrieval. Inf. Process. Manag. 40(5), 735–750 (2004)

28. Nagarajan, M., et al.: Predicting future scientific discoveries based on a networked
analysis of the past literature. In: KDD, 2015, pp. 2019–2028 (2015)

29. Niu, F., Zhang, C., Ré, C., Shavlik, J.W.: Deepdive: web-scale knowledge-base
construction using statistical learning and inference. VLDS 12, 25–28 (2012)

https://doi.org/10.1007/978-3-319-34129-3_47
https://doi.org/10.1007/978-3-319-34129-3_47
https://doi.org/10.1007/978-3-642-13486-9_21
https://doi.org/10.1007/978-3-642-35176-1_20
https://doi.org/10.1007/978-3-642-35176-1_20

266 S. Bhatia et al.

30. Penin, T., Wang, H., Tran, T., Yu, Y.: Snippet generation for semantic web search
engines. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp.
493–507. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89704-
0 34

31. Pirrò, G.: Explaining and suggesting relatedness in knowledge graphs. In: Arenas,
M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 622–639. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-25007-6 36

32. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
33. Ruan, T., Xue, L., Wang, H., Hu, F., Zhao, L., Ding, J.: Building and exploring

an enterprise knowledge graph for investment analysis. In: Groth, P., et al. (eds.)
ISWC 2016. LNCS, vol. 9982, pp. 418–436. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-46547-0 35

34. Saldanha, G., Biran, O., McKeown, K., Gliozzo, A.: An entity-focused approach to
generating company descriptions. In: The 54th Annual Meeting of the Association
for Computational Linguistics, p. 243 (2016)

35. Sandusky, R.J., Tenopir, C.: Finding and using journal-article components:
Impacts of disaggregation on teaching and research practice. J. Assoc. Inf. Sci.
Technol. 59(6), 970–982 (2008)

36. Sheth, A., Aleman-Meza, B., Arpinar, I.B., Bertram, C.: Semantic association iden-
tification and knowledge discovery for national security applications. J. Database
Manag. 16(1), 33 (2005)

37. Socher, R., Chen, D., Manning, C.D., Ng, A.: Reasoning with neural tensor net-
works for knowledge base completion. In: Advances in Neural Information Process-
ing Systems, pp. 926–934 (2013)

38. Spangler, S., Kreulen, J.T., Lessler, J.: Generating and browsing multiple tax-
onomies over a document collection. J. Manag. Inf. Sys. 19(4), 191–212 (2003)

39. Tiedemann, J.: Comparing document segmentation strategies for passage retrieval
in question answering. In: Proceedings of the Conference on Recent Advances in
Natural Language Processing (RANLP07), vol. 1 (2007)

40. Tiedemann, J., Mur, J.: Simple is best: experiments with different document seg-
mentation strategies for passage retrieval. In: Coling 2008: Proceedings of the 2nd
Workshop on Information Retrieval for Question Answering, pp. 17–25. Associa-
tion for Computational Linguistics (2008)

41. Tombros, A., Sanderson, M.: Advantages of query biased summaries in information
retrieval. In: Proceedings of the 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 2–10. ACM (1998)

42. Turpin, A., Tsegay, Y., Hawking, D., Williams, H.E.: Fast generation of result
snippets in web search. In: Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp.
127–134. ACM (2007)

43. Voskarides, N., Meij, E., de Rijke, M.: Generating descriptions of entity relation-
ships. In: Jose, J.M., et al. (eds.) ECIR 2017. LNCS, vol. 10193, pp. 317–330.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56608-5 25

44. Voskarides, N., Meij, E., Tsagkias, M., de Rijke, M., Weerkamp, W.: Learning
to explain entity relationships in knowledge graphs. In: ACL, vo. 1. pp. 564–574
(2015)

45. Wang, M., Si, L.: Discriminative probabilistic models for passage based retrieval.
In: Proceedings of the 31st Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 419–426. ACM (2008)

https://doi.org/10.1007/978-3-540-89704-0_34
https://doi.org/10.1007/978-3-540-89704-0_34
https://doi.org/10.1007/978-3-319-25007-6_36
https://doi.org/10.1007/978-3-319-46547-0_35
https://doi.org/10.1007/978-3-319-46547-0_35
https://doi.org/10.1007/978-3-319-56608-5_25

That’s Interesting, Tell Me More! Finding Descriptive Support Passages 267

46. Wu, F., Weld, D.S.: Open information extraction using Wikipedia. In: Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, pp.
118–127. ACL 2010 (2010)

47. Yang, H., Callan, J., Si, L.: Knowledge transfer and opinion detection in the TREC
2006 blog track. In: TREC (2006)

48. Zhai, C., Lafferty, J.: The dual role of smoothing in the language modeling app-
roach. In: Proceedings of the Workshop on Language Models for Information
Retrieval (LMIR) 2001 (2001)

Exploring RDFS KBs Using Summaries

Georgia Troullinou1(B), Haridimos Kondylakis1, Kostas Stefanidis2,
and Dimitris Plexousakis1

1 ICS-FORTH, Heraklion, Greece
{troulin,kondylak,dp}@ics.forth.gr

2 University of Tampere, Tampere, Finland
kostas.stefanidis@uta.fi

Abstract. Ontology summarization aspires to produce an abridged ver-
sion of the original data source highlighting its most important concepts.
However, in an ideal scenario, the user should not be limited only to static
summaries. Starting from the summary, s/he should be able to further
explore the data source requesting more detailed information for a par-
ticular part of it. In this paper, we present a new approach enabling the
dynamic exploration of summaries through two novel operations zoom
and extend . Extend focuses on a specific subgraph of the initial sum-
mary, whereas zoom on the whole graph, both providing granular infor-
mation access to the end-user. We show that calculating these operators
is NP-complete and provide approximations for their calculation. Then,
we show that using extend, we can answer more queries focusing on
specific nodes, whereas using global zoom, we can answer overall more
queries. Finally, we show that the algorithms employed can efficiently
approximate both operators.

1 Introduction

The recent explosion of the Web of Data and the associated Linked Open Data
(LOD) initiative have led to an enormous amount of widely available RDF
datasets [6]. These datasets often have extremely complex schemas, which are dif-
ficult to comprehend, limiting the exploitation potential of the information they
contain. As a result, there is an increasing need to develop methods and tools
that facilitate the quick understanding and exploration of these data sources
[9,19].

To this direction, many approaches focus on generating ontology summaries
[21,24,25,29]. Ontology summarization [30] is defined as the process of distilling
knowledge from an ontology in order to produce an abridged version. Although
generating summaries is an active field of research, most of the works focus only
on identifying the most important nodes, exploit limited semantic information or
produce static summaries, limiting the exploration and the exploitation potential
of the information they contain. In addition, although exploration operators over
summaries have already been identified as really useful (e.g. [15]), the available
approaches so far are limited, expanding only the hierarchy and the connections
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 268–284, 2018.
https://doi.org/10.1007/978-3-030-00671-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_16&domain=pdf

Exploring RDFS KBs Using Summaries 269

of selected nodes [11]. As a result, there is an increasing need to develop methods
and tools in order to facilitate the understanding and exploration of various data
sources, through exploration operators on summaries.

Consider for example that we would like to get a quick view of the DBpe-
dia version 3.8 shown in Fig. 1(a). By visualizing the graph of the schema, it is
difficult to understand the contents of the KB. Even if we highlight the most
representative nodes (the red ones), according to some importance measure (e.g.
Betweenness) the problem persists. Now consider selecting the top-k most rep-
resentative nodes and connecting them. The result is shown in Fig. 1(b). Here,
we can better understand the contents of the DBpedia v3.8. However, still the
user might find the presented information overwhelming and s/he would like
to see less information, focusing only on the top-10 nodes. Ideally, s/he should
be able to zoom-in and zoom-out at will in the presented graph to understand
the contents at a selected granularity level. More than this, s/he might want to
have more detailed information not only on the whole schema graph but on a
selected subset of it. This could happen by selecting some nodes, requesting more
details on those. Those details could be offered in terms of showing other nodes
dependent on the selected ones as shown in Fig. 1(b) (green nodes). Although
exploration operators over summaries have already been identified as useful (e.g.
[15]), the available approaches are limited, expanding only the hierarchy and the
connections of the selected nodes.

Fig. 1. The DBpedia 3.8 schema graph (a) and a schema summary (b) generated
using [17]. (Color figure online)

Motivated by the lack of an effective method to explore KBs starting from
summaries, we have developed RDFDigest+. RDFDigest+ is a system that
transparently and efficiently handles exploratory operations on large KBs. In
its core, it employs an algebra where two operators are treated as first-class
citizens in various exploration scenarios. Our algebra contains the extend and
the zoom operators with particular semantics. Extend focuses on a specific sub-
graph of the initial summary, whereas zoom on the whole graph, both providing
granular information access to the end-user.

270 G. Troullinou et al.

More specifically, in this paper, we focus in RDFS ontologies and demonstrate
an efficient and effective method to enable exploration of RDFS KBs, using
schema summaries that can be extended and zoomed according to user selections.
Our contributions are the following:

– We present RDFDigest+, a novel system that is able to generate summaries,
enabling further exploration using zoom and extend operations.

– Summary generation is a two-steps process. First, all schema nodes are ranked
according to various measures, and then, the top-k selected nodes are linked
using edges that introduce the minimum number of additional nodes over the
initial schema graph.

– Over these generated summaries, we enable zoom-in and zoom-out opera-
tions to get granular information, adding more important nodes or removing
existing ones from the generated summary.

– In addition, through the extend operator, we allow selecting a subset of the
presented nodes to visualize other dependent nodes.

– We provide algorithms for calculating the aforementioned operators on a given
schema graph and we show that the problem is NP-complete. To this end, we
provide effective and efficient approximations as well.

– We demonstrate the added value of these operators, evaluating summary’s
ability to answer the most-frequent real users queries, and we show that the
approximate algorithms proposed can efficiently approximate both operators.

To our knowledge, this is the first approach that combines summaries with
both zoom and extend operations, enabling effectively and efficiently the granu-
lar exploration of a KB. The rest of this paper is structured as follows: In Sect. 2,
we present preliminaries and, in Sect. 3, we provide more details on schema sum-
marization. Then, in Sect. 4, we introduce our ontology exploration operations.
In Sect. 5, we present our experimental evaluation and, in Sect. 6, we discuss
related work. Finally, in Sect. 7, we conclude this paper and present directions
for further work.

2 Preliminaries

In this paper, we focus on RDFS KBs, as RDFS is among the widely-used
standards for publishing and representing data on the Web. Our approach han-
dles OWL ontologies as well, considering however only the RDFS part of these
ontologies. The representation of knowledge in RDF is based on triples of the
form (subject, predicate, object). RDF datasets have attached semantics through
RDFS [1], a vocabulary description language. Representation of RDF data is
based on three disjoint and infinite sets of resources, namely: URIs (U), literals
(L) and blank nodes (B). We impose typing on resources, so we consider three
disjoint sets of resources: classes (C ⊆ U ∪ B), properties (P ⊆ U), and indi-
viduals (I ⊆ U ∪ B). The set C includes all classes, including RDFS classes and
XML datatypes (e.g., xsd:string, xsd:integer). The set P includes all properties,
except rdf:type, which connects individuals with the classes they are instantiated

Exploring RDFS KBs Using Summaries 271

under. The set I includes all individuals, but not literals. In addition, our app-
roach adopts the unique name assumption, i.e. resources identified by different
URIs are different.

Here, we will follow an approach similar to [26], which imposes a convenient
graph-theoretic view of RDF data that is closer to the way the users perceive
their datasets. As such, we separate between the schema and the instances of
an RDFS KB, represented in separate graphs (GS and GI , respectively). The
schema graph contains all classes and the properties the classes associated with
(via the properties domain/range specification); multiple domains/ranges per
property are allowed, by having the property URI be a label on the edge, via a
labeling function λ, rather than the edge itself. The instance graph contains all
individuals, and the instantiations of schema properties; the labeling function λ
applies here as well for the same reasons. Finally, the two graphs are related via
the τc function, which determines the class(es) each individual is instantiated
under.

Definition 1 (RDFS KB). An RDFS KB is a tuple V = 〈GS , GI , λ, τc〉,
where:

– GS is a labelled directed graph GS = (VS , ES) such that VS , ES are the nodes
and edges of GS, respectively, and VS ⊆ C ∪ L.

– GI is a labelled directed graph GI = (VI , EI) such that VI , EI are the nodes
and edges of GI , respectively, and VI ⊆ I ∪ L.

– A labelling function λ : ES ∪EI �→ 2P determines the property URI that each
edge corresponds to (properties with multiple domains/ranges may appear in
more than one edge).

– A function τc : I �→ 2C associating each individual with the classes that it is
instantiated under.

In the following, we will write p(v1, v2) to denote an edge e in GS , where
v1, v2 ∈ VS , or GI , where v1, v2 ∈ VI , from node v1 to node v2, such that,
λ(e) = p. In addition, for brevity, we will call schema node a node s ∈ VS , class
node a node c ∈ C ∩ VS , and instance node a node i ∈ I ∩ VI . A path from a
node vs to vi, denoted by path(vs → vi), is the finite sequence of edges, which
connect a sequence of nodes, starting from vs and ending at vi. The length of a
path, denoted by dpath(vs → vi), is the number of the edges that exist in that
path. Finally, having a schema graph GS , the closure of GS , denoted by Cl(GS),
contains all triples that can be inferred from GS using inference. From now on,
when we use GS , we will mean Cl(GS) for reasons of simplicity, unless stated
otherwise. This is to ensure that the result will be the same, independent of the
number of inferences applied on an input schema graph GS .

3 Schema Summarization

Schema summarization aims to highlight the most representative concepts of a
schema, preserving important information and reducing the size and the com-
plexity of the whole schema. Central questions to summarization are (i) how to

272 G. Troullinou et al.

rank the schema nodes according to an importance measure, and (ii) how to link
the top-k ones in order to produce a valid sub-schema graph.

3.1 Identifying Important Nodes in RDFDigest+

To identify the most important nodes, RDFDigest+ employs a variety of cen-
trality measures like Degree, Bridging Centrality, Harmonic Centrality, Radial-
ity, Ego Centrality and Betweenness [17]. As [17] shows, among these measures,
Betweenness produces summaries with a better quality. In addition, in this paper
we explore for the first time to this purpose, PageRank and HITS, two additional
well-known centrality measures [5]. Specifically, the importance measures (IM)
we are going to explore for our experiments, for selecting the top-k most impor-
tant nodes are the following:

– Betweenness (BE). The number of the shortest paths from all nodes to all
others that pass through a node.

– PageRank (PR). This centrality measure assigns a score based on node’s con-
nections, and their connections. PageRank takes link direction and weight into
account so links can only pass influence in one direction, and pass different
amounts of influence.

– HITS (HT). HITS algorithm is based on the idea that in the Web, and in all
document collections which can be represented by directed networks, there
are two types of important nodes: hubs and authorities. Hubs are nodes which
point to many nodes of the type considered important. Authorities are these
important nodes.

Independently of the importance measure (IM) selected, since those measures
have been developed for generic graphs, we adapt them to be used for RDFS
graphs. To achieve that we first normalize each measure IM on a scale of 0 to 1:

normal(IM(v)) =
IM(v) − min(IM(GS))

max(IM(GS)) − min(IM(GS))
(1)

where IM(v) is the importance value of a node v in GS , and min(IM(GS)) is
the minimum and max(IM(GS)) is the maximum importance value in GS .

Similarly, we normalize the number of instances (InstV) that belong to a
schema node. As such, the adapted importance measure (AIM) of each node is
the sum of the normalized values of the importance measures and the instances.

AIM(v) = normal(IM(v)) + normal(InstV (v)) (2)

Next, let TOPAIM
k (V) be the function that returns the top-k nodes of an

RDFS KB V , according to the selected adapted importance measure (AIM) - for
brevity we will use TOPk(V) independently of the importance measure selected.

Overall, our system is flexible enough to enable the uninterrupted addition of
new importance measures by adding new function calls. The diverse set of impor-
tance measures offered, enable exploring RDFS KBs according to the way users
perceive importance, offering many alternatives and enhancing the exploration
abilities of our system.

Exploring RDFS KBs Using Summaries 273

3.2 Linking Important Nodes

Having a way to rank the schema nodes of an RDFS KB according to the per-
ceived importance, we then focus on selecting the paths that link those nodes,
aiming to produce a valid sub-schema graph. As the main problem of previous
approaches [17,26] was the introduction of many additional nodes (besides the
top-k ones), in this paper, we focus on selecting the paths that introduce the
minimum number of additional nodes to the final summary graph. As such, we
model the problem of linking the most important nodes as a variation of the
well-known Graph Steiner-Tree problem (GSTP) [27]. The corresponding algo-
rithm targets at minimizing the additional nodes introduced for connecting the
top-k most important nodes [17]. However, the problem is NP-hard, and as such
approximation algorithms should be used for large datasets.

3.3 Summary Schema Graph

Having identified ways for locating important nodes and, in turn, for connecting
them, we define next the summary schema graph as follows:

Definition 2 (Summary Schema Graph of size n). Let V = 〈GS , GI , λ, τc〉
be an RDFS KB. A summary schema graph of size n for V is a connected schema
graph G′

S = (V ′
S , E′

S), G′
S ⊆ Cl(GS), with:

– V ′
S = TOPk(V) ∪ VADD,

– ∀vi, vj ∈ TOPk(V), ∃path(vi → vj) ∈ G′
S,

– VADD represents the nodes in the summary used only to link the nodes in
TOPk(V),

– � summary schema graph G′′
S = (V ′′

S , E′′
S) of size n for V , such that,

|V ′′
S | < |V ′

S |.

4 Exploration Through Summaries

Getting the summaries, users can better understand the contents of a KB. How-
ever, still the user might find the presented information overwhelming and he/she
may like to see less information, focusing for example, only on the top-10 nodes
(zoom) or requesting more detailed information for a specific subgraph of the
summary (extend).

4.1 The Extend Operator

The extend operator gets as input a subgraph of the schema graph and identifies
other nodes that are depending on the selected nodes. Dependence has not only
to do with distance, but with additional parameters, including importance. Like
TF-IDF, the basic hypothesis here is that the greater the influence of a prop-
erty on identifying a corresponding instance is, the less times it is repeated, or
in other words, infrequent properties are more informative than frequent ones.

274 G. Troullinou et al.

This way, we define the dependence between two classes as a combination of their
cardinality closeness (defined in the sequel), the adapted importance measures
(AIM) of the classes and the number of edges appearing in the path connecting
these two classes. So, dependence is defined as:

Dependence(u, v) =
AIM(u) − ∑

i∈Y
AIM(i)

CC((i−1),i)

dpath(u → v)
(3)

where the cardinality closeness CC is defined for a pair of classes as the number
of distinct edges over the number of all edges between them. Formally:

Definition 3 (Cardinality Closeness). Let ck, cs be two adjacent schema
nodes and ui, uj ∈ GI such that τc(ui) = ck and τc(uj) = cs. The cardinal-
ity closeness of p(ck, cs), namely the CC(p(ck, cs)), is defined as:

CC(p(ck, cs)) =
1 + |c|

|c| +
DistinctV (p(ui, uj))
Instances(p(ui, uj))

(4)

where |c|, c ∈ C ∩ VS, is the number of nodes in the schema graph,
DistinctV (p(ui, uj)) is the number of distinct p(ui, uj) and Instances(p(ui, uj))
is the number of p(ui, uj). When there are no instances, Instances(p(ui, uj)) = 1
and DistinctV (p(ui, uj)) = 0.

As we move away from a node, the dependence becomes smaller by calcu-
lating the differences of AIM across a selected path in the graph. We penalize
additionally dependence dividing by the distance of the two nodes. The highest
the dependence of a path, the more appropriate is the first node to represent
the final node of the path. Also note that Dependence(u, v) is different than
Dependence(v, u), since the dependence of a more important node towards a
less important node is higher than the other way around, although, they share
the same cardinality closeness. To identify the dependent nodes of a selected
node, we use the function dependend(ui, range, number of nodes) that returns
at most number of nodes nodes depending on ui with a distance at most range.

The extend operator takes into account a particular subgraph of a summary
schema graph, and is defined as follows:

Definition 4 (Extend operator). Let G′
S = (V ′

S , E′
S) be the summary

schema graph of an RDFS KB V = 〈GS , GI , λ, τc〉. The extend operator, i.e.,
extend(Ge), takes as input a subgraph Ge = (Ve, Ee) of G′

S, Ge ⊆ G′
S, and

returns a connected schema graph G′
e = (V ′

e , E
′
e), Ve ⊆ V ′

e , for which:

– G′
e ⊆ Cl(GS),

– V ′
e\Ve = Vd ∪ VADD′ , where Vd includes, ∀vi ∈ Ve, all nodes vj, such that,

dependend(vj , range, number of nodes) = vi, and VADD′ the nodes that link
the nodes in Vd with the other summary nodes,

– ∀vi ∈ Vd ∪ TOPk(V), ∃path(vx → vy) ∈ G′
e,

– � G′′
e = extend(Ge) = (V ′′

e , E′′
e), such that, |V ′′

e | < |V ′
e |.

Exploring RDFS KBs Using Summaries 275

Algorithm 1 presents the extend algorithm. The algorithm identifies the
dependent nodes (lines 2–5) using the depencence function. Due to lack of space,
the detailed description of the algorithm used for locating the dependent nodes
is omitted, however abstractly, it starts from ui and calculate the dependence
of the adjacent nodes expanding progressively the range until it reaches the
number of nodes. Next, the algorithm tries to link the top-k nodes using the
Steiner-Tree algorithm (line 6). However, as the Steiner-Tree algorithm is NP-
complete, our problem is NP-complete as well.

Algorithm 1. Extend
InputG′

S = (V ′
S , E

′
S) the summary schema graph of GS , Ge = (Ve, Ee) the selected

summary schema subgraph
Output G′

e = (V ′
e , E

′
e) the result schema graph

1: procedure Extend
2: V ′

e = V ′
S

3: for each vi in Ve do
4: V ′

e = V ′
e ∪ dependent(vi, range, number of nodes)

5: end for
6: Calculate E′

e using the Steiner-Tree algorithm over GS with the nodes in Ve as
terminals

7: end procedure

Two optimizations that we explore in this work are the following:

CHINS. CHINS is an approximation of the Steiner-Tree algorithm [27] proved
to have a worst case bound of 2, i.e., ZT /Zopt ≤ 2 · (1 − l/|Q|), where ZT and
Zopt denote the objective function values of a feasible solution and an optimal
solution respectively, Q the set of nodes to be linked (for the extend operator the
top-k nodes and the selected dependent ones) and l a constant [3]. The algorithm
proceeds as follows:

1. Start with a partial solution consisting of a single selected node.
2. While the solution does not contain all selected nodes do find the nearest

nodes u∗ ∈ Vt and p∗ being a top-k node not in Vt.

As such, for each node to be linked, the algorithm has to visit at worst the whole
set of nodes and edges of the graph, and the corresponding complexity is O(Q ·
|V + E|). CHINS has been proved to offer an optimal trade-off between quality
of the generated summaries and execution time [17], when used for generating
summaries.

Shortest Paths. CHINS starts from a single node extending one by one the set
of selected nodes. However, having the nodes in the summary already, there is
no need to start from the first node. As such, another approximation could be
to start with the nodes already available in the summary and then proceed to

276 G. Troullinou et al.

step 2 of CHINS. The algorithm for each one of the |Q\TOPK(V)| nodes needs
at worst to visit the whole graph. This way, the worst-case complexity of the
algorithm is O(|Q\TOPK(V)| · |V + E|).
Dependent Paths. In order to calculate the dependence between the selected
nodes and the ones introduced by the dependent functions, the visited paths
can be recorded and use these, already visited paths for connecting the selected
nodes with the original summary. So, in this approximation, instead of finding
the shortest path between the existing summary and each dependent node, we
calculate the shortest path between the extended and the dependent node, which
is already calculated in the previous step (the dependent function). The complex-
ity remains the same with the previous algorithm (O(|Q\TOPK(V)| · |V + E|)),
since only the |Q\TOPK(V)| nodes are considered sequentially for linking them
to the existing summary.

4.2 The Zoom Operator

In this section, we focus on zooming operations, by exploiting the schema graph
as a whole. That is, we introduce the zoom-out and zoom-in operators to produce
more detailed or coarse summary schema graphs. To this end, we consider the
n′ schema nodes with the highest importance in GS , where n′ can be either
greater than n, for achieving a zoom-out, or smaller than n, for achieving a
zoom-in, where n represents the number of the most important nodes in a given
summary.

Definition 5 (Zoom-out operator). Let G′
S = (V ′

S , E′
S) be the summary

schema graph of size n of an RDFS KB V = 〈GS , GI , λ, τc〉. The zoom-
out operator zoomout(G′

S , n′), with n′ > n, returns a connected schema graph
G′

zo = (V ′
zo, E

′
zo), for which:

– G′
zo ⊆ Cl(GS),

– V ′
zo = V ′

S ∪ TOP ∪ VADD, where TOP = TOPn′(V)\V ′
S,

– ∀vi ∈ TOP , ∃vj ∈ V ′
S, such that, ∃path(vi → vj) ∈ G′

zo,
– VADD represents the nodes in G′

zo used only to link the nodes in TOP,
– � G′′

zo = zoomout(G′
S , n′) = (V ′′

zo, E
′′
zo), such that, |V ′′

z o| < |V ′
zo|.

Definition 6 (Zoom-in operator). Let G′
S = (V ′

S , E′
S) be the summary

schema graph of size n of an RDFS KB V = 〈GS , GI , λ, τc〉. The zoom-
in operator zoomin(G′

S , n′), with n′ < n, returns a connected schema graph
G′

zi = (V ′
zi, E

′
zi), for which:

– G′
zi ⊆ G′

S,
– V ′

zi = TOPn′(V) ∪ VADD,
– VADD represents the nodes in G′

zi used only to link the nodes in TOPn′(V),
– � G′′

zi = zoomin(G′
S , n′) = (V ′′

zi, E
′′
zi), such that, |V ′′

zi| < |V ′
zi|.

Exploring RDFS KBs Using Summaries 277

The simplest approach for zooming-in/out, is to calculate from scratch the
TOPn′(V) and then to use the Steiner-Tree algorithm from scratch to link the
selected nodes. However, since we already have an existing summary as a basis
for our zoom operations, we explore the following approximations.

Zoom-In. Remove the nodes in TOPn(V)\TOPn′(V) and their connections
without recalculating the Steiner-Tree algorithm for TOPn′(V) – this might
leave additional nodes in the resulting summary.

Zoom-Out - CHINS. Add the nodes in TOPn′(V)\TOPn(V) and link them
with the existing summary, using the CHINS approximation algorithm.

Zoom-Out - Shortest Paths. Add the nodes in TOPn′(V)\TOPn(V) and
link them with the existing summary, using the Shortest Paths approximation
algorithm.

5 Evaluation and Implementation

To evaluate our approach, we use the version 3.8 of DBpedia1, which is consisted
of 359 classes, 1323 properties and more that 2.3M instances, and offers an inter-
esting use-case for exploration. To identify the quality of our approach, we use a
query log containing 50K user queries provided by the DBpedia SPARQL end-
point for the corresponding DBpedia version. Our goal is to assess the percentage
of the queries that can be answered solely by using the generated schema sum-
mary along with the corresponding instances, i.e. the coverage of the queries
from a schema summary.

Having a summary, we can calculate for each query the percentage of the
classes and properties that are included in the summary. A class/property
appears within a query either directly or indirectly. Directly when the said
class/property appears within a triple pattern of the query. Indirectly for a
class is when the said class is the type of an instance or the domain/range of a
property that appear in a triple pattern of the query. Indirectly for a property
is when the said property is the type of an instance. Having the percentages of
the classes and properties included in the summary, the query coverage is the
weighted sum of these percentages. As our summaries are node-based (they are
generated based on the top-k most important nodes; in zoom we add/remove
important nodes; in extend we add the dependent nodes) the weight on the
nodes is larger than the one on the properties (for our experiments we used 0.8
for nodes and 0.2 for edges).

5.1 Quality - Evaluating the Zoom Operator

In this section, we evaluate the quality of the zoom-out operator. To do that
we start from a summary containing 10% of the initial schema graph, and we
zoom-out progressively by 10%, until we reach the 40% of the schema graph.

1 http://wiki.dbpedia.org/.

http://wiki.dbpedia.org/

278 G. Troullinou et al.

Having the coverage of each query, we can calculate the average coverage for
all queries in our log. In essence, an average coverage of 70% means that on
average the 70% of the queries in the query log can be answered only using
the summary accompanied with its corresponding instances. As when zooming-
out, the next more important nodes are added to the summary, we expect that
the average coverage of all queries should grow accordingly. The results are
shown in Fig. 2, whereas the actual improvement is shown in Fig. 3. As we can
observe, indeed as the percentage of the summary increases, more queries are
covered by the result summary. In addition, HITS and Betweenness perform
better, competing each other in all cases. Specifically, HITS presents a more
stable behavior with the best coverage from the smallest zoom-out percentage,
while Betweenness performs better from the 20% zoom-out and on. PageRank is
always worse than HITS and Betweenness. As a baseline we added the Random
bar as well, where we randomly select nodes from the schema graph (connecting
them with the corresponding measure). Even if some-times randomly adding
more nodes improves a bit the results, overall, this is the approach with the
worst performance, clearly showing the benefits of our approach. Regarding the
actual improvement, we observe that CHINS and Shortest Paths return results of
the same quality, with Shortest Paths being slightly better in some cases. In this
sense, Betweenness appears to be the most stable measure with improvements
around 35% to 45%, while PageRank shows a good improvement, around 35%,
for cases in which a 40% zoom-out is performed. Due to space limitations, we
omit the results of the zoom-in operator that presents similar behavior.

Fig. 2. Zooming-out using various centrality measures and approximation algorithms
CHINS (CH) and Shortest Paths (SP).

Exploring RDFS KBs Using Summaries 279

Fig. 3. Improvement on zooming-out using various centrality measures and approxi-
mation algorithms CHINS (CH) and Shortest Paths (SP).

5.2 Quality - Evaluating the Extend Operator

Next, we evaluate the extend operator. To do that, we start again from a sum-
mary containing 10% of the initial schema graph, and we extend progressively
requesting to extend 10% of the available nodes in the summary, until we reach
40% of the initial summary schema graph being extended.

As now we are interested in getting information relevant to particular selected
nodes, and not for the whole schema graph, we calculate the average coverage
for the queries including only classes from the selected part to be extended. In
this case, an average coverage of 70% means that on average the 70% of the
queries in the query log, including one of the extended nodes, can be answered
only using the summary accompanied by its corresponding instances. As when
more nodes related to the extended ones, are added to the summary, we expect
that the average coverage of those queries should grow accordingly. The results
are shown in Fig. 4, whereas the actual improvement is shown in detail in Fig. 5.

Overall, we observe here that indeed the more nodes we extend, the more
“local” queries are covered. In addition, the Shortest Paths algorithm provides
the best results in all cases, followed by CHINS. This is reasonable since the
Shortest Paths algorithm targets at identifying the shortest path between the
dependent nodes and the available summary, and as such, it prioritizes nodes
closest to the ones to be extended. On the other hand, the Dependent paths
algorithm does a minimum effort trying to connect the dependent nodes to the
existing summary and this has a direct effect on the quality of the produced
summary. PageRank presents the best coverage, on average around 68% to 78%,
while HITS follows with coverage around 65% to 73%. In turn, Betweenness has
a coverage around 59% to 72%, while, as expected, Random presents the worst
behavior with coverage from 35% to 40%. Overall, even if PageRank has the
best performance, we observe that Betweenness has the best improvement.

280 G. Troullinou et al.

Fig. 4. Extend using HITS and Betweenness, and the approximation algorithms ran-
dom (RA), CHINS (CH), Shortest Paths (SP) and Dependent (DE).

Fig. 5. Improvement on extending using HITS and betweenness, and the approximation
algorithms random (RA), CHINS (CH), Shortest Paths (SP) and Dependent (DE).

5.3 The RDFDigest+ System

All aforementioned measures and algorithms are available online on the RDFDi-
gest+ system2, a novel system that enables effective and efficient RDFS KB
exploration using summaries. An instance of RDFDigest+ is shown in Fig. 6.

2 http://rdfdigest.ics.forth.gr.

http://rdfdigest.ics.forth.gr

Exploring RDFS KBs Using Summaries 281

Fig. 6. The RDFDigest+ system.

Users can upload their own datasets, and RDFDigest+ produces a visual
summary identifying and linking the most important nodes in the KB. In the pre-
sented summary graph, the size of a node depends on its importance. By clicking
on a node, additional metadata (e.g. the number of instances, and the connected
properties and instances) are provided to enhance the ontology understanding.
Further exploration of the data source is allowed by clicking on the details (on
the left) of the selected class and properties. When clicked, its instances and
connections appear in a pop-up window. In addition, exploration of the data
source is allowed by double-clicking on a node to extend the summary on that
specific node. Besides a specific node, a whole area can be selected, requesting
more detailed information to be presented regarding the selected nodes. The
summary can be zoomed-in and zoomed-out in order to present more detailed
or more generic information regarding the whole summary. Finally, the user is
able to download the summary as a valid RDFS document.

6 Related Work

According to [20], an effective ontology exploration system should provide a
number of core functionalities, such as providing a high level overview of the
data, zooming in specific parts of the data and filtering out irrelevant parts.

Ontology Visualization Systems. Towards this direction, toolkits like Pro-
tege [16], TopBraid Composer [2] and Neon [8], include visualization plug-ins
using the node-link diagram paradigm to represent entities in an ontology and
their taxonomy to domain relationships. In addition, many plug-ins, like OwlViz
in Protege and Graph View in TopBraid, allow navigating the ontology hierarchy
by expanding and hiding nodes.

SpaceTree [18] follows the node-link paradigm as well, but is able to maxi-
mize the nodes on display by assessing the available display space. It also avoids
clutter by utilizing informative preview icons giving the user an idea of the size
and shape of the corresponding subtrees. CropCircles [28] on the other hand,

282 G. Troullinou et al.

uses geometric containment as an alternative to classing node-link displays sac-
rificing space to make it easier for users to understand the topological relations
in an ontology. Hybrid solutions, like Jambalaya [23] and Knoocks [12], combine
containment-based and node-link approaches by providing alternative integrated
views of the two paradigms, whereas other approaches, like [7], are based on the
notion of distorting the view of the presented graph to combine context and
focus. The node on focus is usually the central one and the rest of the nodes
are presented around it, reduced in size until they reach a point that they are
no longer visible. Finally, WebVOWL [14] implements the Visual Notation for
OWL Ontologies (VOWL) by providing graphical depictions for elements of the
Web Ontology Language (OWL) that are combined to a force-directed graph
layout representing the ontology.

However, all aforementioned approaches in essence, use geometric techniques
to provide the necessary abstraction, such as hyperbolic or force-directed graphs,
geometric containment or miniature sub-trees. However, we argue that an ideal
visualization approach should start with the most important elements of the
ontology allowing then progressively the users to explore other less important
areas.

Ontology Summarization Systems. Besides pure ontology visualization sys-
tems, ontology summarization systems have adopted as well zooming functional-
ities. An example is KC-Viz [15], which focuses on the key concepts of the ontol-
ogy based on psycholinguistic criteria. Our system on the other hand, allows
users to select multiple measures for identifying importance. KC-Viz provides a
set of navigation and visualization mechanisms, including flexible zooming into
and hiding of specific parts of an ontology. However, this work is limited in selec-
tively expanding the hierarchy and the connections of selected nodes, whereas
in our case besides zooming, we also visualize dependent nodes enabling further
exploration of the data source.

[13] supports zoom, filter, details-on-demand, relate, history and extract
operations using hierarchical connected circles to provide overview, indented
trees to relate different concepts and node-links for filtering and details on-
demand, enabling the users to choose the level of semantic zoom. However, the
operations performed are not formalized, the corresponding algorithms are not
presented and an evaluation is completely missing from the aforementioned work.

[10] proposes a tool that supports three visual exploration options. The first
one, named landmark view, provides an overview of the class (property) taxon-
omy giving only representative classes in the hierarchy - selected automatically
by a set of statistics measures and user preferences. Then, a user can further
explore a specific area by extending (or collapsing) branches. The local view
displays the full hierarchy of a set of classes (properties) whereas the axiom
view, provides information about a selected class and its connectivity in the
ontology. Compared to our work, this approach is limited mostly on hierarchical
structures.

Exploring RDFS KBs Using Summaries 283

7 Conclusions

In this paper3 we present a novel platform enabling KB exploration opera-
tions over summaries. We introduce the zoom and extend operations, focusing
on the number of important nodes of the generated summary, and on getting
more detailed information for selected schema summary nodes, respectively. We
explore various approximation algorithms showing that we can calculate effi-
ciently the aforementioned operations without sacrificing the quality of the result
summary. In fact, we show that the Shortest Paths algorithm provides an optimal
trade-off between efficiency and quality.

To the best of our knowledge RDFDigest+ is currently the only system
enabling such exploration operations over summaries. As future work, we intent
to enable KB exploration at the instance level as well, going from schema sum-
maries to instance summaries, enabling zoom and extend operations both as
schema and instance level, or exploiting big data frameworks to speed the sum-
marization process [4]. Moreover, given the dynamically evolving datasets we
handle, users are often interested in the state of affairs on previous versions of
the datasets, along with their corresponding summaries. To address this need,
archiving policies [22] typically store adequate deltas between versions, which
are generally small, but this would create the overhead of generating versions
at query time. As a direct extension of our system, we will study the trade-offs
involved when focusing on archiving dynamic RDF summaries.

References

1. RDF Schema 1.1. http://www.w3.org/TR/rdf-schema/. Accessed Apr 2018
2. TopBraid Composer. https://www.topquadrant.com/tools/ide-topbraid-compos

er-maestro-edition/. Accessed Oct 2017
3. Du, D.-Z., Smith, J.M., Rubinstein, J.H. (eds.): Advances in Steiner Trees. Kluwer

Academic Publishers, Dordrecht (2000)
4. Agathangelos, G., Troullinou, G., Kondylakis, H., Stefanidis, K., Plexousakis, D.:

RDF query answering using apache spark: review and assessment. In: ICDE (2018)
5. Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10(3–4), 222–262 (2014)
6. Christophides, V., Efthymiou, V., Stefanidis, K.: Entity Resolution in the Web of

Data. Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan
& Claypool Publishers, San Rafael (2015)

7. de Souza, K.X.S., dos Santos, A.D., Evangelista, S.R.M.: Visualization of ontologies
through hypertrees. In: CLIHC (2003)

8. Erdmann, M., Waterfeld, W.: Overview of the neon toolkit. In: Ontology Engi-
neering in a Networked World, pp. 281–301 (2012)

9. Fafalios, P., Iosifidis, V., Stefanidis, K., Ntoutsi, E.: Multi-aspect entity-centric
analysis of big social media archives. In: TPDL (2017)

10. Jiao, Z.L., Liu, Q., Li, Y., Marriott, K., Wybrow, M.: Visualization of large ontolo-
gies with landmarks. In: GRAPP and IVAPP (2013)

11. Kondylakis, H., Troullinou, G., Stefanidis, K., Plexousakis, D.: Beyond summaries
for ontology exploration. ERCIM News 2018(113) (2018)

3 The work was partially supported by the TEKES Finnish project Virpa D. and by
the iManageCancer EU project (H2020, #643529).

http://www.w3.org/TR/rdf-schema/
https://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/
https://www.topquadrant.com/tools/ide-topbraid-composer-maestro-edition/

284 G. Troullinou et al.

12. Kriglstein, S., Wallner, G.: Knoocks - a visualization approach for OWL lite ontolo-
gies. In: CISIS (2010)

13. Kuhar, S., Podgorelec, V.: Ontology visualization for domain experts: a new solu-
tion. In: International Conference on Information Visualisation, IV (2012)

14. Lohmann, S., Link, V., Marbach, E., Negru, S.: WebVOWL: web-based Visualiza-
tion of Ontologies. In: Lambrix, P. (ed.) EKAW 2014. LNCS (LNAI), vol. 8982, pp.
154–158. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17966-7 21

15. Motta, E., Peroni, S., Li, N., d’Aquin, M.: Kc-Viz: a novel approach to visualizing
and navigating ontologies. In: EKAW (2010)

16. Musen, M.A.: The protégé project: a look back and a look forward. AI Matters
1(4), 4–12 (2015)

17. Pappas, A., Troullinou, G., Roussakis, G., Kondylakis, H., Plexousakis, D.: Explor-
ing importance measures for summarizing RDF/S KBs. In: ESWC (2017)

18. Plaisant, C., Grosjean, J., Bederson, B.B.: SpaceTree: supporting exploration in
large node link tree, design evolution and empirical evaluation. In: InfoVis (2002)

19. Roussakis, Y., Chrysakis, I., Stefanidis, K., Flouris, G., Stavrakas, Y.: A flexible
framework for understanding the dynamics of evolving RDF datasets. In: Arenas,
M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 495–512. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-25007-6 29

20. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information
visualizations. In: IEEE Symposium on Visual Languages (1996)

21. Peroni, S., Motta, E., d’Aquin, M.: Identifying key concepts in an ontology, through
the integration of cognitive principles with statistical and topological measures. In:
Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 242–256.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89704-0 17

22. Stefanidis, K., Chrysakis, I., Flouris, G.: On designing archiving policies for evolv-
ing RDF datasets on the web. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.)
ER 2014. LNCS, vol. 8824, pp. 43–56. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-12206-9 4

23. Storey, M.D., Noy, N.F., Musen, M.A., Best, C., Fergerson, R.W., Ernst, N.A.:
Jambalaya: an interactive environment for exploring ontologies. In: IUI (2002)

24. Troullinou, G., Kondylakis, H., Daskalaki, E., Plexousakis, D.: RDF digest: efficient
summarization of RDF/S KBs. In: Gandon, F., Sabou, M., Sack, H., d’Amato, C.,
Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp.
119–134. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18818-8 8

25. Troullinou, G., Kondylakis, H., Daskalaki, E., Plexousakis, D.: RDF digest: ontol-
ogy exploration using summaries. In: ISWC (2015)

26. Troullinou, G., Kondylakis, H., Daskalaki, E., Plexousakis, D.: Ontology under-
standing without tears: the summarization approach. Semant. Web 8(6), 797–815
(2017)

27. Voß, S.: Steiner’s problem in graphs: heuristic methods. Discrete Appl. Math.
40(1), 45–72 (1992)

28. Wang, T.D., Parsia, B.: CropCircles: topology sensitive visualization of OWL class
hierarchies. In: Cruz, I. (ed.) ISWC 2006. LNCS, vol. 4273, pp. 695–708. Springer,
Heidelberg (2006). https://doi.org/10.1007/11926078 50

29. Wu, G., Li, J., Feng, L., Wang, K.: Identifying potentially important concepts and
relations in an ontology. In: Sheth, A., et al. (eds.) ISWC 2008. LNCS, vol. 5318,
pp. 33–49. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88564-
1 3

30. Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence
graph. In: WWW (2007)

https://doi.org/10.1007/978-3-319-17966-7_21
https://doi.org/10.1007/978-3-319-25007-6_29
https://doi.org/10.1007/978-3-540-89704-0_17
https://doi.org/10.1007/978-3-319-12206-9_4
https://doi.org/10.1007/978-3-319-12206-9_4
https://doi.org/10.1007/978-3-319-18818-8_8
https://doi.org/10.1007/11926078_50
https://doi.org/10.1007/978-3-540-88564-1_3
https://doi.org/10.1007/978-3-540-88564-1_3

What Is the Cube Root of 27?
Question Answering Over CodeOntology

Mattia Atzeni and Maurizio Atzori(B)

Math/CS Department, University of Cagliari,
Via Ospedale 72, 09124 Cagliari, CA, Italy

m.atzeni38@studenti.unica.it, atzori@unica.it

Abstract. We present an unsupervised approach to process natural lan-
guage questions that cannot be answered by factual question answering
nor advanced data querying, requiring instead ad-hoc code generation
and execution. To address this challenging task, our system, AskCO, per-
forms language-to-code translation by interpreting the natural language
question and generating a SPARQL query that is run against CodeOn-
tology, a large RDF repository containing millions of triples representing
Java code constructs. The query retrieves a number of Java source code
snippets and methods, ranked by AskCO on both syntactic and semantic
features, to find the best candidate, that is then executed to get the cor-
rect answer. The evaluation of the system is based on a dataset extracted
from StackOverflow and experimental results show that our approach is
comparable with other state-of-the-art proprietary systems, such as the
closed-source WolframAlpha computational knowledge engine.

Keywords: Question answering over linked data
Natural language programming · Semantic parsing · Machine reading
Language-to-code

1 Introduction

Question Answering over Linked Data and ontologies allows leveraging struc-
tured data and Natural Language Processing to give a precise answer to the
input provided by the end user. However, most of the information available in
the Web is organized in the form of unstructured or semi-structured data, thereby
being difficult to be automatically processed by such approaches. A paradigmatic
example is represented by massive open source code repositories, where source
code is not readily available to be queried as Linked Open Data, despite the
great potential for the development of computational knowledge engines capa-
ble of leveraging this impressive amount of information. To overcome this issue,
we have recently introduced CodeOntology1 [1,2], as a resource aimed at allow-
ing the adoption of the Semantic Web technology stack within the domain of

1 http://codeontology.org.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 285–300, 2018.
https://doi.org/10.1007/978-3-030-00671-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_17&domain=pdf
http://codeontology.org

286 M. Atzeni and M. Atzori

software development and engineering. CodeOntology consists of two main con-
tributions (i) an ontology modeling object-oriented code constructs and (ii) a
parser which is capable of analyzing Java source code and serializing it into RDF
triples. CodeOntology also includes a dataset containing millions of RDF triples
extracted from OpenJDK [3].

Following this research line, in this paper we introduce an algorithmic app-
roach that addresses the task of Natural Language Programming by employ-
ing CodeOntology for Question Answering over source code. Hence, we target
a Question Answering problem where the answer to the input question is not
directly available in the data, but the dataset contains the information that is
needed to compute the correct answer. This challenging task is accomplished
by performing an unsupervised semantic parsing of natural language utterances
into a Java source code, which can be automatically executed to retrieve the
answer to the input question.

We discuss two approaches: (i) a fast coarse-grained approach which only
supports natural language commands corresponding to the invocation of a single
method, and (ii) a fine-grained approach which is based on dependency parsing
and is capable of tagging substrings of the input question with entities from
CodeOntology, thereby supporting the execution of more complex expressions,
involving the invocation of multiple methods. Within the coarse-grained app-
roach, we propose a simple technique to rank entities available in CodeOntology
(specifically, Java methods), based on syntactic and semantic features. On the
one hand, the first approach is aimed at providing a natural language interface
to Java source code, focusing on applications for developers, such as Computer
Assisted Coding tools pluggable within IDEs. Hence, we assume that the user
can specify a description of the method to be invoked and the actual arguments.
These arguments can be of any arbitrary type, including user-defined classes. On
the other hand, the fine-grained approach is aimed at providing a computational
knowledge engine for Question Answering and other end-user applications, such
as speech-driven tools like Amazon Alexa. Hence, we assume the input is a sin-
gle natural language question and the actual arguments are provided within the
question as literals, thereby limiting the type of the parameters that the user
can effectively specify.

Experimental results are based on a dataset extracted from StackOverflow
and show that our approach is comparable with state-of-the-art systems, such as
the proprietary closed-source WolframAlpha computational knowledge engine.
Thus, the main contributions of this work are:

– we introduce an unsupervised approach capable of mapping natural language
utterances into Java source code, by leveraging the possibility of extracting
Linked Data from any Java project;

– we propose a technique to rank entities from CodeOntology (Java methods)
based on syntactic and semantic features;

– we provide a dataset derived from simple questions extracted from Stack-
Overflow, to evaluate the performances of our system2.

2 available at: https://doi.org/10.6084/m9.figshare.6071663.

https://doi.org/10.6084/m9.figshare.6071663

What Is the Cube Root of 27? Question Answering Over CodeOntology 287

We remark that, while the paper focuses on OpenJDK methods only, the
resulting system, that we called AskCO, is general enough to be applied with
any custom set of Java repositories.

2 Related Work

Natural language represents certainly one of the easiest ways to interact with a
computer for humans. In Question Answering over Linked Data (QALD), indeed,
natural language questions are translated into SPARQL queries to find fac-
tual information or more advanced statistics from, e.g., datacubes [4]. Although
falling in the area of QALD, our work focuses on questions for which no answer
can be found by only querying a repository, since the correct answer needs to be
computed by generating and executing code.

In this sense, this work resembles more closely related approaches to natu-
ral language querying in software engineering. A large body of work has been
done to allow software engineers to manage information about large software
systems. For instance, LaSSIE [5] was a prototype tool which made use of a
frame-based description language, as well as explicit knowledge representation
and reasoning, to address the problem of discovering and learning new informa-
tion about an existing system. LaSSIE was also embedded with a simple natural
language interface based on a taxonomy of the domain and on a lexicon, which
included the words known to the system. This work has inspired several more
recent research projects, such as [6], where Semantic Web technologies have been
applied to support guided-input natural language queries concerning static source
code information. The presented approach allows importing knowledge about
the evolution of a software system into a RHDB (Release History Database),
which is augmented with ontological information on source code. Although sim-
ilar to our work, the expressiveness of this approach is in fact limited by the
kind of questions it supports, as it relies on Ginseng [7] to constrain the input
and answer quasi-natural language queries by leveraging a multi-level grammar
which defines the structure of supported sentences. Similarly, in [8] an unam-
biguous and controlled subset of natural language with a restricted grammar
and a domain-specific vocabulary is used to run queries for static information
on source code. On the other hand, more advanced approaches have been devel-
oped to support unconstrained natural language queries. In [9], indeed, natural
language processing (NLP) techniques are applied to translate free questions to
concrete parameters of a third-party query engine.

All the approaches outlined so far are mainly aimed at retrieving static infor-
mation like specific method calls or write access to certain fields. Our technical
contribution describes instead a novel algorithm which brings together NLP and
Semantic Web technologies to translate natural language into object-oriented
source code. Several research prototypes have been developed to enable the
automatic understanding of a natural language description of a program. For
instance, Metafor [10], based on concepts from Programmatic Semantics [11],
is capable of generating class descriptions with attributes and methods. How-
ever, its expressiveness is still limited, in the sense that it does not feature the

288 M. Atzeni and M. Atzori

possibility of processing arbitrary English statements. Instead, it can parse a
reasonably expressive subset of the English language, to create scaffolding code
fragments that can be used to assist the development process. In this sense, it is
deeply different from our approach, which aims at mapping any natural language
question into the execution of methods extracted from CodeOntology.

More recently, in 2017, SemEval hosted an ambitious challenge [12], aiming
at supporting the interaction between users and software APIs, micro-services
and applications, using natural language. Most of the work in this area has
focused on supervised approaches [13], thereby requiring a dataset mapping nat-
ural language to a formal meaning representation. However, this task is different
from any previous work related to semantic parsing of natural language com-
mands, as it involves generic programming scenarios and a more comprehensive
knowledge base of possible actions. A related problem was also addressed in [14],
which targeted the creation of an if-this-than-that recipe on the IFTTT3 plat-
form. The task outlined within the SemEval competition, however, is even more
challenging, as it is not limited to if-then rules, and it also involves instantiat-
ing parameter values. Nevertheless, both approaches are placed in a simplified
landscape with respect to our system, which aims at mapping natural language
utterances into a real-world and Turing-equivalent programming language.

3 Coarse-Grained Approach

This section describes the coarse-grained approach, which is meant to allow the
execution of Java methods, given a natural language description of the intended
behavior. The output of such approach is a ranking of the methods in the dataset,
based on a metric involving both syntactic and semantic measures. This approach
is preliminary to the fine-grained one, which is instead designed to answer more
complex questions.

3.1 A Natural Language Interface to OpenJDK

Although CodeOntology already features the possibility of querying source code
in a semantic framework powered by the Web of Data, this capability is in fact
limited by the complexity of SPARQL queries. Hence, the coarse-grained app-
roach is aimed at providing an easy-to-use and intuitive natural language inter-
face to the entities made available by CodeOntology. We target a RDF repository
extracted from OpenJDK 8 [3], containing millions of RDF triples about struc-
tural information on source code, actual source code as literals, comments, and
semantic links to DBpedia [15] resources.

In particular, we want to allow the end-user to remotely search and execute
methods available in the dataset, without necessarily knowing the signature of
the method, but only its intended behavior. Thus, we assume that the end-user
can provide: (i) a natural language description of the method; (ii) an unsorted

3 https://ifttt.com/.

https://ifttt.com/

What Is the Cube Root of 27? Question Answering Over CodeOntology 289

list of the actual parameters, optionally including, if the method is not static,
the target instance of the method invocation; (iii) the expected return type.
The system should then run a SPARQL query on the RDF dataset, search-
ing for methods from OpenJDK, whose signature is compatible with the values
specified by the user. The retrieved results are subsequently ranked to select
the method which most closely matches the natural language description. The
selected method is then invoked on the specified input parameters, and the result
is then returned to the user, along with the ranking produced by the system.
Figure 1 shows the result of the application of the ranking process within the
coarse-grained approach.

Fig. 1. Example of a simple application of the coarse-grained approach.

3.2 Method Ranking

The ranking of the methods in the dataset relies on the following attributes: (i)
the name of the method; (ii) the Javadoc comment associated with the method;
(iii) the name of the declaring class; (iv) semantic links to DBpedia, already
provided by CodeOntology. Several similarity measures are used to produce the
final ranking. Such measures are used both at syntactic and semantic level.

Syntactic measures are based on the name of the method, the name of the
declaring class and code comments. In particular, the natural language descrip-
tion of the behavior of the method is pre-processed using a standard NLP pipeline
which performs sentence splitting, tokenization and lemmatization. Next, we
compute the following measures:

– LS: normalized Levenshtein similarity against the name of the method;
– COM: n-gram overlap against the Javadoc comment related to the method;
– CN: n-gram overlap against the name of the declaring class.

More precisely, given two sets S1 and S2 of consecutive n-grams from two dif-
ferent sentences, the n-gram overlap is defined as:

ngo(S1, S2) = 2 ·
(

|S1|
|S1 ∩ S2|

+
|S2|

|S1 ∩ S2|

)−1

.

290 M. Atzeni and M. Atzori

Thus, the n-gram overlap is computed as the harmonic mean of the degree to
which the second sentence covers the first and the degree to which the first
sentence covers the second. In practice, for n-grams we set n = 1. On the other
hand, the Levenshtein distance dL between two strings is defined as the minimum
number of single-character edits, required to change one string into the other.
Since we need a similarity value in the range between 0 and 1, we compute the
normalized Levenshtein similarity as:

sL(s1, s2) = 1 − dL(s1, s2)
max{|s1|, |s2|}

.

Levenshtein distance and n-gram overlap are used to match methods from
OpenJDK and the natural language command provided by the user at a syntac-
tic level. To incorporate semantics into the ranking process, we leverage DBpedia
links readily available in the dataset and word embeddings to comute the fol-
lowing features:

– NED: ratio of the DBpedia links shared by the comment of the method and
the natural language command;

– W2V: cosine similarity between the mean vector associated with the com-
ment of the method and the mean vector associated with the natural language
command.

More precisely, we make use of TagMe [16], to perform Named Entity Disam-
biguation on the input text and retrieve a set of links to DBpedia resources.
Each method available in the dataset provides DBpedia links generated using
the same approach, applied on the Javadoc comment. Hence, we use the ratio
of the shared links as a measure of semantic relatedness between each retrieved
method and the input command.

Moreover, we apply a Word2Vec [17] pre-trained model to retrieve 300-
dimensional word vectors from each word in both the natural language spec-
ification provided by the user and the comment associated with methods in
CodeOntology. The cosine similarity between the mean vector corresponding to
the input command and the mean vector associated with each Java method is
used as another semantic measure. The final score applied within the ranking
process is the average value of the syntactic and semantic measures described so
far.

4 Fine-Grained Approach

As we have already mentioned, the fine-grained approach is aimed at dealing with
more complex natural language utterances, possibly involving the execution of
more methods. Given a question in natural language, this approach is capable
of parsing the input question into a Java source code which gets executed to
produce the desired answer. This section details how this approach actually
works and how it can be used for question answering over source code.

What Is the Cube Root of 27? Question Answering Over CodeOntology 291

4.1 Dependency Graph Unfolding

Given a natural language question, the fine-grained approach starts by apply-
ing Stanford CoreNLP [18] to perform dependency parsing. We assume that the
question provided by the user may include primitive literals, such as string liter-
als, integers, Booleans, and parameters of type double. Hence, before parsing the
input sentence, care must be taken to replace string literals with a placeholder, in
order to prevent the dependency parser from processing also actual arguments.
The output of such process is the graph of the dependencies, as shown in Fig. 2.

Fig. 2. Result of dependency parsing on a simple input question.

This graph is unfolded into a tree and pruned to remove nodes that are not
useful for our purposes. In particular, we allow merging two nodes, depending on
the nature of the dependency between the corresponding words. For instance,
multiword expressions (MWEs) are merged into a single node, and, similarly,
adjectival or adverbial modifiers are joined with the word they refer to. We also
allow removing leaf nodes such as conjunctions, determiners and punctuation.

The result is further post-processed, to ensure that all the literal arguments
specified by the user correspond to some leaf node of the tree and that no subtree
is repeated. Figure 3 shows the result of the application of this approach to the
graph depicted in Fig. 2.

4.2 Mapping to a Feasible Execution Tree

The unfolding of the dependency graph results in a tree, such that the set of
nodes N can be partitioned into two subsets L and M, where (i) L is the subset
of nodes corresponding to literal actual arguments, (ii) M is the subset of nodes
corresponding to natural language utterances denoting a method invocation, (iii)
each node in L is a leaf, (iv) N = L ∪ M and L ∩ M = ∅.

We want to obtain a tree where each node i ∈ M is labeled with a method
ranking Ri, that is a sequence (m1, s1) · · · (mn, sn), such that (i) mi is a Method
for all i = 1 . . . n, (ii) si ∈ [0, 1] for all i = 1 . . . n, (iii) i < j ⇒ si ≥ sj . To do
this, we need to query CodeOntology and rank methods using the coarse-grained
approach. However, we only have to select methods whose signature is compatible
with the structure of the tree and with the actual arguments provided by the
user. Hence, we also label each node with the set of the types it can assume.
To this end, we define the set Types = {t ∈ K | t : T ∧ T 	 Type}, as the
set of all types available in our knowledge base K. Next, we define the function
types : N → 2Types, such that:

292 M. Atzeni and M. Atzori

types(i) =

{
t if i ∈ L and t is the type of i

returnTypes(Ri) if i ∈ M
,

where returnTypes(Ri) can be computed as:

returnTypes(R) =

⎧⎪⎨
⎪⎩

{r} ∪ returnTypes(R′) if R = R′(m, s) and
m has return type r

∅ if R = []
.

To assign these type labels to the nodes, we start from the leaves, as each
node in L can be labeled with the CodeOntology resource associated with its
type. Next, we can recursively label with a set of types also each node in M, by
employing the following approach. We select the nodes such that their children
have already been labeled with a set of types and we query CodeOntology for
methods that are compatible with the specified arguments. The list of arguments
may be unsorted and may also include the target instance of the method invo-
cation. The retrieved methods are then ranked as described in Sect. 3.2 and the
corresponding node is labeled with the set of their return types. Algorithm 1
details the described approach.

Algorithm 1. RankOnTree(i)
1 if i ∈ L then
2 Let t be the type of i
3 types(i) ← {t}
4 else
5 Let l = [l1, . . . , ln] be the list of the children of i

6 foreach lj ∈ l do
7 RankOnTree(lj)
8 end

9 Let t = [t1, ..., tn] be a list such that tj = types(lj) for each lj ∈ l
10 Query CodeOntology for methods whose signature is compatible with t
11 Let Ri be the ranking of the resulting methods, computed using the

coarse-grained approach
12 types(i) ← returnTypes(Ri)

13 end

After applying Algorithm 1 on the result of the dependency graph unfolding,
we obtain a new tree structure, where each node in M is labeled with a ranking
of methods retrieved from CodeOntology. Figure 3 shows an example of such a
tree.

Now, we want to select a method from each ranking, in such a way that the
combination of all the selected methods is feasible, meaning that it corresponds
to compilable Java source code. At the same time, however, we also need to

What Is the Cube Root of 27? Question Answering Over CodeOntology 293

Fig. 3. Mapping to a feasible execution tree.

maximize the total score associated with selected methods. Hence, we have to
solve the following integer linear programming problem, where xij = 1 if the
j-th method in the ranking Ri is selected, and xij = 0 otherwise:

Maximize
∑
i∈M

∑
(mij ,sij)∈Ri

xij · sij (1)

subject to the following constraints: (i) xij ∈ {0, 1}, (ii)
∑

j xij = 1, for all
i ∈ M, 1 ≤ j ≤ |Ri| and (iii) the combination of the selected methods can be
compiled.

If a solution to this problem exists, then we can turn the tree into Java source
code, which gets executed to answer the original question. Moreover, the average
score of selected methods can be interpreted as a measure of the confidence level
about the correctness of the solution. The result of such approach is shown in
Fig. 3, where selected methods have been highlighted.

4.3 Greedy Search

The algorithmic approach described up to this point may fail to return a correct
answer, whenever the tree produced by unfolding the dependency graph cannot
be matched to the Java source code corresponding to the input question. In
particular, we want to improve the algorithm, so that it is robust to two kinds
of situations: (i) the tree resulting from the process described in Sect. 4.1 is too
detailed, meaning that it has more nodes corresponding to method invocations
than needed, or (ii) the dependency graph produced by Stanford CoreNLP con-
tains some errors, which can be detected by leveraging knowledge about methods
in CodeOntology and typing. There are several ways to extract a tree from the
input sentence and, for each tree, several combinations of methods need to be
explored. This creates an intractable search space for possible solutions, and,
subsequently, we cannot afford an exhaustive search. Thus, we apply a heuristic
approach that, starting from the output of the process described in Sect. 4.2,

294 M. Atzeni and M. Atzori

performs a greedy search for better solutions. We define the following move
operators that are used to turn a tree into a different configuration:

– Merge: two adjacent nodes in M are merged, the natural language utterances
corresponding to such nodes are joined and the children of the newly created
node are the union of the children of the merged nodes;

– Push: a node in M is pushed down or up a level in the tree, along with all
its children;

– MoveLiterals: the children in L of a node in M are moved to a different
node in M.

Intuitively, the first move allows the algorithm to deal with trees where a single
method invocation is spread across multiple nodes, while the other operators are
used to handle errors in dependency parsing.

We define the distance between two trees T and T ′, denoted as TED(T , T ′),
as the minimum number of moves required to turn one tree into the other. Next,
we denote the normalized distance as:

NTED(T , T ′) =
TED(T , T ′)

max{|T |, |T ′|} ,

where |T | is the total number of nodes in T .
Starting from an initial tree T0, produced as described in Sect. 4.2, the algo-

rithm evaluates all the possible defined moves and applies a greedy search with
a Best-Improvement strategy, in order to maximize, under the same constraints
defined for Eq. 1, the following objective function:

z(Tk) =
1

|Mk|
·

∑
i∈Mk

∑
(mij ,sij)∈Rk

i

xij · sij − λ · NTED(Tk, T0), (2)

Fig. 4. High-level view of the architecture of the system.

What Is the Cube Root of 27? Question Answering Over CodeOntology 295

where λ ∈ [0, 1] is a constant, Mk is the set of non-literal nodes in Tk and Rk
i

is the method ranking associated with node i in Tk. Overall, Eq. 2 is structured
as Eq. 1, with a penalization term which decreases the objective value for trees
that are too different from the original tree T0. In practice, we set λ to 0.5.
The algorithm stops when a local optimum is reached and no move can be
applied to improve the objective value. Figure 4 shows a high-level view of the
architecture of the system, which is available on GitHub at https://github.com/
codeontology/question-answering.

5 Experiments

This section provides an evaluation for both the coarse-grained and the fine-
grained approaches. Experimental results show that both techniques can be effec-
tively applied on a RDF dataset extracted from OpenJDK 8 [3], with promising
results.

5.1 Method Ranking Evaluation

The system implemented for the coarse-grained approach aims at retrieving and
ranking Java methods defined within the OpenJDK 8 source code, given a natu-
ral language description of the behavior of the method. Providing an evaluation
for this coarse-grained ranking of Java methods is challenging, because we are not
aware of any dataset pairing natural language commands, with a corresponding
set of relevant methods from OpenJDK. Hence, we have extracted a benchmark
dataset containing simple questions discussed on StackOverflow4.

The dataset has been generated by retrieving the most popular questions
about the Java programming language, which have been manually filtered to
select only the top 122 questions that can be answered with the invocation of a
single method from OpenJDK.

For some questions, we may have more than one relevant method, so
the dataset has been further manually enriched with missing methods. For
instance, the natural language command “convert a string to an integer” is
associated to two methods, namely the method java.lang.Integer.parseInt
(java.lang.String) and the method java.lang.Integer.valueOf(java.
lang.String).

Overall, for more than 80% of the questions there is only one relevant method,
while some question has even 3 or 4 relevant methods. The dataset is available
on figshare5 under Creative Commons Attribution 4.0 license.

We experiment several combinations of the syntactic and semantic features
defined in Sect. 3.2. Table 1 reports the experimental results obtained for the
coarse-grained approach. We evaluate the performance of the system based on
the Mean Average Precision (MAP) obtained by the produced rankings. How-
ever, it is crucial that the first method in the ranking is correct, as it is invoked
4 https://stackoverflow.com/.
5 https://doi.org/10.6084/m9.figshare.6071663.

https://github.com/codeontology/question-answering
https://github.com/codeontology/question-answering
https://stackoverflow.com/
https://doi.org/10.6084/m9.figshare.6071663

296 M. Atzeni and M. Atzori

by the coarse-grained system. Thus, we also compute the precision at 1 for each
ranking, and we report the mean result in Table 1 (MAP@1).

Table 1. Experimental results on method ranking

Features MAP@1 MAP

Syntactic features LS 0.697 0.776

LS + CN 0.713 0.785

LS + COM 0.861 0.891

LS + CN + COM 0.869 0.897

Semantic features NED 0.607 0.714

W2V 0.738 0.818

W2V + NED 0.754 0.822

Syntactic + Semantic features LS + W2V 0.795 0.852

LS + W2V + NED 0.803 0.861

LS + CN + COM + W2V 0.902 0.921

LS + CN + COM + W2V + NED 0.902 0.923

As we can see, the best results are obtained by boosting syntactic features
with semantics. The coarse-grained approach to the ranking of Java methods,
in this case, achieves a Mean Average Precision of 0.923. At the same time, the
system is capable of finding and invoking the correct method for the majority
of the natural language commands available in the dataset, obtaining a MAP@1
of 0.902.

5.2 Question Answering Evaluation

Experiments on the ranking of Java methods provide a partial evaluation also
for the fine-grained approach, as method ranking is the most important step for
parsing natural language questions involving the invocation of multiple meth-
ods. However, to provide a further evaluation of our fine-grained system, we
perform experiments on another benchmark dataset6 we created, containing 120
questions on mathematical expressions and string manipulation. We can classify
each question in the dataset by the number of methods required to provide the
correct answer. We obtain that the dataset contains:

– 16 questions requiring the invocation of 1 method;
– 63 questions requiring the invocation of 2 methods;
– 36 questions requiring the invocation of 3 methods;
– 5 questions requiring the invocation of 4 methods.

Hence, the majority of the questions involves the invocation of 2 methods and,
on average, 2.25 methods per question are required.
6 available online at: https://doi.org/10.6084/m9.figshare.6071729.

https://doi.org/10.6084/m9.figshare.6071729

What Is the Cube Root of 27? Question Answering Over CodeOntology 297

We apply a threshold t ∈ [0, 1] on the objective value defined by Eq. 2,
in order to detect questions that our system is not able to process correctly.
When t = 0, then the system will provide an answer to all questions in the
dataset, while t = 1 means that the system basically refuses to process any
question. Figure 5 summarizes the performances of the system in response to
changes in the value of the threshold. As we can see, when t = 0 the system
is capable of answering correctly 91% of the questions in the dataset. However,
we can increase precision over processed questions using a higher threshold. In
particular, setting a threshold t = 0.15 allows to get a precision over processed
questions of 0.94, while leaving the global result unchanged. When precision over
processed questions eventually reaches 1, then global precision equals the rate
of processed questions, as clearly shown in Fig. 5.

Fig. 5. Performances of the system for different values of the threshold.

It is also interesting to discuss the average size of the rankings, which con-
tain all methods from OpenJDK whose signature is compatible with the actual
arguments specified in the natural language question. At this remark, we notice
that, on average, the rankings of methods produced by the fine-grained approach
on this dataset contain 246.5 methods. The longest ranking includes 677 meth-
ods, while the shortest one has 24 methods. Hence, the distribution has a high
standard deviation equal to 176.7 methods.

We can compare our approach with the results obtained by the WolframAl-
pha computational knowledge engine7. Of course, our system and WolframAlpha
have different capabilities. On the one hand, WolframAlpha can answer a wide
range of complex open-domain questions, which cannot be answered by simply
invoking methods from OpenJDK. On the other hand, our system is capable of
executing natural language commands which are certainly out of the scope of
WolframAlpha. However, both approaches should be able to process and answer
questions involving mathematical expressions and string manipulation. Table 2
shows the experimental results of the comparison between the systems.

WolframAlpha was able to process 108 out of the 120 questions in the dataset,
achieving a global precision of 0.82 and a precision over processed questions of
7 https://www.wolframalpha.com/.

https://www.wolframalpha.com/

298 M. Atzeni and M. Atzori

Table 2. Experimental results for the fine-grained approach

QA over CodeOntology WolframAlpha

Number of questions 120 120

Processed questions 116 108

Correct answers 109 98

Precision (global) 0.91 0.82

Precision (processed questions) 0.94 0.91

0.91. On the other hand, our approach based on CodeOntology allows processing
116 questions and 109 of such items have been answered correctly. Hence, on this
task, the implemented system outperforms WolframAlpha, reaching a precision
over processed questions of 0.94.

Interestingly, we noticed that WolframAlpha fails in computing the correct
result for some simple queries, as shown in Table 3.

Table 3. Results obtained by WolframAlpha on a set of simple queries

WolframAlpha

Input Interpretation Result

Add 2 to 4 2 + 4 6

Add 2 to the max between 3 and 4 2max{3,4} 16

Add 2 to the sum of 1 and 3 21+3 16

What is the uppercase of “abc”? ToUpperCase[“abc”] "ABC"

Convert “abc” to uppercase ToUpperCase[“Convert \“abc\” to”] "CONVERT\"ABC\"TO"

What is the length of “abcd”? StringLength[“abcd”] 4

Sum 1 to the length of “string” - -

For instance, despite the system is capable of correctly interpreting com-
mands like “Add 2 to 4”, it does not parse successfully slightly more complicated
sentences such as “Add 2 to the max between 3 and 4”.

On the other hand, our approach is able to process correctly the same queries,
as shown in Table 4.

Moreover, we can classify questions depending on whether both the systems,
only one of them or none of them was able to provide the correct answer. Such
categorization is shown in Table 5.

We can use the values reported in Table 5 to perform a McNemar exact test
by comparing the case where the two systems provide discordant results (b and
c), to a binomial distribution with size parameter n = b + c and p = 0.5. The
test shows that there exists a statistically significant difference between the two
systems, with a confidence level of 99.8%.

What Is the Cube Root of 27? Question Answering Over CodeOntology 299

Table 4. Results obtained by our approach on a set of simple queries

AskCO

Input Interpretation Result

Add 2 to 4 Math.addExact(2,4) 6

Add 2 to the max between 3 and 4 Math.addExact(2,Math.max(3,4)) 6

Add 2 to the sum of 1 and 3 Math.addExact(2,Integer.sum(1,3)) 6

What is the uppercase of “abc”? "abc".toUpperCase() "ABC"

Convert “abc” to uppercase "abc".toUpperCase() "ABC"

What is the length of “abcd”? "abcd".length() 4

Sum 1 to the length of “string” Long.sum(1,"string".length()) 7

Table 5. Comparison between AskCO and WolframAlpha

WolframAlpha (correct) WolframAlpha (failed)

AskCO (Correct) a = 97 b = 12 109

AskCO (Failed) c = 1 d = 10 11

98 22 120

6 Conclusion

This paper introduces two approaches for answering end-user questions on the
execution of Java methods. On the one hand, our coarse-grained approach only
allows mapping natural language commands to the execution of a single method,
but it supports arguments of any arbitrary type, including user-defined classes.
On the other hand, the fine-grained approach can handle more complex ques-
tions, possibly requiring the execution of multiple methods. However, the input
of this approach is a single natural language question which includes the actual
arguments as literals, thereby limiting the kinds of the parameters that can
be passed by the user. Overall, experimental results show that the approach is
promising and, subsequently, it can be effectively used for semantic code search
and reuse over CodeOntology.

References

1. Atzeni, M., Atzori, M.: CodeOntology: RDF-ization of source code. In: d’Amato,
C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 20–28. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68204-4 2

2. Atzeni, M., Atzori, M.: CodeOntology: querying source code in a semantic frame-
work. In: 16th International Semantic Web Conference (Posters & Demo) (2017)

3. Atzeni, M., Atzori, M.: CodeOntology OpenJDK8 dataset. Figshare (2017).
https://doi.org/10.6084/m9.figshare.5234878

4. Atzori, M., Mazzeo, G.M., Zaniolo, C.: QA3: a natural language approach to ques-
tion answering over RDF data cubes. Semant. Web J. (2018)

https://doi.org/10.1007/978-3-319-68204-4_2
https://doi.org/10.6084/m9.figshare.5234878

300 M. Atzeni and M. Atzori

5. Devanbu, P.T., Brachman, R.J., Selfridge, P.G., Ballard, B.W.: Lassie - a
knowledge-based software information system. In: 12th International Conference
on Software Engineering, pp. 249–261. IEEE Computer Society Press (1990)

6. Würsch, M., Ghezzi, G., Reif, G., Gall, H.C.: Supporting developers with natural
language queries. In: Proceedings of the 32Nd ACM/IEEE International Confer-
ence on Software Engineering, ICSE 2010, vol. 1, pp. 165–174. ACM (2010)

7. Bernstein, A., Kaufmann, E., Kaiser, C., Kiefer, C.: Ginseng: a guided input natu-
ral language search engine for querying ontologies. In: 2006 Jena User Conference,
Bristol , UK (2006)

8. Panchenko, O., Mller, S., Plattner, H., Zeier, P.D.A.: Querying source code using
a controlled natural language. In: The Sixth International Conference on Software
Engineering Advances, ICSEA 2011, pp. 369–373, June 2011

9. Kimmig, M., Monperrus, M., Mezini, M.: Querying source code with natural lan-
guage. In: 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011) (2011)

10. Liu, H., Lieberman, H.: Metafor: visualizing stories as code. In: 10th International
Conference on Intelligent User Interfaces, IUI. pp. 305–307 (2005)

11. Liu, H., Lieberman, H.: Programmatic semantics for natural language interfaces.
In: Extended Abstracts on Human Factors in Computing Systems. CHI (2005)

12. Sales, J.E., Handschuh, S., Freitas, A.: SemEval-2017 task 11: end-user develop-
ment using natural language. In: 11th International Workshop on Semantic Eval-
uation, pp. 556–564 (2017)

13. Atzeni, M., Atzori, M.: Towards semantic approaches for general-purpose end-user
development. In: 2nd IEEE International Conference on Robotic Computing, IRC,
pp. 369–376 (2018)

14. Quirk, C., Mooney, R., Galley, M.: Language to code: learning semantic parsers
for if-this-then-that recipes. In: 53rd Annual Meeting of the Association for Com-
putational Linguistics, ACL, pp. 878–888 (2015)

15. Lehmann, J.: DBpedia - a large-scale, multilingual knowledge base extracted from
Wikipedia. Semant. Web J. 6(2), 167–195 (2015)

16. Ferragina, P., Scaiella, U.: TAGME: on-the-fly annotation of short text fragments
(by Wikipedia entities). In: 19th ACM International Conference on Information
and Knowledge Management, CIKM, pp. 1625–1628 (2010)

17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119. Curran Associates, Inc. (2013)

18. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.:
The stanford CoreNLP natural language processing toolkit. In: Association for
Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014)

GraFa: Scalable Faceted Browsing
for RDF Graphs

José Moreno-Vega and Aidan Hogan(B)

IMFD Chile & Department of Computer Science, University of Chile,
Santiago, Chile

ahogan@dcc.uchile.cl

Abstract. Faceted browsing has become a popular paradigm for user
interfaces on the Web and has also been investigated in the context
of RDF graphs. However, current faceted browsers for RDF graphs
encounter performance issues when faced with two challenges: scale,
where large datasets generate many results, and heterogeneity, where
large numbers of properties and classes generate many facets. To address
these challenges, we propose GraFa: a faceted browsing system for het-
erogeneous large-scale RDF graphs based on a materialisation strategy
that performs an offline analysis of the input graph in order to identify a
subset of the exponential number of possible facet combinations that are
candidates for indexing. In experiments over Wikidata, we demonstrate
that materialisation allows for displaying (exact) faceted views over mil-
lions of diverse results in under a second while keeping index sizes rela-
tively small. We also present initial usability studies over GraFa.

1 Introduction

The Semantic Web community has overseen the publication of a rich collection of
datasets on the Web according to a variety of proposed standards [12]. However,
current interfaces for accessing such datasets are not generally designed nor
intended for end users to interact with directly. The Semantic Web community
still lacks effective methods by which end users can interact with such datasets;
or as Karger [18] phrases it: “The Semantic Web’s potential to deliver tools that
help end users capture, communicate, and manage information has yet to be
fulfilled, and far too little research is going into doing so.”

On the other hand, faceted search [32]1 has become a familiar mode of inter-
action for many Web users, popularised in particular by e-Commerce websites
like Amazon and eBay. Such interaction is characterised by iteratively refining
the active result-set through filter conditions – called facets – typically defined to
be an attribute (e.g., type, brand, country) and value (e.g., Toothbrush, Samsung,
India) that the filtered results should have. Such interaction enables end users
to find specific results corresponding to concrete criteria known in advance, or
simply to explore and iteratively refine results based on available options.
1 Also known as “faceted browsing”, “faceted navigation”, etc.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 301–317, 2018.
https://doi.org/10.1007/978-3-030-00671-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_18&domain=pdf

302 J. Moreno-Vega and A. Hogan

While the queries that can be formulated through an iterative selection of
facets are generally less expressive than those that can be specified through a
structured query language such as SPARQL, faceted browsing is more accessible
to a broader range of users unfamiliar with such query languages; furthermore,
the end user need not be as familiar with the content or schema of the dataset
in question since the facets offered denote the possible filters that can be applied
and the number of results to be expected, helping users to avoid empty results.

Adapting faceted search for a Semantic Web context is then a natural idea,
where various authors have explored faceted navigation over RDF graphs [7,28]
as a potential way to bridge from Semantic Web to end-users. Such works –
discussed in more detail in the following section on related work – have explored
core themes relating to faceted navigation, including query expressivity, ranking,
usability, indexing, performance, reasoning, complexity, etc. However, despite the
breadth of available literature on the topic, we argue that more work is required,
in particular for faceted browsing over RDF graphs that are large-scale (with
many triples) and diverse (with many properties and classes).

The work presented in this paper was motivated, in particular, by the idea
of providing faceted search for Wikidata [29]: a large, collaboratively-edited
knowledge-base where users can directly add and curate structured knowledge
relating to the Wikipedia project. Though a variety of interfaces exist for inter-
acting with Wikidata2, including a SPARQL endpoint, query builders, and so
forth, none quite cover the main characteristics of a faceted browser (e.g., only
displaying options with non-empty results). On the other hand, despite the
breadth of works on faceted browsing, we could not find an available system
that could load the full (“truthy”) Wikidata graph available at the time of writ-
ing.

We thus propose a novel faceted browser for diverse, large-scale RDF graphs
called GraFa – Graph Facets – that we demonstrate is able to handle the
scale and diversity of a dataset such as Wikidata. An initial result set in the
system is generated through either keyword search or by selecting an entity type
(e.g., person, building, etc.). Thereafter, a result set can be refined by selecting
a particular property–value (facet) that all entities in the next result set should
have. A combination of auto-completion and ranking features help ensure that
the user is presented with relevant facets and results. Furthermore, at each stage
of interaction, only options that lead to non-empty results are returned; this
aspect in particular proves the most challenging to implement.

Similar to previous faceted systems [5,31], the GraFa system is based on
Information Retrieval (IR)-style indexes that combines unstructured (text) and
semi-structured (facet) information. However, unlike previous such systems, we
propose a novel materialisation technique to enable interactive response times
at higher levels of scale. The core hypothesis underlying this technique is that
although there is a potentially exponential (in the size of the graph) number of
combinations of facets that could be considered, few combinations will lead to
large result sets that cause slow response times. Hence we propose a technique to

2 https://wikidata.org/wiki/Wikidata:Tools/External tools; retr. 2018/04/05.

https://wikidata.org/wiki/Wikidata:Tools/External_tools

GraFa: Scalable Faceted Browsing for RDF Graphs 303

perform an offline analysis of the graph to select facets that are then materialised.
Our results show that materialisation can improve worst-case response times by
orders of magnitude using a modestly-sized index of precomputed facet views.

To assess the usability of our system, we also present the results of two initial
studies. The first user study compares the GraFa system and the Wikidata

Query Helper (WQH) interface provided by the Wikidata SPARQL endpoint,
asking participants to solve a number of tasks using both systems. Based on the
results of this first study, we then made some improvements to the GraFa sys-
tem, where in the second study, we asked members of the Wikidata community
to use the modified GraFa system and to answer a questionnaire to rate the
usability, usefulness, responsiveness, novelty etc., of the system.

Outline: Section 2 first discusses related work. Section 3 defines the inputs and
interactions considered in our faceted browsing framework. Section 4 describes
the base indexing scheme used to support these interactions, and Sect. 5 describes
the materialisation strategies we use to improve worst-case response times. Turn-
ing to evaluation, Sect. 6 focuses on performance, while Sect. 7 focuses on usabil-
ity. Finally Sect. 8 concludes and discusses future work.

2 Related Work

Various faceted browsers have been proposed for RDF over the years [7,28,32].
Some earlier works include mSpace [23], Ontogator [20], BrowseRDF [21],
/facet [15], with later proposals including gFacet [13,14], Explorator [2],
Rhizomer [6], Facete [25], ReVeaLD [17], Sparklis [8] and Hippalus [27].
These works describe evaluations or use-cases involving domain-specific data
of low heterogeneity, such as multimedia [20,23,26], suspect descriptions [21],
movies [6], cultural heritage [15,20], tweets [1], places [25], biomedicine [17], fish
species [27], etc.; furthermore, many of these works delegate data management
and query processing to an underlying triple-store/SPARQL engine, and rather
focus on issues such as expressiveness, ranking and usability, etc.

Recently Petzka et al. [22] proposed a benchmark for SPARQL systems to
test their ability to support faceted browsing capabilities, but again the dataset
(referring to transport) contains in the order of tens of classes and properties
and we could not find details on the scale of data used for experiments.

A number of later works have explored faceted navigation over more het-
erogeneous RDF datasets, such as VisiNav [11] operating on RDF data (19
million triples with 21 thousand classes and properties) crawled and integrated
from numerous sources on the Web; however, aside from brief discussion of top-k
ordering of facets, performance issues were not discussed in detail. Another more
scalable proposal is the Neofonie [10] system, proposed for faceted search over
DBpedia; however, only a small selection of target facets are displayed and no
performance results are provided. A more recent scalable approach is that of
eLinda [33], which allows for real-time browsing of DBpedia; however, naviga-
tion is not based on facets but rather on interactive bar-charts.

304 J. Moreno-Vega and A. Hogan

A number of approaches have proposed to use indexing techniques developed
for Information Retrieval (IR) to support faceted browsing for RDF. The Sem-

plore system [31] builds faceted browsing on top of IR-indexes, where facets for
the current result set are computed from types, as well as incoming and outgo-
ing relations; a set of top-k facets are constructed by count. Experiments were
conducted over DBpedia [19] and LUBM [9] datasets in the order of 100 million
triples, showing mean sub-second response times faster than those achievable
over selected triple stores. Though this system is along similar lines to what
we wish to achieve, the size of the result-sets for which facets are generated in
the evaluation is not specified, nor is the value of k for the top-k generation;
we could not find materials online to replicate these results, but using a similar
implementation later on a more modern version of the same IR engine (Lucene),
we find that construction of the full set of facets takes minutes over large result-
sets with millions of results. Wagner et al. [30] likewise propose IR-style indexing
to support faceted browsing and conduct evaluation over DBpedia, but perfor-
mance issues are explicitly considered out of scope; however, for their evaluation,
we note that the authors mention use of caching to speed-up response times for
selected tasks, though no further details are provided.

To the best of our knowledge, the closest published results we found for
faceted search over RDF data at the scale of Wikidata was the Broccoli sys-
tem [4,5], which is also based on IR indexes. Though the system has a slightly
different focus to ours (semantic search over Wikipedia text enriched with Free-
base relations), an index over relations is defined to enable faceted search. The
authors propose caching methods to identify and re-use sub-combinations of
facets that are frequently required; unlike our approach, this LRU cache is built
online from user-queries, whereas we materialise query results offline.3

The SemFacet [3] system addresses a number of issues with respect to
faceted browsing for RDF graphs, including reasoning, expressiveness, complex-
ity and efficiency. Though their system can process facets for tens of millions
of answers in about 2 s, this requires having all data indexed in memory, which
limits scale; hence their evaluation is limited to 20% of DBpedia [19] (3.5 mil-
lion triples), as well as selected slices of YAGO [16] that fit in memory. Though
the system is available for download, we failed to load Wikidata with it. Later
work by Sherkhonov et al. [24] discusses the addition of other features to faceted
navigation, such as aggregation and recursion, but focuses on studying the com-
plexity of query answering and containment.

3 Faceted Browsing

We now outline the faceted browsing interactions that the GraFa system cur-
rently supports. Beforehand we provide preliminaries for RDF graphs considered
as input to the system, mainly to establish notation and nomenclature.
3 We did not find source code for the system to be able to perform tests

for Wikidata, though a Freebase demo is available demonstrating interactive
runtimes on large result sets: http://broccoli.informatik.uni-freiburg.de/demos/
BroccoliFreebase/; retr. 2018/04/05.

http://broccoli.informatik.uni-freiburg.de/demos/BroccoliFreebase/
http://broccoli.informatik.uni-freiburg.de/demos/BroccoliFreebase/

GraFa: Scalable Faceted Browsing for RDF Graphs 305

RDF Triples and Graphs: An RDF triple (s, p, o) is an element of IB× I× IBL,
where I is a set of IRIs, L a set of literals, and B a set of blank nodes; the sets I,
L and B are considered pairwise disjoint. The positions of the triple are called
subject, predicate, and object, respectively. An RDF graph G is a set of triples.
Letting πs(G) = {s | ∃p, o : (s, p, o) ∈ G} project the (“flat”) set of all subjects
of G, and letting πp(G) and πo(G) likewise project the set of all predicates and
objects of G, we call πs(G) ∪ πo(G) the nodes of G, πs(G) ∩ I the entities of G,
and πp(G) the set of properties of G. Given an entity s and a property p, we call
any o such that (s, p, o) ∈ G the value of property p for entity s.

Keyword Selection: We assume most entities to have values for a label prop-
erty (e.g., rdfs:label, skos:prefLabel, skos:altLabel) and/or a descrip-
tion property (e.g., rdfs:comment, schema:description); we also assume that
the system is configured with a list of such properties. To generate an initial
result-set, users can specify a keyword search, returning a set of entities whose
label/description values match the search. Notation-wise, we will denote key-
word search as a function κ : 2G × S → 2πs(G), where S denotes the set of
strings (keyword searches). However, to simplify notation, we will consider the
input graph as fixed throughout this paper. Hence we abbreviate the function
as κ : S → 2πs(G), taking a string and returning a set of entities according
to a keyword-matching function (we discuss implementation of the function in
Sect. 4).

Type Selection: To generate an initial set of results, rather than use the keyword
search function, a user may prefer to select entities of a given type (e.g., human,
movie, etc.). We define a type (aka. class) to be any value of a type property (e.g.,
rdf:type, wdt:P31[instance of]) for any entity; we assume that a fixed set of type
properties PT are preconfigured in the system. We then denote the set of types
in a graph G as T (G) := {o | ∃s, p : (s, p, o) ∈ G and p ∈ PT }. We denote type
selection as τ : T (G) → 2πs(G), where τ(t) := {s | ∃p ∈ PT such that (s, p, t) ∈
G}. In summary, τ(t) returns the set of all entities with the type t ∈ T (G). Note
that we do not currently consider type/class hierarchies.

Facet Selection: Given a current set of results, a user may select a facet to further
restrict the presented results. Such a facet is here defined to be a property–
value pair – e.g., (director,Kurosawa) – that each entity in the next result set
must have. More formally, given a current result set of entities E ⊆ πs(G),
we denote by E(G) := {(s, p, o) ∈ G | s ∈ E} the projection from G of all
triples with a subject term in E. Now we can define the facet selection function
ζ : 2πs(G) × πp(G) × πo(G) → 2πs(G) where ζ(E, p, o) := {s | (s, p, o) ∈ E(G)}.

Faceted Navigation: We call a sequence of selections of either of the following
forms a faceted navigation, initiated by keyword or type selection, respectively:

– ζ(ζ(. . . (ζ(κ(q), p1, o1) . . . , pn−1, on−1), pn, on)
– ζ(ζ(. . . (ζ(τ(t) , p1, o1) . . . , pn−1, on−1), pn, on)

306 J. Moreno-Vega and A. Hogan

We remark that the ζ function is commutative: we can apply the facet selections
in any order and receive the same result. Hence, with some abuse of notation,
we can unnest and thus more clearly represent the above navigation sequences
as a conjunction of criteria, where we use [·] to represent optional criteria:

– κ(q) [∧ ζ(p1, o1) ∧ . . . ∧ ζ(pn, on)]
– τ(t) [∧ ζ(p1, o1) ∧ . . . ∧ ζ(pn, on)]

Type and Facet Interactions: The type selection and facet selection interactions
take as input a type t and a facet (p, o) respectively. However, the users may
not know the corresponding identifier, hence GraFa will offer auto-completion
search on the labels and aliases of types and the values of facet properties. For
example, a user typing al* into the auto-completion box for type selection will
receive suggestions such as album, alphabet, military alliance, etc.

Result Display: For each result we display its label, description, and an associated
image if available (again we assume that image properties are preconfigured). We
further assume that entity identifiers are dereferenceable IRIs, which we can use
to offer a link to further information about the entity from the source dataset.
We also present the available facets for the current results.

Ranking: We combine three forms of ranking: frequency, relevance and centrality.
Frequency indicates the number of results generated by a particular selection.
Relevance is particular to keyword-search and uses a TF–IDF style measure to
indicate how well a given entity’s label(s) and description(s) match a keyword.
Centrality measures the importance of a node in the graph, where we use PageR-
ank: we consider each triple (s, p, o) ∈ G∩(I×I×I) in the graph to be a directed
edge s → o and then apply a standard PageRank algorithm to derive ranks for
all nodes. Thereafter, we use these measures in the following way:

– Entities in result pages generated directly from a keyword selection are ranked
according to a combination of TF–IDF and PageRank score.

– Entities in result pages generated directly from a type or facet selection are
ranked purely according to PageRank score.

– Types suggested by auto-completion are ranked according to PageRank.4 The
count of entities in each type are also displayed.

– Properties displayed in the list of facets are ordered by frequency: the number
of entities in the current results with some value for that property.

– Auto-completed facet values are ordered by PageRank.

4 We originally implemented type ranks per frequency (number of results generated),
but noted that certain popular types featured undesirably low in this ordering; for
example, the type country has 207 entities, whereas third-level administrative country
subdivision has 3792 entities. Hence we changed this ranking to consider PageRank.

GraFa: Scalable Faceted Browsing for RDF Graphs 307

Multilingual Support: Where language-tagged labels and descriptions are provided
for entities in multiple languages (e.g., ‘‘Denmark’’@en, ‘‘Dinamarca’’@es),
GraFa can support multiple languages: the user can first select the desired
language where search matches text from that language and where labels from
that language are used to generate results views. The current online demo of
GraFa supports English and Spanish; language can be switched at any time.

4 Indexing Scheme

The GraFa system is implemented on top of standard IR-style inverted indexes.
More specifically, we base our indexing scheme on Apache Lucene (Core): a
popular open source library offering various IR-style indexes, measures, etc.

Fig. 1. Example SPARQL queries to compute facet properties and values over Wiki-
data; the left query would generate the facet properties and their frequencies for current
results representing male humans; the right query would generate the facet values and
their frequencies if the property occupation were then selected

Why not SPARQL? The first reason relates to the features supported, where
GraFa requires keyword search, prefix search (for auto-completion), and ranking
primitives; though SPARQL vendors often provide keyword search functionality,
these are non-standard and cannot be easily configured; additionally ranking
measures based on, for example, PageRank would need to be implemented by
reordering (not top-k). Furthermore, to generate, rank and display facet proper-
ties and values, our index needs to be able to cope with aggregate queries such
as shown in Fig. 1; on the Wikidata Query Service running BlazeGraph, the
left query times out, while the right query takes in the order of 37 s. In a locally
built index on the same version of Wikidata that we use in our evaluation, Vir-

tuoso requires 4 min for the left query and 16 s for the right query. Hence we
build custom indexes on top of Lucene, offering us the required features such as
keyword search, prefix search, ranking, etc.

Indexing Schemes: We base our search on two (initial) inverted indexes:

– The entity index stores an entry (doc.) for each entity. Each entry stores fields
to search entities by IRI, labels, description, type IRIs, property IRIs, and
property–value pairs. The PageRank value of each entity is also stored.

308 J. Moreno-Vega and A. Hogan

– The type index stores an entry for each type. Each entry stores fields to search
types by IRI and labels. The PageRank value of each type is also stored along
with its frequency.

Note that types are also entities, and thus types will be included in both indexes.
We use a separate types index to quickly find types according to an auto-
complete prefix string; furthermore, the types index additionally contains the
frequency of (number of entities associated with) a type. We highlight that prop-
erties are described by the entity index and are associated with labels, descrip-
tions and defining properties (e.g., sub-property-of), etc.

Query Processing: For each type of interaction, we perform the following:

– Keyword selection (κ(q)): we perform a keyword search on the labels and
descriptions fields of the entity index.

– Type selection (τ(t)):
• Given a user-specified prefix (e.g., “al*”) generated by an auto-complete

request, we perform a prefix search on label field of the type index and
return a list of labels, frequencies and IRIs for matching types.

• Given a type IRI t selected by the user from the previous auto-complete
options, we perform a lookup on the type field of the entity index.

– Facet generation/selection (φ ∧ ζ(p, o), where φ generates current results E):
• For the current result set E, we must generate all possible facet properties:

their IRIs, labels and frequency with respect to E. We thus iterate over
E and generate the required information from the property field.

• Once a p is selected, we must generate all possible facet values: their
IRIs, labels, frequency and PageRanks. Let ε(p) denote a query to find all
entities with some value for property p executed over the property field
of the entity index. We thus generate and execute the conjunctive query
φ ∧ ε(p) to find all entities in E with property p, and from these results
we generate the list of all pertinent values.

• Once a (p, o) is selected, we execute the conjunctive query φ ∧ ζ(p, o).

To generate the results for any page (for keyword, type or facet selection), the
first step of facet generation must be applied to generate the next possible steps.

Performance: Lucene implements efficient intersection algorithms to apply con-
junctions. Hence performance issues rather occur when large sets of results are
present and the facet selection must find (only) the properties present in E and
their frequency with respect to E. For example, given a query τ(human) in
Wikidata, the above process would require scanning 3.6 million results and com-
puting the frequencies of 358 properties. Next, when a property is selected to
restrict E with, we may still have to scan many results to compute the available
values for p in the set E (and their frequencies). For example, when we execute
τ(human)∧ ε(occupation), we would now need to scan 3.3 million results to find
the values of occupation. Hence the challenge for performance is not due to the

GraFa: Scalable Faceted Browsing for RDF Graphs 309

difficulty of query processing, but rather the amount of results generated. Under
initial experiments with the above indexing scheme, generating the facet prop-
erties for type human took 135 s; furthermore, such queries are very common as
an entry point onto the data. Hence we require optimisations.

5 Materialisation Strategy

To address the aforementioned performance issues, we propose a selective
materialisation strategy. This strategy enumerates, off-line, all queries of the
form τ(t)[∧ ζ(p1, o1) ∧ . . . ∧ ζ(pn, on)] that generate greater than or equal
to a given threshold α of results. More specifically, the goal is to identify
all queries generating a high number (≥α) of results, such as τ(human), or
τ(human) ∧ ζ(gender,male), or τ(human) ∧ ζ(gender,male) ∧ ζ(country,U.S.),
etc.; the facet properties and values for these queries can then be materialised
and indexed.

Choice of Threshold: When selecting α, we are faced with a classical time–space
trade-off: we should select a value for α such that queries generating fewer than
α results can be processed efficiently using the base indexes, while there are as
few as possible queries generating α results to avoid exploding the index. The
underlying hypothesis here is that such a value of α exists, which is non-trivial
and requires empirical validation (as we will provide in Sect. 6). We say that this
is non-trivial since a relatively low value of α can generate a huge number of
queries: let πpo(G) = {(p, o) | ∃s : (s, p, o) ∈ G} project the property–value facet
pairs from G and let π∗

po
(G) denote πpo(G) but removing pairs (p, o) where p is

a type property. Recall that we denote by T (G) the types of G. For α = 0, we
would have |T (G)| × 2|π∗

po
(G)| possible queries to contend with containing every

combination of type with the powerset of π∗
po

(G). For α = 1, we could still have
the same number (if, e.g., G contains a single subject). More generally:

Lemma 1. Let α ≥ 1. Given an RDF graph G with m triples, the total number
of queries of the form τ(t)[∧ ζ(p1, o1) ∧ . . . ∧ ζ(pn, on)] generating more than α
results is bounded by the interval [0, 2� m

α � − 1].

Proof. If |πs(G)| < α, then no query can generate more than α results, giving the
lower bound. Towards the upper-bound, let πα

po
(G) denote the property–value

pairs with more than α subjects and let Πα
po

(G) ⊆ 2πα
po
(G) denote all sets of such

pairs that cooccur on more than α subjects; these are the queries we need to
materialise. We now construct a worst-case G that maximises the value |Πα

po
(G)|

with a budget of m triples. To do this, for each subject in G, we will assign the
same set of (pairwise distinct) property–value pairs {(p1, o1), . . . , (pk, ok)}. In
this case, |Πα

po
(G)| = 2k, representing the powerset of the k property–value

pairs. We then need to maximise k; given the inequality k|πs(G)| ≤ m for m
the budget of triples, we thus need to minimise the number of subjects |πs(G)|.
But we know that |πs(G)| ≥ α, otherwise no queries return more than α results;
hence we should set |πs(G)| = α, which gives us k = �m

α � and |Πα
po

(G)| = 2� m
α �.

310 J. Moreno-Vega and A. Hogan

With respect to types, note that we can consider this as any other facet by, e.g.,
setting p1 to a type property; the only modification required is to not consider
the empty set in Πα

po
(G), which leads us to the upper bound 2� m

α � − 1. �

Algorithm: We outline the algorithm to compute the queries generating more
than α results. Note that for brevity, we will consider type as a facet. Let
σs=x(G) := {(s, p, o) ∈ G | x = s} select the triples in G whose subject is
x. In order to compute Πα

po
(G) representing the set of all queries with at least α

results, a naive algorithm would be to compute from each subject x the powerset
of all its property–value pairs 2πpo(σs=x(G)) containing at least one type property
and then count these sets over all subjects, outputting those with a count of at
least α. However, in a dataset such as Wikidata, some subjects have hundreds
of property–value pairs, where the powerset for such a subject would be clearly
unfeasible to materialise. Instead, we optimise for the fact that a property–value
pair with fewer than α subjects can never appear in a conjunctive query with
more than α subjects: we compute a restricted powerset 2πpo(σs=x(G))∩πα

po
(G) that

only considers individual (p, o) pairs on each subject x with at least α subjects in
G. Thereafter, we can then count the number of subjects for each query and add
those with more than α subjects to Πα

po
(G). The number of queries generated is

still, of course, potentially exponential, and hence it will be important to select
a relative high value of α to minimise the set πα

po
(G), and thus the exponent.

Indexing: For each query in Πα
po

(G) computed in the previous stage, we compute
its result set offline, and from that set, we compute the set of facet properties,
their frequencies, and the sets of their values. Thus we have precomputed the
information needed to generate the results page of each such query (with an
index lookup), and to facilitate explorations of the facets on that page.

Keyword Selections: Note that for κ(q), given that the number of possible key-
word queries q is not bounded, our materialisation approach is not applicable,
where we rather simply restrict κ(q) to return the top-α results.

6 Performance Evaluation

We now discuss the performance of indexing, materialisation and querying.

Data and Machine: We take the “truthy” dump of Wikidata from 2017/09/13,
containing 1.77 billion triples and 74.1 million entities. However, given that we
do not consider datatype values, nor labels and descriptions in other languages,
the number of Wikidata triples used by GraFa is 195 million (120 million (p, o)
pairs; 75 million labels and descriptions in English and Spanish). The machine
used for all experiments has 2× Intel Xeon 4-Core E5-2609 V3 CPUs (@1.9 GHz),
32 GB of RAM, and 2× 2 TB Seagate 7200 RPM 32 MB Cache SATA hard-
disks (RAID-1). The code used is available online: https://github.com/joseignm/
GraFa/.

https://github.com/joseignm/GraFa/
https://github.com/joseignm/GraFa/

GraFa: Scalable Faceted Browsing for RDF Graphs 311

Threshold Selection: The selection of the threshold α must find a balance: too
high and queries just under the threshold will take too long to run; too low
and the number of queries to materialise will explode exponentially. We choose
three seconds as a reasonable worst-case response time, which from initial exper-
iments suggested a value of α = 50, 000. To verify that this would not require
materialising too many queries, we counted the subjects associated with each
(p, o) ∈ πpo(G) and found that 149

10,348,199 ≈ 0.001% of (p, o) pairs were associated
with more than 50,000 subjects. Ultimately we materialise 141 queries.

Indexing Times: In Table 1, we provide the details of all indexing times. The ini-
tial PageRank computation takes 04:30 (hh:mm) and creating the base indexes
requires 06:52. Computing the set Πα

po
(G) for α =50,000 took 04:16, while build-

ing an index of the properties and their frequency for each such query took 01:13.
The most expensive step in the process is materialising the values of such prop-
erties, which took 107:18 (4.5 days), where, for each query, we need to build a
list of all values for each property. This index of values contains 16,048 query–
property keys in total (one for each facet property of a materialised query).
An important question is then: is an index on values necessary or could it be
optimised? Without indexing values, if a user selects a property on a materi-
alised query with lots of results, where the majority of results have some value
for that property, we may still require scanning all the results to generate the
value list. For example, if the query is τ(:Human) (3.6 million results) and the
user selects ε(:occupation) (3.3 million results), without an index for values,
all people with some occupation must be scanned to generate all possible values
for that property, which would again take minutes. However, some compromise
may be possible to reduce this indexing time; one idea is to not materialise val-
ues for properties with a low frequency, where of the 358 properties associated
with :Human for example, only 31 have more than α results; another idea is to
index values for properties independent of the current query, thus potentially
suggesting values that may lead to empty results (e.g., on a query for human
males, suggesting first lady for occupation). For now, we simply accept the longer
indexing time. On disk, the base index takes up 6 GB of space, the properties
index requires 5 MB, while the values index requires 1 GB.

Table 1. Times of all index-creation steps

Process Time (s) Time (hh:mm)

Computing PageRank 15,595 004:20

Creating base indexes 24,756 006:52

Identifying queries to materialise 15,382 004:16

Indexing properties 4,356 001:13

Indexing values 386,304 107:18

312 J. Moreno-Vega and A. Hogan

Query Performance Testing: To test online query performance over these
indexes, we created sequential queries simulating user sessions. Each session
starts with τ(person), which offers a lot of results and facet properties; from this
initial interaction, the index returns the top 50 ranked results and facet prop-
erties for all results. The session then randomly selects a property from the top
20 ordered by frequency (ε(p));5 the system must then respond with the list of
values for that property on the full result set. The session continues by selecting
a random value (ζ(p, o)); the system then generates the next results set and list
of facet properties for that result set. This process is iterated until there is only
one result or there is no further interaction possible, at which point the session
terminates.

Query Performance Results: One thousand such sessions were executed. Figure 2
presents the response times for generating results pages with facet properties
(τ and ζ queries), while Fig. 3 presents the response times for selecting the
values for a property (ε queries). These figures show times in milliseconds plotted
against the number of results generated (entities or values, resp.); note that the
x-axis of Fig. 2 is presented in log-scale and the dashed vertical line indicates the
selected value for the α-threshold. In the worst case, a query interaction takes
approximately 3 s (for queries just below α), while value selection is possible
in all cases under 500 ms. To the right of the α line, we see that materialised
queries can be executed in under a second despite large result sizes; without
materialisation, these queries took upwards of 2 min to process.

Data: Please note that we make evaluation data, queries, etc., available at
https://github.com/joseignm/GraFa/tree/master/misc.

Fig. 2. Times to load result pages (τ , ζ) Fig. 3. Times to load facet values (ε)

5 We thus avoid the majority of facet properties with few results, selecting from those
with the most results (and thus those more prominently displayed to users).

https://github.com/joseignm/GraFa/tree/master/misc

GraFa: Scalable Faceted Browsing for RDF Graphs 313

7 User Evaluation

While the previous section establishes performance results for indexing, materi-
alisation and querying, we now present an initial usability study of the GraFa

system. For this, we implemented a prototype of a user interface as a Java servlet
with Javascript enabling interactive client-side features, such as auto-completion.
A demo (for Wikidata) is available at http://grafa.dcc.uchile.cl.

User Study Design: We chose a task-driven user study where we give participants
ten questions in natural language; for this, we selected the questions and question
text from the example queries provided for the Wikidata Query Service (selecting
examples answerable as faceted navigations).6 We list the question text provided
to the user and the expected queries they should generate in Table 2; these reflect
the SPARQL query and its description in the source.

User Study Baseline: In order to establish a baseline for the tasks, we selected the
Wikidata Query Helper (WQH) provided on the official Wikidata SPARQL
Endpoint7; this interface first provides auto-completion on the labels of values
and automatically proposes an associated property. For example, a user typing
‘‘mal’’ may be suggested male organism, male, etc.; upon selecting the latter,
the property sex or gender is automatically selected, though it can be changed
through another auto-completion dialogue. The user can add several property–
value pairs in this manner. Suggestions generated through auto-completion are
not restricted in a manner that assures non-empty results.

Participants and Instructions: We attained 11 volunteers (students of a Semantic
Web course) for a study. Given the question text, we asked the volunteers to use
either GraFa or WQH (switching on every second question) to find the results

Table 2. User study tasks, with question text and expected query to be generated

Question text Expected query

‘‘Plays’’ τ(plays)

‘‘Lakes in Cameroon’’ τ(lake) ∧ ζ(country, Cameroon)

‘‘Lighthouses in Norway’’ τ(lighthouse) ∧ ζ(country, Norway)

‘‘Popes’’ τ(human) ∧ ζ(position held, Pope)

‘‘Women born in Wales’’ τ(human) ∧ ζ(gender, female) ∧ ζ(place-of-birth, Wales)

‘‘Papers about Wikidata’’ τ(scientific article) ∧ ζ(main subject, Wikidata)

‘‘Law & Order episodes’’ τ(TV series episode) ∧ ζ(series, Law&Order)

‘‘Fictional characters from Marvel Universe’’ τ(fictional character) ∧ ζ(from fictional universe,

Marvel Universe)

‘‘People dying by burning’’ τ(human) ∧ ζ(manner of death, death by burning)

‘‘Mosquito species’’ τ(taxon) ∧ ζ(parent-taxon, Culicidae) ∧ ζ(taxon-rank, species)

6 https://wikidata.org/wiki/Wikidata:SPARQL query service/queries/examples;
retr. 2018/04/05.

7 https://query.wikidata.org/; retr. 2018/04/05.

http://grafa.dcc.uchile.cl
https://wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples
https://query.wikidata.org/

314 J. Moreno-Vega and A. Hogan

and submit the URL, or click skip if they felt unable to find the results; the next
task would then be loaded. Half of the participants began with GraFa and the
other half with WQH. They were not instructed on how to use either of the two
systems. Afterwards they responded to a brief questionnaire.

User Task Results: We collected results for 55 tasks per system (10×11
2). Of these,

23
55 ≈ 42% were solved correctly in GraFa, while 37

55 ≈ 67% were solved correctly
in WQH. This was unambiguously a negative result for GraFa. Investigating the
errors further, for GraFa (32 errors), 10 involved users typing questions directly
into the keyword-query text field rather than using type selection as intended; 3
involved selecting incorrect types/facets/values; 19 responses were skipped/left
blank/invalid. On the other hand, for WQH (18 errors), 11 responses selected
incorrect types/facets/values, while 7 were left blank. Through this study we
found a variety of interface issues that we subsequently fixed. We additionally
realised that users had a difficult time starting with a type selection; an example
is ‘‘Popes’’ where users typed ‘‘pope’’ into the GraFa type selection (rather
than ‘‘human’’ or ‘‘person’’); on the other hand, in WQH, typing ‘‘pope’’
in the value selection suggested the value Pope and, upon selection, the correct
property position held. On the other hand, in WQH, users sometimes selected
the incorrect property, where for a query such as Women born in Wales, neither
the value woman nor Wales, when selected, suggests the correct property.

User Questionnaire: After the task, we asked users to answer a brief ques-
tionnaire rating the responsiveness and usability of both systems on a Likert
1–7 scale; users rated GraFa with a mean of 4.5/7 for usability and 4.7/7 for
responsiveness; WQH had an analogous mean rating of 5.5/7 for usability and
6.0/7 for responsiveness. Again in this case WQH scored considerably higher
than GraFa. Regarding responsiveness, with subsequent investigation we found
that the Javascript libraries for auto-completion were creating lag in the client
browser, where we implemented smaller thresholds for suggestions.

Community Questionnaire: Based on the results of this user study, we fixed a
number of interface issues in the system, blocking on the selection of a type or

Table 3. Responses to Wikidata community questionnaire

Statement 1 2 3 4 5 6 7 Mean

The system is useful 0 0 0 2 2 4 1 5.4/7

The system offers a novel way to query Wikidata 0 0 0 1 3 4 1 5.6/7

The system is usable 0 1 1 2 2 1 2 4.8/7

Knowledge of Wikidata is not required 0 1 1 2 3 1 1 4.6/7

Load-times did not affect interactivity 0 0 2 2 2 1 2 4.9/7

Ranking of results is intuitive 0 0 1 2 2 4 0 5.0/7

Ranking of facets is intuitive 0 0 3 1 2 2 1 4.7/7

GraFa: Scalable Faceted Browsing for RDF Graphs 315

value suggestion, separating type/keyword selection in the interface and so forth.
We created a questionnaire that we sent to the Wikidata mailing list asking to
try the GraFa system and then answer a set of 12 questions, where we received
nine responses. The results of the questionnaire are presented in Table 3, where
most responses were moderately positive about the system. We further asked if
they would use the system in future (yes|maybe|no): 4 said yes, while 5 said
maybe. We made some further improvements based on text comments received,
such as to add placeholder examples in the text fields for auto-suggestions.

8 Conclusion

Motivated by the goal of providing users with a faceted interface over Wikidata
– and the lack of current techniques and tools by which this could be achieved –
in this paper, we have presented methods to enable faceted browsing over large-
scale, diverse RDF graphs. A key contribution is our proposed materialisation
strategy, which identifies facet queries that are good candidates for indexing.
With this technique, worst-case response times drop from minutes to seconds
at the cost of increased indexing time. To the best of our knowledge, GraFa

is the only faceted browsing system demonstrated at this level of scale while
filtering suggestions that would lead to empty results. With the current system,
the faceted browser could be updated for Wikidata on a weekly basis.

On the other hand, the results of our usability experiments were mixed:
GraFa was outperformed by the legacy WQH system in our task-driven user
study. Some superficial issues were then fixed, such as blocking auto-complete
fields until a selection is made. Though the results were more negative than
hoped, we also drew more general conclusions, key amongst which is that, in
a diverse graph like Wikidata, users unfamiliar with the dataset may struggle
to select types, properties and values corresponding to their intent (e.g., is a
pope a type or a value?; is fictional character a property or a type?). After some
improvements to the system, a questionnaire issued to the Wikidata community
generated moderately positive results regarding usefulness, novelty, usability, etc.

There are various directions in which this work could be continued. An impor-
tant aspect for improvement is usability, where based on the aforementioned user
study, we conclude that the system should offer more flexible selections; e.g., to
automatically detect that pope is a value, not a type. The system could also be
extended to support more expressive queries, such as ranges on datatype val-
ues, value selections, inverses, nested facets, and so forth. Other features – such
as reasoning – would yield further challenges at the proposed scale. Further-
more, indexing time is currently prohibitive: investigating incremental indexing
schemes would be an important practical contribution. Another important next
step would be performing evaluations for other RDF datasets.

In conclusion, although there are various avenues for future work in terms
of performance, expressiveness and usability, we hope that by enabling faceted
browsing over RDF graphs at new levels of scale, GraFa already makes a sig-
nificant step towards making the Semantic Web more accessible to end users.

316 J. Moreno-Vega and A. Hogan

Acknowledgements. The work was supported by the Millennium Institute for Foun-
dational Research on Data (IMFD) and by Fondecyt Grant No. 1181896.

References

1. Abel, F., Celik, I., Houben, G.-J., Siehndel, P.: Leveraging the semantics of tweets
for adaptive faceted search on Twitter. In: Aroyo, L., et al. (eds.) ISWC 2011.
LNCS, vol. 7031, pp. 1–17. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25073-6 1

2. Araújo, S., Schwabe, D.: Explorator: a tool for exploring RDF data through direct
manipulation. In: Workshop on Linked Data on the Web, LDOW (2009)

3. Arenas, M., Grau, B.C., Kharlamov, E., Marciuska, S., Zheleznyakov, D.: Faceted
search over RDF-based knowledge graphs. J. Web Semant. 37–38, 55–74 (2016)

4. Bast, H., Bäurle, F., Buchhold, B., Haußmann, E.: Easy access to the freebase
dataset. In: International World Wide Web Conference, WWW, pp. 95–98 (2014)

5. Bast, H., Buchhold, B.: An index for efficient semantic full-text search. In: Con-
ference on Information and Knowledge Management, CIKM, pp. 369–378 (2013)

6. Brunetti, J.M., González, R.G., Auer, S.: From overview to facets and pivoting for
interactive exploration of semantic web data. IJSWIS 9(1), 1–20 (2013)

7. Dadzie, A., Rowe, M.: Approaches to visualising linked data: a survey. Semant.
Web 2(2), 89–124 (2011)

8. Ferré, S.: Expressive and scalable query-based faceted search over SPARQL end-
points. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8797, pp. 438–453.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11915-1 28

9. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
J. Web Semant. 3(2–3), 158–182 (2005)

10. Hahn, R., et al.: Faceted Wikipedia search. In: Abramowicz, W., Tolksdorf, R.
(eds.) BIS 2010. LNBIP, vol. 47, pp. 1–11. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-12814-1 1

11. Harth, A.: VisiNav: a system for visual search and navigation on web data. J. Web
Semant. 8(4), 348–354 (2010)

12. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers, San
Rafael (2011)

13. Heim, P., Ertl, T., Ziegler, J.: Facet graphs: complex semantic querying made easy.
In: Aroyo, L., et al. (eds.) ESWC 2010. LNCS, vol. 6088, pp. 288–302. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13486-9 20

14. Heim, P., Ziegler, J., Lohmann, S.: gFacet: a browser for the web of data. In: Inter-
national Workshop on Interacting with Multimedia Content in the Social Semantic
Web, IMC-SSW (2008)

15. Hildebrand, M., van Ossenbruggen, J., Hardman, L.: /facet: a browser for het-
erogeneous semantic web repositories. In: Cruz, I., et al. (eds.) ISWC 2006.
LNCS, vol. 4273, pp. 272–285. Springer, Heidelberg (2006). https://doi.org/10.
1007/11926078 20

16. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and
temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61
(2013)

17. Kamdar, M.R., Zeginis, D., Hasnain, A., Decker, S., Deus, H.F.: ReVeaLD: a
user-driven domain-specific interactive search platform for biomedical research.
J. Biomed. Inform. 47, 112–130 (2014)

https://doi.org/10.1007/978-3-642-25073-6_1
https://doi.org/10.1007/978-3-642-25073-6_1
https://doi.org/10.1007/978-3-319-11915-1_28
https://doi.org/10.1007/978-3-642-12814-1_1
https://doi.org/10.1007/978-3-642-12814-1_1
https://doi.org/10.1007/978-3-642-13486-9_20
https://doi.org/10.1007/11926078_20
https://doi.org/10.1007/11926078_20

GraFa: Scalable Faceted Browsing for RDF Graphs 317

18. Karger, D.R.: The semantic web and end users: what’s wrong and how to fix it.
IEEE Internet Comput. 18(6), 64–70 (2014)

19. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted
from Wikipedia. Semant. Web 6(2), 167–195 (2015)

20. Mäkelä, E., Hyvönen, E., Saarela, S.: Ontogator—A semantic view-based search
engine service for web applications. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 847–860. Springer, Heidelberg (2006). https://doi.org/10.1007/
11926078 61

21. Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for RDF data.
In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 559–572. Springer,
Heidelberg (2006). https://doi.org/10.1007/11926078 40

22. Petzka, H., Stadler, C., Katsimpras, G., Haarmann, B., Lehmann, J.: Benchmark-
ing faceted browsing capabilities of triplestores. In: International Conference on
Semantic Systems, SEMANTICS, pp. 128–135 (2017)

23. schraefel, m.c., Wilson, M., Russell, A., Smith, D.A.: mSpace: improving informa-
tion access to multimedia domains with multimodal exploratory search. Commun.
ACM 49(4), 47–49 (2006)

24. Sherkhonov, E., Cuenca Grau, B., Kharlamov, E., Kostylev, E.V.: Semantic faceted
search with aggregation and recursion. In: d’Amato, C., et al. (eds.) ISWC 2017.
LNCS, vol. 10587, pp. 594–610. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68288-4 35

25. Stadler, C., Martin, M., Auer, S.: Exploring the web of spatial data with facete.
In: International World Wide Web Conference, WWW, pp. 175–178 (2014)

26. Tvarožek, M., Bieliková, M.: Generating exploratory search interfaces for the
semantic web. In: Forbrig, P., Paternó, F., Mark Pejtersen, A. (eds.) HCIS 2010.
IAICT, vol. 332, pp. 175–186. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15231-3 18

27. Tzitzikas, Y., Bailly, N., Papadakos, P., Minadakis, N., Nikitakis, G.: Using
preference-enriched faceted search for species identification. IJMSO 11(3), 165–
179 (2016)

28. Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted exploration of RDF/S datasets:
a survey. J. Intell. Inf. Syst. 48(2), 329–364 (2017)

29. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

30. Wagner, A., Ladwig, G., Tran, T.: Browsing-oriented semantic faceted search. In:
Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011. LNCS,
vol. 6860, pp. 303–319. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23088-2 22

31. Wang, H., et al.: Semplore: a scalable IR approach to search the web of data. J.
Web Semant. 7(3), 177–188 (2009)

32. Wei, B., Liu, J., Zheng, Q., Zhang, W., Fu, X., Feng, B.: A survey of faceted search.
J. Web Eng. 12(1&2), 41–64 (2013)

33. Yahav, T., Kalinsky, O., Mishali, O., Kimelfeld, B.: eLinda: explorer for linked
data. In: International Conference on Extending Database Technology, EDBT, pp.
658–661 (2018)

https://doi.org/10.1007/11926078_61
https://doi.org/10.1007/11926078_61
https://doi.org/10.1007/11926078_40
https://doi.org/10.1007/978-3-319-68288-4_35
https://doi.org/10.1007/978-3-319-68288-4_35
https://doi.org/10.1007/978-3-642-15231-3_18
https://doi.org/10.1007/978-3-642-15231-3_18
https://doi.org/10.1007/978-3-642-23088-2_22
https://doi.org/10.1007/978-3-642-23088-2_22

Semantics and Validation
of Recursive SHACL

Julien Corman1, Juan L. Reutter2(B), and Ognjen Savković1

1 Free University of Bozen-Bolzano, Bolzano, Italy
2 PUC Chile and IMFD Chile, Santiago, Chile

jreutter@ing.puc.cl

Abstract. With the popularity of RDF as an independent data model
came the need for specifying constraints on RDF graphs, and for mech-
anisms to detect violations of such constraints. One of the most promis-
ing schema languages for RDF is SHACL, a recent W3C recommenda-
tion. Unfortunately, the specification of SHACL leaves open the problem
of validation against recursive constraints. This omission is important
because SHACL by design favors constraints that reference other ones,
which in practice may easily yield reference cycles.

In this paper, we propose a concise formal semantics for the so-called
“core constraint components” of SHACL. This semantics handles arbi-
trary recursion, while being compliant with the current standard. Graph
validation is based on the existence of an assignment of SHACL “shapes”
to nodes in the graph under validation, stating which shapes are veri-
fied or violated, while verifying the targets of the validation process. We
show in particular that the design of SHACL forces us to consider cases in
which these assignments are partial, or, in other words, where the truth
value of a constraint at some nodes of a graph may be left unknown.

Dealing with recursion also comes at a price, as validating an RDF
graph against SHACL constraints is NP-hard in the size of the graph,
and this lower bound still holds for constraints with stratified negation.
Therefore we also propose a tractable approximation to the validation
problem.

1 Introduction

The success of RDF was largely due the fact that it can be easily published and
queried without bounding to a specific schema [4]. But RDF over time has turned
into more than a simple data exchange format [2], and a key challenge for current
RDF-based applications is checking quality (correctness and completeness) of a
dataset. Several systems already provide facilities for RDF validation (see e.g.
[12]), including commercial products.1,2 This created a need for standardizing a
declarative language for RDF constraints, and for formal mechanisms to detect
and describe violations of such constraints.
1 https://www.topquadrant.com/technology/shacl/.
2 https://www.stardog.com/docs/.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 318–336, 2018.
https://doi.org/10.1007/978-3-030-00671-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_19&domain=pdf
https://www.topquadrant.com/technology/shacl/
https://www.stardog.com/docs/

Semantics and Validation of Recursive SHACL 319

Fig. 1. Two SHACL shapes, about Polentoni and addresses in Northern Italy

One of the most promising efforts in this direction is SHACL, or Shapes Con-
straint Language,3 which has become a W3C recommendation in 2017. SHACL
groups constraints in so-called “shapes” to be verified by certain nodes of the
graph under validation, and such that shapes may reference each other.

Figure 1 presents two SHACL shapes. The leftmost, named :NIAddressShape,
is meant to define valid addresses in Northern Italy, whereas the right one, named
:PolentoneShape, defines northern Italians, stereotypically referred to as Polen-
toni.4 A node v satisfying the first shape must verify two constraints: the first
one states that there can be at most one successor of v via property :telephone.
The second one states that there must be exactly one successor (sh:minCount 1

and sh:maxCount 1) of v via property :locatedIn, with value :NorthernItaly.
Validating an RDF graph against a set of shapes is based on the notion

of “target nodes”, which mandates for each shape which nodes have to con-
form to it. For instance, PolentoneShape contains the triple :PolentoneShape

sh:targetClass :Polentone, stating that its targets are all instances of
:Polentone in the graph under validation. But nodes may also have to conform
to additional shapes, due to shape references. For instance, in Fig. 1, the shape
to the right contains one (non-recursive) shape reference, to :NIAddressShape,
stating that every node v conforming to :PolentoneShape must have exactly one
:address, which must conform to :NIAddressShape, and one recursive reference,
stating that each successor of v via :knows must conform to :PolentoneShape.

By recursion, we will always refer to such reference cycles, possibly n-ary
(where shape s1 references s2, s2 references s3,.., sn references s1). Unfortu-
nately, the semantics of graph validation with recursive shapes is left explicitly
undefined in the SHACL specification: “... the validation with recursive shapes
is not defined in SHACL and is left to SHACL processor implementations. For
example, SHACL processors may support recursion scenarios or produce a failure

3 https://www.w3.org/TR/shacl/.
4 This example is borrowed from Peter Patel-Schneider: https://research.nuance.com/
wp-content/uploads/2017/03/shacl.pdf.

https://www.w3.org/TR/shacl/
https://research.nuance.com/wp-content/uploads/2017/03/shacl.pdf
https://research.nuance.com/wp-content/uploads/2017/03/shacl.pdf

320 J. Corman et al.

when they detect recursion.” The specification nonetheless expresses the expec-
tation that validation of recursive shapes end up being defined in future work.
Indeed, shapes references are a core feature of SHACL. Furthermore, in a Seman-
tic Web context, where shapes are expected to be exchanged or reused, reference
cycles may naturally appear, intentional or not. Finally, recursion may be viewed
as one of the distinctive features of SHACL: without recursion, one ends up with
a constraint language whose expressive power is essentially the same as SPARQL.

Another current limitation of the SHACL specification is the lack of a uni-
fied and concise formal semantics for the so-called “core constraint components”
of the language. Instead, the specification provides a combination of SPARQL
queries and textual definitions to characterize these operators. This may be
sufficient for reading or writing SHACL constraints, but a more abstract under-
lying formalization is still missing, in order for instance to devise efficient con-
straint validation algorithms, identify computational bottlenecks, or to compare
SHACL’s expressivity with other languages.

Contributions. In this article, we propose a formal semantics for the core con-
straint components of SHACL, which is robust enough to handle arbitrary recur-
sion, while being compliant with the current standard in the non-recursive case.
It turns out that defining such a semantics is far from trivial, due essentially to
the combination of three features of the language: recursion, arbitrary negation,
and the target-based validation mechanism introduced above. One of the main
difficulties is to define in a satisfactory way validation of shapes with so-called
non-stratified constraints, where negation is used arbitrarily in reference cycles.

To do this, we base our semantic on the existence of a partial assignment
of shapes to nodes that verifies both constraints and targets, i.e. intuitively
a validation of nodes against shapes which may leave undetermined whether
a given node verifies a shape or violates it. We show that this semantics has
desirable formal properties, such as equivalence with classical validation in the
presence of stratified constraints.

Recursion, however, comes at a cost, as we show that the problem of vali-
dating a graph is worst-case intractable in the size of the graph. Perhaps more
surprisingly, we show that this property already holds for stratified constraints,
and for a limited fragment of the language, without counting or path expressions.
This observation leads us to propose a sound approximation, polynomial in the
size of the graph, and whose worst-case execution time can be parameterized.

Organization. Section 2 discusses the problem of recursive SHACL constraints
validation, with concrete examples. Then Sect. 3 defines a robust semantics for
SHACL, together with a concise abstract syntax, and investigates its formal
properties. Section 4 studies computational complexity of the graph validation
problem under this semantics, and Sect. 5 proposes a sound approximation algo-
rithm, in order to regain tractability (in the size of the graph under validation).
Finally, Sect. 6 reviews alternative languages and formal semantics for graph
constraints validation, with an emphasis on RDF.

Semantics and Validation of Recursive SHACL 321

An extended abstract of this paper has been accepted at the AMW work-
shop [9]. In addition, an appendix with detailed proofs and a translation from
SHACL into our abstract syntax and conversely can be found at [8].

2 Validating a Graph Against SHACL Shapes

This section provides a brief overview of the constraint validation mechanism
described in the SHACL specification, and discusses its extension to the case
of recursive constraints. We focus here on the problem of deciding whether a
graph is valid against a set of shapes. Therefore we purposely ignore the notion
of “validation report” defined in the specification, and encourage the interested
reader to consult the specification directly.

Checking whether a graph G is valid against a set S of shapes may be viewed
as a two-step process. The first step consists in iterating over all shapes s ∈ S,
and retrieve their respective target nodes in G. SHACL provides a dedicated lan-
guage to describe the intended targets of a shape (e.g. the sh:targetClass prop-
erty in Fig. 1), which is orthogonal to the language used to define constraints.
Furthermore, this language has a limited expressivity, allowing all targets of
shape s in G to be retrieved in O(|G| · log |G|), before constraint validation.

Fig. 2. A SHACL shapes for semi-Polentone, and a graph G to be validated against
this shape, together with the shapes of Fig. 1

The second step consists in iterating over each target node v of each shape
s, and check whether the node v satisfies s. This check can be represented as a
call to a recursive function validates(s,G, v). Some of the constraints for s may
be validated by looking locally at the graph, i.e. at the IRI of v and its outgoing
paths. But validates(s,G, v) may also trigger a recursive call validates(s′, G, v′),
where s′ is a shape referenced by s, and v′ is a successor of v in G. It should be
noted that v′ does not need to be a target node of s′. In turn, validates(s′, G, v′)
may trigger another recursive call, etc.

322 J. Corman et al.

Another important feature of SHACL is the possibility to declare negated
constraints. For instance, shape SemiPolentoneShape in Fig. 2 uses sh:not to
describe someone who knows at least one person who is not a Polentone (but
still lives in Northern Italy). In this case, validates(SemiPolentoneShape, G, v) will
succeed only if some successor of v via property :knows violates the constraints
for :PolentoneShape.5

2.1 Recursive Constraints with Stratified Negation

Figures 1 and 2, considered together, illustrate a simple case of recursive
constraint validation (i.e. constraints with reference cycles). The RDF triple
:SemiPolentoneShape sh:targetNode :Enrico indicates that :Enrico is the unique
target of shape :SemiPolentoneShape. This is also the only target to be validated
in the graph.

To check if :Enrico validates :SemiPolentoneShape, the validation pro-
cess described in the specification would call validates(SemiPolentoneShape, G,
:Enrico), triggering an infinite sequence of recursive calls to
validates(PolentoneShape, G, :Davide). Intuitively, the problems is that validates
does not keep track of what has been validated (or violated) so far.

A classical solution to ground constraint evaluation in such cases is to define
it w.r.t. an assignment of (positive and negated) shape labels to nodes. In
this example, Enrico can be assigned :SemiPolentoneShape, and :Davide can be
assigned the negation of :PolentoneShape. This assignment complies with the
constraints and the target, allowing us to validate the graph. Alternatively, it is
possible to comply with all constraints by assigning :PolentoneShape to :Davide,
and the negation of :SemiPolentoneShape to :Enrico. But this latter assignment
does not comply with the target, therefore it would not allow us to validate the
graph.

Fig. 3. Two SHACL shapes which illustrates the need for partial assignments

Several formal frameworks dealing with recursion (such as recursive Datalog
[10]) have semantics based on a similar intuition. This notion of assignment is
5 Constraints on node sucessors in SHACL are by default universally quantified. This
is why sh:not here requires one successor violating :PolentoneShape to exist.

Semantics and Validation of Recursive SHACL 323

also used in [7] for ShEx, a constraint language for RDF very similar to SHACL.
However, the semantics proposed in [7] would consider the graph of Fig. 2 as
invalid, taking only one assignment into consideration, where :Davide is assigned
:PolentoneShape, and therefore :Enrico cannot verify :SemiPolentoneShape. The
semantics defined in [7] is also restricted to stratified constraints, i.e. constraints
such that reference cycles have no reference in the scope of a negation (see
Definition 8 further below).

2.2 Non-stratified Constraints

Extending assignment-based validation to the non-stratified case raises an inter-
esting question, namely whether such an assignment should be total, i.e. assign
each shape or its negation to each node of the graph. We illustrate this with
validating the graph G of Fig. 2 against the two shapes of Fig. 3.

:Davide is the only target node, for shape :HappyPersonShape. This shape
is validated iff :Davide has an address, or knows a naive polentone. Because
:Davide has an address, a simple call to validates(HappyPersonShape, G, :Davide)
would validate the graph. But a total assignment must also assign either
:NaivePolentoneShape or its negation to :Davide. And this cannot be done in
a consistent manner. If :NaivePolentoneShape is assigned, then :Davide does not
verify the corresponding constraint; if the negation of :NaivePolentoneShape is
assigned, then :Davide does not violate the constraint. Therefore a semantics
based on total assignments would consider the graph invalid.

It should be emphasized that this example is not a limit case: the same
problem appears for any (satisfiable) set of shapes containing a reference cycle
(of any size), and such that an odd number of references in this cycle are in the
scope of a negation. Therefore, if one wants to defines a robust semantics based
on assignments for recursive SHACL, it should be based on partial assignments,
leaving the possibility to assign neither a shape nor its negation to some nodes.

3 Formal Semantics for SHACL

This section provides a formal semantics for recursive SHACL. As explained
above, constraint validation is based on partial assignment. This semantics
(i) complies with the current semantics of SHACL for non-recursive constraints,
(ii) supports arbitrary recursion and negation, and (iii) can handle simultaneous
validation of multiple targets.

A set of shapes is validated iff there exists an assignment (called here faithful)
complying with it. This is a key difference from query answering, or cautious rea-
soning in Datalog, interested in certain answers, i.e. holding for all valid assign-
ments. For instance, in Fig. 2, some faithful assignments assign :PolentoneShape

to :Davide, and some do not.

324 J. Corman et al.

3.1 Notation

Like the SHACL specification, we borrow from SPARQL the notion of property
path, which describes regular constraints holding over a path in a graph (for the
syntax and semantics, we defer to the SPARQL standard [15]). Following [16],
if r is a property path and G a graph, we denote with r(G) the evaluation of r,
which consists of all pairs (v, v′) of nodes in G such that there is a path from v
to v′ satisfying r.

Similarly, if ψ is a SPARQL query, we denote with ψ(G) the evaluation of ψ
in G. Finally, we use |X| to denote the size of structure X.

3.2 Abstract Syntax and Semantics for SHACL Constraints

Syntax. As usual, we find more convenient to work with a logical abstrac-
tion of the concrete SHACL language. Our abstraction uses a fragment of first
order logic to simulate node shapes, and then unravels so-called SHACL “prop-
erty shapes” as modal formulas over nodes. Like the SHACL specification, we
make the unique name assumption, i.e. we assume that two blank nodes in an
RDF graph cannot denote the same individual. We also abstract away from
constraints on IRIs and literals (regular expression, datatype, value compari-
son, etc.), and use a simple constant I instead. Constraints are defined by the
following grammar:

φ ::= � | s | I | φ1 ∧ φ2 | ¬φ | ≥n r.φ | EQ(r1, r2)

where s is a shape name, I is an IRI, r is a property path, and n ∈ N
+. As

syntactic sugar, we use ≤n r.φ for ¬(≥n+1 r.φ), and =n r.φ for (≥n r.φ) ∧
(≤n r.φ).

Let L be the language defined by this grammar. A full operator-by-operator
translation from SHACL core constraint components to L and conversely is
provided in the online appendix [8] of this article. For non-recursive shape con-
straints, this is a correct translation, in the sense that a set of constraints in
one language and its translation in the other language validate exactly the same
graphs, given the same targets. Unfortunately, in the absence of formal semantics
for SHACL, this claim cannot be formally proven, but is based on our under-
standing of the specification. We cannot claim that this also holds for recursive
shapes though, because SHACL validation in this case is not defined.

Example 1. We illustrate the syntax with the example from Fig. 1. To express
SHACL cardinality constraints (e.g. sh:maxCount), we use ≤1 r.φ, which means
that a node can have at most 1 r-successor satisfying φ, or =1 r.φ for exactly
one. Then the constraints for :NIAddressShape (abbreviated here as sniaddr) can
be translated as:

(≤1 telephone.�) ∧ (=1 locatedIn.NorthernItaly)

where � is true at every node. In the same way, we can translate the constraints
for :PolentoneShape (abbreviated here as spol). Both sniaddr and spol appear

Semantics and Validation of Recursive SHACL 325

in the constraint for spol. This mimics the SHACL syntax, where both shapes
were mentioned:

(≤0 knows.¬spol) ∧ (=1 address.sniaddr)

Semantics. Because shape names may appear in constraint formulas, we define
the inductive evaluation of a formula in terms of a node, a graph, and an assign-
ment that mandates which shapes are true or false at each node.

Definition 1 (Assignment). Let N be a set of shape names, and G a graph.
An assignment σ for G and N is a total function mapping nodes in G to subsets
of N ∪ {¬s | s ∈ N}, such that s and ¬s cannot be both in σ(v).

Definition 2 (Total assignment). A assignment σ for G and N is total if
either s ∈ σ(v) or ¬s ∈ σ(v), for each node in G and s ∈ N .

The evaluation �φ�v,G,σ of formula φ at node v in graph G given σ is defined
in Table 1. In order to evaluate a formula given a partial assignment, we use a
3-valued logic, which, in addition to the usual 1 and 0 for true and false, uses
0.5 to represent an unknown truth value. But if assignments are required to be
total, then this third value is not needed:

Observation 1. Let σ be a total assignment for G and N , and φ a constraint
formula using shape names in N . Then for each node v of G, either �φ�v,G,σ = 0
or �φ�v,G,σ = 1.

The inductive definition of �φ�v,G,σ is standard, aside maybe for the operator
≥n r. Intuitively, ≥n r.φ evaluates to true iff at least n r-successors of v validate
φ, whereas ≥n r.φ evaluates to false iff the number of r-successors of v which do
or could validate φ is strictly inferior to n. This allows the semantics to comply
with SHACL cardinality constraints in the non-recursive case.

From SHACL Shapes to L Constraints. We model a shape as a triple
(s, φs, targets), where s is a shape name, φs is a constraint in L, and targets

is a (possibly empty) monadic query retrieving the target nodes of s. If S is a
set of shapes, we assume that for each (s, φs, targets) ∈ S, if s′ appears in φs,
then (s′, φ′

s, target′
s) ∈ S. An assignment for G and S is an assignment for G

and {s | (s, φs, targets) ∈ S}. Abusing notation, we write “s ∈ S” instead of
“(s, φs, targets) ∈ S”.

3.3 Validation

We finally have all components in place to define graph validation. Intuitively,
a graph is valid against a set S of shapes if one can find an assignment σ for
G and S complying with targets and constraints. We call such an assignment
faithful, defined as follows:

326 J. Corman et al.

Table 1. Inductive evaluation of constraint formula φ at node v in graph G given
assignment σ

Definition 3 (Faithful Assignment). A assignment σ for G and S is faithful
iff targets(G) ⊆ σ(v) for each (s, φs, targets) ∈ S, and, for each node v in G:

– if s ∈ σ(v), then �φs�
v,G,σ = 1

– if ¬s ∈ σ(v), then �φs�
v,G,σ = 0

Definition 4 (Validation). A graph G is valid against a set S of shapes iff
there is a faithful assignment σ for G and S.

The (online) appendix provides a full translation from SHACL to sets of
shapes and conversely, which preserves validation, provided the shapes are non-
recursive (i.e. contain no reference cycle). Our notion of validation is more robust
though, as it is also well-defined for recursive shapes. In Sect. 4, we study the
complexity of the validation problem. But for now, we provide some insight on
properties of this semantics.

3.4 Properties of Validation

We introduce some additional notation. First, ΣG,S will designate the set of all
assignments for G and S. Then we define the “immediate evaluation” operator
TG,S for G and S (or simply T when obvious from the context). It takes an
assignment σ, and returns the assignment T(σ) obtained by evaluating each φs

at each node of G.

Definition 5 (Immediate evaluation operator T).
T : ΣG,S → ΣG,S is the function defined by
s ∈ (T(σ))(v) iff �φs�

v,G,σ = 1, and ¬s ∈ (T(σ))(v) iff s ∈ �φs�
v,G,σ = 0

Semantics and Validation of Recursive SHACL 327

Finally, we define the preorder
 over ΣG,S by:

Definition 6 (Preorder
).
σ1
 σ2 iff σ1(v) ⊆ σ2(v) for each node v in G.

Validation Without Target. The SHACL specification states that a graph G
is valid against a set S of shapes if no shape in s has target in G. From Defini-
tions 3 and 4, this also (trivially) holds in the recursive case for our semantics.
Somehow surprisingly, validation without target may fail for total assignments.
For instance, there is no total faithful assignment for the graph of Fig. 2 and the
set of shapes containing only shape :NaivePolentoneShape from Fig. 3.

A Stricter Notion of Faithfulness. From Definition 3, a faithful assignment
σ is only required to assign s to a node v if φs is verified by v (given σ), and to
assign ¬s to v if φs is violated by v (given σ). But it is also possible to assign
none of these two, even though v verifies of violates φs (given σ). This may seem
counterintuitive, which leads to the following stricter notion of faithfulness:

Definition 7 (Strictly-faithful assignment). A assignment σ for G and S
is strictly faithful iff targets(G) ⊆ σ(v) for each (s, φs, targets) ∈ S, and, for
each node v in G:

– if s ∈ σ(v), then �φs�
v,G,σ = 1

– if ¬s ∈ σ(v), then �φs�
v,G,σ = 0

– otherwise, �φs�
v,G,σ = 0.5.

We also say that a graph G is strictly valid against a set of shapes S if there is
a strictly faithful assignment for G and S.

For instance, there is only one strictly faithful assignment for the graph of in
Fig. 2 and the two shapes of Fig. 3. It assigns ¬:HappyPersonShape to :addr1,
because :addr1 violates the constraint for this shape. There are also several (non-
strictly) faithful assignments, some of which assign neither :HappyPersonShape

nor its negation to :addr1. So intuitively, non-strict validation allows some form
of “lazy” constraint evaluation.

The operator T provides a more concise definition. Both faithful and strictly
faithful assignments must comply with targets for G and S. But in addition, a
faithful assignment σ must verify σ
 T(σ), whereas a strictly faithful assign-
ment σ′ must verify σ′ = T(σ′).

Interestingly, these two notions of validation coincide. To prove this, we first
need a useful property, the monotonicity of T w.r.t
:

Lemma 1 (monotonicity of T). For any G, S and σ1, σ2 ∈ ΣG,S:
if σ1
 σ2, then T(σ1)
 T(σ2).

We can now state the equivalence:

Proposition 1. For any G and S, G is valid against S iff G is strictly valid
against S.

328 J. Corman et al.

Proof (Sketch). The right direction is trivial, because a strictly faithful assign-
ment is faithful. In the other direction, let σ0 be a faithful assignment for G
and S. Define Σ′ ⊆ ΣG,S as all extensions of σ0, i.e. σ′ ∈ Σ′ iff σ0
 σ′. From
Lemma 1, T(σ0)
 T(σ′). And because σ0 is faithful, σ0
 T(σ). Therefore
σ0
 T(σ′), i.e. T(σ′) ∈ Σ′.

Now consider the (meet) semi-lattice 〈Σ′,
〉 rooted in σ0. We just showed
that for each σ′ ∈ Σ′, T(σ′) ∈ Σ′. In addition, from Lemma1, T is monotone
over 〈Σ′,
〉. So from a (weaker version of) the Knaster-Tarski Theorem, T
admits a fixed-point σ2 over Σ′. And because σ0
 σ2, σ2 complies with all
targets for G and S. Therefore σ2 is strictly faithful for G and S. �

All We Need Is One Target. The following explains why the complexity
results provided in Sect. 4 only consider graph validation with a single target
node.

Proposition 2. Given a graph G, set S of shapes and target nodes in G for
each s ∈ S, one can construct in linear time a graph G′ and set S′ of shapes,
such that G is valid against S iff G′ is valid against S′, and S′ has a single target
in G′.

Proof. (Sketch). Let s1, .., sn be the shapes in S, with respective targets
v1
1 , .., v

m1
1 , .., v1n, .., vmn

n . Extend G with a fresh node v0, and an edge (vo, e
j
i , v

j
i)

for each vj
i , with ej

i a fresh edge label. Then delete all target expressions in
S, and extend S with a fresh shape s0, with target node v0, and constraint
φs0

.= (≥1 em1
1 .�) ∧ ∧ (≥1 emn

1 .�). �

3.5 Validation and Stratified Negation

Section 2.2 suggested that the need for partial assignments comes from con-
straints combining circular references with negation, called non-stratified. We
now make this intuition more precise, showing that we can indeed focus solely
on total assignments if the constraints are stratified.

To formalize this idea, we borrow the notion of stratification from Datalog
[10] (assuming w.l.o.g that constraints do not contain two consecutive negation
symbols).

Definition 8 (stratification). A set S of shape definitions is stratified if there
is a total function str: S → N such that:

– If s1 appears in φs2 , then str(s1) ≤ str(s2)
– If s1 appears in φs2 in the scope of a negation then str(s1) < str(s2).

It must be emphasized that the language L does not include ≤n r or =n r.
If these operators were included, then one would need to redefine the second
condition accordingly, as ≤n r is a form of negation.

The following result confirms that a semantics based on total assignment is
sufficient for stratified sets of shapes.

Semantics and Validation of Recursive SHACL 329

Proposition 3. Let S be a stratified set of shapes and G a graph. Then there
exists a faithful assignment for G and S iff there exists a total faithful assignment
for G and S.

Proof (Sketch). For the right direction, the proof is trivial. For the left direction,
to simplify notation, we represent assignments as sets of positive and negative
atoms. Let σ be a faithful assignment for G and S, and let S1, .., Sn be the strata
of S, from lowest to highest. The proof constructs an extension σ′ of σ, stratum
by stratum, initialized with the empty set. For each stratum Si (starting from
S0), σ′ is extended in three steps. First, σ′ is extended with σ reduced to atoms
with shape names in Si. Then T is applied to σ′ recursively, until a fixed-point
is reached. Finally, σ′ is extended with each s(v) such that v is a node in G,
s ∈ Si and ¬s(v) �∈ σ′. It can be shown by induction on i that this extension
of σ′ always exists, and complies with all constraints for shapes in S0, .., Si. So
when i reaches n, the last extension of σ′ is a total faithful assignment for G
and S. �
This result is important for computational reasons. It also implies that 3-valued
validation is not easier than 2-valued validation, which may come as a surprise.

4 Complexity

We now study the computational complexity of the validation problem, defined
as follows (full proofs are provided in the online appendix):

Validation:

Input: Graph G, set S of shapes
Decide: G is valid against S

Based on Proposition 2, we focused on instances with one target node (for
one shape in S). We also assume that this target node is already known. Table 2
summarizes our results. As is customary, since the size of G is likely to be orders
of magnitude larger than the size of S, we also study the problems Valida-

tion(S) and Validation(G), for a fixed set S of shapes and fixed graph G,
called data complexity and constraint complexity below.

We consider two fragments of the constraint language L: (i) L≥1,¬,∧ is the
fragment defined by the grammar φ:: = � | I | s | φ1 ∧ φ2 | ¬φ | ≥1 p.φ, where
p is an IRI, and (ii) L≥n,∧,∨,r,EQ is the fragment defined with φ:: = � | I | s |
φ1 ∧ φ2 | φ1 ∨ φ2 | ≥n r.φ | EQ(r1, r2), where r, r1, r2 are property paths and
φ1 ∨ φ2 is interpreted (as expected) as ¬(¬φ1 ∧ ¬φ2).

We start by showing an NP upper bound for combined complexity, based on
guessing a witnessing faithful assignment. Then we show that this upper bound
is tight, even for a fixed set of shapes (data complexity) using stratified negation
and basic operators (≥1,¬ and ∧). We also show that this bound is tight for a
fixed graph. Lastly, we show that allowing disjunction but disallowing negation
otherwise is sufficient to regain tractability.

330 J. Corman et al.

Table 2. Computational complexity of Validation. -c stands for complete.

Fragment Data Constraint Combined

L (= SHACL) NP-c NP-c NP-c

Stratified L≥1,¬,∧ NP-c NP-c NP-c

L≥n,∧,∨,r,EQ in P in P P-c

Let us start with NP membership. First, all property paths present in S can
be materialized in time polynomial in |G| · |S| before validation. In addition, by
introducing fresh shape names, S can be transformed in polynomial time into
an equivalent set S′ of shapes, whose constraints contain at most one operator.
Then assuming that we can guess a faithful assignment σ for G and S′, we only
to check σ is indeed faithful. To do so, it is sufficient to compute the value of
�φs�

v,G,σ for each node v in G and s ∈ S′, which is again polynomial in |G|+ |S|,
even with a binary encoding of cardinality constraints. Summing up, we have:

Proposition 4 (Combined – Upper Bound). Validation is in NP.

Now for the lower bound, validation is already intractable in data complexity
for stratified L≥1,¬,∧. This may come as a surprise, considering that data com-
plexity of ground fact entailment in stratified Datalog is in PTime [10]. We show
NP-hardness by a reduction from the satisfiability problem of a propositional
circuit: there is a fixed set S of shapes such that every propositional circuit can
be transformed (in linear time) into a graph, and this graph is valid against S
iff the circuit is satisfiable.

Proposition 5 (Data – Lower Bound). There is a stratified fixed set S of
shapes in L≥1,¬,∧ such that Validation(S) is NP-hard.

We also show that the problem is NP-hard in constraint complexity for the
same fragment (with a reduction from SAT):

Proposition 6 (Constraint – Lower Bound). There is a fixed graph G
such that Validation(G) is NP-hard, even if S is restricted to stratified sets
of shapes in L≥1,¬,∧.

As a more optimistic result, validation is in PTime if one allows disjunction
as a native operator, but disallows negation otherwise. The proof relies on the
(unique) minimal fixed-point σ of T w.r.t.
, which can be computed in time
polynomial in |G| + |S|. Let v0 be the (unique) target node to validate, against
shape s0. If ¬s0 ∈ σ(v0), then G is invalid. Otherwise, it can be shown that there
must be an extension of σ (w.r.t.
) which is faithful for G and S.

Proposition 7 (Combined – Upper Bound). Validation is in P for
L≥n,∧,∨,r,EQ.

Finally, we show PTime hardness for a sub-fragment of L≥n,∧,∨,r,EQ (without
property paths and path equality), with a log-space reduction from the problem
of evaluating a monotone boolean circuit.

Semantics and Validation of Recursive SHACL 331

Proposition 8 (Combined – Lower Bound). Validation is P-hard for
L≥n,∧,∨,r,EQ.

5 Approximation

The above intractability result for data complexity (Proposition 6), and even
for a stratified set of shapes, is an important limitation. In order to alleviate
this problem, we present in this section an approximation algorithm to decide
whether a graph G is valid against a set S of shapes, with an integer parameter
k. If k is bounded, then the algorithm is sound, and runs in time polynomial in
|G|. If k is unbound, then the algorithm is sound and complete, but may run
in time exponential in |G|. The approximation is sound in that the algorithm
returns Valid (resp. Invalid) only if G is valid (resp. not valid) against S.

For readability, from Proposition 2, we focus on validation with a single target
node v0, for shape s0. Algorithm 1 describes the procedure, composed of two
steps. The first step intuitively computes an assignment σminFix matching all
constraints enforced by the graph, regardless of the target. If the validity of
G cannot be decided after this (polynomial) step, then σminFix is extended by
assigning s0 to v0, and an attempt is made to propagate constraints from v0 to
its successors, in order for v0 to satisfy φs0 .

Step 1: Minimal Fixed-Point. As a reminder from Sect. 3.3, we use ΣG,S to
denote the set of all (possibly partial) assignments for G and S. The first step of
the algorithm computes the minimal fixed-point σminFix of the operator T (see
Definition 5) w.r.t.
. Because 〈ΣG,S ,
〉 is a semi-lattice and T is monotone
w.r.t.
 (Lemma 1), σminFix must exist and be unique. It can also be computed
in time polynomial in |G|, initializing σminFix with the empty set, and then
applying T to σminFix recursively, until a fixed-point is reached. This is performed
by procedure ComputeMinFix. If s0 ∈ σminFix(v0), then the graph is valid,
Line 2. Furthermore, any strictly faithful assignment of for G and S must be
a fixed-point of T (see Sect. 3.3), and therefore must extend σminFix. So from
Proposition 1, If ¬s0 ∈ σminFix(v0), then the graph is invalid, Line 3.

Step 2: Breadth-First Search. The next step consists in searching for a
faithful assignment, in a breadth-first fashion, starting from the target node
v0. We abuse notation and use set operators (∪,∈, etc.) to describe the stack.
Similarly, for brevity, we represent assignments interchangeably as functions or
as sets of (positive and negative) atoms.

Each element of the stack (i.e. each “branch” of this exploration) is a tuple
〈σ, σP , A, n〉, where:

– σ is the current assignment being constructed, initialized with σminFix ∪
{s0(v0)}.

– σP
 σ keeps track of shapes freshly assigned to a node during the previous
expansion of σ. For any element of the stack, if σP is empty, then no constraint
needs to be propagated in this branch, i.e. σ is a faithful assignment, and so
the graph is validated, line 7.

332 J. Corman et al.

– A is a set of atoms of the form s(v), such that s(v) �∈ σ and ¬s(v) �∈ σ,
– n is the current depth of the exploration, incremented each time σ is extended.

When n reaches k, the size of the stack cannot be extended anymore, which
triggers a call to Reduce, line 11, to merge some of the current branches.

Line 8, function extend computes each minimal extensions σ′ of σ such that:

– If s ∈ σP (v), then �φs�
v,G,σ′

= 1,
– If ¬sσP (v), then �φs�

v,G,σ′
= 0, and

– if s(v) ∈ A, then {s,¬s} ∩ σ(v) = ∅.

It can be shown that each call to extend can be executed in time O(|G||S|).
Finally, if the depth n of the exploration reaches k, line 11, then proce-

dure reduce prevents the number of elements in the stack to increase. Line 18,
function getClosestPair retrieves the two closest assignments σ1 and σ2 (in
terms of edit distance) in the Stack. Then function getConflicts 20 retrieves
the (possibly empty) set A of atoms which σ1(v) and σ2(v) disagree on, i.e.
s(v) ∈ A if both s and ¬s are in σ1(v) ∪ σ2(v), and the procedure replace sets
each σi to σi \ {s(v),¬s(v)}. After this step, either σ1
 σ2 or σ2
 σ1 must
hold, and only the greater of the two (w.r.t
) is retained (Line 23) and pushed
in the stack.

The number of possible assignments is of O(2|G|), but the number of assign-
ments created by extend is O(|G||S|). So if the parameter k is fixed, the reduced
stack makes sure that the execution time is O(|G||S|.k).

6 Related Work

Several schema languages have been proposed or implemented for RDF before
SHACL, and some of them are closely associated to the design of SHACL. But
first, it should be mentioned that RDF Schema (RDFS), contrary to what its
name may suggest, is not a schema language in the classical sense, but is pri-
marily used to infer implicit facts.

Among the proposals which do not relate (to our knowledge) to the genesis of
SHACL, are proposals for RDF integrity constraints [1,13]. We have not explored
a formal comparison between these formalisms and SHACL, but conjecture that
they are incomparable with SHACL.

SPIN6 allows the user to express constraints as SPARQL queries (natively, or
using templates) and to declare targets for these constraints, similar to SHACL
targets. SPIN became a W3C member submission in 2011, before being explicitly
superseded by SHACL in 2017. Being based on SPARQL, it supports negation,
but not full recursion.

ShEx has been actively developed since 2012 [6], as a dedicated constraint
language for RDF, strongly inspired by XML schema languages. The first version
of ShEx did support recursion, but no negation. A formal semantics was pro-
vided in [21], based on regular bag expressions. Recently, ShEx 2.07 incorporated
6 http://spinrdf.org/.
7 http://shex.io/shex-semantics/.

http://spinrdf.org/
http://shex.io/shex-semantics/

Semantics and Validation of Recursive SHACL 333

Algorithm 1. Approximation

Require: G′, S, s0, v0, k
1: σminFix ← ComputeMinFix(G′, S)
2: if s0 ∈ σminFix(v0) then return Valid

3: if ¬s0 ∈ σminFix(v0) then return Invalid

4: Stack ← 〈σminFix ∪ {s0(v0)}, {s0(v0)}, {atoms(G′, S)}, 0〉
5: while nonEmpty(Stack) do
6: 〈σ, σP , A, n〉 ← pop(Stack)
7: if σP = ∅ then return Valid

8: for all σ′ ∈ extend(σ, σP , A) do
9: push(T , 〈σ′, σ′ \ σ, A, n + 1〉)
10: end for
11: if n ≥ k then Stack ← reduce(Stack, |T |)
12: end while
13: return Unknown

14:
15: procedure reduce(Stack, m)
16: i = 0
17: while i ≤ m do
18: (〈σ1, σ

P
1 , A1, n1〉, 〈σ2, σ

P
2 , A2, n2〉) ← getClosestPair(Stack)

19: Stack ← Stack \{〈σ1, σ
P
1 , A1, n1〉, 〈σ2, σ

P
2 , A2, n2〉}

20: A ← getConflicts(σ1, σ2)
21: σ1 ← replace(σ1, A)
22: σ2 ← replace(σ2, A)
23: σ = max{σ1, σ2}
24: push(Stack, 〈σ, σP

1 ∪ σP
2 , A ∪ A1 ∪ A2,max{n1, n2}〉)

25: i ← i + 1
26: end while
27: end procedure

negation, and a formal semantics was provided in [7], together with a abstract
language called Shape Schemas. As highlighted in [5], ShEx and SHACL have
lot in common, and the semantics provided in [7] can be directly adapted to
SHACL. This proposal is also similar to the one made in this article, in that
validation is based on a typing verifying target and constraints, similar to our
notion of shape assignment. A difference though is that the semantics proposed
in [7] is restricted to stratified constraints. Moreover, the (unique) typing used
in [7] to define validation favors the validation of shapes in the lowest stratum,
so that the graph of Fig. 2 for instance would be considered invalid.

Another line of work is inspired by the Web Ontology Language (OWL),
which is based on Description Logics (DLs) [3]. Like RDFS, OWL was not
designed as a schema language, but adopts instead the open-world assumption,
not well-suited to express constraints. Still, proposals have been made to rea-
son with DLs understood as constraints: by introducing auto-epistemic opera-
tors [11], partitioning DL formulas into regular and constraint axioms [17,22],
or reasoning with closed predicates [19]. This last approach was actually

334 J. Corman et al.

proposed as a semantic grounding for SHACL [18], reducing constraint validation
to first-order satisfiability with closed binary predicates. But as illustrated with
Example Fig. 3, this semantics does not behave well in the presence of targets
and non-stratified constraints.

Recursion over negation has been traditionally studied in logical program-
ming (see e.g. [10]), and answer-set programming (see [20] in the context of
SPARQL), where stable model semantics (SMS) is one of the most prominent
paradigms [14]. But SMS is based on so-called minimal models, whereas shape
assignments may not be minimal. This makes encoding SHACL into logical pro-
gramming non trivial, as suggested by complexity results: ground-fact entailment
is data-tractable for stratified Datalog, in contrast to our semantics (see Propo-
sition 5). A possible way to relate the two semantics, at least for the stratified
case, is to reason about shape “complements” under SMS. Still, our preliminary
investigations tend to show that this is not straightforward.

7 Conclusion

The article proposes an abstract syntax and formal semantics for SHACL core
constraint components. This semantics is robust enough to handle constraints
with arbitrary recursion, which can be expressed in SHACL, but whose validation
is left explicitly open in the specification. One of our contributions is to highlight
semantic issues related to non-stratified SHACL targets. To address such cases,
we adopt a notion of partial assignment of (positive and negated) shapes to
nodes, and define a semantics with desirable properties, such as monotonicity
of forward-chaining, or equivalence with total assignments in the stratified case.
We then show that the validation problem is NP-complete for any fragment
with at least conjunction, negation and existential quantification, in the size of
either graph or constraints, regardless of stratification. Therefore we propose a
sound approximation algorithm, parameterized by an integer k, which guarantees
termination in time polynomial in the size of the graph.

As a continuation, we plan to investigate other problems, such as (finite)
satisfiability of a set of shapes, or SPARQL query containment in the presence
of SHACL constraints. We also expect this formalization to be abstract enough
to be extended to other constraint languages for graphs, such as ShEx, in order
to handle arbitrary recursion.

Acknowledgements. This work was supported by the QUEST, ROBAST and
OBATS projects at the Free University of Bozen-Bolzano, and the Millennium Institute
for Foundational Research on Data (IMFD), Chile.

Semantics and Validation of Recursive SHACL 335

References

1. Akhtar, W., Cortés-Calabuig, Á., Paredaens, J.: Constraints in RDF. In: Schewe,
K.-D., Thalheim, B. (eds.) SDKB 2010. LNCS, vol. 6834, pp. 23–39. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23441-5 2

2. Arenas, M., Gutierrez, C., Pérez, J.: Foundations of RDF databases. In: Tessaris,
S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 158–204. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2 4

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

4. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 34–43
(2001)

5. Boneva, I.: Comparative expressiveness of ShEx and SHACL (early working draft)
(2016)

6. Boneva, I., Labra-Gayo, J.E., Hym, S., Prud’hommeau, E.G., Solbrig, H.R., Sta-
worko, S.: Validating RDF with shape expressions. CoRR, abs/1404.1270 (2014)

7. Boneva, I., Labra Gayo, J.E., Prud’hommeaux, E.G.: Semantics and validation of
shapes schemas for RDF. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol.
10587, pp. 104–120. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68288-4 7

8. Corman, J., Reutter, J.L., Savkovic, O.: Semantics and validation of recursive
SHACL (extended version). Technical report KRDB18-1. KRDB Research Center,
Free Univ. Bozen-Bolzano (2018)

9. Corman, J., Reutter, J.L., Savkovic, O.: Validating graph data against recursive
constraints: a semantics for SHACL. AMW (2018, to appear)

10. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)

11. Donini, F.M., Nardi, D., Rosati, R.: Description logics of minimal knowledge and
negation as failure. ACM Trans. Comput. Log. (TOCL) 3(2), 177–225 (2002)

12. Ekaputra, F.J., Lin, X.: SHACL4P: SHACL constraints validation within Protégé
ontology editor. In: ICoDSE (2016)

13. Fischer, P.M., Lausen, G., Schätzle, A., Schmidt, M.: RDF constraint checking.
In: Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference,
EDBT/ICDT, Brussels, Belgium, 27 March 2015, pp. 205–212 (2015)

14. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming, pp.
1070–1080. MIT Press (1988)

15. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C
Recomm. 21(10) (2013)

16. Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: SPARQL with property
paths. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 3–18. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25007-6 1

17. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational
databases. Web Semant.: Sci. Serv. Agents World Wide Web 7(2), 74–89 (2009)

18. Patel-Schneider, P.F.: Using description logics for RDF constraint checking and
closed-world recognition. In: AAAI (2015)

19. Patel-Schneider, P.F., Franconi, E.: Ontology constraints in incomplete and com-
plete data. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp.
444–459. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35176-
1 28

https://doi.org/10.1007/978-3-642-23441-5_2
https://doi.org/10.1007/978-3-642-03754-2_4
https://doi.org/10.1007/978-3-319-68288-4_7
https://doi.org/10.1007/978-3-319-68288-4_7
https://doi.org/10.1007/978-3-319-25007-6_1
https://doi.org/10.1007/978-3-642-35176-1_28
https://doi.org/10.1007/978-3-642-35176-1_28

336 J. Corman et al.

20. Polleres, A., Wallner, J.P.: On the relation between SPARQL1.1 and answer set
programming. J. Appl. Non-Class. Log. 23(1–2), 159–212 (2013)

21. Staworko, S., Boneva, I., Labra-Gayo, J.E., Hym, S., Prud’hommeaux, E.G., Sol-
brig, H.: Complexity and expressiveness of ShEx for RDF. In: ICDT (2015)

22. Tao, J., Sirin, E., Bao, J., McGuinness, D.L.: Integrity constraints in OWL. In:
AAAI (2010)

Certain Answers for SPARQL with Blank
Nodes

Daniel Hernández, Claudio Gutierrez, and Aidan Hogan(B)

IMFD Chile and Department of Computer Science, University of Chile,
Santiago, Chile

daniel@degu.cl, aidhog@gmail.com

Abstract. Blank nodes in RDF graphs can be used to represent val-
ues known to exist but whose identity remains unknown. A prominent
example of such usage can be found in the Wikidata dataset where, e.g.,
the author of Beowulf is given as a blank node. However, while SPARQL
considers blank nodes in a query as existentials, it treats blank nodes in
RDF data more like constants. Running SPARQL queries over datasets
with unknown values may thus lead to counter-intuitive results, which
may make the standard SPARQL semantics unsuitable for datasets with
existential blank nodes. We thus explore the feasibility of an alterna-
tive SPARQL semantics based on certain answers. In order to estimate
the performance costs that would be associated with such a change in
semantics for current implementations, we adapt and evaluate approx-
imation techniques proposed in a relational database setting for a core
fragment of SPARQL. To further understand the impact that such a
change in semantics may have on query solutions, we analyse how this
new semantics would affect the results of user queries over Wikidata.

1 Introduction

Incomplete information poses a major challenge for data management on the
Web. Web data may be incomplete for a variety of reasons: the missing informa-
tion may be unknown to those who created the dataset, it may be suppressed for
privacy reasons, it may not yet have been added to the dataset, it may be a gap
left after integrating other datasets, and so forth. A fundamental question for
exploiting data on the Web is then how to define the semantics for (and process)
queries over incomplete datasets. An important notion of incompleteness is that
of unknown values. To take a literary example, we know that the poem “Beowulf”
was written by somebody, but nobody knows who. One option is to simply omit
authorship, but we would then lose valuable information that “Beowulf” has
some author. Various works have then been proposed to deal with incomplete
information [10,11,20], amongst which are recent works proposing query rewrit-
ings to provide sound answers over databases with unknown values [8,11,12,19];
such works have focused on relational settings.

On the other hand, there is a strong need for methods to deal with incomplete
information and unknown values in a Semantic Web setting. In RDF, blank nodes
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 337–353, 2018.
https://doi.org/10.1007/978-3-030-00671-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_20&domain=pdf

338 D. Hernández et al.

can be used either to represent a resource for which no IRI is defined, or as an
existential to represent an unknown value [15]. The RDF standard specifically
defines blank nodes with an existential semantics [14]. However, SPARQL [13]
does not follow the standard existential semantics of blank nodes in RDF data.
As a result, when SPARQL queries are run over datasets where blank nodes are
used as existentials to represent unknown values, the results can be unintuitive
(or arguably incorrect [11]). We now provide such an example taken from the
Wikidata [22] knowledge-base, which publishes data associated with Wikipedia
as RDF and provides a public SPARQL query interface on the Web.

Example 1. Take the following RDF triples from Wikidata [22]1 and the follow-
ing two SPARQL queries, which we will denote Q1 (above) and Q2 (below):

w:NicoleSimpson w:killedBy _:b .
w:NicoleSimpson w:gender w:Female .
w:ReevaSteenkamp w:killedBy w:OscarPistorius .
w:ReevaSteenkamp w:gender w:Female .
w:OJSimpson w:gender w:Male .
w:OscarPistorius w:gender w:Male .

SELECT ?victim WHERE
{ ?victim w:killedBy ?person .

?person w:gender w:Male . }

SELECT ?victim WHERE
{ ?victim w:killedBy ?person .

FILTER NOT EXISTS
{ ?person w:gender w:Male . } }

In the data, the blank node (:b) denotes that Nicole Brown Simpson (a victim of
homicide) has a killer, but that her killer is unknown. For Q1, SPARQL dictates
a single solution – {?victim/w:ReevaSteenkamp} – which can be considered
a certain answer ; here the (unknown) killer of Nicole Simpson may have been
male, but uncertain answers of this form are not returned. On the other hand, for
Q2, SPARQL again dictates a single solution – {?victim/w:NicoleSimpson} –
but this answer is uncertain by the same reasoning: we do not know that the
killer of Nicole Simpson was not male; :b could refer to a male in the data. ��

These two examples highlight a key problem in the current SPARQL seman-
tics when dealing with unknown values. In the first query only certain answers are
returned: answers that hold no matter to whom the unknown value(s) refer(s). In
the second query uncertain answers are returned: answers that may or may not
hold depending on whom the unknown value(s) refer(s) to. The key premise of
this paper is to then ask: should users be offered a choice to only return certain
answers? Is such a choice important? And what would be its cost?

Regarding cost, unfortunately, query evaluation under certain answer seman-
tics incurs a significant computational overhead; for example, considering queries
expressed in the standard relational algebra, if we consider only “complete
databases” without unknown values, the data complexity of the standard query
evaluation problem is AC0; on the other hand, the analogous complexity with
unknown values under certain answer semantics leaps to coNP-hardness [1].

One can thus hardly blame the design committee of the SPARQL language
for choosing to initially overlook the issue of unknown values: not only would
the complexity of query evaluation have escalated considerably under something
1 While the example uses real data, for readability, we use fictitious IRIs. In reality,

Wikidata uses internal identifiers, such as w:Q268018 to represent Nicole Simpson.

Certain Answers for SPARQL with Blank Nodes 339

well-founded like a certain-answer semantics, the cost and complexity of correctly
implementing the new standard would likewise have jumped considerably. Still,
in this paper, we propose that it is time to revisit the issue of evaluating SPARQL
queries in the presence of unknown values (blank nodes) in the data.

In terms of need, a recent study of blank nodes suggests that 66% of websites
publishing RDF use blank nodes, with the most common use-cases being to
represent resources for which no IRI has been defined (e.g., for representing
RDF lists), or to represent unknown values [15]. The methods proposed in this
paper specifically target datasets using blank nodes in the second sense; such
datasets include Wikidata [22], as illustrated in Example 1.

In terms of cost, work by Guagliardo and Libkin [11] offers promising results
in terms of the practical feasibility of approximating certain answers in the con-
text of relational databases, returning only (but not all) such answers. Perfor-
mance results suggest that such approximations have reasonable runtimes when
compared with standard SQL evaluation. Furthermore, their implementation
strategy is based on query rewriting over off-the-shelf query engines, obviating
the need to build special-purpose engines, minimising implementation costs.

In this paper, we thus tackle the question: should users be given a choice
of certain semantics for SPARQL? Along these lines, we adapt the methods of
Guagliardo and Libkin [11] in order to propose and evaluate the first approach
(to the best of our knowledge) that guarantees to return only certain answers
for a fragment of SPARQL (capturing precisely the relational algebra) over RDF
datasets with existential blank nodes, further developing a set of concrete rewrit-
ing strategies for the SPARQL setting. We evaluate our rewriting strategies for
two popular SPARQL engines – Virtuoso and Fuseki – offering comparison of per-
formance between base queries and rewritten queries (under various strategies),
and a comparison of our SPARQL and previous SQL results [11]. We further
conduct an analysis of Wikidata user queries to see if a certain answer seman-
tics would really affect the answers over real-world queries and data, performing
further experiments to ascertain costs in this setting.

2 Related Work

The conceptual problem of evaluating queries over data with unknown values
is well-known in the relational database literature from as far back as the 70’s,
where Codd presented an extension of the relational model to allow nulls to
encode unknown values [7]. Work on querying data with unknown values has
continued throughout the decades, mostly in the context of relational databases
(e.g., [17,19]), but also in various semi-structured settings (e.g., [2,9]).

A recent milestone has been the development of methods for approximating
certain answers, where the current work is inspired by the proposal of Guagliardo
and Libkin [11] of a method to (under-)approximate certain answers for SQL.
Their goal is to trade completeness of certain answers against efficiency, ensuring
that only (but not necessarily all) certain answers are returned in the presence
of unknown values. We thus adapt their techniques for the SPARQL setting

340 D. Hernández et al.

over RDF graphs with unknown values and propose SPARQL-specific rewriting
strategies. In the experimental section, we provide a high-level comparison of our
results for SPARQL with those published by Guagliardo and Libkin for SQL.

We are not the first work to explore a certain answer semantics for SPARQL.
Ahmetaj et al. [2] define a certain answer semantics for SPARQL, but their
focus is on supporting OWL 2 QL entailment for queries based on well-designed
patterns [21], and in particular on complexity results for query evaluation, con-
tainment and equivalence. Arenas and Perez [5] also consider a certain answer
semantics for SPARQL towards studying conditions for monotonicity : a seman-
tic condition whereby answers will remain valid as further data is added to the
system; as such, certain answers in their work are concerned with an open world
semantics. However, determining if a query is weakly monotonic – i.e., monotonic
disregarding unbound values – is undecidable. Hence Arenas and Ugarte [6] later
propose a syntactic fragment of SPARQL that closely captures this notion of
weak monotonicity. In contrast to such works, we maintain SPARQL’s negation
features [3] with a closed world semantics. In many contexts, users are interested
in writing SPARQL queries with respect to what the present dataset does/does
not contain; where, e.g., as we discuss later, many of the use-case queries for the
Wikidata SPARQL service use non-monotonic features, such as difference.

To our knowledge, this is the first work to investigate a certain answer seman-
tics for SPARQL considering existential blank nodes in RDF data.

3 Preliminaries

RDF and Incomplete Information: We assume three pairwise disjoint sets: B of
blank nodes, C of constants, and V of attribute names (considered to represent
variables when we later speak of queries). We will henceforth refer to blank
nodes as simply “blanks”. We denote blanks as ⊥1,⊥2,⊥3, etc.; constants with
lowercase a, b, c, etc.; and attribute names with uppercase X,Y,Z, etc.

We define a tuple to be a function (a mapping) μ : V → (C ∪ B); for
simplicity, we will denote the mapping μ with domain {X,Y } where μ(X) = a
and μ(Y) = b simply as XY �→ (a, b), or even as the tuple (a, b) if the attributes
X and Y are clear from the context. A relation R is determined by a set of tuples
with the same domain (we need not consider empty relations).

An RDF graph G (or simply a graph) then corresponds to an instance of a
single ternary relation with fixed attributes S, P,O, called subject, predicate and
object, where P can only map to C (i.e. no blanks can occur as predicate), while
S and O can map to values from C∪B. Here C represents both IRIs and RDF
literals; such a distinction of RDF constants is not exigent for us.

In this model, features for encoding incomplete information – specifically
unknown values – are introduced by the semantics of blanks. Here the set B of
blanks appearing in the data are interpreted as existentially-quantified variables
in a manner consistent with the RDF semantics [14]; this is how, e.g., Wiki-
data uses blanks to represent unknown values. Blanks are synonymous with
marked nulls in a relational setting: nulls that can appear in various locations.

Certain Answers for SPARQL with Blank Nodes 341

Hence RDF graphs with blanks correspond to (ternary) relations with marked
nulls, which have been called naive tables, v-tables, or e-tables by various authors
(see [16]); here we will refer to them as v-tables. We say a v-table/graph is com-
plete/ground when no nulls/blanks are used. With this correspondence estab-
lished, we may henceforth use terms such as graph/table or blank/null inter-
changeably as best fits the particular context.

The semantics of a v-table is then defined as follows. A valuation is a mapping
v : C ∪ B → C such that v(c) = c for every c ∈ C. Valuations are extended
to tuples, relations and databases in the natural way. For instance, applying a
valuation v to a graph G, denoted v(G), results in the complete graph derived
by replacing every blank ⊥i in G by v(⊥i). The semantics of a v-table �R� is
then given as the ground relations {v(R) : v is a valuation}.

A Core SPARQL Algebra: We now define an algebra for the fragment of
SPARQL considered, focusing on set semantics. We first define queries for ground
graphs where unknown values will be treated later: A query is a combination
of the following algebraic operations: selection (σθ), renaming (ρX/Y), projec-
tion (πX̄), natural join (��), union (∪) and difference (\). Attribute names (V)
are then synonymous with variables in SPARQL. The condition θ of a selection
σθ(R) is a Boolean combination (∧,∨,¬) of terms of the form X = Y or X = c,
where X and Y refer to the attributes of R and c ∈ C. We refer to this fragment
as “SRPJUD” capturing the initials of the operations allowed; this fragment
corresponds directly to the relational algebra but will be applied to graphs in a
SPARQL setting. The correspondence between SRPJUD operators and syntactic
SPARQL features is shown in Table 1. Note however that union and difference
in SRPJUD follow the relational algebra in that – unlike standard SPARQL –
R ∪ S and R \ S assume that the relations R and S have the same attributes.
Thus, SRPJUD does not support generating unbound variables through UNION
as supported by SPARQL for attributes not in both R and S. However the dif-
ference operator in SRPJUD and the outer-difference operator in SPARQL can
be mutually expressed using other SRPJUD operators. Taking difference, R \ S
is a particular case of the outer difference R − S when the attributes of R and
S are the same. Conversely, letting X̄ denote the set of common attributes of R
and S, the outer-difference R − S can be expressed as (1) R �� (πX̄(R) \ πX̄(S))
when X̄ is non-empty or (2) R when X̄ is empty.

Finally, given a query Q expressed in SRPJUD and a graph G, we write Q(G)
to denote the result of evaluating Q over the graph G following standard con-
ventions for the relational algebra. Our focus will then be on answering queries
in the core SRPJUD fragment over graphs with unknown values. We leave sup-
port for the following features of SPARQL for future work: (1) Bag semantics.
(2) SPARQL unbounds as created by either SPARQL UNION or OPT. (3) Other
features such as property paths, solution modifiers, aggregations, other filter
expressions, named graphs, etc. These latter SPARQL features (e.g., aggrega-
tion) can, however, be defined syntactically on top of the core SRPJUD algebra.

342 D. Hernández et al.

Table 1. Mapping between SPARQL and SRPJUD

{ X p Y } ↔ ρS/X(ρO/Y (πS,O(σP=p(G))))
P . Q ↔ P �� Q SELECT X̄ WHERE P ↔ πX̄(P)

P MINUS Q ↔ P − Q SELECT (X AS Y) WHERE P ↔ ρX/Y (P)
P UNION Q P Q P FILTER θ σθ(P)

Certain and Possible Answers: We now define a certain- and possible-answer
semantics for SPARQL where unknown values are present in the RDF data in
the form of blanks. Let Q be a query and G be a graph with blanks. Then a
widely used definition of certain answers are the answers μ of Q(G) such that
μ ∈ Q(v(G)) for every valuation v. Another more general definition of certain
answers – first defined by Lipski [20] and called certain answers with nulls by
Libkin [18] – states that μ is a certain answer of Q(G) iff v(μ) ∈ Q(v(G)) for
every valuation v; this semantics allows for returning unknown values in answers.

Example 2. Consider an RDF graph G with {(a, b, c), (a, d,⊥1)} and a query
π{P,O}(G). Under certain answer semantics, {(b, c)} is returned. Under certain
answer semantics with nulls, {(b, c), (d,⊥1)} is returned; here ⊥1 is interpreted
as stating that for all valuations, there exists some constant there. ��

A complementary notion is that of a possible answer : a tuple μ is a possible
answer of Q(G) if there exists a valuation v such that v(μ) ∈ Q(v(G)).

Example 3. Consider again the graph G from Example 2 but instead consider a
query π{S,O}(σP=b(G))\π{S,O}(σP=d(G)). Under both certain answer semantics
an empty result will be returned since there is a valuation μ such that μ(⊥1) = c.
Here (a, c) will be considered a possible rather than a certain answer. ��

Given a query Q and an RDF graph G, then we write cert(Q,G) and
poss(Q,D) to denote respectively the sets of certain and possible answers, defined
as follows:

cert(Q,G) =
⋂

{μ | v(μ) ∈ Q(v(D)) for all valuations v},

poss(Q,G) =
⋃

{μ | v(μ) ∈ Q(v(G)) for all valuations v}.

Note that the former definition captures certain answers with nulls, which we use
here; also, note that cert(Q,G) ⊆ poss(Q,G): certain answers are also possible.

4 Approximating Certain Answers

The problem of query evaluation under certain answers is coNP-hard (data com-
plexity); without unknown values the analogous problem is in AC0. Likewise the
definition of the semantics does not directly suggest a practical query answering
procedure. Hence in this section we explore an algebra that allows for approxi-
mating certain/possible answers based on the notion of maybe tables.

Certain Answers for SPARQL with Blank Nodes 343

4.1 Unification

We first define the notion of unification, which joins tuples with unknown val-
ues. We say that μ1 and μ2 unify, denoted μ1 ⇑ μ2, iff for every common
attribute X that they share, it holds that μ1(X) = μ2(X) or μ1(X) ∈ B or
μ2(X) ∈ B; in other words, μ1 ⇑ μ2 holds iff there is a valuation v such that
v(μ1(X)) = v(μ2(X)) for every common attribute X. The unification of two
tuples (μ1

�μ2)(X) is defined as μ1(X) if μ2(X) is ⊥, or μ2(X) otherwise. Unifi-
cation allows to extend the standard operators join, semijoin and anti-semijoin to
include the semantics of nulls by replacing the concept of joinable tuples and
joins of tuples by the notion of unifiable tuples and unifications of tuples:

P ��⇑ Q = {μ1
�μ2 | μ1 ∈ P, μ2 ∈ Q, and μ1 ⇑ μ2},

P �⇑ Q = {μ1 ∈ P | ∃μ2 ∈ Q : μ1 ⇑ μ2},

P �⇑ Q = {μ1 ∈ P | �μ2 ∈ Q : μ1 ⇑ μ2}.

Such operators will be essential to defining an approximation of certain answers,
but they do not appear in SRPJUD and cannot be expressed in this fragment
since it does not contain any means to distinguish blanks from constants. Hence
to rewrite a SRPJUD query, we need a built-in predicate of the form bk(X) in
the target algebra, which evaluates to true for a tuple μ if μ(X) ∈ B, or false
otherwise. We can now represent P �⇑Q as πX̄(σθ⇑(P �� ρX̄/X̄′(Q))) and P �⇑Q

as P − (P �⇑ Q), where X̄ denotes the attributes/variables of P , X̄ ′ denotes
fresh variables, and θ⇑ will be rewritten to (X = Y ∨ bk(X) ∨ bk(X ′)).

Translating P ��⇑ Q to SRPJUD is more difficult. One option is to use the
active domain: the set of all possible values to which blanks can be evaluated [17];
however, this would cause obvious practical problems. Hence we will rather use
two non-SRPJUD features of SPARQL to implement unification: the ternary
conditional operator, which allows for returning one of two values based on a
condition (denoted IF(·, ·, ·) in SPARQL); and the bind operator, which can
bind a new value to the relation (denoted BIND(·, ·) in SPARQL). From these,
we derive a new operator ifθ,X,Y,Z(μ), which returns μ∪{Z �→ (μ(X))} if μ |= θ,
or μ ∪ {Z �→ (μ(Y))} otherwise. The operator thus creates a new attribute Z
and assigns it the value of X if the condition θ is true, otherwise it assigns
it the value of Y . We call SRPJUD extended with these unification operators
SRPJUD⇑. Returning to P ��⇑Q, we can first apply a Cartesian product and then
unify the results with the ternary conditional operator. More formally, assume
that P and Q contain one shared attribute X. We can now express P ��⇑ Q
as ρX′′/X(πX′′,Ȳ (ifbk(X′),X,X′,X′′(σθ⇑(P �� ρX/X′(Q))))), where Ȳ denotes the
non-shared attributes of P and Q and θ⇑ is as before. In this case, P �� ρX/X′(Q)
denotes a Cartesian product since there are no shared attributes. This process
extends naturally to performing unifications over multiple attributes2.

2 Note that given two blank nodes on either side, this approach chooses the left blank
node arbitrarily and drops the other. This may lead to losing certain answers, which
we accept as part of the under-approximation.

344 D. Hernández et al.

4.2 Approximations

We wish to under-approximate certain answers to guarantee that all answers
returned are certain while maximising the certain answers returned. But if we
consider under-approximating results to a query P −Q, intuitively for P we must
under-approximate certain answers, while for Q we should over -approximate
possible answers to Q to ensure we remove everything from P that might match
under some valuation in Q. Note that Q might itself be a query of the form
R − S; etc. Hence, to under-approximate certain answers for SRPJUD, we need
a way to over-approximate possible answers [11]: given a query Q in SRPJUD, we
will rewrite it to a pair of queries (Q+, Q?) in SRPJUD⇑, under-approximating
certain answers and over-approximating possible answers for Q, respectively.

The first operator we define is the selection operator, where we must take care
of inequalities involving blanks; we adopt the rewriting proposed by Guagliardo
and Libkin [11], and shown by them to have good performance.

Definition 1. We define the translation of a SRPJUD query Q to a pair of
approximation queries (Q+, Q?) in SRPJUD⇑ recursively as follows:

G+ = G, G? = G,

(P ∪ Q)+ = P+ ∪ Q+, (P ∪ Q)? = P ? ∪ Q?,

(P �� Q)+ = P+
�� Q+, (P �� Q)? = P ?

��⇑ Q?,

(P − Q)+ = P+
�⇑ Q?, (P − Q)? = P ? − Q+,

(σθ(P))+ = σθ∗(P+), (σθ(P))? = σ¬(¬θ)∗(P ?),

(πX̄(P))+ = πX̄(P+), (πX̄(P))? = πX̄(P ?),

(ρX/Y (P))+ = ρX/Y (P+), (ρX/Y (P))? = ρX/Y (P ?),

where θ∗ denotes the translation defined inductively as follows, noting that X
and Y are attributes and a is some constant:

(X = Y)∗ = (X = Y), (X �= Y)∗ = (X �= Y) ∧ ¬bk(X) ∧ ¬bk(Y),
(X = a)∗ = (X = a), (X �= a)∗ = (X �= a) ∧ ¬bk(X),
(θ1 ∨ θ2)∗ = θ∗

1 ∨ θ∗
2 , (θ1 ∧ θ2)∗ = θ∗

1 ∧ θ∗
2 .

��

4.3 Relation to Certain/Possible Answers

To state formally the relation of certain/possible answers with the corresponding
approximation queries given in Definition 1, we require a notion of a subset of
answers under unification. Importantly, the following definition is used to ensure
that any tuple that unifies with a possible answer (e.g., (⊥1,⊥1)) will unify with
an answer in the over-approximation (e.g., (⊥1,⊥2)).

Definition 2. Given P and Q, we state that P ⊆⇑ Q iff for each tuple μ ∈ P ,
there exists μ′ ∈ Q such that ν(μ′) = μ for some valuation ν. ��

Certain Answers for SPARQL with Blank Nodes 345

Lemma 1. Let Q be a SRPJUD query and let (Q+, Q?) be the approximation
queries for Q as defined in Definition 1. Then, for any RDF graph G, it holds
that Q+(G) ⊆ cert(Q,G) and Q?(G) ⊇⇑ poss(Q,G) .

Proof. Follows from induction on the structure of the query, following similar
techniques as used for Lemmas 1 and 2 of [11]. ��

Computing exact certain/possible answers has a high complexity, where Def-
inition 1 directly leads to a rewriting strategy for approximating certain/possible
answers. For example, to under-approximate the certain-answers of a SRPJUD
query Q, we can rewrite it to the SRPJUD⇑ Q? and execute that query; further-
more, evaluating queries in SRPJUD⇑ remains tractable in data complexity per
the class of base queries SRPJUD (and unlike computing exact certain answers).

5 SPARQL Rewriting Strategies

We now explore alternatives in SPARQL to express the rewriting of Definition 1.
All such alternatives are equivalent; in practice however, these strategies can
exhibit major performance variations when applied over SPARQL query engines.

The base case in the SPARQL translation is G, which refers to a ternary
relation with fixed attributes S, P and O. The basic unit of querying in SPARQL
is a triple pattern, e.g., XpY (X ∈ V, Y ∈ V, p ∈ C). In RDF, the P attribute
cannot take blanks, and hence we do not need to consider unification on that
attribute directly. A basic graph pattern Q in SPARQL is a join over triple
patterns T1 �� · · · �� Tk where each Ti (1 ≤ i ≤ k) is a triple pattern.

The most complex case to consider is the difference operator P −Q, where
certain answers are under-approximated by the unification anti-semijoin P+

�⇑
Q? (where Q? is itself over-approximated). The direct application of the transla-
tion rules produces complex queries that can be rewritten to a “friendlier” form
for SPARQL engines, as now described. First, given a difference P − Q we say
that X is a correlated attribute of the difference if X is shared by P and Q. In
the following we will assume that P −Q is a difference with at least a correlated
variable and that Q is a basic graph pattern.

CNF/DNF Rewritings: In the difference P − Q, let Q = T1 �� T2 (a com-
mon case). The base translation evaluating the required unification in Q is then
given as (T1 �� T2)? = βX̄,X̄1,X̄2

(σΘ⇑(U1 �� U2)) where U1 and U2 are the
respective results of replacing shared variables (X̄) in T1 �� T2 by fresh vari-
ables (denoted X̄1 and X̄2), where Θ⇑ is a conjunction of the standard unifiable
condition applied to each pair of renamed variables X1 and X2 for X (i.e.,∧

X∈X̄(X1 = X2 ∨bk(X1)∨bk(X2))), and where, the operator βX̄,X̄1,X̄2
extends

the solution for each X ∈ X̄ using the function ifbk(X2),X1,X2,X(·). These defini-
tions then extend naturally (but verbosely) to the case where Q is T1��⇑ . . .��⇑Tk.
This implies taking the Cartesian product of all triple patterns, filtering by a con-
junction of unification conditions σθ⇑ , and then selecting constants over blanks.

346 D. Hernández et al.

The aforementioned unification condition Θ⇑ is in conjunctive normal form
(CNF): θ1 ∧ · · · ∧ θn where for 1 ≤ i ≤ n, each term θi is a disjunctive clause.
An alternative solution is to rewrite the unification condition to its equivalent
disjunctive normal form (DNF) φ1∨· · ·∨φm per a standard conversion. The result
is potentially exponential in size; though this does not affect the data complexity,
it may have a significant effect on performance in practice. However, this DNF
conversion leads to further rewritings that may lead to better performance. First,
we can express disjunctions using union (∪) or using disjunctive (∨) selection
conditions. Second, since this expression falls on the right-hand side of an anti-
semijoin operator, we can also express it as a sequence of such operators. Thus,
for the translation of (P − Q)+ into P+

�⇑ Q?, we can consider:

P+
�⇑ Q? = P+

�⇑ σ∧
1≤j≤m θj

(Q′) , (CNF)

P+
�⇑ Q? = P+

�⇑ σ∨
1≤j≤m φj

(Q′) , (DNF1)

P+
�⇑ Q? = P+

�⇑
⋃

1≤j≤m

σφj
(Q′) , (DNF2)

P+
�⇑ Q? = P+

�⇑ σφ1(Q
′) . . . �⇑ σφm

(Q′) . (DNF3)

where Q′ denotes the rewriting of join variables X̄ in Q to produce Cartesian
products on all join patterns and the subsequent application of βX̄,X̄1,...,X̄k

to
perform unification over those variables. Note, however, that in the cases of
DNF2 and DNF3, some terms in the disjunction will not require a Cartesian
product; for example, when we rewrite P − (T1 �� T2) to DNF, a disjunctive
term on the right of the anti-semijoin will be (T1 �� T2) itself (the others will
cover the case that join variables in T1 or T2 are bound to blanks). This suggests
that these options may be more efficient despite a potential exponential blow-up.

Removing Explicit Unification: Given a base query of the form P −Q, if the join
variables of Q do not correlate with P , we do not need to perform unification
on them. Consider a query Xpa − (XpY �� Y pb). This can be rewritten to
Xpa �⇑ (if bk(Y2),Y1,Y2,Y (σθ⇑(XpY1 �� Y2pb))). However since Y does not appear
on the left of the difference, we can simplify to Xpa �⇑ (σθ⇑(XpY1 �� Y2pb)).

Converting Anti-semijoins to Difference: Given a base query of the form P −Q,
we can consider cases where the correlating variable(s) of P and Q may or may
not yield blanks on either side. In particular, if Q returns a tuple with blanks
for all correlating variables, then the entire difference P − Q must be empty.
On the other hand, if P returns a tuple with blanks for all correlating variables
and Q is non-empty, then that tuple is removed from P . Finally, in cases where
we know that the correlating variable(s) of P and Q cannot yield blanks3, we
can convert the anti-semijoin to standard difference. These ideas yield possible
optimisations when we know more about which attributes can yield nulls.
3 In standard relational settings, this might be if the correlating variables is a primary

key of a table, for example. In RDF, we may detect such a case for subjects or objects
of a given property that do not give blanks in a given dataset, for example.

Certain Answers for SPARQL with Blank Nodes 347

Options for Difference: The SPARQL standard provides several ways for
expressing difference. Here we consider two: the operators MINUS and FILTER
NOT EXISTS (FNE). The SPARQL standard states that solutions of (P MINUS Q)
are the solutions μ1 of P such that there does not exist a solution μ2 of Q where
dom(μ1) ∩ dom(ν2) is not empty and μ1 is joinable with μ2. On the other hand,
the solutions of P FNE Q are all solutions μ1 of P such that there does not exist
any solution μ2 for μ1(Q), where μ1(Q) denotes the result of substituting in
Q each variable X in dom(μ1) by μ1(X). If P − Q has at least one correlated
variable, then P MINUS Q and P FNE Q are equivalent and can be interchanged.

6 Evaluation

Our evaluation presents an initial cost–benefit analysis of a certain answer
semantics for SPARQL by addressing the following research questions: RQ1:
How do the proposed SPARQL query rewriting strategies compare in terms of
performance with the base query, with themselves, with similar results in an
SQL setting, and for different SPARQL implementations? RQ2: Does a certain
answer semantics significantly change query results in a real-world setting?

6.1 Evaluation Setting

In this section, we describe the SPARQL query engines selected, the machines
and configurations used, as well as the datasets and queries. Supporting material
can be found online: https://users.dcc.uchile.cl/∼dhernand/revisiting-blanks.

Engines and Machines: The query rewriting strategy allows certain answers
to be approximated on current SPARQL implementations. We test with two
popular engines, with the added benefit of being able to cross-check that the
solutions generated by both produce the same answers: Virtuoso (v.7.2.4.2) and
Fuseki (v.2.6.0). The machine used is an AMD Opteron Processor 4122, 24 GB
of RAM, and a single 240 GB Kingston SUV400S SSD disk; Virtuoso is set with
NumberOfBuffers = 1360000 and with MaxDirtyBuffers = 1000000; Fuseki is
initialised with 12 GB of Java heap space.

Rewriting Strategies: We consider various strategies: [B|CNF|DNF1,...,3] where B
denotes base queries, CNF queries in conjunctive normal form, and DNF queries
in disjunctive normal form; we denote these variations as Γ in the following.
[Γ � | Γ−] These queries use either FNE (�) or MINUS (−) in SPARQL. [Γ |Γ ∗]
Rather than use isBlank to check if a node is blank or not, in case an engine
cannot form an index lookup to satisfy such a condition, we also try adding a
triple (X,a,:Blank) to the data for each blank X and a triple pattern to check
for that triple in the query (denoted Γ ∗); this does not apply to base queries. In
total, this leads to 18 possible combinations. Rather than present results for all,
we will highlight certain configurations in the results.

https://users.dcc.uchile.cl/~dhernand/revisiting-blanks

348 D. Hernández et al.

6.2 TPC–H Experiments

To address RQ1, we follow the experimental design of Guagliardo and Libkin [11]
who provide experiments for PostgreSQL using the TPC-H benchmark. Their
results compare the performance of approximations for certain answers with
respect to four queries with negations. For this, they modified the TPC-H gen-
erator to produce nulls in non-primary-key columns with varying probabilities
(1–5%) to generate more/less unknown values. They also use scale factors of
1, 3, 6, and 10, corresponding to PostgreSQL databases of size 1 GB, 3 GB,
6 GB and 10 GB, respectively. We follow their setting as closely as possible to
facilitate comparison later. We wrote a conversion tool (similar to the Direct
Mapping [4]) to represent TPC-H data as RDF, and convert the TPC-H SQL
queries to SPARQL.

Unifications: We first evaluate the proposed rewriting strategies of unifications
in the difference operator for SPARQL. The base format of the queries used
is P − (Q �� R) where each P , Q, and R is a triple pattern. We then generate
between 1,000 and 10,000 triples matching each triple pattern to perform tests at
various scales. For the data matching the join variable on Q and R, we generate
blanks with a rate of 1, 2, 4 and 8%. These experiments allow us to estimate the
costs of unifications in difference without other query operators interfering.

Figure 1 presents performance results. For clarity, we present only a selection
of configurations: CNF is equivalent to DNF1 in this case and we only show the
aforementioned [·�/·∗] variations for the base query and DNF3 (other variations
performed analogously). The first row pertains to Virtuoso while the second
pertains to Fuseki. All eight sub-plots are presented with log–log axes (base 10) at
the same scale permitting direct comparison across plots (comparing horizontally
across engines and comparing vertically across blank rates). The y-axis maximum
represents a timeout of 25 min (reached in some cases by Fuseki).

104 105

100

101

102

103

V
ir
tu

os
o

T
im

e
(s
)

Blank Rate 1

104 105

100

101

102

103

Blank Rate 2

104 105

100

101

102

103

Blank Rate 4

104 105

100

101

102

103

Blank Rate 8

104 105

100

101

102

103

Scale Factor

F
u
se
ki

T
im

e
(s
)

104 105

100

101

102

103

Scale Factor
104 105

100

101

102

103

Scale Factor
104 105

100

101

102

103

Scale Factor

B� B− CNF� DNF�
2 DNF�

3 DNF�∗
3 DNF−

3 DNF−∗
3

Fig. 1. Unification results for Virtuoso and Fuseki, varying scales and blank rates

Certain Answers for SPARQL with Blank Nodes 349

(RQ1) The performance of the rewritten queries is (as could be expected)
worse than the two base queries for all blank rates, scale factors and engines. In
the case of Virtuoso, the base queries generally run in under one second; how-
ever, the fastest rewritten queries take at least a second and there is at least an
order of magnitude difference between the base query and the fastest rewritten
query. Looking at Fuseki, the fastest base query is slower than Virtuoso, but
does generally tend to execute within one second (except at the larger scales).
However, we see a number of rewriting strategies in the case of Fuseki where the
difference is within half-an-order of magnitude of the fastest base case. Other-
wise, we see that the choice of strategy is generally not sensitive to the blank
rates considered (i.e., lines generally maintain the same ordering across plots),
nor is it sensitive to scale (i.e., lines do not generally cross within plots).

Queries: The previous experiments looked at “atomic” unifications. We now
run the four TPC-H queries used by Guagliardo and Libkin [11] considering a
blank rate of 5%, four scale factors, and two engines. We employ a timeout of
10 min. We also choose one base query (B�) to be compared against the rewritten
queries for approximating certain answers. Fuseki repeatedly times out for these
experiments hence here we rather focus on the results of Virtuoso.

In Table 2, we present a comparison of the performance results for Virtu-
oso’s fastest rewritten query and the results as presented by Guagliardo and
Libkin [11]. More specifically, for a blank rate of 5%, the table shows the range
of relative performance between the base query and the best rewritten query
execution for that query; since Guagliardo and Libkin do not present absolute
runtimes, our comparison is limited to relative performance. Note that due to
differences in how SPARQL and SQL treat inequalities over nulls/blanks, Q3

did not need rewriting for Virtuoso. For Q2 in PostgreSQL, the actual results
drop below the presented numeric precision, returning almost instantaneously
for PostgreSQL once a null is found (which confirms that the results are empty).

(RQ1) We see that for Q1, Virtuoso performs better in relative performance
than PostgreSQL, for Q2 PostgreSQL performs (much) better, for Q3 there is
little difference, while for Q4 Virtuoso initially performs better than PostgreSQL
but then at SF≥3, Virtuoso begins to throw an error stating that an internal
limit of 2097151 results has been reached (we could not resolve this). Aside from
this latter issue, these results show that Virtuoso with our rewriting strategies
is competitive with PostgreSQL under SQL-based rewritings for relative perfor-
mance between base and rewritten queries. Furthermore, unlike in the previous
experiments, we observe that in the case of Q1 and Q2, Virtuoso is now some-
times faster for the rewritten queries than the base queries: by removing uncer-
tain answers, the number of intermediary solutions to be processed is reduced.

(RQ2) We observe three of the four base queries returning uncertain answers
in SPARQL that do not hold under some valuations: for Q1, 59% of answers are
uncertain; for Q2, all answers are uncertain; whilst for Q4, 7% of answers are
uncertain; we further highlight that these results are present for a blank rate
of 5%. These results suggest that for queries with negation, evaluation under
standard SPARQL semantics may in some cases return a significant ratio of

350 D. Hernández et al.

uncertain/unsound answers even for modest levels of blanks in the dataset; this
is to be expected given that, e.g., even a single blank tuple returned from the
right-side of a difference can render all results uncertain (as per Q2).

Table 2. Ranges of average relative perfor-
mance for scale factor (SF) 1, 3, 6 and 10 on
a fixed blank rate of 5%.

Q. SF=1 SF=3 SF=6 SF=10

Virtuoso

Q1 0.95–0.96 0.95–0.96 0.97–0.99 0.94–0.95

Q2 0.76–1.07 0.73–0.99 0.89–1.06 0.55–0.77

Q3 1.00–1.00 1.00–1.00 1.00–1.00 1.00–1.00

Q4 1.55–1.56 error error error

PostgreSQL (G&L [11])

Q1 1.01–1.03 0.99–1.01 0.98–1.01 1.00–1.02

Q2 0.00–0.00 0.00–0.00 0.00–0.00 0.00–0.00

Q3 1.01–1.04 1.01–1.04 0.99–1.02 1.00–1.06

Q4 1.75–1.86 1.80–1.93 2.05–2.25 3.54–3.89

Table 3. Numbers of Wikidata
use-case queries (from a total of
446) that could be affected by a
certain answer semantics

Feature A B C D

MINUS 13 9 9 2

FILTER NOT EXISTS 23 15 10 1

OPTIONAL w/!BOUND 5 1 0 0

!= 7 5 3 0

Total 47 29 21 3

6.3 Wikidata Survey

Since the previous experiments are based on a synthetic benchmark converted
from a relational setting, we performed an analysis of the user-contributed
SPARQL queries on the Wikidata Query Service, which offers a more native
Semantic Web setting4. As previously described, Wikidata uses blanks to rep-
resent unknown values; our goal now is to determine whether or not a choice of
certain answer semantics could impact a current, real-world setting.

(RQ2) We first inspect the 446 queries to see which could potentially be
affected by a certain answer semantics. We provide a summary in Table 3 accord-
ing to the query features that may cause uncertain answers, with columns helping
to indicate why queries with such features do not give uncertain answers in this
context: A applies no assumptions, counting queries using the pertinent feature;
B counts the queries that could still give uncertain answers knowing that Wiki-
data only uses blanks in a single object position; C counts the queries that could
give uncertain answers further knowing which predicates have blanks; finally, D
counts the queries whose solutions do change under certain answers. Hence, we
see that 10.5% of the queries contain features that could cause uncertain answers,
6.5% of queries could cause uncertain answers even though Wikidata only uses
blanks in a single object position, 4.7% of queries could cause uncertain answers
knowing which predicates have blank values and which do not, while finally 0.6%
of queries actually return uncertain answers.

We provide some statistics on the three Wikidata queries generating uncer-
tain answers in Table 4. First for performance, we run the original query (T1)

4 https://www.wikidata.org/wiki/Wikidata:SPARQL query service/queries/exam
ples.

https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples
https://www.wikidata.org/wiki/Wikidata:SPARQL_query_service/queries/examples

Certain Answers for SPARQL with Blank Nodes 351

Table 4. Query execution times (ms) for the three Wikidata queries with uncertain
answers, and ratio of uncertain answers to total answers

Local (Virtuoso) Public (Blazegraph) Uncertain/total

T1 T2 T2/T1 T1 T2 T2/T1

Q1 144464 142989 0.99 53012 to – 20/5487

Q2 7038 521 0.07 1013 2045 2.02 42/42

Q3 1266326 1419269 1.12 to to – 12/27221

and a rewritten version for certain answers (T2) over both a local Virtuoso index
of Wikidata, as well as the public Wikidata Query Service (running Blazegraph).
(RQ1) While the performance of the first query is comparable under both stan-
dard and certain answer semantics for Virtuoso, the latter times out on Blaze-
graph. On the other hand, the second query is faster on Virtuoso for certain
answer semantics, possibly because it is anticipated that all answers will be dis-
carded. This is not the case for Blazegraph, where the rewritten query takes twice
the time. In Virtuoso Q3 takes slightly longer in the rewritten query. Blazegraph
times out in all runs of Q3. We also look at the ratio of uncertain answers the
queries would return. (RQ2) The ratio for Q1 and Q3 are relatively low, but on
the other hand, for Q2, the ratio is 100%: all answers are uncertain.

For space reasons, we refer to the webpage for further analysis of the Wikidata
queries, including more details on the queries returning uncertain answers.

7 Conclusions

In this paper, we have looked at the semantics of SPARQL with respect to RDF
graphs that use blank nodes as existential variables encoding unknown values. In
particular, we have investigated the feasibility of approximating certain answers
in SPARQL, proposing various rewriting strategies. Our initial results suggest
that querying for certain/possible answers generally does incur a significant cost,
but that at least for Virtuoso, query answering is still feasible (and in some cases
faster than under standard semantics). We showed that the relative performance
results for Virtuoso under certain answer semantics are competitive with results
published for PostgreSQL. In general, we saw that although some queries are exe-
cuted faster under certain semantics with current SPARQL implementations, for
others there can be a significant performance cost. It is important to highlight,
however, that experiments were run using off-the-shelf SPARQL implementa-
tions; dedicated SPARQL implementations for approximating certain answers
may further improve on the performance observed here.

Regarding the question of whether or not offering users a choice of cer-
tain answer semantics is important, we performed an analysis of 446 Wikidata
queries, where although 10.5% use negation and inequality features that could
cause uncertain answers in principle, only 0.6% of the queries return uncertain
answers in practice. However, Wikidata only uses unique blanks (acting similar

352 D. Hernández et al.

to unmarked nulls) in the object position. It would be interesting to do similar
studies for other datasets using existential blanks, though we are not immedi-
ately aware of such a dataset that has a set of SPARQL queries to analyse.

In summary, though the results here confirm that certain answers can be
effectively approximated using even off-the-shelf SPARQL implementations, the
practical motivation for such a SPARQL semantics remains speculative.

Acknowledgements. The work was also supported by the Millennium Institute for
Foundational Research on Data (IMFD) and by Fondecyt Grant No. 1181896.

References

1. Abiteboul, S., Kanellakis, P.C., Grahne, G.: On the representation and querying
of sets of possible worlds. Theor. Comput. Sci. 78(1), 158–187 (1991)

2. Ahmetaj, S., Fischl, W., Pichler, R., Simkus, M., Skritek, S.: Towards reconciling
SPARQL and certain answers. In: World Wide Web (WWW), pp. 23–33 (2015)

3. Angles, R., Gutierrez, C.: The multiset semantics of SPARQL patterns. In: Groth,
P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 20–36. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46523-4 2

4. Arenas, M., Bertails, A., Prud’hommeaux, E., Sequeda, J.: A direct mapping of
relational data to RDF. W3C Recommendation (2012)

5. Arenas, M., Pérez, J.: Querying semantic web data with SPARQL. In: Principles
of Database Systems (PODS), pp. 305–316. ACM (2011)

6. Arenas, M., Ugarte, M.: Designing a query language for RDF: marrying open and
closed worlds. In: Principles of Database Systems (PODS), pp. 225–236. ACM
(2016)

7. Codd, E.F.: Understanding relations. SIGMOD Rec. 6(3), 40–42 (1974)
8. Console, M., Guagliardo, P., Libkin, L.: Approximations and refinements of cer-

tain answers via many-valued logics. In: Knowledge Representation and Reasoning
(KR), pp. 349–358. AAAI Press (2016)

9. David, C., Libkin, L., Murlak, F.: Certain answers for XML queries. In: Principles
of Database Systems (PODS), pp. 191–202. ACM (2010)

10. Gheerbrant, A., Libkin, L., Tan, T.: On the complexity of query answering over
incomplete XML documents. In: International Conference on Database Theory
(ICDT), pp. 169–181 (2012)

11. Guagliardo, P., Libkin, L.: Making SQL queries correct on incomplete databases:
a feasibility study. In: Principles of Database Systems (PODS), pp. 211–223. ACM
(2016)

12. Guagliardo, P., Libkin, L.: Correctness of SQL queries on databases with nulls.
SIGMOD Rec. 46(3), 5–16 (2017)

13. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C
Recommendation, March 2013

14. Hayes, P., Patel-Schneider, P.F.: RDF 1.1 semantics. W3C Recommendation,
February 2014

15. Hogan, A., Arenas, M., Mallea, A., Polleres, A.: Everything you always wanted to
know about blank nodes. J. Web Sem. 27, 42–69 (2014)

16. Klein, H.-J.: On the use of marked nulls for the evaluation of queries against incom-
plete relational databases. In: Workshop on Foundations of Models and Languages
for Data and Objects. Kluwer (1998)

https://doi.org/10.1007/978-3-319-46523-4_2

Certain Answers for SPARQL with Blank Nodes 353

17. Libkin, L.: Certain answers as objects and knowledge. In: Knowledge Representa-
tion and Reasoning (KR). AAAI Press (2014)

18. Libkin, L.: SQL’s three-valued logic and certain answers. In: International Confer-
ence on Database Theory (ICDT), pp. 94–109 (2015)

19. Libkin, L.: SQL’s three-valued logic and certain answers. ACM Trans. Database
Syst. 41(1), 1:1–1:28 (2016)

20. Lipski Jr., W.: On relational algebra with marked nulls preliminary version. In:
Principles of Database Systems (PODS), pp. 201–203. ACM (1984)

21. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (2009)

22. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

Efficient Handling of SPARQL

OPTIONAL for OBDA

Guohui Xiao1, Roman Kontchakov2(B), Benjamin Cogrel1, Diego Calvanese1,
and Elena Botoeva1

1 KRDB Research Centre, Free University of Bozen-Bolzano, Italy
{xiao,cogrel,calvanese,botoeva}@inf.unibz.it

2 Department of Computer Science and Information Systems,
Birkbeck, University of London, UK,

roman@dcs.bbk.ac.uk

Abstract. OPTIONAL is a key feature in SPARQL for dealing with miss-
ing information. While this operator is used extensively, it is also known
for its complexity, which can make efficient evaluation of queries with
OPTIONAL challenging. We tackle this problem in the Ontology-Based Data
Access (OBDA) setting, where the data is stored in a SQL relational
database and exposed as a virtual RDF graph by means of an R2RML
mapping. We start with a succinct translation of a SPARQL fragment
into SQL. It fully respects bag semantics and three-valued logic and relies
on the extensive use of the LEFT JOIN operator and COALESCE function. We
then propose optimisation techniques for reducing the size and improving
the structure of generated SQL queries. Our optimisations capture inter-
actions between JOIN, LEFT JOIN, COALESCE and integrity constraints such
as attribute nullability, uniqueness and foreign key constraints. Finally,
we empirically verify effectiveness of our techniques on the BSBM OBDA
benchmark.

1 Introduction

Ontology-Based Data Access (OBDA) aims at easing the access to database
content by bridging the semantic gap between information needs (what users
want to know) and their formulation as executable queries (typically in SQL).
This approach hides the complexity of the database structure from users by
providing them with a high-level representation of the data as an RDF graph.
The RDF graph can be regarded as a view over the database defined by a DB-to-
RDF mapping (e.g., following the R2RML specification) and enriched by means
of an ontology [4]. Users can then formulate their information needs directly
as high-level SPARQL queries over the RDF graph. We focus on the standard
OBDA setting, where the RDF graph is not materialised (and is called a virtual

RDF graph), and the database is relational and supports SQL [18].
To answer a SPARQL query, an OBDA system reformulates it into a SQL

query, to be evaluated by the DBMS. In theory, such a SQL query can be

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 354–373, 2018.
https://doi.org/10.1007/978-3-030-00671-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_21&domain=pdf

Efficient Handling of SPARQL OPTIONAL for OBDA 355

obtained by (1) translating the SPARQL query into a relational algebra expres-
sion over the ternary relation triple of the RDF graph, and then (2) replacing
the occurrences of triple by the matching definitions in the mapping; the latter
step is called unfolding. We note that, in general, step (1) also includes rewriting
the user query with respect to the given (OWL 2 QL) ontology [5,15]; we, how-
ever, assume that the query is already rewritten and, for efficiency reasons, the
mapping is saturated; for details, see [15,24].

SPARQL joins are naturally translated into (INNER) JOINs in SQL [9]. How-
ever, in contrast to expert-written SQL queries, there typically is a high mar-

gin for optimisation in naively translated and unfolded queries. Indeed, since
SPARQL, unlike SQL, is based on a single ternary relation, queries usually con-
tain many more joins than SQL queries for the same information need; this
suggests that many of the JOINs in unfolded queries are redundant and could be
eliminated. In fact, the semantic query optimisation techniques such as self-join
elimination [6] can reduce the number of INNER JOINs [19,21].

We are interested in SPARQL queries containing the OPTIONAL operator intro-
duced to deal with missing information, thus serving a similar purpose [9]
to the LEFT (OUTER) JOIN operator in relational databases. The graph pattern
P1 OPTIONAL P2 returns answers to P1 extended (if possible) by answers to P2;
when an answer to P1 has no match in P2 (due to incompatible variable assign-
ments), the variables that occur only in P2 remain unbound (LEFT JOIN extends
a tuple without a match with NULLs). The focus of this work is the efficient han-
dling of queries with OPTIONAL in the OBDA setting. This problem is important in
practice because (a) OPTIONAL is very frequent in real SPARQL queries [1,17]; (b)
it is a source of computational complexity: query evaluation is PSpace-hard for
the fragment with OPTIONAL alone [23] (in contrast, e.g., to basic graph patterns
with filters and projection, which are NP-complete); (c) unlike expert-written
SQL queries, the SQL translations of SPARQL queries (e.g., [8]) tend to have
more LEFT JOINs with more complex structure, which DBMSs may fail to opti-
mise well. We now illustrate the difference in the structure with an example.

Example 1. Let people be a database relation composed of a primary key
attribute id, a non-nullable attribute fullName and two nullable attributes,
workEmail and homeEmail:

id fullName workEmail homeEmail

1 Peter Smith peter@company.com peter@perso.org

2 John Lang NULL joe@perso.org

3 Susan Mayer susan@company.com NULL

Consider an information need to retrieve the names of people and their e-mail
addresses if they are available, with the preference given to work over per-
sonal e-mails. In standard SQL, the IT expert can express such a preference by

356 G. Xiao et al.

means of the COALESCE function: e.g., COALESCE(v1 , v2) returns v1 if it is not NULL
and v2 otherwise. The following SQL query retrieves the required names and
e-mail addresses:
SELECT fullName , COALESCE(workEmail , homeEmail) FROM people .

The same information need could naturally be expressed in SPARQL:
SELECT ?n ?e { ?p :name ?n OPTIONAL { ?p :workEmail ?e }

OPTIONAL { ?p :personalEmail ?e } }.

Intuitively, for each person ?p, after evaluating the first OPTIONAL operator, vari-
able ?e is bound to the work e-mail if possible, and left unbound otherwise. In
the former case, the second OPTIONAL cannot extend the solution mapping fur-
ther because all its variables are already bound; in the latter case, the second
OPTIONAL tries to bind a personal e-mail to ?e. See [9] for a discussion on a similar
query, which is weakly well-designed [14].

One can see that the two queries are in fact equivalent: the SQL query gives
the same answers on the people relation as the SPARQL query on the RDF
graph that encodes the relation by using id to generate IRIs and populating
data properties :name, :workEmail and :personalEmail by the non-NULL values of
the respective attributes.

However, the unfolding of the translation of the SPARQL query above would
produce two LEFT OUTER JOINs, even with known simplifications (see, e.g., Q2

in [8]):

SELECT v3.fullName AS n, COALESCE(v3.workEmail ,v4.homeEmail) AS e

FROM (SELECT v1.fullName , v1.id , v2.workEmail FROM people v1

LEFT JOIN people v2 ON v1.id=v2.id AND v2.workEmail IS NOT NULL) v3

LEFT JOIN people v4 ON v3.id=v4.id AND v4.homeEmail IS NOT NULL

AND (v3. workEmail=v4.homeEmail OR v3.workEmail IS NULL),

which is unnecessarily complex (compared to the expert-written SQL query
above). Observe that the last bracket is an example of a compatibility filter

encoding compatibility of SPARQL solution mappings in SQL: it contains dis-
junction and IS NULL. ⊓⊔

Example 1 shows that SQL translations with LEFT JOINs can be simplified
drastically. In fact, the problem of optimising LEFT JOINs has been investigated
both in relational databases [12,20] and RDF triplestores [2,8]. In the database
setting, reordering of OUTER JOINs has been studied extensively because it is
essential for efficient query plans, but also challenging as these operators are
neither commutative nor associative (unlike INNER JOINs). To perform a reorder-
ing, query planners typically rely on simple joining conditions, in particular,
on conditions that reject NULLs and do not use COALESCE [12]. However, the
SPARQL-to-SQL translation produces precisely the opposite of what database
query planners expect: LEFT JOINs with complex compatibility filters. On the
other hand, Chebotko et al. [8] proposed some simplifications when an RDBMS
stores the triple relation and acts as an RDF triplestore. Although these simpli-
fications are undoubtedly useful in the OBDA setting, the presence of mappings
brings additional challenges and, more importantly, significant opportunities.

Efficient Handling of SPARQL OPTIONAL for OBDA 357

Example 2. Consider Example 1 again and suppose we now want to retrieve
people’s names, and when available also their work e-mail addresses. We can
naturally represent this information need in SPARQL:
SELECT ?n ?e { ?p :name ?n OPTIONAL { ?p : workEmail ?e } }.

We can also express it very simply in SQL:
SELECT fullName , workEmail FROM people .

Instead, the straightforward translation and unfolding of the SPARQL query
produces
SELECT v1.fullName AS n, v2.workEmail AS e

FROM people v1 LEFT JOIN people v2 ON v1.id=v2.id AND

v2.workEmail IS NOT NULL .

R2RML mappings filter out NULL values from the database because NULLs cannot
appear in RDF triples. Hence, the join condition in the unfolded query contains
an IS NOT NULL for the workEmail attribute of v2. On the other hand, the LEFT JOIN
of the query assigns a NULL value to workEmail if no tuple from v2 satisfies the
join condition for a given tuple from v1. We call an assignment of NULL values by
a LEFT JOIN the padding effect. A closer inspection of the query reveals, however,
that the padding effect only applies when workEmail in v2 is NULL. Thus, the
role of the LEFT JOIN in this query boils down to re-introducing NULLs eliminated
by the mapping. In fact, this situation is quite typical in OBDA but does not
concern RDF triplestores, which do not store NULLs, or classical data integration
systems, which can expose NULLs through their mappings. ⊓⊔

In this paper we address these issues, and our contribution is summarised as
follows.

1. In Sect. 3, we provide a succinct translation of a fragment of SPARQL 1.1 with
OPTIONAL and MINUS into relational algebra that relies on the use of LEFT JOIN
and COALESCE. Even though the ideas can be traced back to Cyganiak [9] and
Chebotko et al. [8] for the earlier SPARQL 1.0, our translation fully respects
bag semantics and the three-valued logic of SPARQL 1.1 and SQL [13] (and
is formally proven correct).

2. We develop optimisation techniques for SQL queries with complex LEFT JOINs
resulting from the translation and unfolding: Compatibility Filter Reduc-
tion (CFR, Sect. 4.1), which generalises [8], LEFT JOIN Naturalisation (LJN,
Sect. 4.2) to avoid padding, Natural LEFT JOIN Reduction (NLJR, Sect. 4.4),
JOIN Transfer (JT, Sect. 4.5) and LEFT JOIN Decomposition (LJD, Sect. 4.6)
complementing [12]. By CFR and LJN, compatibility filters and COALESCE are
eliminated for well-designed SPARQL (Sect. 4.3).

3. We carried out an evaluation of our optimisation techniques over the well-
known OBDA benchmark BSBM [3], where OPTIONALs, LEFT JOINs and NULLs
are ubiquitous. Our experiments (Sect. 5) show that the techniques of Sect. 4
lead to a significant improvement in performance of the SQL translations,
even for commercial DBMSs.

Full version with appendices is available at http://arxiv.org/abs/1806.05918.

http://arxiv.org/abs/1806.05918

358 G. Xiao et al.

2 Preliminaries

We first formally define the syntax and semantics of the SPARQL fragment
we deal with and then present the relational algebra operators used for the
translation from SPARQL.

RDF provides a basic data model. Its vocabulary contains three pairwise
disjoint and countably infinite sets of symbols: IRIs I, blank nodes B and RDF
literals L. RDF terms are elements of C = I ∪ B ∪ L, RDF triples are elements of
C × I × C, and an RDF graph is a finite set of RDF triples.

2.1 SPARQL

SPARQL adds a countably infinite set V of variables, disjoint from C. A triple

pattern is an element of (C∪V)× (I∪V)× (C∪V). A basic graph pattern (BGP)
is a finite set of triple patterns. We consider graph patterns, P , defined by the
grammar1

P ::=B | Filter(P, F) | Union(P1, P2) | Join(P1, P2) |

Opt(P1, P2, F) | Minus(P1, P2) | Proj(P, L),

where B is a BGP, L ⊆ V and F , called a filter, is a formula constructed using
logical connectives ∧ and ¬ from atoms of the form bound(v), (v = c), (v = v′),
for v, v′ ∈ V and c ∈ C. The set of variables in P is denoted by var(P).

Variables in graph patterns are assigned values by solution mappings, which
are partial functions s : V → C with (possibly empty) domain dom(s). The
truth-value F s ∈ {⊤, ⊥, ε} of a filter F under a solution mapping s is defined
inductively:

– (bound(v))s is ⊤ if v ∈ dom(s), and ⊥ otherwise;
– (v = c)s = ε (‘error’) if v /∈ dom(s); otherwise, (v = c)s is the classical truth-

value of the predicate s(v) = c; similarly, (v = v′)s = ε if {v, v′} 6⊆ dom(s);
otherwise, (v = v′)s is the classical truth-value of the predicate s(v) = s(v′);

– (¬F)s =

⊥, if F s = ⊤,

⊤, if F s = ⊥,

ε, if F s = ε,

and (F1 ∧ F2)
s =

⊥, if F s
1 = ⊥ or F s

2 = ⊥,

⊤, if F s
1 = F s

2 = ⊤,

ε, otherwise.

We adopt bag semantics for SPARQL: the answer to a graph pattern over
an RDF graph is a multiset (or bag) of solution mappings. Formally, a bag of

solution mappings is a (total) function Ω from the set of all solution mappings
to non-negative integers N: Ω(s) is called the multiplicity of s (we often use
s ∈ Ω as a shortcut for Ω(s) > 0). Following the grammar of graph patterns,
we define respective operations on solution mapping bags. Solution mappings
s1 and s2 are called compatible, written s1 ∼ s2, if s1(v) = s2(v), for each
v ∈ dom(s1) ∩ dom(s2), in which case s1 ⊕ s2 denotes a solution mapping with

1 A slight extension of the grammar and the full translation are given in Appendix A.

Efficient Handling of SPARQL OPTIONAL for OBDA 359

domain dom(s1) ∪ dom(s2) and such that s1 ⊕ s2 : v 7→ s1(v), for v ∈ dom(s1),
and s1 ⊕ s2 : v 7→ s2(v), for v ∈ dom(s2). We also denote by s|L the restriction
of s on L ⊆ V. Then the SPARQL operations are defined as follows:

– Filter(Ω, F) = Ω′, where Ω′(s) = Ω(s) if s ∈ Ω and F s = ⊤, and 0
otherwise;

– Union(Ω1, Ω2) = Ω, where Ω(s) = Ω1(s) + Ω2(s);
– Join(Ω1, Ω2) = Ω, where Ω(s) =

∑

s1∈Ω1,s2∈Ω2 with
s1∼s2 and s1⊕s2=s

Ω1(s1) × Ω2(s2);

– Opt(Ω1, Ω2, F) = Union(Filter(Join(Ω1, Ω2), F), Ω), where Ω(s) = Ω1(s)
if F s⊕s2 6= ⊤, for all s2 ∈ Ω2 compatible with s, and 0 otherwise;

– Minus(Ω1, Ω2) = Ω, where Ω(s) = Ω1(s) if dom(s) ∩ dom(s2) = ∅, for all
solution mappings s2 ∈ Ω2 compatible with s, and 0 otherwise;

– Proj(Ω, L) = Ω′, where Ω′(s′) =
∑

s∈Ω with s|L=s′

Ω(s).

Given an RDF graph G and a graph pattern P , the answer JP KG to P over G
is a bag of solution mappings defined by induction using the operations above
and starting from basic graph patterns: JBKG(s) = 1 if dom(s) = var(B) and
G contains the triple s(B) obtained by replacing each variable v in B by s(v),
and 0 otherwise (JBKG is a set).

2.2 Relational Algebra (RA)

We recap the three-valued and bag semantics of relational algebra [13] and fix the
notation. Denote by ∆ the underlying domain, which contains a distinguished
element null. Let U be a finite (possibly empty) set of attributes. A tuple over U
is a (total) map t : U → ∆; there is a unique tuple over ∅. A relation R over U
is a bag of tuples over U , that is, a function from all tuples over U to N. For
relations R1 and R2 over U , we write R1 ⊆ R2 (R1 ≡ R2) if R1(t) ≤ R2(t)
(R1(t) = R2(t), respectively), for all t.

A term v over U is an attribute u ∈ U , a constant c ∈ ∆ or an expression
if(F, v, v′), for terms v and v′ over U and a filter F over U . A filter F over U is
a formula constructed from atoms isNull(V) and (v = v′), for a set V of terms
and terms v, v′ over U , using connectives ∧ and ¬. Given a tuple t over U , it is
extended to terms as follows:

t(c) = c, for constants c ∈ ∆, and t(if(F, v, v′)) =

{
t(v), if F t = ⊤,

t(v′), otherwise,

where the truth-value F t ∈ {⊤, ⊥, ε} of F on t is defined inductively (ε is
unknown):

– (isNull(V))t is ⊤ if t(v) is null, for all v ∈ V , and ⊥ otherwise;
– (v = v′)t = ε if t(v) or t(v′) is null, and the truth-value of t(v) = t(v′)

otherwise;
– and the standard clauses for ¬ and ∧ in the three-valued logic (see Sect. 2.1).

360 G. Xiao et al.

We use standard abbreviations coalesce(v, v′) for if(¬isNull(v), v, v′) and F1 ∨ F2

for ¬(¬F1 ∧¬F2). Unlike Chebotko et al. [8], we treat if as primitive, even though
the renaming operation with an if could be defined via standard operations of RA.

For filters in positive contexts, we define a weaker equivalence: filters F1 and
F2 over U are p-equivalent, written F1 ≡+ F2, in case F t

1 = ⊤ iff F t
2 = ⊤, for all

t over U .
We use standard relational algebra operations: union ∪, difference \, projec-

tion π, selection σ, renaming ρ, extension ν, natural (inner) join ⋊⋉ and duplicate
elimination δ. We say that tuples t1 over U1 and t2 over U2 are compatible2 if
t1(u) = t2(u) 6= null, for all u ∈ U1 ∩ U2, in which case t1 ⊕ t2 denotes a tuple
over U1 ∪ U2 such that t1 ⊕ t2 : u 7→ t1(u), for u ∈ U1, and t1 ⊕ t2 : u 7→ t2(u),
for u ∈ U2. For a tuple t1 over U1 and U ⊆ U1, we denote by t1|U the restriction
of t1 to U . Let Ri be relations over Ui, for i = 1, 2. The semantics of the above
operations is as follows:

– If U1 = U2, then R1 ∪ R2 and R1 \ R2 are relations over U1 satisfying
(R1∪R2)(t) = R1(t)+R2(t) and (R1\R2)(t)=R1(t) if t /∈ R2 and 0 otherwise;

– If U ⊆ U1, then πUR1 is a relation over U with πUR1(t) =
∑

t1∈R1 with t1|U=t

R1(t1);

– If F is a filter over U1, then σF R1 is a relation over U1 such that σF R1(t) is
R1(t) if t ∈ R1 and F t = ⊤, and 0 otherwise;

– R1⋊⋉R2 is a relationR overU1∪U2 such that R(t)=
∑

t1∈R1 and t2∈R2

are compatible and t1⊕t2=t

R1(t1)×R2(t2);

– If v is a term over U1 and u /∈ U1 an attribute, then the extension νu7→vR1 is a
relation R over U1∪{u} with R(t⊕{u 7→ t(v)}) = R1(t), for all t. The extended

projection π{u1/v1,...,uk/vk} is a shortcut for π{u1,...,uk}νu1 7→v1
· · · νuk 7→vk

.
– If v ∈ U1 and u /∈ U1 are distinct attributes, then the renaming ρu/vR1 is a

relation over U1 \ {v}∪ {u} whose tuples t are obtained by replacing v in the
domain of t by u. For terms v1, . . . , vk over U1, attributes u1, . . . , uk (not nec-
essarily distinct from U1) and V ⊆ U1, let u′

1, . . . , u
′
k be fresh attributes and

abbreviate the sequence ρu1/u′
1
· · · ρuk/u′

k
πU1∪{u′

1
,...,u′

k
}\V νu′

1
7→v1

· · · νu′
k
7→vk

by

ρV
{u1/v1,...,uk/vk}.

– δR1 is a relation over U1 with δR1(t) = min(R1(t), 1).

To bridge the gap between partial functions (solution mappings) of SPARQL
and total functions (tuples) of RA, we use a padding operation: µ{u1,...,uk}R1

denotes νu1 7→null · · · νuk 7→nullR1, for u1, . . . , uk /∈ U1. Finally, we define the outer
union, the (inner) join and left (outer) join operations by taking

R1 ⊎ R2 = µU2\U1
R1 ∪ µU1\U2

R2, R1 ⋊⋉F R2 = σF (R1 ⋊⋉ R2),

R1 ⋊⋉F R2 = (R1 ⋊⋉F R2) ⊎ (R1 \ πU1
(R1 ⋊⋉F R2));

note that ⋊⋉F and ⋊⋉F are natural joins : they are over F as well as shared
attributes.

2 Note that, unlike in SPARQL, if u is null in either of the tuples, then they are
incompatible.

Efficient Handling of SPARQL OPTIONAL for OBDA 361

An RA query Q is an expression constructed from relation symbols, each with
a fixed set of attributes, and filters using the RA operations (and complying with
all restrictions). A data instance D gives a relation over its set of attributes,
for any relation symbol. The answer to Q over D is a relation ‖Q‖D defined
inductively in the obvious way starting from the base case of relation symbols:
‖Q‖D is the relation given by D.

3 Succinct Translation of SPARQL to SQL

We first provide a translation of SPARQL graph patterns to RA queries that
improves the worst-case exponential translation of [15] in handling Join, Opt

and Minus: it relies on the coalesce function (see also [7,8]) and produces linear-
size RA queries.

For any graph pattern P , the RA query τ (P) returns the same answers
as P when solution mappings are represented as relational tuples. For a set V
of variables and solution mapping s with dom(s) ⊆ V , let extV (s) be the tuple
over V obtained from s by padding it with nulls: formally,

extV (s) = s ⊕ {v 7→ null | v ∈ V \ dom(s)}.

The relational answer ‖P‖G to P over an RDF graph G is a bag Ω of tuples
over var(P) such that Ω(extvar(P)(s)) = JP KG(s), for all solution mappings s.
Conversely, to evaluate τ (P), we view an RDF graph G as a data instance
triple(G) storing G as a ternary relation triple with the attributes sub, pred and
obj (note that triple(G) is a set).

The translation of a triple pattern 〈s, p, o〉 is an RA query of the form
π...σF triple, where the subscript of the extended projection π and filter F are
determined by the variables, IRIs and literals in s, p and o; see Appendix A.
SPARQL operators Union, Filter and Proj are translated into their RA coun-
terparts: ⊎, σ and π, respectively, with SPARQL filters translated into RA by
replacing each bound(v) with ¬isNull(v).

The translation of Join, Opt and Minus is more elaborate and requires
additional notation. Let P1 and P2 be graph patterns with Ui = var(Pi), for
i = 1, 2, and denote by U their shared variables, U1 ∩ U2. To rename the shared
attributes apart, we introduce fresh attributes u1 and u2 for each u ∈ U , set
U i = {ui | u ∈ U} and use abbreviations U i/U and U/U i for {ui/u | u ∈ U}
and {u/ui | u ∈ U}, respectively, for i = 1, 2. Now we can express the SPARQL
solution mapping compatibility:

compU =
∧

u∈U

[
(u1 = u2) ∨ isNull(u1) ∨ isNull(u2)

]

(intuitively, the null value of an attribute in the context of RA queries repre-
sents the fact that the corresponding SPARQL variable is not bound). Next, the
renamed apart attributes need to be coalesced to provide the value in the repre-
sentation of the resulting solution mapping; see ⊕ in Sect. 2.1. To this end, given
an RA filter F over a set of attributes V , terms v1, . . . , vk over V and attributes
u1, . . . , uk /∈ V , we denote by F [u1/v1, . . . , uk/vk] the result of replacing each

362 G. Xiao et al.

ui by vi in F . We also denote by coalesceU the substitution of each u ∈ U with
coalesce(u1, u2); thus, F [coalesceU] is the result of replacing each u ∈ U in F
with coalesce(u1, u2). We now set

τ (Join(P1, P2)) = ρU1∪U2

coalesceU

[
ρU1/Uτ (P1) ⋊⋉comp

U
ρU2/Uτ (P2)

]
,

τ (Opt(P1, P2, F)) = ρU1∪U2

coalesceU

[
ρU1/Uτ (P1) ⋊⋉comp

U
∧τ (F)[coalesceU] ρU2/Uτ (P2)

]
,

τ (Minus(P1, P2)) = πU1
ρU/U1σisNull(w)

[
ρU1/Uτ (P1) ⋊⋉comp

U
∧

∨

u∈U

(u1=u2) νw 7→1ρU2/Uτ (P2)
]
,

where w /∈ U1 ∪ U2 is an attribute and 1 ∈ ∆ \ {null} is any domain element.
The translation of Join and Opt is straightforward. For Minus, observe that
νw 7→1 extends the relation for P2 by a fresh attribute w with a non-null value.
The join condition encodes compatibility of solution mappings whose domains,
in addition, share a variable (both u1 and u2 are non-null). Tuples satisfying
the condition are then filtered out by σisNull(w), leaving only representations
of solution mappings for P1 that have no compatible solution mapping in P2

with a shared variable. Finally, the attributes are renamed back by ρU/U1 and
unnecessary attributes are projected out by πU1

.

Theorem 3. For any RDF graph G and any graph pattern P ,

‖P‖G = ‖τ (P)‖triple(G).

The complete proof of Theorem 3 can be found in Appendix A.

4 Optimisations of Translated SPARQL Queries

We present optimisations on a series of examples. We begin by revisiting Exam-
ple 1, which can now be given in algebraic form (for brevity, we ignore projecting
away ?p, which does not affect any of the optimisations discussed):

Opt(Opt(?p :name ?n, ?p :workEmail ?e, ⊤), ?p :personalEmail ?e, ⊤),

where ⊤ denotes the tautological filter (true). Suppose we have the mapping

iri1(id) :name fullName ← σ¬isNull(id)∧¬isNull(fullName)people,

iri1(id) :workEmail workEmail ← σ¬isNull(id)∧¬isNull(workEmail) people,

iri1(id) :personalEmail homeEmail ← σ¬isNull(id)∧¬isNull(homeEmail) people,

where iri1 is a function that constructs the IRI for a person from their ID
(an IRI template, in R2RML parlance). We assume that the IRI functions are
injective and map only null to null; thus, joins on iri1(id) can be reduced to
joins on id, and isNull(id) holds just in case isNull(iri1(id)) holds. Interestingly,
the IRI functions can encode GLAV mappings, where the target query is a
full-fledged CQ (in contrast to GAV mappings, where atoms do not contain
existential variables); for more details, see [10].

Efficient Handling of SPARQL OPTIONAL for OBDA 363

The translation given in Sect. 3 and unfolding produce the follow-

ing RA query, where we abbreviate, for example, ρ
{p1,p2}
{p4/coalesce(p1,p2)} by

ρ̄{p4/coalesce(p1,p2)} (in other words, the ρ̄ operation always projects away the
arguments of its coalesce functions):

people

σ¬isNull(id)∧¬isNull(homeEmail)

π{p3/iri1(id), e3/homeEmail}

people

σ¬isNull(id)∧¬isNull(workEmail)

π{p2/iri1(id), e2/workEmail}

people

σ¬isNull(id)∧¬isNull(fullName)

π{p1/iri1(id), n/fullName}

⋊⋉(p1=p2)∨isNull(p1)∨isNull(p2)

ρ̄{p4/coalesce(p1,p2)}

⋊⋉[(p4=p3)∨isNull(p4)∨isNull(p3)]∧[(e2=e3)∨isNull(e2)∨isNull(e3)]

ρ̄{p/coalesce(p4,p3), e/coalesce(e2,e3)}

In our diagrams, the white nodes are the contribution of the mapping and
the translation of the basic graph patterns: for example, the basic graph
pattern ?p :name ?n produces π{p1/iri1(id), n/fullName}σ¬isNull(id)∧¬isNull(fullName)

people (we use attributes without superscripts if there is only one occurrence;
otherwise, the superscript identifies the relevant subquery). The grey nodes cor-
respond to the translation of the SPARQL operations: for instance, the innermost
left join is on comp{p} with p renamed apart to p1 and p2; the outermost left
join is on comp{p,e}, where p is renamed apart to p4 and p3 and e to e2 and e3;
the two ρ̄ are the respective renaming operations with coalesce.

4.1 Compatibility Filter Reduction (CFR)

We begin by simplifying the filters in (left) joins and eliminating renaming oper-
ations with coalesce above them (if possible). First, we can pull up the filters
of the mapping through the extended projection and union by means of stan-
dard database equivalences: for example, for relations R1 and R2 and a filter F
over U , we have σF (R1 ∪ R2) ≡ σF R1 ∪ σF R2, and πU ′σF ′R1 ≡ σF ′πU ′R1, if F ′

is a filter over U ′ ⊆ U , and ρu/vσF R1 ≡ σF [u/v]ρu/vR1, if v ∈ U and u /∈ U .
Second, the filters can be moved (in a restricted way) between the arguments

of a left join to its join condition: for relations R1 and R2 over U1 and U2,
respectively, and filters F1, F2 and F over U1, U2 and U1 ∪ U2, respectively, we
have

σF1
R1 ⋊⋉F R2 ≡ σF1

(R1 ⋊⋉F R2), (1)

σF1
R1 ⋊⋉F R2 ≡ σF1

R1 ⋊⋉F∧F1
R2, (2)

R1 ⋊⋉F σF2
R2 ≡ R1 ⋊⋉F∧F2

R2; (3)

observe that unlike σF2
in (3), the selection σF1

cannot be entirely eliminated
in (2) but can rather be ‘duplicated’ above the left join using (1). (We note
that (1) and (3) are well-known and can be found, e.g., in [12].) Simpler equiv-
alences hold for inner join: σF1

R1 ⋊⋉F R2 ≡ σF∧F1
(R1 ⋊⋉ R2). These equiva-

lences can be, in particular, used to pull up the ¬isNull filters from mappings to

364 G. Xiao et al.

eliminate the isNull disjuncts in the compatibility condition compU of the (left)
joins in the translation by means of the standard p-equivalences of the three-
valued logic:

(F1 ∨ F2) ∧ ¬F2 ≡+ F1 ∧ ¬F2, (4)

(v = v′) ∧ ¬isNull(v) ≡+ (v = v′); (5)

we note in passing that this step refines Simplification 3 of Chebotko et al. [8],
which relies on the absence of other left joins in the arguments of a (left) join.

Third, the resulting simplified compatibility conditions can eliminate coalesce

from the renaming operations: for a relation R over U and u1, u2 ∈ U , we clearly
have

ρ
{u1,u2}
{u/coalesce(u1,u2)}σ¬isNull(u1)R ≡ σ¬isNull(u)πU\{u2}R[u/u1], (6)

where R[u/u1] is the result of replacing each u1 in R by u. This step generalises
Simplification 2 of Chebotko et al. [8], which does not eliminate coalesce above
(left) joins that contain nested left joins.

By applying these three steps to our running example, we obtain (see
Appendix C.1)

people

π{p3/iri1(id), e3/homeEmail}

people

π{p2/iri1(id), e2/workEmail}

people

π{p/iri1(id), n/fullName}

⋊⋉(p=p2)∧¬isNull(e2)

π{p,n,e2}

⋊⋉(p=p3)∧[(e2=e3)∨isNull(e2)]∧¬isNull(e3)

π{p,n,e2,e3}

ρ̄{e/coalesce(e2,e3)}

σ¬isNull(p)∧¬isNull(n)

4.2 Left Join Naturalisation (LJN)

Our next group of optimisations can remove join conditions in left joins (if their
arguments satisfy certain properties), thus reducing them to natural left joins.

Some equalities in the join conditions of left joins can be removed by means
of attribute duplication: for relations R1 and R2 over U1 and U2, respectively, a
filter F over U1 ∪ U2 and attributes u1 ∈ U1 \ U2 and u2 ∈ U2 \ U1, we have

R1 ⋊⋉F∧(u1=u2) R2 ≡ R1 ⋊⋉F νu1 7→u2R2. (7)

Now, the duplicated u2 can be eliminated in case it is actually projected away:

πU1∪U2\{u2}(R1 ⋊⋉F νu1 7→u2R2) ≡ R1 ⋊⋉F R2[u
1/u2] if F does not contain u2.

(8)

So, if F is a conjunction of suitable attribute equalities, then by repeated appli-
cation of (7) and (8), we can turn a left join into a natural left join. In our
running example, this procedure simplifies the innermost left join to

Efficient Handling of SPARQL OPTIONAL for OBDA 365

people

π{p/iri1(id), e2/workEmail}

people

π{p/iri1(id), n/fullName}

⋊⋉¬isNull(e2)

Another technique for converting a left join into a natural left join (⋊⋉ is just
an abbreviation for ⋊⋉⊤) is based on the conditional function if:

Proposition 4. For relations R1 and R2 over U1 and U2, respectively, and a

filter F over U1 ∪ U2, we have

R1 ⋊⋉F R2 ≡ ρ
{U2\U1}
{u/if(F,u,null) | u∈U2\U1}(R1 ⋊⋉ R2) if πU1

(R1 ⋊⋉ R2) ⊆ R1.

(9)

Proof. Denote R1 ⋊⋉ R2 by S. Then πU1
S ⊆ R1 implies that every tuple t1 in R1

can have at most one tuple t2 in R2 compatible with it, and S consists of all such
extensions (with their cardinality determined by R1). Therefore, πU1

(S \ σF S)
is precisely the tuples in R1 that cannot be extended in such a way that the
extension satisfies F , whence

πU1
(S \ σF S) ≡ πU1

S \ πU1
σF S. (10)

By a similar argument, R1 \ πU1
S consists of the tuples in R1 (with the same

cardinality) that cannot be extended by a tuple in R2, and πU1
S \ πU1

σF S of
those tuples that can be extended but only when F is not satisfied. By taking
the union of the two, we obtain

(R1 \ πU1
S) ∪ (πU1

S \ πU1
σF S) ≡ R1 \ πU1

σF S. (11)

The claim is then proved by distributivity of ρ and µ over ∪; see Appendix B.

Proposition 4 is, in particular, applicable if the attributes shared by R1

and R2 uniquely determine tuples of R2. In our running example, id is a
primary key in people, and so we can eliminate ¬isNull(e2) from the inner-
most left join, which becomes a natural left join, and then simplify the term
if(¬isNull(e2), e2,null) in the renaming to e2 by using equivalences on complex
terms: for a term v and a filter F over U , we have

if(F ∧ ¬isNull(v), v,null) ≡ if(F, v,null), (12)

if(⊤, v,null) ≡ v. (13)

Thus, we effectively remove the renaming operator introduced by the application
of Proposition 4; for full details, see Appendix C.1.

4.3 Translation for Well-Designed SPARQL

We remind the reader that a SPARQL pattern P that uses only Join, Filter

and binary Opt (that is, Opt with the tautological filter ⊤) is well-designed [16]
if every its subpattern P ′ of the form Opt(P1, P2, ⊤) satisfies the following
condition: every variable u that occurs in P2 and outside P ′ also occurs in P1.

366 G. Xiao et al.

Proposition 5. If P is well-designed, then its unfolded translation can be equiv-

alently simplified by (a) removing all compatibility filters compU from joins and

left joins and (b) eliminating all renamings u/coalesce(u1, u2) by replacing both

u1 and u2 with u.

Proof. Since P is well-designed, any variable u occurring in the right-hand side
argument of any Opt either does not occur elsewhere (and so, can be projected
away) or also occurs in the left-hand side argument. The claim then follows
from an observation that, if the translation of P1 or P2 can be equivalently
transformed to contain a selection with ¬isNull(u) at the top, then the transla-
tion of Join(P1, P2), Opt(P1, P

∗, ⊤) and Filter(P1, F) can also be equivalently
simplified so that it contains a selection with the ¬isNull(u1) or, respectively,
¬isNull(u2) condition at the top.

Rodríguez-Muro and Rezk [22] made a similar observation. Alas,
Example 1 shows that Proposition 5 is not directly applicable to weakly well-
designed SPARQL [14].

4.4 Natural Left Join Reduction (NJR)

A natural left join can then be replaced by a natural inner join if every tuple of
its left-hand side argument has a match on the right, which can be formalised
as follows.

Proposition 6. For relations R1 and R2 over U1 and U2, respectively, we have

σ¬isNull(K)R1 ⋊⋉ R2 ≡ R1 ⋊⋉ R2, if δπKR1 ⊆ πKR2, for K = U1 ∩ U2. (14)

Proof. By careful inspection of definitions. Alternatively, one can assume that
the left join has an additional selection on top with filters of the form
(u1 = u2) ∨ isNull(u2), for u ∈ K, where u1 and u2 are duplicates of attributes
from R1 and R2, respectively. Given δπKR1 ⊆ πKR2, one can eliminate the
isNull(u2) because any tuple of R1 has a match in R2. The resulting null-rejecting
filter then effectively turns the left join to an inner join by the outer join simpli-
fication of Galindo-Legaria and Rosenthal [12].

Observe that the inclusion δπKR1 ⊆ πKR2 is satisfied, for example, if R1

has a foreign key K referencing R2. It can also be satisfied if both R1 and R2

are based on the same relation, that is, Ri ≡ σFi
π...R, for i = 1, 2, and F1

logically implies F2, where F1 and/or F2 can be ⊤ for the vacuous selection.
Note that, due to δ, attributes K do not have to uniquely determine tuples in
R1 or R2. In our running example, trivially, δπ{p}(π{p/iri1(id), n/fullName}people) ⊆
π{p}(π{p/iri1(id), e2/workEmail}people). Therefore, the inner left join can be replaced
by a natural inner join, which can then be eliminated altogether because id is the
primary key in people (this is a well-known optimisation; see, e.g., [11,21]). As a
result, we obtain

Efficient Handling of SPARQL OPTIONAL for OBDA 367

people

π{p/iri1(id), e3/homeEmail}

people

π{p/iri1(id), n/fullName, e2/workEmail}

⋊⋉[(e2=e3)∨isNull(e2)]∧¬isNull(e3)

σ¬isNull(p)∧¬isNull(n)

ρ̄{e/coalesce(e2,e3)}

The running example is wrapped up and discussed in detail in Appendices C.1
and C.2.

4.5 Join Transfer (JT)

To introduce and explain another optimisation, we need an extension of relation
people with a nullable attribute spouseId, which contains the id of the person’s
spouse if they are married and NULL otherwise. The attribute is mapped by an
additional assertion:

iri1(id) :hasSpouse iri1(spouseId) ← σ¬isNull(id)∧¬isNull(spouseId)people.

Consider now the following query in SPARQL algebra:

Proj(Opt(?p :name ?n,Join(?p :hasSpouse ?s, ?s :name ?sn), ⊤), { ?n, ?sn }),

whose translation can be unfolded and simplified with optimisations in Sects. 4.1
and 4.2 into the following RA query (we have also pushed down the filter
¬isNull(sn) to the right argument of the join and, for brevity, omitted selec-
tion and projection at the top):

people

π{s/iri1(id), sn/fullName}

σ¬isNull(sn)

people

π{p/iri1(id), s/iri1(spouseId)}
people

π{p/iri1(id), n/fullName} ⋊⋉
⋊⋉¬isNull(s)

see Appendix C.4 for full details. Observe that the inner join cannot be elimi-
nated using the standard self-join elimination techniques because it is not on a
primary (or alternate) key. The next proposition (proved in Appendix B) pro-
vides a solution for the issue.

Proposition 7. Let R1, R2 and R3 be relations over U1, U2 and U3, respec-

tively, F a filter over U1 ∪ U2 ∪ U3 and w an attribute in U3 \ (U1 ∪ U2). Then

R1 ⋊⋉F (R2 ⋊⋉ σ¬isNull(w)R3) ≡

ρ
{U2\U1}
{u/if(¬isNull(w),u,null) | u∈U2\U1}((R1 ⋊⋉ R2) ⋊⋉F σ¬isNull(w)R3),

if πU1
(R1 ⋊⋉ R2) ≡ R1. (15)

By Proposition 7, we take sn as the non-nullable attribute w and get the
following:

368 G. Xiao et al.

people

π{s/iri1(id), sn/fullName}

σ¬isNull(sn)

people

π{p/iri1(id), s/iri1(spouseId)}

people

π{p/iri1(id), n/fullName}

⋊⋉
⋊⋉¬isNull(s)

ρs/if(¬isNull(sn),s,null)

Now, the inner self-join can be eliminated (as id is the primary key of people)
and the ρ operation removed (as its result is projected away); see Appendix C.4.

4.6 Left Join Decomposition (LJD): Left Join Simplification [12]
Revisited

In Sect. 4.4, we have given an example of a reduction of a left join to an inner join.
The following equivalence is also helpful (for an example, see Appendix C.3): for
relations R1 and R2 over U1 and U2, respectively, and a filter F over U1 ∪ U2,

πU1
(R1 ⋊⋉F R2) ≡ R1, if πU1

(R1 ⋊⋉ R2) ⊆ R1. (16)

Galindo-Legaria and Rosenthal [12] observe thatσG(R1 ⋊⋉F R2)≡ R1 ⋊⋉F∧G R2

whenever G rejects nulls on U2 \ U1. In the context of SPARQL, however, the
compatibility condition compU does not satisfy the null-rejection requirement,
and so, this optimisation is often not applicable. In the rest of this section we
refine the basic idea.

Let R1 and R2 be relations over U1 and U2, respectively, and F and G filters
over U1 ∪U2. It can easily be verified that, in general, we can decompose the left
join:

σG(R1 ⋊⋉F R2) ≡ (R1 ⋊⋉F∧G R2) ⊎

σnullify
U2\U1

(G)R1 \ πU1
(R1 ⋊⋉F∧nullify

U2\U1
(G) R2), (17)

where nullifyU2\U1
(G) is the result of replacing every occurrence of an attribute

from U2 \ U1 in G with null. Observe that if G is null-rejecting on U2 \ U1, then
nullifyU2\U1

(G) ≡+ ⊥, and the second component of the union in (17) is empty.
We, however, are interested in a subtler interaction of the filters when the second
component of the difference or, respectively, the first component of the union is
empty:

σG(R1 ⋊⋉F R2) ≡ R1 ⋊⋉F∧G R2 ⊎ σnullify
U2\U1

(G)R1,

if F ∧ nullifyU2\U1
(G) ≡+ ⊥, (18)

σG(R1 ⋊⋉F σ¬isNull(w)R2) ≡ σisNull(w)∧nullify
U2\U1

(G)(R1 ⋊⋉F σ¬isNull(w)R2),

if F ∧ G ≡+ ⊥ and w ∈ U2 \ U1. (19)

Efficient Handling of SPARQL OPTIONAL for OBDA 369

These cases are of particular relevance for the SPARQL-to-SQL translation of
OPTIONAL and MINUS. We illustrate the technique in Appendix C.5 on the following
example:

Filter(Opt(Opt(?p a :Product,

Filter({ ?p :hasReview ?r . ?r :hasLang ?l }, ?l = "en"), ⊤),

Filter({ ?p :hasReview ?r . ?r :hasLang ?l }, ?l = "zh"), ⊤), bound(?r)).

The technique relies on two properties of null propagation from the right-hand
side of left joins. Let R1 and R2 be relations over U1 and U2, respectively. First,
if v = v′ is a left join condition and v is a term over U2 \U1, then v is either null

or v′ in the result:

R1 ⋊⋉F∧(v=v′) R2 ≡ σisNull(v)∨(v=v′)(R1 ⋊⋉F∧(v=v′) R2). (20)

Second, non-nullable terms v, v′ over U2 \ U1 are simultaneously either null or
not null:

R1 ⋊⋉F σ¬isNull(v)∧¬isNull(v′)R2 ≡

σ[¬isNull(v)∧¬isNull(v′)]∨[isNull(v)∧isNull(v′)](R1 ⋊⋉F σ¬isNull(v)∧¬isNull(v′)R2).

(21)

The two equivalences introduce no new filters apart from isNull and their nega-
tions. The introduced filters, however, can help simplify the join conditions of
the left joins containing the left join under consideration.

5 Experiments

In order to verify effectiveness of our optimisation techniques, we carried out a set
of experiments based on the BSBM benchmark [3]; the materials for reproducing
the experiments are available online3. The BSBM benchmark is built around an
e-commerce use case in which vendors offer products that can be reviewed by
customers. It comes with a mapping, a data generator and a set of SPARQL and
equivalent SQL queries.

Hardware and Software. The experiments were performed on a t2.xlarge
Amazon EC2 instance with four 64-bit vCPUs, 16G memory and 500G SSD hard
disk under Ubuntu 16.04LTS. We used five database engines: free MySQL 5.7
and PostgreSQL 9.6 are run normally, and 3 commercial systems (which we shall
call X, Y and Z) in Docker.

Queries. In total, we consider 11 SPARQL queries. Queries Q1–Q4 are based
on the original BSBM queries 2, 3, 7 and 8, which contain OPTIONAL; we modified
them to reduce selectivity: e.g., Q1, Q3 and Q4 retrieve information about 1000
products rather than a single product in the original BSBM queries; we also
removed ORDER BY and LIMIT clauses. Q1–Q4 are well-designed (WD). In addition,
we created 7 weakly well-designed (WWD) SPARQL queries: Q5–Q7 are similar
to Example 1, Q8–Q10 to the query in Sect. 4.6, and Q11 is along the lines of
Sect. 4.5. More information is below:
3 https://github.com/ontop/ontop-examples/tree/master/iswc-2018-optional.

https://github.com/ontop/ontop-examples/tree/master/iswc-2018-optional

370 G. Xiao et al.

Query Description SPARQL Optimisations

Q1 2 simple OPTIONALs for the padding effect

(derived from BSBM query 2)

WD LJN, NLJR

Q2 1 OPTIONAL with a !BOUND filter (encodes MINUS)

derived from BSBM query 3

WD JT

Q3 2 outer-level OPTIONALs, the latter with 2 nested OPTIONALs

derived from BSBM query 7

WD LJN, NLJR

Q4 4 OPTIONALs: ratings from attributes of the same relation

derived from BSBM query 8

WD LJN, NLJR

Q5/6/7 2/3/4 OPTIONALs: preference over 2/3/4 ratings of reviews WWD LJN, NLJR

Q8/9/10 2/3/4 OPTIONALs: preference of reviews over 2/3/4

languages

WWD LJN, LJD

Q11 2 OPTIONALs: country-based preference of home pages of

reviewed products

WWD LJN, NLJR, JT

Data. We used the BSBM generator to produce CSV files for 1M products and
10M reviews. The CSV files (20GB) were loaded into DBs, with the required
indexes created.

Evaluation. For each SPARQL query, we computed two SQL translations. The
non-optimised (N/O) translation is obtained by applying to the unfolded query
only the standard (previously known and widely adopted) structural and seman-
tic optimisations [4] as well as CFR (Sect. 4.1) to simplify compatibility filters
and eliminate unnecessary COALESCE. To obtain the optimised (O) translations,
we further applied the other optimisation techniques presented in Sect. 4 (as
described in the table above). We note that the optimised Q1 and Q4 have the
same structure as the SQL queries in the original benchmark suite. On the other
hand, the optimised Q2 is different from the SQL query in BSBM because the
latter uses (NOT) IN, which is not considered in our optimisations.

Each query was executed three times with cold runs to avoid any variation
due to caching. The size of query answers and their running times (in secs) are
as follows:

Query # answers PostgreSQL MySQL X Y Z

N/O O N/O O N/O O N/O O N/O O

Q1 19,267 1.79 1.77 0.43 0.38 0.90 0.80 0.56 0.52 29.06 25.09

Q2 6,746 18.75 2.07 19.95 0.36 40.00 16.07 0.44 0.37 27.99 5.97

Q2bsbm 3.88 0.37 20.55 0.38 5.91

Q3 1,355 4.20 0.09 4.70 0.11 5.50 1.60 2.04 0.14 5.45 0.65

Q4 1,174 2.14 0.16 0.86 0.04 3.00 0.60 1.78 0.11 4.38 0.53

Q5 2,294 0.56 0.05 0.01 0.01 1.80 0.30 0.30 0.08 0.51 0.53

Q6 2,294 102.35 0.18 >10 min 0.04 1.90 0.40 4.50 0.14 0.82 0.54

Q7 2,294 102.00 0.17 >10 min 0.04 2.60 0.40 14.57 0.14 1.21 0.53

Q8 1,257 0.07 0.06 0.01 0.01 8.40 1.30 0.08 0.08 295.25 0.40

Q9 1,311 101.20 0.16 >10 min 0.04 >10 min 2.70 4.30 0.11 >10 min 0.43

Q10 1,331 103.30 0.15 >10 min 0.05 >10 min 4.20 5.20 0.14 >10 min 0.43

Q11 3,388 5.26 0.87 3.80 0.21 107.06 2.68 177.95 0.22 7.82 0.13

Efficient Handling of SPARQL OPTIONAL for OBDA 371

The main outcomes of our experiments can be summarised as follows.

(a) The running times confirm that the optimisations are effective for all
database engines. All optimised translations show better performance in
all DB engines, and most of them can be evaluated in less than a second.

(b) Interestingly, our optimised translation is even slightly more efficient than
the SQL with (NOT) IN from the original BSBM suite (see Q2bsbm in the
table).

(c) The effects of the optimisations are significant. In particular, for challenging
queries (some of which time out after 10 min), it can be up to three orders
of magnitude.

6 Discussion and Conclusions

The optimisation techniques we presented are intrinsic to SQL queries obtained
by translating SPARQL in the context of OBDA with mappings, and their nov-
elty is due to the interaction of the components in the OBDA setting. Indeed, the
optimisation of LEFT JOINs can be seen as a form of “reasoning” on the structure
of the query, the data source and the mapping. For instance, when functional and
inclusion dependencies along with attribute nullability are taken into account,
one may infer that every tuple from the left argument of a LEFT JOIN is guar-
anteed to match (i) at least one or (ii) at most one tuple on the right. This
information can allow one to replace LEFT JOIN by a simpler operator such as an
INNER JOIN, which can further be optimised by the known techniques.

Observe that, in normal SQL queries, most of the NULLs come from the
database rather than from operators like LEFT JOIN. In contrast, SPARQL triple
patterns always bind their variables (no NULLs), and only operators like OPTIONAL
can “unbind” them. In our experiments, we noticed that avoiding the padding
effect is probably the most effective outcome of the LEFT JOIN optimisation tech-
niques in the OBDA setting.

From the Semantic Web perspective, our optimisations exploit information
unavailable in RDF triplestores, namely, database integrity constraints and map-
pings. From the DB perspective, we believe that such techniques have not been
developed because LEFT JOINs and/or complex conditions like compatibility fil-
ters are not introduced accidentally in expert-written SQL queries. The results
of our evaluation support this hypothesis and show a significant performance
improvement, even for commercial DBMSs.

We are working on implementing these techniques in the OBDA system
Ontop [4].

Acknowledgements. We thank the reviewers for their suggestions. This work was
supported by the OBATS project at the Free University of Bozen-Bolzano and by the
Euregio (EGTC) IPN12 project KAOS.

372 G. Xiao et al.

References

1. Arias, M., Fernández, J.D., Martínez-Prieto, M.A., de la Fuente, P.: An empirical
study of real-world SPARQL queries. In: Proceedings of USEWOD (2011)

2. Atre, M.: Left bit right: for SPARQL join queries with OPTIONAL patterns (left-
outer-joins). In: Proceedings of ACM SIGMOD, pp. 1793–1808 (2015)

3. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf.
Syst. 5(2), 1–24 (2009)

4. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M.,
Rodriguez-Muro, M., Xiao, G.: Ontop: answering SPARQL queries over relational
databases. SWJ 8, 471–487 (2017)

5. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
JAR 39, 385–429 (2007)

6. Chakravarthy, U.S., Grant, J., Minker, J.: Logic-based approach to semantic query
optimization. ACM TODS 15(2), 162–207 (1990)

7. Chaloupka, M., Nečaský, M.: Efficient SPARQL to SQL translation with user
defined mapping. In: Ngonga Ngomo, A.-C., Křemen, P. (eds.) KESW 2016. CCIS,
vol. 649, pp. 215–229. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45880-9_17

8. Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving SPARQL-to-SQL transla-
tion. DKE 68(10), 973–1000 (2009)

9. Cyganiak, R.: A relational algerba for SPARQL. TR HPL-2005-170, HP Labs Bris-
tol (2005)

10. De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.: Using ontologies
for semantic data integration. In: Flesca, S., Greco, S., Masciari, E., Saccà, D.
(eds.) A Comprehensive Guide Through the Italian Database Research Over the
Last 25 Years. SBD, vol. 31, pp. 187–202. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-61893-7_11

11. Elmasri, R., Navathe, S.: Fundamentals of Database Systems. Addison-Wesley,
Boston (2010)

12. Galindo-Legaria, C., Rosenthal, A.: Outerjoin simplification and reordering for
query optimization. ACM TODS 22(1), 43–74 (1997)

13. Guagliardo, P., Libkin, L.: A formal semantics of SQL queries, its validation, and
applications. PVLDB 11(1), 27–39 (2017)

14. Kaminski, M., Kostylev, E.V.: Beyond well-designed SPARQL. In: Proceedings of
ICDT (2016)

15. Kontchakov, R., Rezk, M., Rodríguez-Muro, M., Xiao, G., Zakharyaschev, M.:
Answering SPARQL queries over databases under OWL 2 QL entailment regime.
In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 552–567. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_35

16. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
TODS 34(3), 16:1–16:45 (2009)

17. Picalausa, F., Vansummeren, S.: What are real SPARQL queries like? In: SWIM
(2011)

18. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. Data Semant. 10, 133–173 (2008)

19. Priyatna, F., Corcho, Ó., Sequeda, J.F.: Formalisation and experiences of R2RML-
based SPARQL to SQL query translation using morph. In: Proceedings of WWW,
pp. 479–490 (2014)

https://doi.org/10.1007/978-3-319-45880-9_17
https://doi.org/10.1007/978-3-319-45880-9_17
https://doi.org/10.1007/978-3-319-61893-7_11
https://doi.org/10.1007/978-3-319-61893-7_11
https://doi.org/10.1007/978-3-319-11964-9_35

Efficient Handling of SPARQL OPTIONAL for OBDA 373

20. Rao, J., Pirahesh, H., Zuzarte, C.: Canonical abstraction for outerjoin optimization.
In: Proceedings of ACM SIGMOD, pp. 671–682 (2004)

21. Rodríguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontology-based data
access: Ontop of databases. In: Alani, H. (ed.) ISWC 2013. LNCS, vol. 8218, pp.
558–573. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-
3_35

22. Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings.
J. Web Semant. 33, 141–169 (2015)

23. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization.
In: Proceedings ICDT, pp. 4–33 (2010)

24. Sequeda, J.F., Arenas, M., Miranker, D.P.: OBDA: query rewriting or materializa-
tion? In practice, both!. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp.
535–551. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_34

https://doi.org/10.1007/978-3-642-41335-3_35
https://doi.org/10.1007/978-3-642-41335-3_35
https://doi.org/10.1007/978-3-319-11964-9_34

Representativeness of Knowledge Bases
with the Generalized Benford’s Law

Arnaud Soulet1(B), Arnaud Giacometti1, Béatrice Markhoff1,
and Fabian M. Suchanek2

1 Université de Tours, LIFAT, Tours, France
{arnaud.soulet,arnaud.giacometti,beatrice.markhoff}@univ-tours.fr

2 Telecom ParisTech, LTCI, Paris, France
suchanek@telecom-paristech.fr

Abstract. Knowledge bases (KBs) such as DBpedia, Wikidata, and
YAGO contain a huge number of entities and facts. Several recent works
induce rules or calculate statistics on these KBs. Most of these methods
are based on the assumption that the data is a representative sample
of the studied universe. Unfortunately, KBs are biased because they are
built from crowdsourcing and opportunistic agglomeration of available
databases. This paper aims at approximating the representativeness of
a relation within a knowledge base. For this, we use the generalized
Benford’s law, which indicates the distribution expected by the facts of
a relation. We then compute the minimum number of facts that have
to be added in order to make the KB representative of the real world.
Experiments show that our unsupervised method applies to a large num-
ber of relations. For numerical relations where ground truths exist, the
estimated representativeness proves to be a reliable indicator.

1 Introduction

One of the undisputed successes of the Semantic Web is the construction of
huge knowledge bases (KBs). Several recent works use these KBs to derive new
knowledge by calculating statistics or deducing rules from the data [7,26,27,
29]. For instance, according to DBpedia, 99% of the places in Yemen have a
population of more than 1,000 inhabitants. Thus, we could conclude that Yemeni
cities usually have more than 1,000 inhabitants. But is that true in the real
world?

Naturally, the reliability of such conclusions depends on the quality of the
knowledge base [34] namely its correctness (accuracy of the facts) and its com-
pleteness. It is well known that KBs are highly incomplete. This is usually not a
problem in statistics and in machine learning, where it is rare to have a complete
description of the universe under study. Most approaches work on a sample of
the data. In such cases, it is crucial that this sample is representative of the
entire universe (or at least, that the bias of this sample is known). For example,
it is not a problem if the KB contains only half of the cities of Yemen, if their
distribution across different sizes corresponds roughly to the distribution in the
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 374–390, 2018.
https://doi.org/10.1007/978-3-030-00671-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_22&domain=pdf

Representativeness of Knowledge Bases with the Generalized Benford’s Law 375

real world. Figure 1 illustrates this: there is an ideal knowledge base K∗ divided
into two classes A and B that correspond respectively to the places with less
than 1,000 inhabitants and other places. The KB K1 is more complete than the
KB K2. However, K2 better reflects the distribution between the two classes.

K∗

K1
A B

μA/B-miss

K∗

K2
A B

μ
A

/
B
-m

is
s

(a) More complete, less representative (b) Less complete, more representative

Fig. 1. Completeness vs representativeness

Unfortunately, it is not clear whether the data in KBs is representative of the
real world. For example, several large KBs, such as DBpedia [2] or YAGO [28],
extract their data from Wikipedia. Wikipedia, in turn, is a crowdsourced dataset.
In crowdsourcing, contributers tend to state the information that interests them
most. As a result, Wikipedia exhibits some cultural biases [6,33]. Inevitably,
these biases are reflected in the KBs. For instance, 3,922 entities in DBpedia
concern the American company “Disney”, which is almost as much as the 4,493
entities concerning Yemen (a country with more than 26 million inhabitants).
Wikidata [32], likewise, is the result of crowdsourcing, and may exhibit similar
biases. In particular, it is likely that countries such as Yemen are less evenly
covered than places such as France – due to the population of contributors. Even
if the information in these KBs is correct [13], it is not necessarily representative.
If we knew how representative a certain KB is, then we could know whether it is
reasonable or not to exploit it for deriving statistics. Such an indication should,
for example, prevent us from drawing hasty conclusions about the distribution of
the population in the cities of Yemen. But, how to estimate whether a knowledge
base is representative or not?

This paper proposes to study the representativeness of knowledge bases by
help of the generalized Benford’s law. This parameterized law indicates the fre-
quency distribution expected by the first significant digit in many real-world
numerical datasets. We use this law as a gold standard to estimate how much
data is missing in the KB. More specifically, our contributions are as follows:

– We present a method to calculate a lower bound for the number of missing
facts for a relation to be representative. This method works in a supervised
context (where the relation is known to satisfy the generalized Benford’s law),
and in an unsupervised context (where the parameter of the law has to be
deduced from the data).

– We prove that, under certain assumptions, the calculated lower bounds are
correct both in the supervised and the unsupervised context.

376 A. Soulet et al.

– We show with experiments on real KBs that our method is effective for super-
vised contexts as well as for unsupervised contexts. The unsupervised method,
in particular, can audit 63% of DBpedia’s facts.

This paper is structured as follows. Section 2 reviews some related work. Section 3
introduces the basic notions of representativeness. In Sect. 4, we propose our
method for approximating representativeness based on the generalized Benford’s
law. Section 5 provides experimental results. We conclude in Sect. 6.

2 Related Work

To the best of our knowledge, the representativeness of knowledge bases with
respect to the real world has not yet been studied. Nevertheless, as mentioned
in the introduction, this problem is related to the completeness of KBs.

Completeness. Several recent works have studied the completeness of KBs [25,
34]. Some works propose to manually add information about the completeness
relations [8]. Other approaches mine rules on the data [12] (e.g., people usually
live in the city where they work) and propose to add this information where it
is missing. For this purpose, the work of [12] makes the Partial Completeness
Assumption (PCA): It assumes that, if the KB contains at least one object for
a given relation and a given subject, then it contains all of the objects for this
context. The PCA has been shown to be reasonably accurate in practice [12].
Newer approaches for rule mining take into account the cardinality of the rela-
tions, if it is known [30]. Other work aims to determine more generally whether
all objects of a certain relation for a certain subject are present in the KB [11].
For this, the approach uses oracles, such as the PCA and the popularity of the
subject in Wikipedia. Again other work [1,14,17,31] mines class descriptions.
Such approaches are able to determine that a certain attribute is obligatory for
a class – and then allow estimating the number of missing facts per class.

All of these approaches are concerned with completeness in terms of facts
with respect to the present entities. Our approach, in contrast, also considers
the facts of entities that are missing. Furthermore, none of the above works
studies the representativeness of the KB, i.e., whether or not the distribution of
entities in the KB corresponds to the distribution in the real world.

Representative Sample. Completeness is an important notion for estimating the
quality of a knowledge base, but it is not necessarily the best indicator when
one wants to measure the quality of a distribution. In statistics, several resam-
pling techniques [9] exist to estimate the quality of a sample (median, variance,
quantile), in particular by analyzing the evolution of a measure on a subsample
or by permuting labels. None of these techniques can be used to check whether
a single sample is representative, if the ground truth is unknown – as it is the
case in our scenario.

Representativeness of Knowledge Bases with the Generalized Benford’s Law 377

Benford’s Law. When the data is complete, Benford’s law [4] is regularly used
to detect inconsistencies within the data [22]. If the distribution of the first
significant digit of some numerical dataset does not satisfy Benford’s law, then
the data is assumed to be faulty. For this reason, Benford’s law is regularly
used to detect frauds in various kind of data: in accounts [23], in elections [19],
or in wastewater treatment plant discharge data [3]. However, in all of these
cases, Benford’s law is used only to estimate the correctness of the data – not
its completeness. The work cannot be used, e.g., to decide how many facts are
missing in a KB, or whether a KB is representative of the real world.

3 Preliminaries

3.1 Representativeness of Knowledge Bases

For our purposes, a knowledge base (KB) over a set of relations R and a set of
constants C (representing entities and literals) is a set of facts K ⊆ R×C×C. We
write facts as r(s, o) ∈ K, where r is the relation, s is the subject, and o is the
object. The set of facts for the relation r in K is denoted by K|r = {r(s, o) ∈ K}.
Given a relation r, r−1(o, s) ∈ K means that r(s, o) ∈ K where r−1 is the inverse
relation of r.

In line with the other work in the area [11,17,18,21,24], we denote with K∗

a hypothetical ideal KB, which contains all facts of the real world. Then, the
completeness (also called recall) of K, denoted comp(K), is the proportion of
facts of K∗ present in K: comp(K) = |K ∩ K∗|/|K∗|. For our work, we will make
the following assumption:

Assumption 1 (Correctness). Given a knowledge base K, we assume that
all facts of K are correct i.e., K ⊆ K∗.

The correctness assumption is a strong assumption. It has been investigated
in [28,34]. In our work, we use it mainly for our theoretical model. Our experi-
ments will show that our method delivers good results even with some amount
of noise in the data. Let us now introduce the notion of a uniform-sampling
invariant measure. A measure μ maps a knowledge base K to a frequency vector
(f1, . . . , fn) ∈ R

n
≥0 where each component fi is the number of observations of the

ith characteristic in K. Given a non-zero frequency vector F = (f1, . . . , fn), fi

denotes the normalized ith component of F where fi = fi/
∑n

i=1 fi. We use the
mean absolute deviation (MAD) for comparing two non-zero frequency vectors
F = (f1, . . . , fn) and F ′ = (f ′

1, . . . , f
′
n):

MAD(F, F ′) =
1
n

n∑

i=1

∣
∣
∣fi − f ′

i

∣
∣
∣

F and F ′ are similar for ε � 1 iff MAD(F, F ′) ≤ ε. In such case, we write
F ∼ε F ′, or simply F ∼ F ′. A measure μ is uniform-sampling invariant iff
for any uniform sample K′ from K such that |K′| � 1, we have μ(K′) ∼ μ(K).

378 A. Soulet et al.

For instance, in Fig. 1, counting the number of places with less than 1,000 inhab-
itants (in part A) and more than 1,000 inhabitants (in part B) is a measure with
two characteristics (denoted by μA/B). The measure μA/B is uniform-sampling
invariant because whatever the uniform sample of a knowledge base K, the pro-
portion of cities with more (or less) than 1,000 inhabitants remains the same. In
the following, we consider only uniform-sampling invariant measures.

A knowledge base is representative if each measure returns a frequency vector
that is proportional to the frequency vector on K∗:

Definition 1 (Representative KB). A knowledge base K is representative of
K∗ iff μ(K) ∼ μ(K∗) for any uniform-sampling invariant measure μ.

If a knowledge base K is unrepresentative, there is at least one measure μ such
that μ(K) � μ(K∗). In this case, since all the facts of K are correct (Assump-
tion 1), it would be necessary to add new facts to the knowledge base to make it
representative for μ. Formally, this number of missing facts of K for the measure
μ, denoted by μ-miss(K), is defined as:

μ-miss(K) = min{|F | : F ⊆ K∗ ∧ μ(K ∪ F) ∼ μ(K∗)}
The number of missing facts in K, denoted by miss(K), is the minimum number
of facts that have to be added to make the KB representative (whatever the
considered measure μ): miss(K) = maxμ μ-miss(K). The representativeness of
K estimates whether K is a representative sample of K∗:

Definition 2 (Representativeness). The representativeness of K, denoted
rep(K), is defined as:

rep(K) =
|K|

|K| + miss(K)

Interestingly, a KB can be representative without being complete. The represen-
tativeness of K is an upper bound of the completeness: rep(K) ≥ comp(K).

3.2 Problem Statement

The goal of this paper is to approximate the representativeness of a relation r
in K (i.e., the representativeness of K|r) without having a reference knowledge
base K∗|r (which is the most common case in a real-world scenario). This task is
ambitious because the calculation of the representativeness of a knowledge base
requires to know the distribution of any measure μ on an unknown knowledge
base K∗|r. It is obviously not possible to know the distribution μ(K∗|r) for any
measure. In order to calculate an approximation, we propose to use the following
observation, which holds for all measures μ:

μ-miss(K|r) ≤ miss(K|r)

This result (which follows from the definition of miss(K|r)) means that it is
possible to get a lower bound l of the number of missing facts miss(K|r), if some

Representativeness of Knowledge Bases with the Generalized Benford’s Law 379

distributions μi(K∗|r) are known. Such a lower bound is useful for calculating an
upper bound of the representativeness and the completeness of the knowledge
base: |K|r|/(|K|r| + l).

Given a knowledge base K and a relation r, we aim at estimating
the representativeness of the relation r in the knowledge base K by
finding a lower bound l such that l ≤ miss(K|r).

4 Our Approach

4.1 The Generalized Benford’s Law for KBs

The challenge is to find a set of measures whose distribution is known on the
ideal knowledge base K∗. To this end, we propose to rely on Benford’s law [4].
This law says that, in many natural datasets, the first significant digit of the
numbers is unevenly distributed: Around 30% of numbers will start with a “1”,
whereas only 5% of numbers will start with a “9”. This somehow surprising result
follows from the fact that many natural numbers follow a multiplicative growth
pattern. For example, a city of 1000 inhabitants may grow by 30% each year, thus
passing by the values of 1300, 1690, 2197, 2856, 3712, 4826, 6274, 8157, 10604.
These values already show a skewed distribution of the first digit, which will
repeat itself in the coming years. There are other reasons for such patterns, and
Benford’s law has since been observed not just for population sizes, but also for
prices, stock markets, death rates, lengths of rivers, and many other real-world
phenomena [4] – although not all [20]. Technically, Benford’s law is a statistical
frequency distribution on the first significant digit of a set of numbers, which
may or may not apply to a given dataset. In this paper, we use the generalized
Benford’s law [16], which is parametrized and can thus apply to more datasets.

Definition 3 (Generalized Benford’s Law [15]). A set of numbers is said to
satisfy a generalized Benford’s law (GBL) with exponent α �= 0 if the first digit
d ∈ [1..9] occurs with probability:

Bα
d =

(1 + d)α − dα

10α − 1

The parameter α adds a great flexibility since the choice of this value makes
it possible to find Benford’s law (α → 0) and the uniform law (α = 1). Data that
follows a power law ax−k also follows the GBL approximately with α = −1/k
[15]. This is, e.g., the case for the out-degree of Web pages [5], with k = 2.6.

The GBL can be applied to KBs. Let us look at the relation pop, which links
a geographical place to its number of inhabitants (populationTotal in DBpe-
dia, P1082 in Wikidata, and hasNumberOfPeople in YAGO). Figure 2 shows the
distribution of first digits of this relation, drilled down to places in the world, in
France, and in Yemen. We see that the distribution in the KB roughly follows
the GBL. Interestingly, the GBL applies better to the French population than
to the Yemeni population. We will now take advantage of this information to
measure representativeness.

380 A. Soulet et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9
First Significant Digit

Population in the world

DBpedia
Wikidata

Yago
Benford’s law

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9
First Significant Digit

Population in France

DBpedia
Wikidata

Yago
Benford’s law

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4 5 6 7 8 9
First Significant Digit

Population in Yemen

DBpedia
Wikidata

Yago
Benford’s law

Fig. 2. First significant digit distribution for population

Technically, Fig. 2 presents the frequency vector (f1, . . . , f9) of the first digits
of the relation pop. Of course, it is not possible to directly calculate the ideal
frequency vector (f∗

1 , . . . , f∗
9) of K∗. However, in many cases, we know at least

the distribution of the ideal frequency vector (thanks to the GBL). If we do not
know the distribution, then our idea is to learn the exponent α of the GBL from
the observed vector. Once the ideal distribution has been determined, we can use
the difference between the observed distribution and the estimated distribution
to bound the number of missing facts (Fig. 3).

K|r

K∗
|r

μr

μr

(f1, . . . , f9)

(f∗
1 , . . . , f∗

9)

direct comparison

unknown

≈ (Bα
1 , . . . , Bα

9)

2. Learn α,
if unknown

3. Compute μr-miss(K|r)

1. Transform r into a measure μr

Fig. 3. Overview of the method

More precisely, we propose to proceed as follows:

1. Transforming a relation into a measure: Benford’s law can only work on
numerical datasets. Some relations (such as pop) are already numerical. Other
relations will have to be transformed into numerical datasets (Sect. 4.2).

2. Parameterizing the GBL: To use the GBL, we have to know the parameter
α. We distinguish two contexts. In a supervised context, the parameter α
is known upfront in the real world (as it is the case for the population).
Otherwise, in an unsupervised context, we learn the parameter α that best

Representativeness of Knowledge Bases with the Generalized Benford’s Law 381

fits the facts in K|r assuming it is close to the ideal parameter α∗ on K∗|r
(Sect. 4.3).

3. Estimating the number of missing facts: As the knowledge base is
correct, only the addition of new facts would make the frequency vector
(f1, . . . , f9) coincide with the distribution of (Bα

1 , . . . , Bα
9) which is (approxi-

mately) proportional to (f∗
1 , . . . , f∗

9). The objective of this last step is to calcu-
late the minimum number of facts to add so that (f1, . . . , f9) ∼ (Bα

1 , . . . , Bα
9)

(Sect. 4.4).

In the following, when we consider a relation r, K implicitly refers to K|r.

4.2 Transforming Relations into Measures

We show in this section how to transform a relation r into a measure μr. The
key idea is to transform each relation r into a set of numbers Nr that is a kind
of digital signature. Then, we derive a measure μr that counts the frequency of
each number in Nr having d as first significant digit:

μr(K) = (#n : the first significant digit of n ∈ Nr(K) is equal to d)d∈[1..9]

In our example with the relation pop, the measure μpop counts the number of
places that have a population with d as first significant digit. Let us now gener-
alize this principle to two common types of relations:

– Numerical transformation: Given a numerical relation r, the numerical
transformation keeps all the numbers different from 0:

Nnum
r (K) = {number : r(s, number) ∈ K ∧ number �= 0}

Figure 2 illustrates this transformation for relation pop by showing the fre-
quency vector resulting from μpop.

– Counting transformation: Given a relation r, the counting transformation
returns for each object o how many facts it has:

N count
r (K) = {#s : r(s, o) ∈ K such that o is an object of a fact in K|r}

For example, for the relation starring, we can count the number of movies
for each actor. The left hand-side of Fig. 4 illustrates the resulting frequency
vector. We choose to count the number of subjects rather than the number
of objects, because relations tend to have more subjects per object than vice
versa [12]. However, we can also count the number of objects per subject
by applying the above method to r−1. Figure 4 shows two other histograms,
one for the relation team (number of players per team) and for birthPlace
(number of births per place).

This list of transformations is not exhaustive. For instance, it would be possible
to count the number of days since today for a date (e.g. for the birth date
relation) or to consider the length of strings. Besides, it is possible to transform
the same relation in several ways. In this way, it is possible to obtain more
frequency vectors.

382 A. Soulet et al.

4.3 Parameterizing the Generalized Benford’s Law

The previous section has given us a measure μr that we can apply on the knowl-
edge base K to calculate a distribution. Now, we want to compare this distribu-
tion with the distribution on the ideal KB K∗. This requires knowledge of the
parameter α, which depends on the unknown distribution μr(K∗). We distinguish
two settings.

Supervised Setting. In some cases, it is known that μr(K∗) follows the GBL in
the real world with a certain parameter α. For instance, the population of places,
the length of rivers, etc. conform to the GBL in the real world with an exponent
tending to 0 (see Table 2 below). In that case, the GBL is already parametrized.

Unsupervised Setting. If it is not known whether μr(K∗) follows the GBL, or if
its parameter α is not known, we propose to estimate it from the KB. For this
purpose, we make the following assumption:

Assumption 2 (Transferability). Given a knowledge base K, we assume that
if K conforms to the GBL with exponent α, then the ideal knowledge base K∗

also conforms to the GBL with exponent α.

This assumption may seem strong. However, it is verified in several cases where
we have a ground truth available (see experiments in Sect. 5). The assumption
allows us to learn the parameter α that best fits the facts in K. Let us denote
by (f1, . . . , f9) the characteristic vector resulting from μr(K) i.e., fd is exactly
the number of occurrences in Nr(K) with d as first significant digit. Let us
denote N =

∑9
d=1 fd. To choose the right parameter α, we use the WLS measure

(probability weighted least square or Chi square statistics) as goodness-of-fit
measure [15]:

WLS(f1,...,f9)(α) =
9∑

d=1

(
Bα

d − fd

N

)2

Bα
d

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6 7 8 9
First Significant Digit

Starring

DBpedia
Wikidata

Yago
GBL

Benford’s law

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6 7 8 9
First Significant Digit

team

DBpedia
Wikidata

Yago
GBL

Benford’s law

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6 7 8 9
First Significant Digit

birthPlace

DBpedia
Wikidata

Yago
GBL

Benford’s law

Fig. 4. Examples of measures resulting from counting transformation

Representativeness of Knowledge Bases with the Generalized Benford’s Law 383

Now, choosing the right parameter α means minimizing the WLS measure for
the frequency vector (f1, . . . , f9). For this, we use the gradient descent algorithm.
For instance, Fig. 4 shows the gap between the GBL and Benford’s law for the
three relations. For starring, α is −1.156 (in DBpedia), −0.759 (in Wikidata)
and −0.750 (in YAGO). Once the parameter α has been obtained, we have to
assess whether the frequency vector μr(K) conforms to the generalized Benford’s
law. For this, we use the mean absolute deviation (MAD) defined in Sect. 3.1.
To know whether the GBL can be used according to the MAD estimator, we
distinguish four cases [16,22]: close conformity (C) when MAD ≤ 0.006, accept-
able conformity (AC) when 0.006 < MAD ≤ 0.012, marginal conformity (MC)
when 0.012 < MAD ≤ 0.015, and nonconformity (NC) otherwise. In our running
examples, the measure μpop gives rise to a nonconformity only for Yemeni places
in YAGO, because α = 0.351 and MAD(μpop(K), B0.351) equals 0.035 (> 0.015).
If a measure μr leads to a nonconformity, then it is not possible to apply the
GBL at all. In all other cases, we can estimate the number of missing facts for
the relation r as explained in the next section.

4.4 Estimating the Number of Missing Facts

The purpose of this section is to estimate the number of missing facts for a
relation r, knowing that we have an approximation of the expected distribution
(Bα

1 , . . . , Bα
9) that is proportional to (f∗

1 , . . . , f∗
9). We assume that all the facts of

the knowledge base K are correct (Assumption 1). Therefore, only the addition
of facts can bring the observed distribution of facts (f1, . . . , f9) closer to the
expected distribution (Bα

1 , . . . , Bα
9).

Numerical Transformation. When a relation is numerical, the only way to have
a number with a given first significant digit is to add a new fact. Intuitively, it is
then enough to add facts for each of the digits where the measured frequency is
lower than the expected frequency. The following theorem formalizes this idea:

Theorem 1. Given a knowledge base K and a measure μnum
r such that

μnum
r (K∗) satisfies a generalized Bendford’s law with exponent α, the number

of missing facts for the relation r is:

μnum
r -miss(K) = max

d∈[1..9]

fd

Bα
d

− N

where (f1, . . . , f9) = μr(K) and N =
∑9

d=1 fd.

This follows from the fact that the expected distribution fd/(N+μnum
r -miss(K))

must be less than Bα
d for each digit d. Table 1 indicates the number of miss-

ing facts estimated for the relation pop with the unsupervised method, and
deduces an approximation of the representativeness. Interestingly, the approxi-
mation μnum

r -miss for Yemeni places of YAGO is very close to what we obtain in
a supervised context (where we know that α → 0) – even though the measure is
non-conform for that case. In the supervised context, we calculate that 181 facts

384 A. Soulet et al.

are missing, while our estimation tells us that 127 facts are missing. Whatever
the KB, our estimation of representativeness confirms our intuition mentioned
in the introduction: the population of Yemeni places is less well informed than
that of French ones.

Table 1. Representativeness of relations in three KBs (unsupervised context)

Measure Missing facts Representativeness

DBpedia Wikidata YAGO DBpedia Wikidata YAGO

μnum
pop in World 15,789 13,720 44,223 0.954 0.961 0.895

μnum
pop in France 1,153 1,546 18,829 0.970 0.963 0.918

μnum
pop in Yemen 78 4,281 127 (NC) 0.829 0.888 0.577 (NC)

μcount
starring 51,179 10,370 2,703 0.892 0.989 0.979

μcount
team 41,484 3,373 463 0.980 0.997 0.999

μcount
birthPlace 38,664 25,691 470 0.971 0.986 0.998

Counting Transformation. For this transformation, the estimation of the number
of missing facts is more complicated, because the addition of a fact for an object
can change its first significant digit. For instance, if a number starting with 5 is
missing, an object with 5 facts has to be added. One can imagine to add 5 new
facts for a new object, to add four new facts for an object that has already 1
fact, to add 3 facts for an object that has already 2 facts, etc. We choose the
solution that minimizes the total number of added facts:

Theorem 2. Given a knowledge base K and a measure μcount
r such that

μcount
r (K∗) satisfies a generalized Bendford’s law with exponent α, the number

of missing facts for the relation r is:

μcount
r -miss(K) =

9∑

d=1

((Bα
d × m) − fd) × d

where m = maxd∈[1..9]

∑
i≥d fi

∑
i≥d Bα

i
and (f1, . . . , f9) = μr(K).

This follows from the fact that
∑

i≥d fi/m ≤ ∑
i≥d Bα

i for each digit d. For the
unsupervised context, Table 1 indicates the number of missing facts estimated
for the relations starring/team/birthPlace with our method and deduces an
approximation of the representativeness.

Note that for the same relation r, under the two transformations leading
to μnum

r and μcount
r , the number of missing facts is bounded by the maximum

result: max{μnum
r -miss(K);μcount

r -miss(K)} ≤ miss(K). Under the same trans-
formation, the missing facts for two distinct relations r1 and r2 can be added
together: (μr1 -miss(K)+μr2 -miss(K)) ≤ miss(K). We will use these properties
in Sect. 5.3 for DBpedia analysis.

Representativeness of Knowledge Bases with the Generalized Benford’s Law 385

4.5 Limitations of Our Approach

Using Theorems 1 and 2, our approach approximates the representativeness of
some relation r in the knowledge base K by finding a lower bound μr-miss(K)
such that μr-miss(K) ≤ miss(K|r) as requested in Sect. 3.2. This approach
works only if Assumption 1 (Correctness) holds. For the unsupervised setting,
we also need Assumption 2 (Transferability).

Furthermore, for the GBL to be applicable, the set of numbers Nr has to meet
the following two conditions. First, the numbers of Nr have to be distributed
across several orders of magnitude: log10 max(Nr) − log10 min(Nr) ≥ 1. For
instance, the height of people does not meet this criterion because it is between
100 and 199 cm for most people. In that case, a numerical transformation would
lead to a lot of “1” and “2” as first significant digits. For the same reason, it is
also not possible to apply the counting transformation to an inverse functional
relation r because in that case, each object has only one subject (i.e., N count

r =
{1, 1, 1, . . . }) and then, its prevalence is 0. Second, the cardinality of Nr has to
be sufficiently high: |Nr| � 1. If we do not have enough numbers in Nr, the
derived distributions μr(K) will not be reliable enough to learn the parameter
α. The next section will show where our method can be applied.

5 Experiments

These experiments answer the following three questions: Is the unsupervised
method reliable? Is the representativeness estimated by our method correct? Is
the GBL sufficiently effective to be useful for auditing a knowledge base?

All experimental data (the queries, the distributions, the experimental
results, and details of the learning method), as well as the source code, are
available here: http://www.info.univ-tours.fr/∼soulet/prototype/iswc18.

5.1 Verification of the Transferability Assumption

Assumption 2 (Transferability) is a central assumption in the unsupervised app-
roach for learning the GBL parameter. Our first experiment aims to verify if this
assumption is true. For this, we compare the parameter α that we obtained by
the unsupervised approach to the parameter α of the real world. We found seven
relations under the numerical transformation that are known to verify Benford’s
law in the real world, and that exist in DBpedia and Wikidata. We also found
one relation under the counting transformation that exists in our KBs and that
is known to follow the GBL in the real world: the out-degree of Wikipedia pages,
where α = −1/2.6 = −0.385 [5].

Table 2 shows the results obtained for representativeness by Theorem 1 in
both supervised and unsupervised contexts. The last column indicates the GBL
compliance between the supervised and unsupervised case according to the MAD
test (Sect. 4.3). We see that the learned parameter conforms to the ground truth
in all cases: it is very close to zero and does not deviate to values that would have

http://www.info.univ-tours.fr/~soulet/prototype/iswc18

386 A. Soulet et al.

Table 2. Conformity of the unsupervised method with the supervised one

Relation KB Sup. Unsup. MAD(Bα, Bα∗
)

α∗ Rep. α Rep.

Population of places DBpedia 0.001 0.949 −0.020 0.954 C

Elevation of places DBpedia 0.001 0.750 −0.083 0.765 C

Area of places DBpedia 0.001 0.535 0.143 0.624 AC

Length of water streams DBpedia 0.001 0.887 0.001 0.887 C

Discharge of water streams DBpedia 0.001 0.938 −0.105 0.930 AC

Number of deaths Wikidata 0.001 0.909 −0.106 0.908 AC

Number of injured Wikidata 0.001 0.883 −0.119 0.875 AC

Out-degree of Wikipedia page DBpedia −0.385 0.999 −0.486 0.999 AC

a distorting impact (e.g., α > 2, or α > 5). For the out-degree of Wikipedia pages,
the learned parameter also corresponds well to the real parameter. In addition,
the estimator of MAD always indicates a very good conformity (≤0.012). This
entails that the representativeness that we compute in the unsupervised approach
is very similar to the supervised value. In all cases except one, there is less than
1% difference. Even for the least correct prediction (areaTotal) the difference
is at most 10%1.

Finally, we also applied the unsupervised method to numerical relations
whose numbers should not verify the GBL. In such a situation, the method
should have a MAD test that indicates a nonconformity (i.e. >0.015). This is
indeed the case for the following relations: Wikipedia page ID (with MAD 0.029),
runtime of films (0.077) or albums (0.090), and weight of persons (0.070).

5.2 Validity of Representativeness

In Sect. 3, we postulated that representativeness is an upper bound for complete-
ness. To test this postulation, we simulate an unrepresentative KB as a sample of
a known KB. For this purpose, we use the number of inhabitants of French cities
from DBpedia as gold standard, because we know that these numbers verify the
GBL. We then apply three approaches to degrade this KB:

– Most-populated: We removes cities, starting from the least populated to
the most populated. This biased sample simulates a KB of Yemeni cities,
where only the most populated cities are present.

– Least-populated: We remove the most populated cities first. This approach
is the opposite of the previous one.

– Random: We randomly removes cities. The retained sample of facts is there-
fore uniformly drawn and it is representative of the original KB.

Our first step is to verify whether our samples conform to Benford’s law
(Sect. 4.3). This is indeed the case for 100% of samples for the most-populated
1 Different from α, the representativeness varies only between 0 and 1.

Representativeness of Knowledge Bases with the Generalized Benford’s Law 387

approach and the random approach, and for 99% of the samples for the least-
populated approach. This validates Assumption 2, and makes our approach
applicable. Figure 5 plots the representativeness for the three approaches accord-
ing to the number of preserved cities in a supervised and unsupervised context.
We also plot the real completeness of the sample (w.r.t. the original KB).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000
Number of cities

Representativeness of population (supervised)

Most−populated
Least−populated

Random
Completeness

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000
Number of cities

Representativeness of population (unsupervised)

Most−populated
Least−populated

Random
Completeness

Fig. 5. Impact of incompleteness on French cities using dbo:populationTotal

We observe that whatever the approach and the context, representativeness
is indeed an upper bound for completeness, as postulated. There is only a sin-
gle major violation at the point of around 34,000 cities for the most-populated
approach, which is due to a wrong approximation of the parameter α in that par-
ticular sample. Surprisingly, the representativeness is a very good approximation
of completeness for the most-populated and the least-populated approaches. In
the case of the supervised context, considering a sample C = K|pop with more
than 22,000 cities, the estimated number of cities (i.e., P = |C +μnum

pop -miss(C)|)
approximates the true number of cities in K∗ (i.e., T = |K∗|pop|) with less than
5% error: |P − T |/P ≤ 0.05.

Finally, we observe that as long as the number of cities remains large enough
(i.e., greater than 2,500), the representativeness of the random approach is high
(around 0.95). This is expected for any large random sample from a complete
relation, because a random sample has to be representative in our sense.

5.3 Effectiveness of the GBL for a KB

We considered in DBpedia (France) all the relations with at least 100 facts.
We applied the numerical transformation and the counting transformation. We
removed all relations whose numbers are not distributed across several orders
of magnitude i.e., log10 max(Nr) − log10 min(Nr) < 1. Table 3 gives a general
overview of the resulting 2,920 relations: the number of considered relations, the
number of compliant relations (i.e., with MAD ≤ 0.015), the number of facts,
the proportion of facts in DBpedia, the estimated number of missing facts and

388 A. Soulet et al.

finally, the estimated representativeness. Clearly, the counting transformation
concerns more relations and facts than the numerical transformation. All in
all, our analysis covers about 63% of the facts in DBpedia and we estimate its
representativeness at 0.719. To make DBpedia’s current relations representative,
at least 46 million facts would have to be added.

Table 3. Overview of the representativeness of DBpedia (France)

Trans. # of rel. # of comp. rel. # of facts % of DBpedia Missing facts Rep.

Counting 2,920 1,461 117,349,802 0.633 45,869,202 0.719

Numerical 108 43 329,853 0.002 109,603 0.751

Total 2,920 1,487 117,461,855 0.634 45,972,923 0.719

6 Conclusion

In this paper, we have introduced the first method to analyze how representative
a knowledge base is for the real world. We believe that representativeness is a
dimension of data quality in its own right (along with correctness and complete-
ness), because it is essential for applying statistical or machine learning methods.
Our approach quantifies a minimum number of facts that must complement the
knowledge base in order to make it representative. Experiments on DBpedia
validate our proposal in a supervised and unsupervised context on several rela-
tions. Using our method, we estimate that at least 46 million facts are missing
for DBpedia to be a representative knowledge base. In future work, we would
like to take into account representativeness to correct the result of queries on
knowledge bases much like this has been done recently for completeness [10].

References

1. Alam, M., Buzmakov, A., Codocedo, V., Napoli, A.: Mining definitions from RDF
annotations using formal concept analysis. In: IJCAI (2015)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

3. Beiglou, P.H.B., Gibbs, C., Rivers, L., Adhikari, U., Mitchell, J.: Applicability
of Benford’s law to compliance assessment of self-reported wastewater treatment
plant discharge data. J. Environ. Assess. Policy Manag. (2017). https://doi.org/
10.1142/S146433321750017X

4. Benford, F.: The law of anomalous numbers. In: Proceedings of the American
Philosophical Society, pp. 551–572 (1938)

5. Broder, A., et al.: Graph structure in the web. Comput. Netw. 33(1–6), 309–320
(2000)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1142/S146433321750017X
https://doi.org/10.1142/S146433321750017X

Representativeness of Knowledge Bases with the Generalized Benford’s Law 389

6. Callahan, E.S., Herring, S.C.: Cultural bias in Wikipedia content on famous per-
sons. J. Assoc. Inf. Sci. Technol. 62(10), 1899–1915 (2011)

7. de la Croix, D., Licandro, O.: The longevity of famous people from Hammurabi to
Einstein. J. Econ. Growth 20(3), 263–303 (2015)

8. Darari, F., Razniewski, S., Prasojo, R.E., Nutt, W.: Enabling fine-grained RDF
data completeness assessment. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C.
(eds.) ICWE 2016. LNCS, vol. 9671, pp. 170–187. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-38791-8 10

9. Efron, B.: The Jackknife, the Bootstrap, and Other Resampling Plans, vol. 38.
SIAM, Philadelphia (1982)

10. Galárraga, L., Hose, K., Razniewski, S.: Enabling completeness-aware querying in
SPARQL. In: Proceedings of the 20th International Workshop on the Web and
Databases, pp. 19–22. ACM (2017)

11. Galárraga, L., Razniewski, S., Amarilli, A., Suchanek, F.M.: Predicting complete-
ness in knowledge bases. In: WSDM, pp. 375–383. ACM (2017)

12. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE++. VLDB J. 24(6), 707–730 (2015)

13. Giles, J.: Internet encyclopaedias go head to head. Nature 438, 900–901 (2005).
https://doi.org/10.1038/438900a

14. Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very
large knowledge bases. Int. J. Semant. Web Inf. Syst. 5, 25–48 (2009)

15. Hürlimann, W.: A first digit theorem for powers of perfect powers. Commun. Math.
Appl. 5(3), 91–99 (2014)

16. Hürlimann, W.: Benford’s law in scientific research. Int. J. Sci. Eng. Res. 6(7),
143–148 (2015)

17. Lajus, J., Suchanek, F.M.: Are all people married? Determining obligatory
attributes in knowledge bases. In: WWW (2018)

18. Levy, A.Y.: Obtaining complete answers from incomplete databases. In: VLDB
(1996)

19. Mebane Jr., W.R.: Election forensics: Vote counts and Benford’s law. In: Summer
Meeting of the Political Methodology Society, UC-Davis, July, pp. 20–22 (2006)

20. Morzy, M., Kajdanowicz, T., Szymański, B.K.: Benford’s distribution in complex
networks. Sci. Rep. 6, Article no. 34917 (2016)

21. Motro, A.: Integrity = validity + completeness. TODS 14, 480–502 (1989)
22. Nigrini, M.: Benford’s Law: Applications for Forensic Accounting, Auditing, and

Fraud Detection, vol. 586. Wiley, Hoboken (2012)
23. Nigrini, M.J.: A taxpayer compliance application of Benford’s law. J. Am. Tax.

Assoc. 18(1), 72 (1996)
24. Razniewski, S., Korn, F., Nutt, W., Srivastava, D.: Identifying the extent of com-

pleteness of query answers over partially complete databases. In: SIGMOD (2015)
25. Razniewski, S., Suchanek, F., Nutt, W.: But what do we actually know? In: Pro-

ceedings of the 5th Workshop on Automated Knowledge Base Construction, pp.
40–44 (2016)

26. Rebele, T., Nekoei, A., Suchanek, F.M.: Using YAGO for the humanities. In:
WHISE workshop (2017)

27. Schich, M., et al.: A network framework of cultural history. Science 345(6196),
558–562 (2014)

28. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge.
In: WWW, pp. 697–706. ACM (2007)

29. Suchanek, F.M., Preda, N.: Semantic culturomics. Proc. VLDB Endow. 7(12),
1215–1218 (2014)

https://doi.org/10.1007/978-3-319-38791-8_10
https://doi.org/10.1007/978-3-319-38791-8_10
https://doi.org/10.1038/438900a

390 A. Soulet et al.

30. Pellissier Tanon, T., Stepanova, D., Razniewski, S., Mirza, P., Weikum, G.:
Completeness-aware rule learning from knowledge graphs. In: d’Amato, C., et al.
(eds.) ISWC 2017. LNCS, vol. 10587, pp. 507–525. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68288-4 30

31. Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., et al. (eds.)
ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21034-1 9

32. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

33. Wagner, C., Garcia, D., Jadidi, M., Strohmaier, M.: It’s a man’s Wikipedia? Assess-
ing gender inequality in an online encyclopedia. In: ICWSM, pp. 454–463 (2015)

34. Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality
assessment for linked data: a survey. Semant. Web 7(1), 63–93 (2016)

https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.1007/978-3-642-21034-1_9
https://doi.org/10.1007/978-3-642-21034-1_9

Detecting Erroneous Identity Links
on the Web Using Network Metrics

Joe Raad1,3(B), Wouter Beek2, Frank van Harmelen2, Nathalie Pernelle3,
and Fatiha Säıs3

1 UMR MIA-Paris, INRA, Paris-Saclay University, Paris, France
joe.raad@agroparistech.fr

2 Department of Computer Science, VU University Amsterdam,
Amsterdam, The Netherlands

{w.g.j.beek,frank.van.harmelen}@vu.nl
3 LRI, Paris Sud University, CNRS 8623, Paris Saclay University, Orsay, France

{nathalie.pernelle,fatiha.sais}@lri.fr

Abstract. In the absence of a central naming authority on the Semantic
Web, it is common for different datasets to refer to the same thing by
different IRIs. Whenever multiple names are used to denote the same
thing, owl:sameAs statements are needed in order to link the data and
foster reuse. Studies that date back as far as 2009, have observed that
the owl:sameAs property is sometimes used incorrectly. In this paper,
we show how network metrics such as the community structure of the
owl:sameAs graph can be used in order to detect such possibly erroneous
statements. One benefit of the here presented approach is that it can be
applied to the network of owl:sameAs links itself, and does not rely on
any additional knowledge. In order to illustrate its ability to scale, the
approach is evaluated on the largest collection of identity links to date,
containing over 558M owl:sameAs links scraped from the LOD Cloud.

Keywords: Linked Open Data · Identity · owl:sameAs · Communities

1 Introduction

As the Web of Data continues to grow, more and more large datasets – covering a
wide range of topics – are being added to the Linked Open Data (LOD) Cloud. It
is inevitable that different datasets, most of which are developed independently
of one another, will come to describe (aspects of) the same thing, but will do so
by referring to that thing with different names. This situation is not accidental:
it is a defining characteristic of the (Semantic) Web that there is no central
naming authority that is able to enforce a Unique Name Assumption (UNA).
As a consequence, identity link detection, i.e., the ability to determine – with
a certain degree of confidence – that two different names in fact denote the
same thing, is not a mere luxury but is essential for Linked Data to work.
Thanks to identity links, datasets that have been constructed independently
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 391–407, 2018.
https://doi.org/10.1007/978-3-030-00671-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_23&domain=pdf

392 J. Raad et al.

of one another are still able to make use of each other’s information. The most
common predicate that is used for interlinking data on the web is the owl:sameAs
property. This property denotes a very strict notion of identity that is formalized
in model theory. It is defined by Dean et al. [9] as: “an owl:sameAs statement
indicates that two references actually refer to the same thing”. As a result, a
statement of the form “x owl:sameAs y” indicates that every property attributed
to x must also be attributed to y, and vice versa.

Over time, an increasing number of studies have shown that owl:sameAs is
sometimes used incorrectly in practice. For example, Jaffri et al. [15] discuss how
erroneous uses of owl:sameAs in the linking of DBpedia and DBLP has resulted
in several publications being affiliated to incorrect authors. In addition, Ding
et al. [10] discuss a number of issues that arise when linking New York Times
data to DBpedia. Specifically, they discuss issues that arise when two things are
considered the same in some, but not all contexts.

Halpin et al. [13] discuss how the ‘sameAs problem’, originates from the
identity and reference problems in philosophy. In the Semantic Web literature,
several approaches have been proposed that focus on limiting this problem. While
some approaches consider the introduction of alternative properties that can
replace owl:sameAs [13], or alternative semantics of the owl:sameAs property
[1,22], other approaches focus on the (semi-)automatic detection of potentially
incorrect owl:sameAs statements [5,7,20].

This paper presents a novel approach for the automatic detection of poten-
tially erroneous owl:sameAs statements. The approach consists of applying an
existing community detection algorithm to an RDF graph that contains solely
owl:sameAs statements. Based on the communities that are detected, an error
degree is calculated for each identity link in the graph. The error degree of an
owl:sameAs link depends on the density of the community(ies) in which the two
terms exist, and whether the identity link is symmetrical or not. It is subse-
quently used to rank identity links, allowing potentially erroneous links to be
identified, and potentially true owl:sameAs to be validated.

Since the here presented approach is specifically developed in order to be
applied to real-world data, the experiment is run on the largest collection of
identity links to date, containing over 558 million owl:sameAs links scraped
from the LOD Cloud. The evaluation indicates that the calculated error degrees
are useful for identifying a large number of correct and erroneous identity links,
when applied to this real-world data collection.

The rest of this paper is structured as follows. The next section discusses
related work. The approach for detecting potentially erroneous identity links is
presented in Sect. 3. The experiments and the evaluation are described in Sect. 4,
and Sect. 5 concludes.

2 Related Work

This section will give an overview of the related work on detecting erroneous iden-
tity links (Sect. 2.1) and existing approaches for community detection (Sect. 2.2).

Detecting Erroneous Identity Links on the Web Using Network Metrics 393

We will briefly reflect on why we believe community detection to be a particularly
good fit for identity error detection in Sect. 2.3.

2.1 Identity Error Detection

Source Trustworthiness. An early approach for detecting erroneous identity
statements in the Web of Data is idMesh [5], a probabilistic and decentralized
framework for entity disambiguation. idMesh hypothesizes that links published
by trusted sources (e.g., OpenID-based) are more likely to be correct. The app-
roach detects conflicts between owl:sameAs and owl:differentFrom assertions
by using a graph-based constraint satisfaction solver that exploits the symmet-
ric and transitive nature of the owl:sameAs relation. The detected conflicts are
resolved based on the iteratively refined trustworthiness of the sources from
which the assertions originate.

UNA Violations. Several approaches have made use of the hypothesis that
individual datasets apply the Unique Name Assumption (UNA) [7,23], and that
violations of the UNA that are caused by cross-dataset linking are indicative of
erroneous identity links. De Melo [7] applies a linear programming relaxation
algorithm that seeks to delete the minimal number of owl:sameAs statements
such that the UNA is no longer violated. Valdestilhas et al. [23] efficiently detect
the resources that share the same equivalence class and that belong to the same
dataset, and ranks erroneous candidates based on the number of UNA violations.

Content-Based. Paulheim [21] represents each identity link as a feature vector
in a high dimensional vector space, using direct types and in- and/or outgoing
properties. They have tested different outlier detection methods in order to assign
a score to each link, indicating the likeliness of being an outlier. Cuzzola et al.
[6] propose to calculate a similarity score between the names that are involved
in a given owl:sameAs link, by using the textual descriptions that are associated
to these names (e.g., through the rdfs:comment property).

Ontology Axiom Violations. Hogan et al. [14] exploit ten OWL 2 RL rules
in order to express the semantics of axioms such as differentFrom and comple-
mentOf in order to detect inconsistencies. Whenever an inconsistent equality
set is detected, the erroneous links are identified by incrementally rebuilding the
equality set in a manner that preserves consistency. Papaleo et al. [20] exploit
class disjointness, (inverse) functional properties, locally complete properties,
and property mappings in order to detect inconsistencies in an RDF graph made
of the subparts of the two RDF descriptions involved in conflicting statements.

Network Metrics. Finally Gueret et al. [12] hypothesizes that the quality of
a link can be determined based on how connected a node is within the network
in which it appears. The approach is based on the use of three classic network
metrics (clustering coefficient, centrality, and degree), and two Linked Data-
specific metrics (owl:sameAs chains, and description richness). The approach
constructs a local network for a set of selected resources by querying the Web of
Data. After measuring the different metrics, each local network is first extended

394 J. Raad et al.

by adding new edges and then analyzed again. The result of both analyses is
compared to the ideal distribution for the different metrics.

2.2 Community Detection

Despite the absence of a universally agreed upon definition, communities are
typically thought of as groups that have dense connections among their mem-
bers, but sparse connections with the rest of the network. Community detection
is a form of data analysis that seeks to automatically determine the community
structure of a complex network [18,19]. It has applications in statistical physics,
mathematics, computer science, biology, and sociology [24]. Importantly, commu-
nity detection only requires information that is already encoded in the network
topology.

Several community detection algorithms exist, as well as several compara-
tive studies. Lancichinetti et al. [16] analyse 12 community detection algorithms
by applying them to the LFR graph benchmark [17]. In a more recent study,
Yang et al. [24] have evaluated 8 of the most widely used community detection
algorithms, again on the LFR benchmark graphs. From both meta studies, the
Louvain algorithm emerges as combining a high accuracy with good computa-
tional performance.

The Louvain algorithm [4] is a greedy heuristic method, that starts out by
assigning a different community to each node of a given network. It then moves
each node over to one of its neighbor communities, specifically, neighbors, the
one which results in the highest contribution to a modularity score. In the next
step, each community from the previous step is regarded as a single node, and
the same procedure is repeated until the modularity (which is always computed
with respect to the original graph) no longer increases.

2.3 Discussion

We believe community detection to be a particularly good fit for identity error
detection, since it can be applied to the network structure of the owl:sameAs
graph itself. Specifically, the approach that we suggest does not require access
to resource descriptions, property mappings, or vocabulary alignments. Also, it
does not rely on additional assumptions like the UNA that could be false for
some dataset (e.g., datasets that are constructed over a longer period of time
and/or by a large group of contributors). Finally, current approaches for identity
error detection have not always been applied to real-world owl:sameAs links, and
no current approach has been evaluated at web scale, i.e., applied to hundreds
of millions of links. Since the Louvain algorithm has already been successfully
used in other domains, we believe that it can also perform well on the task of
detecting owl:sameAs-based communities.

3 Approach

This section presents our approach for detecting erroneous identity links by
exploiting the community structure of the identity network itself. This section

Detecting Erroneous Identity Links on the Web Using Network Metrics 395

describes the two main steps that our approach is composed of: firstly, the extrac-
tion and compaction of the identity network (Sect. 3.1), and secondly, the ranking
of each identity link based on the community structure (Sect. 3.2). Algorithm 1
provides an effective procedure for calculating this ranking.

3.1 Identity Network Construction

The first step of our approach consists of extracting the identity network from
a given data graph (Definition 1).

Definition 1 (Data Graph). A data graph is a directed and labeled graph
G = (V,E,ΣE , lE). V is the set of nodes1. E is the set of node pairs or edges.
ΣE is the set of edge labels. lE : E → ΣE is the mapping from edges to edge
labels. lE(e) denotes the labels of edge e.

We use eij to denote the edge between nodes vi and vj . From a given data
graph G, we can extract the explicit identity network Nex (Definition 2), which
is a directed labeled graph that only includes those edges whose labels include
owl:sameAs.

Definition 2 (Explicit Identity Network). Given a graph G = (V,E,ΣE ,
lE), the related explicit identity network is the edge-induced subgraph G[{e∈E |
{owl:sameAs} ⊆ lE(e)}].

We can reduce the size of the explicit identity network Nex into a more concisely
represented undirected and weighted identity network I (Definition 3), without
losing any significant information. Since reflexive owl:sameAs statements are
implied by the semantics of identity, there is no need to represent them explicitly.
In addition, since the symmetric statements eij and eji make the same assertion:
that vi and vj refer to the same thing, we can represent this more efficiently, by
including only one undirected edge with a weight of 2. A weight of 1 is assigned
for edges which either eij or eji, but not both, are present in Nex.

Definition 3 (Identity Network). The identity network is an undirected
labeled graph I = (VI , EI , {1, 2}, w), where VI is the set of nodes, EI is the
set of edges, {1, 2} are the edges labels, and w : EI → {1, 2} is the labeling func-
tion that assigns a weight wij to each edge eij. For each explicit identity network
Nex = (Vex, Eex), the corresponding identity network I is derived as follows:

– EI := {eij ∈ Eex | i �= j}
– VI := Vex[EI], i.e., the vertex-induced subgraph.

– w(eij) :=

{
1, if eij ∈ Eex

2, if eji ∈ Eex

1 In RDF, nodes are terms that appear in the subject and/or object position of at
least one triple.

396 J. Raad et al.

3.2 Links Ranking

Given I = (VI , EI , ΣEI
, w), a partitioning of VI is a collection of non-empty and

mutually disjoint subsets Vk ⊆ VI that together cover VI . Since the closure of EI

forms an equivalence set (the semantics of the owl:sameAs property states that it
is reflexive, symmetric, and transitive), it also induces a unique partitioning. We
call members of this partition identity sets. These partition members correspond
to the connected components of I that we call equality sets (Definition 4).

Definition 4 (Equality Set). Given an identity network I =(VI , EI , {1, 2}, w),
an equality set Qk is a connected component of I.

We want to detect erroneous identity links based on the community structure
of each connected component of the identity network. While the number of
potential identity links is quadratic in the size of the domain, the representation
of equality sets is only linear in terms of the size of the domain. With equality
sets, we can implement the following requirements for our algorithm:

– The calculation of erroneous identity links must not have a large memory
footprint, since it must be able to scale to very large identity networks, and
preferably to all identity statements that appear in the LOD Cloud.

– It must be possible to perform computation in parallel, to allow errors to
be detected relatively quickly, preferably directly after the publication of the
potential error into the LOD Cloud.

– Calculation must be resilient against incremental updates. Since triples are
added to and removed from the LOD Cloud constantly, adding or removing
a owl:sameAs link must only require a re-ranking of the links within the
equality sets that are directly involved in this link.

In order to compute a ranking for the owl:sameAs links, we first partition the
identity network into different equality sets (several graph partitioning tech-
niques could be applied, such as [2]). Then we detect a set of non-overlapping
communities by applying the Louvain algorithm [4] for each equality set.

Given an equality set Qk, the Louvain algorithm returns a set of non over-
lapping communities C(Qk) = {C1, C2, . . . , Cn} where:

– a community C of size |C| (i.e. the number of nodes) is a subgraph of Qk

such that the nodes of C are densely connected (i.e. the modularity of the Qk

is maximized).
–

⋃
1≤i≤n Ci = Qk and ∀Ci, Cj ∈ C(Qk) s.t. i �= j, Ci ∩ Cj = ∅.

We then evaluate each identity link by relying on its weight and the structure
of the communities it occurs in. More precisely, to compute the erroneous degree,
we distinguish between two types of links: the intra-community links and inter-
community links.

Definition 5. Intra-Community Link. Given a community C, an intra-
community link in C noted by eC is a weighted edge eij where vi and vj ∈
C. We denote by EC the set of intra-community links in C.

Detecting Erroneous Identity Links on the Web Using Network Metrics 397

Definition 6. Inter-Community Link. Given two non overlapping commu-
nities Ci and Cj, an inter-community link between Ci and Cj noted by eCij

is
an edge eij where vi ∈ Ci and vj ∈ Cj. We denote by ECij

the set of inter-
community link between Ci and Cj.

For evaluating an intra-community link, we rely both on the density of the com-
munity containing the edge, and the weight of this edge. The lower the density
of this community and the weight of an edge are, the higher the error degree will
be.

Definition 7. Intra-Community Link Error Degree. Let eC be an intra-
community link of the community C, the intra-community error degree of ec
denoted by err(eC) is defined as follows:

(a) err(eC) =
1

w(eC)
× (

1 − WC

|C| × (|C| − 1)
)

where WC =
∑

eC∈EC
w(e)

For evaluating an inter-community link, we rely both on the density of the inter-
community connections, and the weight of this edge. The less the two commu-
nities are connected to each other and the lower the weight of an edge is, the
higher the error degree will be.

Definition 8. Inter-Community Link Error Degree. Let eCij
be an inter-

community link of the communities Ci and Cj, the inter-community error degree
of eCij

denoted by err(eCij
) is defined as follows:

(b) err(eCij
) =

1
w(eCij

)
× (

1 − WCij

2 × |Ci| × |Cj |
)

where WCij
=

∑
eCij

∈ECij
w(e)

4 Experiments

4.1 Dataset

We have tested our approach on the LOD-a-lot dataset [11]2, a compressed
data file that contains 28 billion unique triples from the 2015 LOD Laundromat
Linked Data crawl [3]. This large subset of the LOD Cloud represents our data
graph (Definition 1).

2 http://lod-a-lot.lod.labs.vu.nl.

http://lod-a-lot.lod.labs.vu.nl

398 J. Raad et al.

Algorithm 1. Identity Links Ranking
Input: G: a Data graph
Output: Eerr: a set of pairs in the from {(e1, err(e1)), . . . ,(em, err(em))} with

m is the number of edges in the identity network extracted from G
1 Iex ← ExtractSameAsEdges(G); // the explicit identity network
2 I ← empty graph; // the identity network
3 foreach (e(v1, v2) ∈ Iex and v1 �= v2) do
4 if (I.containsEdge(e(v2, v1, 1))) then
5 I.updateWeight(e(v2, v1, 2); // set the weight of this edge to 2

6 else
7 I.addEdge(e(v1, v2, 1)); // add this edge to I with a weight = 1

8 P ← I.partition(); // partitioning the graph into equality sets
9 foreach (Q ∈ P) do

10 Cset ← LouvainCommunityDetectionAlgorithm(Q);
11 foreach (e ∈ Cset) do
12 if (e is intra-community-edge(ci) then
13 err(e) ← intraCommunityErroneousness(ci);

14 else
15 // e is an inter-community edge, cj is the other community to which

e is belonging to;
16 err(e) ← interCommunityErroneousness(ci, cj);

17 Eerr.add(e, err(e));

18 return Eerr;

4.2 Quantitative Results

Explicit Identity Network Extraction. We have extracted the explicit iden-
tity network (Definition 2) from the data graph described above, by perform-
ing a Triple Pattern query of the form 〈?, owl:sameAs, ?〉 with the HDT C++
library3). This returns a stream of distinct identity pairs, as described in [2].
This extraction process takes around four hours using 1 CPU core, resulting in
an explicit identity network of 558.9M edges and 179.73M nodes. The explicit
identity network is publicly available at https://sameas.cc/triple.

Identity Network Construction. From the explicit identify network
described above, we build an identity network (Definition 3) containing ∼331M
weighted edges and 179.67M terms. We leave out ∼2.8M reflexive edges and
∼225M duplicate symmetric edges. As a result, we also leave out 67,261 nodes
that only appear in such removed edges. This indicates that 68% of the identity
network edges are redundantly asserted, with a weight = 2.

Graph Partitioning. The next step consists of partitioning the identity net-
work into several equality sets (Definition 4). We have deployed an efficient algo-
rithm described in [2] that partitions the identity network into ∼49M equality
3 https://github.com/rdfhdt/hdt-cpp.

https://sameas.cc/triple
https://github.com/rdfhdt/hdt-cpp

Detecting Erroneous Identity Links on the Web Using Network Metrics 399

sets, in just under 5 h using 2 CPU cores. The identity sets are publicly available
at http://sameas.cc/id.

Fig. 1. Error degree distribution of 556M owl:sameAs statements

Links Ranking. Once the identity network has been partitioned, we apply the
Louvain algorithm to detect communities in each equality set. We then assign
an error degree to all edges of each equality set. This process takes 80 min4,
resulting an error degree to each irreflexive5 owl:sameAs statement (∼556M
statements) in the explicit identity network. The error degree distribution of
these statements is presented in Fig. 1, showing that around 73% of the state-
ments have an error degree below 0.4. Whilst this distribution is mainly caused
by the high number of symmetrical identity statements in the LOD, it also indi-
cates that most equality sets have a rather dense structure. The 179.67M terms
of the identity network were assigned into a total of 24.35M communities, with
the communities size varying between 2 and 4,934 terms (averaging ∼7 terms
per community). The Java implementation of the link ranking process is avail-
able at http://github.com/raadjoe/LOD-Community-Detection. The erroneous
degree of all the owl:sameAs statements are available in our identity web service
(https://sameAs.cc).

4.3 Community Structure Analysis

In this section we provide a first analysis of the community structure obtained
from two equality sets (the largest one and the one about Barack Obama) based
on the IRIs contained in the communities. In a 2016 study conducted on the
same data collection, de Rooij et al. [8] have shown that the social meaning

4 On an 8 GB RAM Windows 10 machine, using 2 CPU cores.
5 Reflexive statements were discarded in I, and symmetric ones have the same err.

http://sameas.cc/id
http://github.com/raadjoe/LOD-Community-Detection
https://sameAs.cc

400 J. Raad et al.

encoded in IRI names significantly coincides with the formal meaning of IRI-
denoted resources. Hence, indicating that IRIs can give an idea on the quality
of the detected communities.

Fig. 2. Excerpt of the 242 terms included in the community containing the IRI http://
dbpedia.org/resource/dublin

Community Structure in the Largest Equality Set. The largest equal-
ity set Qmax contains 177,794 terms connected by 2,849,650 undirected and
weighted edges. This equality set is the result of the compaction of 5,547,463
distinct owl:sameAs statements (∼1% of the total number of owl:sameAs) and
is available at https://sameas.cc/term?id=4073. By looking at the IRIs of this
equality set, we can observe that it contains a large number of terms denoting
different countries, cities, things and persons (e.g. Bolivia, Dublin, Coca-Cola,
Albert Einstein, Literals, and so on). Clearly showing that this equality set con-
tains many erroneous owl:sameAs statements.

Applying the Louvain algorithm on Qmax resulted in 930 non-overlapping
communities, with a size varying from 32 to 2,320 terms per community. As a
first interpretation on the community structure, we have solely looked at the
IRIs. Despite a few exceptions, we can see that this algorithm is able to group
related (and possibly identical) terms in the same community, while keeping
out unrelated terms in other communities. For instance, the community C258,
illustrated in Fig. 2 contains 242 terms. We can see from this excerpt that most of
these terms come from the DBpedia dataset and refer to descriptions of Dublin

http://dbpedia.org/resource/dublin
http://dbpedia.org/resource/dublin
https://sameas.cc/term?id=4073

Detecting Erroneous Identity Links on the Web Using Network Metrics 401

expressed in different languages: City of Dublin, Capital of Ireland, Baile
Atha Cliath (Dublin in Irish), Dyflin (the old Norse name for The Kingdom of
Dublin), etc. However, we can also see that this community contains terms that
do not refer to the city of Dublin, but actually refer to the weather in Dublin or
visitor information for Dublin.

With this excerpt of the Dublin community, we can see that an owl:sameAs
statement between two terms in the same community is not necessarily correct,
and requires evaluation as well.

Community Structure in the ‘Barack Obama’ Equality Set. We present
here an analysis of the community structure detected on the equality set Qobama

which has a reasonable size and thus easier to analyse. The equality set contain-
ing the term http://dbpedia.org/resource/Barack Obama is composed of 440
terms connected by 7,615 undirected and weighted edges. It is built from an
explicit identity network of 14,917 owl:sameAs statements.

Applying the Louvain algorithm on Qobama resulted in 4 non-overlapping
communities, with a size varying from 34 to 166 terms per community. This iden-
tity set is available at (https://sameas.cc/term?id=5723). The resulting commu-
nity structure of Qobama is presented in Fig. 3:

– C0 (purple) includes 166 terms, with 98% of the links of this commu-
nity representing cross-language symmetrical links between DBpedia IRIs
(e.g. http://fr.dbpedia.org/resource/Barack Obama) referring to the person
Barack Obama.

– C1 (green) includes 162 terms, mostly DBpedia IRIs of the person Obama in
his different roles and political functions (e.g. http://dbpedia.org/resource/
President barack obama, http://dbpedia.org/resource/senator obama).

– C2 (orange) includes 78 terms, mostly referring to the presidency and
administration of Barack Obama (e.g. http://dbpedia.org/resource/Oba
ma cabinet, http://dbpedia.org/resource/Barack Hussein Obama administr
ation)

– C3 (blue) includes 34 terms from different datasets denoting various entities
such as: Barack Obama the person, his senate career, and a misused lit-
eral (“http://dbpedia.org/resource/United States Senate career of Barack
Obama”, “http://dbpedia.org/resource/Barack Obama”̂ x̂sd:string).

4.4 Links Ranking Evaluation

In order to evaluate the accuracy of our ranking approach, we have conducted
several manual evaluations. The judges relied on the descriptions6 associated to
the terms in the LOD-a-lot dataset [11], and did not have any prior knowledge
about each link’s error degree (i.e. whether they are evaluating a well-ranked
link or not). In order to avoid any incoherence between the evaluations, the

6 The judges were asked to not consider the owl:sameAs statements related to the
term.

http://dbpedia.org/resource/Barack_Obama
https://sameas.cc/term?id=5723
http://fr.dbpedia.org/resource/Barack_Obama
http://dbpedia.org/resource/President_barack_obama
http://dbpedia.org/resource/President_barack_obama
http://dbpedia.org/resource/senator_obama
http://dbpedia.org/resource/Obama_cabinet
http://dbpedia.org/resource/Obama_cabinet
http://dbpedia.org/resource/Barack_Hussein_Obama_administration
http://dbpedia.org/resource/Barack_Hussein_Obama_administration
http://dbpedia.org/resource/United_States_Senate_career_of_Barack_Obama
http://dbpedia.org/resource/United_States_Senate_career_of_Barack_Obama
http://dbpedia.org/resource/Barack_Obama

402 J. Raad et al.

Fig. 3. The communities detected from the equality set containing the term
http://dbpedia.org/resource/Barack Obama using the Louvain algorithm. The 4
detected communities are distinguished by their nodes’ color. The full figure
is available at https://github.com/raadjoe/LOD-Community-Detection/blob/master/
Communities-Graph-Obama.svg. (Color figure online)

judges were asked to justify all their evaluations and were given the following
instructions: (a) the same: if two terms denote the same entity (e.g. Obama
and the First Black US President), (b) related: not intended to refer to the
same entity but closely related (e.g. Obama and the Obama Administration),
(c) unrelated: not the same nor closely related (e.g. Obama and the Indian
Ocean), (d) can’t tell: in case there are no sufficient descriptions available for
determining the meaning of both terms.

A. Accuracy Evaluation in the ‘Barack Obama’ Equality Set. Firstly,
we have relied on the previous observations, made on the community structure
presented in Fig. 3, to interpret and evaluate the accuracy of our approach:

(i) an owl:sameAs statement in C0 has an average error rate of 0.24. The
manual evaluation of 30 random owl:sameAs statements shows that they
are all true identity links.

(ii) the low density of C1 has led to several correct owl:sameAs statements to
have a high error degree (0.9). This is due to the fact that there is only
one term linking to all the 161 other terms in this community, with most
of these edges being non-symmetrical links.

(iii) the only two owl:sameAs statements in this equality set with an
error value �1 are the edges in the graph connecting the IRI http://
rdf.freebase.com/ns/m.05b6w1g from C2 to both IRIs http://dbpedia.
org/resource/President Barack Obama and http://dbpedia.org/resource/
President Obama from C1. Relying on their descriptions in the LOD-a-lot

http://dbpedia.org/resource/Barack_Obama
https://github.com/raadjoe/LOD-Community-Detection/blob/master/Communities-Graph-Obama.svg
https://github.com/raadjoe/LOD-Community-Detection/blob/master/Communities-Graph-Obama.svg
http://rdf.freebase.com/ns/m.05b6w1g
http://rdf.freebase.com/ns/m.05b6w1g
http://dbpedia.org/resource/President_Barack_Obama
http://dbpedia.org/resource/President_Barack_Obama
http://dbpedia.org/resource/President_Obama
http://dbpedia.org/resource/President_Obama

Detecting Erroneous Identity Links on the Web Using Network Metrics 403

dataset, we can see that the freebase IRI refers to the presidency of Obama,
while the two other IRIs refer to the person Obama, indicating that indeed
both statements are incorrect. These two detected incorrect identity state-
ments have led to the false equivalence of the 78 terms of C2 with the rest
of the network’s terms.

B. Accuracy Evaluation on a Subset of the Identity Network. In order
to evaluate the accuracy over the whole identity network, four of this paper’s
authors were asked to evaluate a subset of the identity network. The judges were
asked to evaluate 200 owl:sameAs links (50 links each), representing in an equal
manner, each bin of the error degree distribution presented in Fig. 1.

Table 1. Evaluation of 200 owl:sameAs links, with each 40 links randomly chosen from
a certain range of error degree

Error degree range 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1 Total

same 35(100%) 22(100%) 18(85.7%) 7(77.8%) 15(68.2%) 97(89%)

related 0 0 2 2 2 6

unrelated 0 0 1 0 5 6

related + unrelated 0(0%) 0(0%) 3(14.3%) 2(22.2%) 7(31.8%) 12(11%)

can’t tell 5 18 19 31 18 91

Total 40 40 40 40 40 200

The results presented in Table 1, shows that the higher an error degree is,
the more likely that the link is erroneous. More precisely, we may observe that:

– our error degree is able to identify true owl:sameAs links with a high accuracy,
since 100% of the evaluated links with an error degree ≤ 0.4. are correct
(without considering the “can’t tell” cases).

– when the error degree is between 0.4 and 0.8, 83.3% of the owl:sameAs links
are correct. However, in 13.3% of the cases, such links might have been used
to refer to two different, but related terms.

– an owl:sameAs with an error degree >0.8 is an unreliable identity statement,
referring in 31.8% of the cases to two different, and mostly unrelated terms.

We have further investigated the 22 evaluated identity links with an error
degree over 0.8. Two features were observed from the 7 incorrect identity state-
ments: (i) their error degree is most of the times higher than the true owl:sameAs
links, and (ii) they all belong to equality sets with a higher number of terms than
the true ones. To further investigate these observations, we have evaluated 60
additional links with an error degree >0.9. The first set of links (S1) represents 20
random identity links from the largest equality set. The second set of links (S2)
represents 20 random identity links with an error degree �1 (>0.99). The third
set of links (S3) represents 20 random links from the largest equality set with an
error degree �1. The results presented in Table 2, show that our approach has a

404 J. Raad et al.

Table 2. Evaluation of 60 owl:sameAs links with an error degree >0.9, with the first
set of 20 owl:sameAs links (S1) randomly chosen from the largest equality set, (S2)
randomly chosen from all links with an error degree �1, (S3) randomly chosen from
the largest equality set with an error degree �1

Largest equality set (S1) err �1 (S2) Largest & err �1 (S3)

same 6(50%) 6(60%) 2(11.7%)

related 1 1 2

unrelated 5 3 13

related+unrelated 6(50%) 4(40%) 15(88.2%)

can’t tell 8 10 3

Total 20 20 20

high accuracy in detecting erroneous identity links when the threshold is fixed
at 0.99 and only equality sets with a high number of terms are considered.

C. Recall Evaluation. In order to calculate the recall of our approach, we
have verified how our approach can rank newly introduced erroneous owl:sameAs
statements. Firstly, we have chosen 40 random terms7 in the explicit identity net-
work, making sure that all these terms are different, by looking at their descrip-
tions, and that they are not explicitly owl:sameAs. From the selected 40 terms,
we have generated all the possible 780 undirected edges between them. We added
separately, each edge eij to the identity network with w(eij) = 1, calculated its
error degree, and removed it from the identity network before adding the next
one. The error degrees of the newly introduced erroneous identity links range
from 0.87 to 0.9999. When the threshold is fixed at 0.99, the recall is 93%.

Results Interpretation. The experiments conducted in this paper, on a subset
of 28 billion unique triples of the LOD cloud, shows that there exist many false
identity statements on the Web. These erroneous owl:sameAs statements have
led to the false equivalence of many unrelated terms (e.g. Dublin, Coca-Cola,
and Albert Einstein), and many related terms (e.g. Barack Obama the person,
and his administration). With a total runtime of 11 h, these experiments show
that an error degree of every available identity link can be computed in practice.
Our manual evaluation of these error degrees suggests that:

1. our approach can validate a large number of identity links in the
LOD: 73% of the identity links have an error degree of [0-0.4]. All the manu-
ally evaluated links in this range were judged as true owl:sameAs links (100%
accuracy, Table 1).

2. our approach can detect numerous erroneous identity links in the
LOD: more than 1.2 million owl:sameAs links have an error degree of [0.99-
1], with a large number of these links coming from large equality sets (e.g.

7 We also made sure to include 5 terms that belong to the same equality set.

Detecting Erroneous Identity Links on the Web Using Network Metrics 405

∼13K links in the largest equality set). Up to 88% of the manually evaluated
links with these criteria were judged as false identity statements (Table 2).

3. refined content-based approaches are needed for evaluating the remain-
ing owl:sameAs links in the LOD (between 50 and 85% were judged as true
identity links).

5 Conclusion

We have presented an approach that aims to detect erroneous owl:sameAs state-
ments in RDF data sources. Our approach is uniquely based on the topology of
the identity network itself. In order to illustrate its ability to scale, we have eval-
uated our approach over 558 million owl:sameAs statements that are scraped
from the LOD Cloud. The evaluation shows that the here introduced calculation
of an error degree can indeed be used in order to distinguish between correct
and incorrect owl:sameAs statements. With a total runtime of 11 h, these error
degrees can be computed in practice. The erroneous degree of all the evalu-
ated owl:sameAs statements are available in our identity web service (https://
sameAs.cc). This will allow others to replicate, check, and hopefully improve
upon the here presented results.

The accuracy of the here presented approach could be further improved by
combining or comparing results from multiple community detection methods.
Since adding a new dataset to the LOD Cloud only requires recalculation of the
equivalence sets that are involved in identity assertions within that dataset, it
could be useful to test whether the quality of identity links can now be calculated
online, e.g., as part of the publication of a dataset into a widely used data catalog.

Acknowledgment. This work was partially conducted within the MaestroGraph
project (612.001.553), funded by the Netherlands Organization for Scientific Research
(NWO), and was partially supported by the Center for Data Science, funded by the
IDEX Paris-Saclay, ANR-11-IDEX-0003-02.

References

1. Beek, W., Schlobach, S., van Harmelen, F.: A contextualised semantics for
owl:sameAs. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto,
S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 405–419. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-34129-3 25

2. Beek, W., Raad, J., Wielemaker, J., van Harmelen, F.: sameAs.cc: the closure of
500M owl:sameAs statements. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS,
vol. 10843, pp. 65–80. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93417-4 5

3. Beek, W., Rietveld, L., Schlobach, S.: Lod laundromat (archival package 2016/06)
(2016). https://doi.org/10.17026/dans-znh-bcg3

4. Blondel, V., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. J. Stat. Mech. 2008(10), P10008 (2008)

https://sameAs.cc
https://sameAs.cc
https://doi.org/10.1007/978-3-319-34129-3_25
https://doi.org/10.1007/978-3-319-93417-4_5
https://doi.org/10.1007/978-3-319-93417-4_5
https://doi.org/10.17026/dans-znh-bcg3

406 J. Raad et al.

5. Cudré-Mauroux, P., Haghani, P., Jost, M., Aberer, K., De Meer, H.: idMesh: graph-
based disambiguation of linked data. In: WWW Conference, pp. 591–600 (2009)

6. Cuzzola, J., Bagheri, E., Jovanovic, J.: Filtering inaccurate entity co-references
on the linked open data. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner,
R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp. 128–143. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-22849-5 10

7. de Melo, G.: Not quite the same: identity constraints for the web of linked data.
In: des Jardins, M., Littman, M.L. (eds.) AAAI. AAAI Press (2013)

8. de Rooij, S., Beek, W., Bloem, P., van Harmelen, F., Schlobach, S.: Are names
meaningful? Quantifying social meaning on the semantic web. In: Groth, P., et al.
(eds.) ISWC 2016. LNCS, vol. 9981, pp. 184–199. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46523-4 12

9. Dean, M., et al.: Owl web ontology language reference. W3C Recommendation, 10
February 2004

10. Ding, L., Shinavier, J., Finin, T., McGuinness, D.L.: owl:sameAs and linked data:
an empirical study. In: Proceedings of the Second Web Science Conference (2010)

11. Fernández, J.D., Beek, W., Mart́ınez-Prieto, M.A., Arias, M.: LOD-a-lot – a
queryable dump of the LOD cloud. In: d’Amato, C. (ed.) ISWC 2017. LNCS,
vol. 10588, pp. 75–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68204-4 7

12. Guéret, C., Groth, P., Stadler, C., Lehmann, J.: Assessing linked data mappings
using network measures. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O.,
Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 87–102. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30284-8 13

13. Halpin, H., Hayes, P.J., McCusker, J.P., McGuinness, D.L., Thompson, H.S.:
When owl:sameAs isn’t the same: an analysis of identity in linked data. In: Patel-
Schneider, P.F. (ed.) ISWC 2010. LNCS, vol. 6496, pp. 305–320. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-17746-0 20

14. Hogan, A., Zimmermann, A., Umbrich, J., Polleres, A., Decker, S.: Scalable and
distributed methods for entity matching, consolidation and disambiguation over
linked data corpora. Web Semant.: Sci. Serv. Agents World Wide Web 10, 76–110
(2012)

15. Jaffri, A., Glaser, H., Millard, I.: URI disambiguation in the context of Linked
Data. In: Linked Data on the Web Workshop (LDOW) (2008)

16. Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative
analysis. Phys. Rev. E 80(5), 056117 (2009)

17. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing com-
munity detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

18. Liu, W., Pellegrini, M., Wang, X.: Detecting communities based on network topol-
ogy. Sci. Rep. 4, 5739 (2014)

19. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl.
Acad. Sci. 103(23), 8577–8582 (2006)

20. Papaleo, L., Pernelle, N., Säıs, F., Dumont, C.: Logical detection of invalid sameas
statements in RDF data. In: Janowicz, K., Schlobach, S., Lambrix, P., Hyvönen, E.
(eds.) EKAW 2014. LNCS (LNAI), vol. 8876, pp. 373–384. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13704-9 29

21. Paulheim, H.: Identifying wrong links between datasets by multi-dimensional out-
lier detection. In: WoDOOM, pp. 27–38 (2014)

22. Raad, J., Pernelle, N., Säıs, F.: Detection of contextual identity links in a knowledge
base. In: KCAP (2017)

https://doi.org/10.1007/978-3-319-22849-5_10
https://doi.org/10.1007/978-3-319-46523-4_12
https://doi.org/10.1007/978-3-319-46523-4_12
https://doi.org/10.1007/978-3-319-68204-4_7
https://doi.org/10.1007/978-3-319-68204-4_7
https://doi.org/10.1007/978-3-642-30284-8_13
https://doi.org/10.1007/978-3-642-17746-0_20
https://doi.org/10.1007/978-3-319-13704-9_29

Detecting Erroneous Identity Links on the Web Using Network Metrics 407

23. Valdestilhas, A., Soru, T., Ngomo, A.-C.N.: CEDAL: time-efficient detection of
erroneous links in large-scale link repositories. In: International Conference on Web
Intelligence, pp. 106–113. ACM (2017)

24. Yang, Z., Algesheimer, R., Tessone, C.: A comparative analysis of community
detection algorithms on artificial networks. Sci. Rep. 6, 30750 (2016)

SPgen: A Benchmark Generator
for Spatial Link Discovery Tools

Tzanina Saveta1(B), Irini Fundulaki1, Giorgos Flouris1,
and Axel-Cyrille Ngonga-Ngomo2

1 Institute of Computer Science - FORTH, Heraklion, Greece
jsaveta@ics.forth.gr

2 University of Paderborn, Paderborn, Germany

Abstract. A number of real and synthetic benchmarks have been pro-
posed for evaluating the performance of link discovery systems. So far,
only a limited number of link discovery benchmarks target the problem
of linking geo-spatial entities. However, some of the largest knowledge
bases of the Linked Open Data Web, such as LinkedGeoData contain
vast amounts of spatial information. Several systems that manage spatial
data and consider the topology of the spatial resources and the topolog-
ical relations between them have been developed. In order to assess the
ability of these systems to handle the vast amount of spatial data and
perform the much needed data integration in the Linked Geo Data Cloud,
it is imperative to develop benchmarks for geo-spatial link discovery. In
this paper we propose the Spatial Benchmark Generator SPgen that can
be used to test the performance of link discovery systems which deal
with topological relations as proposed in the state of the art DE-9IM
(Dimensionally Extended nine-Intersection Model). SPgen implements
all topological relations of DE-9IM between LineStrings and Polygons
in the two-dimensional space. A comparative analysis with benchmarks
produced using SPgen to assess and identify the capabilities of AML,
OntoIdea, RADON and Silk spatial link discovery systems is provided.

1 Introduction

The number of datasets published in the Web of Data as part of the Linked
Data Cloud is constantly increasing. The Linked Data paradigm is based on the
publication of information by different publishers, and the interlinking of Web
resources across knowledge bases. In most cases, the cross-dataset links are not
integral to newly created datasets and must be determined automatically, using
link discovery tools amongst others [1]. The large variety of techniques demands
the availability of comparative evaluations to determine which one is best suited
for a given use case. Performing such an assessment requires well-defined and
widely accepted benchmarks to determine the weak and strong points of the
proposed techniques and/or tools. A number of real and synthetic benchmarks
have been proposed for evaluating the performance of such systems [2].

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 408–423, 2018.
https://doi.org/10.1007/978-3-030-00671-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_24&domain=pdf

SPgen: A Benchmark Generator for Spatial Link Discovery Tools 409

So far, only a limited number of link discovery benchmarks target the prob-
lem of linking geo-spatial entities. However, some of the largest knowledge bases
in the Linked Open Data Web are geo-spatial knowledge bases (e.g., LinkedGeo-
Data,1 with more than 30 billion triples). In particular, considering the topology
of the spatial resources and the topological relations between them is of central
importance to systems that manage spatial data. We believe that due to the
large amount of available geo-spatial datasets employed in various domains, it
is critical that benchmarks for geo-spatial link discovery are developed.

In this paper we discuss the Spatial Benchmark Generator SPgen that can be
used to test the performance of systems that deal with topological relations pro-
posed by the state of the art DE-9IM (Dimensionally Extended nine-Intersection
Model) [3]. SPgen is developed in the context of the H2020 European project
HOBBIT.2 This benchmark generator implements all topological relations of
DE-9IM between LineStrings and Polygons in the two-dimensional space. SPgen
follows the choke point-based approach [4] for benchmark design, i.e., it focuses
on the technical difficulties of existing systems and implements tests that address
those difficulties and “push” systems to resolve them. More specifically we focus
on the following choke-points in SPgen:

– Scalability: produce datasets large enough to stress the systems under test
– Output quality: compute precision, recall and f-measure
– Time performance: measure the time the systems need to return the results

To the best of our knowledge such a generic benchmark generator, that checks
the performance of linking systems for spatial data, does not exist. We also
provide a comparative analysis with benchmarks produced using SPgen to assess
and identify the capabilities of AML [5,6], OntoIdea [7], RADON [8] and Silk [9]
spatial link discovery systems.

The outline of the paper is as follows: Sect. 2 discusses related work. We
present the Dimensionally Extended nine-Intersection Model and the datasets
employed in SPgen in Sects. 3 and 4 respectively. SPgen is described in detail in
Sect. 5 and the experiments we conducted in Sect. 6. We conclude and present
future work in Sect. 7.

2 Related Work

SPgen is a generic, schema agnostic and choke-point based [4] benchmark gen-
erator that takes as input trajectories and checks the performance of linking
systems for spatial data. To the best of our knowledge this is the first link
discovery benchmark for spatial data. In this section we will discuss the most
relevant benchmarks to SPgen and more specifically benchmarks for spatial RDF
stores and benchmarks for spatial relational databases.

1 http://linkedgeodata.org/About.
2 http://www.project-hobbit.eu.

http://linkedgeodata.org/About
http://www.project-hobbit.eu

410 T. Saveta et al.

Benchmarks for Spatial RDF Stores. The most relevant benchmark to
SPgen is Geographica [10] that evaluates RDF stores and consists of micro and
macro benchmarks following the approach of Jackpine [11]. Geographica’s micro
benchmark tests the spatial components of RDF stores using queries that consist
of spatial selections, joins and aggregations but it does not address topological
relations. Geographica’s macro benchmark tests the performance of the RDF
stores using reverse geocoding, map search and browsing and a real-world use
case from the Earth Observation domain. Kolas [12] proposed a benchmark that
extends the LUBM benchmark for RDF stores [13] in order to include spatial
entities. In this case, LUBM queries were extended to cover basic types of spatial
queries namely location, range, join and nearest neighbor.

Benchmarks for Spatial Relational Databases. The most recent bench-
mark for spatial databases and the most relevant benchmark to SPgen is Jack-
pine [11] and consists of a micro and a macro benchmark. Jackpine’s micro
benchmark includes queries based on DE-9IM with queries that focus on spa-
tial analysis. Jackpine’s macro benchmark includes queries based on spatial data
applications (search and browsing, geocoding, flood risk analysis, etc.). VESPA
[14] is a vector-based spatial benchmark that tests the functionality and perfor-
mance of spatial database systems and includes a set of query and update tasks
over synthetic datasets composed of points, lines and polygons. The Á la Carte
[15] benchmark produces a synthetic dataset composed only of rectangles and
is used to test the performance of different spatial join techniques. Last but not
least, one of the first benchmarks that uses real datasets and real queries rep-
resentative of Earth Science tasks is SEQUOIA [16] and its extension [17]. The
queries are related to data loading, raster data management, filtering, spatial
joins and path computation over graphs.

3 Dimensionally Extended Nine-Intersection Model
(DE-9IM)

The Dimensionally Extended nine-Intersection Model (DE-9IM) [3] or
Clementini-Matrix is used for computing the spatial relationships between
geometries. It is a topological model, based on the Nine-Intersection Model
(9IM), used to describe the spatial relations of geometries in two-dimensional
space. The model considers the objects’ interiors, boundaries and exteriors and
analyzes the intersections of these nine objects parts to determine their relation-
ship.

Spatial relations are boolean functions that are used to test the relation-
ships between two geometry objects. The spatial relationships described by DE-
9IM are equals, disjoint, touches, contains, within, intersects, covers, covered by,
crosses and overlaps including relations among LineStrings and Polygons. A
LineString is a one-dimensional geometric object and consists of a sequence of
two or more vertices, along with all points along the linearly interpolated curves
(line segments) between each pair of consecutive vertices. The line segments in

SPgen: A Benchmark Generator for Spatial Link Discovery Tools 411

the line may intersect each other. A Polygon is a two-dimensional surface stored
as a sequence of points where the first point is connected to the last point defin-
ing its exterior bounding ring and zero or more interior rings. In order to better
understand the topological relations of DE-9IM it is necessary to define the
boundary, interior and exterior of the geometric types. For instance, in the case
of LineString, the boundary (B) are the two end points, the interior (I) consists
of points that are left when the boundary points are removed and the exterior
(E) are the points not in the interior or boundary. In the case of Polygon, the
interior are the points within the rings, the boundary is a set of rings and finally
the exterior are points not in the interior or boundary.

Given that each geometry is represented by the aforementioned 3 dimensions,
all possible relationships between two geometries are represented by a 3 × 3
matrix of the form:

DE9IM(a, b) =

⎡
⎣

dim(I(a) ∩ I(b)) dim(I(a) ∩ B(b)) dim(I(a) ∩ E(b))
dim(B(a) ∩ I(b)) dim(B(a) ∩ B(b)) dim(B(a) ∩ E(b))
dim(E(a) ∩ I(b)) dim(E(a) ∩ B(b)) dim(E(a) ∩ E(b))

⎤
⎦

where dim is the maximum number of dimensions of the intersection (∩) of the
interior (I), boundary (B), and exterior (E) of geometries a and b. The dimension
of empty sets is equal to −1 or F (false). The dimension of non-empty sets is
equal to the maximum number of dimensions of the intersection, specifically, 0
for points, 1 for lines, 2 for areas. Thus, the domain of the model is {0, 1, 2, F}.
A simplified version of dim(x) values is obtained by mapping the values {0, 1, 2}
to T (true), so using the boolean domain {T, F}. The supported spatial relations
of DE-9IM are formally described below:

Equals: Two geometries g1 and g2 are equal if the two geometries are topolog-
ically equal, that is if their interiors intersect and no part of the interior or
boundary of one geometry intersects the exterior of the other. Formally:

(I(g1)I(g2))∧ ¬(I(g1)E(g2))∧ ¬(B(g1)E(g2))∧ ¬(E(g1)I(g2))∧ ¬(E(g1)B(g2))

Disjoint: Two geometries g1 and g2 are disjoint if they have no point in common.
Formally:

¬(I(g1)I(g2)) ∧ ¬(I(g1)B(g2)) ∧ ¬(B(g1)I(g2)) ∧ ¬(B(g1)B(g2))

Touches: A geometry g1 touches(meets) a geometry g2 if they have at least one
boundary point in common, but no interior points. Formally:

(¬(I(g1)I(g2)) ∧ I(g1)B(g2))∨
(¬(I(g1)I(g2)) ∧ B(g1)I(g2)) ∨ (¬(I(g1)I(g2)) ∧ B(g1)B(g2))

Contains: A geometry g1 contains a geometry g2 if g2 lies in g1, and the interiors
intersect. Another definition is the following: g1 contains g2 if no points of g2
lie in the exterior of g1, and at least one point of the interior of g2 lies in the
interior of g1. It is the inverse of Within. Formally:

(I(g1)I(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2))

412 T. Saveta et al.

Within: A geometry g1 is within (inside) geometry g2 if g1 lies in the interior
of g2. Within is the inverse of Contains.

Intersects: A geometry g1 intersects geometry g2 if they have at least one point
in common.

Covers: A geometry g1 covers geometry g2 if geometry g2 lies in g1. Other
definitions: “no points of g2 lie in the exterior of g1”, or “Every point of g2 is
a point of (the interior or boundary of) g1”. It is the inverse of CoveredBy.
Formally:

((I(g1)I(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2)))∨
((I(g1)B(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2)))∨
((B(g1)I(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2)))∨
((B(g1)B(g2)) ∧ ¬(E(g1)I(g2)) ∧ ¬(E(g1)B(g2)))

Covered By: A geometry g1 is covered by geometry g2 (extends Within) if
every point of g1 is a point of g2, and the interiors of the two geometries have
at least one point in common. Covered by is the inverse of Covers.

Crosses: A geometry g1 crosses geometry g2 if they share some but not all
interior points, and the dimension of the intersection of the two geometries is
less than that of at least one of the geometries.

Overlaps: A geometry g1 overlaps geometry g2 if the geometries share some,
but not all points in common, and the intersection has the same dimension
as the geometries themselves.

Contains, Within,
Covers, CoveredBy

DisjointEquals

Intersects

Overlaps

Touches

Crosses

Fig. 1. Examples of DE-9IM topological relations for LineStrings

Examples of the DE-9IM relations for LineStrings and Polygons geometries
are shown in Figs. 1 and 2. Figure 1 presents the DE-9IM relations between

SPgen: A Benchmark Generator for Spatial Link Discovery Tools 413

LineStrings and Fig. 2 demonstrates the DE-9IM relations between LineStrings
and Polygons.

Disjoint

Intersects

Touches

Crosses

Contains, Within,
Covers, CoveredBy

Fig. 2. Examples of DE-9IM topological relations for LineStrings and Polygons

4 Datasets

In this Section, we present the datasets we experimented with SPgen. Recall that
the generator is schema agnostic and can work, in general, with trajectories,
i.e., sequences of longitude, latitude pairs. We used two datasets generated from
TomTom3 and Spaten [18].

TomTom Data Generator: TomTom provides a Synthetic Trace Generator4

developed in the context of the H2020 HOBBIT Project, which facilitates the
creation of an arbitrary volume of data from statistical descriptions of vehicle
traffic. More specifically, it generates traces, with a trace being a list of (longi-
tude, latitude) pairs recorded by one device (phone, car, etc.) throughout one
day. The generator uses probability distributions for variables like start and
end locations of trips, their starting time or what is the device’s update fre-
quency. Using parameters sampled from such distributions, a map is then used
to find an appropriate route for the trip and successive points are generated at
a regular time interval with typical speeds for each road. TomTom’s ontology is
shown in Fig. 3. The main class is class Trace that contains one or more points

3 https://www.tomtom.com/en gr/.
4 https://git.project-hobbit.eu/filipe.teixeira/synthetic-trace-generator/

container registry.

https://www.tomtom.com/en_gr/
https://git.project-hobbit.eu/filipe.teixeira/synthetic-trace-generator/container_registry
https://git.project-hobbit.eu/filipe.teixeira/synthetic-trace-generator/container_registry

414 T. Saveta et al.

(class Point) which represents in its turn latitude, longitude pairs. Each point is
associated with a velocity (class Velocity), instances of which have properties
velocityMetric and velocityValue. A point also has attributes hasTimeStamp
that takes its values in class xsd:TimeStamp which designates the time an object
was at this specific point. For our benchmark we are only interested in the points
of a trace.

Fig. 3. TomTom schema

Spaten: Spatio-temporal and Textual Big Data Generator: Spaten [18]
is an open-source configurable spatio-temporal and textual dataset generator,
that can produce large volumes of data based on realistic user behavior. Spaten
extracts GPS traces from realistic routes utilizing Google Maps API, and com-
bines them with real POIs and relevant user comments crawled from TripAd-
visor. The injection of social properties extracted by existing Twitter graphs to
the generated data, along with further parameterization, leads to realistic Geo-
Social Network (GeoSN) datasets. Spaten publicly offered GB-size datasets with
millions of check-ins and GPS traces.5 We used the provided trajectories of each
user as our second dataset as it takes extremely long time and very powerful
computing infrastructure to generate such data - Spaten developers produced
those datasets in the period of 2 months. These trajectories consist of time-
stamps and longitude, latitude pairs (i.e., points) represented in CSV format
(Listing 1.1 shows an example). We transformed the given dataset into Turtle
format using the TomTom ontology before using it as input dataset in SPgen.
1 id 1 , timestamp 1 , Point 1
2 id 1 , timestamp 2 , Point 2
3 . . .
4 id 1 , timestamp n , Point n

Listing 1.1. Spaten Example Data

5 https://github.com/Thaleia-DimitraDoudali/Spaten.

https://github.com/Thaleia-DimitraDoudali/Spaten

SPgen: A Benchmark Generator for Spatial Link Discovery Tools 415

5 SPgen: A Link Discovery Benchmark Generator
for Spatial Data

5.1 Overview

In SPgen,6 we focus on relations that follow the DE-9IM (Dimensionally
Extended nine-Intersection Model) and determine whether the systems are able
to identify those relations between different instances. Each instance is either a
LineString or a Polygon. SPgen gets as input traces represented as LineStrings
and produces a source and a target dataset. The source dataset is identical to the
input traces but is expressed in the Well Known Text format (WKT),7 whereas
the target dataset consists of LineStrings or Polygons that are generated from
the source dataset in such a way that traces in the target dataset have a specific
topological DE-9IM relation with the traces of the source dataset.

In SPgen we propose a set of test cases whose objective is to test whether
link discovery systems for spatial data can identify whether a DE-9IM relation
holds between different geometries. SPgen implements all topological relations of
DE-9IM between LineStrings and Polygons in the two-dimensional space. The
gold standard is produced after the generation of the source and target using
RADON [8]. We discuss in Subsect. 5.4 why we opted for this solution. In the
next subsections we will describe SPgen in more detail.

5.2 SPgen Architecture

The architecture of SPgen is shown in Fig. 4. SPgen takes a sequence of traces as
input and a set of user-defined parameters such as the (a) number of instances to
retrieve from the input dataset, (b) percentage of points to keep for each input
trace,8 (c) geometry of the target dataset (note that the target dataset can be
either a LineString or a Polygon) and (d) the DE-9IM topological relation of
interest.

The input dataset is processed by the Initialization Module that reads the
user-defined parameters and retrieves the input traces by means of SPARQL
queries. The retrieved traces are passed to the Resource Generation Module to
generate the source dataset that transforms each retrieved trace to a LineString
represented in WKT format. This module interacts with the Resource Transfor-
mation Module that generates the target instances represented again in WKT;
the module implements the DE-9IM topological relations discussed in Sect. 5.3.
The relations are implemented as an extension9 of the JTS Topology Suite,10

6 https://github.com/hobbit-project/SpatialBenchmark.
7 WKT is a text markup language for representing vector geometry objects on a map,

spatial reference systems of spatial objects and transformations between spatial ref-
erence systems. WKT offers a compact machine and human readable representation
of geometric objects.

8 A trace with a possibly huge number of points cannot be processed by systems,
hence we would like to give the ability to developers to restrict the trace size.

9 https://github.com/jsaveta/jtsExtension.
10 http://svn.code.sf.net/p/jts-topo-suite/code/tags/Version 1.14/.

https://github.com/hobbit-project/SpatialBenchmark
https://github.com/jsaveta/jtsExtension
http://svn.code.sf.net/p/jts-topo-suite/code/tags/Version_1.14/

416 T. Saveta et al.

Fig. 4. SPgen architecture

a JAVA API that provides a core set of spatial data operations using an explicit
precision model and robust geometric algorithms.

The target dataset obtained from the Resource Transformation Module along
with the source dataset, is passed as input to RADON.

5.3 Test Cases

SPgen implements all topological relations of DE-9IM between LineStrings and
Polygons in the two-dimensional space. Due to space limitations, we only dis-
cuss the DE-9IM relation Disjoint for LineStrings, and the relation Within for
LineStrings and Polygons. Other relations are handled in a similar fashion. Our
algorithms are based on the idea of the minimum bounding box (bbox) which is
an area defined by two longitudes (in the range −180 . . . 180) and two latitudes
(in the range −90 . . . 90), such that the resulting bounding box (included within
these coordinates) contains the geometry under study.

Disjoint (LineString/LineString): Given a LineString s, and the DE-9IM
Disjoint relation r, we produce a LineString t disjoint with s, as follows: first,
we compute the bounding box b(s) of s, and randomly define longitude, latitude
coordinates for a bounding box b(t) that does not intersect with b(s). In order
to find b(t), we find sufficiently large (or sufficiently small) coordinates for the
minimum (maximum) longitude or latitude coordinates. Second, we generate a
random LineString t with the same number of points as s that entirely falls
inside b(t), thereby guaranteeing disjointness between s and t.

In the case in which b(s) covers the entire plane (i.e., its longitude, latitude
coordinates have the maximum/minimum values), no b(t) can be defined. In
these cases, we break s into several smaller LineStrings, say s1; . . .; sk, and

SPgen: A Benchmark Generator for Spatial Link Discovery Tools 417

compute their corresponding bounding boxes b(s1); . . .; b(sk). Then, we use the
above process to identify a bounding box b(t) that does not intersect with any
of them and create a random target LineString as discussed earlier.

If, despite the partitioning of the bounding box b(s) of LineString s, no
appropriate t can be found, then we define a more fine-grained partition and
repeat the process which ends when an appropriate disjoint LineString t can be
found, or when each pair of consecutive points of s is a partition; if even this fine-
grained partition does not allow the definition of an appropriate bounding box,
then the original LineString covers the entire plane and no disjoint LineString
can be created.

Fig. 5. Example for disjoint (LineString/LineString)

Figure 5 provides an example of the aforementioned process. In subfigure
(a) we can see the source LineString s and its bbox b(s). We are in the case
where b(s) covers the entire plane, thus we break s into smaller LineStrings and
compute their corresponding bounding boxes b(s1); b(s2); b(s3) (subfigure (b)).
We do not need to break s more as there is already an empty space where we can
generate a bbox b(t) and generate a disjoint to s, target LineString t (subfigure
(c)).

Within (LineString/Polygon): Given a LineString s, and DE-9IM Within
relation r, we produce a Polygon t in which s is within, as follows: First, using
the JTS API we find the minimum-area convex polygon that contains LineString
s. Then, we slightly expand the returned Polygon in order not to cross LineString
s and thus we create target Polygon t. In the rare case in which s has one or
more points whose longitudes are equal to −180 or 180 or one or more points
whose longitudes are equal to −90 or 90, no Polygon that contains s exists.
Figure 6 provides an example of the aforementioned process. In subfigure (a) we
can see the source LineString s and its bbox b(s) that does not cover the entire
plane. Thus, we are able to define a Polygon that contains s (subfigure (b)) and
then slightly expand it in order to create a Polygon t that in combination with
s follows the definition of DE-9IM Within relation (subfigure (c)).

418 T. Saveta et al.

Fig. 6. Example for within (LineString/Polygon)

5.4 Gold Standard

The gold standard produced by SPgen is not created during the generation of
the target dataset, since it would not be complete: in order to compute the gold
standard, we would have to check each generated target LineString or Polygon
against all source LineStrings, a process that essentially amounts to implement-
ing a system for the computation of the topological relations. Thus, to compute
the gold standard, we resorted to an appropriate implemented system, namely
RADON [8].

RADON was selected because it is a novel approach for rapid discovery of
topological relations among geo-spatial resources. It combines space tiling, min-
imum bounding box approximation and a sparse index to handle very large
datasets. RADON was evaluated with real datasets of various sizes and showed
that in addition to being complete and correct, it also outperforms the state of
the art spatial link discovery systems by up to three orders of magnitude. Thus,
it is appropriate for our purposes.

5.5 Key Performance Indicators

The key performance indicators of a benchmark determine the effectiveness and
efficiency of the systems and tools. In SPgen we focus on the output quality in
terms of standard metrics such as precision, recall and f-measure [19]. We also
aim to quantify the time performance of the systems measuring the time needed
by the link discovery system to return results.

6 Experimental Results

In this section we describe the experiments we conducted in order to show how
well the various spatial linking systems performed regarding output quality and
time performance for datasets of various sizes and for the different DE-9IM
topological relations.

Datasets & Tasks: We ran experiments for all the DE-9IM relations and
for LineString/LineString and LineString/Polygon cases for both TomTom and

SPgen: A Benchmark Generator for Spatial Link Discovery Tools 419

Spaten datasets ranging from 200 to 2K instances, not exceeding 64 KB per
instance due to a limitation of SILK.11 This is important in order to get a fair
comparison for the systems under test. We report here the results for quality
output and time performance for all systems.

Experimental Setup: All the experiments were executed using the HOB-
BIT Platform12 where SPgen is integrated and the platform time limit was set
to 75 min. Thus, we provide a comparative analysis with benchmarks produced
using SPgen and were able to assess and identify the capabilities of four systems,
namely AgreementMakerLight (AML), OntoIdea, Rapid Discovery of Topologi-
cal Relations (RADON) and Silk.

Tasks: We divided the experiments into four tasks. In the first two tasks (SLL
and LLL), the systems were asked to match LineStrings to LineStrings consid-
ering a given relation for 200 and 2K instances for the TomTom and Spaten
datasets. In the last two second tasks (SLP, LLP), the systems were asked to
match LineStrings to Polygons (or Polygons to LineStrings depending on the
relation) again for both datasets. We are only presenting results regarding the
time performance and not precision, recall and f-measure as all results from all
systems were equal to 1.0 except for OntoIdea (mostly for the Spaten dataset)
that were between 0.91 to 0.99.

Task SLL: Small (LineStrings/LineStrings): Fig. 7 presents the time
performance for TomTom and Spaten datasets for AML, OntoIdea, Silk and
RADON systems for 200 instances. RADON has the best performance in most
cases except Touches and Instersects relations, followed by AML and OntoIdea,
while Silk seems to need the most time mainly for the TomTom dataset for
Touches and Intersects relations and for both datasets for Overlaps.

Task LLL: Large (LineStrings/LineStrings): Figure 8 presents the time
performance for TomTom and Spaten datasets for AML, OntoIdea, Silk and
RADON systems for the 2K instances dataset. In contrast to Fig. 7 we have a
more clear view of the capabilities of the systems. In this experiment, RADON
and Silk have similar behaviour as in the case of the small dataset, but this time
it is more clear that the systems need much more time to match instances from
the TomTom dataset. RADON has still the best performance in most cases.
AML has the next best performance and is able to handle cases better than
other systems (e.g. Touches and Intersects). AML also hits the platform time
limit in the case of Disjoint. While the time performance of OntoIdea was close
to RADON and AML in the smaller dataset, AML is not able to handle the
larger dataset.

Task SLP: Small (LineStrings/Polygons): Figure 9 presents the time per-
formance for TomTom and Spaten datasets for AML, Silk and RADON for 200
instances (LineStrings/Polygons or Polygons/LineStrings depending on the rela-
tion). In contrast to the two first tasks, RADON has the best performance for
11 https://github.com/silk-framework/silk/issues/57.
12 http://master.project-hobbit.eu.

https://github.com/silk-framework/silk/issues/57
http://master.project-hobbit.eu

420 T. Saveta et al.

Fig. 7. Time performance for TomTom & Spaten SLL Task for AML(A), OntoIdea(O),
Silk(S) and RADON(R) systems

Fig. 8. Time performance for TomTom & Spaten LLL Task and for AML(A),
OntoIdea(O), Silk(S) and RADON(R) systems

all relations. AML and Silk have minor time differences and, depending on the
case, one is slightly better than the other. All the systems need more time for the
TomTom dataset but due to the small size of the instances the time difference
is minor.

Task LLP: Large (LineStrings/Polygons): Figure 10 presents the time
performance for TomTom and Spaten datasets for AML, Silk and RADON for
the 2K instance dataset (LineStrings/Polygons or Polygons/LineStrings depend-
ing on the relation). RADON again has the best performance in all cases. AML
hits the platform time limit in Disjoint relations on both datasets and is better
than Silk in most cases except Contains and Within on the TomTom dataset
where it needs an excessive amount of time.

SPgen: A Benchmark Generator for Spatial Link Discovery Tools 421

Fig. 9. Time performance for TomTom & Spaten SLP Task and for AML(A), Silk(S)
and RADON(R) systems

Fig. 10. Time performance for TomTom & Spaten LLP Task and for AML(A), Silk(S)
and RADON(R) systems

Discussion

Taking into account the executed experiments we can identify the capabilities
of the tested systems as well as suggest some improvements. All the systems
participated in most of the test cases except OntoIdea that did not participate
in Tasks SLP and LLP and in experiments for the Disjoint relation. Also Silk
did not participate in Covers and Covered By experiments.

RADON is the only system that addressed all the tasks, while it can be
improved for the Touches and Intersects relations for the Tasks SLL and LLL
and it also has the best performance for the SLP and LLP tasks. AML performs
extremely well in most cases. It can be improved in the cases of Covers/Covered
By and Contains/Within when it comes to LineStrings/Polygons Tasks and also
in Disjoint relations where it hits the platform time limit. Silk can be improved

422 T. Saveta et al.

for the Touches, Intersects and Overlaps relations and for the SLL and LLL tasks
and for the Disjoint relation in SLP and LLP Tasks. OntoIdea can handle small
datasets efficiently, but its performance deteriorates when it comes to larger
datasets.

In general, all systems needed more time to match the TomTom dataset
than the Spaten one, due to the smaller number of points per instance in the
latter. Comparing the LineString/LineString to the LineString/Polygon Tasks
we can say that all the systems needed less time for the first in Contains, Within,
Covers and Covered by relations, more time for the Touches, Instersects and
Crosses relations, and approximately the same time for the Disjoint relation.
Thus, depending on the test case we can choose the appropriate system.

7 Conclusions and Future Work

In this paper we presented SPgen, a Spatial Benchmark Generator that checks
whether spatial link discovery systems can identify DE-9IM (Dimensionally
Extended nine-Intersection Model) topological relations between LineStrings and
Polygons. To the best of our knowledge, such benchmarks do not exist while the
number of spatial link discovery systems that identify links for spatial datasets
are limited. We evaluated four systems (AML, OntoIdea, RADON and Silk)
using SPgen to assess and identify their capabilities. In future work, we aim to
implement DE-9IM relations for all possible combinations of different geometries
(Polygons/Polygons, combination with Points, LineStrings and Polygons, etc.).
In addition, we plan to add more data generators in order to test SPgen for
different use cases.

Acknowledgments. The work presented in this paper was funded by the H2020
project HOBBIT (#688227).

References

1. Ngonga Ngomo, A.-C.: On link discovery using a hybrid approach. J. Data Semant.
1(4), 203–217 (2012)

2. Saveta, T., Daskalaki, E., Flouris, G., Fundulaki, I., Herschel, M., Ngonga Ngomo,
A.-C.: Pushing the limits of instance matching systems: a semantics-aware bench-
mark for linked data. In: WWW, pp. 105–106. ACM (2015). Poster

3. Strobl, C.: Dimensionally extended nine-intersection model (DE-9IM). In: Shekhar,
S., Xiong, H., Zhou, X. (eds.) Encyclopedia of GIS, pp. 240–245. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-17885-1

4. Boncz, P., Neumann, T., Erling, O.: TPC-H analyzed: hidden messages and lessons
learned from an influential benchmark. In: Nambiar, R., Poess, M. (eds.) TPCTC
2013. LNCS, vol. 8391, pp. 61–76. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-04936-6 5

5. Cruz, I.F., Antonelli, F.P., Stroe, C.: AgreementMaker: efficient matching for large
real-world schemas and ontologies. VLDB Endow. 2(2), 1586–1589 (2009)

https://doi.org/10.1007/978-3-319-17885-1
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6_5

SPgen: A Benchmark Generator for Spatial Link Discovery Tools 423

6. Cruz, I.F., et al.: Using agreementmaker to align ontologies for OAEI2011, vol.
814, pp. 114–121 (2011)

7. Khiat, A., Mackeprang, M.: I-Match and OntoIdea results for OAEI 2017. In: OM,
p. 135 (2017)

8. Sherif, M.-A., Dreßler, K., Smeros, P., Ngonga Ngomo, A.-C.: RADON - rapid
discovery of topological relations. In: AAAI (2017)

9. Smeros, P., Koubarakis, M.: Discovering spatial and temporal links among RDF
data. In: LDOW (2016)

10. Garbis, G., Kyzirakos, K., Koubarakis, M.: Geographica: a benchmark for geospa-
tial RDF stores (long version). In: Alani, H., et al. (eds.) ISWC 2013. LNCS,
vol. 8219, pp. 343–359. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-41338-4 22

11. Ray, S., Simion, B., Brown, A.D.: Jackpine: a benchmark to evaluate spatial
database performance. In: ICDE, pp. 1139–1150. IEEE (2011)

12. Kolas, D.: A benchmark for spatial semantic web systems. In: SSWS (2008)
13. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.

Web Semant.: Sci. Serv. Agents World Wide Web 3(2–3), 158–182 (2005)
14. Paton, N.W., Williams, M.H., Dietrich, K., Liew, O., Dinn, A., Patrick, A.: VESPA:

a benchmark for vector spatial databases. In: Lings, B., Jeffery, K. (eds.) BNCOD
2000. LNCS, vol. 1832, pp. 81–101. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-45033-5 7

15. Gunther, O., Oria, V., Picouet, P., Saglio, J.M., Scholl, M.: Benchmarking spatial
joins a la carte. In: SSDM, pp. 32–41. IEEE (1998)

16. Stonebraker, M., Frew, J., Gardels, K., Meredith, J.: The Sequoia 2000 storage
benchmark. In: ACM SIGMOD Record, vol. 22, pp. 2–11. ACM (1993)

17. Patel, J., et al.: Building a scaleable geo-spatial DBMS: technology, implemen-
tation, and evaluation. In: ACM SIGMOD Record, vol. 26, pp. 336–347. ACM
(1997)

18. Doudali, T.D., Konstantinou, I., Koziris, N.: Spaten: a spatio-temporal and textual
big data generator. In: IEEE Big Data, pp. 3416–3421 (2017)

19. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and
F -score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M.
(eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-31865-1 25

https://doi.org/10.1007/978-3-642-41338-4_22
https://doi.org/10.1007/978-3-642-41338-4_22
https://doi.org/10.1007/3-540-45033-5_7
https://doi.org/10.1007/3-540-45033-5_7
https://doi.org/10.1007/978-3-540-31865-1_25

Specifying, Monitoring, and Executing
Workflows in Linked Data Environments

Tobias Käfer1(B) and Andreas Harth2

1 Institute AIFB, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
tobias.kaefer@kit.edu

2 University of Erlangen-Nuremberg (FAU), Nuremberg, Germany
andreas.harth@fau.de

Abstract. We present an ontology for representing workflows over com-
ponents with Read-Write Linked Data interfaces and give an operational
semantics to the ontology via a rule language. Workflow languages have
been successfully applied for modelling behaviour in enterprise informa-
tion systems, in which the data is often managed in a relational database.
Linked Data interfaces have been widely deployed on the web to support
data integration in very diverse domains, increasingly also in scenar-
ios involving the Internet of Things, in which application behaviour is
often specified using imperative programming languages. With our work
we aim to combine workflow languages, which allow for the high-level
specification of application behaviour by non-expert users, with Linked
Data, which allows for decentralised data publication and integrated data
access. We show that our ontology is expressive enough to cover the
basic workflow patterns and demonstrate the applicability of our app-
roach with a prototype system that observes pilots carrying out tasks
in a virtual reality aircraft cockpit. On a synthetic benchmark from the
building automation domain, the runtime scales linearly with the size of
the number of Internet of Things devices.

1 Introduction

Information systems are increasingly distributed. Consider the growing deploy-
ment of sensors and actuators, the modularisation of monolithic software into
microservices, and the movement to decentralise data from company-owned
data silos into user-owned data pods. The drivers of increasing distribution
include:

– Cheaper, smaller, and more energy-efficient networked hardware makes
widespread deployment feasible1.

– Rapidly changing business environments require flexible re-use of components
in new business offerings [17].

1 http://www.forbes.com/sites/oreillymedia/2015/06/07/how-the-new-hardware-mo
vement-is-even-bigger-than-the-iot/.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 424–440, 2018.
https://doi.org/10.1007/978-3-030-00671-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_25&domain=pdf
http://www.forbes.com/sites/oreillymedia/2015/06/07/how-the-new-hardware-movement-is-even-bigger-than-the-iot/
http://www.forbes.com/sites/oreillymedia/2015/06/07/how-the-new-hardware-movement-is-even-bigger-than-the-iot/

Specifying, Monitoring, and Executing Workflows in Linked Data 425

– Fast development cycles require independent evolution of components [17].
– Privacy-aware users demand to retain ownership of their data2.

The distribution into components raises the opportunity to create new integrated
applications out of the components, given sufficient interoperability. One way to
make components interoperable is to equip the components with uniform inter-
faces using technologies around Linked Data. Consider, e.g. the W3C’s Web of
Things3 initiative and the MIT’s Solid (“social linked data”) project4, where
REST provides an uniform interface to access and manipulate the state of com-
ponents, and RDF provides an uniform data model for representing component
state that allows for using reasoning to resolve schema heterogeneity. While the
paradigms for (read-only) data integration systems based on Linked Data are
relatively agreed upon [11], techniques for the creation of applications that inte-
grate components with Read-Write Linked Data interfaces are an active area
of research [2,4,15,28]. Workflows are a way to create applications, according
to Jablonski and Bussler [14], that is highly suitable for integration scenarios,
easy to understand (for validation and specification by humans), and formal
(for execution and verification by machines). E.g., consider an evacuation sup-
port workflow for a smart building (cf. task 4 in our evaluation, Sect. 6), which
integrates multiple systems of the building, should be validated by the building
management and the fire brigade, verified to be deadlock-free, and executable.
Hence, we tackle the research question: How to specify, monitor, and execute
applications given as workflows in the environment of Read-Write Linked Data?

The playing field for applications in the context of Read-Write Linked Data
is big and diverse: As of today, the Linking Open Data cloud diagram5 lists
1’163 data sets from various domains for read access. The Linked Data Platform
(LDP)6 specifies interaction with Read-Write Linked Data sources. Besides Solid
for social networks, a showcase for Read-Write Linked Data is the Web of Things,
which is built on sensors and actuators on the Internet of Things. Using such sen-
sors and actuators, we can build applications such as integrated Cyber-Physical
Systems, where sensors and actuators provide the interface to Virtual Reality
systems (cf. the showcase in the evaluation, Sect. 6.2). Other non-RDF REST
APIs provide access to weather reports7 or building management systems (e.g.
Project Haystack8) and can be wrapped to support RDF. Using such APIs, we
can build applications such as integrated building automation systems (cf. the
scenario of the synthetic benchmark in the evaluation, Sect. 6.3).

Traditional environments for workflows are fundamentally different from
Read-Write Linked Data. Elmroth et al. argue that the properties of the envi-
ronment determine the model of computation, which serves as the basis of a

2 “Putting Data back into the Hands of Owners”, http://tcrn.ch/2i8h7gp.
3 http://www.w3.org/WoT/.
4 http://solid.mit.edu/.
5 http://lod-cloud.net/.
6 http://www.w3.org/TR/ldp/.
7 http://openweathermap.org/.
8 http://www.project-haystack.org/.

http://tcrn.ch/2i8h7gp
http://www.w3.org/WoT/
http://solid.mit.edu/
http://lod-cloud.net/
http://www.w3.org/TR/ldp/
http://openweathermap.org/
http://www.project-haystack.org/

426 T. Käfer and A. Harth

workflow language [5]. Consequently, we have developed ASM4LD [15], a model
of computation for the environment of Read-Write Linked Data. In this paper,
we investigate an approach for a workflow language consisting of an ontology and
operational semantics in ASM4LD. The differences between traditional environ-
ments of workflow languages and the environment of Read-Write Linked Data
(i.e. RDF and REST) pose the following particular challenges:

Querying and reasoning under the open-world assumption. Ontology
languages around RDF such as RDFS and OWL make the open-world
assumption (OWA). However, approaches from workflow management oper-
ate on relational databases, which make the closed-world assumption (CWA).
Closedness allows for testing if something holds for all parts of a workflow.

The absence of events in REST. HTTP implements CRUD (the operations
create, read, update, delete), but not the subscriptions to events. However,
approaches from workflow management use events as change notifications.

While both challenges could be mitigated by introducing assumptions (e.g.
negation-as-failure once we reach a certain completeness class [12]) or by extend-
ing the technologies (e.g. implement events using Web Sockets9 or Linked Data
Notifications [2]), those mitigation strategies would restrict the generality of the
approach, i.e. we would have to exclude components that provide Linked Data,
but do not share the assumptions or extensions of the mitigation strategy.

Previous works from Business Process Management, Semantic Web Services,
Linked Data, and REST operate on a different model of computation or are
complementary: [10,13,19] assume event-based data processing, decision making
based on process variables, and data residing in databases under the CWA,
whereas our approach relies on integrated state information from the web under
the OWA. [28,29] provide descriptions for automated composition or for assisting
developers. Currently, we do not see elaborate and correct descriptions available
at web scale, which hinders automated composition. We see our approach, which
allows for manual composition, as the first step towards automated composition.

The paper is structured as follows: In Sect. 2, we discuss related work. In
Sect. 3, we present the technologies on which we build our approach. Next, we
present our approach, which consists of two main contributions:

– An ontology to specify workflows models and workflow instances modelled in
OWL LD10 (Sect. 4) that allows for monitoring and execution using querying
and reasoning under the OWA. The ontology is strongly related to BPMN, a
graphical workflow notation, via the workflow patterns [25].

– An operational semantics for our workflow ontology. We use ASM4LD, a
model of computation for Read-Write Linked Data in the form of a condition-
action rule language (Sect. 5), which does not require event data and is
directly executable. We maintain workflow state in an LDP container.

9 http://www.ietf.org/rfc/rfc6455.txt.
10 http://semanticweb.org/OWLLD/.

http://www.ietf.org/rfc/rfc6455.txt
http://semanticweb.org/OWLLD/

Specifying, Monitoring, and Executing Workflows in Linked Data 427

Fast data processing thanks to OWL LD and the executability of ASM4LD
allow for the direct application of our approach in practice. In the evaluation
(Sect. 6), we present a Virtual Reality showcase, and a benchmark in an Internet
of Things setting, specifically in the building automation domain. Moreover, we
show correctness and completeness of our approach. We conclude in Sect. 7.

2 Related Work

We now survey related work grouped by field of research.

Workflow Management. Previous work in the context of workflow languages
and workflow management systems is based on event-condition-action (ECA)
rules, whereas our approach is built for REST, and thus works without events.
ECA rules have been used to give operational semantics to workflow lan-
guages [13], and to implement workflow management systems [3]. Similar to
the case handling paradigm [26], we employ state machines to track the state
of activities in a workflow instance.

Web Services. WS-*-based approaches assume arbitrary operations, whereas
our approach works with REST resources, where the set of operations is con-
strained [20,30]. Pautasso et al. proposed extensions to BPEL such that e.g.
a BPEL process can invoke REST services [18], and that REST resources
representing processes push events [19]. While those extensions make iso-
lated REST calls fit the Web Services processing model of process variable
assignments, we propose a processing model based on integrated polled state.

Semantic Web Services. OWL-S and WSMO are mainly concerned with ser-
vice descriptions and corresponding reasoning for composition. Semantic Web
Services build on WS-* technology for workflow execution, e.g. the execution
in the context of WSMO, WSMX [10], is entirely event-based. In contrast,
our work is based on REST.

Scientific Workflows. Approaches like Taverna [24] and Wings [8] focus on
representing the data flow between processing steps. Our approach applies
control flow techniques from Workflow Management to REST.

Ontologies for Workflows. Similar to workflows in our ontology, processes
in OWL-S are also tree-structured (see Sect. 4) and use lists in RDF. Unlike
OWL-S, our ontology also covers workflow instances. Rospocher et al. [22] and
the project “Super” developed ontologies that describe process metamodels
such as BPMN, BPEL, and EPC. In contrast to our work, their ontologies
either require more expressive (OWL) reasoning or do not allow for execution
under the OWA.

3 Preliminaries

We next introduce the environment, Read-Write Linked Data, and the model of
computation, ASM4LD [15].

428 T. Käfer and A. Harth

Read-Write Linked Data. Linked Data is a collection of practices for data
publishing on the web that advocates the use of web standards: HTTP URIs11

should be used for identifying things. HTTP GET12 requests to those URIs
should be answered using descriptive data, e.g. in RDF13. Hyperlinks in the data
should enable the discovery of more information14. Read-Write Linked Data15

introduces RESTful write access to Linked Data (later standardised in the LDP
specification (see Footnote 6)). Hence, we can access the world’s state using mul-
tiple HTTP GET requests and enact change using HTTP PUT, POST, DELETE
requests.

In the paper, we denote RDF triples using binary predicates16, e.g. we write
for the triple in Turtle notation “<#wfm> rdf:type :WorkflowModel.”:

rdf :type(<#wfm>, :WorkflowModel)

We abbreviate a class assignment using a unary predicate with the class as
predicate name, e.g. :WorkflowModel(<#wfm>). The term rdf :List(. . .) is a
shortcut, similar to the RDF list shortcut with () brackets in Turtle, and can be
regarded as a procedure that (1) takes as argument list elements, (2) adds the
corresponding RDF list triples, i.e. with terms rdf:first, rdf:rest, and rdf:nil,
to the current data, and (3) returns the blank node for the RDF list’s head.

ASM4LD, A Condition-Action Rule Language. We use a monotonic pro-
duction rule language to specify both reasoning on RDF data and interaction
with Read-Write Linked Data resources [23]. Rule programs in the language con-
sist of initial assertions and rules. The body of all rules is a basic graph pattern
query (see Footnote 18) (BGP). We distinguish two types of rules: (1) a deriva-
tion rule specifies productions using a BGP in the rule head, and (2) a request
rule specifies an interaction using an HTTP request description in the rule head.
We assume safe rules and exclude existential variables in rule heads.

As operational semantics for the rule language, we use ASM4LD, an Abstract
State Machine-based [9] model of computation for Read-Write Linked Data [15].
In the following, we sketch the operational semantics, where data processing is
done in repeated steps, subdivided into the following phases (cf. [15] for details):

(1) The working memory be empty.
(2) Add the initial assertions to the working memory.
(3) Evaluate on the working memory until the fixpoint:

(a) Request rules that contain GET requests, making the requests and adding
the data from the responses to the working memory.

11 http://www.ietf.org/rfc/rfc3986.txt.
12 http://www.ietf.org/rfc/rfc7230.txt.
13 http://www.w3.org/TR/rdf11-concepts/.
14 http://www.w3.org/DesignIssues/LinkedData.html.
15 http://www.w3.org/DesignIssues/ReadWriteLinkedData.html.
16 We assume the URI prefix definitions of http://prefix.cc/ The empty prefix denotes

http://purl.org/wild/vocab. The base URIs be http://example.org/.

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc7230.txt
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html
http://prefix.cc/
http://purl.org/wild/vocab
http://example.org/

Specifying, Monitoring, and Executing Workflows in Linked Data 429

Fig. 1. The ontology to express workflow models and instances as UML Class Dia-
gram. Shared classes between the diagrams are depicted in bold. We use the UML
Class Diagram’s class, inheritance, association, and enumeration to denote the RDFS
ontology language’s rdfs:Class, rdfs:subClassOf, rdf:Property with rdfs:domain

and rdfs:range, and instances.

(b) Derivation rules, adding the produced data to the working memory.
We thus acquire data about the world’s current state (from the responses to
the GET requests) and reason on this data (using the productions).

(4) Evaluate all request rules that contain PUT/POST/DELETE requests on
the working memory and make the corresponding HTTP requests. We thus
enact changes on the world’s state.

A loop over the phases (1) to (4) implements polling, the way to get informa-
tion about changes in a RESTful environment. Hypermedia-style link following
(to discover new information) can be implemented using request rules, e.g. in
the example below.

We use the following rule syntax: In the arguments of the binary predicates,
we allow for variables (printed in italics). We print constants in typewriter font.
We connect rule head and body using →. The head of a request rule contains
one HTTP request with the method as the function name, the target as the first
argument, and the RDF payload as the second argument (if applicable). E.g.
consider the following rule to retrieve all elements e of a given LDP container:

ldp : contains(http: //example.org/ldpc, e) → get(e)

4 Activity, Workflow Model and Instance Ontology

To describe workflow models and instances as well as activities, we propose
an ontology. We developed the ontology, see Fig. 117, with execution based on
17 The ontology can be accessed at http://purl.org/wild/vocab.

http://purl.org/wild/vocab

430 T. Käfer and A. Harth

Fig. 2. Workflow (solid: BPMN notation) with sequential activities (<#A>, <#B>).
Dashed: the tree representation with the parent node marked as sequential.

Fig. 3. State machine for the instance resources for the workflow and activity instance
resources. The dashed part only concerns workflow instance resources.

querying and reasoning under the OWA in mind. In this section, we define activ-
ities, workflows, and instances using the workflow in Fig. 2 as example.

Activities. We regard an atomic activity as a basic unit of work. We characterise
an activity by a postcondition represented as a SPARQL ASK query18, which
has to hold in the world’s state after the activity has been executed. We use
the postcondition (cf. :hasPostcondition in Fig. 1) to monitor the execution
of activities in workflows. For the execution of an atomic activity, the activity
description needs an HTTP request (cf. :hasHttpRequest in Fig. 1).

Workflow Models. A workflow model is a set of activities put into a defined
order. As notation to describe workflow models, BPMN is a popular choice. The
course of action (i.e. control flow) in a BPMN workflow model is denoted using
arrows that connect activities and gateways (e.g. decisions and branches). For
instance, the middle arrow in the workflow model in Fig. 2 orders activities <#A>
and <#B> sequentially. We call this view on the course of action flow-based.

In this paper, instead of a flow-based view on the course of action, we con-
sider a tree-based view, as investigated by Vanhatalo et al. [27]. Tree-structured
workflow languages include BPEL, a popular language to describe executable
workflows. In the tree, activities are leaf nodes. The non-leaf nodes are typed,
and the type determines the control flow of the children. The connection between
the tree-based (dashed) and the flow-based (solid) workflow representation is
depicted in Fig. 2. Flow-based workflows can be losslessly translated to tree-
structured workflows and vice versa [21]. We use the tree structure, as checks
for completion of workflow parts are easier in a tree. Of the multitude of control
flow features of different workflow languages, we support the most basic and
common, which have been compiled to the basic workflow patterns [25].

18 http://www.w3.org/TR/sparql11-query/.

http://www.w3.org/TR/sparql11-query/

Specifying, Monitoring, and Executing Workflows in Linked Data 431

We now show how to specify workflow models in RDF using Fig. 2’s model:

:WorkflowModel(<#wfm>) ∧ :SequentialActivity(<#root>)
∧:AtomicActivity(<#A>) ∧ :AtomicActivity(<#B>)

∧:hasBehaviour(<#wfm>, <#root>)
∧:hasChildActivities(<#root>, rdf :List(<#A>, <#B>))

As we assume tree-structured workflows, each workflow model (<#wfm>) has a
root activity (<#root>). If an activity is composite, i.e. a control flow element,
then the activity has an RDF list of child activities. Here, <#root> is sequential,
with the child activities <#A>, <#B>. The child activities could again be com-
posite, thus forming a tree. Leaves in the tree (here <#A> and <#B>) are atomic
activities. We require child activities to be given in an RDF list, which is explic-
itly terminated. This termination closes the set of list elements and thus allows
for executing workflows under the OWA, which e.g. includes querying whether all
child activities of a parent activity are :done. Yet, for the operational semantics
we also need a direct connection between a parent activity and a child activity,
which we derive from an RDF list using monotonic reasoning, here:

:hasChildActivity(<#root>, <#A>) ∧ :hasChildActivity(<#root>, <#B>)

Instances. Using workflow instances, we can run multiple copies of a workflow
model. A workflow instance consequently consists of instances of the model’s
activities. We model the relation of the instances to their counterparts as shown in
Fig. 1. During and after workflow monitoring/execution, the operational seman-
tics maintain the states of instances in an LDP container. At runtime, the
instances’ states evolve according to the state machine depicted in Fig. 3 (terms
from Fig. 1). Section 5 is about the operationalisation of the evolution.

5 Operational Semantics

In this section, we give operational semantics to our workflow language19 in
rules20. Before we define the rules, we give an overview of what the rules do.

5.1 Overview

The rules fulfil the following purposes (the numbers are only to guide the reader):

I. Retrieve state21

(1) Retrieve the state of the writeable resources in the LDP container, which
maintain the workflow/activity instances’ state

19 In a production environment, access control to the instances’ LDP container needs
to be in place to keep third parties from interfering with the monitoring/execution.

20 A corresponding Notation3 file can be found at http://purl.org/wild/semantics.
21 A benefit of using Linked Data throughout is that we can access the work-

flow/activity instances’ state and the world’s state in a uniform manner.

http://purl.org/wild/semantics

432 T. Käfer and A. Harth

(2) Retrieve the relevant world state
II. Initialise workflow instances if applicable
(1) Set the root activity’s instance :active
(2) Set the workflow instance :initialised
(3) Create instance resources for all activities in the corresponding workflow

model and set them :initialised
III. Finalise workflow instances if their root node is :done
IV. Execute and observe :active activities

(1) Execution: if an atomic activity turns :active, fire the HTTP request
(2) If the postcondition of an :active activity is fulfilled, set it :done

V. Advance composite activities according to control flow, which includes:
(1) Set a composite activity’s children :active
(2) Advance between children
(3) Finalise a composite activity

5.2 Condition-Action Rules

We next give the rules for the listed purposes. To shorten the presentation,
we factor out those rules that, for workflow execution, fire an activity’s HTTP
request if the activity becomes :active. Those rules are not needed when mon-
itoring. The rules are of the form (the variable method holds the request type):

AtomicActivity(a) ∧ hasHttpRequest(a, h) ∧ http:mthd(h,method)
∧http:requestURI(h, u) ∧ · · · → method(u, . . .)

I. Retrieve State. The following rules specify the retrieval of data where the
rule interpreter locally maintains state. Analogously, other rules retrieve the
world’s state, either by explicitly stating URIs to be retrieved:

true → get(http://example.org/ldpc)

or by following links from data that is already known:

ldp:contains(http://example.org/ldpc, e) → get(e)

II. Initialise Workflow Instances. If there is an uninitialised workflow
instance (e.g. injected by a third party using a post request into the polled
LDP container), the following rules create corresponding resources for the activ-
ity instances and set the workflow instance initialised:

WorkflowInstance(i) ∧ hasState(i, :uninitialised) ∧ workflowInstanceOf(i,m)
∧hasBehaviour(m, a) → post(server:ldpc, activityInstanceOf(<#it>, a)

∧inWorkflowInstance(<#it>, i) ∧ hasState(<#it>, :active))

Also, the workflow instance is set initialised (analogously, we initialise instances
for the activities in the workflow model):

WorkflowInstance(i) ∧ hasState(i, :uninitialised) ∧ workflowInstanceOf(i,m)
→ put(i,WorkflowInstance(i) ∧ hasState(i, :initialised)

∧workflowInstanceOf(i,m))

Specifying, Monitoring, and Executing Workflows in Linked Data 433

III. Finalise Workflow Instances. The done state of the root activity gets
propagated to the workflow instance:

WorkflowInstance(i) ∧ hasState(i, :active) ∧ workflowInstanceOf(i,m)
∧hasBehaviour(m, a) ∧ hasState(m, :done)

→ put(i,WorkflowInstance(i) ∧ hasState(i, :done) ∧ workflowInstanceOf(i,m))

IV. Monitor Atomic Activities. An activity is done if its postcondition holds.

WorkflowInstance(i) ∧ hasState(i, :active) ∧ workflowInstanceOf(i,m)
∧hasDescendantActivity(i, a) ∧ AtomicActivity(a) ∧ hasPostcondition(a, p)

∧ActivityInstance(j) ∧ activityInstanceOf(j, a) ∧ hasState(j, :active)
∧sp:hasBooleanResult(p, true)

→ put(j, activityInstanceOf(j, a) ∧ inWorkflowInstance(j, i) ∧ hasState(j, :done))

To shorten the presentation of the rules in the following, we introduce the fol-
lowing simplifications: We assume that (1) we are talking about an active work-
flow instance, and (2) that the resource representing an instance coincides with
its corresponding activity in the workflow model. (3), the put requests in the
text do not actually overwrite the whole resource representation but patch the
resources by ceteris paribus overwriting the corresponding hasState(·, ·) triple.

V. Advance According to Control Flow. We now give the rules for advanc-
ing a workflow instance according to the basic workflow patterns (WFPs) [25].

WFP 1: Sequence. If there is an active sequential activity with the first activity
initialised, we set this first activity to active:

SequentialActivity(s) ∧ hasState(s, :active) ∧ hasChildActivities(s, c)
∧rdf :first(c, a) ∧ hasState(a, :initialised) → put(a, hasState(a, :active))

We advance between activities in a sequence using the following rule:

SequentialActivity(s) ∧ hasState(s, active) ∧ hasChildActivity(s, c)
∧hasState(c, done) ∧ hasState(n, initialised)

∧rdf :first(l, c) ∧ rdf :rest(l, i) ∧ rdf :first(i, n) → put(n, hasState(n, active))

If we have reached the end of the list of children of a sequence, we regard the
sequence as done (the rule is an example of the exploitation of the explicit
termination of the RDF list to address the OWA):

SequentialActivity(s) ∧ hasState(s, :active) ∧ hasChildActivity(s, c)
∧hasState(c, :done) ∧ rdf : first(l, c) ∧ rdf : rest(l, rdf:nil)

→ put(s, hasState(s, :done))

WFP 2: Parallel Split. A parallel activity consists of several activities executed
simultaneously. If a parallel activity becomes active, all of its components are
set to active:

ParallelActivity(p) ∧ hasState(p, active) ∧ hasChildActivity(p, c)
∧hasState(c, :initialised) → put(c, hasState(c, :active))

434 T. Käfer and A. Harth

WFP 3: Synchronisation. If all the components of a parallel activity are done,
the whole parallel activity can be considered done. To find out whether all com-
ponents of a parallel are done, we mark instances as follows. First, we check
whether the first child element of the parallel activity is done and mark the
element using the state :doneFromListItemOne:

ParallelActivity(p) ∧ hasState(p, :active) ∧ hasChildActivities(p, l)
∧rdf :first(l, c) ∧ hasState(c, :done) → hasState(c, :doneFromListItemOne)

Then, starting from the first activity, we go through the list of child activities
and propagate the mark between the activities in the list if the activities are
done. If the mark reaches the last list element, the whole parallel activity is
done:

ParallelActivity(p) ∧ hasState(p, :active) ∧ hasChildActivity(p, c)
∧rdf :first(l, c) ∧ rdf :rest(l, rdf: nil) ∧ hasState(c, :doneFromListItemOne)

→ put(p, hasState(p, :done))

WFP 4: Exclusive Choice. The control flow element choice implements a choice
between different alternatives, for which conditions are specified. For the evalu-
ation of the condition, we first have to check whether all child activities are in
initialised state, similarly to the rules for WFP 3:

ConditionalActivity(a) ∧ hasState(a, :active) ∧ hasChildActivities(a, l)
∧rdf :first(l, c) ∧ hasState(c, :initialised)

→ hasState(c, :initialisedFromListItemOne)
ConditionalActivity(a) ∧ hasState(a, :active) ∧ hasChildActivities(a, l)

∧rdf :first(l, c) ∧ hasState(c, :initialisedFromListItemOne)
∧rdf :rest(l,m) ∧ rdf :first(m, d) ∧ hasState(d, :initialised)

→ hasState(d, :initialisedFromListItemOne)

If the check succeeded, we can evaluate the conditions and set an activity active:

ConditionalActivity(a) ∧ hasState(a, :active) ∧ hasChildActivitiy(a, c)
∧hasState(c, :initialisedFromListItemOne) ∧ hasPrecondition(c, p)
∧rdf :first(l, c) ∧ rdf :rest(l, rdf: nil) ∧ sp:hasBooleanResult(p, true)

→ put(c, hasState(c, :active))

We leave it to the modeller to make sure that the preconditions of the children
of a conditional activity are mutually exclusive.

WFP 5: Simple Merge. If one of the children of a conditional activity is done,
the whole conditional activity is done:

ConditionalActivity(a) ∧ hasState(a, :active) ∧ hasChildActivitiy(a, c)
∧hasState(c, :done) → put(a, hasState(a, :done))

Specifying, Monitoring, and Executing Workflows in Linked Data 435

6 Evaluation

First, we formally show the correctness of our approach to specifying workflows
by presenting the relationship of our operational semantics to the formal spec-
ification of the basic workflow patterns, which we support completely. Second,
to show the applicability of our approach in a real-world setting, we report on
how we used the approach to do monitoring of workflows for human-in-the-loop
aircraft cockpit evaluation in Virtual Reality. Third, we empirically evaluate our
approach to executing workflows in a building simulator.

6.1 Mapping to Petri Nets

Van der Aalst et al. use Petri Nets to precisely specify the semantics of the basic
workflow patterns [25]. We now show correctness by giving a mapping of our
operational semantics to Petri Nets. Similar to tokens in a Petri Net that pass
between transitions, our operational semantics passes the active state between
activities using rules (linking to the WFP rules from Sect. 5.2(V)):

– The rule to advance between activities within a :SequentialActivity may
only set an activity active if its preceding activity has terminated. In the Petri
Net for the Sequence, a transition may only fire if the preceding transition
has put a token into the preceding place, see Fig. 4a and the WFP 1 rules.

– Only after the activity before a :ParallelActivity has terminated, the rule
to advance in a parallel activity sets all child activities active. In the Petri
Net for the Parallel Split, all places following transition T get a token iff
transition T has fired, see Fig. 4b and the WFP 2 rules.

– Only if all activities in a :ParallelActivity have terminated, the rules pass
on the active state. In the Petri Net for the Synchronisation, transition T
may only fire if there is a place with a token in all incoming arcs (cf. Fig. 4c
and the WFP 3 rules).

– In the ConditionalActivity, one child activity is chosen by the rule accord-
ing to mutually exclusive conditions. Similarly, exclusive conditions determine

Fig. 4. Petri Nets for the basic workflow patterns.

436 T. Käfer and A. Harth

the continuation of the flow after transition T in the Petri Net for the Exclu-
sive Choice, see Fig. 4b and the WFP 4 rules.

– If one child activity of a :ConditionalActivity switches from active to done,
the control flow may proceed according to the rule. Likewise, the transition
following place P in the Petri Net for the Simple Merge (Fig. 4d) may fire iff
there is a token in P , cf. the WFP 5 rules.

Hence, our approach correctly and completely covers the basic workflow patterns.

6.2 Applicability: The Case of Virtual Aircraft Cockpit Design

Together with industry, we successfully applied our approach in aircraft cock-
pit design [16], where workflow monitoring is used to evaluate cockpit designs
regarding Standard Operating Procedures. The monitoring is traditionally done
by Human Factors experts using stopwatches in physical cockpits. We built an
integrated Cyber-Physical System of Virtual Reality, flight simulation, sensors,
and workflows to digitise the monitoring. The challenge was to integrate the dif-
ferent components on both the system interaction and the data level. We built
Linked Data interfaces to the components for the interaction integration, and
integrated the data using reasoning. Our approach allows for workflow monitor-
ing in the Linked Data setting during runtime. The system’s user interface to
model workflows has been evaluated by Human Factors experts highly efficient.

6.3 Empirical Evaluation Using a Synthetic Benchmark

The scenario for our benchmark is from the Internet of Things domain, where
buildings are equipped with sensors and actuators from different vendors. The
devices may be not interoperable, which has been identified by NIST as a major
challenge for the building industry [7]. Balaji et al. aim to raise interoperabil-
ity in Building Management Systems by proposing the Brick ontology [1] to
model buildings and Building Management Systems. We thus assume Read-
Write Linked Data interfaces to a building’s management systems and want to
execute building automation tasks. We consider tasks that go beyond rule-based
automation typically found in home automation (e.g. Eclipse SmartHome22)
or on the web (e.g. IFTTT23). Such tasks require task instance state, e.g.: (1)
flow-based control schemes, (2) automated supervision of cleaning personnel, (3)
presence simulation, (4) evacuation support. We thus model the tasks as work-
flows and access the Building Management Systems integrated via Read-Write
Linked Data interfaces.

The environment for our benchmark is a Linked Data representation of build-
ing 3 of IBM Research Dublin. We built the representation from a static descrip-
tion of building 3 in the Brick ontology24, which covers the building’s parts (e.g.
22 http://www.eclipse.org/smarthome/.
23 http://ifttt.com/.
24 http://github.com/BuildSysUniformMetadata/GroundTruth/blob/2e48662/buildin

g instances/IBM B3.ttl.

http://www.eclipse.org/smarthome/
http://ifttt.com/
http://github.com/BuildSysUniformMetadata/GroundTruth/blob/2e48662/building_instances/IBM_B3.ttl
http://github.com/BuildSysUniformMetadata/GroundTruth/blob/2e48662/building_instances/IBM_B3.ttl

Specifying, Monitoring, and Executing Workflows in Linked Data 437

Table 1. Average runtime [s] for workflows Wn in different numbers of buildings.

W1 W2 W3 W4 W5

1 Building 2 2 6 12 18

10 Buildings 8 9 26 61 75

20 Buildings 12 13 38 80 109

50 Buildings 19 21 61 156 218

rooms) and the building’s systems (e.g. lights and switches). We subdivided the
description into one-hop RDF graphs around each URI from the building and
provide each graph at a corresponding URI. To add state information to the
systems, we add writeable SSN25 properties to the Linked Data interface. To
evaluate at different scales, we run multiple copies of the building.

The workload for our benchmark is the control flow of the five representative
workflow models proposed by Ferme et al. [6] for evaluating workflow engines,
determined by clustering workflows from literature, the web, and industry. We
interpreted the five workflow models using the four automation tasks presented
above: task 1 corresponds to the first two workflow models; the subsequent tasks
to the subsequent workflow models. We assigned the activities in the tasks to
two classes: monitoring activities that are checks (e.g. a sensor value), where
we attached a postcondition, and execution activities that enact change (e.g.
turn on a light), where we attached an HTTP request. For repeatability, the
postconditions always hold and the requests do not interfere with the workflow.

The set-up for our evaluation consists of a server with a 32-core Intel Xeon E5-
2670 CPU and 256 GB of RAM running Debian Jessie. We deploy the operational
semantics and required OWL LD reasoning on Linked Data-Fu 0.9.1226. We
include reasoning as indicated by the Brick ontology. We maintain building and
workflow state in LDP containers, LDBBC 0.0.627. We add workflow instances
each 0.2 s after 20 s of warm-up time. The workflow models can be found online28.

The results of our evaluation can be found in Table 1. Varying the number of
activities (W1–W5), and varying the number of devices (proportional to build-
ings), we observe linear behaviour. The linear behaviour stems from the number
of requests to be made, which depends on the number of activities and work-
flow instances. With no reusable data between buildings, there is no benefit in
running the workflows for all buildings on one engine. Instead, we could run one
engine per building, thus mirroring the decentralisation of data.

25 http://www.w3.org/TR/vocab-ssn/.
26 http://linked-data-fu.github.io/.
27 http://github.com/kaefer3000/ldbbc.
28 http://people.aifb.kit.edu/co1683/2018/iswc-wild/.

http://www.w3.org/TR/vocab-ssn/
http://linked-data-fu.github.io/
http://github.com/kaefer3000/ldbbc
http://people.aifb.kit.edu/co1683/2018/iswc-wild/

438 T. Käfer and A. Harth

7 Conclusion

We presented an approach to specify, monitor, and execute applications that
builds on distributed data and functionality provided as Read-Write Linked
Data. We use workflows to specify applications, and thus defined a workflow
ontology and operational semantics. We aligned our approach to the basic work-
flow patterns, reported on an application in Virtual Reality, and evaluated using
a synthetic benchmark in an Internet of Things scenario.

The assumptions of the environment of Read-Write Linked Data present
peculiar challenges for a workflow system: We work under the OWA and without
events as change notifications. Our approach addresses the challenges without
adding assumptions to the architecture of the environment, but by modelling a
closed world where necessary and by using polling to access the world’s state.

We believe that our approach, which brings workflows in a language that
is closely related to the popular BPMN notation to Read-Write Linked Data,
enables non-experts to engage in the development of applications that can be
verified, validated, and executed.

Acknowledgements. We acknowledge helpful feedback on our manuscript from Rik
Eshuis and Philip Hake. This work is supported in part by the EU’s FP7 (in i-VISION,
GA No.@ 605550) and the German BMBF (in AFAP, FKZ 01IS12051).

References

1. Balaji, B., et al.: Brick: towards a unified metadata schema for buildings. In: Pro-
ceedings of the 3rd International Conference on Systems for Energy-Efficient Built
Environments (BuildSys) (2016)

2. Capadisli, S., Guy, A., Lange, C., Auer, S., Sambra, A., Berners-Lee, T.: Linked
data notifications: a resource-centric communication protocol. In: Blomqvist, E.,
Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017.
LNCS, vol. 10249, pp. 537–553. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-58068-5 33

3. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Deriving active rules for workflow enact-
ment. In: Wagner, R.R., Thoma, H. (eds.) DEXA 1996. LNCS, vol. 1134, pp. 94–
115. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0034673

4. Ciortea, A., Boissier, O., Zimmermann, A., Florea, A.M.: Give agents some REST:
hypermedia-driven agent environments. In: El Fallah-Seghrouchni, A., Ricci, A.,
Son, T.C. (eds.) EMAS 2017. LNCS (LNAI), vol. 10738, pp. 125–141. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91899-0 8

5. Elmroth, E., Hernández-Rodriguez, F., Tordsson, J.: Three fundamental dimen-
sions of scientific workflow interoperability: model of computation, language, and
execution environment. Future Gener. Comput. Syst. 26(2), 245 (2010)

6. Ferme, V., Skouradaki, M., Ivanchikj, A., Pautasso, C., Leymann, F.: Perfor-
mance comparison between BPMN 2.0 workflow management systems versions.
In: Reinhartz-Berger, I., Gulden, J., Nurcan, S., Guédria, W., Bera, P. (eds.)
BPMDS/EMMSAD -2017. LNBIP, vol. 287, pp. 103–118. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-59466-8 7

https://doi.org/10.1007/978-3-319-58068-5_33
https://doi.org/10.1007/978-3-319-58068-5_33
https://doi.org/10.1007/BFb0034673
https://doi.org/10.1007/978-3-319-91899-0_8
https://doi.org/10.1007/978-3-319-59466-8_7

Specifying, Monitoring, and Executing Workflows in Linked Data 439

7. Gallaher, M.P., O’Connor, A.C., Dettbarn Jr., J.L., Gilday, L.T.: Cost analysis of
inadequate interoperability in the US capital facilities industry. NIST GCR 04–867
(2004)

8. Gil, Y., Ratnakar, V., Deelman, E., Mehta, G., Kim, J.: Wings for Pegasus. In:
Proceedings of the 19th Conference on Innovative Applications of Artificial Intel-
ligence (IAAI) (2007)

9. Gurevich, Y.: Evolving algebras 1993: lipari guide. In: Specification and Validation
Methods. Oxford University Press (1995)

10. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - a semantic
service-oriented architecture. In: Proceedings of the 3rd International Conference
on Web Services (ICWS) (2005)

11. Harth, A., Hose, K., Schenkel, R.: Linked Data Management. CRC, Boca Raton
(2014)

12. Harth, A., Speiser, S.: On completeness classes for query evaluation on linked data.
In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (2012)

13. Hull, R., et al.: Introducing the guard-stage-milestone approach for specifying busi-
ness entity lifecycles. In: Bravetti, M., Bultan, T. (eds.) WS-FM 2010. LNCS, vol.
6551, pp. 1–24. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19589-1 1

14. Jablonski, S., Bussler, C.: Workflow Management. International Thomson, London
(1996)

15. Käfer, T., Harth, A.: Rule-based programming of user agents for linked data.
In: Proceedings of the 11th International Workshop on Linked Data on the Web
(LDOW) (2018)

16. Käfer, T., Harth, A., Mamessier, S.: Towards declarative programming and query-
ing in a distributed cyber-physical system: the i-VISION case. In: Proceedings of
the 2nd CPSData Workshop (2016)

17. Newman, S.: Building Microservices - Designing Fine-Grained Systems. O’Reilly,
Sebastopol (2015)

18. Pautasso, C.: RESTful web service composition with BPEL for REST. Data Knowl.
Eng. 68(9), 851 (2009)

19. Pautasso, C., Wilde, E.: Push-enabling RESTful business processes. In: Kappel,
G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp.
32–46. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25535-9 3

20. Pautasso, C., Zimmermann, O., Leymann, F.: RESTful web services vs. “Big” web
services. In: Proceedings of the 17th International Conference on World Wide Web
(WWW) (2008)

21. Polyvyanyy, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring acyclic process mod-
els. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 276–
293. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15618-2 20

22. Rospocher, M., Ghidini, C., Serafini, L.: An ontology for the business process
modelling notation. In: Proceedings of the 8th International Conference on Formal
Ontology in Information Systems (FOIS) (2014)

23. Stadtmüller, S., Speiser, S., Harth, A., Studer, R.: Data-Fu: a language and an
interpreter for interaction with read/write linked data. In: Proceedings of the 22nd
International Conference on World Wide Web (WWW) (2013)

24. Turi, D., Missier, P., Goble, C.A., De Roure, D., Oinn, T.: Taverna workflows:
syntax and semantics. In: Proceedings of the 3rd International Conference on e-
Science and Grid Computing (e-Science) (2007)

25. Van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distrib. Parallel Databases 14(1), 5 (2003)

https://doi.org/10.1007/978-3-642-19589-1_1
https://doi.org/10.1007/978-3-642-19589-1_1
https://doi.org/10.1007/978-3-642-25535-9_3
https://doi.org/10.1007/978-3-642-15618-2_20

440 T. Käfer and A. Harth

26. Van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm
for business process support. Data Knowl. Eng. 53(2), 129 (2005)

27. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In:
Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
100–115. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85758-
7 10

28. Verborgh, R., Steiner, T., van Deursen, D., Coppens, S., Vallés, J.G., van de Walle,
R.: Functional descriptions as the bridge between hypermedia APIs and the Seman-
tic Web. In: Proceedings of the 3rd International Workshop on RESTful Design
(WS-REST) (2012)

29. Zaveri, A.: smartAPI: towards a more intelligent network of web APIs. In:
Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig,
O. (eds.) ESWC 2017. LNCS, vol. 10250, pp. 154–169. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-58451-5 11

30. Zur Muehlen, M., Nickerson, J.V., Swenson, K.D.: Developing web services chore-
ography standards. Decis. Supp. Syst. 40(1), 9 (2005)

https://doi.org/10.1007/978-3-540-85758-7_10
https://doi.org/10.1007/978-3-540-85758-7_10
https://doi.org/10.1007/978-3-319-58451-5_11

Mapping Diverse Data to RDF
in Practice

Alexandros Chortaras(B) and Giorgos Stamou

National Technical University of Athens, Athens, Greece
{achort,gstam}@cs.ntua.gr

Abstract. Converting data from diverse data sources to custom RDF
datasets often faces several practical challenges related with the need
to restructure and transform the source data. Existing RDF mapping
languages assume that the resulting datasets mostly preserve the struc-
ture of the original data. In this paper, we present real cases that
highlight the limitations of existing languages, and describe D2RML,
a transformation-oriented RDF mapping language which addresses such
practical needs by incorporating a programming flavor in the mapping
process.

Keywords: RDF mapping · Data integration · Service integration

1 Introduction

An RDF graph is a set of triples, each one of which consists of a subject, pred-
icate, and object. Thus, despite the powerful semantic interpretation of RDF
graphs, their machine representation is very simple: a table with a subject,
predicate and object column; actually, several relationally-backed RDF stores
use such tabular representations. So, when studying how mappings for diverse
data formats to RDF graphs can be defined, essentially we have to define how
the underlying data can be transformed to a logical tabular representation.

In this framework, much work has been done on transforming data from rela-
tional databases (summarized in [8]). Relational data are pretty simple, because
they are kept in tables, each row contains a single value for each column, and each
row has usually a unique key that can be used to generate unique identifiers.
Moreover, SQL is a powerful language that allows the generation of complex
custom view by joining tables, selecting data that meet certain conditions, and
performing simple data transformations. R2RML, the W3C language for map-
ping relational databases to RDF [5] is a powerful language, but owes its power
mostly to the inherent tabular nature of the source data and the power of SQL
which provides almost all needed data manipulation and restructuring.

Beyond relational data, closer to the tabular model are CSV documents and
spreadsheets [11,14]. Other formats, such as XML, differ considerably from tab-
ular data owing to their hierarchical structure, and the mapping systems rely

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 441–457, 2018.
https://doi.org/10.1007/978-3-030-00671-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_26&domain=pdf

442 A. Chortaras and G. Stamou

on XSLT transformations, XPath and XQuery (e.g. [1,4]). To resolve the poly-
morphy of tools and define a uniform way to perform Data-to-RDF mapping,
xR2RML [13] and RML [7] extend R2RML to support other data formats.

All such approaches are practical as long as there is no need to alter the struc-
ture of the source data, and as long as the underlying source data manipulation
languages provide support for data transformations. In a multi-source support-
ing language, like RML, this is harder to achieve given that not all sources are
backed by powerful languages, such as SQL. In this paper, we propose D2RML,
a generic Data-to-RDF Mapping Language, which aims at facilitating the gen-
eration of custom RDF data stores by selectively collecting and integrating data
from diverse data sources and web services into high quality RDF data stores.
D2RML is based on a tabular data representation, on which restructuring, trans-
formation and filtering may be applied. D2RML pushes the limits of a mapping
language by incorporating ‘programming’ features. Although a mapping lan-
guage cannot substitute a programming language, the real world cases that we
discuss demonstrate that such features are essential if such languages aspire to
gain acceptance in practice. This paper is an extended version of [3], which
refines the restructuring features of D2RML and focuses on real word scenarios.

The rest of the paper has as follows: Sect. 2 gives an overview of R2RML and
RML on which our work is mostly based. Section 3 discusses real examples where
existing mapping languages turn out to be insufficient. In Sect. 4 we present the
simple data model underlying D2RML. In Sect. 5 we describe how several widely
used information sources can be cast onto that model, and in Sect. 6 we present
the definition of D2RML. Section 7, in place of an evaluation, demonstrates the
power of D2RML by describing how it can solve the practical needs outlined in
Sect. 3. Section 8 concludes the paper.

2 Related Work, R2RML and RML

RML and xR2RML are two R2RML-based RDF mappings languages that sup-
port both relational and non-relational data. As such they share several common
features, but differ in some of their focus points. E.g. xR2ML supports mapping
from mixed formats (e.g. relational tables with JSON values), and also RDF lists.
On the other hand, RML extended with FnO [12] supports interaction with data
sources using established vocabularies [6] and interaction with abstract data pro-
cessing functions. For both, R2RML is the starting point.

R2RML works with logical tables (rr:LogicalTable), which may be base
tables, views, or result sets obtained by an SQL query. Each logical table is
mapped to RDF triples using one or more triples maps. A triples map is a rule
that maps each logical table row to several RDF triples. The rule consists of
a subject map that generates the subject of all RDF triples for each row, and
several predicate-object maps, that consist of predicate and object or referencing
object maps. A predicate map determines predicates for the RDF triples, and an
object map their objects. A subject or predicate-object map may include one or
more graph maps, which specify a named graph for the resulting triples. Refer-
ring object maps allow joining of triples maps. A referring object map specifies

Mapping Diverse Data to RDF in Practice 443

a parent triples map (rr:parentTriplesMap), the subjects of which will act as
objects for the current triples map. RDF terms (i.e. concrete IRIs and literals for
the triples) are either declared constants (rr:constant), or obtained from the
underlying table, view or result set by specifying a column name (rr:column)
that will supply the values, or generated by a string template (rr:template) that
includes reference to columns. String templates offer very rudimentary options
to manipulate actual database values and generate custom IRIs and literals.

RML extends R2RML by allowing other sources (rml:LogicalSource, e.g.
JSON or XML files), by defining data iterators (rml:iterator) to split the data
from such sources into base elements (the equivalent of rows), and by allow-
ing particular references (rml:reference), in the form of subelement selectors
within the base element, to define the value sources for RDF terms. The iterators
and the references depend on the underlying data source, and may be XPath or
JSONPath expressions, CSV column names or SPARQL return variable names.
Their type is declared using rml:referenceFormulation. To describe access
to diverse data sources, RML suggests the use of vocabularies, such as DCAT,
CSVW, Hydra, and SPARQL-SD. However, these vocabularies in general do not
prescribe a way to formulate actual requests (e.g. to a web API that paginates
the results using next page access keys).

3 Motivating Examples

Here we present some examples that highlight the need for additional flexibility
from an RDF mapping language. All are adapted (to save space) real examples.

Example 1. Consider the following except from a database containing a timeline
of modern Greek history events. The database was modeled as a single table.
ID date summary senderA receiverBsourceA senderB receiverB sourceB keywords
304 21/11/

1940
Palairet calls
F.O. saying
that ...

Palairet F.O. F.O.371/
24907/
R8517

Palairet Halifax F.O.371/
24907/
R8879

J. Metaxas,
Greece -
Economy

Each row contains a date, summary and some keywords. Since each event
turned out to have in practice at most two references, the modeler of the database
included two sets of sender, receiver and source columns. Moreover, keywords are
included in a single column, separated by commas, but there may be multi-term
keywords in which terms are separated by a dash. xR2RML provides a solution
if the keywords entry were in a structured format (eg. JSON). An RDF graph
for the above, not inheriting the modeling problems, could be the following:

cge:304 [a cge-t:Event ; cge-t:date "1940-11-21"^^xsd:date ; cge-t:summary "Palairet ..." ;
cge-t:reference [a cge-t:Letter ; cge-t:source "F.O.371/24907/R8817" ;

cge-t:sender "Palairet" ; cge-t:receiver "F.O."] ;
cge-t:reference [a cge-t:Letter ; cge-t:source "F.O.371/24907/R8879" ;

cge-t:sender "Palairet" ; cge-t:receiver "Halifax"] ;
cge-t:keyword [a cge-t:Term ; kvoc-t:text "J. Metaxas"] ;
cge-t:keyword [a cge-t:Term ; kvoc-t:text "Greece", "Economy"] .

The transformation of the keywords, which splits the entry at the commas
and then at the dashes to generate a nested structure, is problematic even using

444 A. Chortaras and G. Stamou

the SQL power of R2RML. For other data sources (e.g. CSV files) it would be
impossible to do anything more than copy the original data structure. Certainly,
this is a not an optimally designed database, but such cases do occur in practice.

Example 2. Consider the following excerpt from the PeriodO (http://perio.do/)
gazetteer of historic periods, which is available as a JSON document:

{ "periodCollections": {
"p0339m9": {

"id": "p0339m9", "type": "PeriodCollection",
"definitions": { ... ,

"p0339m9f72b": {
"id": "p0339m9f72b", "type": "PeriodDefinition", "start": "1204", "stop": "1453",
"spatialCoverage": [{"id": "http://dbpedia.org/resource/Greece" }],
"localizedLabels": { "eng": ["Late Byzantine"] } },

"p0339m9jq2m": {
"id": "p0339m9jq2m", ... }, ... } },

"p08nrfc": { ... }, ... } }

Using the SKOS model, we would like to generate the following RDF graph:

ark:p0339m9 [a ark-t:PeriodCollection] .
ark:p0339m9f72b [a ark-t:PeriodDefinition ; rdfs:label "Late Byzantine"@en ;

ark-t:earliestYear "1204"^^xsd:gYear ; ark-t:latestYear "1453"^^xsd:gYear ;
skos:inScheme ark:p0339m9 ; dcterms:spatial dbpedia:Greece] .

Using RML and JSONPath, we could specify a triples map to iterate over the
period collections, and then a triples map to iterate over the period definitions to
generate the respective triples; but inside a period definition we do not know the
enclosing period collection, to generate the skos:inScheme triple. Thus we cannot
use a referring object map (for period definitions inside period collections). We
could possibly specify a third triples map to iterate over the collections and
generate triples with object the collection id and subjects the included period
ids, but this violates a basic assumption in both R2RML and RML that each
iteration over the data should produce a unique subject.

Example 3. Geonames provides its gazetter data as a set of tab-delimited files.
Among them, file admin1Codes.txt contains top-level administrative regions for
all countries, XX.txt, where XX is a country code, a country’s locations, and
alternateNames/XX.txt alternate location names and links to other resources.
Consider line (GR.ESYE31; Attica; 6692632) from admin1Codes.txt, and lines

256601; Athens; Athinai,Athina; P; PPLC; GR; ESYE31; 445408
445408; Athens Prefecture; Athena,Athina; A; ADM2; GR; ESYE31; 445408
6692632; Attica; Attica,Attiki; A; ADM1; GR; ESYE31

177543; 264371; el; Athina; 1
1593954; 264371; en; Athens;
2919841; 264371; link; http://en.wikipedia.org/wiki/Athens;

from GR.txt and alternatenames/GR.txt, for Greece, respectively.
The column names are (admin1code, name, geonameid), (geonameid, name,

alternate names, feature class, feature code, country code, admin1 code, admin2
code) and (alternateNameid, geonameid, language, alternate name, is Preferred-
Name), respectively. From the above, we want to generate the following triples:

http://perio.do/

Mapping Diverse Data to RDF in Practice 445

geo:256601 [a gn:Feature ; gn:name "Athens" ; gn:featureCode gn:P.PPLC ;
gn:officialName "Athina"@el ; gn:alternateName "Athens"@en ;
gn:wikipediaArticle <http://en.wikipedia.org/wiki/Athens> ;
gn:parentADM1 geo:6692632 ; gn:parentADM2 geo:445408] .

geo:445408 [a gn:Feature ; gn:name "Athens Prefecture" ; gn:featureCode gn:A.ADM2 ;
gn:parentADM1 geo:6692632] .

geo:6692632 [a gn:Feature ; gn:name "Attica" ; gn:featureCode geo-ont:A.ADM1] .

To achieve this we need some conditions (e.g. do not include a gn:parentADM2)
if in a line of GR.txt the geonameid and admin2 code coincide). Moreover, in the
triples map iterating over GR.txt, we need to include a referring object map to
perform a join with admin1Codes.txt, so as to know that GR.ESYE31 has geonameid
6692632. But to do the join we need to concatenate the country code GR with
the admin1 code ESYE31, which in GR.txt are provided in distinct columns. In
a relational database we could possibly formulate such queries, but with CSV
files we have much less flexibility. Even if we overcome somehow the problem of
generating a combined key for the join, iteratively joining large CSV files can
be inefficient. Instead, we could probably start building the RDF graph by first
mapping admin1Codes.txt, and then execute the mapping for GR.txt, exploiting
the contents of the up to then generated RDF graph. Furthermore, in each line
alternateNames/GR.txt, the value of the language column determines how to
interpret the alternate name. If we see link we should use gn:wikipediaArticle.
If we see a language code we should further check the last column: if it is 1 we use
gn:officialName otherwise gn:alternateName. To do this we need conditions and
case statements. If the data was relational, we could exploit SQL and define three
triples maps, one for each predicate; but with a CSV file this is not possible. Even
with relational data, a single triples map, with a conditional statement selecting
each time the right predicate, is probably a clearer, more concise, and possibly
more efficient, modeling since it requires a unique iteration over the data.

Example 4. Consider the row (4821; 1431-1433 AD; Samothrace; <inscription>)

of a CSV database of Christian and Byzantine inscriptions provided by the
University of Athens that contains an id, a chronology, a location and the actual
inscription text. We would like to generate the following RDF graph:

bci:4821 [bci-t:Inscription ; bci-t:chronology "1431-1433 AD" ; bci-t:location "Samothrace" ;
kvoc-t:date [a time:DateTimeInterval ;

time:hasBeginning tl-t:Y.1431 ; time:hasEnd tl-t:Y.1433] ;
kvoc-t:location geo:734358 ; kvoc-ont:period ark:p0339m9f72b] .

In this case the mapping involves some processing using data analysis ser-
vices. A geonames linking service that links Samothrace to geo:734358, the geon-
ames resource for Samothrace, a date recognizer that transforms 1431-1433 AD

into a time description using OWL Time vocabulary, and finally a periodO link-
ing service that uses the geonames location and the OWL time date range to
classify the inscription to the Late Byzantine period ark:p0339m9f72b. The first
two services can be seen as data sources that require parameters taking values
from the original data; this is supported in RML. But for the third service we
need to specify parameters values that are results of the previous two services.

446 A. Chortaras and G. Stamou

Moreover, we might want to use the results of the two first services only as
intermediate results for the first service and not produce any triples for them.

4 Model

The above examples demonstrate that a practical RDF mapping language should
include provisions for complex mapping capabilities, that may result from the
actual structure or the data, from peculiarities of the data representation choices
or models, or from the need for structure altering transformations. To create a
general framework for such a language, we define first an abstract tabular data
model. Essentially, we assume that data coming from a data source give rise to
a tabular structure, which is extensible by the mapping language: new columns
may be added by transforming existing ones to generate input data for further
transformations. Each cell of the tabular structure may contain a set of values.

Definition 1. A set row of arity k is a tuple 〈D1, . . . , Dk〉, where D1, . . . , Dk

are sets of values. A name row of arity k is a tuple 〈n1, . . . , nk〉, where n1, . . . , nk

are names. A set table of arity k with m rows is a tuple S = 〈N, T 〉, where N
is a name row and T = [D1, . . . ,Dm] a list of set rows, all of arity k, such that
the i-th elements of D1, . . . ,Dm, for 1 ≤ i ≤ k, share all the same domain.

The names allow us to refer to particular elements of set rows and tables.
We denote the set of values that corresponds to name ni in a set row D by D[ni]
and by S[nk] (a column of S) the list [D1[nk], . . . ,Dm[nk]] of value sets that
are obtained from the several set rows of S. For a particular set row D and the
several ni, the sets D[ni] may have different numbers of values and in general
there is no alignment between the individual values among the several sets, and
all individual values are equivalent with respect to their relation to the values
of the other sets in the same set row.

Definition 2. A filter F over a set table S is a tuple 〈n, f〉, where n is a column
name and f a function, such that f(D[n]) ⊆ D[n] for all set rows D of S.

We denote the set value f(D[n]), obtained by applying F on a set row D by
F(D). A filter may be seen as the implementation of a condition.

Data for set tables are acquired from information sources. To accommodate
several possible information sources in our model, we consider, as in RML, that
the information source upon a request provides in a reply an effective data source,
a structure that groups data in several autonomous elements. The division of the
effective data source to these autonomous elements is achieved by an iterator,
which specifies a logical array, through whose items the iterator iterates. Each
item of a logical array may be a complex structure (another effective data source),
so in order to extract from it lists of values to construct set rows values, we need
some selectors. The selectors transform a logical array into a set table.

Definition 3. The triple A = 〈I, t,L〉, where I is an effective source specifica-
tion, t an iterator, and L a set of selectors, is a data acquisition pipeline.

Mapping Diverse Data to RDF in Practice 447

Each data acquisition pipeline A gives rise to a unique set table SA. A data
acquisition pipeline may be parametric. A parametric data acquisition pipeline
A′ that depends on A is a data acquisition pipeline whose parameters take values
from one or more columns of SA and is called a transformation of A.

Definition 4. A series of data acquisition pipelines A0, A1, . . ., Al, where each
Ai, for i > 1, is a transformation that depends on one or more Aj for j < i is
a set table specification. A0 is the primary data acquisition pipeline.

A set table specification gives rise to a unique set table: SA0 extended by
columns contributed by A1, . . ., Al. Each transformation is realized as a series
of requests to an information source, after binding the parameters to all possible
combinations of values obtained from the referred to columns of the set table
constructed from the preceding data acquisition pipelines. Thus, a set table
specification is evaluated serially. The primary data acquisition pipeline A0 gives
rise to set table SA0 . Then, for each set row D of SA0 , evaluating A1 gives rise to
a set table SA1(D). By flattening all rows of SA1(D) into a single row we obtain a
new set row that is appended to D. Doing this for all set rows D results in SA0A1 .
Proceeding this way, eventually SA0 is extended to set table SA0A1...Al

. More
formally, let n1, . . . , nk be the names, and [D1, . . . ,Dm] the rows of Ŝ .= SA0...Ai

.
Evaluating Ai+1 on each row of Ŝ produces set tables SAi+1(D1), . . ., SAi+1(Dm).
Since all these set tables are produced by the same data acquisition pipeline
Ai+1, they share the same arity, say k′, and let ŝ1, . . . , ŝk′ , be the selectors of
Ai+1. Thus SA0...Ai+1 = 〈N, T 〉, where N = 〈n1, . . . , nk,Ai+1.ŝ1, . . . ,Ai+1.ŝk′〉,
T = [D′

1, . . . ,D′
m], D′

j = [Dj [n1], . . . ,Dj [nk], D̂j1, . . . , D̂jk′] for 1 ≤ j ≤ m, and
D̂′

jl =
⋃

SAi+1(Dj)[ŝl] for 1 ≤ l ≤ k′.

Definition 5. A triples rule R over a set table S = 〈N, T 〉 is either (a) a triple
of filters 〈Fs,Fp,Fo〉, over S, called the subject, predicate and object filter,
respectively, or (b) a triple 〈Fs,Fp, R̂〉, over S, where Fs, Fp are the subject
and predicate filter, respectively, and R̂ another triples rule.

The implementation of R is the set of RDF triples {(s, p, o) | s ∈ Fs(D), p ∈
Fp(D), o ∈ Fo(D), D ∈ T } in case (a), and {(s, p, o) | s ∈ Fs(D), p ∈
Fp(D), o ∈ SR̂, D ∈ T } in case (b), where SR̂ are the subjects of the imple-
mentation of R̂.

A set of triples rules over some set tables defines a Data-to-RDF mapping.
The relevant RDF dataset is the implementation of all its triples rules.

5 Retrieving and Interpreting Data

To define general data acquisition pipelines in practice, we consider that an
information source, in response to a request, provides some source data. An
information source may be either a server (RDBMS, web server/RESTful web
service, SPARQL endpoint), the local file system, or a local data model (e.g. an

448 A. Chortaras and G. Stamou

in-memory RDF model). The source data may be an instance of a particular data
model (e.g. a SQL result set) or a document (e.g. a JSON or XML document). To
obtain source data from an information source we need to specify a request (e.g.
an HTTP GET request, an SQL query), as summarized in Table 1. Source data
obtained as data models (e.g. SQL result sets) have a unique interpretation, but a
document may be interpreted as one of several models. The effective data source
is the source data interpreted: SQL and SPARQL results sets denote themselves,
a JSON document a JSON Tree, an XML/HTML document a DOM or XDM,
and a CSV document a table. In some cases, to obtain an effective data source,
we need an intermediate interpretation of the source data as a new information
source. This is the case e.g. with an RDF document, which should be seen first
as an RDF dataset, from which SPARQL result sets can then be obtained.

Table 1. Information sources, requests and source data

Information source Request Source data

RDBMS SQL SELECT
Query

SQL Result Set

Web Server/
RESTful Service

HTTP GET/
POST Request

JSON/XML/CSV/HTML/
RDF/TXT Document

SPARQL Endpoint/
RDF model

SPARQL
SELECT Query
and Graph IRIs
via API

SPARQL Result Set

File System File Request JSON/XML/CSV/HTML/
RDF/TXT Document

Table 2. Effective data sources, iterators and selectors

Effective data source Type Iterator Selector

SQL Result Set Tabular Row Iterator Column Name

SPARQL Result Set Tabular Row Iterator Variable Name

JSON Tree Hierarchical JSONPath JSONPath

XDM Hierarchical XPath/XQuery XPath/XQuery

DOM Hierarchical CSS Selector CSS Selector

CSV Document Tabular Row Iterator Column Name/Number

Text Document Flat Regular Expression Regular Expression

The model-specific iterators and selectors needed to convert effective data
sources to set tables are shown in Table 2. For example, an SQL (SPARQL

Mapping Diverse Data to RDF in Practice 449

result set) obtained through an SQL (SPARQL) SELECT query q that speci-
fies attributes (variables) n1, . . . , nk in the SELECT statement for the returned
columns (variables), returns a list of rows [〈v11, . . . , v1k〉, . . . , 〈vn1, . . . , vnk〉].
Using a row iterator and the column (variable) names n1, . . . , nk as selectors, we
obtain the set table 〈〈n1, . . . , nk〉, [〈{v11}, . . . , {v1k}〉, . . . , 〈{vn1}, . . . , {vnk}〉]〉.
Similarly, a JSONPath (XPath/XQuery, CSS) expression q splits a JSON tree
[2] (XDM [15], DOM) interpretation of a JSON (XML/HTML) document T into
a logical array of smaller JSON trees (XDMs, DOMs) T1, . . . , Tn. By executing
as selectors JSONPath (XPath/XQuery, CSS) expressions q1, . . . qk over each
T1, . . . , Tn we get the set table 〈〈q1, . . . , qk〉, [〈C11, . . . , C1k〉, . . . , 〈Cn1, . . . , Cnk〉]〉,
where Cij is either the set of values (string values of text or attribute nodes)
contained in the array (node set) that results from applying qj on Ti.

6 D2RML Specification

D2RML draws significantly from R2RML and RML, and follows the same strat-
egy for defining mappings: triples maps, consisting of a subject map and several
predicate-object maps. From RML it adopts and extends the interaction with
information sources through requests, iterators and selectors. It also extends the
expressive capabilities of R2RML and RML by allowing transformations, condi-
tional and case statements, and custom RDF term generation functions. For its
semantics, it relies on the data model of Sect. 4. Each triples map corresponds
to a set table (Definition 5) and a set of triple rules (Definition 4) with the same
subject filter over the common underlying set table. The information source,
request and iterator for the original data acquisition pipeline are provided in
the triples map definition. Any additional transformations are declared in the
order of their application and extend incrementally the underlying set table. The
selectors are implicitly declared in the included subject, predicate, object and
graph maps.

6.1 Triples Maps

Triples maps are defined as in RML, but tabular data providing information
sources are clearly distinguished from non-tabular ones. The inclusion of Trans-
formation and DefinedColumn lists allow extending the primary set table.
TriplesMap ← a rr:TriplesMap

(rr:logicalTable 〈LogicalTable〉 | dr:logicalSource 〈LogicalSource〉)?
(dr:transformations (〈Transformation〉+))?

(dr:definedColumns (〈DefinedColumn〉+))?

(rr:graphMap 〈GraphMap〉)*
rr:subjectMap 〈SubjectMap〉 | rr:subject iri

(rr:predicateObjectMap 〈PredObjMap〉)*
PredObjMap ← a rr:PredicateObjectMap

(rr:predicateMap 〈PredicateMap〉 | rr:predicate iri)+

(rr:objectMap (〈ObjectMap〉|〈RefObjectMap〉) | rr:object (iri|lit))+
(rr:graphMap 〈GraphMap〉 | rr:graph iri)*

450 A. Chortaras and G. Stamou

6.2 Logical Tables and Logical Sources

A LogicalTable or LogicalSource specifies a data acquisition pipeline (excluding
the separators). In the case of query supporting information sources (RDBMSs’
and SPARQL services), for compatibility with R2RML, they contain also the
query-relevant details of the request. The is:parameters predicate helps declare
parameters in queries of parametric data acquisition pipelines. For other informa-
tion sources, the request and any parameters are part of the InformSource speci-
fication. For non-tabular data information sources, LogicalSource should contain
the definition of the iterator (dr:iterator and dr:referenceFormulation)
used to split the effective data source.

D2RML introduces two special sources: The first dr:CurrentModel, rep-
resents the RDF model of the current RDF dataset generated by the
D2RML processor, and is interpreted as an SPARQLTable. Since the model
is constantly updated, we need to define an execution order for the triples
maps. Thus, a D2RML document using dr:CurrentModel must specify a
is:TriplesMapOrder, whose is:mapOrder defines the execution order of the
triple maps as a list. The second source, dr:SetTable, allows the generation of
a new table from the values of some selected columns (dr:transferredColumns)
of the dependent on set table. The dr:SetTable instance is generated by taking
the values of each column of the current row, in order of appearance, and putting
them into a new table, by aligning values having the same order. Thus it restruc-
tures the data: it converts, one or more sets of values, into a table where each
column in each row contains aligned single values. If used as a LogicalSource,
dr:SetTable allows, as in xR2RML, interpreting row values as structured doc-
uments (eg. JSON, XML).

LogicalTable1 ← a rr:LogicalTable a dr:CurrentModel

dr:source 〈InformSource〉
SQLTable | SPARQLTable | CSVTable SPARQLTable

(is:parameters (〈DataVariable〉+))?

LogicalTable2 ← a dr:SetTable ; (dr:transferedColumns (〈ValueRef 〉+))?

LogicalSource ← (a dr:LogicalSource ; dr:source 〈InformSource〉) | LogicalTable2
dr:iterator lit ; dr:referenceFormulation iri

An SQLTable is defined as in R2RML. A SPARQLTable must specify a
query (dr:sparqlQuery) and any default or named graphs (dr:defaultGraph,
dr:namedGraph). Finally a, CSVTable must specify a delimiter (dr:delimiter),
whether there is a header line (dr:headerline), and possibly a quote, comment,
escape, or record separator characters.

6.3 Information Sources

An information source may be a RDBMS, an HTTP server, a SPARQL end-
point, or the file system.

Mapping Diverse Data to RDF in Practice 451

InformSource ← RDMSSource | SPARQLSource | HTTPSource | FileSource

An RDMBSSource must specify the type of the RDMBS (is:rdbms), the
location (is:location) and any needed information for establishing the con-
nection (e.g. username, password). An HTTPSource should either specify a sin-
gle URI (is:uri) or prescribe a full HTTP request (is:request). The latter
is specified in using the W3C’s ‘HTTP Vocabulary in RDF 1.0’ [9] and ‘Rep-
resenting Content in RDF 1.0’ vocabularies [10]. An HTTPSource may contain
a list of parameters (is:parameter). To account for result pagination, it may
contain a request iterator in the parameter list. A request iterator may be a
KeyRequestIterator or a CountRequestIterator. Both of them should provide the
parameter name (is:name) which should appear in the URI of the HTTPRe-
quest, and an initial value (is:initialValue). A key request iterator must spec-
ify how to extract each time the new parameter value from the current server
results in order to formulate the subsequent request, while a count request iter-
ator must specify an increment (is:increment) and possibly a maximum value
(is:maxValue). The set of iteration policies is extensible. A SPARQLSource
must specify simply the URI of the service (is:uri). A FileSource must specify
the location of one or more files (is:path) and their encoding (is:encoding).
Note that, following the earlier discussion, e.g. a FileSource that fetches an RDF
file used in conjunction with a SPARQLTable, is interpreted as a RDF model
information source.

6.4 Transformations and Defined Columns

A Transformation extends the underlying set table. Since it is a parametric data
acquisition pipeline, its definition includes a LogicalTable or LogicalSource and
one or more ParameterBindings to assign parameter values. The latter consists
of a reference to a value (ValueRef) or a constant value, and the parameter name
(dr:parameter) in the corresponding information source the value will be bound
to. A DefinedColumn allows for in-line set table transformations: to add new
columns by applying a series of transformations on particular set table column
values without consulting external sources. A DefinedColumn should declare the
new column name dr:name, the function (dr:function) to generate the values
(eg. op:regex, op:replace), and a list of arguments (dr:parameterBinding).
It is assumed that the parameter names are provided by the function definition.

Because a Transformation may need to work not directly with the value sets
of the underlying set table at the level of the selectors (where any alignment
between values is lost), but first with higher level iterators that preserve the
alignment and then with the value set producing selectors, a transformation
may declare one such iterator (dr:bindingIterator) for each transformation
that provides parameter bindings. When, executed, the values for parameter
bindings will be generated aligned according to the iterator.
Transformation ← a dr:Transformation

rr:logicalTable 〈LogicalTable〉 | dr:logicalSource 〈LogicalSource〉
(dr:parameterBinding 〈ParameterBinding〉)+
(dr:bindingIterator 〈BindingIterator〉)*

452 A. Chortaras and G. Stamou

DefinedColumn ← a dr:DefinedColumn ; dr:name lit ; dr:function iri

(dr:parameterBinding 〈ParameterBinding〉)+
ParameterBinding ← a dr:ParameterBinding

dr:parameter lit ; rr:constant lit | ValueRef

BindingIterator ← rr:column lit | dr:reference lit

(dr:transformationReference 〈Transformation〉)?

6.5 Term Maps and Conditions

The definition of a TermMap (SubjectMap, PredicateMap, ObjectMap, GraphMap
and LanguageMap) follows the R2RML specification with the support for filters.

SubjectMap ← a rr:SubjectMap ; IRIRef | BlankNodeRef
(SubjBody CSubjBody*) | CSubjBody+

PredicateMap ← a rr:PredicateMap ; (PredBody CPredBody*) | CPredBody+

ObjectMap ← a rr:ObjectMap ; (ObjBody CObjBody*) | CObjBody+

GraphMap ← a rr:GraphMap ; (GraphBody CGraphBody*) | CGraphBody+

LanguageMap ← a rr:LangMap ; (LangBody CLangBody*) | CLangBody+

SubjBody ← (rr:class IRI)* ; (rr:graphMap 〈GraphMap〉 | rr:graph IRI)*
(dr:condition 〈Condition〉)?

[Pred |Graph]Body ← IRIRef ; (dr:condition 〈Condition〉)?
ObjBody ← IRIRef | BlankNodeRef | LiteralRef ; (dr:condition 〈Condition〉)?
LangBody ← LiteralRef ; (dr:condition 〈Condition〉)?
C[Subj |Pred |Obj |Graph |Lang]Body ← dr:cases (〈[Subj |Pred |Obj |Graph |Lang]Body〉+)

Condition ← (ValueRef)? ; (dr:booleanOperator iri)?
(operator (ValueRef | lit) | dr:operand 〈Condition〉)+

RefObjectMap ← a rr:RefObjectMap ; rr:parentTriplesMap 〈TriplesMap〉
((rr:joinCondition 〈JoinCondition〉)+ |

(dr:parameterBinding 〈ParameterBinding〉)+)?

JoinCondition ← a rr:Join ; rr:child lit ; rr:parent lit

To implement filters, a TermMap may contain a condition (dr:condition)
and/or a case statement (dr:cases). If it contains a condition, it will be eval-
uated and the corresponding RDF term will be taken into account only if the
condition holds. A condition statement must specify the actual value on which
it will operate, and may include several tests which will be jointly evaluated
using the operator specified by dr:booleanOperator (op:and or op:or). A test
is specified either through an operator (op:eq, op:le, etc.) and a literal or
ValueRef which define the value(s) with which the actual value will be compared
using operator, or as a nested condition. Due to the underlying set table model,
in general a behaviour of the operators for set arguments should be defined. In
the current implementation it is assumed that a condition holds if it holds for a
single value pair, but this is a point of further refinement of the language. The
operation type (eg. number/string comparison) depends on the operand XSD
types. A case statement includes a list of alternative realizations of a TermMap,
each along with a condition. If the condition evaluates to true, the corresponding
TermMap is realized, otherwise control flows to the next case.

Mapping Diverse Data to RDF in Practice 453

Finally, a referring object map (RefObjectMap) may be defined either as
in R2RML or using a ParameterBinding , in the case the LogicalTable or Logi-
calSource of the referring object’s triples map is a parametric data acquisition
pipeline: the ParameterBinding provides the parameters values to be used in the
parametric data acquisition pipeline of the referring object map.

6.6 RDF Terms

RDF terms are specified as in RML, but to account for values coming from trans-
formations, RDF terms are generated through value references, specified by two
components: a compulsory rr:column, rr:template or dr:reference, and an
optional dr:transformationReference to specify the underlying transforma-
tion for the rr:column, rr:template or dr:reference. If missing, the primary
logical array is assumed. To overcome the limited data manipulation options
offered by rr:template, a value reference may include local defined columns
(dr:definedColumns) that are need to generate a particular RDF Term.

IRIRef ← rr:constant iri | ValueRef ; (rr:termType rr:IRI)?

LiteralRef ← rr:constant lit | ValueRef ; (rr:termType rr:Literal)?
((dr:languageMap 〈LanguageMap〉 | rr:language lit) |

rr:datatype iri)?

BlankNodeRef ← ValueRef ; (rr:termType rr:BlankNode)?

ValueRef ← rr:column lit | rr:template lit | dr:reference lit

(dr:transformationReference 〈Transformation〉)?
(dr:definedColumns (〈DefinedColumn〉+))?

7 Evaluation

In Sect. 3 we identified cases where the desired mappings could not be achieved
using existing RDF mapping languages. In fact, all cases were real and arose
in the context of a project aiming to provide semantic analysis services over
a repository of heterogeneous cultural data. This provided a real testbed for
the usefulness of D2RML; here we discuss how it helped solving such mappings
needs. (To save space we omit the dr:referenceFormulation declarations and
write dr:transformationReference as dr:tRef).

Example 1 involved data restructuring: split each joint keyword into a distinct
keywords and separate the each keyword’s terms. To do this, we first extend the
primary set table with a defined column containing the set of split keywords
for each row (op:split splits its input on the provided separator). Then in a
referring object map, we build a new table (dr:SetTable) from each keyword
set, and perform there the splitting on the dashes. In this way we achieve a
restructuring that preserves the connection of each term with the source keyword:

<#EventMap>
rr:logicalTable [dr:source <#FOSource> ; rr:tableName "Events"] ;
dr:definedColumns ([

dr:name "KW" ; dr:function op:split ;
dr:parameterBinding [dr:parameter "input" ; rr:column "keywords"] ;

454 A. Chortaras and G. Stamou

dr:parameterBinding [dr:parameter "separator" ; rr:constant ","]]) ;
rr:subjectMap [rr:template {@tl}{ID}" ; rr:class cge-t:Event] ;
rr:predicateObjectMap [

rr:predicate cge-t:keyword ;
rr:objectMap [

rr:parentTriplesMap [
rr:logicalTable [a dr:SetTable ; dr:transferedColumns ([rr:column "KW"])] ;
rr:subjectMap [rr:class cge-t:Term ; rr:termType rr:BlankNode] ;
rr:predicateObjectMap [

rr:predicate kvoc-t:text ;
rr:objectMap [

dr:definedColumns ([
dr:name "TERM" ; dr:function op:split ;
dr:parameterBinding [dr:parameter "input" ; rr:column "KW"] ;
dr:parameterBinding [dr:parameter "separator" ; rr:constant "-"]]) ;

rr:column "TERM"; rr:termType rr:Literal]]]]] .

In Example 2 we needed maps generating more than one subjects for each
row to link periods with period collections. The solution is to define first a map to
declare each collection as a skos:ConceptScheme, and then a second multi-subject
map to link periods with period collections:

<#CollectionMap1>

dr:logicalSource [dr:source <#PeriodoSource> ; dr:iterator "$.periodCollections.*"] ;

rr:subjectMap [rr:template "{@ark}{$.id}" ;

rr:class periodo:PeriodCollection ; rr:class skos:ConceptScheme] .

<#CollectionMap2>

dr:logicalSource [dr:source <#PeriodoSource> ; dr:iterator "$.periodCollections.*"] ;

rr:subjectMap [rr:template "{@ark}{$.definitions.*.id}"] ;

rr:predicateObjectMap [rr:predicate skos:inScheme ;

rr:objectMap [rr:template "{@ark}{$.id}" ; rr:termType rr:IRI]] .

In Example 3, to avoid joining CSV files, we needed to generate triples
linking admin codes to their geonames ids, and then consult these triples to
resolve admin code references when generating triples for a country’s locations.
To achieve this, we first define ADMIN1Map. Because ADMIN1Map should be executed
first, we include a triples map order statement. According to that ordering,
next is executed CountryMap. This map uses the transformation ADMIN1Trans,
which extends the primary set table by a new column with the geonames id of
the locations admin code. ADMIN1Trans operates on the dr:CurrentModel logical
table, so as to has access to the triples generated by ADMIN1Map. Last comes the
AlternateNamesMap which processes the file with the alternate names and con-
tains conditional statements to decide which predicate it should use for each
entry:

<#Order>

dr:mapOrder (<#ADMIN1Map> <#CountryMap> <#AlternateNamesMap>) .

<#ADMIN1Map>

rr:logicalTable [dr:source <#ADMIN1Source> ; dr:delimiter ";"] ;

rr:subjectMap [rr:template "{@geo}{##3}/"] ;

rr:predicateObjectMap [rr:predicate gn:code ;

rr:objectMap [rr:column "##1" ; rr:termType rr:Literal]] .

<#ADMIN1Trans>

rr:logicalTable [

a dr:CurrentModel ;

dr:sparqlQuery "SELECT ?admin1uri WHERE {?admin1uri gn:code \"{@@name@@}\" }"] ;

dr:parameterBinding [dr:parameter "name" ; rr:template "{##6}.{##7}"] .

<#CountryMap>

rr:logicalTable [dr:source <#CountrySource> ; dr:delimiter ";"] ;

dr:transformations (<#ADMIN1Trans>) ;

Mapping Diverse Data to RDF in Practice 455

rr:subjectMap [rr:template "{@geo}{##1}/" ; rr:class gn:Feature] ;

rr:predicateObjectMap [

rr:predicate gn:parentADM1 ;

rr:objectMap [rr:column "admin1uri" ; dr:tRef <#ADMIN1Trans> ; rr:termType rr:IRI]] .

<#AlternateNamesMap>

rr:logicalTable [dr:source <#AlternateNamesSource> ; dr:delimiter ";"] ;

rr:subjectMap [rr:template "{@geo}{##2}/" ; rr:termType rr:IRI] ;

rr:predicateObjectMap [

rr:predicateMap [

dr:cases ([rr:constant gn:officialName ;

dr:condition [rr:column "##5" ; op:eq "1"]]

[rr:constant gn:alternateName])] ;

rr:objectMap [

rr:column "##4" ; rr:termType rr:Literal ; dr:languageMap [rr:column "##3"] ;

dr:condition [rr:column "##3" ; op:neq "link"]]] ;

rr:predicateObjectMap [

rr:predicate gn:wikipediaArticle ;

rr:objectMap [rr:column "##4" ; rr:termType rr:IRI ;

dr:condition [rr:column "##3" ; op:eq "link"]]]] .

In Example 4 we needed to define three transformations on the primary set
table, the last one of which depended on the first two. The first two (DateMap,
LocationMap) are simple triples maps that use a date/location identification infor-
mation sources. We assume that DateMap returns a JSON array with elements of
the form { "start": start-date-uri, ‘‘end’’: end-date-uri }, as it may iden-
tify several ranges in the input. Similarly, LocationMap returns an array of {
"place": place-uri }. Thus, executing these on the primary set table, we get
the table extended with two new logical columns. Taking values from the new
columns, we can then execute the PeriodoMap transformation. However, we need
to match start with end dates; for this we need to specify a BindingIterator to
declare that we need to iterate on the top level array returned by DateMap:

<#DateMap>

dr:logicalSource [dr:source <#DatifyService> ; dr:iterator "$"] ;

dr:parameterBinding [dr:parameter "text" ; rr:column "chronology"] .

<#LocationMap>

dr:logicalSource [dr:source <#LocalifyService> ; dr:iterator "$"] ;

dr:parameterBinding [dr:parameter "text" ; rr:column "location"] .

<#PeriodoMap>

dr:logicalSource [dr:source <#PeriodoService> ; dr:iterator "$"] ;

dr:bindingIterator [dr:transformationReference <#DateMap> ; dr:reference "$"] ;

dr:parameterBinding [dr:parameter "start" ;

dr:reference "$.start" ; dr:transformationReference <#DateMap>] ;

dr:parameterBinding [dr:parameter "end" ;

dr:reference "$.end" ; dr:transformationReference <#DateMap>] ;

dr:parameterBinding [dr:parameter "place" ;

dr:reference "$.place" ; dr:transformationReference <#LocationMap>] .

<#InscriptionsMap>

rr:logicalTable [dr:source <#InscriptionsSource> ; dr:delimiter "\t"] ;

dr:transformations (<#DateMap> <#LocationMap> <#PeriodoMap>) ;

rr:subjectMap [rr:template "{@bci}{##1}" ; rr:class bci-t:Inscription] ;

rr:predicateObjectMap [

rr:predicate kvoc-t:location ;

rr:objectMap [rr:reference "$.uri" ; dr:tRef <#LocationMap> ; rr:termType rr:IRI]] ;

rr:predicateObjectMap [

rr:predicate kvoc-t:date ;

rr:objectMap [

rr:parentTriplesMap [

rr:subjectMap [rr:class time:DateTimeInterval ; rr:termType rr:BlankNode] ;

rr:predicateObjectMap [

rr:predicate time:hasBeginning ;

rr:objectMap [dr:reference "$.start" ; dr:tRef <#DateMap>]] ;

456 A. Chortaras and G. Stamou

rr:predicateObjectMap [

rr:predicate time:hasEnd ;

rr:objectMap [dr:reference "$.end" ; dr:tRef <#DateMap>]]]]] ;

rr:predicateObjectMap [

rr:predicate kvoc-t:period ;

rr:objectMap [rr:column "$.uri" ; dr:transformationReference <#PeriodoMap>]] .

Our D2RML processor is available at http://apps.islab.ntua.gr/d2rml/.

8 Conclusions

Motivated by practical cases of more complex RDF mapping needs not covered
by existing languages, we presented D2RML, an extension of R2RML and RML,
which, based on an abstract underlying data model, allows the orchestrated
retrieval of data from diverse information sources, their transformation using
relevant web services, their filtering and manipulation using simple operations,
and finally their limited restructuring and mapping to RDF triples.

To offer such capabilities, D2RML adds a programming language flavor to the
mapping process, but we claim that this is necessary if such languages are ever
going to be widely accepted and used in practice. If in a real mapping problem
scenario, the source data do not exactly reflect the structure of the target model,
and the modeler needs extended data manipulation capabilities, they usually
resort to a programming language, thus invalidating the very usefulness of a
mapping language. Our aim was to design a mapping language that would limit
the cases where this occurs and where writing custom code turns out to be
unavoidable. Further extensions to the language will most probably be needed
to accommodate other needs, but the underlying abstract data model provides
a solid ground on which to incorporate such extensions.

Acknowledgements. We acknowledge support of this work by ‘APOLLONIS’ (MIS
5002738), a project implemented under the Action ‘Reinforcement of the Research and
Innovation Infrastructure’, funded by the Operational Programme ‘Competitiveness,
Entrepreneurship and Innovation’ (NSRF 2014-2020) and co-financed by Greece and
the European Union (European Regional Development Fund).

References

1. Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between
RDF and XML with XSPARQL. J. Data Semant. 1(3), 147–185 (2012)

2. Bourhis, P., Reutter, J.L., Suárez, F., Vrgoc, D.: JSON: data model, query lan-
guages and schema specification. In: PODS, pp. 123–135. ACM (2017)

3. Chortaras, A., Stamou, G.: D2RML: integrating heterogeneous data and web ser-
vices into custom RDF graphs. In: LDOW. CEUR Workshop Proceedings (2018)

4. Connolly, D.: Gleaning resource descriptions from dialects of languages (GRDDL)
(2007). https://www.w3.org/TR/grddl/

5. Das, S., Sundara, S., Cyganiak, R.: R2RML: RDB to RDF mapping language
(2012). https://www.w3.org/TR/r2rml/

http://apps.islab.ntua.gr/d2rml/
https://www.w3.org/TR/grddl/
https://www.w3.org/TR/r2rml/

Mapping Diverse Data to RDF in Practice 457

6. Dimou, A., Nies, T.D., Verborgh, R., Mannens, E., de Walle, R.V.: Automated
metadata generation for linked data generation and publishing workflows. In:
LDOW. CEUR Workshop Proceedings, vol. 1593 (2016)

7. Dimou, A., Sande, M.V., Colpaert, P., Verborgh, R., Mannens, E., de Walle, R.V.:
RML: a generic language for integrated RDF mappings of heterogeneous data. In:
LDOW. CEUR Workshop Proceedings, vol. 1184 (2014)

8. Hert, M., Reif, G., Gall, H.C.: A comparison of RDB-to-RDF mapping languages.
In: I-SEMANTICS, ACM International Conference Proceeding Series, pp. 25–32.
ACM (2011)

9. Koch, J., Velasco, C.A., Ackermann, P.: HTTP vocabulary in RDF 1.0 (2017).
https://www.w3.org/TR/HTTP-in-RDF10/

10. Koch, J., Velasco, C.A., Ackermann, P.: Representing content in RDF 1.0 (2017).
https://www.w3.org/TR/Content-in-RDF10/

11. Langegger, A., Wöß, W.: XLWrap – querying and integrating arbitrary spread-
sheets with SPARQL. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS, vol.
5823, pp. 359–374. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-04930-9 23

12. De Meester, B., Dimou, A., Verborgh, R., Mannens, E.: An ontology to semantically
declare and describe functions. In: Sack, H., Rizzo, G., Steinmetz, N., Mladenić,
D., Auer, S., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9989, pp. 46–49. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-47602-5 10

13. Michel, F., Djimenou, L., Zucker, C.F., Montagnat, J.: xR2RML: non-relational
databases to RDF mapping language (2014). https://hal.inria.fr/hal-01066663v1/
document

14. O’Connor, M.J., Halaschek-Wiener, C., Musen, M.A.: M2: a language for mapping
spreadsheets to OWL. In: OWLED. CEUR Workshop Proceedings, vol. 614 (2010)

15. Walsh, N., Snelson, J., Coleman, A.: XQuery and XPath Data Model 3.1 (2017).
https://www.w3.org/TR/xpath-datamodel-31/

https://www.w3.org/TR/HTTP-in-RDF10/
https://www.w3.org/TR/Content-in-RDF10/
https://doi.org/10.1007/978-3-642-04930-9_23
https://doi.org/10.1007/978-3-642-04930-9_23
https://doi.org/10.1007/978-3-319-47602-5_10
https://hal.inria.fr/hal-01066663v1/document
https://hal.inria.fr/hal-01066663v1/document
https://www.w3.org/TR/xpath-datamodel-31/

A Novel Approach and Practical
Algorithms for Ontology Integration

Giorgos Stoilos(B), David Geleta, Jetendr Shamdasani,
and Mohammad Khodadadi

Babylon Health, London, SW3 3DD, UK
{giorgos.stoilos,david.geleta,jetendr.shamdasani,

mohammad.khodadadi}@babylonhealth.com

Abstract. Today a wealth of knowledge and data are distributed using
Semantic Web standards. Especially in the (bio)medical domain several
sources like SNOMED, NCI, FMA, and more are distributed in the form
of OWL ontologies. These can be matched and integrated in order to cre-
ate one large medical Knowledge Base. However, an important issue is
that the structure of these ontologies may be profoundly different hence
using the mappings as initially computed can lead to incoherences or
changes in their original structure which may affect applications. In this
paper we present a framework and novel approach for integrating inde-
pendently developed ontologies. Starting from an initial seed ontology
which may already be in use by an application, new sources are used to
iteratively enrich and extend the seed one. To deal with structural incom-
patibilities we present a novel fine-grained approach which is based on
mapping repair and alignment conservativity, formalise it and provide
an exact as well as approximate but practical algorithms. Our frame-
work has already been used to integrate a number of medical ontologies
and support real-world healthcare services provided by Babylon Health.
Finally, we also perform an experimental evaluation and compare with
state-of-the-art ontology integration systems that take into account the
structure and coherency of the integrated ontologies obtaining encour-
aging results.

Keywords: Ontology integration · Ontology matching
Ontology alignment · Conservativity · Mapping repair

1 Introduction

Today a wealth of knowledge and data are distributed using Semantic Web tech-
nologies and standards. For example, the Linked Open Vocabularies effort [22]
contains more than 600 ontologies for various subjects like geography, multi-
media, security, geometry, and more. Especially in the biomedical domain, a
large number of ontologies have been developed during the previous decades like
SNOMED,1 NCI [5], UMLS,2 the Disease ontology [16] and many more, while
1 https://www.snomed.org/.
2 https://uts.nlm.nih.gov/home.html.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 458–476, 2018.
https://doi.org/10.1007/978-3-030-00671-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_27&domain=pdf
https://www.snomed.org/
https://uts.nlm.nih.gov/home.html

A Novel Approach and Practical Algorithms for Ontology Integration 459

Algorithm 1. postProcessKBStructure(O1,O2,M,Config)
Input: Two coherent ontologies O1, O2 and a set of mappings M between them.

1: Mm-1 := {〈Ci, D〉 | {〈Ci, D〉, 〈Cj , D〉} ⊆ M ∧ Ci �= Cj}.
2: M′ := M \ Mm-1

3: for all D ∈ Sig(O2) do
4: M′ := M′ ∪ disambiguate-m-1({〈Ci, D〉 | 〈Ci, D〉 ∈ Mm-1}, Config)
5: end for
6: Exclusions := ∅
7: ConflictSets := {{m1, m2} | O1 ∪ O2 ∪ {m1, m2} |= A
 B, O1 �|= A
 B}
8: for all {〈A, A′〉, 〈B, B′〉} ∈ ConflictSets with O2 |=rdfs A′
 B′ do
9: Exclusions := Exclusions ∪ {A′
 E | A′
 E ∈ O2, O2 |=rdfs E
 B′}

10: end for
11: return 〈O2 \ Exclusions, M′〉

BioPortal [15] is a repository of more than 600 biomedical ontologies. Identifying
the common entities between these vocabularies and integrating them is benefi-
cial for building ontology-based applications as one could unify complementary
information that these vocabularies contain building a “complete” Knowledge
Base (KB).

The problem of computing correspondences (mappings) between different
ontologies is referred to as ontology matching or alignment [18]. A number of
ontology matching systems have been developed in the past and have shown
to behave well in practice. However, besides classes with their respective labels
ontologies usually bring a class hierarchy and depending on how they have been
conceptualised they may exhibit significant incompatibilities. For example, in
NCI proteins are declared to be disjoint from anatomical structures whereas in
FMA proteins are subclasses of anatomical structures. Hence, integrating them
without taking into account their logical axioms may lead to many undesired
consequences like unsatisfiable classes [11] and/or changes in their initial struc-
ture [6]. For these reasons the notions of conservative alignment [6,19,20] and
mapping repair [8,12] have been proposed in the literature. These notions dictate
that the mappings should not alter the original ontology structure or introduce
unsatisfiable concepts. If they do, then a so-called violation occurs which needs
to be repaired by discarding some of the mappings.

Unfortunately, dropping mappings introduces another problem which is the
increase of ambiguity and redundancy. For example, if one drops all mappings
between NCI and FMA proteins (due to their structural incompatibilities), then
the integrated ontology will contain at least two classes for the same real-world
entity. Apart from an unnecessary increase in the size of the integrated ontology
this introduces ambiguity and decreases interoperability between services that
use classes from the KB. The problem becomes more acute if further sources are
integrated in which case we may end up with multiple classes representing the
same real-world entity.

460 G. Stoilos et al.

Algorithm 2. postProcessNewOntoStructure(O1,O2,M,Config)
Input: Two ontologies O1, O2 and a set of mappings M computed between them.

1: M1-m := {〈C, Di〉 | {〈C, Di〉, 〈C, Dj〉} ⊆ M ∧ Di �= Dj}.
2: M′ := M \ M1-m

3: for all C ∈ Sig(O1) do
4: M′ := M′ ∪ disambiguate-1-m({〈C, Di〉 | 〈C, Di〉 ∈ M1-m}, Config)
5: end for
6: ConflictSets := {{m1, m2} | O1 ∪ O2 ∪ {m1, m2} |= A
 B, O2 �|= A
 B}
7: for all {〈D1, D

′
1〉, 〈D2, D

′
2〉} ∈ ConflictSets do

8: if no D such that O2 |=rdfs D
 D′
1 � D′

2 exists then
9: if D′

1
 ¬D′
2 ∈ O2 and C exist s.t. O1 ∪ O2 ∪ M′ |=rdfs C
 D′

1 � D′
2 then

10: prune(M′ ∪ O2, {{〈D1, D
′
1〉, 〈D2, D

′
2〉}, {D′

1
 ¬D′
2}})

11: else if semSim(D′
1, D

′
2) ≤ Config.Distance.thr then

12: prune(M′, {{〈D1, D
′
1〉, 〈D2, D

′
2〉}})

13: end if
14: end if
15: end for
16: return 〈O2, M′〉

An effort to construct a large medical KB by integrating existing medical
sources recently started in Babylon Health.3 The KB would serve as the back-
bone for healthcare services (diagnosis, drug prescription, and more) as well as
for other tasks like medical text annotation, understanding, and reasoning. For
these purposes a modular and highly configurable ontology integration frame-
work was implemented which is using ontology mapping to discover correspon-
dences between a new medical source and the current KB and enrich the latter
with new medical knowledge. There were two major requirements in this effort.
First, integrating new sources should not affect the behaviour of the services
already functioning with the KB, hence its structure should not change when
new sources are integrated. Moreover, the KB should not contain many enti-
ties with a large label overlap as this complicates text annotation tasks as well
as doctors who are selecting classes form the KB for diagnostic purposes. To
address these requirements our framework is using the notion of conservativity
for tracking the structural changes, however, in order to repair them we pro-
pose a novel fine-grained approach which avoids dropping mappings as much as
possible.

First, violations stemming from mappings of higher-multiplicity (i.e., those
that map two entities from one ontology to the same entity in the other) are
separated from the rest and both are treated differently since they are of different
nature. The former are repaired by altering the mappings, however, the latter
are repaired by dropping axioms from the new ontology. Our motivation is that
services have already committed to the structure of the KB and parts of the new
ontology that are in disagreement with this conceptualisation can be dropped. In

3 https://www.babylonhealth.com/.

https://www.babylonhealth.com/

A Novel Approach and Practical Algorithms for Ontology Integration 461

addition, this approach helps reduce ambiguity and duplication of the integrated
ontology as much as possible. Regarding violations on the structure of the new
ontology, again a distinction between mappings of higher-multiplicity and the
rest is made. The former are repaired by dropping mappings, however, the latter
can be allowed since, as stated, the hierarchy of the new ontology is given low
priority and various heuristics proposed in the literature can be used to guide
this process. We formalised our framework using the notion of a (maximal) safe
extension of a KB and provided an exact algorithm that is based on computing
all repair plans [6].

Unfortunately, detecting all repair plans is known to be computationally
very expensive [8,12]. Consequently, we next present a concrete implementa-
tion of our framework which is using approximate but efficient algorithms for
violation detection (all state-of-the-art systems are based on approximate algo-
rithms). Our implementation has already been used to create a medical KB by
integrating SNOMED, NCI, FMA, and CHV, and is currently under use within
Babylon. We conclude the paper with an experimental evaluation and a com-
parison against state-of-the-art mapping repair systems obtaining encouraging
results. In more detail, our implementation is currently the only one that can
apply a general conservativity-based mapping repair strategy (not only mapping
coherency detection) on such a large KB while the created KB contains far less
distinct classes with overlapping labels (i.e., less ambiguity and duplication). In
addition, it was the only approach for which no conservativity violations could
be detected in the integrated KB.

2 Ontologies and Ontology Matching

For brevity reasons, throughout the paper we will use Description Logic notation.
For a set of real numbers S we use ⊕S to denote the sum of its elements. For p
an ontology prefix and C some class we sometimes write p:C to denote that C
appears in ontology with prefix p. Hence, for IRI prefixes p1 �= p2, p1:C and p2:C
denote different classes. For an ontology O we use Sig(O) to denote the set of
classes that appear in O. Given an ontology O we assume that all classes C in O
have at least one triple of the form 〈C skos:prefLabel v〉 and zero or more triples
of the form 〈C skos:altLabel vi〉. For a given class C function pref(C) returns the
string value v in the triple 〈C skos:prefLabel v〉. An ontology is called coherent
if every C ∈ Sig(O) with C �= ⊥ is satisfiable.

In the literature, the notion of a Knowledge Base is almost identical to that
of an ontology, i.e., a set of axioms describing the entities of a domain. In the
following, we loosely use the term “Knowledge Base” (KB) to mean a possibly
large ontology that has been created by integrating various other ontologies but,
formally speaking, a KB is an OWL ontology.

Ontology matching (or ontology alignment) is the process of discovering cor-
respondences (mappings) between the entities of two ontologies O1 and O2. To
represent mappings we use the formulation presented in [12]. That is, a mapping
between O1 and O2 is a 4-tuple of the form 〈C,D, ρ, n〉, where C ∈ Sig(O1)

462 G. Stoilos et al.

D ∈ Sig(O2), ρ ∈ {≡,	,
} is the mapping type, and n ∈ (0, 1] is the confidence
value of the mapping. Moreover, we interpret mappings as DL axioms—that is,
〈C,D, ρ, n〉 can be seen as the axiom C ρ D with the degree attached as an
annotation. Hence, for a mapping 〈C,D, ρ, n〉 when we write O ∪ {〈C,D, ρ〉}
we mean O ∪ {C ρ D} while for a set of mappings M, O ∪ M denotes the set
O ∪ {m | m ∈ M}. When not relevant and for simplicity we will often omit ρ
and n and simply write 〈C,D〉. A matcher is an algorithm that takes as input
two ontologies and returns a set of mappings.

3 An Ontology Integration Framework

Large KBs can be constructed by integrating existing, complementary, and pos-
sibly overlapping ontologies. For example, in the biomedical domain, ontologies
for diseases, drugs, drug side-effects, genes, and so on, exist that can be inte-
grated in order to build a large medical KB. However, before putting two sources
together it would be beneficial to discover their overlapping parts and establish
mappings between their equivalent entities.

Example 1. Consider an ontology-based medical application that is using the
SNOMED ontology Osnmd as a KB. Although SNOMED is a large and well-
engineered ontology it is still missing medical information like textual definitions
for all classes as well as relations between diseases and symptoms. For example,
for class the notion of “Ewing Sarcoma” SNOMED only contains the axiom
snmd:EwingSarcoma
 snmd:Sarcoma and no relations to signs or symptoms. In
contrast, the NCI ontology Onci contains the following axiom about this disease:

nci:EwingSarcoma
 ∃nci:mayHaveSymptom.nci:Fever

We can use ontology matching to establish links between the related entities in
Osnmd and Onci and then integrate the two sources in order to enrich our KB.
More precisely, using the labels of the aforementioned classes we can identify the
following mappings:

m1 = 〈snmd:EwingSarcoma, nci:EwingSarcoma,≡〉
m2 = 〈snmd:Fever, nci:Fever,≡〉

and hence replace our KB with O′
snmd := Osnmd ∪ Onci ∪ {m1,m2}. Then, O′

snmd

contains the knowledge that “Ewing sarcoma may have fever as a symptom”. ♦
Unfortunately, it is well-known that integrating ontologies using the initially
computed mappings can lead to unexpected consequences like, introducing
unsatisfiable classes [11] or structural changes to the input ontologies [6].

Example 2. Consider again the SNOMED and NCI ontologies. Both ontologies
contain classes for the notion of “soft tissue disorder” and “epicondylitis”. Hence,
it is reasonable for a matching algorithm to compute the following mappings:

m1 = 〈snmd:SoftTissueDisorder, nci:SoftTissueDisorder,≡〉
m2 = 〈snmd:Epicondylitis, nci:Epicondylitis,≡〉

A Novel Approach and Practical Algorithms for Ontology Integration 463

Algorithm 3. KnowledgeBaseConstruction(KB,O,Config)
Input: The current KB KB, a new ontology O and a configuration Config.

1: Mappings := ∅
2: for all matcher : Config.Align.Matchers do
3: for all 〈C, D, ρ, n〉 ∈ matcher(KB, O) do
4: Mappings := Mappings ∪ {〈C, D, ρ, n, matcher〉}
5: end for
6: end for
7: Mf := ∅
8: w = ⊕{matcher.w | matcher ∈ Config.Align.Matchers}
9: for all 〈C, D, ρ, , 〉 ∈ Mappings such that no 〈C, D, ρ, n〉 exists in Mf do

10: n := ⊕{ni × matcher.w | 〈C, D, ρ, ni, matcher〉 ∈ M}/w
11: if n ≥ Config.Align.thr then
12: Mf := Mf ∪ {〈C, D, ρ, n〉}
13: end if
14: end for
15: 〈O′, Mf 〉 := postProcessNewOntoStructure(KB, O, Mf , Config)
16: 〈O′, Mf 〉 := postProcessKBStructure(KB, O′, Mf , Config)
17: return KB ∪ O′ ∪ Mf

However, in NCI we have Onci |= nci:Epicondylitis
 nci:SoftTissueDisorder while
in SNOMED Osnmd �|= snmd:Epicondylitis
 snmd:SoftTissueDisorder. Hence, in
the integrated ontology we will have:

Osnmd ∪ Onci ∪ {m1,m2} |= snmd:Epicondylitis
 snmd:SoftTissueDisorder

introducing a relation between classes of Osnmd that did not originally hold and
which can have a significant impact on the services of our application which are
already based on the structure of Osnmd. ♦
The amount of such structural changes can be captured by the notion of logical
difference [9]. Like in [6] for performance reasons we also use an approximate
version of logical difference formalised next.

Definition 1 ([6]). Let A,B be atomic classes (including �,⊥), let Σ be a sig-
nature and let O and O′ be two OWL 2 ontologies. The approximation of the
Σ-deductive difference between O and O′ (denoted diff≈

Σ(O,O′)) as the set of
axioms of the form A
 B satisfying: (i) A,B ∈ Σ, (ii) O �|= A
 B, and (iii)
O′ |= A
 B.

Using logical difference, the notion of a conservative alignment has been
proposed in the literature [6,19,20] which dictates that for two ontologies O1

and O2 and for Σ1 = Sig(O1) and Σ2 = Sig(O2) the set of mappings M must
be such that diff≈

Σ1
(O1,O1 ∪ O2 ∪ M) and diff≈

Σ2
(O2,O1 ∪ O2 ∪ M) are empty.

An axiom belonging to either of these sets is called a (conservativity) violation
and can be “repaired” by removing mappings form the initially computed sets.

464 G. Stoilos et al.

Based on the above we have designed a Knowledge Base construction algo-
rithm that is depicted in Algorithm 3. The algorithm accepts as input the current
KB KB, a new ontology O which will be used to enrich KB and a configura-
tion Config. The configuration is used to tune and change various parameters like
thresholds etc., many of which will be described in the rest of the paper. In brief,
the algorithm first applies a set of matchers in order to compute a set of map-
pings between KB and O (lines 1–6). The set of matchers to be used is specified
in the configuration object (Config.Align.Matchers) and each of them has a differ-
ent weight assigned (matcher.w). After all matcher have finished, the mappings
are aggregated and a threshold is applied (Config.Align.thr) in order to keep only
mappings with a high confidence (lines 7–14). As mentioned previously, these
mappings are still not the final ones since they may cause conservativity viola-
tions. These are handled by two functions, namely postProcessNewOntoStructure
and postProcessKBStructure which are discussed in detail in the next section.

4 Safe Ontology Integration

The typical approach to resolve conservativity violations so far has been to
remove mappings [6,8,19,20]. However, this approach may introduce other issues
like having distinct classes with a large overlap in their labels, hence introducing
redundancy and ambiguity. Assume for instance, that in Example 2 we drop map-
ping m2. Then, the integrated ontology will contain two different classes for the
real-world notion of “epicondylitis” (i.e., nci:Epicondylitis and snmd:Epicondylitis)
each with overlapping labels. Subsequently, a service that is using the former
class internally cannot interoperate with a service that is using the latter as
there is no axiom specifying that the two classes are actually the same.

Instead of removing mappings, another way to repair a violation is by remov-
ing axioms from one of the input ontologies.

Example 3. Consider again Example 2 where Osnmd serves as the current version
of the application KB. Instead of computing KBint

1 := Osnmd ∪ Onci ∪ {m1,m2}
as in Example 2 assume that we compute the following:

KBint
2 := KBint

1 \ {nci:Epicondylitis
 nci:SoftTissueDisorder}

Then, we have KBint
2 �|= snmd:Epicondylitis
 snmd:SoftTissueDisorder and hence

diff≈
Sig(Osnmd)

(Osnmd,KBint
2) = ∅ as desired. ♦

This approach is reasonable if we assume that an application is already using
some Knowledge Base and the role of new ontologies is to enrich and extend it
with new information but without altering its structure. Then, parts of the new
ontology that cause violations can be dropped.

However, not all violations can be repaired by removing axioms from O2.
This is the case for mappings of higher multiplicity, i.e., those that map two
different classes of one ontology to the same class in the other.

A Novel Approach and Practical Algorithms for Ontology Integration 465

Example 4. Consider again ontology Osnmd and Onci. SNOMED contains classes
Eczema and AtopicDermatitis whereas NCI contains class Eczema that also has
“Atopic Dermatitis” as an alternative label. Hence, a matching algorithm could
create two mappings of the form:

m1 = 〈snmd:Eczema, nci:Eczema,≡〉
m2 = 〈snmd:AtopicDermatitis, nci:Eczema,≡〉

which imply that snmd:Ezcema and snmd:AtopicDermatitis are equivalent
although this is not the case in Osnmd. ♦
In these cases it is clear that the only way to repair such violations is by alter-
ing the mapping set. One approach would be to drop one of the two map-
pings or perhaps even change their type from ≡ to
 or 	 and we argue that
the choice is case dependent. In the previous example, we may decide that
SNOMED is more granular than NCI in the sense that Atopic Dermatitis is
a type of Eczema whereas the NCI term captures a more general notion. Hence,
we may decide to change the mappings to 〈snmd:Eczema, nci:Eczema,
〉 and
〈snmd:AtopicDermatitis, nci:Eczema,
〉. However, we may also conclude that the
alternative labels in NCI don’t strictly denote synonym (alternative) terms for
diseases but rather similar ones and hence decide to drop mapping m2.

Based on the above we introduce the notion of a safe extension of an ontology.

Definition 2. Let O1 and O2 be two ontologies and let M be a set of mappings
computed between them. The safe extension of O1 w.r.t. O2,M is a pair 〈O′,M′〉
such that O′ ⊆ O2,M′ ⊆ M and diff≈

Σ(O1,O1 ∪ O′ ∪ M′) = ∅ for Σ = Sig(O1).

The pair of an empty ontology and set of mappings (〈∅, ∅〉) is a trivial safe
extension but one is usually interested in some maximal safe extension similar
to the notion of diagnosis in mapping repair [8].

Definition 3. Let O1 and O2 be two ontologies and let M be a set of mappings
computed between them. A safe extension 〈O′,M′〉 of O1 w.r.t. O2,M is called
maximal if no safe extension 〈O′′,M′′〉 exists s.t. either O′′ ⊃ O′ or M′′ ⊃ M′.

Motivated by the above we have designed Algorithm 4 that accepts as input
two ontologies O1,O2 and returns a subset of O2 and a subset of M in an
attempt to compute a safe extension. The algorithm first processes mappings of
higher multiplicity w.r.t. entities in O1 using function disambiguate-m-1 whose
properties are formalised next.

Definition 4. Given a set of mappings M = {〈C1,D〉, 〈C2,D〉, . . . 〈Cn,D〉}
function disambiguate-m-1 returns a set M′ ⊆ M that satisfies the following
property: it contains either a single mapping of the form 〈Ci,D,≡〉 or only map-
pings of the form 〈Ci,D,	〉.

Afterwards, the algorithm calls algorithm allPlans [6] passing the appropriate
parameters in order to compute sets of axioms each of which has the following

466 G. Stoilos et al.

Algorithm 4. postProcessKBStructure(O1,O2,M,Config)
Input: Two coherent ontologies O1, O2, a set of mappings M, and a Config object.

1: Mm-1 := {〈Ci, D〉 | {〈Ci, D〉, 〈Cj , D〉} ⊆ M ∧ Ci �= Cj}.
2: M′ := M \ Mm-1

3: for all D ∈ Sig(O2) do
4: M′ := M′ ∪ disambiguate-m-1({〈Ci, D〉 | 〈Ci, D〉 ∈ Mm-1}, Config)
5: end for
6: P := allPlans(O1 ∪ O2 ∪ M′, O2, ∅, diff≈

Σ(O1, O1 ∪ O2 ∪ M′)) where Σ = Sig(O1)
7: Pick some P ∈ P such that no P ′ ∈ P exists with P ′ ⊂ P
8: return 〈O2 \ P, M′〉

property: if it is removed from O2 then all violations would be repaired. From
all those sets the algorithm picks some minimal one (w.r.t. ⊆) and removes it
from O2.

Lemma 1. Let O1 and O2 be two coherent ontologies and let M be a set of
mappings between them such that every class in O2 is satisfiable in O1∪O2∪M.
When applied on O1,O2 and M Algorithm 4 returns a maximal safe extension
of O1 w.r.t. O2,M.

Although, we are strict with respect to violations that are implied by the
mappings to the structure of the KB, we can be more relaxed with respect to
violations over the ontology that is being used for the enrichment. Several heuris-
tics have been presented in the literature in order to decide which violations to
allow and which to repair. A violation A
 B ∈ diff≈

Sig(O2)(O2,O1 ∪ O2 ∪ M)
may be allowed if A and B are somehow semantically related, e.g., if A and B
have a common descendant [19]. In contrast, a violation should be repaired if
O2 |= A
 ¬B, i.e., A and B are disjoint [11] or if the assumption of disjoint-
ness [13] can be applied to them—that is, if A and B are in different (distant)
parts of the hierarchy of O2 and hence we can assume that they are disjoint.

Motivated by the above we have designed Algorithm 5. Like before map-
pings of higher multiplicity are treated separately by function disambiguate-1-m.
Afterwards, the algorithm iterates over all violations w.r.t. ontology O2 and uses
many of the aforementioned heuristics, like common descendants (line 8), unsat-
isfiability of classes (lines 9–12) and semantic or taxonomical similarity using
function semSim and a pre-defined threshold Config.Distance.thr (lines 13–16) in
order to decide to repair them or not. To figure out how to repair a violation
algorithm allPlans is utilised again. This time M′ (and possibly O2) instead of
O1 is passed as a second parameter since we don’t want the plans to contain
axioms from O1. Note that in case some class A is unsatisfiable in the inte-
grated ontology either mappings from M′ or axioms from O2 that lead to this
unsatisfiability may be selected to be removed. This choice was motivated by the
conceptual differences between NCI and FMA regarding anatomical structures
and proteins which are disjoint in one ontology but semantically related in the
other. The choice of which plan to pick to remove is again case dependent hence
we abstract this away using the function prune which picks at-least one plan.

A Novel Approach and Practical Algorithms for Ontology Integration 467

Algorithm 5. postProcessNewOntoStructure(O1,O2,M,Config)
Input: Ontologies O1, O2, set of mappings M, and Config object.

1: M1-m := {〈C, Di〉 | {〈C, Di〉, 〈C, Dj〉} ⊆ M ∧ Di �= Dj}.
2: M′ := M \ M1-m

3: for all C ∈ Sig(O1) do
4: M′ := M′ ∪ disambiguate-1-m({〈C, Di〉 | 〈C, Di〉 ∈ M1-m}, Config)
5: end for
6: LDiff := diff≈

Σ(O2, O1 ∪ O2 ∪ M′) where Σ = Sig(O2)
7: for all A
 B ∈ LDiff do
8: if no C such that O2 |= C
 A � B exists then
9: if B = ⊥ then

10: O¬
2 := {C
 ¬D | C
 ¬D ∈ O2}

11: P := allPlans(O1 ∪ O2 ∪ M′, O¬
2 ∪ M′, ∅, {A
 ⊥})

12: prune(M′ ∪ O2, P)
13: else if semSim(A, B) ≤ Config.Distance.thr then
14: P := allPlans(O1 ∪ O2 ∪ M′, M′, ∅, {A
 B})
15: prune(M′, P)
16: end if
17: end if
18: end for
19: return 〈O2, M′〉

Lemma 2. Let O1 and O2 be two coherent ontologies and let M be a set of
mappings between them. When applied on O1,O2 and M Algorithm 5 returns a
pair 〈O′,M′〉 such that every class in O′ is satisfiable in O1 ∪ O′ ∪ M′.

Using Lemmas 1 and 2 we can show the main result of our paper.

Theorem 1. Let KB and O be two coherent ontologies, let Config be some con-
figuration and let KB′ be the output of Algorithm 3 when applied on KB,O and
Config. Then the following hold:

1. diff≈
Σ(KB,KB′) = ∅ where Σ = Sig(KB).

2. KB′ is coherent.

5 Practical Algorithms

We have provided with concrete implementations of the algorithms and functions
presented in the previous section. Regarding matching (lines 2–6 of Algorithm 3),
two in-house label-based matchers have been implemented, namely ExactLa-
belMatcher and FuzzyStringMatcher. The former builds an inverted index of
class labels [3] after some string normalisations, like removing possessive cases
(e.g., Alzheimer’s) and singularisation [10], and matches ontologies using these
indexes. The latter is based on the ISub string similarity metric [21]. Since this
algorithm does not scale well on large inputs [3] it is mostly used for disambiguat-
ing higher-multiplicity mappings or if we wish to re-score subsets of mappings

468 G. Stoilos et al.

Algorithm 6. planApproximation(O1,O2,M)
Input: Two ontologies O1 and O2 a set of mappings between them.

1: Exclusions := ∅
2: ConflictSets := {{m1, m2} | O1 ∪ O2 ∪ {m1, m2} |=rdfs A
 B, O1 �|=rdfs A
 B}
3: for all {〈A, A′〉, 〈B, B′〉} ∈ ConflictSets with O2 |=rdfs A′
 B′ do
4: Exclusions := Exclusions ∪ {A′
 E | A′
 E ∈ O2, O2 |=rdfs E
 B′}
5: end for
6: return Exclusions

with low confidence degrees. In addition to these matchers, the state-of-the-art
systems AML [4] and LogMap [7] can also be used in Algorithm 3.

Regarding functions disambiguate-m-1 and disambiguate-1-m the following
strategy has been implemented so far:

For a set of mappings {〈C1,D〉, 〈C2,D〉, . . . , 〈Cn,D〉} and some real-value
threshold Config.Disamb.th, if i ∈ [1, n] exists such that the following two
conditions hold:
1. ISub(pref(Ci), pref(D)) > ISub(pref(Cj), pref(D)) for every j �= i and
2. ISub(pref(Ci), pref(D)) ≥ Config.Disamb.th

then return 〈Ci,D〉. Similarly in function disambiguate-1-m for sets of map-
pings of the form {〈C,D1〉, 〈C,D2〉, . . . , 〈C,Dn〉}.

A major practical consideration of Algorithms 4 and 5 is the call to algo-
rithm allPlans. This algorithm does not scale in practice since it iterates over the
power-set of the second parameter (i.e., O2) [6]. Consequently, as usually done
in literature [8,19] we are using approximations of plan computation and viola-
tion repair. More precisely, lines 6 and 7 in Algorithm 4 are replaced by the call
P := planApproximation(O1,O2,M′) where the implementation of this function
is given in Algorithm 6 and is inspired by the Alcomo repair algorithm [8,12].
This algorithm is based on the assumption that logical differences of the form
A
 B stem from exactly two mappings which map classes A and B for which
O1 �|= A
 B to classes A′ and B′ in O2 for which a path of SubClassOf axioms
in O2 exists (|=rdfs), hence implying changes in the structure of O1. Although
in theory this may not always be the case, most violations in practice do follow
this pattern. For every such pair of mappings the algorithm picks to remove from
O2 some axiom of the form A′
 E, i.e., it tries in some sense to remove the
“weakest” axiom from O2. This choice is motivated by belief revision and the
principle of minimal change [1].

Example 5. Consider for example the following two ontologies:

O1 = {D
 C,C
 B}
O2 = {W
 Z,Z
 Y, Y
 X}

and assume the set of mappings M = {m1,m2} where m1 = 〈D,Y 〉 and m2 =
〈B,W 〉. Clearly, for Σ = Sig(O1) we have B
 D ∈ diff≈

Σ(O1,O1 ∪O2 ∪M) and
we can repair this violation by either removing ax1 = W
 Z or ax2 = Z
 Y .

A Novel Approach and Practical Algorithms for Ontology Integration 469

Algorithm 7. newOntologyApproximate(O1,O2,M)
1: ConflictSets := {{m1, m2} | O1 ∪ O2 ∪ {m1, m2} |=rdfs A
 B, O2 �|= A
 B}
2: for all {〈D1, D

′
1〉, 〈D2, D

′
2〉} ∈ ConflictSets do

3: if no D such that O2 |=rdfs D
 D′
1 � D′

2 exists then
4: if D′

1
 ¬D′
2 ∈ O2 and C exist s.t. O1 ∪ O2 ∪ M′ |=rdfs C
 D′

1 � D′
2 then

5: prune(M′ ∪ O2, {{〈D1, D
′
1〉, 〈D2, D

′
2〉}, {D′

1
 ¬D′
2}})

6: else if semSim(D′
1, D

′
2) ≤ Config.Distance.thr then

7: prune(M′, {{〈D1, D
′
1〉, 〈D2, D

′
2〉}})

8: end if
9: end if

10: end for

Ontologies O1 and O2 as well as KBs KBint
ax1

= O1 ∪ O2 \ {ax1} ∪ M and
KBint

ax2
= O1 ∪ O2 ∪ \{ax1} ∪ M are depicted graphically in Fig. 1, where solid

lines denote subclass relations, and dashed lines the two mappings. As we can
see, although both integrated ontologies do not exhibit violations over O1, the
two cases differ in the amount of changes they impose on the classes of O1. More
precisely, for S(O1,O2,M) = {A
 B | A ∈ Sig(O1),O1∪O2∪M |= A
 B} we
have S(O1,O2\{ax2},M)\S(O1,O2\{ax1},M) = {B
 Z,C
 Z,D
 Z,D

X}. Indeed, in this scenario Algorithm 5 will compute Exclusions := {ax1}. ♦

Fig. 1. Ontologies of Example 5 and resulting KBs; with bold we denote classes from
O2.

Following a similar approach, the block of lines 6–18 in Algorithm 5 is
replaced by the steps depicted in Algorithm 7. Again these steps assume that
violations stem from pairs of “conflicting” mappings like those mentioned above.
Similarly to Algorithm 5, we are again using the heuristics of common descen-
dants, disjoint classes and class similarity as a guide for repairing the violations;
all entailments are checked using RDFS-entailment.

Using Algorithm 3 and the techniques presented above we have started build-
ing a large medical KB to be used within Babylon Health. We used the SNOMED

470 G. Stoilos et al.

January 2018 release (which contains 340K classes and 511K SubClassOf
axioms) as a starting seed KB (KB1) and have so far iteratively integrated the
following ontologies: NCI version 17.12d (which contains 130K classes and 143K
SubClassOf axioms), CHV latest version from 2011 (which contains 57 K classes
and 0 SubClassOf axioms) and FMA version 4.6.0 (which contains 104K classes
and 255K SubClassOf axioms); all ontologies are from the official websites. As
a matching algorithm we have so far used our ExactLabelMatcher. Statistics
about the KBs that we created after each integration are depicted in Table 1.
CHV is a flat list of layman terms of medical concepts. From that ontology we
only integrated label information for the classes in CHV that mapped to some
class in the Babylon KB; hence only data type properties increased in the KB in
that step. The final KB is currently under use by various services within Babylon
and we are in the process of also integrating the following resources: SNOMED
drug extensions, ICD-10, Read Codes, MeSH, and more.

Table 1. Statistics about the KB after each integration/enrichment iteration.

SNOMED +NCI +CHV +FMA

Classes 340 995 429 241 429 241 524 837

Properties 93 124 124 219

SubClassOf axioms 511 656 617 542 617 542 713 313

ObjPropAssertions 526 146 664 742 664 742 962 190

DataPropAssertions 543 416 946 801 1 043 874 1 211 459

6 Evaluation

We have conducted an experimental evaluation in order to assess the effectiveness
of our approach for integrating ontologies and remedying conservativity viola-
tions. Using SNOMED as our initial Knowledge Base we once integrated NCI and
then FMA (starting again from scratch). We used our ExactLabelMatcher once
with and once without the last post-processing steps in Algorithm 3 (lines 15
and 16). In the following we call the former setting bOWLing and the latter
bOWLingn. We used the latter setting as a “naive” baseline approach.

In addition, we also run Algorithm 3 using AML and two versions of LogMap
called LogMapo and LogMapc in the following. AML and LogMapo repair map-
pings with respect to coherency, i.e., they only check for conservativity violations
that lead to unsatisfiable classes. NCI contains 196 while FMA 33.5K disjoint
classes axioms so this mapping repair is relevant. In contrast, LogMapc also
checks for more general conservativity violations using the techniques presented
in [19]. For all these systems we disabled the post-processing steps of Algo-
rithm 3 in order to assess their mapping repair functionality. On the mapping
sets computed by bOWLingn and LogMapo we have also run Alcomo [12] as a
post-processing step. Alcomo is not a general matcher but a mapping repair

A Novel Approach and Practical Algorithms for Ontology Integration 471

system that can be used as a post-processing step. In the following we denote
these settings as bOWLingAlcn and LogMapAlco .

Algorithm 3 did not terminate with AML and LogMapc after running for
more than 16 h. As a second attempt we fragmented the ontologies into modules
(using a
-reachability based algorithm starting from top-level classes) and fed
these one by one to Algorithm 3. For NCI we extracted 53 while for FMA 6
modules. Even in this case AML did not terminate when integrating FMA.

Table 2. Evaluation results

SNOMED+NCI

|M| |KBint| |LDiff| Time Loops ambiguity

bOWLingn 30 675 677 939 t.o. 12.7 127 16 708

bOWLingAlc
n 26 825 666 834 0.9m 35.9 100 17 177

bOWLing 19 258 638 702 0 12.2 0 7 810

LogMapo 27 967 664 837 1.7m 120.9 74 17 632

LogMapAlc
o 27 763 664 354 1.5m 141.7 71 16 986

LogMapc 21 838 433 711 897 54.4 0 8,266

AML 32 623 635 876 t.o. 75.0 298 14 353

SNOMED+FMA

|M| |KBint| |LDiff| Time Loops ambiguity

bOWLingn 8 809 614 728 240k 7.0 3 1 946

bOWLingAlc
n 7 886 615 291 93k 76.2 1 2 000

bOWLing 8 176 608 060 0 27.9 0 1 440

LogMapo 7 334 615 252 117k 360.4 1 2 264

LogMapAlc
o 6 986 615 689 57k 428.4 1 2 253

LogMapc 6 036 420 424 517 14 004.8 0 1 553

Our results are summarised in Table 2 where we give the number of computed
mappings (|M|), the number of SubClassOf axioms in the integrated ontology
(|KBint|), the number of axioms in diff≈

Sig(KB)(KB,KBint) (denoted by |LDiff| and
with “m” denoting millions), and the time to compute KBint (in minutes). Due
to the very large size of the KB LDiff cannot be computed by any OWL reasoner
so we computed the RDFS-level differences by simply traversing the SubClassOf
hierarchy of the KB. In addition, we have also computed the following:

– number of cycles of the form {A1
 A2, . . . , An
 A1} ⊆ KBint. From a
semantic point of view such cycles are not problematic, however, they do
complicate graph-based algorithms like hierarchy traversal, extracting paths
and depth counting, hence it is a design decision in Babylon to avoid them;
input ontologies contain no cycles.

472 G. Stoilos et al.

– a notion of “ambiguity” which we defined as the number of times a label
appears in two different classes of a given ontology. We also calculated this
metric over the original SNOMED, NCI, and FMA ontologies in order to mea-
sure their level of ambiguity. We obtained 1 055, 4 873, and 282, respectively,
e.g., in SNOMED 1 055 labels appear in multiple classes.

First thing to note from the table is that all systems compute mapping sets of
comparable size with the exception of bOWLing on SNOMED+NCI which com-
putes a smaller mapping sets. This is mostly due to functions disambiguate-m-1
and disambiguate-1-m which prune mappings of higher-multiplicity. However,
we should note that all mappings computed by this approach are one-to-one
mappings, while in all other approaches from the roughly 27k mappings about
17k are actually one-to-one (i.e., fewer than those of bOWLing). The application
of Alcomo on the mapping sets does remove some mappings in an attempt to
repair the sets while LogMapc that uses a general conservativity-based repairing
approach also computes fewer mappings than LogMapo.

As expected, the ontology produced by bOWLing contains fewer axioms due
to the axiom exclusion strategy implemented in line 16 of Algorithm 3 which
drops about 30% of NCI axioms and 10% of FMA axioms. However, the gains
from this approach are apparent when considering other computed metrics. More
precisely, the integrated ontology produced by bOWLing contains no axioms in
LDiff in contrast to even more than 1 million new ancestor classes in some of the
other approaches. Moreover, there are no cycles and, finally, a very low degree
of ambiguity taking also into account the initial ambiguity of these ontologies
(see above). The use of Alcomo as a post-processing step on bOWLingn and
LogMapo does improve the numbers on these metrics, however, as it only focuses
on coherency and not general conservativity it does not eliminate them com-
pletely. The only comparable approach is LogMapc which computes a KB without
cycles. However, LDiff is still not empty and the approach of dropping mappings
increases the ambiguity metric. Recall that we were only able to run LogMapc on
the modules. Had it run on the whole ontology we believe the reported numbers
would be higher since as one can note the integrated ontology in this module app-
roach is also much smaller (almost 1/3 smaller). Finally, compared to all other
systems our approach is much more scalable requiring a few minutes whereas in
all other settings Algorithm 3 could take from one even up to 4 h (even when
restricted to the modules). Note that in some cases we could not compute LDiff
even after 12 h (t.o.).

7 Related Work and Conclusions

Constructing large Knowledge Bases (also called Knowledge Graphs these days)
is a topic of intensive research and engineering the last years. The works [2,17]
focus on extracting medical facts from text and use ontologies like UMLS and
SNOMED mostly as flat vocabularies for performing named entity disambigua-
tion, text annotation and information extraction. Hence, the focus is not on
merging the medical knowledge and “fusing” the hierarchies. Malacards [14] is an

A Novel Approach and Practical Algorithms for Ontology Integration 473

effort for constructing a large disease KB by integrating information from many
existing disease ontologies. To identify the overlaps between different sources
a label-based unification algorithm is used which is very similar to our Exact-
LabelMatcher (labels are normalised, stemmed, singularised, etc. and a hash
is created). However, this approach completely discards the hierarchy and the
axioms of the original ontologies and the final output is a flat non-ontological
structure.

In the current paper we have studied the problem of building large KBs from
existing ontologies by integrating them and retaining as much of their initial
structure and axioms as possible. Starting with an initial ontology as a seed KB
we use new ontologies to extend and enrich it in an iterative way. Overlaps are
discovered using ontology matching algorithms and mappings are post-processed
in order to preserve properties of the structures of the KB and the new ontol-
ogy. The algorithm is highly modular as different strategies for handling higher-
multiplicity mappings can be implemented and different (or multiple) matchers
can be used. Our post-processing steps are based on the notion of conservativity
but differently than what is usually done in the literature [6,13,19] we propose
to remove axioms from the new ontology in order to repair many of the vio-
lations. This is important in order to keep ambiguity low and not have many
classes with overlapping labels. We have formalised our framework, designed
an exact general algorithm and also presented concrete approximate and prac-
tical algorithms. These have already been used in Babylon Health to build a
medical Knowledge Base (using SNOMED, NCI, FMA, and CHV) that forms
the data and knowledge backbone of various clinical services. Finally, we have
conducted an experimental evaluation comparing our conservativity repairing
approach to state-of-the-art mapping repair systems obtaining very encouraging
results. In summary, our results verify that ambiguity is very-low (almost none
introduced compared to the initial ambiguity of the input ontologies), there were
no detectable violations (LDiff), no cycles, and our algorithm scales.

8 Proofs

Lemma 1. Let O1 and O2 be two coherent ontologies and let M be a set of
mappings between them such that every class in O2 is satisfiable in O1∪O2∪M.
When applied on O1,O2 and M Algorithm 4 returns a minimal safe extension
of O1 w.r.t. O2,M.

Proof. Let 〈O′,M′〉 be the output of Algorithm 4 when applied on O1,O2, and
M. O′ = O2 \ P for some P ∈ P and since the second parameter of the call to
function allPlans is O2, then for every such P we have P ⊆ O2; hence O′ ⊆ O2.

Next we show that for Σ = Sig(O1) we have diff≈
Σ(O1,O1 ∪ O′ ∪ M′) = ∅.

Let some A
 B ∈ diff≈
Σ(O1,O1 ∪ O2 ∪ M) and assume to the contrary that we

have A
 B ∈ diff≈
Σ(O1,O1 ∪ O′ ∪ M′). By definition we have O1 �|= A
 B,

hence A �= B.
Consider some arbitrary justification J for O1 ∪ O′ ∪ M′ |= A
 B. If

J ⊆ M′ then we have that O1 ∪ M′ |= A
 B. Since O1 �|= A
 B and all

474 G. Stoilos et al.

mappings relate classes from O1 to classes in O2 this can only be the case if
these mappings in J map two classes from O1 to the same class in O2: we can
use resolution to prove O1 ∪ M′ |= A
 B in the process of which one of the
mappings will introduce a symbol from O2; since every symbol of O2 is satisfiable
in O1∪O2∪M it can only be removed by resolving it with another mapping that
refers it and thus there must be two mappings that map two different classes of
O1 to the same symbol in O2. However, this is not possible due to the properties
of function disambiguate-m-1 which has eliminated from M′ mappings of higher
multiplicity.

Hence, every justifications J of every violation α ∈ diff≈
Σ(O1,O1 ∪O2 ∪M′),

J must contain axioms from O2. But then, by Proposition 10 in [6] we have that
P contains all P such that O1∪O2\P∪M �|= α, hence diff≈

Σ(O1,O1∪O′∪M′) = ∅.
Finally, the maximality condition on O′ is satisfied by selecting some minimal

w.r.t. ⊆ plan from P in line 7. ��
Lemma 2. Let O1 and O2 be two coherent ontologies and let M be a set of
mappings between them. When applied on O1,O2 and M Algorithm 5 returns a
pair 〈O′,M′〉 such that every class in O′ is satisfiable in O1 ∪ O′ ∪ M′.

Proof. Assume that some arbitrary class A is unsatisfiable in O′ ∪ M′. Since
O2 is coherent and O′ ⊆ O2, then A is also satisfiable in O′. Hence we must
have that A
 ⊥ ∈ LDiff. Again by coherency of O2 no C exists such that
O2 |= C
 A � ⊥, hence the algorithm enters block 9–12 and computes a plan
for repairing this unsatisfiability (A
 ⊥). Like in the proof of Lemma 1 a repair
plan containing only mappings from M′ exists. Due to the parameters used to
call allPlans a repair plan containing disjointness axioms from O2 may also be
present in P. Thus, the call to allPlans with second argument M′ ∪ O2 returns
some non-empty repair plan which is removed form M′ ∪O2 at line 12 repairing
this unsatisfiability and contradicting the initial assumption. ��
Theorem 1. Let KB and O be two coherent ontologies, let Config be some con-
figuration and let KB′ be the output of Algorithm 3 when applied on KB,O and
Config. Then the following hold:

1. diff≈
Σ(KB,KB′) = ∅ where Σ = Sig(KB).

2. KB′ is coherent.

Proof. By Lemma 2 every class in O′ that is passed as a second parameter
in function postProcessKBStructure is satisfiable in KB ∪ O′ ∪ M′. Hence, by
Lemma 1 it follows that 〈O′,M′〉 returned by Algorithm 4 in line 16 is a safe
extension of KB hence item 1. holds.

For item 2, by Lemma 2 and since function postProcessKBStructure only
removes axioms from O′ it follows trivially that all classes of O′ are satisfiable
in KB ∪ O′ ∪ M′. Consider some class A in KB. Since KB is coherent then A is
satisfiable in KB and by item 1. this class is also satisfiable in O′

KG for otherwise
we would have A
 ⊥ ∈ diff≈

Σ(KB,KB′). ��

A Novel Approach and Practical Algorithms for Ontology Integration 475

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. J. Symb. Log. 50(2), 510–530
(1985)

2. Ernst, P., Siu, A., Weikum, G.: KnowLife: a versatile approach for constructing a
large knowledge graph for biomedical sciences. BMC Bioinform. 16, 157:1–157:13
(2015)

3. Faria, D., Pesquita, C., Mott, I., Martins, C., Couto, F.M., Cruz, I.F.: Tackling the
challenges of matching biomedical ontologies. J. Biomed. Semant. 9(1), 4:1–4:19
(2018)

4. Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto, F.M.: The
AgreementMakerLight ontology matching system. In: Meersman, R., Panetto, H.,
Dillon, T., Eder, J., Bellahsene, Z., Ritter, N., De Leenheer, P., Dou, D. (eds.)
OTM 2013. LNCS, vol. 8185, pp. 527–541. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-41030-7 38

5. Golbeck, J., Fragoso, G., Hartel, F.W., Hendler, J.A., Oberthaler, J., Parsia, B.:
The national cancer institute’s thésaurus and ontology. J. Web Semant. 1(1), 75–80
(2003)

6. Jiménez-Ruiz, E., Cuenca Grau, B., Horrocks, I., Berlanga, R.: Ontology integra-
tion using mappings: towards getting the right logical consequences. In: Aroyo, L.,
Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R.,
Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 173–187.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02121-3 16

7. Jiménez-Ruiz, E., Grau, B.C., Zhou, Y.: LogMap 2.0: towards logic-based, scalable
and interactive ontology matching. In: Proceedings of the 4th International Work-
shop on Semantic Web Applications and Tools for the Life Sciences, pp. 45–46
(2011)

8. Jiménez-Ruiz, E., Meilicke, C., Grau, B.C., Horrocks, I.: Evaluating mapping repair
systems with large biomedical ontologies. In: Proceedings of the 26th International
Workshop on Description Logics, pp. 246–257 (2013)

9. Konev, B., Walther, D., Wolter, F.: The logical difference problem for description
logic terminologies. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 259–274. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 21

10. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.:
The stanford CoreNLP natural language processing toolkit. In: Proceedings of the
52nd Annual Meeting of the Association for Computational Linguistics, ACL, pp.
55–60 (2014)

11. Meilicke, C., Stuckenschmidt, H.: Applying logical constraints to ontology match-
ing. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol.
4667, pp. 99–113. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
74565-5 10

12. Meilicke, C., Stuckenschmidt, H.: An efficient method for computing alignment
diagnoses. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 182–
196. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05082-4 13

13. Meilicke, C., Völker, J., Stuckenschmidt, H.: Learning disjointness for debugging
mappings between lightweight ontologies. In: Gangemi, A., Euzenat, J. (eds.)
EKAW 2008. LNCS (LNAI), vol. 5268, pp. 93–108. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87696-0 11

https://doi.org/10.1007/978-3-642-41030-7_38
https://doi.org/10.1007/978-3-642-41030-7_38
https://doi.org/10.1007/978-3-642-02121-3_16
https://doi.org/10.1007/978-3-540-71070-7_21
https://doi.org/10.1007/978-3-540-71070-7_21
https://doi.org/10.1007/978-3-540-74565-5_10
https://doi.org/10.1007/978-3-540-74565-5_10
https://doi.org/10.1007/978-3-642-05082-4_13
https://doi.org/10.1007/978-3-540-87696-0_11

476 G. Stoilos et al.

14. Rappaport, N., et al.: MalaCards: an integrated compendium for diseases and their
annotation. Database (2013)

15. Salvadores, M., Alexander, P.R., Musen, M.A., Noy, N.F.: Bioportal as a dataset of
linked biomedical ontologies and terminologies in RDF. Semant. Web 4(3), 277–284
(2013)

16. Schriml, L.M.: Disease ontology: a backbone for disease semantic integration. Nucl.
Acids Res. 40(Database–Issue), 940–946 (2012)

17. Shi, L., Li, S., Yang, X., Qi, J., Pan, G., Zhou, B.: Semantic health knowledge
graph: semantic integration of heterogeneous medical knowledge and services.
BioMed Res. Int. 2017 (2017). (Article ID 2858423)

18. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

19. Solimando, A., Jiménez-Ruiz, E., Guerrini, G.: Detecting and correcting conser-
vativity principle violations in ontology-to-ontology mappings. In: Mika, P., et al.
(eds.) ISWC 2014. LNCS, vol. 8797, pp. 1–16. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11915-1 1

20. Solimando, A., Jiménez-Ruiz, E., Guerrini, G.: A multi-strategy approach for
detecting and correcting conservativity principle violations in ontology alignments.
In: 11th International Workshop on OWL: Experiences and Directions (2014)

21. Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In: Gil,
Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729,
pp. 624–637. Springer, Heidelberg (2005). https://doi.org/10.1007/11574620 45

22. Vandenbussche, P., Atemezing, G., Poveda-Villalón, M., Vatant, B.: Linked open
vocabularies (LOV): a gateway to reusable semantic vocabularies on the web.
Semant. Web 8(3), 437–452 (2017)

https://doi.org/10.1007/978-3-319-11915-1_1
https://doi.org/10.1007/978-3-319-11915-1_1
https://doi.org/10.1007/11574620_45

Practical Ontology Pattern Instantiation,
Discovery, and Maintenance

with Reasonable Ontology Templates

Martin G. Skjæveland(B), Daniel P. Lupp, Leif Harald Karlsen,
and Henrik Forssell

Department of Informatics, University of Oslo, Oslo, Norway
{martige,danielup,leifhka,jonf}@ifi.uio.no

Abstract. Reasonable Ontology Templates (OTTR) is a language for
representing ontology modelling patterns in the form of parameterised
ontologies. Ontology templates are simple and powerful abstractions
useful for constructing, interacting with, and maintaining ontologies.
With ontology templates, modelling patterns can be uniquely identified
and encapsulated, broken down into convenient and manageable pieces,
instantiated, and used as queries. Formal relations defined over templates
support sophisticated maintenance tasks for sets of templates, such as
revealing redundancies and suggesting new templates for representing
implicit patterns. Ontology templates are designed for practical use; an
OWL vocabulary, convenient serialisation formats for the semantic web
and for terse specification of template definitions and bulk instances are
available, including an open source implementation for using templates.
Our approach is successfully tested on a real-world large-scale ontology
in the engineering domain.

1 Introduction

Constructing sustainable large-scale ontologies of high quality is hard. Part of
the problem is the lack of established tool-supported best-practices for ontology
construction and maintenance. From a high-level perspective [12], an ontology
is built through three iterative phases:

1. Understanding the target domain, e.g., the domain of pizzas
2. Identifying relevant abstractions over the domain, e.g., “Margherita is a par-

ticular Italian pizza with only mozzarella and tomato”
3. Formulating the abstractions in a formal language like description logics; here

an adapted excerpt taken from the well-known Pizza ontology tutorial:1

Margherita � NamedPizza � ∃ hasCountryOfOrigin.{Italy} (1)
Margherita � ∃ hasTopping.Mozzarella � ∃ hasTopping.Tomato (2)
Margherita � ∀ hasTopping.(Mozzarella � Tomato) (3)

1 https://protege.stanford.edu/ontologies/pizza/pizza.owl.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 477–494, 2018.
https://doi.org/10.1007/978-3-030-00671-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_28&domain=pdf
https://protege.stanford.edu/ontologies/pizza/pizza.owl

478 M. G. Skjæveland et al.

This paper concerns the third task and targets particularly the large gap that
exists between how domain knowledge facts are naturally expressed, e.g., in
natural language, and how the same information must be recorded in OWL.
The cause of the gap is the fact that OWL at its core supports only unary
and binary predicates (classes and properties), and offers no real mechanism
for user-defined abstractions with which recurring modelling patterns can be
captured, encapsulated, and instantiated. The effect is that every single modelled
statement no longer remains a coherent unit but must be broken down into the
small building blocks of OWL. And as there is no trace from the original domain
statement to the ontology axioms, the resulting ontology is hard to comprehend
and difficult and error-prone to manage and maintain.

As a case in point, the Pizza ontology contains 22 different types of pizzas,
all of which follow the same pattern of axioms as the encoding of the Margherita
pizza seen above. For both the user of the ontology and the ontology engineer this
information is opaque. The axioms that make out the instances of the pattern
are all kept in a single set of OWL axioms or RDF triples in the same ontology
document. Since the pizza pattern is not represented as a pattern anywhere,
tasks that are important for the efficient use and management of the ontology,
such as finding pattern instances and verifying consistent use of the pattern, i.e.,
understanding the ontology and updating the pattern, may require considerable
repetitive and laborious effort.

In this paper we present Reasonable Ontology Templates (OTTR), a language
for representing ontology modelling patterns as parameterised ontologies, imple-
mented using a recursive non-cyclic macro mechanism for RDF. A pattern is
instantiated using the macro’s succinct interface. Instances may be expanded by
recursively replacing instances with the pattern they represent, resulting in an
ordinary RDF graph. Section 2 presents the fundamentals of the OTTR language
and exemplifies its use on the pizza pattern. Ontology templates are designed
to be practical and versatile for constructing, using and maintaining ontologies;
the practical aspects of using templates are covered in Sect. 3. Section 4 con-
cerns the maintenance of ontology template libraries. It presents methods and
tools that exploit the underlying theoretical framework to give sophisticated
techniques for maintaining template libraries and ultimately the ontologies built
from those templates. We define different relations over templates and show how
these can be used to define and identify imperfections in a template library, such
as redundancy, and to suggest improvements of the library. We believe ontology
templates can be an important instrument for improving the efficiency and qual-
ity of ontology construction and maintenance. OTTR templates allow the design
of the ontology, represented by a relatively small library of templates, to be
clearly separated from the bulk content of the ontology, specified by a large set
of template instances. This, we believe, supports better delegation of responsi-
bility in ontology engineering projects, allowing ontology experts to build and
manage a library of templates and domain experts to provide content in the
form of structurally simple template instances. To support this claim we report
in Sect. 5 from successful experiments on the use of ontology templates to build

Practical Ontology Pattern Instantiation, Discovery, and Maintenance 479

and analyse Aibel’s large-scale Material Master Data (MMD) ontology. We com-
pare our work with existing approaches in Sect. 6 and present ideas for future
work in Sect. 7.

2 Reasonable Ontology Templates Fundamentals

In this section we develop the fundamentals for OTTR templates as a generic
macro mechanism adapted for RDF.

An OTTR template T consists of a head, head(T), and a body, body(T). The
body represents a parameterised ontology pattern, and the head specifies the
template’s name and its parameters, param(T). A template instance consists of
a template name and a list of arguments that matches the template’s speci-
fied parameters and represents a replica of the template’s body pattern where
parameters are replaced by the instance’s arguments. The template body com-
prises only template instances, i.e., the template pattern is recursively built up
from other templates, under the constraint that cyclic template dependencies
are not allowed. There is one special base template, the Triple template, which
takes three arguments. This template has no body but represents a single RDF

triple in the obvious way. Expanding an instance is the process of recursively
replacing instances with the pattern they represent. This process terminates
with an expression containing only Triple template instances, hence represent-
ing an RDF graph.

Example 1. The SubClassOf template is a simple representation of the
rdfs:subClassOf relationship. It has two parameters, ?sub and ?super, and a body
containing a single instance of the Triple template.

head

SubClassOf

name

(?sub, ?super
parameters

) ::
body

Triple(?sub, rdfs:subClassOf, ?super)
instance

.

An example instance of this template is SubClassOf(:Margherita, :NamedPizza);
it expands, in one step, to a single Triple instance which represents the (single
triple) RDF graph 〈:Margherita, rdfs:subClassOf, :NamedPizza〉.

Each template parameter has a type and a cardinality. (If these are not spec-
ified, as in Example 1, default values apply.) The type of the parameter specifies
the permissible type of its arguments. The available types are limited to a speci-
fied set of classes and datatypes defined in the XSD, RDF, RDFS, and OWL spec-
ifications, e.g., xsd:integer, rdf:Property, rdfs:Resource and owl:ObjectProperty. The
OWL ontology at ns.ottr.xyz/templates-term-types.owl declares all permissible
types and organises them in a hierarchy of subtypes and incompatible types,
e.g., owl:ObjectProperty is a subtype of rdf:Property, and xsd:integer and rdf:Property

are incompatible. The most general and default type is rdfs:Resource. This infor-
mation is used to type check template instantiations; a parameter may not be
instantiated by an argument with an incompatible type.

http://ns.ottr.xyz/templates-term-types.owl

480 M. G. Skjæveland et al.

Fig. 1. Basic OWL OTTR templates

The cardinality of a parameter specifies the number of required arguments
to the parameter. There are four cardinalities: mandatory (written 1), optional
(?), multiple (+), and optional multiple (∗), which is shorthand for ? and +

combined. Mandatory is the default cardinality. Mandatory parameters require
an argument. Optional parameters permit a missing value; none designates this
value. If none is an argument to a mandatory parameter of an instance, the
instance is ignored and will not be included in the expansion. A parameter
with cardinality multiple requires a list as its argument. Instances of templates
that accept list arguments may be used together with an expansion mode. The
mode indicates that the list arguments will in the expansion be used to generate
multiple instances of the template. There are two modes: cross (written x) and
zip (z). The instances to be generated are calculated by temporarily considering
all arguments to the instance as lists, where single value arguments become
singular lists. In cross mode, one instance per element in the cross product of
the temporary lists is generated, while in zip mode, one instance per element
in the zip of the lists is generated. List arguments used without an expansion
mode behave just like regular arguments. Parameters with cardinality optional
multiple also accept none as a value.

Example 2. Figure 1 contains three examples of OTTR templates that capture
basic OWL axioms or restrictions, and exemplify the use of types and cardi-
nalities. The template SubObjectAllValuesFrom represents the pattern ?X �
∀?P.?R and is defined using the SubClassOf and ObjectAllValuesFrom tem-
plates. Note that we allow a Triple instance to be written without its template
name. The parameters of SubObjectAllValuesFrom are all mandatory, and
have respectively the types class, objectProperty and class. The ObjectUnionOf

template represents a union of classes. Here the parameter types are nonLiteral

and class, where the latter has cardinality multiple in order to accept a list of
classes. The type of the first parameter, nonLiteral, prevents an argument of type
literal.

Example 3. The pizza pattern presented in the introduction is represented as an
OTTR template in Fig. 2(a) together with two example instances. The template
takes three arguments: the pizza, its optional country of origin, and its list of
toppings. The cross expansion mode (×) on the SubObjectSomeValuesFrom

Practical Ontology Pattern Instantiation, Discovery, and Maintenance 481

instance causes it to expand to one instance per topping in the list of toppings,
e.g., for the first example instance:

– SubObjectSomeValuesFrom(:Margherita, :hasTopping, :Mozzarella) and
– SubObjectSomeValuesFrom(:Margherita, :hasTopping, :Tomato),

creating an existential value restriction axiom for each topping, which results
in the set of axioms seen in (2) of the pizza pattern in Sect. 1. By joining
SubObjectAllValuesFrom and ObjectUnionOf with a blank node (:b1), we
get the universal restriction to the union of toppings (3). Note that the list of
toppings is used both to create a set of existential axioms and to create a union
class. The optional ?Country parameter behaves so that the SubObjectHasValue

instance is not expanded but removed in the case that ?Country is none. The first
NamedPizza instance in the figure represents exactly the same set of axioms as
the listing in Sect. 1.

We conclude this section with the remark that it is in principle possible to
choose a “base” other than RDF for OTTR templates, with suitable changes to
typing and to which templates are designated as base templates. For instance,
we could let templates such as SubClassOf, SubObjectAllValuesFrom, etc. be
our base templates, to form a foundation based on OWL. These templates could
then be directly translated into corresponding OWL axioms in some serialisation
format. (An OTTR template can also be defined as a parameterised Description
Logic knowledge base [2].) We have chosen here to base OTTR templates on
RDF as this makes a simpler base, and broadens the application areas of OTTR

templates, while still supporting OWL.

3 Using Ontology Templates

In this section we present the resources available to enable efficient and practi-
cal use of ontology templates: serialisation formats for templates and template
instances, tools, formats and specifications that can be generated from templates,
and online resources.

Languages. There are currently three serialisation formats for representing tem-
plates and template instances: stOTTR,wOTTR, and tabOTTR.

stOTTR2 is the format used in the examples of Sect. 2 and is developed to
offer a compact way of representing templates and instances that is also easy to
read and write.

However, to enable truly practical use of OTTR for OWL ontology engineer-
ing, we have developed a special-purpose RDF/OWL vocabulary, called wOTTR,
with which OTTR templates and instances can be formulated. This has the
benefit that we can leverage the existing stack of W3C languages and tools for
developing, publishing, and maintaining templates. The wOTTR format supports

2 https://gitlab.com/ottr/language/stOTTR/.

https://gitlab.com/ottr/language/stOTTR/

482 M. G. Skjæveland et al.

writing Triple instances as regular RDF triples. This means that a pattern rep-
resented by an RDF graph or RDF/OWL ontology can easily be turned into an
OTTR template by simply specifying the name of the template and its parame-
ters with the wOTTR vocabulary. Furthermore, this means that we can make use
of existing ontology editors and reasoners to construct and verify the soundness
of templates. The wOTTR representation has been developed to closely resem-
ble stOTTR. It uses RDF resources to represent parameters and arguments, and
RDF lists (which have a convenient formatting in Turtle syntax) for lists of
parameters and arguments. The vocabulary is published at ns.ottr.xyz. A more
thorough presentation of the vocabulary is found in [13].

tabOTTR3 is developed particularly for representing large sets of template
instances in tabular formats such as spreadsheets, and is intended for domain
expert use.

Generated Queries and Format Specifications. A template may not only be used
as a macro, but also, inversely, as a query that retrieves all instances of the
pattern and outputs the result in the tabular format of the template head. From
a template we can generate queries from both its expanded and unexpanded
body. The expanded version allows us to find instances of a pattern in “vanilla”
RDF data, while the unexpanded version can be used to collect and transform
(in the opposite direction than of expansion) a set of template instances into an
instance of a larger template. The latter form is convenient for validating the
proper usage of templates within a library, which we present in Sect. 4.

We are also experimenting with generating other specifications from a tem-
plate, for instance XSD descriptions of template heads, and transformations of
these formats, e.g., XSLT transformations. The purpose of supporting other for-
mats is to allow for different data input formats and leverage existing tools for
input verification and bulk transformation of instance data to expanded RDF,
such as XSD validators and XSLT transformation engines.

Tools and Online Resources. Lutra, our Java implementation of the OTTR tem-
plate macro expander, is available as open source with an LGPL licence at
gitlab.com/ottr. It can read and write templates and instances of the formats
described above and expand them into RDF graphs and OWL ontologies, while
performing various quality checks such as parameter type checking and checking
the resulting output for semantic consistency. Lutra is also deployed as a web
application that will parse and display any OTTR template available online. The
template may be expanded and converted into all the formats mentioned above,
including SPARQL SELECT, CONSTRUCT and UPDATE queries, XSD format,
and variants of expansions which include or exclude the head or body.

Also available, at library.ottr.xyz, is a “standard” set of ontology templates
for expressing common RDF, RDFS, and OWL patterns as well as other example
templates. These templates are conveniently presented in an online library that
is linked to the online web application.

3 https://gitlab.com/ottr/language/tabOTTR/.

http://ns.ottr.xyz
http://gitlab.com/ottr
http://library.ottr.xyz
https://gitlab.com/ottr/language/tabOTTR/

Practical Ontology Pattern Instantiation, Discovery, and Maintenance 483

Fig. 2. NamedPizza template and example instances in different serialisations

Example 4. Figure 2 contains different representations of the NamedPizza tem-
plate. Figure 2(b) contains the published version of the template, available at its
IRI address: http://draft.ottr.xyz/pizza/NamedPizza. Figure 2(c) contains the
expansion of the template body. Figure 2(d) displays the generated SPARQL

query that retrieves instances of the pizza pattern; an excerpt of the results
applying the query to the Pizza ontology is given in Fig. 2(e). Figure 2(f) con-
tains a tabOTTR representation of the two instances seen in Fig. 2(a). We encour-
age the reader to visit the rendering of the template by the web application at
osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/pizza/NamedPizza and explore the

http://draft.ottr.xyz/pizza/NamedPizza
http://osl.ottr.xyz/info/?tpl=http://draft.ottr.xyz/pizza/NamedPizza

484 M. G. Skjæveland et al.

various presentations and formats displayed. An example-driven walk-through
of the features of Lutra can be found at ottr.xyz/event/2018-10-08-iswc/.

4 Maintenance and Optimisation of OTTR Template
Libraries

In this section, we present an initial list and analysis of some of the more central
relations between OTTR templates, and discuss their use in template library
optimisation. We focus in particular on removing redundancy within a library,
where we distinguish two different types of redundancy: a lack of reuse of exist-
ing templates, as well as recurring patterns not captured by templates within
the library. We present an efficient and automated technique for detecting such
redundancies within an OTTR template library.

4.1 OTTR Template Relations

Optimisation and maintenance of OTTR template libraries is made possible by
its solid formal foundation. OTTR syntax makes it possible to formally define
relations between OTTR templates which can tangibly benefit the optimisation
of a template library. Naturally, there are any number of ways templates can
be “related” to one another, and the “optimal” size and shape of a template
library is likely to be highly domain and ontology-specific. As such, we do not
aspire to a best-practice approach to optimising a template library. Instead, we
illustrate the point by defining a few central template relations and demonstrat-
ing their usefulness for library optimisation and maintenance, independently of
the heuristics used. Here, we limit ourselves to template relations defined syn-
tactically in terms of instances, and do not consider, e.g., those defined in terms
of semantic relationships between full expansions of templates. We consider the
following template relations:

directly depends (DD) S directly depends on T if S’s body has an instance
of T.

depends (D) depends is the transitive closure of directly depends.
dependency-overlaps (DO) S dependency-overlaps T if there exists a tem-

plate upon which both S and T directly depend.
overlaps (O) S overlaps T if there exist template instances i

S
, i

T
in body(S) and

body(T) and substitutions ρ and η of the parameters of S and T resp. such
that ρ(i

S
) = i

T
and η(i

T
) = i

S
.

contains (C) S contains T if there exists a substitution ρ of the parameters of
T such that ρ(body(T)) ⊆ body(S).

equals (E) S is equal to T if S contains T and vice versa.

Each of the listed relations is, in a sense, a specialisation of the previous one
(except for DO, which is a specialisation of DD as opposed to D). For instance,
DO imposes no restrictions on the instance arguments, whereas O intuitively
requires parameters to occur in compatible positions of i

S
and i

T
.

http://www.ottr.xyz/event/2018-10-08-iswc/

Practical Ontology Pattern Instantiation, Discovery, and Maintenance 485

Fig. 3. OTTR template library before and after redundancy removal

486 M. G. Skjæveland et al.

Example 5. Consider the template library given in Fig. 3(a). All but
the BurgerMeal template contain an instance of SubClassOf, hence
all pairs of templates except for (AnnotatedPizza,BurgerMeal) have
a dependency-overlap. Closer inspection reveals that Burger contains
SubObjectAllValuesFrom (4, Fig. 1), due to the instances

– SubClassOf(?Name, :b2)
– ObjectAllValuesFrom(:b2, :hasCondiment, :b3)

in Burger (6). (Numbers refer to numbered lines in the figures.) Finally,
AnnotatedPizza and Burger overlap, since they both directly depend on
the same Triple templates (5) and (8). These relationships are depicted in
the graph below (dependency relationships omitted for the sake of legibility).
Directed/undirected edges depict nonsymmetric/symmetric relations, respec-
tively.

NamedPizza

AnnotatedPizza

BurgerMeal

Burger SubObjectAllValuesFrom

DO DO

DO

O

DO

C

We wish to discuss these relations in the context of redundancy removal
within an OTTR template library. More specifically, we discuss two types of
redundancy:

Lack of reuse is a redundancy where a template S has a contains relationship
to another template T, instead of a dependency relationship to T. That is,
S duplicates the pattern represented by T, rather than instantiating T. This
can be removed by replacing the offending portion of body(S) with a suitable
instance of T. A first approach to determining such a lack of reuse makes use
of the fact that templates can be used as queries: template S contains T iff
T as a query over S yields answers.

Uncaptured pattern is a redundancy where a pattern of template instances is
used by multiple templates, but this pattern is not represented by a template.
In order to find uncaptured patterns one must analyse in what manner mul-
tiple templates depend on the same set of templates. If multiple templates
overlap as defined above, this is a good candidate for an uncaptured pat-
tern. However, an overlap does not necessarily need to occur for an uncap-
tured pattern to be present: as demonstrated in the following example, a
dependency-overlap can describe an uncaptured pattern that is relevant for
the template library.

Example 6. Continuing with our previous example of the library in Fig. 3(a), we
find that it contains both an instance of lack of reuse and multiple instances of
uncaptured patterns. The containment of SubObjectAllValuesFrom in Burger

indicates a lack of reuse, and the overlap of Burger and AnnotatedPizza

Practical Ontology Pattern Instantiation, Discovery, and Maintenance 487

is an uncaptured pattern which we refactor into the template Annotation

(11). By repairing the lack of reuse in Burger (6) with an instance of
SubObjectAllValuesFrom, there are two dependency-overlaps that represent
uncaptured patterns: the instances (6,7)(9), which are refactored into a new
template SubObjectAllValuesFromUnion (12), and the dependency-overlap
between Burger and NamedPizza, which is described by the NamedFood tem-
plate (10). These new templates as well as the updated template definitions for
the pre-existing ones are given in Fig. 3(b).

4.2 Efficient Redundancy Detection

Naive methods for improving a template library using the relations as described
in the previous section quickly become infeasible for large knowledge bases, as
they require expensive testing of unification of all template bodies. We have
developed an efficient method for finding lack of reuse and uncaptured patterns,
which over-approximates the results of unification. The method uses the notion
of a dependency pair, which intuitively captures repeated use of templates with-
out considering parameters: a dependency pair 〈I, T 〉 is a pair of a multiset of
templates I and a set of templates T , such that T is the set of all templates
that directly depend on all templates in I, and have at least as many directly
depends relationships to each template in I as they occur in I. The idea is that
I represents a pattern used by all the templates in T . In order to also detect pat-
terns containing different Triple instances, we will in this section treat a Triple

instance (s, p, o) as a template instance of the form p(s, o) and thus treat p as
a template. Note that for a set of dependency pairs generated from a template
library, the first element in the pair, i.e., the I, is unique for the set, while the
T is generally not unique.

Example 7. Three examples of dependency pairs from the library in Fig. 3(a)
are

1. 〈{SubClassOf, SubClassOf, rdfs:label}, {Burger}〉
2. 〈{SubClassOf,ObjectAllValuesFrom}, {SubObjectAllValuesFrom,

Burger}〉
3. 〈{skos:definition, rdfs:label, skos:prefLabel}, {AnnotatedPizza,Burger}〉
The first pair indicates that Burger is the only template that directly depends
on two occurrences of SubClassOf and one occurrence of rdfs:label. Note that
Burger directly depends on other templates too, and these will give rise to
other dependency pairs. However there is no other template than Burger that
directly depends on this multiset of templates. The second example shows
that SubObjectAllValuesFrom and Burger directly depend on the templates
SubClassOf and ObjectAllValuesFrom.

One can compute all dependency pairs by starting with the set of dependency
pairs of the form 〈{i : n}, T 〉 where all templates in T have at least n instances
of i, and then compute all possible merges, where a merge between two clusters

488 M. G. Skjæveland et al.

〈I1, T1〉 and 〈I2, T2〉 is 〈I1 ∪ I2, T1 ∩ T2〉. We have implemented this algorithm
with optimisations that ensure we compute each dependency pair only once.

The set of dependency pairs for a library contains all potential lack of reuse
and uncaptured patterns in a library. However, note that in the dependency pairs
where either I or T has only one element, the dependency pair does not represent
a commonly used pattern: If I has only one element then it does not represent a
redundant pattern. If T has only one element then the pattern occurs only once.
If on the other hand both sets contain two or more elements then the dependency
pair might represent a useful pattern to be represented as a template, and we
call these candidate pairs.

For a candidate pair, there are three cases to consider: 1. the set of instances
does not form a pattern that can be captured by a template, as the usage of the
set of instances does not unify; 2. the pattern is already captured by a template,
in which case we have found an instance of lack of reuse; otherwise 3. we have
found one or more candidates (one for each non-unifiable usage of the instances
of I) for new templates. The two first cases can be identified automatically, but
the third needs user interaction to assess. First, a user should verify for each of
the new templates that it is a meaningful pattern with respect to the domain;
second, if the template is meaningful, a user must give the new template an
appropriate name.

To remove the redundancy a candidate pair 〈I, T 〉 represents, we can perform
the following procedure for each template t ∈ T and T ′ = T \ {t}. First we
check for lack of reuse of t: this may only be the case if t’s body has the same
number of instances as there are templates in I. We verify the lack of reuse by
checking if t′ ∈ T ′ contains t; this is done by verifying that t used as a query
over t′’s body yields an answer. If there is no lack of reuse, we can represent the
instances of I as they are instantiated in t, as the body of a new template where
all arguments are made into parameters. Again, we need to verify that the new
template is contained in other templates in T ′ before we can refactor, and before
any refactoring is carried out, a user should always assess the results.

Example 8. Applying the method for finding candidates to the library in
Fig. 3(a), gives 19 candidate pairs, two of which are the 2nd and 3rd candidate
pair of Example 7. The 1st dependency pair of Example 7 is not a candidate pair
since the size of one of its elements ({Burger}) is one.

By using the process of removing redundancies as described above, we
will find that for the 2nd candidate pair of Example 7 we have a lack
of reuse of SubObjectAllValuesFrom in Burger, as discussed in previous
examples. The two instances of SubClassOf and ObjectAllValuesFrom in
Burger (see Example 5) can be therefore be replaced with the single instance:
SubObjectSomeValuesFrom(?Name, :hasCondiment, :b3).

From the 3rd candidate pair in Example 7 there is no lack of reuse, but we
can represent the pattern as the following template:

<name>(?x1, ?x2, ?x3, ?x4)
:: (?x1, rdfs:label, ?x2), (?x1, skos:prefLabel, ?x3), (?x1, skos:definition, ?x4).

Practical Ontology Pattern Instantiation, Discovery, and Maintenance 489

The template and parameters should be given suitable names and param-
eters given a type, as exemplified by the Annotation template (11) found
in Fig. 3(b). The procedure of identifying dependency pairs and lack of
reuse is implemented and demonstrated in the online walk-through at
ottr.xyz/event/2018-10-08-iswc/.

For large knowledge bases, the set of candidate pairs might be very large, as it
grows exponentially in the number of template instances in the worst case. This
means that manually assessing all candidate pairs is not feasible, and smaller
subsets of candidates must be automatically suggested. We have yet to develop
proper heuristics for suggesting good candidates, but the cases with the most
common patterns (the candidates with largest T -sets), the largest patterns (the
candidates with the largest I-sets), or large patterns that occur often could be
likely sources for patterns to refactor. The latter of the three can be determined
by maximising a weight-function, for instance of the form f(〈I, T 〉) = w1|I| +
w2|T |. However, these weights might differ from use-case to use-case. Another
approach for reducing the total number of candidates to a manageable size, is to
let a user group some or all of the templates according to subdomain, and then
only present candidates with instances fully contained in a single group. The
idea behind such a restriction is that it seems likely that a pattern is contained
within a subdomain. We give an example of these techniques in the following
section.

5 Use Case Evaluation

In this section we outline an evaluation of OTTR templates in a real-world setting
at the engineering company Aibel, and demonstrate in particular our process of
finding and removing redundancies over a large, generated template library.

Aibel is a global engineering, procurement, and construction (EPC) service
company based in Norway best known for its contracts for building and main-
taining large offshore platforms for the oil and gas industry. When designing an
offshore platform, the tasks of matching customer needs with partly overlapping
standards and requirements as well as finding suitable products to match design
specifications are highly non-trivial and laborious. This is made difficult by the
fact that the source data is usually available only as semi-structured documents
that require experience and detailed competence to interpret and assess. Aibel
has taken significant steps to automate these tasks by leveraging reasoning and
queries over their Material Master Data (MMD) ontology. It integrates this infor-
mation in a modular large-scale ontology of ∼200 modules and ∼80,000 classes
and allows Aibel to perform requirements analysis and matching with greater
detail and precision and less effort than with their legacy systems. Since the
MMD ontology is considered by Aibel as a highly valuable resource that gives
them a competitive advantage, it is not publicly available.

The MMD ontology is produced from 705 spreadsheets prepared by ontology
experts and populated by subject matter experts with limited knowledge of

http://www.ottr.xyz/event/2018-10-08-iswc/

490 M. G. Skjæveland et al.

Fig. 4. A scatter plot of the sizes of the two sets for all candidate pairs from Aibel
use case. The colour shade denotes the logarithm of the number of candidates at each
point.

modelling and semantic technologies. The column headers of the spreadsheets
specify how the data is to be converted into an ontology, and the translation
is performed by a custom-built pipeline of custom transformations, relational
databases, and SPARQL CONSTRUCT transformations. The growing size and
complexity of the system, the simple structure of the spreadsheets and lack of
common modelling patterns make it hard to keep an overview of the information
content of the spreadsheets and enforce consistent modelling across spreadsheets.
The absence of overarching patterns also represents a barrier for Aibel’s wish to
extend the ontology to cover new engineering disciplines, as there are no patterns
that are readily available for reuse.

The aim of our evaluation is to test whether OTTR templates and the tools
presented in this paper can replace Aibel’s current in-house built system and
improve the construction and maintenance of the MMD ontology. By exploit-
ing the simple structure of the spreadsheets we automatically generated OTTR

templates: one for each spreadsheet (705 templates), one for each unique column
header across spreadsheets (476 templates), and one for each axiom pattern used,
e.g., existential restriction axiom (4 templates).

To analyse the large template library, we applied the algorithm for finding
candidate pairs described in Sect. 4.2, giving a total of 54,795,593 candidate
pairs. The scatter plot in Fig. 4 shows the distribution of sizes for the two sets;
the largest number of instances and templates for a given candidate is 24 and
474, respectively. The large number of candidates makes it impossible to man-
ually find potential templates, thus we employed the semi-automatic method
described in the previous section to suggest possible improvements to the library.
In order to demonstrate the process, we selected the candidates that contain a
specific template, the template modelling a particular type of pipe elbows from

Practical Ontology Pattern Instantiation, Discovery, and Maintenance 491

the AMSE B16.9 standard, which is an often-used example from the MMD ontol-
ogy. This template occurs in a total of 12,273 candidates. To reduce the number
of candidates further, we removed candidates with instances of a generic charac-
ter, such as rdfs:label, to end up with candidates with domain-specific tem-
plates. By using a weight function, we selected the candidate with the largest
set of templates and at least 6 instances. From this candidate, with 33 templates
and 7 instances, we obtained a template suggestion that we were able to verify is
contained by all of the 33 templates in T , by using the template as a query over
the templates in T . We added this new template to the library and refactored it
into all the 33 templates using its pattern.

Fixing this single redundancy reduced the total number of candidates by
over 1.8 million. This great reduction in candidates comes from the fact that
fixing a redundancy represented by a candidate C can also fix the redundancies
of candidates having a pattern that is contained in, contains, or overlaps C’s
pattern. This indicates that, despite a very large number of candidates, small
fixes can dramatically reduce the overall redundancy. Furthermore, by automat-
ically refactoring all lack of reuse in the entire library, the number of candidates
decreases to under 3 million. The average number of instances per template went
from 5.6 down to 2.7 after this refactoring. In addition to the redundancies fixed
above, we were also able to detect equal templates (pairs of templates both hav-
ing a lack of reuse of the other). Out of the 931 templates we analysed, only 564
were unique. Thus, we could remove a total of 367 redundant templates from
the library. Note that all of the improvements made above should be reviewed
by a user, as discussed in Sect. 4.2, to ensure that the new template hierarchy
properly represents the domain.

The use case evaluation indicates that OTTR templates and tools can replace
Aibel’s custom built approach for transforming spreadsheets into ontologies.
Indeed, OTTR greatly exceeds the expressivity of Aibel’s spreadsheet structure
and provides additional formal structure that can be used to analyse and improve
the modelling patterns used to capture domain knowledge. As future evaluation,
we want to work with Aibel’s domain experts in order to identify promising
heuristics for finding the best shared patterns. We believe that these new pat-
terns and user requirements from Aibel may foster new ideas for added expres-
sivity and functionality of OTTR languages and tools. Furthermore, we want
to evaluate whether we can replace Aibel’s hand-crafted queries with queries
generated from templates. This would avoid the additional cost of maintaining a
large query library, while benefiting from already existing templates and OTTR’s
compositional nature and tools for building and analysing the generated queries.

6 Related Work

Modularised ontologies, as well as the use and description of ontology design
patterns, have attracted significant interest in recent years, as demonstrated
by the multitude of languages and frameworks that have emerged. However, a
hurdle for the practical large-scale use of ontology design patterns is the lack of

492 M. G. Skjæveland et al.

a tool supported methodology; see [4] for a discussion of some of the challenges
facing ontology design patterns. In this section we present selected work related
to our approach that we believe represents the current state of the art.

An early account of the features, benefits and possible use-cases for a macro
language for OWL can be found in [14].

The practical and theoretical aspects of OTTR templates were first intro-
duced in [13] and [2]. This paper presents a more mature and usable frame-
work, including formalisation and use of template relations, real-world evalua-
tion, added expressivity in the form of optional parameters and expansion modes,
and new serialisation formats.

GDOL [9] is an extension of the Distributed Ontology, Modelling, and Specifi-
cation Language (DOL) that supports a parametrisation mechanism for ontolo-
gies. It is a metalanguage for combining theories from a wide range of logics
under one formalism while supporting pattern definition, instantiation, and nest-
ing. Thus it provides a broad formalism for defining ontology templates along
similar lines as OTTR. To our knowledge, GDOL has yet to investigate issues
such as dependencies and relationships between patterns, optional parameters,
and pattern-as-query (the latter being listed as future work). A protege plugin
for GDOL is in the works and DOL is supported by Ontohub (an online ontology
and specification repository) and Hets (parsing and inference backend of DOL).

Ontology templates as defined in [1] are parameterised ontologies in ALC
description logic. Only classes are parameterised, and parameter substitutions
are restricted to class names. This is quite similar to our approach, yet it is not
adapted to the semantic web, and nested templates and patterns-as-queries are
not considered. Furthermore, it appears this project has been abandoned, as the
developed software is no longer available.

OPPL [6] was originally developed as a language for manipulating OWL

ontologies. Thus it supports functions for adding and removing patterns of OWL

axioms to/from an ontology. It relies heavily on its foundations in OWL-DL and
as such can only be used in the context of OWL ontologies. Despite this, the
syntax of OPPL is distinct from that of RDF, thus requiring separate tools for
viewing and editing such patterns, though a Protégé plugin does exist, in addition
to a tool called Populous [7] which allows OPPL patterns to be instantiated via
spreadsheets. By allowing patterns to return a single element (e.g., a class) OPPL

supports a rather restricted form of pattern nesting as compared to OTTR.
Tawny OWL [10] introduces a Manchester-like syntax for writing ontology

axioms from within the programming language Clojure, and allows abstractions
and extensions to be written as normal Clojure code alongside the ontology.
Thus the process of constructing an ontology is transformed into a form of pro-
gramming, where existing tools for program development, such as versioning,
testing frameworks, etc. can be used. The main difference from our approach is
that Tawny OWL targets programmers and therefore tries to reuse as much of
the standards and tools used in normal Clojure development, whereas we aim
to reuse semantic technology standards and tools.

Practical Ontology Pattern Instantiation, Discovery, and Maintenance 493

OPLa [5] is a proposal for a language to represent the relationships between
ontologies, modules, patterns, and their respective parts. They introduce the
OPLa ontology which describes these relationships with the help of OWL anno-
tation properties. This approach does not, however, attempt to mitigate issues
arising with the use of patterns, but focuses more on the description of patterns,
than on practical use.

There are other tools and languages such as XDP [3], built on top of
WebProtégé as a convenient tool for instantiating ODPs, the M2 mapping lan-
guage [11] that allows spreadsheet references to be used in ontology axiom pat-
terns, and RDF shape languages, such as SHACL [8], that may be used to describe
and validate patterns. Although these have similarities with OTTR, we consider
these more specialised tools and languages, where for example analysis of pat-
terns is beyond their scope.

7 Conclusion and Future Work

This paper presents OTTR, a language with supporting tools for representing,
using and analysing ontology modelling patterns. OTTR has a firm theoretical
and technological base that allows existing methods, languages and tools to be
leveraged to obtain a powerful, yet practical instrument for ontology construc-
tion, use and maintenance.

For future work, the natural next step with respect to template library opti-
misation is to continue and expand the analysis of Sect. 4, both for existing and
new template relations. In particular, it is natural to compare templates both
syntactically using their full expansion and in terms of their semantic relation-
ship. The latter would allow us, e.g., to answer questions about consistency and
whether a given library is capable of describing a certain knowledge pattern. We
also want to develop specialised editors for OTTR templates, such as a plugin
for Protégé, and extend support for more input formats, such as accessing data
from relational databases.

Acknowledgements. We would like to thank Per Øyvind Øverli from Aibel, and
Christian M. Hansen from Acando for their help with the evaluation of OTTR. The
second and fourth author were supported by Norwegian Research Council grant no.
230525.

References

1. Blasko, M., Kremen, P., Kouba, Z.: Ontology evolution using ontology templates.
Open J. Semant. Web (OJSW) 2, 15–28 (2015)

2. Forssell, H., et al.: Reasonable macros for ontology construction and maintenance.
In: Proceedings of the 30th International Workshop on Description Logics (2017)

3. Hammar, K.: Ontology design patterns in WebProtege. In: Proceedings of the
ISWC 2015 Posters and Demonstrations Track (2015)

494 M. G. Skjæveland et al.

4. Hammar, K., et al.: Collected research questions concerning ontology design pat-
terns. In: Hitzler, P., et al. (eds.) Ontology Engineering with Ontology Design
Patterns, pp. 189–198. IOS Press (2016)

5. Hitzler, P., et al.: Towards a simple but useful ontology design pattern represen-
tation language. In: Proceedings of the 8th Workshop on Ontology Design and
Patterns (2017)

6. Iannone, L., Rector, A., Stevens, R.: Embedding knowledge patterns into OWL.
In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 218–232. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02121-3 19

7. Jupp, S.: Populous: a tool for building OWL ontologies from templates. BMC
Bioinform. 13(S–1), S5 (2012)

8. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL) (2017).
W3C Recommendation

9. Krieg-Brückner, B., Mossakowski, T.: Generic ontologies and generic ontology
design patterns. In: Proceedings of the 8th Workshop on Ontology Design and
Patterns (2017)

10. Lord, P.: The semantic web takes wing: programming ontologies with Tawny-OWL.
In: OWLED (2013)

11. O’Connor, M.J., Halaschek-Wiener, C., Musen, M.A.: M2: a language for mapping
spreadsheets to OWL. In: OWLED (2010)

12. Ogden, C.K., Richards, I.A.: The Meaning of Meaning. Harvest Book, San Diego
(1946)

13. Skjæveland, M.G., et al.: Pattern-based ontology design and instantiation with
reasonable ontology templates. In: Proceedings of the 8th Workshop on Ontology
Design and Patterns (2017)

14. Vrandec̆ić, D.: Explicit knowledge engineering patterns with macros. In: Proceed-
ings of the Ontology Patterns for the Semantic Web Workshop at the ISWC 2005
(2005)

https://doi.org/10.1007/978-3-642-02121-3_19

Pragmatic Ontology Evolution: Reconciling
User Requirements and Application

Performance

Francesco Osborne(&) and Enrico Motta

Knowledge Media Institute, The Open University,
Milton Keynes MK7 6AA, UK

{francesco.osborne,enrico.motta}@open.ac.uk

Abstract. Increasingly, organizations are adopting ontologies to describe their
large catalogues of items. These ontologies need to evolve regularly in response
to changes in the domain and the emergence of new requirements. An important
step of this process is the selection of candidate concepts to include in the new
version of the ontology. This operation needs to take into account a variety of
factors and in particular reconcile user requirements and application perfor-
mance. Current ontology evolution methods focus either on ranking concepts
according to their relevance or on preserving compatibility with existing
applications. However, they do not take in consideration the impact of the
ontology evolution process on the performance of computational tasks – e.g., in
this work we focus on instance tagging, similarity computation, generation of
recommendations, and data clustering. In this paper, we propose the Pragmatic
Ontology Evolution (POE) framework, a novel approach for selecting from a
group of candidates a set of concepts able to produce a new version of a given
ontology that (i) is consistent with the a set of user requirements (e.g., max
number of concepts in the ontology), (ii) is parametrised with respect to a
number of dimensions (e.g., topological considerations), and (iii) effectively
supports relevant computational tasks. Our approach also supports users in
navigating the space of possible solutions by showing how certain choices, such
as limiting the number of concepts or privileging trendy concepts rather than
historical ones, would reflect on the application performance. An evaluation of
POE on the real-world scenario of the evolving Springer Nature taxonomy for
editorial classification yielded excellent results, demonstrating a significant
improvement over alternative approaches.

Keywords: Ontology evolution � Domain ontologies � Bibliographic data
Scholarly data � Scholarly ontologies

1 Introduction

Increasingly, organizations are adopting ontologies to describe their large catalogues of
items. Indeed, ontologies have proved to be very useful in the context of a variety of
tasks [1], including the integration of data from different sources, domain reasoning,
classification [2], generation of recommendations [3], cluster analysis [4], community

© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 495–512, 2018.
https://doi.org/10.1007/978-3-030-00671-6_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_29&domain=pdf

detection [5], sentiment analysis, forecasting [6], and others. Naturally, ontologies need
to be regularly maintained and need to evolve according to changes in the domain or
new requirements from users or applications [7]. This process is called ontology
evolution and it is a critical part of the ontology lifecycle. While the literature proposes
a variety of frameworks for ontology evolution [8–11], essentially most agree on three
fundamental steps in the process: (i) detection of the need for the evolution, (ii) iden-
tification of candidate changes, and (iii) validation and assessment of these changes, to
ensure that the resulting ontology satisfies the given needs.

Hence, in the first instance, the evolved ontology normally has to comply with a set
of requirements, defined to ensure that the ontology remains compatible with the
current workflow and usable by the relevant stakeholders.

In the second instance, it is crucial to take into account the impact of the ontology
evolution process on relevant applications. Ontologies are often used to enable
semantic approaches to data mining, information filtering, trend detection, and other
tasks [12], whose performance needs to be taken in consideration when creating a new
version of the ontology. Crucially, user needs and applications performance are
sometimes in opposition. For example, a very comprehensive representation of items
and their features would generally improve the performance of a recommender system,
but users may prefer a less complex representation that it is easier to browse, memorize,
maintain, and incorporate in their workflow.

In the third instance, domain experts may have preferences about which concepts to
privilege that should be considered in the process. For example, they may decide to
privilege concepts which are currently trendier rather than historical ones, or those that
are more represented in their internal catalogue, rather than considering the full domain.

Finally, users need to be able to understand why a certain concept was selected or
discarded and how this relates to the requirements, the user preferences, and the
ontology support for some computational tasks.

The motivating scenario for this work concerns the evolution of the internal tax-
onomy at Springer Nature, which is used for classifying books, journals, and other
editorial products. Since this taxonomy is used by a lot of different users and software
systems, the evolution process needs to take in consideration both user needs and the
impact on applications. For instance, a recommender system for suggesting editorial
products described by an ontology [13] would perform differently according to the
ontology that it is using. In addition, the process need to be transparent, so that every
change can be justified in light of these factors.

Current solutions are not easily applicable to this problem. Most of the methods for
selecting the concepts to be included in an evolving ontology address this task by
ranking concepts according to a weight derived from information retrieval metrics
[14, 15], list of words [16], or online ontologies [11]. These solutions have the
advantage of being generic, but present two significant limitations: (i) they do not
assess the impact of the new version of the ontology on the performance of the relevant
applications, and (ii) they ignore concept synergy, by weighting the relevance of single
concepts rather than the overall impact of a combination of concepts. Some approaches
do focus on preserving consistency between the ontology and the dependent applica-
tions [17–21], however they do not consider the effect of the changes on the perfor-
mance of computational tasks.

496 F. Osborne and E. Motta

In this paper, we propose the Pragmatic Ontology Evolution (POE) framework, a
novel approach for selecting from a group of candidates a set of concepts able to
produce an ontology that (i) is consistent with the given requirements, (ii) is para-
metrised with respect to a number of dimensions (e.g., topological considerations), and
(iii) supports effectively relevant computational tasks, such as instance tagging, simi-
larity computation, generation of recommendations, and data clustering. POE supports
users in navigating the space of possible solutions by showing how certain choices,
such as limiting the number of concepts or privileging trendy concepts rather than
historical ones, would reflect on the application performance. It also makes it easy to
explain why a certain concept was included in the ontology on the basis of its con-
tribution to the performance of a specific task. Finally, it selects the new concepts not
only according to individual weights, but also considering their synergy with other
concepts.

The rest of the paper is organized as follows. In Sect. 2, we will present a moti-
vating scenario involving the evolution of an editorial taxonomy at Springer Nature. In
Sect. 3, we will review the literature regarding ontology evolution and, in particular,
the selection of candidate concepts. In Sect. 4, we will discuss POE in details and in
Sect. 5, we will evaluate it on a dataset of 1,218 Springer Nature books. Finally, in
Sect. 6, we summarize the main conclusions and outline future directions of research.

2 Motivating Scenario: Evolving Springer Nature Market
Codes

Springer Nature (SN) is one of the major academic publishing companies and has a
vast catalogue of books, journals, and conference proceedings. Like other companies in
this space, it has its own editorial classification system, called Product Market Codes
(PMC). PMC is a taxonomy of research fields that is used to tag editorial items with
relevant topics, e.g., “Artificial Intelligence” or “Software Engineering”. The resulting
metadata are then used for a variety of tasks, such as improving the discoverability of
products in digital and physical libraries, supporting marketing decision, and detecting
research trends.

It is crucial to keep PMC up to date with the evolution of the research landscape at
the right level of granularity. This is particularly challenging in the field of Computer
Science, where new areas evolve constantly and taxonomies tend to become obsolete
very quickly [22]. In the context of the collaboration between The Open University and
Springer Nature [2, 13], we focused on the issue of supporting the evolution of the
Computer Science portion of PMC, concentrating in particular on some branches that
had become obsolete.

This work builds on our earlier research, which has produced new methods able to
generate automatically taxonomies of research areas through large scale-mining of
scholarly data. In particular, by applying the Klink-2 algorithm [22] on the Rexplore
dataset [23], we generated the Computer Science Ontology (CSO) [24], a large-scale
ontology of research topics in Computer Science, which includes about 26K topics
linked by about 226K semantic relationships. CSO powers two tools used by SN for

Pragmatic Ontology Evolution 497

tagging and recommending books: Smart Topic Miner [2] and Smart Book Recom-
mender [13].

In accordance with the requirements provided by SN publishing editors, we focused
on the evolution of the branches under five concepts of the original PMC taxonomy
(“I21017-Artificial Intelligence (incl. Robotics)”, “I14029-Software Engineering”, and
three others – see details in Sect. 5) that we mapped to nine CSO concepts (in the given
example “Artificial Intelligence”, “Robotics”, “Software Engineering”, and “Software
Design”). We then extracted all their sub-concepts producing 2,451 candidate concepts.
However, producing a new version of PMC with all of them, would cause the Com-
puter Science portion of PMC to grow from 89 to 2,540 concepts. This is unfeasible for
a variety of pragmatic reasons, including the fact that many books are still manually
tagged and curated by editors. We thus needed to find a solution to the evolution of
PMC, which ensured that it remained under a certain size. It was also crucial that the
new version of the ontology would support effectively tasks such as generation of
recommendations, data clustering, and so on. Finally, we would need to be able to
produce a justification for the inclusion or the exclusion of a research topic.

This is a typical real-world case in which the first two steps of the ontology
evolution process, identifying the need for changes and producing candidate concepts,
are relatively easy, since it exists a clear need (new fields in Computer Science are
missing) and we already have a good selection of candidate concepts in CSO. On the
contrary, there was no clear solution for selecting a set of concepts that would comply
with the requirements and support relevant applications.

3 Related Work

Most of the ontology evolution frameworks [7–10] include a phase that regards the
verification and selection of candidate changes or concepts to be included in the new
version of the ontology. This step is labelled “change validation phase” in the
framework of Stojanovic [8], “verification and approval” in Klein and Noy [9], “ac-
cepting and rejecting changes” in Noy [10], and it is split in two different phases
labelled “validating changes” and “assessing the evolution impact” in the ontology
evolution cycle proposed by Zablith [7].

Traditionally, the candidate changes are validated at three different levels [7]:
(i) formal properties-based validation, which uses formal techniques to preserve the
consistency and coherence of the ontology, (ii) domain base validation, which exploits
domain information to assess the relevance of the candidate changes, and (iii) appli-
cation and usage impact, which measures the effects of the changes on data instances,
dependent ontologies, and relevant applications [25]. POE works at the second and
third levels, since it assesses the importance of concepts within a certain domain and it
evaluates the effect of alternative ontologies on computational tasks.

Approaches to domain base validation can be classified according to their focus,
which can be either on domain relevance [14–17, 26] or correctness [27]. Text2Onto
[14], a well-known system for ontology learning, falls in the first category, since it
weights the relevance of the candidate concepts by mean of information retrieval
measures, such as Relative Term Frequency (RTF), TF-IDF, and the C-value/NC-value

498 F. Osborne and E. Motta

method. SPRAT [15], a tool for automatic pattern-based ontology population, also uses
TF-IDF to select the relevant terms that should be included in the ontology. Similarly to
POE, they both focus on the inclusion of concepts or terms rather than entire state-
ments. The DINO Framework [16], assesses the relevance of a set of candidate triples
according to their Levenshtein distance from a set of wanted or unwanted words,
specified by domain experts. The Evolva framework [11] measures the relevance of a
statement by generating its ontological context from a set of online ontologies and
comparing it to the evolving ontology. The DINAMO-MAS system [26] assesses
relationships between terms by means of a confidence score that takes in consideration
their lexico-syntactic patterns. Some other systems focus on assessing the correctness
of statements. For instance, Sabou et al. [27] verify the correctness of the link between
two concepts by exploiting the path connecting the concepts in online ontologies.
Similarly to these solutions, POE aims to find the best set of concepts to be included in
an evolved ontology. However, it also consider application performance and concept
synergy.

Some other approaches focus on assessing the impact of evolution on data instances
[28, 29], applications [17–21, 30], and dependent ontologies [25]. Because of lack of
space, we will focus our review on the first two categories.

Qin and Atluri [28] propose a method to define and preserve the structural and
semantic validity of data instances that are described by an evolving ontology. Simi-
larly, Hartung et al. [29] introduce a generic framework for the study of the evolution of
ontologies and ontology-related mappings. We also take into consideration instances
and their mapping, but rather than checking their validity, we focus on the impact of
their representations on the relevant tasks.

Several approaches address the impact of the resulting ontology on dependent
applications, however they focus mainly on preserving consistency and compatibility.
For instance, Huang and Stuckenschmidt [17] present MORE, a system that uses
temporal logic to detect the consequences of changes. Xuan et al. [18] introduce the
floating version model, which preserves compatibility by not allowing a new version of
the ontology to falsify axioms that were previously true. Wang et al. [19] propose
another technique to maintain the consistency of dependent applications and suggest
resolution strategies. Liang et al. [20] present a system that analyses the queries sub-
mitted by dependent applications, detects if the relevant entities where changed during
the evolution process, and repairs broken queries. Similarly, Kondylakis and Plex-
ousakis [21] propose a formal approach for identifying the impact of ontology evo-
lution on queries and easing query migration. Finally, Groß et al. [30] introduce an
approach for measuring the stability of a ontology and show how ontology evolution
affected the level of significance of functional enrichment analyses in Biology. Dif-
ferently from all these systems, POE focuses on the performance of dependent com-
putational tasks rather than on consistency and compatibility, and aims to generate an
ontology that can effectively support these tasks.

Pragmatic Ontology Evolution 499

4 The POE Framework

4.1 Overview of POE

The Pragmatic Ontology Evolution (POE) framework was designed to produce an
ontology that complies with the given requirements and performs well on some input
tasks, as well as supporting users in exploring the space of solutions. POE takes as
input (i) an ontology, (ii) a collection of instances that could be described by the
concepts in the ontology, (iii) a set of additional candidate concepts (and their rela-
tionships with existing concepts), (iv) a set of requirements, (v) one or more tasks, and,
optionally, (vi) four additional parameters defining user preferences. It then finds the
combination of candidate concepts that generates the representation of the instances
which performs best on the given tasks by first searching in the space of four
parameters and then applying a variation of Recursive Feature Elimination [31].
Finally, it returns: (i) a new version of the ontology that complies with the input
requirements and effectively supports the relevant tasks, and (ii) a number of statistics
that allow users to assess the effect of their preferences (e.g., privileging conservative or
novel concepts) on the tasks.

In the PMC scenario, the input ontology is the portion of PMC covering the field of
Computer Science, while the instances are the metadata of books published by SN in
recent years and tagged with PMC concepts. The set of candidate concepts was built by
mapping the PMC concepts that needed to be enriched to relevant concepts in CSO and
then selecting all their sub-concepts, as discussed in Sect. 2. The mapping was done
semi-automatically by generating candidate mapping with statistical heuristics from
Klink-2 [22] and then revising them with the help of SN editors, as described in [2].
This operation yielded 2,451 candidate concepts.

The POE framework is structured in two main steps:

Parameter Optimization. It tests different combinations of four parameters (using
grid search) to weigh the candidate concepts. For each combination, it produces an
ontology that complies with the requirements, it annotates the instances with it, and it
measures the performance of this representation on the tasks. Finally, it returns a
ranked list of parameter combinations.

Recursive Concept Elimination. It uses the best parameter combination from pre-
vious steps to generate an ontology and applies on it a variation of the Recursive
Feature Elimination to iteratively eliminate the least important concepts, until the
desired number of concepts is reached.

POE allows users to set three kind of requirements: (1) the maximum number of
concepts in the ontology, (2) the minimum number of concepts in a branch, and (3) the
maximum number of concepts in a branch. Being able to control the dimension of
branches is important to produce structurally balanced ontologies. POE also allows the
users to define or restrict (within a range) four parameters that control the ranking of
the candidate concepts.

POE can be used with any task that uses an ontology-derived representation of the
instances and whose performance can be evaluated according to an objective metric. In

500 F. Osborne and E. Motta

particular, in the current prototype we support four tasks: instance tagging, similarity
computation, generation of recommendations, and data clustering.

In what follows, we will first discuss the basic functions of POE, i.e., the generation
of an ontology from a set of parameters (Sect. 4.2), and the evaluation of a ontology on
a task (Sect. 4.3). We will then address the two main steps of the POE framework that
employ these functionalities: parameter optimization in Sect. 4.4, and Recursive
Concept Elimination in Sect. 4.5.

4.2 Topic Ranking

In this phase, we consider the task of selecting a number of concepts to update an
ontology as a ranking problem, coherently with the state of the art (e.g., [11, 14–16]).
We thus want to assign a weight to every concept and then update the input ontology
with the first n concepts that comply with the requirements.

A typical way to do so is assessing a concept importance according to how fre-
quently it is represented in the instances. Intuitively, a concept that is often needed to
describe the instances should receive a higher weight than a rarer one. Indeed, previous
literature showed that term frequency and TF-IDF perform quite well on this task [14,
15]. We believe however that is possible to have a more comprehensive treatment of
this challenge by taking in consideration a number of additional factors. In particular,
here we consider four dimensions that can influence the value of a concept in the new
ontology and the strategy for mapping it to the instances.

Semantics. As already mentioned, a purely syntactical solution to weigh concepts is to
use the frequency of their label in the instances. For example, given the concept
temporal logic, we could weigh it according to the number of books that contains in the
title, abstract, or keyword field the string “temporal logic”. Alternatively, we could take
a more semantic approach and associate to a concept each instance that contains the
label of the concept or of any of its sub-concepts. For example, we could map the
concept temporal logic to each book that contains one of the alternative labels (e.g.,
“temporal logics”) or sub-concepts (e.g., “temporal operators”) in the CSO ontology.
This technique has been applied with good results in a variety of fields, such as
automatic classification of proceedings [2], technology forecasting [6], recommender
systems [3, 13], community detection [5], and others.

Temporal Dimension. It is also useful to consider when the instances were produced.
In the scenario of academic publishing, considering recent instances would prioritise
the trendiest research topics, which may keep growing and become more popular in the
future. However, focusing too much on recent instances, may exclude some significant
historical concepts that are still important and may risk prioritising concepts that are
experiencing only a transient burst of popularity.

Internal Versus External Instances. The instances can either derive from the cata-
logue of the organization that has adopted the ontology (e.g., SN books in Computer
Science) or they could be generic ones (e.g., all available books in Computer Science).
In the first case, the selected concepts will acquire the same biases of the internal
dataset. The resulting ontology will be tailored to those specific instances, but may

Pragmatic Ontology Evolution 501

exclude significant concepts that are currently under-represented in the catalogue.
Therefore, a company that wants to expand its catalogue and cover new fields may
prefer to consider all available instances, while one that is not interested in doing so,
may decide to produce a more internally-tailored ontology.

Structural Considerations. Considering only the weight of single concepts may
exclude some concepts that are less represented in the instances, but act as good
branching point in the ontology and keep the structure easy to browse and explore.
Therefore, in some cases it may be advisable to include concepts that are useful from a
structural standpoint, even if they appear less frequently in the instances.

We believe that it is useful to take in consideration each of these dimensions when
ranking concepts. Therefore, POE takes as input four parameters that can be tuned by
the user or optimized on a certain task:

• a (0−1). It controls whether POE uses the syntactic method, the semantic method,
or a combination of the two for mapping concepts to instances. If a = 0, it will use
only the label of a concept, with a = 1 it will consider all the sub-topics, otherwise
it will use a weighted average.

• bð0� 1Þ. It controls whether the weight will be computed only on instances from
an internal dataset or if it will consider also external entities. If b ¼ 0, POE will use
only the internal instances, with b ¼ 1 only external ones, otherwise it will use a
weighted average.

• c ð0� 1Þ. It modulates the importance of the most recently created instances on the
weight. If c = 0, POE will weight more recent instances, with c = 1 the time
dimension will not matter, otherwise it will use a weighted average.

• d (True, False). It controls whether POE will try to recover structurally important
concepts. In the current implementation, a concept is considered structurally
important if it has at least three sub-concepts that were selected.

The weight of each concept is computed with the following formula.

log
Xl
y¼f

siwy
y

 !
bþ log

Xl
y¼f

sewy
y

 !
1� bð Þ

 !
aþ log

Xl
y¼f

fiwy
y

 !
bþ log

Xl
y¼f

fewy
y

 !
1� bð Þ

 !
1� að Þ

Where siy, sey, fiy, fey are respectively, for a given year y, the semantic frequency in
the internal dataset, the semantic frequency in the external dataset, the syntactic fre-
quency in the internal dataset, and the syntactic frequency in the external dataset; f and
l are the first and last year of the analysed period; and wy ¼ 1

l�yþ 1ð Þ2c :

After ranking the concepts, POE selects the first n concepts that comply with the
input requirements. The POE framework can adopt any kind of requirements that can
be automatically verified by analysing the set of candidate concepts. In the current
prototype we take in consideration the minimum and maximum number of concepts for
each branch. POE enforces this requirements by first populating each branch with the
minimum number of concepts and then inserting the remaining concepts in the branch
that are still available until the maximum number of concepts is reached. If d is true,
POE also checks for structurally important concepts and inserts them in place of the

502 F. Osborne and E. Motta

ones with lowest weights. Finally, it creates a new version of the ontology which
incorporates the selected concepts.

It is also possible to define a list of invalid topics that will not be considered during
the selection phase. This option will be used during the Recursive Concept Elimination
(Sect. 4.5) to exclude topics that do not perform well on the tasks.

The approach described in this section can be used on its own in alternative to
generic methods [14, 15]. The main advantage is that it allows users to explore the
space of solutions, possibly with the support of domain experts, and understand how
different combination of parameters impact on the resulting ontology. However, it is
difficult even for human experts to assess how a new ontology will affect applications.
For this reason, we want to take a further step: evaluate the alternative ontologies on the
input tasks and suggest the one that yields the best performance.

4.3 Evaluating a Candidate Ontology on a Task

POE evaluates an ontology on some computational tasks by (i) using the ontology for
generating a representation of the instances, (ii) running the input tasks on this rep-
resentation, and (iii) evaluating the performance with the relevant metrics. The
instances are represented as a vector in which the elements correspond to the concepts
in the ontology and the values weigh the importance of a concept. In the case of PMC,
we used the Smart Topic API [13] for representing books as a vectors of research topics
in which each topic is assigned a value equal to the number of chapters in which it
appears. This is a convenient representation that can support several tasks. The Smart
Topic API is a service developed in collaboration with Springer Nature for tagging
publications with ontology concepts. It is described in details in [2, 13].

While some tasks (e.g., instance tagging) can be evaluated using simple metrics
(e.g., percentage of instances covered), others require a ground truth. For instance,
evaluating the performance of a clustering algorithm would usually require a correct set
of clusters to compare against. In some cases, such as in the PMC scenario, it is quite
expensive to produce a specific gold standard for each task. Therefore, we address this
issue by adopting a ground truth ontology that includes all candidate concepts and can
be used with every task. The intuition is that we want to select a candidate ontology
including no more than n concepts that would perform as well as possible as the full
ontology. In the case of PMC, we want to produce an ontology of about 120–200
concepts that can perform as closely as possible to the version which includes all 2,451
candidate concepts from CSO. In the following, we will refer to the candidate ontology
as Oc and to the full ontology, which serves as ground truth, as Of.

It is important to note that if the task in consideration is sensitive to irrelevant or
redundant features, the ground truth ontology needs to contain valid concepts and to
have been previously evaluated. This is indeed the case with CSO, which was previ-
ously tested on several tasks [24], including automatic tagging of scientific publications
[1], recommendation generation [2], clustering [5], and technology forecasting [6].
Alternatively, we suggest to pre-filter the candidate concepts [16] or to generate a task-
specific gold standard.

The current POE prototype implements four tasks that were developed for the PMC
scenario. The implementation of a new task is straightforward since it simple requires

Pragmatic Ontology Evolution 503

to define a representation of the instances, run the task on them, and evaluate the results
with a relevant metric. If the input includes several tasks, their overall performance is
computed as the average of the resulting metrics.

We will now discuss these tasks and their evaluation.

4.3.1 Instance Tagging
As first task, we consider the automatic tagging that associates each instance to a vector
of concepts (via the Smart Topic API [13]). The candidate ontology should enable to
generate a relatively granular representation of all the instances. Therefore, we evaluate
this task by computing the percentage of instances that are covered by the ontology.
Naturally, the definition and quality of the coverage varies according to the scenario
and the domain. In the case of PMC, it is important to associate each book to a
minimum number of topics, so that they can be browsed and searched with a good
granularity. Furthermore, the main topics have to be fairly representative and not
appear only in few chapters. We thus consider covered a publication that is associated
with at least three concepts that are present in at least three chapters.

4.3.2 Similarity Computation
Computing the similarity of a set of items is a common task that supports more
complex tasks such as record linkage, clustering, and so on. We evaluate this task by
computing the cosine similarity of each couple of instances according to both Oc and
Of, and then calculating their mean root-mean-squared error.

similarity performance ¼ 1�
ffiXn
i¼1

Xn
j¼1

cos bci ; bcJð Þ � cos bfi ; bfJ� �� �2vuut

Where cos bv1 ; bv2ð Þ is the cosine similarity between vectors bv1 and bv2 , bci is the

vector of instance i produced with the candidate ontology, bfi is the vector of instance
i produced with the full ontology, and n is the total number of instances. When the
result is near 1 the two ontologies are yielding similar results and thus the candidate
ontology is performing well.

4.3.3 Generation of Recommendations
Today several recommender systems use ontologies for enhancing semantically the
representation of items or users [3]. In particular, content-based recommenders use
feature representations of items to suggest other items that possess similar character-
istics. This is the case of Smart Book Recommender [13] which suggest SN books
relevant to a certain conference.

We generate for each instance, say I, a ranked list of recommendations composed
by the 100 instances most similar to I, according to both Oc and Of. This is realized by
computing the cosine similarity of the vector representations derived from the two
ontologies. We then assess the agreement of the lists produced by the two ontologies
using the Spearman’s rank correlation coefficient, a standard metric for evaluating
recommender systems. The Spearman’s coefficient between two variables equals to the

504 F. Osborne and E. Motta

Pearson correlation between the rank values of those two variables, and it is used when
it is important to compare the order of items in a list. It varies between −1 and 1, with 1
(or −1) indicating that the two list exhibit a perfect correlation and 0 indicating that the
order of two list is not correlated at all. The performance of Oc on this task is measured
according to the following formula:

recommender performance ¼ 1
n

Xn
i¼1

cov rci; rfið Þ
rrcirrfi

Where rrci and rrfi are the standard deviations of the ranked list of items according
to Oc and Of, and cov rci; rfið Þ is the covariance of the ranked lists.

4.3.4 Clustering
Cluster analysis is a powerful tool for exploring trends, generating analytics, and
informing marketing and political decisions. We first cluster the instances according to
both ontologies by using the K-Means++ algorithm and then compare the results with
the Rand index, which is a measure of the similarity between two sets of clusters. The
Rand index varies between 0 and 1, with 1 indicating that the data are clustered in the
same way and 0 indicating that the cluster sets are completely dissimilar.

clustering performance ¼ ai þ bi
n
2

� �

Where ai is the number of pairs of instances that are in the same cluster both in the
cluster set of Oc and in the cluster set of Of, and bi is the number of pairs that are in
different clusters.

4.4 Parameter Optimization

Parameter optimization is the first step of the POE approach. In this phase, POE
executes a grid search on the space of the four parameters described in Sect. 4.2,
produces a candidate ontology for every combination of parameters, and ranks them
according to their performance on the tasks, as illustrated in Sect. 4.3. The ontology
that performs best is the advisable solution in the space of parameters.

The result of this phase can be used for exploring the space of solutions and
assessing the effect of the parameters on the ability of an ontology to perform certain
tasks. A simple way to do so is testing if there is any correlation between a parameter
and the performance. For instance, Fig. 1 shows the relation between two parameters
and the performance obtained on the generation of recommendations task (Sect. 4.3.3)
when representing 718 SN books in the 2012–2014 period with the ontology produced
by including 40 additional topics to PMC. a is directly correlated with the recom-
mender performance, yielding a Pearson correlation coefficient of 0.69 (p < 0.0001). It
thus seems that mapping instances with the semantic approach works better when
optimizing the ontology for this task. Although, it is interesting to notice that the best

Pragmatic Ontology Evolution 505

results are obtained when 0.5 � a � 0.75, therefore a purely semantic approach may
be counterproductive. Conversely b exhibits a mild inverse correlation with the per-
formance, yielding a Pearson correlation coefficient of −0.36 (p < 0.0001). This
indicates that preferring the instances from the internal dataset tends to produce a
superior result on this task.

4.5 Recursive Concept Elimination

The previous step can outperform some more basic methods (see Sect. 5), but still
suffers from two main limitations. First, the optimization was limited to the space of
parameters, therefore a better solution may exist outside this space. Secondly, the
typical strategy of assigning weights to single concepts does not take into consideration
concept synergy. Conversely, it is possible that even if concept C1 has lower weight
than C2, its combination with the other concepts would yield a better overall perfor-
mance. For instance, two concepts may be redundant (e.g., “Linked Data” and “RDF”),
therefore after one of them is selected, adding also the other would yield only a
marginal advantage. In this section, we introduce a technique that addresses both
limitations.

A comprehensive search outside the space of parameters is computationally
intractable since it would need to test all possible permutations. For this reason, per-
forming feature selection in large dimensional input spaces usually involves greedy
algorithms. An approach to address this issue in the field of machine learning is the
Recursive Feature Elimination algorithm [31], often used with Support Vector
Machines and other classifiers. This approach iteratively constructs a model with a set
of features, computes their weights, and removes the least important features, until the
goal is reached. A crucial advantage of this method is that it takes into account the
feature synergy and preserves features whose usefulness requires other features.

We thus adopted a similar procedure, that we label Recursive Concept Elimination
(RCE), as the second step of POE. RCE generates an ontology composed of n concepts
by applying the following steps:

Fig. 1. Performance on the generation of recommendations task in function of a and b.

506 F. Osborne and E. Motta

1. It produces an ontology with m concepts (where m > n) using the best set of
parameters detected in the first phase (Sect. 4.4). If no ontology of m concepts
complies with the requirements, these are temporarily relaxed.

2. It ranks the concepts according to their importance for the tasks by generating
m − 1 representations of the instances, each of them lacking a concept, and eval-
uating them. Each concept is given a weight equal to 1 minus the metric yielded by
the evaluation of the representation from which it is absent [32].

3. It discards the j concepts with the smaller weights and returns to step 2, until it
reaches n concepts. Finally, it returns the optimized ontology and the ranked set of
parameters from the previous phase.

While it is technically possible to directly apply RCE to the full set of candidate
concepts, it would not be computationally feasible in most cases. Using the set of best
parameters to create an initial ontology of m concepts allows us to obtain a tractable
number of RCE iterations.

A further advantage of this method is that it allows users to understand exactly why
a concept is there and in which way it relates with the dimensions discussed in Sect. 4.2
and with its performance on a task. Indeed, the ranking order will still be consistent
with the set of parameters selected in the first phase and the absence of a concept from
the original ranked list would be due to its insufficient performance with regard to the
task. The user is thus able to review this information and test different solutions by
modulating the input parameters.

5 Evaluation

We tested POE on the task of evolving the PMC taxonomy and used as instances a
dataset of Springer Nature publications including 1,218 books in the 2012–2016 per-
iod. The evaluation had three aims. First, we wanted to compare POE versus alternative
baselines from the state of the art, such as the TF-IDF method adopted in Text2Onto
[14] and SPRAT [15]. Secondly, we intended to investigate whether optimizing for a
certain task would also yield good performance on related ones. Finally, we intended to
assess the effect of training POE on multiple tasks at once.

We thus compared the performance of the ontologies produced by different
approaches in supporting the four tasks implemented in POE: automatic tagging (Task
1), similarity computation (Task 2), generation of recommendations (Task 3), and
clustering (Task 4). In addition to the SN dataset, we adopted the Rexplore dataset [23]
as the external source from which to derive statistics, such as the concepts frequencies
described in Sect. 4.2 and TF-IDF. The Rexplore dataset is more generic than the SN
one and contains 16 million research papers in the field of Computer Science from a
variety of academic publishers.

We focused on the evolution of the branches under five concepts of the original
PMC taxonomy: I21017-Artificial Intelligence (incl. Robotics), I23050-Computational
Biology/Bioinformatics, I14050-Systems and Data Security, I14029-Software Engi-
neering, and I13022-Computer Communication Networks. These concepts were map-
ped to nine CSO concepts: Artificial Intelligence, Robotics, Bioinformatics,

Pragmatic Ontology Evolution 507

Cryptography, Access Control, Software Engineering, Software Design, Computer
Networks, and Wireless Telecommunication Systems. Finally, their 2,451 sub-topics
were selected as candidate concepts.

We tested fourteen alternative approaches:

• Term Frequency in the SN dataset (FS), ranking concepts according to their fre-
quency in SN dataset.

• Term Frequency in the Rexplore dataset (FR).
• TF-IDF in the SN dataset (TS) (as in [14, 15]), considering the instances under the

five branches for the TF and all the instances for the IDF.
• TF-IDF in the Rexplore dataset (TR).
• The parameter optimization in POE (Sect. 4.4), yielding the ontology produced

from the best combination of parameters for instance tagging (P1), similarity
computation (P2), generation of recommendations (P3), clustering (P4), and all
these tasks together (P5).

• The full POE framework returning an ontology optimized for instance tagging
(POE1), similarity computation (POE2), generation of recommendations (POE3),
clustering (POE4), and all these tasks together (POE5).

We simulated a realistic situation by training the approaches and computing all the
statistics (e.g., TF-IDF) in the 2012–2014 period and then evaluating their performance
in the 2015–2016 period. In order to do so, we split the instances dataset in a training
set of 718 books and a testing set of 500 books.

We then generated, for each approach, four evolved versions of PMC that included
20, 40, 60, and 80 new concepts and compared their performance using the metrics
described in Sect. 4.3. The minimum and maximum number of concepts allowed for
each of the five branches was set respectively to 4 and 25. RCE was performed by
setting m = n + 20 and eliminating one concept at each iteration. POE was imple-
mented in Python and ran on a 2.40 GHz Intel Xeon processor taking between 1
(POE1) and 8 (POE5) hours depending on the task. The computing time is usually not
an issue for this kind of task, but if needed it could be cut down by parallelising the
parameter optimization and the RCE phase. The existence of statistical differences
between the two approaches was explored with the non-parametric Wilcoxon’s signed
rank test for matched variables.

The material produced during the evaluation and further details about the settings of
the approaches are available at http://rexplore.kmi.open.ac.uk/POE.

Tables 1 and 2 show the performance of the approaches on the four tasks. The full
version of POE optimized for a task (e.g., POE1 for task 1) obtained the best average
result for the task in every case, outperforming both parameter optimization (p = 0.002
with Wilcoxon’s rank test), and the other baselines (p = 0.0004). It also obtained the
best result for each concept number, with the exception of few cases in which it was
outranked by a different version of POE optimized for a similar task. POE5, the version
optimized on all tasks at once, proved to be a good compromise by yielding on each
task a performance marginally inferior or equal (in case of task 3) to the version of POE
specifically optimized for the task (p � 0.10). In addition, the parameter optimization
step optimized for a task (e.g., P1 for task 1) yielded better results than FS, FR, TS, TR
on that same task (p = 0.0004).

508 F. Osborne and E. Motta

http://rexplore.kmi.open.ac.uk/POE

Furthermore, all the approaches optimized on one the four tasks (including POE5)
performed significantly better (p < 0.0001) than the ones that simply used statistical
techniques. Therefore, it seems that optimizing for one of these tasks holds benefits also
on the other ones.

Table 1. Performance in task 1 (instance tagging) on the left and task 2 (similarity computation)
on the right. In bold the best results. In light grey the version of POE optimized for the task.

Table 2. Performance in task 3 (generation of recommendations) on the left and task 4
(clustering) on the right. In bold the best results. In light grey the version of POE optimized for
the task.

Pragmatic Ontology Evolution 509

POE3, POE2, and POE5 yielded very good results on all tasks, obtaining the
highest average performances, respectively 0.960, 0.959 and 0.959. Interestingly, the
performance of POE2 and POE3 on task 4 (clustering) was only slightly inferior to
POE4, while the performance of POE4 on task 2 and 3 was not as good. This is
probably due to the fact that both task 2 and task 3 concern the similarity between
instances, which is also used by K-Means++ for producing the cluster set.

6 Conclusions

We presented the Pragmatic Ontology Evolution (POE) framework, a novel approach
that selects concepts to be included in an evolving ontology in accordance with user
requirements and their impact on computational tasks. The evaluation showed that the
full version of POE outperforms both parameter optimization (p = 0.002) and the other
baselines (p = 0.0004).

While POE was initially conceived in the context of tackling a concrete real-world
ontology evolution problem, the approach is generally applicable and opens up many
interesting avenues of work. In particular, we intend to apply POE on different kinds of
ontologies and computational tasks to derive some useful guidelines on how to balance
users and application needs. We also intend to further enrich POE by allowing it to
handle more complex candidate changes, involving different kinds of semantic rela-
tionships. Finally, on the technology transfer side, we will continue our collaboration
with Springer Nature, with the aim of supporting its deployment within the editorial
team, thus providing a powerful and user-friendly solution to facilitate the process of
maintaining and evolving their editorial ontologies.

Acknowledgements. We would like to thank Springer DE for providing us with access to their
large repositories of scholarly data.

References

1. Ding, L., Kolari, P., Ding, Z., Avancha, S.: Using ontologies in the semantic web: a survey.
In: Sharman, R., Kishore, R., Ramesh, R. (eds.) Ontologies. ISIS, vol. 14, pp. 79–113.
Springer, Boston (2007). https://doi.org/10.1007/978-0-387-37022-4_4

2. Osborne, F., Salatino, A., Birukou, A., Motta, E.: Automatic classification of Springer Nature
proceedings with smart topic miner. In: Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9982,
pp. 383–399. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46547-0_33

3. Middleton, S.E., De Roure, D., Shadbolt, N.R.: Ontology-based recommender systems. In:
Staab, S., Studer, R. (eds.) Handbook on Ontologies. INFOSYS, pp. 779–796. Springer,
Berlin (2009). https://doi.org/10.1007/978-3-540-24750-0_24

4. Hotho, A., Staab, S., Stumme, G.: Ontologies improve text document clustering. In: Data
Mining, ICDM 2003. IEEE (2003)

5. Osborne, F., Scavo, G., Motta, E.: Identifying diachronic topic-based research communities
by clustering shared research trajectories. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin,
M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 114–129. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07443-6_9

510 F. Osborne and E. Motta

http://dx.doi.org/10.1007/978-0-387-37022-4_4
http://dx.doi.org/10.1007/978-3-319-46547-0_33
http://dx.doi.org/10.1007/978-3-540-24750-0_24
http://dx.doi.org/10.1007/978-3-319-07443-6_9

6. Osborne, F., Mannocci, A., Motta, E.: Forecasting the spreading of technologies in research
communities. In: K-CAP 2017, Austin, Texas, USA (2017)

7. Zablith, F., et al.: Ontology evolution: a process-centric survey. Knowl. Eng. Rev. 30(1), 45–
75 (2015)

8. Stojanovic, L.: Methods and tools for ontology evolution (2004)
9. Klein, M., Noy, N.F.: A component-based framework for ontology evolution. In: Workshop

on Ontologies and Distributed Systems at IJCAI, vol. 3, p. 4 (2003)
10. Noy, N.F., Chugh, A., Liu, W., Musen, M.A.: A framework for ontology evolution in

collaborative environments. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 544–
558. Springer, Heidelberg (2006). https://doi.org/10.1007/11926078_39

11. Zablith, F.: Evolva: a comprehensive approach to ontology evolution. In: Aroyo, L., et al.
(eds.) ESWC 2009. LNCS, vol. 5554, pp. 944–948. Springer, Heidelberg (2009). https://doi.
org/10.1007/978-3-642-02121-3_87

12. Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery: a
comprehensive survey. Web Seman.: Sci. Serv. Agents World Wide Web 36, 1–22 (2016)

13. Thanapalasingam, T., Osborne, F., Birukou, A., Motta, E.: Ontology-based recommendation
of editorial products. In: International Semantic Web Conference 2018, Monterey, CA, USA
(2018)

14. Cimiano, P., Völker, J.: Text2Onto. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB
2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005). https://doi.org/10.1007/
11428817_21

15. Maynard, D., Funk, A., Peters, W.: SPRAT: a tool for automatic semantic pattern-based
ontology population. In: International Conference for Digital Libraries and the Semantic
Web, Trento, Italy (2009)

16. Novacek, V., Handschuh, S.: Semi-automatic integration of learned ontologies into a
collaborative framework (2007)

17. Huang, Z., Stuckenschmidt, H.: Reasoning with multi-version ontologies: a temporal logic
approach. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, pp. 398–412. Springer, Heidelberg (2005). https://doi.org/10.1007/11574620_30

18. Xuan, D.N., Bellatreche, L., Pierra, G.: A versioning management model for ontology-based
data warehouses. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK 2006. LNCS, vol. 4081, pp. 195–
206. Springer, Heidelberg (2006). https://doi.org/10.1007/11823728_19

19. Wang, Y., Liu, X., Ye, R.: Ontology evolution issues in adaptable information management
systems. In: 2008 IEEE International Conference on e-Business Engineering, ICEBE 2008,
pp. 753–758. IEEE (2008)

20. Liang, Y., Alani, H., Shadbolt, N.: Changing ontology breaks queries. In: Cruz, I., et al.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 982–985. Springer, Heidelberg (2006). https://doi.
org/10.1007/11926078_79

21. Kondylakis, H., Plexousakis, D.: Ontology evolution: assisting query migration. In: Atzeni,
P., Cheung, D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 331–344. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34002-4_26

22. Osborne, F., Motta, E.: Klink-2: integrating multiple web sources to generate semantic topic
networks. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 408–424. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_24

23. Osborne, F., Motta, E., Mulholland, P.: Exploring scholarly data with rexplore. In: Alani, H.,
et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 460–477. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41335-3_29

24. Salatino, A.A., Thanapalasingam, T., Mannocci, A., Osborne, F., Motta, E.: The computer
science ontology: a large-scale taxonomy of research areas. In: International Semantic Web
Conference 2018, Monterey, CA, USA (2018)

Pragmatic Ontology Evolution 511

http://dx.doi.org/10.1007/11926078_39
http://dx.doi.org/10.1007/978-3-642-02121-3_87
http://dx.doi.org/10.1007/978-3-642-02121-3_87
http://dx.doi.org/10.1007/11428817_21
http://dx.doi.org/10.1007/11428817_21
http://dx.doi.org/10.1007/11574620_30
http://dx.doi.org/10.1007/11823728_19
http://dx.doi.org/10.1007/11926078_79
http://dx.doi.org/10.1007/11926078_79
http://dx.doi.org/10.1007/978-3-642-34002-4_26
http://dx.doi.org/10.1007/978-3-319-25007-6_24
http://dx.doi.org/10.1007/978-3-642-41335-3_29

25. Klein, M.C., Fensel, D.: Ontology versioning on the Semantic Web. In: SWWS, pp. 75–91
(2001)

26. Sellami, Z., Camps, V., Aussenac-Gilles, N.: DYNAMO-MAS: a multi-agent system for
ontology evolution from text. J. Data Semant. 2(2–3), 145–161 (2013)

27. Sabou, M., Fernandez, M., Motta, E.: Evaluating semantic relations by exploring ontologies
on the semantic web. In: Horacek, H., Métais, E., Muñoz, R., Wolska, M. (eds.) NLDB
2009. LNCS, vol. 5723, pp. 269–280. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-12550-8_22

28. Qin, L., Atluri, V.: Evaluating the validity of data instances against ontology evolution over
the semantic web. Inf. Softw. Technol. 51(1), 83–97 (2009)

29. Hartung, M., Kirsten, T., Rahm, E.: Analyzing the evolution of life science ontologies and
mappings. In: Bairoch, A., Cohen-Boulakia, S., Froidevaux, C. (eds.) DILS 2008. LNCS,
vol. 5109, pp. 11–27. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
69828-9_4

30. Groß, A., Hartung, M., Prüfer, K., Kelso, J., Rahm, E.: Impact of ontology evolution on
functional analyses. Bioinformatics 28(20), 2671–2677 (2012)

31. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using
support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

32. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–
324 (1997)

512 F. Osborne and E. Motta

http://dx.doi.org/10.1007/978-3-642-12550-8_22
http://dx.doi.org/10.1007/978-3-642-12550-8_22
http://dx.doi.org/10.1007/978-3-540-69828-9_4
http://dx.doi.org/10.1007/978-3-540-69828-9_4

Towards Empty Answers in SPARQL:
Approximating Querying with RDF

Embedding

Meng Wang1(B), Ruijie Wang2, Jun Liu3, Yihe Chen4, Lei Zhang5,
and Guilin Qi6

1 MOEKLINNS Lab, Xi’an Jiaotong University, Xi’an, China
wangmengsd@stu.xjtu.edu.cn

2 School of Electronic and Information Engineering, Xi’an Jiaotong University,
Xi’an, China

xjdwrj@stu.xjtu.edu.cn
3 Guang Dong Xi’an Jiaotong University Academy, Shunde, China

liukeen@xjtu.edu.cn
4 University of Toronto, Toronto, Canada

5 FIZ Karlsruhe – Leibniz Institute for Information Infrastructure,
Karlsruhe, Germany

6 School of Computer Science and Engineering, Southeast University, Nanjing, China

Abstract. The LOD cloud offers a plethora of RDF data sources where
users discover items of interest by issuing SPARQL queries. A common
query problem for users is to face with empty answers: given a SPARQL
query that returns nothing, how to refine the query to obtain a non-
empty set? In this paper, we propose an RDF graph embedding based
framework to solve the SPARQL empty-answer problem in terms of a
continuous vector space. We first project the RDF graph into a continu-
ous vector space by an entity context preserving translational embedding
model which is specially designed for SPARQL queries. Then, given a
SPARQL query that returns an empty set, we partition it into several
parts and compute approximate answers by leveraging RDF embeddings
and the translation mechanism. We also generate alternative queries for
returned answers, which helps users recognize their expectations and
refine the original query finally. To validate the effectiveness and effi-
ciency of our framework, we conduct extensive experiments on the real-
world RDF dataset. The results show that our framework can signif-
icantly improve the quality of approximate answers and speed up the
generation of alternative queries.

Keywords: SPARQL · Empty-answer · RDF · Graph embedding

1 Introduction

With the rapid development of Semantic Web technologies, various knowledge
bases are published on the Linked Open Data (LOD) cloud using Resource
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 513–529, 2018.
https://doi.org/10.1007/978-3-030-00671-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_30&domain=pdf

514 M. Wang et al.

Description Framework (RDF). To enable users to retrieve the desired data,
many RDF datasets provide SPARQL endpoints that allow users to issue basic
graph pattern (BGP) queries [11]. However, issuing SPARQL queries requires
users to be precisely aware of the structure and schema of the RDF dataset,
and this is challenging. Therefore, it is a common scenario for users where an
inappropriate query returns an empty set, the so-called empty-answer problem.

Most existing work solves this problem through query relaxation approaches
[6–9,12–14] which focus on relaxing RDF terms specified in the original query
so that the new relaxed query returns sufficient answers. They find top-k opti-
mal relaxed queries in the exponential search space then evaluate the matching
process between the relaxed queries and the RDF graph, which is really time-
consuming. Is it possible to directly retrieve approximate answers for
a failing query without changing any parts of the original query? The
answer is yes. In this paper, we stand on recent advances in RDF embedding
techniques and address the SPARQL empty-answer problem from the angle of
continuous vector space.

Motivating Example: A user wants to find drama films which were released
in the United States and directed by Tim Burton. After issuing a SPARQL
query over DBpedia [16], the user obtains an empty answer, as shown on the
left of Fig. 1. In this example, Tim Burton, director, country, United States, type,
and drama films are specified RDF terms in the SPARQL BGP [11]. Since each
specified term must be matched, this is too restrictive for the graph pattern
matching. To deal with such failing queries, users usually have no idea which
parts of the query should be responsible for the missing possible answers.

Fig. 1. Failing SPARQL BGP and RDF graph embeddings.

The right of Fig. 1 illustrates the ideal vector representation (i.e., the embed-
ding) of the RDF graph to be queried in a continuous vector space, where entities
are represented by vectors (boldface letters), and semantically similar entities are
close to each other. For example, e3 and e5 are close since drama film(e3) and

Towards Empty Answers in SPARQL 515

fantasy film(e5) are similar. The relation between two entities is represented as
a translation operation from the head entity to the tail entity, e.g., e4 + r3 ≈ e5
when a triple 〈Sleepy Hollow(e4), type(r3), fantasy film(e5)〉 holds. With the
translation mechanism, although the expected answer v1 does not exist in the
RDF graph, we can still compute its vector representation v1 based on specified
terms in the SPARQL, e.g., v1 ≈ e1 − r1 according to 〈v1, r1, e1〉. Then, we can
obtain e4 which is close to v1 in the space. Sleepy Hollow(e4) is likely to meet
the query intention of the original SPARQL query in the RDF graph.

Challenges: Leveraging RDF embeddings is a promising pathway to directly
find approximate answers for a failing SPARQL query, but it is also troubling.
Our method confronts the following challenges:

– Limitations of existing embedding models: We need to project the RDF graph
into a continuous vector space, where semantically similar entities are close to
each other and the relations among entities are represented by translations.
However, none of the existing embedding models (e.g., RDF2vec [20], TransE
[3], et al.) meet the requirements.

– Variety of BGPs: A BGP may contain multiple different variables and usu-
ally contains several triple patterns sharing the same variables or entities.
Therefore, how to exploit the interplay between triple patterns and compute
approximate answers for each variable is challenging and non-trivial.

– Comprehensibility of approximate answers: Obtaining approximate answers
without any explanations is inadequate for satisfying users because they may
ask why an approximate answer is returned.

Solutions: Given these challenges, we propose a novel framework to address the
SPARQL empty-answer problem. The procedure includes the following:

– Firstly, the RDF graph is projected into a continuous vector space by an
entity context preserving translational embedding model which is specially
designed for SPARQL BGPs.

– Then, given a SPARQL query that returns an empty answer, the SPARQL
BGP is partitioned into several parts based on different variables. By lever-
aging the RDF embeddings and the translation mechanism, approximate
answers are further computed based on the vector representations of vari-
ables and specified query terms.

– Finally, approximate answers are returned to users. Each returned answer
will be attached with an alternative query, which helps users recognize their
expectations and refine the original query.

Contributions: Our framework makes the following contributions:

– To the best of our knowledge, we are the first to solve the SPARQL empty-
answer problem from a continuous vector space perspective, which improves
the quality of the returned answers and speeds up the generation of alternative
queries.

516 M. Wang et al.

– We propose a novel RDF graph embedding model which utilizes the trans-
lation mechanism to capture the relations between entities while considering
the entity context to make the representations of semantically similar entities
close to each other in the vector space.

– We propose efficient algorithms to compute approximate answers attached
with alternative queries as the explanations for users.

– We conduct extensive experiments on the real-world dataset to evaluate the
effectiveness and efficiency of the framework. These results provide supporting
evidence that the framework is powerful in generating effective answers and
explanations for failing queries within an acceptable time.

Organization: The remainder of the paper is organized as follows. Section 2
presents the details of the proposed framework. The evaluation of the frame-
work is reported in Sect. 3. The related work is discussed in Sect. 4. Finally, our
conclusions and future work are presented in Sect. 5.

2 The Proposed Framework

Before demonstrating the details of our framework, we briefly introduce the
notations employed in this paper.

RDF Graph. Let E be a set of entities, R be a set of relations between entities.
An RDF graph G = (E ,R) is a finite set of RDF triples in the form 〈eh, r, et〉,
where eh, et ∈ E and r ∈ R. An RDF triple 〈eh, r, et〉 indicates a directed
relation r from the head entity eh to the tail entity et, e.g., 〈Batman, director,
Tim Burton〉.

The standard SPARQL [11] contains BGPs and other operations (UNION,
OPTIONAL, FILTER, etc.). In this paper, we focus on the SPARQL empty-
answer problem caused by over-constrained BGPs, which already yields a non-
trivial problem to study.

BGP. Let V be a set of entity variables. Each variable v ∈ V is distinguished by
a leading question mark symbol, e.g., ?film. A triple pattern is similar to an RDF
triple but allows the usage of variables for entities1, e.g., 〈?film, director, Tim
Burton〉. A SPARQL BGP P = (EP ∪ VP ,RP) is a finite set of triple patterns,
where EP ⊆ E , VP ⊆ V and RP ⊆ R.

SPARQL Query. The official standard [11] defines four different forms of
queries on the top of BGPs, namely SELECT, ASK, CONSTRUCT, and
DESCRIBE. Since SELECT is the only form which returns the graph match-
ing results to users, we define a SPARQL query Q as an expression of the form
SELECT S FROM G WHERE P, where P is a BGP, G is an RDF graph to be
queried, and S ⊆ VP .

1 To simplify the problem, we do not consider variables on predicates in this paper as
such graph patterns are mainly used for exploring RDF schema but rarely used in
real-world SPARQL queries [2].

Towards Empty Answers in SPARQL 517

SPARQL Empty-Answer Problem. Given a SPARQL query SELECT S
FROM G WHERE P, P is evaluated to match G, and the variables in P are
substituted by entities in G. SELECT S employs the matched RDF graphs to
provide the final result set RS. The SPARQL empty-answer problem refers to
the scenario where the final result set is empty, i.e., RS = ∅.

Given a failing SPARQL query, our goal is to automatically generate top-k
answers which approximately meet the original query intention along with cor-
responding alternative queries. Different from the existing methods [6–9,12–14],
our framework solves the empty-answer problem based on a continuous vector
space, as introduced in the example of Sect. 1. The proposed framework mainly
includes three modules: learning RDF embeddings (described in Sect. 2.1), com-
puting variable embeddings (described in Sect. 2.2), as well as generating approx-
imate answers and alternative queries (described in Sect. 2.3).

2.1 Learning RDF Embeddings

In this module, we aim to embed entities and relations of the underlying RDF
graph into a continuous vector space while preserving the inherent structure
of the graph. Neural-language-based models, e.g., RDF2vec [20], only generate
entity latent representations, and they cannot encode relations between entities.
Therefore, we adopt the translation mechanism of TransE [3] to capture the
correlations between entities and relations2. The translation mechanism in this
context represents a relation as a translation operation from the head entity
to the tail entity in the continuous vector space. Specifically, if an RDF triple
〈eh, r, et〉 ∈ G, our objective is to learn embeddings eh, r and et which hold
eh + r ≈ et (et should be a nearest neighbor of eh + r). However, directly
adopting TransE does not guarantee that semantically similar entities are close
to each other in the continuous vector space since it regards an RDF graph as a
set of independent triples during the learning process. Triples in the RDF graph
are not independent, and semantically similar entities tend to share common
context information, e.g., neighboring entities and their associated relations.
Therefore, we propose a novel embedding method which considers the entity
context information during the translation-based learning process.

Definition 1 (Entity Context). For an entity e ∈ E, the context of e is a set
C(e) = {(rc, ec)|rc ∈ R, ec ∈ E , 〈e, rc, ec〉 ∈ G ∨ 〈ec, rc, e〉 ∈ G}, where rc is the
relation between e and its neighbor ec.

Given an entity e ∈ E , our goal is to learn the vector representation e while
preserving its entity context information. To this end, we first define the condi-
tional probability of e given its context C(e) as follows:

P (e|C(e)) =
exp(f1(e, C(e)))

∑
e′∈E exp(f1(e′, C(e)))

, (1)

2 Other translation-based embedding models, such as TransH [21] and TransR [17],
can also be easily adopted for the RDF triple encoding.

518 M. Wang et al.

where f1(e′, C(e)) is a score function that measures the correlation between an
arbitrary entity e′ and the entity context of e. We define f1(e′, C(e)) as:

f1(e′, C(e)) = − 1
|C(e)|

∑

(rc,ec)∈C(e)

f2(e′, rc, ec), (2)

where f2(e′, rc, ec) is the score function of TransE that measures the correlation
between e′ and (rc, ec) ∈ C(e). f2(e′, rc, ec) is formulated as follows:

f2(e′, rc, ec) =
{‖e′ + rc − ec‖22, if 〈e, rc, ec〉 ∈ G,

‖ec + rc − e′‖22, if 〈ec, rc, e〉 ∈ G,
(3)

where 〈e, rc, ec〉 and 〈ec, rc, e〉 indicate the directions of rc. Intuitively, if two enti-
ties share more common context information, their embeddings tend to be more
similar according to the above equations. By maximizing the joint probability
of all entities in G, we define the final objective function as:

O =
∑

e∈E
log P (e|C(e)). (4)

Considering the over-sized RDF graph, it is impractical to directly compute
Eq. (1). Hence, we follow [18] to approximate Eq. (1) based on negative sampling,
as formulated in Eq. (5).

P (e|C(e)) ≈ σ(f1(e, C(e))) ·
n∏

e′∈Ee
N

σ(f1(e′, C(e))), (5)

where n is the number of negative examples, σ(·) is the sigmoid function, and
e′ is the negative entity which is obtained by sampling entities from a uniform
distribution over the negative entity set Ee

N . For each negative entity e′ ∈ Ee
N ,

the precondition is C(e′)
⋂

C(e) = ∅.
Based on the above process, entities are encoded into the continuous vector

space with their context information such that semantically similar entities are
close to each other. The relations between entities are simultaneously captured
by the translation mechanism. It is worth mentioning that the generation of
embeddings is independent of the rest phases of the framework. Once the RDF
embeddings have been learned, we can use them in SPARQL empty-answer prob-
lems solving without frequent modification.

2.2 Computing Variable Embeddings

We assume that the initial SPARQL is free of spelling/syntactic errors. In this
module, we aim to compute embeddings of variables in the original SPARQL
query. Similar to the correlation between an entity and its context, a variable is
determined by its neighbors in the BGP of the initial query.

The neighbor of a variable could be a specified entity or any variable else (a
BGP may contain multiple variables). Given a failing SPARQL query, we first
partition its BGP into several sub-basic graph patterns (sBGPs), each of which
contains only one variable connected with a set of specified entities.

Towards Empty Answers in SPARQL 519

Definition 2 (Sub-Basic Graph Pattern). Given a basic graph pattern P =
(EP ∪ VP ,RP), a sub-basic graph pattern (sBGP) for a variable vs ∈ VP is a set
SP = {〈vs, rs, es〉|rs ∈ RP , es ∈ EP , 〈vs, rs, es〉 ∈ P} ∪ {〈es, rs, vs〉|rs ∈ RP , es ∈
EP , 〈es, rs, vs〉 ∈ P}, where rs is a relation between vs and its neighbor es.

For instance, the left of Fig. 2 illustrates a SPARQL BGP that retrieves
American drama films directed by Tim Burton and there is a star actor who was
born in New York. We can partition the BGP into two sBGPs, i.e., sBGP1 and
sBGP2 for ?film and ?actor, respectively.

Fig. 2. Failing SPARQL basic graph pattern and RDF graph embeddings.

Then, given a variable vs and the corresponding sBGP SP, we utilize spec-
ified entities in SP to estimate the embedding of vs. For a single triple pattern
〈vs, rs, es〉 or 〈es, rs, vs〉 in SP, we can obtain a preliminary embedding ṽs, com-
puted as follows:

ṽs =
{

es − rs, if 〈vs, rs, es〉 ∈ SP,
es + rs, if 〈es, rs, vs〉 ∈ SP.

(6)

For instance, regarding the variable ?film (v1) shown in Fig. 2, we can uti-
lize the triple pattern 〈?film, director, Tim Burton〉, i.e., 〈v1, r1, e1〉, to obtain
the preliminary embedding of v1 according to Eq. (6), i.e., ṽ1= e1 − r1 in the
continuous vector space.

In the sBGP SP, if the variable vs is involved in multiple triple patterns, we
need to jointly consider these triple patterns in the estimation of the variable
embedding. Intuitively, different triple patterns may have different impacts on
determining the variable embedding. For example, sBGP1 in Fig. 2 consists of

520 M. Wang et al.

three triple patterns, i.e., 〈?film, director, Tim Burton〉, 〈?film, country, United
States〉, and 〈?film, type, drama film〉. In the underlying RDF graph, e.g., DBpe-
dia, there are respectively 24, 112,336, and 238 RDF triples matching the three
triple patterns. Therefore, the triple pattern 〈?film, director, Tim Burton〉 con-
tains more specific information for estimating the variable embedding of ?film
compared with the other two triple patterns, and it should attract more atten-
tion. We define the following attention function a(vs, rs, es) to measure the atten-
tion on a triple pattern 〈vs, rs, es〉 when estimating the embedding of vs.

a(vs, rs, es) = exp

(
− |{evs |〈evs , rs, es〉 ∈ G ∨ 〈es, rs, evs 〉 ∈ G}|∑

〈vs,r′
s,e′

s〉∈SP∨〈e′
s,r′

s,vs〉∈SP |{evs |〈evs , r′
s, e

′
s〉 ∈ G ∨ 〈e′

s, r
′
s, evs 〉 ∈ G}|

)
,

(7)

where the numerator of the exponent is the number of RDF triples in the under-
lying RDF graph matching the triple pattern 〈vs, rs, es〉. The denominator of the
exponent is the number of RDF triples in the underlying RDF graph matching
any triple pattern in SP. For instance, according to Eq. (7), the attention scores
in sBGP1 are 0.9998, 0.3687, and 0.9979 for the three triple patterns 〈v1, r1, e1〉,
〈v1, r2, e2〉, and 〈v1, r3, e3〉, respectively. And the attention scores in sBGP2 are
0.5967 and 0.6165 for 〈v2, r6, e6〉, 〈v2, r7, e7〉, respectively.

By examining all neighbors of vs in a sBGP SP, we further define the pre-
liminary embedding v̂s of vs as:

v̂s =

∑
〈vs,rs,es〉∈SP∨〈es,rs,vs〉∈SP a(vs, rs, es) · ṽs
∑

〈vs,rs,es〉∈SP∨〈es,rs,vs〉∈SP a(vs, rs, es)
, (8)

where ṽs is computed for each single triple pattern according to Eq. (6).
For instance, the preliminary embeddings of variable v1 and v2 can be com-

puted as v̂1 = 0.4225 · (e1 − r1) + 0.1558 · (e2 − r2) + 0.4217 · (e3 − r3) and
v̂2 = 0.4918 · (e6 − r6) + 0.5082 · (e7 − r7), respectively.

For the impacts of relations among variable entities in different sBGPs, we
introduce a simple and effective method to compute the final variable embeddings
based on the preliminary embeddings. For a variable vs ∈ VP which is directly
linked with other variables in BGP P = {EP ∪ VP ,RP}, we compute its final
embedding vs as follows:

vs =

∑
〈vs,r,v′

s〉∈P∨〈v′
s,r,vs〉∈P num(v′

s) · f3(vs, r, v′
s) + num(vs) · v̂s

∑
〈vs,r,v′

s〉∈P∨〈v′
s,r,vs〉∈P num(v′

s) + num(vs)
, (9)

where

f3(vs, r, v′
s) =

{
v̂′
s − r, if 〈vs, r, v′

s〉 ∈ P,

v̂′
s + r, if 〈v′

s, r, vs〉 ∈ P,
(10)

and num(·) is the number of triple patterns in the sBGP of a variable. The reason
we utilize num(·) is that we assume the preliminary embedding of a variable
deserves more attention if it is computed based on more triple patterns. It is
worth mentioning that the correlations between variables can be characterized

Towards Empty Answers in SPARQL 521

by more sophisticated method, such as an iterative updating algorithm. We will
investigate this part in the future.

Finally, we can obtain all variable embeddings of the original query in the
continuous vector space. For instance, the final embeddings of variable v1 and v2
in Fig. 2 can be computed as v1 = 0.4 ·(v̂2 − r8) + 0.6 · v̂1 = 0.4 · [0.4918 ·(e6 −
r6) + 0.5082·(e7 − r7)−r8] + 0.6·[0.4225·(e1 − r1) + 0.1558·(e2 − r2) + 0.4217·
(e3 − r3)] and v2 = 0.6 ·(v̂1 + r8) + 0.4 ·v̂2 = 0.6 · [0.4225 ·(e1 − r1) + 0.1558 ·
(e2 − r2) + 0.4217 ·(e3 − r3) + r8] + 0.4 · [0.4918 ·(e6−r6)+0.5082 ·(e7 − r7)],
respectively.

2.3 Generating Approximate Answers and Alternative Queries

In this module, our goal is to discover approximate answers based on embeddings
of variables in the continuous vector space. For each approximate answer, we also
generate an alternative query as the explanation to help the user recognize his
expected information and refine the original query.

Fig. 3. Approximate answers generation based on the RDF embeddings.

As analyzed in Sect. 2.1, semantically similar entities are close to each other
in the continuous vector space. Therefore, given a BGP P = (EP ∪ VP ,RP),
a variable vp ∈ VP , and the embedding vp computed through Eq. (9), we can
readily find a semantically similar entity ei of the RDF graph G = (E ,R) for vp
by computing the distance between vp and ei in the continuous vector space.
We employ the cosine similarity to measure the distance between vp and ei as
follows:

sim(vp, ei) =
vp · ei

‖vp‖‖ei‖ . (11)

522 M. Wang et al.

According to Eq. (11), we can obtain top-k semantically similar entities EK =
{e1, ..., ei, ..., ek} for vp.

In a simple case where a failing BGP P = (EP ∪ {vp},RP) contains only
one variable vp, the semantically similar entity set EK implied by Eq. (11) is
exactly the set of final approximate answers to vp. For each approximate answer
ei ∈ EK, we can directly extract a sub-RDF graph SGi about ei from G. The
extraction of SGi is a searching process based on ei. Specifically, for each triple
pattern 〈vp, rp, ep〉 ∈ P (vp at the head), its ideal corresponding RDF triple is
〈ei, rp, ep〉. If 〈ei, rp, ep〉 /∈ G, we figure out the corresponding RDF triple 〈ei, r, e′〉
which is most similar to 〈ei, rp, ep〉 among all the RDF triples in G, formulated
as follows:

〈ei, r, e′〉 = arg max
〈ei,r,e′〉∈G

(
rp · r

‖rp‖‖r‖ +
ep · e′

‖ep‖‖e′‖). (12)

Analogically, for each triple pattern 〈ep, rp, vp〉 ∈ P (vp at the tail), we can
also compute its corresponding RDF triple. These RDF triples containing ei
form the sub-RDF graph SGi which can be utilized to generate a modified BGP
P ′ that expresses the similar query intention to P. For example, assuming that
a BGP {〈?film, type, drama film〉} returns nothing over an RDF graph, we may
obtain an approximate answer Sleepy Hollow. Then we can extract a sub-RDF
graph {〈Sleepy Hollow, type, fantasy film〉} and return Sleepy Hollow along
with {〈?film, type, fantasy film〉} for the user.

For a BGP with multiple variables, we select a seed variable and obtain its
approximate answers as seed answers according to Eq. (12). Specifically, given a
SPARQL query SELECT S FROM G WHERE P, we select the seed variable
from S (i.e., the expected result expressed by users). If S contains multiple
variables, the seed variable is selected from S based on the degrees of variables
in the BGP P, since a variable at a larger degree usually indicates that the
user is more interested in it. For each seed answer, we adopt a propagation
process to generate the final returned answer and the alternative query. For
example, the variable v1 at the largest degree in Fig. 3 will be selected as the
seed variable. We first find its approximate answer Sleep Hollow (e4) as the
seed answer in the continuous vector space. In the first step of the propagation
process, we follow Eq. (12) to find the corresponding triples {〈Sleep Hollow, type,
fantasy film〉, 〈Sleep Hollow, country, United States〉, 〈Sleep Hollow, director,
Tim Burton〉, 〈Sleep Hollow, starring, Johnny Depp〉}. After this step, we have
determined v2 as Johnny Depp. Then, in the second step, we remove the triple
patterns which have already been determined and set Johnny Depp (e8) as a
new seed answer for the next step. Repeat the propagation operation until all
triple patterns have been determined as illustrated in the right of Fig. 3. Finally,
we can generate the final returned answer {?film:Sleep Hollow, ?actor:Johnny
Depp} and the alternative BGP {〈?film, type, fantasy film〉, 〈?film, country,
United States〉, 〈?film, director, Tim Burton〉, 〈?film, starring, ?actor〉, 〈?actor,
occupation, Actor〉, 〈?actor, birthplace, Kentucky〉}.

Discussions: We discuss two parts which can be improved during the frame-
work implementation: (1) Given a variable embedding in the vector space, there

Towards Empty Answers in SPARQL 523

is no need to traverse all entity embeddings for the top-k similar entities search-
ing. For example, we can partition the vector space into disjoint subspaces, and
differentiate entities of the RDF graph according to the subspaces to which they
belong. More sophisticated approaches are provided in [15] for this issue. (2)
Currently, we assume that a variable at a larger degree is more important in
the sub-RDF graph extraction. The preliminary experiments show some effec-
tiveness, but we still need to improve the scalability in the future. For instance,
users can be allowed to determine which variable is most important.

3 Experimental Evaluation

To scrutinize the effectiveness and efficiency of the proposed framework, we
performed three types of experiments including: (1) Entity context preserv-
ing embedding validation; (2) Quality evaluation of approximate answers and
alternative queries; (3) Efficiency evaluation. The results demonstrate that our
framework significantly outperforms other baselines.

Dataset: DBpedia [16] is extracted from Wikipedia3 and has become the core
dataset of the LOD. In this paper, we employed the English version of DBpedia4,
which consists of 6.7M entities, 1.4K relations and 583M RDF triples.

Queries: According to our investigation, there is no open domain benchmark
query set for SPARQL empty-answer problem. Therefore, twenty queries were
constructed over DBpedia for the evaluation. The queries were designed to
include basic graph patterns with different topological structures (e.g., star,
chain, cycle, and complex) based on joins over variables [10].

Baselines: To validate the effectiveness of the consideration of entity context
information in the translation-based model, we compared our embedding model
with TransE [3]. To evaluate the empty-answer problem solving, we compared
our framework with four state-of-the-art query relaxation models, i.e, similarity-
based (SB) [7], rule-based (RB) [14], user-preferences-based (UPB) [5], and
cooperative-techniques-based (CTB) [9] models. Meanwhile, we also compared
our framework to a lite version with directly TransE plugged in.

3.1 Entity Context Preserving Embedding Validation

Our translation-based embedding model leverages the entity context information
to encode semantically similar entities and utilizes the translation mechanism to
represent relations between entities. The embedding model was implemented
in Java, and the following validation was conducted on a Linux server with
an Intel Core i7 3.40 GHz CPU and 126 GB memory running Ubuntu-14.04.1.
We determined the optimal parameters using a grid search strategy. And the
training instances were conducted over 1,000 iterations. The running time per
iteration was 562 s. We report the implementation code and detailed parameters
in https://github.com/wangmengsd/re.
3 https://www.wikipedia.org.
4 http://wiki.dbpedia.org/develop/datasets.

https://github.com/wangmengsd/re
https://www.wikipedia.org
http://wiki.dbpedia.org/develop/datasets

524 M. Wang et al.

Fig. 4. Visualization of entity embeddings learned by our model and TransE.

For the entity context preserving validation, we projected several sample
entity embeddings generated by our embedding method and TransE into two-
dimensional spaces using t-SNE5, as shown in Fig. 4. The result in Fig. 4(a) is
consistent with our expectation, where semantically similar entities are close to
each other. In contrast, the distribution of entities in Fig. 4(b) does not represent
the result we want.

For the translation preserving validation, we followed TransE in [3] and
employed MeanRank and Hits@10 as evaluation metrics. Specifically, to test
a triple 〈eh, r, et〉, we removed the head entity eh or the tail entity et. Then we
predicted the missing entity eh or et based on et − r or eh + r, and we used
the score function Eq. (3) to rank the predictions in a descending order. Mean-
Rank denotes the average rank of all correct predictions, and Hits@10 denotes
the proportion of correct predictions ranked in the top-10. The MeanRank of
our embedding model is 8.01 and Hits@10 is 83.98. Whereas, the MeanRank of
TransE is 8.00 and Hits@10 is 84.01. Both the results of MeanRank and Hits@10
proved that our embedding model maintained the effectiveness of the translation
mechanism.

3.2 Quality of Approximate Answers and Alternative Queries

In this section, we compared our framework with four state-of-the-art query
relaxation models [5,7,9,14]. Note that the efficient approach in [9] only com-
puted Maximal Succeeding Subqueries (XSSs) (a kind of relaxed queries), and it
didn’t support similarity criteria to rank the multiple XSSs and query answers.

5 https://lvdmaaten.github.io/tsne/.

https://lvdmaaten.github.io/tsne/

Towards Empty Answers in SPARQL 525

To evaluate the quality of generated approximate answers and alternative
queries, ten evaluators (graduate students in Computer Science, but none of
them knows the details of the methods) were asked to evaluate how well an
approximate answer satisfies the original query intention (Sat) and how similar
an alternative query is to the original one (Sim). The two metrics Sat and
Sim are rated on a 5-point scale: 0 corresponding to “negative”, 1 to “weakly
negative”, 2 to “neutral”, 3 to “weakly positive”, and 4 to “positive”. For each
empty-answer query, we presented top-k6 approximate answers and alternative
queries generated by our framework and four baselines to the evaluators. We also
employed Pearson Correlation Coefficient to analyze the correlation between the
evaluator ratings and similarity scores calculated by the corresponding models.
The Pearson Correlation Coefficient is a standard measure of the correlation
between two variables. The coefficient value ranges from −1 to +1, where −1
represents totally negative correlation, 0 represents no linear correlation, and
+1 represents totally positive correlation. Table 1 reports the average ratings
(Avg.Rating) of all five models and the Pearson Correlation Coefficients (PCC).
We can make the following observations:

Table 1. Results of overall effectiveness.

Top-k Top-1 Top-3 Top-5 Top-10 Top-20

Metric Sat Sim Sat Sim Sat Sim Sat Sim Sat Sim

Our method Avg. rating 3.5 3.25 3.15 3.03 2.72 2.61 1.86 1.82 1.41 1.40

PCC 0.54 0.51 0.52 0.48 0.53 0.48 0.52 0.49 0.53 0.49

Lite version
with TransE

Avg. rating 0.85 0.33 0.45 0.28 0.3 0.2 0.24 0.09 0.13 0.06

PCC 0.12 0.07 0.09 −0.03 0.06 −0.05 0.07 0.02 0.05 0.03

SB [7] Avg. rating 3.2 3.0 3.02 2.75 2.45 2.05 1.87 1.77 1.44 1.39

PCC 0.43 0.41 0.43 0.39 0.41 0.36 0.43 0.37 0.43 0.37

RB [14] Avg. rating 3.05 3.0 2.93 2.68 2.5 2.21 1.87 1.74 1.42 1.37

PCC 0.40 0.39 0.41 0.39 0.42 0.40 0.41 0.38 0.40 0.38

UPB [5] Avg. rating 2.85 2.75 2.42 2.07 2.11 1.6 1.45 1.21 1.22 0.97

PCC 0.33 0.29 0.31 0.27 0.32 0.26 0.33 0.27 0.34 0.28

CTB [9] Avg. rating 2.7 2.75 2.45 2.05 2.16 1.62 1.43 1.18 1.24 0.97

PCC - - - - - - - - - -

– Our framework achieved consistently significant improvement on Sat and Sim
compared with all the baselines, which demonstrates the effectiveness of our
framework. The reason is that we can directly compare the semantic simi-
larity between expected answers and approximate answers in the continuous
vector space. And the entity context preserving embedding model enables our
method to generate high quality approximate answers and alternative queries.

– The PCC of our framework is also higher than all other baselines, which indi-
cates that our similarity measuring mechanism (Eqs. (11) and (12)) is more

6 We set k ∈ {1, 3, 5, 10, 20} in this paper.

526 M. Wang et al.

identical with the perception of users. The reason is that the embeddings
are learned based on entity context information of the underlying RDF graph
which contains more precise and richer information than the ontological infor-
mation and statistical language models employed by other models.

– The performances of all methods were affected when increasing k to 20
because more irrelevant answers were generated. However, our method still
has its own advantage. Since our method lists approximate answers in a
descending order in terms of the similarity, users can obtain the most approx-
imate answers at the top.

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20
0

1

2

3

4

5

6

Ti
m

e
co

st
 (s

ec
on

ds
)

 Our method SB RB UPB CTB

Fig. 5. Time costs of five methods on twenty failing SPARQL queries Q1 ∼ Q20.

3.3 Efficiency Evaluation

The average time cost of our method to process a failing query is 1.13 s. This
amount of time is acceptable for users to obtain approximate answers and alter-
native queries. We compared the time cost of our framework with other baselines.
Figure 5 illustrates the runtime results of solving twenty empty-answer SPARQL
queries. We can observe that the time cost of our framework is significantly less
than other baselines. The key reason is that our framework is driven and guided
by the approximate answer embeddings, which speeds up the generation of pos-
sible answers and alternative queries. Another reason is that the similarity com-
putation in the continuous vector space is more efficient than the conventional
graph-based computation method over a large RDF graph.

In summary, the evaluation results on effectiveness and efficiency show that
our framework can facilitate to generate high-quality approximate answers and
alternative queries.

Towards Empty Answers in SPARQL 527

4 Related Work

This section discusses existing related research in the following aspects: RDF
query relaxation approaches and RDF graph embedding techniques.

Query relaxation approaches in the RDF context have been proposed to solve
the SPARQL empty-answer problem. These methods mainly focus on reformu-
lating the original query into a new relaxed query by removing or relaxing RDF
conditions. Four types of models, similarity-based, rule-based, user-preferences-
based, and cooperative-techniques-based models are utilized to generate multiple
relaxed query candidates. Similarity-based models [6,7] leverage lexical anal-
yses to determine appropriate relaxation candidates. Rule-based models [12–
14,19] exploit RDF schema semantics and rewriting rules to perform relaxation.
The user-preferences-based model [5] automatically relaxes over-constrained
RDF queries based on domain knowledge and user preferences. Cooperative-
techniques-based models [8,9] design pruning strategies to reduce the exponential
search space of finding Top-k optimal relaxed queries. However, relaxed queries
generated by query relaxation approaches may be rather different from initial
queries of users because these models cannot consider the expected answers
which do not occur in the query results. Over-relaxed queries and irrelevant
answers are not effective for the expectation of users.

Existing RDF graphs already include thousands of relation types, millions
of entities, and billions of RDF triples [1]. The RDF applications based on con-
ventional graph-based algorithms are compromised by the data sparsity and
computational inefficiency. To address these problems, RDF graph embedding
techniques [3,4,17,20,21] have been proposed to embed both entities and rela-
tions into continuous vector spaces. Among these methods, neural-language-
based models [4,20] only generate entity latent representations by training the
neural language model of input RDF graphs. As a result, semantically simi-
lar entities are close to each other in continuous vector spaces. But we cannot
infer relations between entities solely based on entity latent representations.
Translation-based models [3,17,21] are effective in modeling relations between
entities because of their translation mechanisms. But they do not guarantee that
semantically similar entities are close to each other in continuous vector spaces
since they regard the RDF graph as a set of independent triples during the learn-
ing processes. To sum up, none of the existing models meets the requirements
for modeling SPARQL triple patterns in our framework.

5 Conclusions and Future Work

In this paper, we solve the SPARQL empty-answer problem in the continuous
vector space. To make semantically similar entities close to each other in the
vector space, we propose a novel embedding model which utilizes the translation
mechanism to capture the relations between entities while considering the entity
context. Then, given a failing SPARQL query, we partition the SPARQL BGP
into several parts and compute approximate answers by leveraging RDF embed-
dings and the translation mechanism. We also generate alternative queries for

528 M. Wang et al.

approximate answers, which helps users recognize their information needs and
refine the original query. We conduct extensive experiments on the real-world
RDF dataset to validate the effectiveness and the efficiency of our framework.

In future work, we intend to improve the accuracy of variable embedding
computation through an iterative updating algorithm. Another development of
our research is to address the SPARQL empty-answer problem on graph patterns
which contain operators such as UNION, OPTIONAL, MINUS and so on.

Acknowledgment. This work was supported by National Key Research and Devel-
opment Program of China (2018YFB1004500), National Natural Science Foundation of
China (61532015, 61532004, 61672419, and 61672418), Innovative Research Group of
the National Natural Science Foundation of China (61721002), Innovation Research
Team of Ministry of Education (IRT 17R86), Project of China Knowledge Centre
for Engineering Science and Technology, Science and Technology Planning Project of
Guangdong Province (No. 2017A010101029), and Teaching Reform Project of XJTU
(No. 17ZX044).

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Int. J. Semant.
Web Inf. Syst. 5(3), 1–22 (2009)

2. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL query
logs. Proc. VLDB Endow. 11(2), 149–161 (2017)

3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in Neural Information
Processing Systems, pp. 2787–2795 (2013)

4. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Global RDF vector space
embeddings. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 190–
207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4 12

5. Dolog, P., Stuckenschmidt, H., Wache, H., Diederich, J.: Relaxing RDF queries
based on user and domain preferences. J. Intell. Inf. Syst. 33(3), 239 (2009)

6. Elbassuoni, S., Ramanath, M., Schenkel, R., Sydow, M., Weikum, G.: Language-
model-based ranking for queries on RDF-graphs. In: Proceedings of the 18th ACM
conference on Information and Knowledge Management, pp. 977–986. ACM (2009)

7. Elbassuoni, S., Ramanath, M., Weikum, G.: Query relaxation for entity-
relationship search. ESWC 2011. LNCS, vol. 6644, pp. 62–76. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-21064-8 5

8. Fokou, G., Jean, S., Hadjali, A., Baron, M.: Cooperative techniques for SPARQL
query relaxation in RDF databases. In: Gandon, F., Sabou, M., Sack, H., d’Amato,
C., Cudré-Mauroux, P., Zimmermann, A. (eds.) ESWC 2015. LNCS, vol. 9088, pp.
237–252. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18818-8 15

9. Fokou, G., Jean, S., Hadjali, A., Baron, M.: Handling failing RDF queries: from
diagnosis to relaxation. Knowl. Inf. Syst. 50(1), 167–195 (2017)

10. Görlitz, O., Thimm, M., Staab, S.: SPLODGE: systematic generation of SPARQL
benchmark queries for linked open data. In: Cudré-Mauroux, P., et al. (eds.) ISWC
2012. LNCS, vol. 7649, pp. 116–132. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-35176-1 8

11. Harris, S., Seaborne, A., Prud’hommeaux, E.: Sparql 1.1 query language. W3C
recommendation 21(10) (2013)

https://doi.org/10.1007/978-3-319-68288-4_12
https://doi.org/10.1007/978-3-642-21064-8_5
https://doi.org/10.1007/978-3-319-18818-8_15
https://doi.org/10.1007/978-3-642-35176-1_8
https://doi.org/10.1007/978-3-642-35176-1_8

Towards Empty Answers in SPARQL 529

12. Hogan, A., Mellotte, M., Powell, G., Stampouli, D.: Towards fuzzy query-relaxation
for RDF. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.)
ESWC 2012. LNCS, vol. 7295, pp. 687–702. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30284-8 53

13. Huang, H., Liu, C., Zhou, X.: Approximating query answering on RDF databases.
World Wide Web 15(1), 89–114 (2012)

14. Hurtado, C.A., Poulovassilis, A., Wood, P.T.: Query relaxation in RDF. In: Spac-
capietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 31–61.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77688-8 2

15. Katayama, N., Satoh, S.: The SR-tree: an index structure for high-dimensional
nearest neighbor queries. ACM Sigmod Rec. 26(2), 369–380 (1997)

16. Lehmann, J., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted
from Wikipedia. Semant. Web 6(2), 167–195 (2015)

17. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI, vol. 15, pp. 2181–2187 (2015)

18. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

19. Poulovassilis, A., Wood, P.T.: Combining approximation and relaxation in seman-
tic web path queries. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS,
vol. 6496, pp. 631–646. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17746-0 40

20. Ristoski, P., Paulheim, H.: RDF2Vec: RDF graph embeddings for data mining. In:
Groth, P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 498–514. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46523-4 30

21. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating
on hyperplanes. In: AAAI, vol. 14, pp. 1112–1119 (2014)

https://doi.org/10.1007/978-3-642-30284-8_53
https://doi.org/10.1007/978-3-642-30284-8_53
https://doi.org/10.1007/978-3-540-77688-8_2
https://doi.org/10.1007/978-3-642-17746-0_40
https://doi.org/10.1007/978-3-642-17746-0_40
https://doi.org/10.1007/978-3-319-46523-4_30

Query-Based Linked Data Anonymization

Remy Delanaux1(B), Angela Bonifati1, Marie-Christine Rousset2,3,
and Romuald Thion1

1 Université Lyon 1, LIRIS CNRS, Villeurbanne, France
{remy.delanaux,angela.bonifati,romuald.thion}@univ-lyon1.fr

2 Université Grenoble Alpes, CNRS, INRIA, Grenoble INP, Grenoble, France
marie-christine.rousset@imag.fr

3 Institut Universitaire de France, Paris, France

Abstract. We introduce and develop a declarative framework for
privacy-preserving Linked Data publishing in which privacy and util-
ity policies are specified as SPARQL queries. Our approach is data-
independent and leads to inspect only the privacy and utility policies in
order to determine the sequence of anonymization operations applicable
to any graph instance for satisfying the policies. We prove the soundness
of our algorithms and gauge their performance through experiments.

1 Introduction

Linked Open Data (LOD) provides access to continuously increasing amounts of
RDF data that describe properties and links among entities referenced by means
of Uniform Resource Identifiers (URIs). Whereas many organizations, institu-
tions and governments participate to the LOD movement by making their data
accessible and reusable to citizens, the risks of identity disclosure in this pro-
cess are not completely understood. As an example, in smart city applications,
information about users’ journeys in public transportation can help re-identify
the individuals if they are joined with other public data sources by leveraging
quasi-identifiers.

The main problem for data providers willing to publish useful data is to deter-
mine which anonymization operations must be applied to the original dataset in
order to preserve both individuals’ privacy and data utility. For all these reasons,
data providers should have at their disposal the means to readily anonymize their
data prior to publication into the LOD cloud. The majority of the solutions pro-
posed so far and mainly devoted to relational legacy systems rely on variants
of differential privacy as surveyed in [14] or k-anonymity proposed by [18]. Dif-
ferential privacy offers strong mathematical guarantees of non-disclosure of any
factual information by adding noise to the data, with as a counterpart a low
utility of answers returned by precise queries (as opposed to statistical queries).
In a similar fashion, several k-anonymization methods have been developed that
transform the original dataset into clusters containing at least k records with
indistinguishable values over quasi-identifiers. When taken into account, the util-
ity loss is defined by a metric that measures and minimizes the information loss
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 530–546, 2018.
https://doi.org/10.1007/978-3-030-00671-6_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_31&domain=pdf

Query-Based Linked Data Anonymization 531

between the original dataset and the output of the anonymization algorithm. All
these approaches fall short in empowering the data providers with the capability
of specifying their own privacy and utility policies, and in managing anonymiza-
tion operations as update operations on the data.

In this paper, we present a novel declarative framework that (i) allows the
data providers to specify as queries both the privacy and utility policies they
want to enforce, (ii) checks whether the specified policies are compatible with
each other, and (iii), based on a set of basic update queries, automatically builds
candidate sets of anonymization operations that are guaranteed to transform any
input dataset into a dataset satisfying the required privacy and utility policies.
We provide an algorithm that implements this data-independent method starting
from privacy and utility policies only, and we prove its soundness.

We believe that our framework is tailored for data publishing in the LOD
in which it is important to strike a balance between non-disclosure of informa-
tion (likely to serve as quasi-identifiers when interconnected with LOD links)
and utility preservation for end-users querying the LOD. Our framework is care-
fully designed to meet all these requirements by leveraging at the same time
the expressive power of SPARQL queries and the maturity and effectiveness of
SPARQL query engines. It builds on the common wisdom that queries from data
providers are more and more available through online SPARQL endpoints [3].
Such queries are a valuable resource to understand the real utility needs of users
on publicly available data and to guide the data providers in safe RDF data pub-
lishing. For all these reasons, our approach paves the way to a democratization
of privacy-preserving mechanisms for LOD data.

The paper is organized as follows. Section 2 reviews related work. Section 3
summarizes preliminaries for explaining the query-based model of privacy and
utility that we propose in Sect. 4. Sections 5 and 6 describe respectively our
query-based static anonymization method and its experimental assessment.
Finally, we conclude the paper in Sect. 7 with further research directions.

2 Related Work

Privacy preserving data publishing (PPDP) has been a long-standing research
goal for several research communities, as witnessed by a flurry of work on the
topic [7]. A rich variety of privacy models have been proposed, ranging from
k-anonymity [18] and l-diversity [15] to t-closeness [13] and ε-differential pri-
vacy [6]. For each of the aforementioned methods, one or more attack models
(such as record linkage, attribute linkage, table linkage and probabilistic attack)
are considered, amounting to make two fundamental assumptions: (i) what an
attacker is assumed to know about the victim and (ii) under which conditions a
privacy threat occurs.

Most of these models, first conceived for relational databases, have been
recently extended to the setting of the Semantic Web [12]. Among them, the
privacy model that is definitely the closest to our work is k-anonymity that has
been recently adapted to RDF graphs in [10,17]. These works focus on defining

532 R. Delanaux et al.

operations of generalization, suppression or perturbation to apply to values in
the range of properties known to be quasi-identifiers for persons identification,
along with metrics to measure the resulting loss of information. Our approach
is more generic than theirs and also fully declarative since, by leveraging the
logical foundations of PPDP for Linked Data in [8], it allows the definition of
fine-grained privacy policies specified by queries, and to obtain candidate sets of
anonymization operations allowing to practically enforce the requested privacy
without loosing the desired utility.

Contrarily to [8], which focuses on the computational complexity of checking
whether privacy requirements are fulfilled in Linked Data, we leverage utility
policies as queries for which anonymization operations must preserve the original
answers, and we employ the interactions of privacy and utility policies in a
static analysis method. To the best of our knowledge, our framework is the
first to provide practical algorithms for building candidate sequences of atomic
operations, described as an open research challenge in [8].

An alternative approach to anonymization for protecting against privacy
breaches consists in applying access control methods to Linked Data [11,16,19].
In the Semantic Web setting, when data are described by description logics
ontologies, preliminary results on role-based access control have been obtained
in [1] for the problem of checking whether a sequence of role changes and queries
can infer that an anonymous individual is equal to a known individual. Compared
to access control techniques that perform verification at runtime, we focus on a
static analysis approach executed only once and guaranteeing that the published
datasets do not contain sensitive information.

3 Preliminaries

We introduce the standard notions and concepts for RDF graphs and SPARQL
queries. Let I, L and B be countably infinite pairwise disjoint sets representing
respectively IRIs, literal values (or literals) and blank nodes. IRIs (Internation-
alized Resource Identifiers) are standard identifiers used for denoting any Web
resource described in RDF within the LOD. We denote by T = I∪L∪B the set
of terms, in which we distinguish constants (IRIs and literal values) from blank
nodes. We also assume an infinite set V of variables disjoint from the above
sets. In the examples, variables in V are prefixed with a question mark as in the
SPARQL language.

Definition 1 (RDF graph). An RDF graph is a finite set of RDF triples
(s, p, o), where (s, p, o) ∈ (I ∪ B) × I × (I ∪ L ∪ B).

IRIs appearing in position p into triples denote properties composing the
schema of the RDF graph.

The queries we consider in our work are built on graph patterns that are
made of triples with constants and variables (blank nodes are not allowed).

Definition 2 (Graph pattern). A triple pattern is a triple (s, p, o) ∈ (I ∪
V) × (I ∪ V) × (I ∪ L ∪ V). A graph pattern is a finite set of triple patterns.

Query-Based Linked Data Anonymization 533

We can now define the two types of queries under study along with their
answers. The first type of queries correspond to the standard notion of conjunc-
tive queries, while the second type corresponds to counting queries that are the
basis for simple analytical tasks.

Definition 3 (Conjunctive query). A conjunctive query Q is defined by an
expression SELECT x̄ WHERE G(x̄, ȳ) where G(x̄, ȳ) is a graph pattern and x̄ ∪ ȳ
is the set of its variables, among which x̄ are the result (also called the distin-
guished) variables. A conjunctive query Q is alternatively written as 〈x̄, G〉.

The evaluation of a query 〈x̄, G〉 over an RDF graph DB consists in finding
mappings μ assigning the variables in G to terms such that the set of triples,
denoted μ(G), obtained by replacing with μ(z) each variable z appearing in G,
is included in DB. The corresponding answer is defined as the tuple of terms
μ(x̄) assigned by μ to the result variables.

Definition 4 (Evaluation of a conjunctive query). Let Q be a conjunctive
query defined by 〈x̄, G〉, and let DB an RDF graph. The answer set of Q over
DB is defined by : Ans(Q,DB) = {μ(x̄) | μ(G) ⊆ DB}.
Definition 5 (Counting query). Let Q be a conjunctive query. The query
Count(Q) is a counting query, whose answer over a graph DB is defined by:
Ans(Count(Q),DB) = |Ans(Q,DB)|.

4 Query-Based Policies and Anonymization Operations

Following [8], a privacy policy, represented by a set of conjunctive queries, sat-
isfies the anonymization process if none of the sensitive answers holds in the
resulting dataset. This is achieved by letting the privacy queries return no answer
or, alternatively, answers with blank nodes, as shown in the remainder. We also
model utility policies by sets of queries that can be either conjunctive queries
or counting queries useful for data analytics. For satisfying an utility policy,
the anonymization process must preserve the answers of all the specified utility
queries. We now formally define privacy and utility policies.

Definition 6 (Privacy and utility policies). Let DB be an input RDF
graph, a privacy (resp. utility) policy P (resp. U) is a set of conjunctive
queries (resp. conjunctive or counting queries). Let Anonym(DB) be the result
of an anonymization process of the graph DB by a sequence of anonymization
operators.

A privacy policy P is satisfied on Anonym(DB) if for every P ∈ P and
for any tuple of constants c̄, it holds that: c̄ �∈ Ans(P,Anonym(DB)). An util-
ity policy U is satisfied on Anonym(DB) if for every U ∈ U it holds that:
Ans(U,Anonym(DB)) = Ans(U,DB).

534 R. Delanaux et al.

As usual, we call |P| (resp. |U|) the cardinality of the policy. For a policy P
(resp. U) made of n queries Pi = 〈x̄P

i , GP
i 〉 (resp. m queries Ui = 〈x̄U

i , GU
i 〉) we

call the sum of the cardinalities of their bodies the size of the policy defined by∑n
i=1 |GP

i | (resp.
∑m

i=1 |GU
i |).

The following running example shows that privacy and utility policies might
impose constraints on overlapping portions of a dataset.

Example 1. Consider a privacy policy P = {P1, P2} on data related to public
transportation in a given city, and defined by the two following conjunctive
queries written in concrete SPARQL syntax. The first privacy query expresses
that travelers’ postal addresses are sensitive and shall be protected, and the
second privacy query specifies that the disclosure of users identifiers associated
with geolocation information (like latitude and longitude as given by the user
ticket validation) may also pose a risk (for re-identification by data linkage with
other LOD datasets).

Privacy query P1

SELECT ?ad

WHERE {

?u a tcl:User.

?u vcard:hasAddress ?ad.

}

Privacy query P2

SELECT ?u ?lat ?long

WHERE {

?c a tcl:Journey.

?c tcl:user ?u.

?c geo:latitude ?lat.

?c geo:longitude ?long.

}

As a consequence, any query displaying either users’ addresses or users’ iden-
tifiers together with their geolocation information would infringe this privacy
policy, violating the anonymization of the underlying dataset to be published as
open data. The counterpart utility policy is the set of queries U = {U1, U2}. This
set states that users’ ages and location related to journeys are to be preserved.

Utility query U1

SELECT ?u ?age

WHERE {

?u a tcl:User.

?u foaf:age ?age.

}

Utility query U2

SELECT ?c ?lat ?long

WHERE {

?c a tcl:Journey.

?c geo:latitude ?lat.

?c geo:longitude ?long.

}

Regarding anonymization operations, we extend the notion of suppression func-
tions considered in [8] that replace IRIs with blank nodes by allowing also triple
deletions. The anonymization operations that we consider correspond to update
queries (Definition 7): when evaluated against an RDF graph DB, the update
query DELETE D(x̄) INSERT I(ȳ) WHERE W (x̄, z̄) suppresses all occurrences of
D(x̄) in DB such that W (x̄, ȳ) can be mapped to a subgraph of DB, and inserts
triples corresponding to the pattern I(ȳ). Note that ȳ may contain existen-
tial variables, i.e., variables that do not appear in W (x̄, z̄), and thus cannot be

Query-Based Linked Data Anonymization 535

mapped to terms present in DB. This would lead to add triples with blank
nodes.

Definition 7 (Update query). An update query (or update operation) Qupd

is defined by DELETE D(x̄) INSERT I(ȳ) WHERE W (x̄, z̄) where D (resp. I, W)
is a graph pattern which set of variables is x̄ (resp. ȳ, x̄ ∪ z̄). The result of its
evaluation over an RDF graph DB is defined by:

Result(Qupd,DB) = DB \ {μ(D(x̄))|μ(W (x̄, ȳ)) ⊆ DB}
∪ {μ′(I(ȳ))|μ(W (x̄, z̄)) ⊆ DB}

where μ′ is an extension of μ to fresh blank nodes, i.e. a mapping such that

μ′(x) =

{
μ(x) when x ∈ x̄ ∪ z̄

bnew ∈ B otherwise

A deletion query Qdel is a particular case of update query where the inser-
tion pattern I(ȳ) is empty.

In the following section, we will focus on two kinds of atomic anonymiza-
tion operations that correspond respectively to triple deletions (i.e., partic-
ular case of Definition 7 where D(x̄) is reduced to a triple pattern) and replace-
ment of IRIs by blank nodes (i.e., particular case of Definition 7 where D(x̄)
and I(ȳ) are triple patterns that differ just by the fact that one bound variable
of D(x̄) is replaced with an existential variable in I(ȳ)).

These two atomic anonymization operations are illustrated in Examples 2 and
3 respectively. From now, by slight abuse of notation w.r.t Definition 7, we will
use the SPARQL standard notation [] for denoting single existential variables.

Example 2. In the setting of Example 1 related to transportation data, the fol-
lowing query specifies the operation deleting the addresses of users.

DELETE { ?u vcard:hasAddress ?ad. }

WHERE { ?u a tcl:User.

?u vcard:hasAddress ?ad.}

Example 3. In the same context, this query replaces users’ identifiers related to
a ticket validation by a blank node.

DELETE { ?c tcl:user ?u. }

INSERT { ?c tcl:user []. }

WHERE { ?c a tcl:Journey.

?c tcl:user ?u.

?c geo:latitude ?lat.

?c geo:longitude ?long. }

536 R. Delanaux et al.

5 Finding Candidate Sets of Anonymization Operations

Given privacy and utility policies, the problems of interest that we address in
this paper are named Compatibility and EnumOperations. Both problems
are generic as they are essentially built on the query-based definition of policy
satisfaction, hence they are applicable to larger classes of operations and queries.

Problem 1. The Compatibility problem.

Input : P = {Pi} a privacy policy and U = {Uj} a utility policy
Output: True if there exists a sequence of operations O such that O(DB)

satisfies both P and U for any DB and False otherwise.

Problem 2. The EnumOperations problem.

Input : P = {Pi} a privacy policy and U = {Uj} a utility policy
Output: The set O of all sequences of operations O such that O(DB) satisfies

both P and U for any DB.

An algorithm that solves the EnumOperations problem solves the Com-

patibility problem as well, by checking whether its output is ∅.
The rest of this section is devoted to the design of Algorithm 2 that solves

the EnumOperations problem using update operations (Definition 7) when
P and U are defined by conjunctive queries (Definition 3). We also define an
intermediate step dealing with unitary privacy policies, with Algorithm1. Note
that Algorithm 2 produces a set of sets of operations and not a set of sequences.
As we guarantee that the sets of operations hereby computed solve the problem,
any sequence obtained by reordering these sets would work as well. Hence, the
difference between sets and sequences of operations is fairly immaterial.

If the answer set of Q is preserved by an anonymization process so does
its cardinality, implying that any solution for a non-counting query Q is also a
solution for its counting counterpart Count(Q). Similarly, if a utility query Q is
satisfied, then its counting counterpart Count(Q) is also satisfied. Therefore, we
focus on non-counting queries in Algorithm1. However, the opposite implication
does not hold, hence we may miss some operation that may guarantee a utility
counting query Count(Q) without guaranteeing a utility non-counting query Q.

5.1 Finding Candidate Sets of Operations for Unitary Privacy
Policies

We start with the case where the privacy policy is unitary, i.e. when it is reduced
to a singleton P = {P}. Intuitively, Algorithm1 tries to find edges that are in
the graph pattern GP of the privacy policy P but in none of the utility policy
graph patterns GU

j . For each such an edge, a delete operation is constructed,
and possible update operations are considered. Update operations take place in
two manners: either the subject of the triple is replaced with a blank node, or its
object is replaced with a blank node if it is an IRI. In both cases, the algorithm
looks for three alternatives:

Query-Based Linked Data Anonymization 537

– The triple is part of a path of length ≥ 2 in the privacy graph pattern GP ,
and therefore the update operation breaks the path thus satisfying the privacy
policy P ;

– The replaced subject (resp. object) is also the subject (resp. object) of another
triple in the privacy query graph GP and the update operation breaks the
link between these triples, hence satisfying the privacy policy P ;

– The replaced subject (resp. object) of the triple is also part of the distin-
guished variables x̄ of the privacy policy query, leading to a blank value in
the query results.

The soundness of this algorithm is encapsulated in Theorem1. Due to space
constraints, proofs are available in an online appendix.1 We define the following
helper functions that check if update operations are possible:

check-subject((s, p, o), G) = ∃(s′, p′, s) ∈ G ∨
(∃(s, p′, o′) ∈ G ∧ �σ (σ(s, p′, o′) = σ(s, p, o)))

check-object((s, p, o), G) = ∃(o, p′, o′) ∈ G ∨
(∃(s′, p′, o) ∈ G ∧ �σ (σ(s′, p′, o) = σ(s, p, o)))

Algorithm 1. Find update operations to satisfy a unitary privacy policy
Input : a unitary privacy policy P = {P} with P = 〈x̄P , GP 〉
Input : a utility policy U made of m queries Uj = 〈x̄U

j , GU
j 〉

Output: a set of operations O satisfying both P and U
1 function find-ops-unit(P,U):
2 Let H be the graph GP with all its variables replaced by fresh onesa;
3 Let O := ∅;
4 forall (s, p, o) ∈ H do
5 Let c := true;
6 forall GU

j do
7 forall (s′, p′, o′) ∈ GU

j do
8 if ∃σ (σ(s′, p′, o′) = σ(s, p, o)) then
9 c := false;

10 if c then
11 O := O ∪ {DELETE {(s, p, o)} WHERE H};
12 if check-subject((s, p, o),H) ∨ s ∈ x̄P then
13 O := O ∪ {DELETE {(s, p, o)} INSERT {([], p, o)} WHERE H};

14 if o ∈ I ∧ (check-object((s, p, o),H) ∨ o ∈ x̄P) then
15 O := O ∪ {DELETE {(s, p, o)} INSERT {(s, p, [])} WHERE H};

16 return O;

a I.e., with variables that do not appear in any GU
j .

1 See https://liris.cnrs.fr/∼rdelanau/papers/ISWC2018 appx.pdf.

https://liris.cnrs.fr/~rdelanau/papers/ISWC2018_appx.pdf

538 R. Delanaux et al.

Theorem 1 (Soundness of Algorithm 1). Let P be a privacy policy consist-
ing of a single query and let U be a utility policy. Let O= find-ops-unit(P,U)
computed by Algorithm1. For all o ∈ O, for all RDF graph DB, P and U are
satisfied by o(DB) obtained by applying the update operation o to DB.

The behavior of Algorithm1 is illustrated in the following Example 4.

Example 4 (Example 1 cont’d). Consider the policies P = {P1, P2} and
U = {U1, U2} given in Example 1 with bodies GP

1 , GP
2 , GU

1 and GU
2 ,

respectively. Let us consider two different runs of Algorithm 1. The call to
find-ops-unit(P1,U) produces the following set O1 of operations whereas the
call to find-ops-unit(P2,U) produces O2:

O1 = {DELETE {(?u, vcard :hasAddress, ?ad)} WHERE GP
1 ,

DELETE {(?u, vcard :hasAddress, ?ad)} INSERT {([], vcard :hasAddress, ?ad)} WHERE GP
1 ,

DELETE {(?u, vcard :hasAddress, ?ad)} INSERT {(?u, vcard :hasAddress, [])} WHERE GP
1 }

O2 = {DELETE {(?c, tcl :user, ?u)} WHERE GP
2 ,

DELETE {(?c, tcl :user, ?u)} INSERT {([], tcl :user, ?u)} WHERE GP
2 ,

DELETE {(?c, tcl :user, ?u)} INSERT {(?c, tcl :user, [])} WHERE GP
2 }

Indeed, there is only one way to satisfy P1, U1 and U2: delete or update the
address ?ad of each user ?u as shown in O1. This goes by either deleting it,
replacing the address value by a blank node in the hasAddress triple (possible
since ?ad is also a distinguished variable), or replacing the user with a blank
node (possible since there is another triple originating from the user variable
?u in the policy query body). Notice that the update or deletion of the triple
{?u a tcl:User} is not authorized, because U1 would not be satisfied.

The only acceptable operations for P2, U1 and U2 as shown in O2, are either
to delete the link between users and their journeys, or replace each argument of
this relation with a blank node. Replacing the subject of the considered triple
(the journey variable ?c) is possible since it is also featured as the subject of
other triples in the query body, while replacing the object (the user variable ?u)
is possible since it is a distinguished variable of the privacy query.

5.2 Finding Candidate Sets of Operations for General Privacy
Policies

We now extend the previous algorithm to the general case where P is a set of
n queries. The idea is to compute operations that satisfy each Pi using Algo-
rithm1 and then to distribute the results. The soundness of this algorithm is
encapsulated in Theorem 2 and its associated Corollary 1.

Query-Based Linked Data Anonymization 539

Algorithm 2. Find update operations to satisfy policies
Input : a privacy policy P made of n queries Pi = 〈x̄P

i , GP
i 〉

Input : a utility policy U made of m queries Uj = 〈x̄U
j , GU

j 〉
Output: a set of sets of operations Ops such that each sequence obtained

from ordering any O ∈ Ops satisfies both P and U
1 function find-ops(P,U):
2 Let Ops = {∅};
3 for Pi ∈ P do
4 Let opsi := find-ops-unit(Pi,U);
5 if opsi �= ∅ then Ops := {O ∪ {o′} | O ∈ Ops ∧ o′ ∈ opsi};
6 return Ops;

Theorem 2 (Soundness of Algorithm 2). Let P be a privacy policy and let
U be a utility policy. Let O = find-ops(P,U) and let DB be an RDF graph.
For any set of operations O ∈ O, and for any ordering S of O, P and U are
satisfied by S(DB) obtained by applying to DB the sequence of operations in S.

Theorem 2 guarantees the soundness of all sequences of operations that can
be built from the output of Algorithm2. Corollary 1 leverages this result for the
Compatibility problem.

Corollary 1. Let P be a privacy policy and let U be a utility policy made of
counting and non-counting queries. If find-ops(P,U) �= ∅ then the Compati-

bility problem has True as a solution.

Algorithm 2 guarantees the same robustness to linking attacks as [8]: for
any anonymization DB′ = Anonym(DB) produced using Algorithm 2, its union
with any RDF graph G satisfying the same privacy policy P will also satisfy
P. The reason is that the IRIs possibly common to DB′ and G cannot be the
images of a mapping from any privacy query. Indeed, the operations that have
produced DB′ have either deleted triples corresponding to triples in a privacy
query or have replaced IRIs involved in mappings from privacy queries to DB
with blank nodes (which cannot be joined with blank nodes in G).

The sets of operations produced by Algorithm2 are not equivalent in the
sense that they may delete different sets of triples in the dataset. Moreover,
even for a given set of operations, the choice of a possible reordering of its
operations may have different effects on the dataset. Indeed, deletions and mod-
ifications of triples are not commutative operations but due to the soundness of
the algorithm, every obtained solution satisfies the privacy and utility policies.

Regarding the complexity of Algorithm1, its result O = find-ops-unit(P,U)
grows linearly with the size of P . Indeed, each triple in the body GP of P
produces at most one delete operation and two update operations. However,
regarding the overall complexity of Algorithm2, if each set O of operations O ∈
O = find-ops(P,U) has cardinality |P| by construction, the distribution of
the results obtained by find-ops-unit on line 4 induces an exponential blowup

540 R. Delanaux et al.

on the size of O due to the cartesian product on Line 5. In our experimental
assessment (Sect. 6), we will show that in practice the utility and privacy queries
in P and U oftentimes overlap, thus decreasing drastically the actual number of
sequences output by Algorithm 2, possibly to none.

6 Experimental Study

In this section, we present an empirical study devoted to gauge the efficiency of
our main algorithm (Algorithm 2) and measure various factors that determine
the impact of the overlap and size of the policy queries on its output. The exper-
imental study is organized into three main parts: (1) experimental analysis of
the risk of incompatibility between privacy and utility policies; (2) experimental
evaluation of the impact of the privacy and utility policies on the number of
anonymizations alternatives produced by Algorithm2; (3) experimental evalua-
tion of Algorithm 2 runtime performance.

Setup and Implementation. We adopted gMark [2], a schema-based synthetic
graph and query workload generator, as a benchmark for our experimental study.
We used gMark to define the schema of public transportation data, by including
types and properties observed in real-world smart city open data platforms2.
Due to the static nature of our approach, we only need to use such a schema to
generate query workloads without the need of generating actual graph instances.

Precisely, we defined a schema with 13 data types and 12 properties capturing
information regarding users (including personal data and subscription data for
cardholders), ticket validations and user rides (such as geographic coordinates
of ticket validations and optional subscription-related data), and information on
the transportation network (such as maps). Using gMark, we then built a sample
of 500 randomly generated conjunctive queries upon the aforementioned schema,
each one containing between 1 and 6 distinguished variables with a size ranging
between 1 and 6 triples. As shown in a recent study [3], queries of such size
are the most frequent ones in a large corpus of real-world query logs extracted
from SPARQL endpoints. This further corroborates our assumption that our
query sample is representative of real-world queries formulated by end-users.
To account for the structural variability of real-world queries, experiments were
performed on workloads using different shapes of queries: chain queries, star
queries, star-chain queries and a random mix of star-chain and star queries. For
space reasons, we present the results for star-chain queries only. The full list of
experiments is available in a notebook at the project’s GitHub repository3.

To generate privacy and utility policies, we fix a number of conjunctive
queries to be part of the privacy and utility policies. Then, we randomly pick
as many queries as necessary in the query sample to build the policies based
on this cardinality, while avoiding duplicates in the same policy and in between
both kinds of policies.

2 Notably, the Grand Lyon data website and datasets: https://data.grandlyon.com/.
3 https://github.com/RdNetwork/Declarative-LOD-Anonymizer.

https://data.grandlyon.com/
https://github.com/RdNetwork/Declarative-LOD-Anonymizer

Query-Based Linked Data Anonymization 541

In all our experiments, we have opted for a balanced cardinality between
privacy and utility policies: we have set the policy cardinality equal to 3 for
the experiments in Sects. 6.1 and 6.2, whereas Sect. 6.3 features a more extreme
case for performance testing with policy cardinality equal to 10. Depending on
the experiment, policy size (i.e. the sum of the sizes of the conjunctive queries
defining it) may vary since the picked queries have a varying size from 1 to 6.

The overlap degree between privacy and utility policies plays an important
role in our experiments as a factor likely to impact the results of Algorithm2.
We define it as the ratio between the number of triples appearing in privacy
queries that can be mapped to a triple appearing in a utility query and the total
size of the privacy policy. More formally, let P = {Pi} and U = {Uj} be privacy
and utility policies. The overlap degree between P and U is a real number in
[0 . . . 1] defined as:

∑n
i=1 |{t ∈ GP

i | ∃j ∃t′ ∈ GU
j ∃μ μ(t) = μ(t′)}|

∑n
i=1 |GP

i |
Algorithm 2 returns ∅ as output when it is applied to privacy and utility

policies having an overlap degree equal to 1, which are thus incompatible. In
Sect. 6.1, we will measure the risk of incompatibility between randomly generated
privacy and utility policies by counting the number of cases where this complete
overlap occurs.

All our tests have been performed under Windows 10 on a Intel R© CoreTM

i5-6300HQ CPU machine running at 2.30 GHz and 8 GB of RAM. We have imple-
mented our algorithms using Python 2.7. The code of our working prototype
along with the datasets and results of our experiments are made open-source
and available at the aforementioned project’s GitHub repository.

6.1 Measuring Compatibility Between Privacy and Utility Policies

Our goal is to measure the incompatibility rate of privacy and utility policies
randomly generated with a fixed cardinality of 3 and a varying size.

We have performed two experiments where we vary the size of the privacy
(resp. utility) policy from 6 to 12, which corresponds to privacy (resp. utility)
queries having between 2 and 4 triples, while keeping the size of the utility (resp.
privacy) policy fixed to 9, which corresponds to utility (resp. privacy) queries
with 3 triples. In the first (resp. second) experiment, for each of the 7 privacy
(resp. utility) policy sizes, we launch 200 executions of Algorithm2 and we count
the number of executions returning ∅, which allows to compute the proportion of
incompatible policies. For space reasons, we omit the corresponding histograms
(available in our online notebook) and we describe the obtained results in the
following.

In both experiments, we observed that only 49.2% and 49.3% of the
1400 (i.e., corresponding to 200 runs multiplied by 7 data points) executions
exhibit compatible policies. This result clearly shows the necessity of design-
ing an algorithm which automatically verifies policy incompatibility prior to the

542 R. Delanaux et al.

anonymization process. It also reveals that even small policy cardinalities (equal
to 3 for privacy and utility queries) can already substantially prevent possible
anonymizations.

We also noted in the first experiment that the compatibility rate between
privacy and utility policies tends to grow with the privacy policy size. This
behavior is in clear contrast with the intuition that the more privacy policy
is constrained, the less flexibility we have in satisfying them. The explanation
however is that increasing the size of the privacy policy decreases the risk that
all its triples are mapped with triples in the (fixed size) utility policy, and thus
augments the possibilities of satisfying the privacy and utility policies by triple
deletions.

We observe the opposite trend in the second experiment: the compatibility
rate between privacy and utility policies decreases with the utility policy size.
The reason is that requiring more utility for end-users restrains the possibilities
of deleting data for anonymization purposes.

6.2 Measuring the Number of Anonymization Alternatives

When applied to compatible privacy and utility policies, Algorithm2 computes
the set of all the candidate sets of update operations that satisfy the input
policies. In the worst case, the number of candidate sets corresponds the product
of the sizes of the privacy queries. In this experiment, we want to evaluate how
this number evolves in practice depending on (1) the overlap between privacy
and utility policies, and (2) the total size of the privacy and utility policies.

(a) Depending on overlap (b) Depending on privacy size (c) Depending on utility size

Fig. 1. Candidate set length based on policy overlap, privacy size and utility size

Algorithm 2 has been run on 7000 randomly generated combinations of pri-
vacy and utility policies, thus covering a wide spectrum of combinations exhibit-
ing various overlap degrees with various types of queries. For each execution,
we compute the overlap degree between the input privacy and utility policies
and group results in clusters of 10% before plotting as a boxplot the number of
candidate sets in executions featuring the given overlap degree (Fig. 1a). This
provides a representation of how many alternatives our algorithm provides for

Query-Based Linked Data Anonymization 543

anonymizing a graph, depending on the policies overlap. The boxplot allows to
visualize both extreme values and average trends, given that the randomization
can easily create extreme cases and outlier values.

We can observe that the number of candidate sets quickly decreases when
overlapping grows even slightly. This is easy to understand, given that increas-
ing overlap degree induces that less deletion operations are permitted by the
algorithm. As soon as the overlap degree reaches an high value, our algorithm
provides very few anonymization alternatives since no possible operation exists
to satisfy the given policies.

We use the same experimental settings as in Sect. 6.1 to evaluate how the
number of candidate sets evolves as a function of policy size.

Figure 1b displays the results of this experiment when varying privacy size
with a fixed utility size of 9 triples. We can observe a steady increase of the
number of candidate sets with the privacy size. The explanation for this behavior
is that increasing privacy size (with fixed utility size) provide more possible
operations for the anonymization.

On the other hand, when varying utility size (with fixed privacy size), the
number of candidate sets almost stagnates when increasing the utility size
(Fig. 1c). This means that increasing the size of utility queries, without increas-
ing the number of queries itself, does not significantly reduce the anonymization
opportunities.

In short, this experiment emphasizes the faint influence of utility policies on
possible anonymizations sets, along with the crucial role of privacy policies in
shaping possible anonymization operations.

6.3 Runtime Performance

One of the benefits of dealing with a query-driven static method for anonymiza-
tion is to avoid dealing with the size of an input graph, which could impact
performance by increasing runtime. Our static approach only deals with policy
size when looking for candidate anonymization sets, which is likely to make the
algorithm simple and efficient in general.

To confirm this, we ran the Algorithm 2 for a batch of 100 executions corre-
sponding to input privacy and utility policies of 10 queries each, and we measured
the average running time. As a result, we have obtained an average runtime of
0.843 s over all executions, which turns to be satisfactory in practice.

We can conclude that this static approach provides a fast way to enumerate
all the candidate sets of anonymization operations.

7 Conclusion and Future Work

We presented in this paper a novel query-based approach for Linked Open Data
anonymization under the form of delete and update operations on RDF graphs.
We consider policies as sets of privacy and utility specifications, which can be

544 R. Delanaux et al.

readily written as queries by the data providers. We further designed a data-
independent algorithm to compute sets of anonymization operations guaranteed
to satisfy both privacy and utility policies on any input RDF graph. Our proof-
of-concept open-source implementation confirms the intuition that (i) the larger
is the utility policy, the lesser anonymization operations are available; (ii) the
opposite holds for privacy policy but with a stronger impact on the number of
candidate anonymization operations; (iii) the more privacy and utility policies
are interleaved, the lesser is the number of candidate operations.

Our query-based approach can be combined with ontology-based query
rewriting and thus can support reasoning for first-order rewritable ontological
languages such as RDFS [20], DL-Lite [5] or EL fragments [9]. More precisely,
given a pair of privacy and utility policies made of conjunctive queries defined
over an ontology, each set of anonymization operations returned by Algorithm2
applied to the two sets of their corresponding conjunctive rewritings (obtained
using existing query rewriting algorithms [4,5,9]) will produce datasets that are
guaranteed to satisfy the policies.

It is also important to emphasize that our approach can be combined with
other anonymization approaches (k-anonymity techniques, differential privacy)
after the transformation of an input RDF graph by the application of a sequence
of operations output by Algorithm2.

We are planning several orthogonal research directions for future work. A first
research direction consists in extending the expressivity of the queries considered
in this paper both for defining the policies and the anonymization operations.
More expressive privacy and utility queries (with FILTER, NOT EXISTS, aggre-
gate functions) fits in our general framework (Sect. 4) but requires extensions of
the Sect. 5 algorithms. In addition to triple deletion and IRI replacement with
blank nodes, other anonymization operations can be considered such as value
replacement in triples involving datatype properties and IRI aggregation. The
point is that each of these operations can be defined with (possibly complex)
queries by leveraging SPARQL 1.1 aggregate and update queries as well as calls
to built-in functions.

Another future extension is the study of data-dependent solutions, as opposed
to the data-independent approach introduced in this paper. The proof of The-
orem 1 relies on the fact that all instances of the utility queries are completely
left unmodified by the deletions operations. However, it may happen that some
instances common to the privacy and utility queries are suppressed without
impacting the answers of the utility queries evaluated over a given dataset. An
alternative is thus to consider data-dependent solutions, at the cost of running
the algorithm on the (possibly huge) dataset. Such an approach could be adopted
when no data-independent solution can be found.

Another research direction we envision is to consider an optimization problem
that extends the EnumOperations problem defined in Sect. 5. The optimiza-
tion problem consists in finding optimal sequences of anonymization operations
and not all sequences, where optimality can be defined as minimality w.r.t. a
partial order over sequences of anonymization operations (e.g., their size, or a
distance between the original and resulting datasets.)

Query-Based Linked Data Anonymization 545

Acknowledgements. This work has been supported by the Auvergne-Rhône-Alpes
region through the ARC6 research program for funding Remy Delanaux’s PhD, by the
LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01), the SIDES 3.0 project (ANR-16-
DUNE-0002) funded by the French Program Investissement d’Avenir and the Palse
Impulsion 2016/31 programme (ANR-11-IDEX-0007-02) at UDL.

References

1. Baader, F., Borchmann, D., Nuradiansyah, A.: Preliminary results on the identity
problem in description logic ontologies. In: Description Logics. CEUR Workshop
Proceedings, vol. 1879. CEUR-WS.org (2017)

2. Bagan, G., Bonifati, A., Ciucanu, R., Fletcher, G.H.L., Lemay, A., Advokaat, N.:
gMark: schema-driven generation of graphs and queries. IEEE Trans. Knowl. Data
Eng. 29(4), 856–869 (2017)

3. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL query
logs. PVLDB 11(2), 149–161 (2017)

4. Bursztyn, D., Goadoué, F., Manolescu, I.: Reformulation-based query answering
in RDF: alternatives and performance. PVLDB 8 (2015)

5. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: the DL-Lite family.
J. Autom. Reason. 39(3), 385–429 (2007)

6. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

7. Fung, B.C.M., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing:
a survey of recent developments. ACM Comput. Surv. 42(4), 14:1–14:53 (2010)

8. Grau, B.C., Kostylev, E.V.: Logical foundations of privacy-preserving publishing
of linked data. In: AAAI, pp. 943–949. AAAI Press (2016)

9. Hansen, P., Lutz, C., Seylan, I., Wolter, F.: Efficient query rewriting in the descrip-
tion logic el and beyond. In: IJCAI (2015)

10. Heitmann, B., Hermsen, F., Decker, S.: k – RDF-neighbourhood anonymity:
combining structural and attribute-based anonymisation for linked data. In:
PrivOn@ISWC. CEUR Workshop Proceedings, vol. 1951. CEUR-WS.org (2017)

11. Kirrane, S., Mileo, A., Decker, S.: Access control and the resource description
framework: a survey. Semant. Web 8(2), 311–352 (2017)

12. Kirrane, S., Villata, S., d’Aquin, M.: Privacy, security and policies: a review of
problems and solutions with semantic web technologies. Semant. Web J. 9(2),
153–161 (2018)

13. Li, N., Li, T., Venkatasubramanian, S.: t-Closeness: privacy beyond k-Anonymity
and l-Diversity. In: ICDE, pp. 106–115. IEEE Computer Society (2007)

14. Machanavajjhala, A., He, X., Hay, M.: Differential privacy in the wild: a tutorial
on current practices & open challenges. PVLDB 9(13), 1611–1614 (2016)

15. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: L-diversity:
privacy beyond k-anonymity. TKDD 1(1), 3 (2007)

16. Oulmakhzoune, S., Cuppens-Boulahia, N., Cuppens, F., Morucci, S.: Privacy policy
preferences enforced by SPARQL query rewriting. In: ARES, pp. 335–342. IEEE
Computer Society (2012)

17. Radulovic, F., Garćıa-Castro, R., Gómez-Pérez, A.: Towards the anonymisation of
RDF data. In: SEKE, pp. 646–651. KSI Research Inc. (2015)

https://doi.org/10.1007/11787006_1

546 R. Delanaux et al.

18. Sweeney, L.: k-Anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10(5), 557–570 (2002)

19. Villata, S., Delaforge, N., Gandon, F., Gyrard, A.: An access control model for
linked data. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2011. LNCS,
vol. 7046, pp. 454–463. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25126-9 57

20. W3C: RDF schema 1.1 (2004). http://www.w3.org/TR/rdf-schema/

https://doi.org/10.1007/978-3-642-25126-9_57
https://doi.org/10.1007/978-3-642-25126-9_57
http://www.w3.org/TR/rdf-schema/

Answering Provenance-Aware Queries
on RDF Data Cubes Under Memory

Budgets

Luis Galárraga1,2(B), Kim Ahlstrøm2, Katja Hose2,
and Torben Bach Pedersen2

1 Inria, Rennes, France
luis.galarraga@inria.fr

2 Aalborg University, Aalborg, Denmark
{kah,khose,tbp}@cs.aau.dk

Abstract. The steadily-growing popularity of semantic data on the Web
and the support for aggregation queries in SPARQL 1.1 have propelled
the interest in Online Analytical Processing (OLAP) and data cubes in
RDF. Query processing in such settings is challenging because SPARQL
OLAP queries usually contain many triple patterns with grouping and
aggregation. Moreover, one important factor of query answering on Web
data is its provenance, i.e., metadata about its origin. Some applications
in data analytics and access control require to augment the data with
provenance metadata and run queries that impose constraints on this
provenance. This task is called provenance-aware query answering. In this
paper, we investigate the benefit of caching some parts of an RDF cube
augmented with provenance information when answering provenance-
aware SPARQL queries. We propose provenance-aware caching (PAC),
a caching approach based on a provenance-aware partitioning of RDF
graphs, and a benefit model for RDF cubes and SPARQL queries with
aggregation. Our results on real and synthetic data show that PAC out-
performs significantly the LRU strategy (least recently used) and the
Jena TDB native caching in terms of hit-rate and response time.

1 Introduction

In the last years we have seen a steady increase of the amount of Linked Data
available on the Web. This data spans over a wide variety of topics ranging
from common-sense information to specialized domains such as governmental
information, media, life sciences, etc. The data is usually published in RDF [27]
and queried with SPARQL [28]. The extended capabilities of SPARQL 1.1—
notably the support for aggregation queries—have motivated the publication
of multidimensional data, i.e., data cubes, in RDF [1,11,19,31]. Analysis on
multidimensional data warehouses and is known as OLAP (On-Line Analytical
Processing). The publication of the QB vocabulary [8] has served as a bridge
between the Semantic Web and OLAP communities.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 547–565, 2018.
https://doi.org/10.1007/978-3-030-00671-6_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_32&domain=pdf

548 L. Galárraga et al.

Imposing constraints on the provenance of query results, a task known as
provenance-aware query processing, is crucial in a setting with data coming
from multiple independent sources. The provenance of a piece of data is a set of
assertions about its origin. If a query must be evaluated over multiple indepen-
dent data cubes [20], provenance metadata can help restrict OLAP queries to
data or sources meeting certain quality constraints [24]. Moreover, provenance
metadata allows for the implementation of access control policies on data [4].

The importance of provenance data management motivated the creation of
the PROV ontology [23] (PROV-O), the W3C standard to represent provenance
information for RDF data. PROV-O provides the data model to describe a set of
provenance entities, i.e., RDF resources, which are assigned to the triples in an
RDF dataset. There exist multiple representations for provenance-augmented
RDF data, such as named graphs and reification. These representations are,
though, not exempt from performance issues for very complex queries [25] due
to the additional complexity added by the provenance metadata. In this paper
we use the named graph representation [5].

A recent formulation for provenance-aware query answering divides the query
in two parts: a provenance query and an analytical query [2,35]. The provenance
query imposes constraints on the provenance entities of the triples that should
be considered to answer the analytical query on the actual data. In a represen-
tation of provenance entities using named graphs, this is equivalent to adding
a FROM clause to the analytical query for each provenance entity reported by
the provenance query. As shown in [2], query response time is seriously affected
in frameworks, such as Jena, as the number of FROM clauses increases. This
happens because the query engine has to fetch a large number of intermediate
results from disk in order to answer the analytical query.

In this paper we propose to alleviate the aforementioned phenomenon by
caching some fragments of the RDF graph in memory, so that the analytical
queries benefit from fast access to the data. Our strategy, called provenance-
aware caching (PAC), selects the most beneficial fragments that fit within a
memory budget. Since we are interested in RDF cubes, we assume our queries
are OLAP queries, i.e., SPARQL queries with aggregation, grouping and filtering.
This assumption reduces the space of possible queries we optimize for, without
the need of an explicit query-load. We show that for OLAP analytical queries,
it suffices to cache a small percentage of the dataset in order to achieve up to
2x speed-up in query response time. This is particularly convenient for memory-
constrained settings. In summary our contributions are:

– A fragmentation scheme tailored for provenance-augmented RDF graphs.
– The formulation of the budgeted provenance-enabled fragment selection prob-

lem: The problem of selecting a set of fragments for caching so that as many
OLAP queries as possible benefit from fast access to cached data.

– A query rewriting algorithm to answer analytical queries from a set of named
graphs and cached fragments.

– A study of the impact of caching on the performance of Jena TDB for
provenance-aware SPARQL aggregation queries.

Answering Provenance-Aware Queries on RDF Data Cubes 549

The remainder of this paper is structured as follows. Section 2 introduces the
basic concepts of RDF cubes, SPARQL aggregation queries and provenance in
RDF. In Sect. 3, we introduce the fragment selection problem with a memory
budget for RDF cubes with provenance information. This is followed by an exper-
imental evaluation in Sect. 4 and a discussion of related work in Sect. 5. Section 6
concludes the paper.

2 Preliminaries

2.1 RDF Cubes

In compliance with the official RDF specification [27], we define an RDF triple t
(or simply a triple), as t = 〈s, p, o〉 ∈ (U ∪ B)×P × (U ∪ B ∪ L), where s is the
subject, p is the predicate, and o is the object. In this definition, U , B and L are
countably infinite sets of IRIs, blank nodes and literals. In addition, we define
the set of predicates P ⊆ U and the set of classes C ⊆ U . An RDF dataset K is
a set of RDF triples. Since RDF defines a graph-like data model, we also refer
to RDF datasets as RDF graphs. An RDF cube Kc = {O,D,PM,PD,PA,Δ} is
an RDF graph defined in terms of:

– A set of observations O ⊆ U .
– A set of measure predicates PM ⊆ P, defined between observations and

literal numerical values. These predicates are the target of aggregation in
OLAP queries.

– A set of dimensions D. Observations are defined by their coordinates in D.
Each dimension consists of a hierarchy of classes that describe an observation
at different degrees of specificity. Each class defines a level in the hierarchy.

– A set of dimension predicates PD ⊆ P. These predicates connect the obser-
vations with the dimensions in D.

– A set of level attributes PA ⊆ P. Level attributes are predicates defined
on the class levels of the dimensions. They are often used for grouping and
filtering.

– A function Δ : D → H that assigns each dimension in D a class hierarchy from
the set of hierarchies H. A class hierarchy H = (L,≺L, γ, σ) ∈ H consists of
a set of class levels L ⊆ C and a partial order ≺L on L with a single greatest
element. The function γ : L → 2PD assigns each class level in L a set of
dimension predicates, whereas the function σ : L → 2PA assigns each class
level a set of level attributes.

Example 1. Consider an RDF cube representing a database of air pollution
measurements. Each measurement corresponds to an observation in the cube
model. A measurement of 12.3µg/m3 of the pollutant PM10 corresponds to the
triple 〈Obs, air:pm10, 12.3 〉 depicted in Fig. 1. It follows that Obs ∈ O and
air:pm10 ∈ PM. The triple 〈Obs, air:station, St1 〉 defines the coordinates of
Obs in the Station dimension. There are three dimensions in our example, i.e.,
D = {Year ,Station,Sensor}. The predicates air:year, air:station, air:sensor ∈

550 L. Galárraga et al.

PD are dimension predicates. The function Δ associates each dimension with
a class hierarchy. For example, the dimension Station is mapped to a hier-
archy H = (L,≺L, γ, σ) defined by the classes L = {Station,City ,Country}
and the order Station ≺L City ≺L Country . In addition, it holds that
γ(Country) = {air:locatedIn}. The country’s code can be modeled as a level
attribute air:ccode ∈ PA of the Country class. Thus, σ(Country) = {air:ccode}.

Fig. 1. Observation with 3 dimensions: year, station, and sensor. Measure predicates
PM are in solid line style, whereas attribute predicates PA use dotted lines. The dashed
edges correspond to the dimension properties PD.

2.2 SPARQL Queries

Due to space constraints, we do not provide a rigorous definition of SPARQL
queries; instead we resort to the formulation used in [17] to define SPARQL
aggregation queries. These are the most common types of OLAP queries. We
define a triple pattern as a triple t̂ = 〈s, p, o〉 ∈ (U ∪ B ∪ V) × (P ∪ V) ×
(U ∪ B ∪ L ∪ V). The set V is a set of variables with (U ∪ B ∪ L) ∩ V = ∅.
A basic graph pattern Gp is a set of triple patterns. A SPARQL select query
Q is an expression of the form “SELECT V F WHERE Ĝp GROUP BY V ′

HAVING c” with V ∪ F �= ∅. In this definition V ⊆ V is the set of projection
variables and F is a set of aggregation expressions of the form f(g(V̂)) where
f ∈ {COUNT,SUM,AVG,MIN,MAX} and g(V̂) is a numerical expression on
the set of aggregated variables V̂ ⊆ V. Ĝp is an extended basic graph pattern,
potentially containing OPTIONAL and FILTER clauses. The set of grouping
variables is a superset of the projection variables (V ′ ⊇ V) whereas c is a Boolean
expression on V ∪ F . The GROUP BY and HAVING clauses are optional.

Example 2. The following SPARQL query computes the maximal concentration
of PM10 per city in Denmark in 2012 according to the schema in Fig. 1.

SELECT ?city (MAX(?ms) as ?max) WHERE {
?obs air:pm10 ?ms. ?obs air:year y:2012. ?obs air:station ?st.

?st air:inCity ?city. ?city air:locatedIn Denmark.

} GROUP BY ?city

Answering Provenance-Aware Queries on RDF Data Cubes 551

2.3 Provenance

There exist multiple provenance models for RDF in the literature [7]; in this
paper, we focus on workflow provenance [29]: the history of a unit of information
from its sources to its current state. This provenance is modeled using RDF by
assigning each triple an RDF resource, which we call its provenance entity. The
set of statements describing the provenance entities of an RDF graph is a prove-
nance graph. The PROV Ontology [23] is the W3C specification to model prove-
nance graphs. In this model a provenance entity can represent a data resource
such as a file, a web page or the intermediate result of a data transformation
process. Any operation on data is modeled as an activity in PROV-O. Those
activities can be directly or indirectly carried out by agents: people, organiza-
tions or even computer programs.

If I is a set of provenance entities and f : K → I is a provenance function on
the triples of an RDF graph K, a provenance-augmented RDF graph KI is a set
of pairs 〈t, f(t)〉, which can also be seen as a set of quadruples 〈s, p, o, i〉, where
i ∈ I. We can also model a provenance-augmented RDF graph as a set of RDF
sub-graphs, each containing the triples associated to the same provenance entity.
In this view KI = {Ki1 , . . . ,Kin} (i1, . . . , in ∈ I) and each RDF sub-graph is a
named graph with label i. We define a provenance-augmented cube as an RDF
cube whose triples have been augmented with provenance entities.

2.4 Provenance-Aware Query Answering

Given a provenance-augmented RDF graph KI = {Ki1 , . . . ,Kin} and a prove-
nance graph GI describing the set of provenance entities i1, . . . , in ∈ I, a
provenance-aware query is a pair of SPARQL queries 〈qp, qa〉 [2,35]. qp is known
as the provenance query and is defined on GI . The provenance query is designed
so that it returns a set of provenance entities I ⊆ I. Those provenance enti-
ties are used to restrict the scope of the analytical query qa on the RDF graph
KI to those subgraphs with labels in I. The problem of answering provenance-
aware queries on RDF data has been studied in the last years [2,6,34,35]. If
provenance information is modeled using named graphs (where the labels are
provenance entities), the naive strategy is to augment the analytical query with
a FROM clause for every provenance entity reported by the provenance query.
In [2] it is shown that this strategy performs poorly in frameworks such as Jena
for non-selective provenance queries. A strategy called full materialization[35]
proposes to first fetch all the triples from the named graphs, and then run the
analytical query on the union of those graphs. While this strategy generally
outperforms the naive approach, it is not free from performance issues for non-
selective analytical queries. Nonetheless, we observe that both strategies require
the retrieval of a large number of triples from disk. Therefore, we study the
impact of keeping some parts or fragments of the dataset in main memory so
that queries can benefit from fast access to the data.

552 L. Galárraga et al.

3 The Budgeted Provenance-Enabled Fragment Selection
Problem

In this section, we define the budgeted provenance-enabled fragment selection
problem. This is the problem of selecting a set of provenance-enabled RDF data
fragments for caching so that we reduce the response time of the analytical query
when answering a provenance-enabled query. This is achieved by maximizing the
amount of data that is retrieved from the cache. In the following, we describe
the three components of our approach, namely the fragmentation strategy, the
cost-benefit model, and the query rewriting algorithm. We highlight that our
method is query-load agnostic, thus it aims at optimizing for as many queries as
possible in the space of analytical queries.

3.1 Fragmentation Strategy

A fragmentation strategy defines how to split a dataset into smaller parts, i.e.,
fragments. Once the dataset is fragmented, we can decide which parts to put
in the cache. We start by defining a fragment for provenance-augmented RDF
graphs.

Definition 1. A fragment signature sφ is a quadruple 〈s, p, o, i〉 such that each
component can be a constant or a variable. We say a quadruple q in a provenance-
augmented RDF graph KI matches a fragment signature if there exists an instan-
tiation ρ for the variables in the signature such that ρ(sφ) = q. The set φ
of quadruples that match sφ in a provenance-augmented RDF graph KI is a
fragment.

Definition 2. A provenance-aware fragment tree Φ consists of a set of frag-
ments and a partial order f on those fragments. A fragment φ subsumes a
fragment φ′, denoted by φ f φ′, iff sφ′ ⇒ sφ. If φ f φ′ then φ ⊇ φ′.

Figure 2 shows a provenance-aware fragment tree describing some fragments
from the cube introduced in Example 1 with two provenance entities pr:e1 and
pr:e2. The root fragment contains the trivial signature, i.e., the signature that
matches all quadruples in the dataset. In the second level, we have signatures
with restrictions on the provenance entities of the quadruples. The fragments in
the third level have restrictions on both the predicate and the provenance entity.
Fragments always subsume their children.

Fig. 2. A provenance-aware fragment tree. The size of each fragment is noted below.

Answering Provenance-Aware Queries on RDF Data Cubes 553

Algorithm 1 describes the method to construct a provenance-aware fragment
tree given a provenance-augmented RDF graph. The algorithm first initializes
the tree with the trivial signature (line 1). Then for each quadruple in the dataset,
the method constructs signatures with (a) bound provenance entity, (b) bound
provenance entity and predicate (line 3), and (c) bound provenance entity, pred-
icate and object for the rdf:type predicate (lines 4–5). The latter step accounts
for the typically large size of the rdf:type predicate. If the tree does not contain
a signature, the signature is initialized (by setting its size to 1 in line 8) and
added to the tree (line 9). Otherwise, the size of the signature is incremented to
account for the current quadruple (line 11).

Algorithm 1. BuildProvenanceAwareFragmentTree
Input: a provenance-augmented RDF graph: KI
Output: a provenance-aware fragment tree: Φ

1 Φ := {〈∗, ∗, ∗, ∗〉}
2 foreach q := 〈s, p, o, i〉 ∈ KI do
3 Φ′ := {〈∗, ∗, ∗, i〉, 〈∗, p, ∗, i〉}
4 if p = “rdf:type” then
5 Φ′ := Φ′ ∪ {〈∗, p, o, i〉}
6 foreach s′

φ ∈ Φ′ do
7 if s′

φ �∈ Φ then
8 s′

φ.size := 1
9 Φ := Φ ∪ s′

φ

10 else
11 s′

φ.size := s′
φ.size + 1

12 return Φ

When clear from the context, we drop the distinction between a fragment and
its signature and refer to both as φ. Finally, we highlight that Algorithm1 pro-
duces fragmentation schemes with redundancy. Whether we allow redundancy or
not in the set of selected fragments depends on the benefit model. We elaborate
on this in the following.

3.2 Cost-Benefit Model

The cost-benefit model quantifies the price we have to pay for caching a frag-
ment, as well as the amount of saved response time induced by using the cached
fragment to answer queries. In line with approaches for view materialization [17]
we use the number of quadruples matched by the fragment’s signature as its
cost, i.e., cost(φ) = |φ|. We say a fragment φ is relevant to a provenance-aware
query q = 〈qp, qa〉 if at least one of the quadruples in φ can be used to answer
q—and none of them could lead to a wrong answer. For example, consider a

554 L. Galárraga et al.

provenance query qp with result pr:e1 and the analytical query qa from Exam-
ple 2. In this case the analytical query is restricted by the provenance query to
the quadruples with provenance pr:e1. We say that the fragments φ and φ′ with
signatures sφ = 〈*, air:pm10, *, pr:e1〉 and sφ′ = 〈*, *, *, pr:e1〉 are relevant to
q. In contrast, the fragment φ′′ with signature sφ′′ = 〈*, p:unitPrice, *, pg:e2〉 is
not relevant, because qp does not consider the provenance entity pg:e2.

Under the assumption that the cost of accessing a quadruple from main
memory is insignificant compared to the cost of accessing it from disk, we define
the benefit of a cached fragment φ as ben(φ) =

∑
qa∈Q |φqa ∩ φ|. Here Q is the

space of all possible queries and φqa is the set of quadruples required by the
query engine to answer qa. In other words, the benefit of a cached fragment is
the absolute number of times one of its quadruples can be fetched to answer a
query. It follows that the total benefit of a set of cached fragments Φ′ ⊆ Φ from
a tree Φ, is given by ben(Φ′) =

∑
qa∈Q |φqa ∩ u(Φ′)|, with u(Φ′) =

⋃
φ∈Φ′ φ. Our

goal is to find a Φ′ with maximal ben(Φ′).
We highlight that in real-world query engines, the benefit of a fragment w.r.t

a query qa may not necessarily depend on the absolute number of cached relevant
quadruples used to answer qa, but on the ratio w.r.t the query’s relevant set,
i.e., |φqa ∩ u(Φ′)|

|φqa | . For example, it may be more beneficial to retrieve 1000 cached
quadruples for a query with |φqa | = 1000 than for a query with |φqa | = 10000. In
the absence of an explicit query load, however, we can only expect to estimate
the term |φqa ∩ u(Φ′)| since the queries qa as well as φqa and |φqa | are unknown.
In the following we show that the fixed structure of RDF cubes as well as our
focus on OLAP queries, both provide hints to guarantee that ben(Φ′) is at least
large.

Observation 1: Distance to observations. The closer to the observations a
predicate lies in the schema, the larger the relevance set of its matching frag-
ments is.

For example, all OLAP queries on data cubes involve aggregation of at least
one measure. This means that |φqa ∩ φ| > 0 for fragments φ that match measure
quadruples. Furthermore and assuming connected SPARQL queries, filtering or
grouping on attributes and dimensions in higher levels always requires to pass by
the lower levels, hence it is more beneficial to cache quadruples with predicates
in the lower levels.

Observation 2: Diversity. Fragments with larger diversity of predicates have
larger relevance sets, i.e., they “touch” more queries.

Observation 3: Duplicates. Given a selection of fragments Φ, duplicate quadru-
ples lying in different fragments do not provide additional benefit, because they
occupy extra memory without extending the set of relevant queries of Φ.

Based on these observations and the fragmentation defined by the
provenance-aware fragment tree, we devise a selection strategy given a mem-
ory budget.

Answering Provenance-Aware Queries on RDF Data Cubes 555

3.3 Fragment Selection

Given a provenance-augmented RDF cube Kc = {O,D,PM,PD,PA,Δ}, a max-
imum budget W in number of quadruples, and a provenance-aware fragment tree
Φ, we formulate the budgeted provenance-enabled fragment selection problem as
an integer linear program (ILP):

maximize
∑

φ∈Φ

do(φ)−1 × dv(φ) × xφ

s.t.
∑

φ∈Φ

|φ| × xφ ≤ W (budget)

∀p : φroot → · · · → φk :
∑

φ∈p

xφ ≤ 1 (no replication)

∀φ ∈ Φ : xφ ∈ {0, 1} (integrality constraints) (1)

Each fragment φ in the lattice is assigned a Boolean variable xφ. If xφ = 1
the fragment is chosen for caching. Hence, the solution to the ILP produces a
set of fragments Φcached ⊂ Φ that will be stored in main memory. Observations 1
and 2 are implemented in the objective function. This function decreases with
the distance of the fragment’s predicates to the observations (do) and increases
with the fragment’s diversity (dv)1. We define the distance of a predicate to
the observations as the number of hops from an observation to the predicate in
the schema. In Fig. 1, for example, the predicates air:pm10 and air:unit have
distances 1 and 2 respectively. If a fragment φ contains quadruples with different
predicates, d(φ) is the smallest distance among all predicates in φ. The diversity,
on the other hand, is the number of different predicates in quadruples in φ. The
cost model is encoded in the budget constraint. Since duplicate quadruples do not
contribute with additional benefit (Observation 3), the no replication constraint
guarantees that the resulting set Φcached has no redundancy. Because of this
constraint and the partial order encoded in the tree, the ILP solver can pick at
most one fragment in a given path from the root to a leaf.

3.4 Query Rewriting

In this section, we describe how to use a selection of cached fragments Φcached

to answer provenance-aware queries q = 〈qp, qa〉. Recall from Sect. 2.4 that in a
setting based on named graphs, a provenance-aware query can be answered by
adding a FROM clause to the analytical query qa for each provenance entity
i ∈ I reported by qp. Each provenance entity corresponds to a named graph
that resides in disk. In our setting we count additionally on a set of cached
fragments Φcached that can be accessed from memory. We treat each fragment
φ ∈ Φcached as a memory named graph with label id(φ), where id(φ) returns the

1 We omitted the fragment size from the objective function because size benefits too
much those fragments with general signatures, i.e., those of the form 〈∗, ∗, ∗, i〉.

556 L. Galárraga et al.

concatenation of the constant components of sφ (φ’s signature). Exploiting those
memory named graphs to answer the analytical query is the goal of Algorithm2.
The algorithm takes as input an analytical query qa, a provenance-aware tree
Φtree , the result of the provenance query I , and the set of cached fragments
Φcached reported by our selection strategy in Sect. 3.3. The algorithm returns
the graph labels that will be added as FROM clauses to the analytical query.

Algorithm 2. rewriteAnalyticalQuery
Input: Analytical query qa, provenance-aware tree Φtree , the provenance query

result I , the set of cached fragments Φcached

Output: A set of graph labels
1 candidates := relevant := disk := ∅
2 foreach t = 〈s, p, o〉 ∈ qa do
3 foreach i ∈ I do
4 s := {〈∗, p, o, i〉, 〈∗, p, ∗, i〉} ∩ Φtree

5 relevant := relevant ∪ {most-specific-fragment-in(s)}
6 foreach φ ∈ relevant do
7 if φ ∈ Φcached then
8 candidates := candidates ∪ {φ}
9 else if ∃ φ′ ∈ Φcached : sφ′ �f sφ then

10 candidates := candidates − {φ̂ : sφ′ �f sφ̂} ∪ {φ′}
11 else
12 disk := disk ∪ {i : sφ = 〈∗, p, ∗, i〉}
13 candidates := candidates − {φ : sφ ≈ 〈−, −, −, i〉}
14 return {id(φ) : φ ∈ candidates ∪ disk)}

Line 1 initializes some intermediate variables. Lines 2–5 compute the most
specific fragments in the lattice that are relevant to the analytical query, i.e.,
fragments whose signatures combine the provenance entities in I with the triple
patterns of the analytical query. Then for each relevant fragment φ, the algorithm
verifies whether φ is in the cache (line 9). If so, the fragment is added as a
candidate (line 8). Otherwise, the algorithm verifies whether one of φ’s ancestors
(line 9) has been cached. There can be at most of one of such ancestors due
to the redundancy constraint discussed in Sect. 3.3. If an ancestor φ′ is found
in the cache, the algorithm adds it to the set of candidates (line 10). Since
this addition turns every (possibly) selected descendant of φ′ redundant, the
algorithm removes those descendants from the list of candidates (line 10). If
neither φ nor any of its ancestors is in the cache, the algorithm takes as candidate
the named graph labeled with the provenance entity i in sφ (line 12). This step
turns any fragment with signature of the form 〈−,−,−, i〉 superfluous, and thus
unnecessary (line 13). Once the final list of candidates have been computed,
Algorithm 2 generates the graph labels that will be used to rewrite the analytical
query (line 14).

Answering Provenance-Aware Queries on RDF Data Cubes 557

4 Experiments

4.1 Experimental Setup

Data. We evaluated PAC on several datasets generated with the Star Schema
Benchmark (SSB [26]) and on the QBOAirbase dataset [11]. The SSB bench-
mark provides a data generator for a database of line orders processed by a
wholesaler. The number of line orders is an argument for the data generator. We
converted the SSB dataset into an RDF cube, where each line order corresponds
to an observation defined by four dimensions: supplier, part, customer, and date.
We generated four datasets with four different numbers of line orders: 80k, 160k,
320k, and 640k. This resulted in 2.3 m, 4.4 m, 7.8 m, and 14.4 m triples respec-
tively. All SSB datasets contain 68 distinct predicates. The QBOAirbase dataset,
on the other hand, models air pollution measurements from 36 European coun-
tries as an RDF cube augmented with workflow provenance. A measurement
corresponds to an observation with coordinates in the time, station (location),
and sensor dimensions. We tested our approach on the subset of measurements
of Denmark (qboairbase-dk) and Great Britain (qboairbase-gb). These datasets
account for 542k and 4.3 m triples respectively, both with 81 distinct predicates.

Provenance Data and Queries. Since the SSB benchmark does not provide
provenance for the data, we augmented each RDF cube with 1000 distinct prove-
nance entities and simulated a set of provenance queries. The provenance entities
are assigned to observations in the cube according to two settings: balanced and
unbalanced. In the balanced setting, each provenance entity is assigned the same
number of observations in the cube, whereas in the unbalanced setting the ith

provenance entity is assigned 2i triples. We denote the resulting SSB datasets
with the prefixes b- and u- followed by the number of line orders, e.g., b-ssb-80k
contains 80k line orders with a balanced provenance assignment. We simulated
our provenance queries by materializing sets of provenance entities covering from
10% to 90% of the provenance entities in the cube (at intervals of 10%). The
datasets qboairbase-dk and qboairbase-gb contain 25.3k and 191.8k different
provenance identifiers. For QBOAirbase we constructed a set of 5 provenance
queries. These queries impose constraints (a) on whether the data has been
quality checked or not (2 queries), (b) on whether we know the data provider or
not (2 queries), and (c) on the observation’s generation time.

Analytical Queries. The SSB benchmark provides a set of 13 standard OLAP
queries [26]. For QBOAirbase [11], we used 8 of the analytical queries available
at the project’s website2. These are the queries where Jena does not time out.
For all datasets, we construct provenance-aware queries by combining each ana-
lytical query with each of our provenance queries. Each provenance-aware query
is executed three non-consecutive times in random order. We averaged the run-
times.
2 http://qweb.cs.aau.dk/qboairbase/.

http://qweb.cs.aau.dk/qboairbase/

558 L. Galárraga et al.

System Setup and Opponent. We used the Jena (v.3.2) TDB physical
database for the in-disk named graphs, and the Jena TDB in-memory store
for the cached fragments. All experiments were run in a virtual server with an
AMD Opteron 6376 with 8 cores, 128 GB of RAM and 1 TB of disk space running
in RAID-5. We tested our queries under two general system settings: (1) after
purging the operating system cache and disabling the Jena TDB cache—which
we call cold, and (2) with the default TDB cache (∼50 MB) and a populated
OS’s cache after having run all the queries at least once. We call this setting
warm. We compare our approach with the caching provided by Jena TDB and
with the LRU caching strategy. The memory budgets are provided as percent-
ages. For Jena TDB a budget of 20% means the engine counts on memory of size
20% the physical database. In contrast, for PAC and LRU the budgets indicate
the percentage of triples in the dataset that will be cached. LRU populates the
available cache space with the fragments used by the last executed query in a
driven-by-size greedy fashion. Jena’s standard execution plans timed out with
most of the queries, thus we implemented an execution strategy on top of Jena,
on which queries are executed on the merge of all relevant in-disk named graphs
and cached fragments [2,35].

Table 1. Performance of different graph filtering strategies (warm setting).

Dataset PAC Context index Naive

Runtime Build time Triples

reduction

Runtime Build time Triples

reduction

Runtime

b-ssb-80k 24.52 s 17.38 s 24.11% 35.97 s 24.45 s 24.10% 33.36 s

u-ssb-80k 25.82 s 17.65 s 22.58% 37.48 s 27.57 s 22.56% 34.79 s

qboairbase-gb 20.04 s 42.72 s 12.00% 103.41 s 134.10 s −37.51% 24.85 s

qboairbase-dk 1.98 s 5.56 s 13.72% 6.54 s 19.94 s −35.31% 2.61 s

4.2 Evaluation

Impact of Graph Filtering. We disabled caching and compare PAC’s graph
filtering and query rewriting with the approach proposed in [2], and a naive
query rewriting on the analytical queries. The naive approach rewrites the ana-
lytical query by adding a FROM clause for each of the results of the provenance
query. In contrast, the approach in [2] defines a context index that maps prove-
nance entities to predicate paths, allowing for pruning of the graphs that do
not co-occur with predicate paths in the query. In the same spirit, Algorithm 2
filters irrelevant graphs by means of the provenance-aware fragment tree, which
encodes the co-occurrences of predicates, object values, and provenance iden-
tifiers. Table 1 shows the average runtime and average index built time of the
different strategies for four of our datasets. We observe that PAC’s filtering out-
performs the naive approach in query runtime, because it achieves reductions
from 12% to 24% in the total number of materialized triples. While the context
index and PAC achieve comparable reductions in the SSB datasets, [2] performs

Answering Provenance-Aware Queries on RDF Data Cubes 559

worse for two reasons: (a) it merges all relevant graphs in disk, and (b) it does
not handle unions natively. The latter limitation implies that subqueries must
be executed independently and their results merged. It also explains why this
method sometimes materializes more triples than the naive approach, leading
to negative reduction rates. Finally, we highlight that the context index’s build
time is up to 3x slower than PAC’s provenance-aware fragment tree because
the context index runs an expensive select query for each predicate path in the
index.

Caching vs. In-Memory DB. Table 2 compares the average runtime of PAC,
the LRU, and the Jena TDB caching strategies – the two latter with and without
PAC’s filtering – at budget 20% against full PAC (budget 100%) and the Jena
TDB in-memory database in a warm setting. PAC at budget 20% outperforms
in total time all caching strategies and the Jena in-memory database. The bottom
line is that with PAC’s strategic caching, it is not necessary to store everything in
main memory for speed-up. In addition, full PAC is 2x faster than the in-memory
database thanks to PAC’s graph filtering (Algorithm2).

Table 2. Runtime of a full in-memory database vs. the caching strategies at bud-
get = 20%

Dataset PAC LRU+
PAC+F

TDB+
PAC+F

LRU TDB Full-PAC Jena-mem

b-ssb-80k 23.43s 20.98 s 23.78 s 35.30 s 33.21 s 13.03 s 34.05 s

u-ssb-80k 26.58 s 38.15 s 26.34 s 38.15 s 35.84 s 13.74 s 35.80 s

airbase-gb 13.80 s 20.01 s 17.45 s 22.98 s 25.56 s 17.86 s 25.04 s

airbase-dk 1.65 s 2.88 s 0.02 s 3.63 s 2.56 s 2.06 s 2.75 s

Total 65.46 s 82.02 s 67.59 s 100.06 s 117.17 s 42.69 s 97.64 s

Impact of the Memory Budget. Figures 3 and 4 show the impact of the
memory budget on the average cache hit-rate and the average response time of
PAC in a cold setting on four datasets from all our families of datasets. We define
the hit-rate as the ratio of graph labels returned by Algorithm2 that correspond
to cached fragments. We observe a monotonically increasing behavior in the
hit-rate for all datasets. On the u-ssb-80k and qboairbase datasets, the hit-rate
already approaches 80% at budget 10%, contrary to the h-ssb-80k dataset where
the increase is more gradual. This phenomenon is mainly caused by the fine
granularity of the fragments both in u-ssb-80k and qboairbase. Fine-grained
fragments give the selector more flexibility at utilizing the available budget in
contrast to very large fragments as the ones found in h-ssb-80k. If a very large
fragment does not fit into the remaining cache space, it will not be added, even
though it may be relevant to many queries in the query space. The trends in the
hit-rate are supported by the runtime behavior in Fig. 4.

560 L. Galárraga et al.

Fig. 3. Budget vs. hit-rate for PAC Fig. 4. Budget vs. runtime for PAC

PAC vs. LRU and TDB. We compare PAC, the LRU caching strategy, and
the Jena TDB native caching for qboairbase-gb on a warm setting in Fig. 5. The
trend is independent of the system setting and is similar for qboairbase-dk. We
first observe that PAC outperforms Jena TDB at all budgets. Only when PAC’s
filtering is enabled (TDB+PAC-F), TDB performs comparably to PAC. On the
contrary, LRU seems inadequate for this dataset, even when PAC’s filtering is
enabled (LRU+PAC-F). Due to the high diversity of cached fragment signatures
in the qboairbase datasets (approx. 192k), it is unlikely for two consecutive
queries to require the same fragments. This hurts the performance of LRU, which
delivers a hit-rate of 0 for less than 40% budget. LRU+PAC-F does slightly
better, but its maximal hit-rate is no higher than 0.6. The situation is different
for the u-ssb-80k dataset as shown in Fig. 6. While PAC still delivers the best
performance, TDB is outperformed by LRU. The trends are corroborated by the
hit-rate, where PAC is between 0.26 and 0.57 ratio points better than LRU, and
between 0.24 and 0.69 points better than LRU+PAC-F. Our findings in the h-
ssb-80k dataset are alike: PAC is between 0.15 and 0.47 ratio points better than
LRU as displayed in Fig. 7 (between 0.08 and 0.28 points w.r.t. LRU+PAC-F).
All in all, the synergy between graph filtering and a high hit-rate makes PAC
faster than standard caching strategies.

Caching on Bigger Datasets. We also investigate the behavior of the dif-
ferent caching strategies as the number of triples increases in the u-ssb family
of datasets on a warm system setting. We set a budget of 20% and show the
results in Fig. 8. PAC consistently achieves better runtime than its competitors.
In general, all trends observed in the h-ssb-80k and u-ssb-80k datasets remain
constant as the number of triples increases.

Impact of Caching on Queries. We also study the impact of the different
caching strategies on the response time of the individual analytical queries. For
this purpose we compute the area under the curve of response time vs. budget

Answering Provenance-Aware Queries on RDF Data Cubes 561

Fig. 5. Runtime on qboairbase-gb Fig. 6. Runtime on u-ssb-80k

Fig. 7. Hit-rate on h-ssb-80k Fig. 8. Runtime on u-ssb

for each analytical query under the different strategies on the h-ssb-80k, u-ssb-
80k, qboairbase-gb, and qboairbase-dk datasets. The runtimes were averaged
across all provenance queries. Table 3 shows the number of queries where each
strategy wins, that is, the strategy achieves the smallest area under the curve
until budgets 20%, 50%, and 100%. We notice that TDB becomes insensitive to
the budget argument after a value of 20%. By looking at the winning strategies
in each query, we observe that PAC has an almost stable behavior: the set of
benefited queries grows monotonically as the budget increases. Despite of being
query-load oblivious, PAC with budget 20% wins in 30% of the analytical queries
in the SSB datasets, and in 50% of the analytical queries in the QBOAirbase
datasets.

562 L. Galárraga et al.

Table 3. Number of queries where each strategy wins (warm system setting)

Dataset Budget 20% Budget 50% Budget 100%

PACLRU+

PAC+F

TDB+

PAC+F

LRUTDBPACLRU+

PAC+F

TDB+

PAC+F

LRUTDBPACLRU+

PAC+F

TDB+

PAC+F

LRUTDB

b-ssb-80k 4 0 5 0 4 6 6 1 0 0 7 6 0 0 0

u-ssb-80k 4 1 5 2 1 8 1 2 1 1 7 3 2 0 1

qboairbase-gb 9 0 0 0 0 9 0 0 0 0 9 0 0 0 0

qboairbase-dk 0 0 9 0 0 0 0 9 0 0 0 0 9 0 0

5 State of the Art

This paper studies the impact of caching fragments of a provenance-augmented
RDF cube for faster query processing. Therefore, we present the state of the
art in terms of three axes: caching in SPARQL and OLAP, query answering on
SPARQL aggregation queries, and provenance management.

Caching in SPARQL and OLAP. Caching data to speed up query answering
is a standard technique in databases and has also been applied to RDF/SPARQL
and OLAP. Caching can be implemented at different levels. For example, the
Jena TDB engine relies on the file caching provided by the Java Virtual Machine
to speed up subsequent access to recently used parts of the RDF store. When
implemented at the application level, e.g., in a client-server setting, caching is
often concerned with the reutilization of query results [21,22,33]. In contrast, we
aim at caching fragments of the RDF dataset that are used by multiple queries
and unlike [21], we do not count on an explicit query load. Caching has also
been implemented for data fragments and intermediate query results. In the
framework of Linked Data Fragments (LDF) [32], the server can return cached
data fragments, leaving the query processing to the client. While PAC’s notion of
fragments is similar to that of LDF, [32] does not consider provenance and focuses
on reducing the server’s load for the sake of availability rather than on minimizing
response time. Caching has also been applied to OLAP queries [9,16,18]. The
system PeerOLAP [18], for example, relies on a P2P network to answer OLAP
queries. PeerOLAP reuses the results of queries executed by neighbor peers as
data sources. As PeerOLAP, most systems focus on caching recently queried
results [3,10]. In [30] a hybrid query engine is proposed; it combines live results
with cached data as a trade-off between precision and speed. PAC uses heuristics
to strategically pre-cache parts of the data.

SPARQL Aggregation Queries. The interest on optimizing SPARQL queries
with aggregation [16,17] started with the publication of SPARQL 1.1 [28]. MAR-
VEL [17] proposes to answer SPARQL aggregation queries on RDF cubes by
rewriting the query in terms of a set of views. These views are structured accord-
ing to a partial order, and selected for query answering based on a cost model
as in PAC. Unlike PAC, MARVEL is not a caching approach: it is based on
precomputed aggregates –materialized as views– rather than on actual RDF

Answering Provenance-Aware Queries on RDF Data Cubes 563

fragments. Moreover, MARVEL does not support provenance. Conversely, [2]
supports provenance and assumes that the quadruples produced by the ETL
process are all assigned the same provenance entity. The approach proposes a
context index for graph filtering to speed up the execution of the analytical
queries. The index stores the co-occurrence of provenance entities and predi-
cate paths. Albeit not equivalent, PAC’s fragment tree supports graph filtering
at a better performance without additional assumptions. Besides, [2] does not
implement caching.

Provenance Management. The management of provenance is a crucial task
for Linked Data and RDF given the decentralized nature of the Web [13,14].
There are several approaches to encode provenance in RDF, such as reifica-
tion [27], named graphs [5], singleton properties [25], and embedded triples [15].
In this work we focus on workflow provenance [29]. Other approaches study
provenance in terms of the lineage of the query results [12,34]: expressions (e.g.,
a polynomial) that encode the origin of a result w.r.t the triples in the dataset.
The TripleProv engine [34] allows for native calculation of lineage for the results
of SPARQL queries. Our setting is significantly different, because provenance
is encoded as provenance entities described using RDF and the PROV-O ontol-
ogy [23]. Compared to the notion of lineage for query results, a provenance entity
can be seen as the identifier of a precomputed lineage.

6 Conclusions

In this paper, we have presented provenance-aware caching (PAC), an approach
to cache fragments of a provenance-augmented RDF graph in order to speed up
provenance-aware OLAP queries. Our techniques are query-load agnostic and
our experimental evaluation shows that PAC outperforms the Jena TDB native
cache and the standard LRU caching strategy in real and synthetic data. The
PAC principle can be applied to scenarios where the query-load is unknown,
e.g., to bootstrap the cache, or when the workload changes constantly. It is also
applicable in settings characterized by locations of “fast” and “slow” access,
such as a hybrid drives or remote storage servers. As future work, we envision to
integrate explicit dynamic query workloads into our framework, and to extend
the fragment definitions beyond equality constraints on the quadruples by, for
example, using the provenance graph. All the data and experimental results are
available at http://qweb.cs.aau.dk/pac/.

Acknowledgments. This research was partially funded by the Danish Council for
Independent Research (DFF) under grant agreement no. DFF-4093-00301 and Aalborg
University’s Talent Management Programme.

http://qweb.cs.aau.dk/pac/

564 L. Galárraga et al.

References

1. Ahlstrøm, K., Andersen, A.B., Hose, K., Pedersen, T.B.: Optimizing RDF data
cubes for efficient processing of analytical queries. In: COLD (2015)

2. Ahlstrøm, K., Hose, K., Pedersen, T.B.: Towards answering provenance-enabled
SPARQL queries over RDF data cubes. In: Li, Y.-F., et al. (eds.) JIST 2016.
LNCS, vol. 10055, pp. 186–203. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50112-3 14

3. Bishop, B., Kiryakov, A., Ognyanov, D., Peikov, I., Tashev, Z., Velkov, R.: A fast
track to the web of data. In: SWJ, FactForge (2011)

4. Cadenhead, T., Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.: A language
for provenance access control. In: CODASPY (2011)

5. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs. Provenance and
trust. In: WWW (2005)

6. Chebotko, A., Abraham, J., Brazier, P., Piazza, A., Kashlev, A., Lu, S.: Storing,
indexing and querying large provenance data sets as RDF graphs in apache HBase.
In: SERVICES (2013)

7. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: why, how, and
where. In: Foundations and Trends in Databases (2009)

8. Cyganiak, R., Reynolds, D.: The RDF data cube vocabulary. W3C Recommenda-
tion (2014). http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/

9. Deshpande, P.M., Ramasamy, K., Shukla, A., Naughton, J.F.: Caching multidi-
mensional queries using chunks. SIGMOD Rec. 27(2), 259–270 (1998)

10. Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. In: Networked
Knowledge - Networked Media (2009)

11. Galárraga, L., Ahlstrøm, K., Hose, K.: QBOAirbase: the European air quality
database as an RDF cube. In: ISWC, Posters & Demonstrations (2017)

12. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings, In: PODS
(2007)

13. Harth, A., Hose, K., Schenkel, R.: Database techniques for linked data manage-
ment. In: SIGMOD (2012)

14. Harth, A., Hose, K., Schenkel, R.: Linked Data Management. Chapman and
Hall/CRC, Boca Raton (2014)

15. Hartig, O.: Foundations of RDF* and SPARQL* - an alternative approach to
statement-level metadata in RDF. In: AMW (2017)

16. Ibragimov, D., Hose, K., Pedersen, T.B., Zimányi, E.: Processing aggregate queries
in a federation of SPARQL endpoints. In: ESWC (2015)

17. Ibragimov, D., Hose, K., Pedersen, T.B., Zimányi, E.: Optimizing aggregate
SPARQL queries using materialized RDF views. In: Groth, P., et al. (eds.) ISWC
2016. LNCS, vol. 9981, pp. 341–359. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46523-4 21

18. Kalnis, P., Ng, W.S., Ooi, B.C., Papadias, D., Tan, K.L.: An adaptive peer-to-peer
network for distributed caching of OLAP results. In: SIGMOD (2002)

19. Kämpgen, B., O’Riain, S., Harth, A.: Interacting with statistical linked data via
OLAP operations. In: ILD (2015)

20. Kämpgen, B., Stadtmüller, S., Harth, A.: Querying the global cube: integration
of multidimensional datasets from the web. In: Janowicz, K., Schlobach, S., Lam-
brix, P., Hyvönen, E. (eds.) EKAW 2014. LNCS (LNAI), vol. 8876, pp. 250–265.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13704-9 20

https://doi.org/10.1007/978-3-319-50112-3_14
https://doi.org/10.1007/978-3-319-50112-3_14
http://www.w3.org/TR/2014/REC-vocab-data-cube-20140116/
https://doi.org/10.1007/978-3-319-46523-4_21
https://doi.org/10.1007/978-3-319-46523-4_21
https://doi.org/10.1007/978-3-319-13704-9_20

Answering Provenance-Aware Queries on RDF Data Cubes 565

21. Lorey, J., Naumann, F.: Caching and prefetching strategies for SPARQL queries.
In: Cimiano, P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC
2013. LNCS, vol. 7955, pp. 46–65. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41242-4 5

22. Martin, M., Unbehauen, J., Auer, S.: Improving the performance of semantic web
applications with SPARQL query caching. In: Aroyo, L., et al. (eds.) ESWC 2010.
LNCS, vol. 6089, pp. 304–318. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-13489-0 21

23. McGuinness, D., Lebo, T., Sahoo, S.: PROV-O: the PROV ontology. W3C Rec-
ommendation (2013). http://www.w3.org/TR/2013/REC-prov-o-20130430/

24. Mendes, P.N., Mühleisen, H., Bizer, C.: Sieve: linked data quality assessment and
fusion. In: EDBT-ICDT (2012)

25. Nguyen, V., Bodenreider, O., Sheth, A.: Don’t like RDF reification?: making state-
ments about statements using singleton property. In: WWW (2014)

26. O’Neil, P., O’Neil, B., Chen, X.: Star schema benchmark. Technical report,
UMass/Boston (2009). http://www.cs.umb.edu/∼poneil/StarSchemaB.PDF

27. Raimond, Y., Schreiber, G.: RDF 1.1 primer. W3C Recommendation (2014).
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/

28. Seaborne, A., Harris, S.: SPARQL 1.1 query language. W3C Recommendation,
W3C (2013). http://www.w3.org/TR/2013/REC-sparql11-query-20130321/

29. Theoharis, Y., Fundulaki, I., Karvounarakis, G., Christophides, V.: On provenance
of queries on semantic web data. In: IEEE Internet Computing (2011)

30. Umbrich, J., Karnstedt, M., Hogan, A., Parreira, J.X.: Hybrid SPARQL queries:
fresh vs. fast results. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS,
vol. 7649, pp. 608–624. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-35176-1 38

31. Varga, J., Vaisman, A.A., Romero, O., Etcheverry, L., Pedersen, T.B., Thomsen,
C.: Dimensional enrichment of statistical linked open data. J. Web Semant. 40,
22–51 (2016)

32. Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface
for the web. J. Web Semant. 37–38, 184–206 (2016)

33. Williams, G.T., Weaver, J.: Enabling fine-grained HTTP caching of SPARQL query
results. In: ISWC (2011)

34. Wylot, M., Cudre-Mauroux, P., Groth, P.: TripleProv: efficient processing of lin-
eage queries in a native RDF store. In: WWW (2014)

35. Wylot, M., Cudre-Mauroux, P., Groth, P.: Executing provenance-enabled queries
over web data. In: WWW (2015)

https://doi.org/10.1007/978-3-642-41242-4_5
https://doi.org/10.1007/978-3-642-41242-4_5
https://doi.org/10.1007/978-3-642-13489-0_21
https://doi.org/10.1007/978-3-642-13489-0_21
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.cs.umb.edu/~poneil/StarSchemaB.PDF
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://doi.org/10.1007/978-3-642-35176-1_38
https://doi.org/10.1007/978-3-642-35176-1_38

Bash Datalog: Answering Datalog Queries
with Unix Shell Commands

Thomas Rebele(B), Thomas Pellissier Tanon, and Fabian Suchanek

Telecom ParisTech, Paris, France
thomas.rebele@gmail.com

Abstract. Dealing with large tabular datasets often requires extensive
preprocessing. This preprocessing happens only once, so that loading and
indexing the data in a database or triple store may be an overkill. In this
paper, we present an approach that allows preprocessing large tabular
data in Datalog – without indexing the data. The Datalog query is trans-
lated to Unix Bash and can be executed in a shell. Our experiments show
that, for the use case of data preprocessing, our approach is competitive
with state-of-the-art systems in terms of scalability and speed, while at
the same time requiring only a Bash shell on a Unix system.

1 Introduction

Motivation. Many data analytics tasks work on tabular data. Such data can
take the form of relational tables or TAB-separated files. Even RDF knowledge
bases can be seen abstractly as tabular data of a subject, a predicate, an object,
and an optional graph id. Quite often, such data has to be preprocessed before
the analysis can be made. We focus here on preprocessing in the form of select-
project-join-union operations with recursion – removing superfluous columns,
selecting rows of interest, recursively finding all instances of a class, etc. The
defining characteristic of such a preprocessing step is that it is executed only
once on the data in order to constitute the dataset of interest for the later
analysis. This one-time preprocessing is the task that we are concerned with.

Databases or triple stores can obviously help. However, loading large amounts
of data into these systems may take hours or even days (Wikidata [33], e.g., con-
tains 267GB of data). Another possibility is to use systems such as DLV [18],
Souffle [26], or RDFox [22], which work directly on the data. However, these sys-
tems load the data into memory. While this works well for small datasets, it does
not work for larger ones (as we show in our experiments) Large-scale data pro-
cessing systems such as BigDataLog [28], Flink [5], Dryad [15], or NoDB [3] can
help. However, these require the installation of particular software, the knowledge
of particular programming languages, or even a particular distributed infrastruc-
ture. Installing and getting to run such systems can take several hours. The user
may not have the necessary knowledge and infrastructure to do this (think of
a researcher in the Digital Humanities who wants to preprocess a file of census
data; or of an engineer in a start-up who has to quickly join log files on a common
column; or of a student who wants to extract a subgraph of Wikidata).
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 566–582, 2018.
https://doi.org/10.1007/978-3-030-00671-6_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_33&domain=pdf

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 567

Our Proposal. In this paper, we propose a method to preprocess tabular data
files without installing any particular software. We propose to express the prepro-
cessing steps in Datalog [1]. For example, assume that there is a file facts.tsv
that contains RDF facts in the form of TAB-separated subject-predicate-object
triples. Assume that we want to recursively extract all places located in the
United States. The Datalog program in our dialect would be:

fact(X, R, Y) :∼ cat facts.tsv
locatedIn(X, Y) :- fact(X, "locatedIn", Y) .
locatedIn(X, Y) :- locatedIn(X, Z), fact(Z, "locatedIn", Y) .
main(X) :- locatedIn(X, "USA") .

This program prints the file facts.tsv into a predicate fact. The following two
lines are the recursive definition of the locatedIn predicate. The main predi-
cate is a predefined predicate that acts as the query. Our rationale for choosing
Datalog is that it is a particularly simple language, which has just a single syn-
tactic construction, and no reserved keywords. Yet, Datalog is expressive enough
to deal with joins, unions, projections, selections, negation, and recursivity. In
particular, it can deal with n-ary tables (n > 3). If the user deals primarily with
RDF data, our approach can also be used with N-Triples files as the A-Box, a
subset of OWL 2 RL [21] as the T-Box, and SPARQL [14] for the query.

To execute the Datalog program, we propose to compile it automatically to
Unix Bash Shell commands. We offer a Web page to this end: https://www.
thomasrebele.org/projects/bashlog. The user can just enter the Datalog pro-
gram, and click a button to obtain the following Bash code (simplified):

awk ’$2 == "locatedIn" {print $1 "\t" $3}’ facts.tsv > li.tmp
awk ’$2 == "USA" {print $0}’ li.tmp | tee full.tmp > delta.tmp
while

join li.tmp delta.tmp | comm -23 - full.tmp > new.tmp
mv new.tmp delta.tmp
sort -m -o full.tmp full.tmp delta.tmp
[-s delta.tmp];

do continue; done
cat full.tmp

The Bash code can be copy-pasted into a Unix Shell and run. Such a solution
has several advantages. First, it does not require any software installation. It
just requires a visit to a Web site. The resulting Bash code runs on any Unix-
compatible system out of the box. Second, the Bash shell has been around for
several decades, and the commands are not just tried and tested, but actually
continuously developed. Modern implementations of the sort command, e.g.,
can split the input into several portions that fit into memory, and sort them
individually. Finally, the Bash shell allows executing several processes in parallel,
and their communication is managed by the operating system.

Contribution. We prose to compile a Datalog program automatically into Bash
commands. Our method optimizes the Datalog program with relational algebra

https://www.thomasrebele.org/projects/bashlog
https://www.thomasrebele.org/projects/bashlog

568 T. Rebele et al.

optimization techniques, re-uses previously computed intermediate results, and
produces a highly parallelized Shell script. For this purpose, our method employs
pipes and process substitution. Our experiments on a variety of datasets and
preprocessing tasks show that this method is competitive in terms of runtime
with state-of-the-art database systems, Datalog engines, and triple stores.

We start with a discussion of related work in Sect. 2. Section 3 introduces
preliminaries. Section 4 presents our approach, and Sect. 5 evaluates it.

2 Related Work

Data Processing Systems. Relational Databases such as Oracle, IBM DB2,
Postgres, MySQL, MonetDB [4] and NoDB [3] can handle tabular data of arbi-
trary form, while the triple stores such as OpenLink Virtuoso [8], Stardog, and
Jena [6] target RDF data. HDT [11] is a binary format for RDF, which can be
used with Jena. RDFSlice [20] can preprocess RDF datasets. Reasoners such
as Pellet [23], HermiT [27], RACER [13], Fact++ [30] and Jena [6] can per-
form OWL reasoning on RDF data. Datalog systems such as DLV [18], Souf-
fle [26], BigDatalog [28], RDFox [22] and others [16,34,35] can efficiently evalu-
ate Datalog queries on large data. Distributed Data Processing systems such as
Dryad [15], Apache Tez [25], SCOPE [37], Impala [9], Apache Spark [36], and
Apache Flink [5] provide advanced features such as support for SQL or streams.

All of these systems can be used for preprocessing data. However, the vast
majority of these systems require the installation of software. The parallelized
systems also require a distributed infrastructure. Our approach, in contrast,
requires none of these. It just requires a visit to a Web page. The Bash script that
we produce runs in a common shell console without any further prerequisites.
Interestingly, our approach still delivers comparable performance to the state of
the art, as we shall see in the experiments.

Only very few systems do not require a software installation beyond down-
loading a file (e.g., RDFSlice [20], Stardog, and DLV [18]). Yet, as we shall see
in the experiments, these systems do not scale well to large datasets.

Other Work. Linked Data Fragments [32] aim to strike a balance between
downloading an RDF data dump and querying it on a server. The method thus
addresses a slightly different problem from ours. AI planning with softbots [10]
aims to answer queries on an incomplete and evolving database. In our problem
setting, however, we have access to all the information. NoSQL Databases such
as Cassandra, HBase, and Google’s BigTable [7] target non-tabular data. Our
method, in contrast, aims at tabular data.

3 Preliminaries

Datalog. A Datalog rule with negation [1] takes the form

H :— B1, . . . , Bn,¬N1, . . . ,¬Nm.

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 569

Here, H is the head atom, B1, . . . , Bn are the positive body atoms, and
N1, . . . , Nm are the negated body atoms. Each atom is of the form r(x1, . . . , xk),
where r is a relation name and x1, . . . , xk ∈ V ∪ C, where V is a set of variables
and C is a set of constants. Intuitively, such a rule says that H holds if B1, . . . , Bn

and none of the N1, . . . , Nm holds. We consider only safe rules, i.e., each variable
in the head or in a negated atom must also appear in a positive body atom. A
Datalog program is a set of Datalog rules. A set M of atoms is a model of a
program P , if the following holds: M contains an atom a iff P contains a rule
H :— B1, . . . , Bn,¬N1, . . . ,¬Nm, such that there exists a substitution σ : V → C
with σ(Bi) ∈ M for i ∈ {1, . . . , n} and σ(Ni) �∈ M for i ∈ {1, . . . ,m} and
a = σ(H). We consider only stratified Datalog programs [1], which entails that
there exists a unique minimal model.

OWL RL [21] is a subset of the OWL ontology language. Since every OWL
RL ontology can be translated to Datalog [22], we deal with Datalog as the more
general case in all of the following.

Relational Algebra. Relational algebra [1] provides the semantics of relational
database operations on tables. For our purposes, we use the unnamed relational
algebra with the operators select σ, project π, join ��, anti-join �, and union ∪
(see [24] for their definitions). We also use the least fixed point (LFP) operator
μ [2]. For a function f from a table to a table, μx(f(x)) is the least fix point
of f for the ⊆ relation. With this, our algebra has the same expressivity as safe
stratified Datalog programs, i.e., the translation of safe Datalog with stratified
negations to relational algebra is sound and complete [1].

Example 2 (Relational Algebra): The following expression computes the
transitive closure of a two-column table subclass:

μx(subclass ∪ π1,4(x ��2=1 x))

μ computes the least fix point of a function. Here, the function is given by
the argument of the μ-operator. To compute the least fix point, we execute
the function first with the empty table, x = ∅. Then the function returns
the subclass table. Then we execute the function again on this result. This
time, the function will join subclass with itself, project the resulting table
on the first and last column, and add in the original subclass table. We
repeat this process until no more changes occur.

Unix. Unix is a family of multitasking computer operating systems, which are
widely used on servers, smartphones, and desktop computers. One of the char-
acteristics of Unix is that “Everything is a file”, which means that files, pipes,
the standard output, the standard input, and other resources can all be seen as
streams of bytes. Here, we are interested only in TAB-separated byte streams,
i.e., streams that consist of several rows (sequences of bytes separated by a new-
line character), which each consist of the same number of columns (sequences of
bytes separated by a tabulator character).

570 T. Rebele et al.

The Bourne-again shell (Bash) is a command-line interface for Unix-like oper-
ating systems. A Bash command is either a built-in keyword, or a small program.
We will only use commands of the POSIX standard. One of them is the awk com-
mand, which we use as follows:

awk -F$'\t' 'p' b

This command executes the program p on the byte stream b, using the TAB as
a separator for b. We will discuss different programs p later in this paper.

Pipes. When a command is executed, it becomes a process. Two processes can
communicate through a pipe, i.e., a byte stream that is filled by one process,
and read by the other one. If the producing process is faster than the receiving
one, the pipe buffers the stream, or blocks the producing process if necessary.
In Bash, a pipe between process p1 and process p2 pipes can be constructed by
stating p1 | p2. A pipe can also be constructed “on the fly” by a so-called
process substitution, as follows: p1 < (p2). This construction pipes the output
of p2 into the first argument of p1.

4 Approach

4.1 Our Datalog Dialect

In our Datalog dialect, predicates are alphanumerical strings that start with
a lowercase character. Variables start with an uppercase letter. Constants are
strings enclosed by double quotes. Constants may not contain quotation marks,
TAB characters, or newline characters. For our purposes, the Datalog program
has to refer to files or byte streams of data. For this reason, we introduce an
additional type of rules, which we call command rules. A command rule takes
the following form:

p(x1, ..., xn) :∼ c

Here, p is a predicate, x1, . . . , xn are variables, and c is a Bash command. Seman-
tically, this rule means that executing c produces a TAB-separated byte stream of
n columns, which will be referred to by the predicate p in the Datalog program.
In the simplest case, the command c just prints a file, as in cat facts.tsv.
However, the command can also be any other Bash command, such as ls -1.

Our goal is to compute a certain output with the Datalog program. This
output is designated by the distinguished head predicate main. An answer of
the program is a grounded variant of the head atom of this rule that appears in
the minimal model of the program. See again Fig. 1 for an example of a Datalog
program in our dialect. Our dialect is a generalization of standard Datalog, so
that a normal Datalog program can be run directly in our system.

Our approach can also work in “RDF mode”. In that mode, the input consists
of an OWL 2 RL [21] ontology, a SPARQL [14] query, and an N-Triples file F . We
build a main predicate for the SPARQL query, and we use a small AWK program
that converts F into a TAB-separated byte stream (see our technical report [24]
for details). Much like in RDFox [22], we convert the OWL ontology into Datalog

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 571

rules (see again [24]). For now, we support only a subset of OWL 2 RL: Like
RDFox [22], we assume that all classes and properties axioms are provided by
the ontology and will not be queried by the SPARQL query. We also do not yet
support OWL axioms related to literals. Our SPARQL implementation supports
basics graph patterns, property paths without negations, OPTIONAL, UNION
and MINUS.

4.2 Loading Datalog

Next, we build a relational algebra expression for the main predicate of the Dat-
alog program. Our algorithm is similar to existing approaches [31]. Algorithm 18
takes as input a predicate p, a cache, and a Datalog program P . The algorithm
is initially called with p = main, cache = ∅, and the Datalog program that we
want to translate. The cache stores already computed relational algebra plans.
This allows us to re-use the same sub-plan multiple times in the final plan, thus
the algorithm builds a directed acyclic graph (DAG) instead of a tree.

Our algorithm first checks whether p appears in the cache. In that case, p
is currently being computed in a previous recursive call of the method, and the
algorithm returns a variable x indexed by p. This is the variable for which we
compute the least fix point.

Then, the algorithm traverses all rules with p in the head. For every rule,
the algorithm recursively retrieves the plan for the body atoms. The algorithm
(anti-)joins the sub-plans, adding selections σj=k if necessary. Finally, it puts
the resulting formula into a project-node that extracts the relevant columns.

Algorithm 1. Translation from Datalog to relational algebra
1 fn mapPred (p, cache, P) is
2 if p ∈ cache then return xp ;
3 plan ← ∅; newCache ← cache ∪ {p}
4 foreach p(H1, ..., Hnh) :– r1(X1

1 , ..., X1
n1

), ...,¬q1(Y 1
1 , ..., Y 1

m1
), ... in P do

5 bodyPlan ← {()}
6 foreach ri(X

i
1, . . . , Xi

ni
) do

7 atomPlan ← mapPred(ri, newCache, P)
8 foreach (Xi

j , X
i
k) | Xi

j = Xi
k, j �= k do

9 atomPlan ← σXi
j=Xi

k
(atomPlan)

10 bodyPlan ← bodyPlan �� atomPlan

11 foreach ¬qi(Y
i
1 , . . . , Y i

mi
) do

12 atomPlan ← mapPred(qi, ∅, P)

13 foreach (Y i
j , Y i

k) | Y i
j = Y i

k , j �= k do

14 atomPlan ← σY i
j =Y i

k
(atomPlan)

15 bodyPlan ← bodyPlan � atomPlan

16 plan ← plan ∪ πH1,...,Hnh
(bodyPlan)

17 foreach rule p(H1, . . . , Hnh) :∼ c in P do plan ← plan ∪ πH1,...,Hnh
(c) ;

18 return μxp (plan)

572 T. Rebele et al.

Example 3 (Datalog Translation): Assume that there is a two-column TAB-
separated file subclass.tsv, which contains each class with its subclasses.
Consider the following Datalog program P :

(1) directSubclass(x,y) :∼ cat subclass.tsv
(2) main(x,y) :- directSubclass(x,y).
(3) main(x,z) :- directSubclass(x,y), main(y,z).

Our algorithm will go through all rules with the head predicate main. These
are Rule 2 and Rule 3. For Rule 2, the algorithm will recursively call itself
and return μxdirectSubclass

(∅ ∪ [cat subclass.tsv]). Since the argument of
μ does not contain the variable xdirectSubclass, this is equivalent to [cat
subclass.tsv]. For the first body atom in Rule 3, the algorithm returns
[cat subclass.tsv] just like before. For the second body atom, the algo-
rithm returns xmain, because main is in the cache. Thus, Rule 3 yields
π1,4([cat subclass.tsv] ��2=1 xmain)). Finally, the algorithm constructs

μxmain
([cat subclass.tsv] ∪ π1,4([cat subclass.tsv] ��2=1 xmain))

4.3 Producing Bash Commands

The previous step has translated the input Datalog program to a relational
algebra expression. Now, we translate this expression to a Bash command by
the function b, which is defined as follows:

b([c]) = c
An expression of the form [c] is already a Bash command, and hence we can
return directly c.

b(e1 ∪ . . . ∪ en)
We translate a union into a sort command that removes duplicates:

sort -u <(b(e1)) ... <(b(en))
b(e1 ��x=y e2)

A join of two expressions e1 and e2 on a single variable at position x and y,
respectively, gives rise to the command

join -t$'\t' -1x -2y
<(sort -t$'\t' -kx <(b(e1)))
<(sort -t$'\t' -ky <(b(e2)))

This command sorts the byte streams of b(e1) and b(e2), and then joins them
on the common column.

b(e1 ��x=y,... e2)
The Bash join command can perform the join on only one column. If we
want to join on several columns, we have to add a new column to each of the
byte streams. This new column concatenates the join columns into a single
column. This can be achieved with the following AWK program, which we
run on both b(e1) and b(e2):

{ print $0 FS $j1 s $j2 s ... s $jn }

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 573

Here, the indices j1, . . . , jn are the positions of the join columns in the input
byte stream, FS is the field separator, and s is a special separation character
(we use ASCII character 2, but any other one can be used as well). Once we
have done this with both byte streams, we can join them on this new column
as described above. This join will also remove the additional column.

b(e1 �x e2)
Just as a regular join, an anti-join becomes a join command. We use the
parameter -v1, so that the command outputs only those tuples emerging
from e1 than cannot be joined with those from e2. We deal with anti-joins on
multiple columns in the same way as with multi-column joins.

b(πi1,...in(e))
A projection becomes the following AWK program, which extracts the given
columns from the input byte stream b(e):

{ print $i1 FS ... FS $in }
b(πi:a(e))

A constant introduction becomes the following AWK program, which pro-
duces a TAB-separated byte stream that inserts the constant in column i of
the input byte stream b(e):

{ print $1 FS ... $(i-1) FS a FS $i FS ... $n}
b(σi=v(e))

A selection node gives rise to the following AWK program, which selects the
corresponding rows from the input byte stream b(e):

$i=="v" { print $0 }
This command can be generalized easily to a selection on several columns.

Several of these translations produce process substitutions. In such cases, Bash
starts the parent process and the inner process in parallel. The parent process
will block while it cannot read from the inner processes. Thus, only the innermost
processes run in the beginning. Every process is run asynchronously as soon as
input and CPU capacity is available. Thus, our Bash program is not subject to
the forced synchronization that appears in Map-Reduce systems.

4.4 Recursion

We have just defined the function b that translates a relational algebra expression
to a Bash command. We will now see how to define b for the case of recursion.
A node μx(f(x)) becomes

echo -n > delta.tmp; echo -n > full.tmp
while

sort b(f(delta.tmp)) | comm -23 - full.tmp > new.tmp;
mv new.tmp delta.tmp;
sort -u -m -o full.tmp full.tmp <(sort delta.tmp);
[-s delta.tmp];

do continue; done
cat full.tmp

574 T. Rebele et al.

This code uses 3 temporary files to compute the least fix point of f : full.tmp
contains all facts inferred until the current iteration. delta.tmp contains newly
added facts of an iteration. new.tmp is used as swap file. The code first creates
delta.tmp and full.tmp as empty files. It then runs f on the delta file. The
comm command compares the sorted outcome of f to the (initially empty) file
full.tmp, and writes the new lines to the file new.tmp. This file is then renamed
to delta.tmp. This procedure updates the file delta.tmp to contain the newly
added facts. The comm command cannot write directly to delta.tmp, because
this file also serves as input to the command produced by b(f(delta.tmp)).

The following sort command merges the new lines into full.tmp, and writes
the output to full.tmp (unlike the comm command, the sort command can write
to a file that also serves as input). Now, all facts generated in this iteration have
been added to full.tmp. The [...] part of the code lets the loop run while the
file delta.tmp is not empty, i.e., while new lines are still being added. If no new
lines were added, the code quits the loop, and prints all facts. Note that, due to
the monotonicity of our relational algebra operators, and due to the stratification
of our programs, we can afford to run f only on the newly added lines.

4.5 Materialization

Materialization Nodes. To avoid re-computing an algebra expression that
has already been computed, we introduce a new type of operator to the algebra,
the materialization node. A materialization node (m λy : p has two sub-
plans: m is the plan that is used multiple times, and that we will materialize.
The lambda function (λy : p) is the main plan, and takes the materialized plan
as parameter. The variable y replaces all occurrences of m in the original plan
(see [24] for details).

mkfifo lock_t
(b(m) > t

mv lock_t done_t
cat done_t &
exec 3> done_t
exec 3>&-

) &
by→t(p)
rm t

Bash Translation. The translation to Bash is
shown on the right. b is the Bash translation func-
tion defined in Sect. 4.3. t is a temporary file name.
The code first creates a named pipe called lock t.
Commands that use t have to wait until b(m)
finishes. We ensure this by making these com-
mands read from lock t. Since this pipe contains
no data, the commands block. When b(m) finishes,
the two exec commands close the named pipe, thus
unblocking the commands that need t. There can
be a rare race condition: b(m) may finish before any
process that listens on the pipe was started. In that
case, the two exec commands will try to close a pipe that has no listeners. In
such cases, the exec command will block. We solve this problem by reading
from the pipe with a cat command that runs in the background. This way, the
pipe has at least one listener, and the exec commands will close the pipe. This,
however, brings a second problem: If the processes that listen on the pipe were
still not started, they will try to listen to a closed pipe. To avoid this problem,

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 575

we rename the pipe from lock t to done t. Such a renaming does not affect any
processes that already listen on the pipe, but it will prevent any new processes
from listening on the pipe under the old name.

by→t extends b as follows: by→t(y) generates the bash code cat t, and all
plan nodes pi that have a child y generate the bash code

cat lock t 2> /dev/null ; b(pi)
As explained above, the cat command blocks the execution until t is mate-
rialized. The part “2> /dev/null” removes the error message in case cat is
executed when the pipe was already renamed.

4.6 Optimization

Query Optimizations. We apply the usual optimizations on our relational
algebra expressions: we push selection nodes as close to the source as possible;
we merge unions; we merge projects; we apply a simple join re-ordering. Addi-
tionally, we remove an occurrence of a LFP variable, if it cannot contribute new
facts; we remove the LFP when there is no recursion; and we extract from a LFP
node the non-recursive part of the inner plan (so that it is computed only once
at the beginning of the fixed point computation). We also optimize fix point
computations in the same way as in the semi-naive Datalog evaluation [1] (see
again [24] for details).

Bash Optimizations. We collect different AWK commands that select or
project on the same file into a single AWK command. This command runs only
once through the file, and writes out all selections and projections into several
files, one for each original AWK command. We replace multiple comparisons with
constants on the same columns by a hash table lookup. We detect nested sort
commands, and remove redundant ones. We run sort -u on the final output to
make all results unique. We estimate the number of concurrently running sort
commands, and assign each of them an equal amount of memory, if the buffer size
parameter is available. Finally, we force all commands to use the same character
set and sort order by adding the command export LC ALL=C to our program.

5 Experiments

We ran our method on several datasets, and compared it to several competitors.
All our experiments were run on a laptop with Ubuntu 16.04, an Intel Core
i7-4610M 3.00 GHz CPU, 16 GB of RAM, 16 GB of swap space, and 3.8 TB of
hard disk space. We used GNU Bash 4.3.48, mawk 1.3.3 for AWK, and GNU
coreutils 8.25 for the other POSIX commands.

We emphasize that our goal is not to be faster than each and every system
that currently exists. For this, the corpus of related work is simply too large
(see Sect. 2). This is also not the purpose of Bash Datalog. The purpose of
Bash Datalog is to provide a preprocessing tool that runs without installing any
additional software besides a Bash shell. This is an advantage that no competing

576 T. Rebele et al.

approach offers. Our experiments then serve mainly to show that our approach
is generally comparable in terms of scalability with the state of the art.

Table 1. Runtime for the 14 LUBM queries with 10 universities (155 MB), in seconds.
∗ = no support for querying with a T-Box. We folded the T-Box into the query.
±I = with/without indexes. A dash means that the query is not supported.

Bash DLV Souffle RDFox Jena

TDB

Jena

HDT

Stardog Virtuoso Postgres∗ NoDB∗ MonetDB∗ RDF-

Slice∗−I +I −I +I

0.7 9.6 7.8 2.2 25.7 26.4 12.8 11.7 4.8 27.5 >600 1.8 2.6 12.6

1.3 9.3 119.4 2.2 281.3 >600 13.6 11.8 – – – – – –

0.9 9.2 8.8 2.2 26.7 27.0 12.7 11.5 7.8 30.5 292.9 1.9 2.7 –

1.9 9.3 11.9 2.2 >600 >600 13.2 12.2 14.7 37.4 >600 2.3 3.1 –

1.4 9.3 10.3 2.2 >600 >600 12.9 – 28.9 51.6 – 2.2 3.0 –

1.9 9.4 11.1 2.4 >600 >600 17.6 – 21.2 43.9 – 3.9 4.7 –

2.4 9.5 56.3 2.2 >600 >600 13.4 – 21.6 44.3 >600 3.0 3.9 –

2.5 9.3 12.9 2.3 >600 >600 15.3 – – – – – – –

3.1 9.4 >600 2.3 >600 >600 13.4 – 71.1 93.8 >600 25.5 26.8 –

2.0 9.3 11.6 2.2 >600 >600 13.5 – 23.0 45.7 >600 5.8 7.1 –

0.9 9.3 7.8 2.2 25.3 35.7 13.0 11.8 – – – – – –

1.4 9.2 10.9 2.2 >600 >600 13.1 – – – – – – –

1.4 9.2 10.1 2.2 >600 >600 12.9 – 8.4 31.1 >600 4.3 5.4 –

0.8 9.5 6.7 2.3 34.5 24.8 13.5 12.0 4.8 27.5 19.1 1.9 2.7 3.7

of which loading: 16.8 7.4 11.0 5.9 4.4 24.3 1.7 2.5

5.1 Lehigh University Benchmark

Setting. The Lehigh University Benchmark (LUBM) [12] is a standard dataset
for Semantic Web repositories, which models universities. It is parameterized
by the number of universities, and hence its size can be varied. LUBM comes
with 14 queries, which are expressed in SPARQL. We compare our approach
to Stardog1, Virtuoso [8], RDFSlice [20], Jena [6], and Jena with the binary
triple format HDT [11]. For RDFox [22], Souffle [26], DLV [18], we translated
the queries to Datalog in the same way that we translate the queries to Datalog
for our own system (Sect. 4.2). For NoDB [3], Postgres2, and MonetDB [4], we
translated the Datalog queries first to an algebra expression, and then to SQL.
In this process, we applied the relational algebra optimizations of Sect. 4.6. In
this way, the T-Box of the LUBM queries is folded into the SQL query. Not all
systems support all types of queries. MonetDB does not support recursive SQL
queries. Postgres supports only certain types of recursive queries [24]. The same
applies to NoDB. Virtuoso currently does not support intersections. RDFSlice
aims at the slightly different problem of RDF-Slicing. It supports only a specific
type of join. Also, it does not support recursion.

We ran every competitor on all queries that it supports, and averaged the
runtime over 3 runs. We checked whether the query results were correct.
1 https://www.stardog.com/, v. 5.2.0.
2 https://www.postgresql.org/, v. 10.1.

https://www.stardog.com/
https://www.postgresql.org/

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 577

LUBM10. Table 1 shows the runtimes of all queries on LUBM with 10 universi-
ties. The runtimes include the loading and indexing times. For systems where we
could determine these times explicitly, we noted them in the last row of the table.
Since most systems finished in a matter of seconds, we aborted systems that took
longer than 10 min. Among the 4 triple stores (Jena+TDB, Jena+HDT, Star-
dog, and Virtuoso), only Stardog can finish on all queries in less than 10 min.
RDFSlice can answer only 2 queries, and runs a bit faster than Stardog. The
5 database competitors (Postgres, NoDB, and MonetDB – with and without
indexes) are generally faster. Among these, MonetDB is much faster than Post-
gres and NoDB. Postgres and MonetDB are fastest without indexes, which is
to be expected when running the query only once. Among the best performing
systems are two Datalog systems (Bash Datalog, and RDFox). RDFox shines
with a very short and nearly constant time for all queries. We suspect that this
time is given by the loading time of the data, and that it dominates the answer
computation time. Nevertheless, Bash Datalog is faster than RDFox on nearly
all queries on LUBM 10.

Table 2. Runtime for the LUBM queries, in seconds.

LUBM 500 (7.8GB) LUBM 1000 (16GB)

Q
ue

ry

B
as
h

R
D
Fo

x

St
ar
do

g

V
ir
tu
os
o

M
on

et
D
B

(n
o
in
di
ce
s)

M
on

et
D
B

(i
nd

ic
es
)

R
D
F
Sl
ic
e

B
as
h

R
D
Fo

x

St
ar
do

g

M
on

et
D
B

(n
o
in
di
ce
s)

M
on

et
D
B

(i
nd

ic
es
)

R
D
F
Sl
ic
e

1 27 131 582 1577 83 97 229 75 273 1955 185 210 1042
2 53 132 683 1580 118 278 2030
3 35 131 609 1578 88 101 89 276 1955 186 217
4 95 129 583 1579 118 131 307 273 1962 522 471
5 62 131 498 290 364 168 278 1956 894 793
6 93 137 1011 866 797 354 287 2361 2066 1934
7 122 134 673 898 753 544 279 2005 1809 2016
8 151 132 768 447 274 1967
9 250 136 749 2669 3064 712 283 2018 3275 3090

10 95 132 678 587 491 334 277 1959 1845 1834
11 28 130 498 1576 64 273 1957
12 56 130 682 164 273 1959
13 63 132 669 312 287 174 277 1969 908 955
14 28 136 787 1595 85 99 74 63 284 2069 181 217 334

of which load: 489 1575 72 92 1946 160 194

LUBM500 and LUBM1000. For the larger LUBM datasets, we chose the
fastest systems in each group as competitors: RDFox for the Datalog systems,
Stardog and Virtuoso for the triple stores, MonetDB for the databases, and
RDFSlice as its own group. Table 2 shows the sizes of the datasets and the
runtimes of the systems. Our system performs best on more than half of the

578 T. Rebele et al.

queries. The only system that can achieve a similar performance is RDFox. As
before, RDFox always needs just a constant time to answer a query, because it
loads the dataset into main memory. This makes the system very fast. However,
this technique will not work if the dataset is too large, as we shall see next.

5.2 Reachability

Setting. Our next datasets are the social networks LiveJournal [19], com-
orkut [19], and friendster [17]. Table 3 shows the sizes of these datasets. We
used a single query, which asks for all nodes that are reachable from a given
node. As competitors, we chose again RDFox, Stardog, and Virtuoso. We could
not use MonetDB or RDFSlice, because the reachability query is recursive. As
an additional competitor, we chose BigDatalog [28]. This system was already
run on the same LiveJournal and com-orkut graphs in the original paper [28].
We chose 3 random nodes (and thus generated 3 queries) for LiveJournal and
com-orkut. We chose one random node for Friendster.

Results. Table 3 shows the average runtime for each system. Virtuoso was the
slowest system, and we aborted it after 25 min and 50 min, respectively. We did
not run it on the Friendster dataset, because Friendster is 20 times larger than
the other two datasets. Stardog performs better. Still, we had to abort it after
10 h on the Friendster dataset. BigDatalog performs well, but fails with an out
of space error on the Friendster dataset. The fastest system is RDFox. This is
because it can load the entire data into memory. This approach, however, fails
with the Friendster dataset. It does not fit into memory, and RDFox is unable to
run. Bash Datalog runs 50% slower than RDFox. In return, it is the only system
that can finish in reasonable time on the Friendster dataset (4:32h).

Table 3. Runtime for the reachability query, in seconds (OOM = Out of memory;
OOS = Out of space).

Dataset Nodes Edges Bash RDFox BigDatalog Stardog Virtuoso

LiveJournal 4.8 M 69 M 117 70 532 941 >1500

orkut 3.1 M 117 M 225 121 1838 1123 >3000

friendster 68M 2 586 M 16306 OOM OOS >36000

5.3 YAGO and Wikidata

Setting. Our final experiments concern the knowledge bases YAGO [29] and
Wikidata [33]. The YAGO data comes in 3 different files, one with the 12 M
facts (814 MB), one with the taxonomy with 1.8 M facts (154 MB), and one with
the 24 M type relations (1.6 GB in size). Wikidata is a single file of 267 GB with
2.1 B triples. We designed 4 queries that are typical for such datasets (Table 1),
together with a T-Box (Table 2).

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 579

Fig. 1. Knowledge base queries

Fig. 2. Knowledge base rules

Results. Table 4 shows the results of RDFox and our system on both datasets.
On YAGO, RDFox is much slower than our system, because it needs to instan-
tiate all rules in order to answer queries. On Wikidata, the data does not fit
into main memory, and hence RDFox cannot run at all. Our system, in contrast,
scales to the larger sizes of the data. One may think that a database system such
as Postgres may be better adapted for such large datasets. This is, however, not
the case. Postgres took 104 s to load the YAGO dataset, and 190 s to build the
indexes. In this time, our system has already answered nearly all the queries.

Table 4. Runtime for the Wikidata/YAGO benchmark in seconds. (OOM = out of
memory error)

Query YAGO Wikidata

Bash RDFox Bash RDFox

1 8 483 2259 OOM

2 5 483 2254 OOM

3 293 483 10171 OOM

4 5 481 2270 OOM

Discussion. All of our experiments evaluate only the setting that we consider
in this paper, namely the setting where the user wants to execute a single query
in order to preprocess the data. Our experiments show that Bash Datalog can
preprocess tabular data without the need to install any particular software.

580 T. Rebele et al.

Our approach has some limitations. For example, we could not implement a
disk-based hash-join efficiently in Bash commands. Another limitation is the
heuristic join reordering. It sometimes introduces large intermediate results,
resulting in a less efficient query execution.

Overall, however, our approach is competitive in both speed and scalability to
the state of the art. We attribute this to the highly optimized POSIX commands,
and to our optimizations described in Sect. 4.6. Furthermore, the startup cost of
our system is quite low, as it consists mainly of translating the query to a Bash
script.

6 Conclusion

In this paper, we have presented a method to compile Datalog programs into
Unix Bash programs. This allows executing Datalog queries on tabular datasets
without installing any software. We show that our method is competitive in
terms of speed with state-of-the-art systems. Our system can be used online at
https://www.thomasrebele.org/projects/bashlog. The Web interface also pro-
vides an API which allows to translate Datalog to Bash via an HTTP request.
The source code is available at https://github.com/thomasrebele/bashlog. For
future work, we aim to explore extensions of this work such as adding support
of numerical comparisons to the Datalog language.

Acknowledgments. This research was partially supported by Labex DigiCosme
(project ANR-11-LABEX-0045-DIGICOSME) operated by ANR as part of the pro-
gram “Investissement d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-02).

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

2. Aho, A.V., Ullman, J.D.: The universality of data retrieval languages. In: ACM
Symposium on Principles of Programming Languages (1979)

3. Alagiannis, I., Borovica, R., Branco, M., Idreos, S., Ailamaki, A.: NoDB: efficient
query execution on raw data files. In: SIGMOD (2012)

4. Boncz, P.A., Kersten, M.L., Manegold, S.: Breaking the memory wall in MonetDB.
Commun. ACM 51(12), 77–85 (2008)

5. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache flink™. IEEE Data Eng. Bull. 38(4), 28–38 (2015)

6. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: WWW (2004)

7. Chang, F., et al.: Bigtable: a distributed storage system for structured data. ACM
Trans. Comput. Syst. 26(2), 4 (2008)

8. Erling, O., Mikhailov, I.: RDF support in the virtuoso DBMS. In: Pellegrini, T.,
Auer, S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge. SCI, vol.
221. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02184-8 2

9. Bittorf, M.K., et al. Impala: a modern, open-source SQL engine for hadoop. In:
CIDR (2015)

https://www.thomasrebele.org/projects/bashlog
https://github.com/thomasrebele/bashlog
https://doi.org/10.1007/978-3-642-02184-8_2

Bash Datalog: Answering Datalog Queries with Unix Shell Commands 581

10. Etzioni, O., Golden, K., Weld, D.S.: Sound and efficient closed-world reasoning for
planning. Artif. Intell. 89(1–2), 113–148 (1997)

11. Fernández, J.D., Mart́ınez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:
Binary RDF representation for publication and exchange (HDT). Web Semant.:
Sci. Serv. Agents World Wide Web 19, 22–41 (2013)

12. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.
J. Web Semant. 3(2–3), 158–182 (2005)

13. Haarslev, V., Möller, R.: RACER system description. In: Goré, R., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, pp. 701–705. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45744-5 59

14. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 query language. W3C
Recommendation, March 2013

15. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-
parallel programs from sequential building blocks. In: EuroSys (2007)

16. Katsogridakis, P., Papagiannaki, S., Pratikakis, P.: Execution of recursive queries
in apache spark. In: Rivera, F.F., Pena, T.F., Cabaleiro, J.C. (eds.) Euro-Par 2017.
LNCS, vol. 10417, pp. 289–302. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-64203-1 21

17. Kunegis, J.: Konect: the Koblenz network collection. In: WWW (2013)
18. Leone, N., et al.: The DLV system for knowledge representation and reasoning.

ACM Trans. Comput. Log. 7(3), 499–562 (2006)
19. Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection.

http://snap.stanford.edu/data. Accessed June 2014
20. Marx, E., et al.: Torpedo: improving the state-of-the-art RDF dataset slicing. In:

ICSC (2017)
21. Motik, B., et al.: OWL 2 web ontology language profiles. W3C Recommendation,

December 2012
22. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation

of datalog programs in centralised, main-memory RDF systems. In: AAAI (2014)
23. Parsia, B., Sirin, E.: Pellet: an OWL DL reasoner. In: ISWC (2004)
24. Rebele, T., Tanon, T.P., Suchanek, F.: Technical report: answering datalog queries

with UNIX shell commands. Technical report, Telecom ParisTech (2018). https://
www.thomasrebele.org/publications/2018 report bashlog.pdf

25. Saha, B., Shah, H., Seth, S., Vijayaraghavan, G., Murthy, A.C., Curino, C.: Apache
Tez: a unifying framework for modeling and building data processing applications.
In: SIGMOD (2015)

26. Scholz, B., Jordan, H., Subotic, P., Westmann, T.: On fast large-scale program
analysis in datalog. In: International Conference on Compiler Construction (2016)

27. Shearer, R., Motik, B., Horrocks, I.: HermiT: a highly-efficient OWL reasoner. In:
OWLED, vol. 432 (2008)

28. Shkapsky, A., Yang, M., Interlandi, M., Chiu, H., Condie, T., Zaniolo, C.: Big data
analytics with datalog queries on spark. In: SIGMOD (2016)

29. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge.
In: WWW (2007)

30. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771 26

31. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. W. H. Freeman
& Co, New York (1988)

32. Verborgh, R.: Triple pattern fragments: a low-cost knowledge graph interface for
the web. J. Web Semant. 37–38, 184–206 (2016)

https://doi.org/10.1007/3-540-45744-5_59
https://doi.org/10.1007/978-3-319-64203-1_21
https://doi.org/10.1007/978-3-319-64203-1_21
http://snap.stanford.edu/data
https://www.thomasrebele.org/publications/2018_report_bashlog.pdf
https://www.thomasrebele.org/publications/2018_report_bashlog.pdf
https://doi.org/10.1007/11814771_26

582 T. Rebele et al.

33. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
mun. ACM 57(10), 78–85 (2014)

34. Wang, J., Balazinska, M., Halperin, D.: Asynchronous and fault-tolerant recursive
datalog evaluation in shared-nothing engines. PVLDB 8(12), 1542–1553 (2015)

35. Wu, H., Liu, J., Wang, T., Ye, D., Wei, J., Zhong, H.: Parallel materialization of
datalog programs with spark for scalable reasoning. In: Cellary, W., Mokbel, M.F.,
Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10041, pp.
363–379. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48740-3 27

36. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: Cluster
computing with working sets. In: USENIX Workshop on Hot Topics in Cloud
Computing (2010)

37. Zhou, J., Larson, P., Chaiken, R.: Incorporating partitioning and parallel plans
into the SCOPE optimizer. In: ICDE (2010)

https://doi.org/10.1007/978-3-319-48740-3_27

WORQ: Workload-Driven RDF Query
Processing

Amgad Madkour1(B), Ahmed M. Aly2, and Walid G. Aref1

1 Purdue University, West Lafayette, USA
{amgad,aref}@cs.purdue.edu

2 Google Inc., Mountain View, USA
aaly@google.com

Abstract. Cloud-based systems provide a rich platform for managing
large-scale RDF data. However, the distributed nature of these sys-
tems introduces several performance challenges, e.g., disk I/O and net-
work shuffling overhead, especially for RDF queries that involve multi-
ple join operations. To alleviate these challenges, this paper studies the
effect of several optimization techniques that enhance the performance of
RDF queries. Based on the query workload, reduced sets of intermediate
results (or reductions, for short) that are common for certain join pat-
tern(s) are computed. Furthermore, these reductions are not computed
beforehand, but are rather computed only for the frequent join patterns
in an online fashion using Bloom filters. Rather than caching the final
results of each query, we show that caching the reductions allows reusing
intermediate results across multiple queries that share the same join pat-
terns. In addition, we introduce an efficient solution for RDF queries with
unbound properties. Based on a realization of the proposed optimizations
on top of Spark, extensive experimentation using two synthetic bench-
marks and a real dataset demonstrates how these optimizations lead to
an order of magnitude enhancement in terms of preprocessing, storage,
and query performance compared to the state-of-the-art solutions.

Keywords: Intermediate results · Basic graph pattern
Distributed SPARQL query processing

1 Introduction

Processing RDF queries involves multiple scans of the same data, e.g., when
certain join patterns are frequent and are repeated across multiple queries. This
calls for workload-driven mechanisms that cache only the data that is required by
the query workload. Network shuffling overhead also degrades query performance
in a distributed environment. It occurs when the processing nodes exchange data
in order to answer queries. Reducing the network shuffling overhead highly relies
on how the data is partitioned across the nodes.

This paper presents Workload-driven RDF Query Processing (WORQ, for
short), a system that encapsulates several optimizations that significantly
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 583–599, 2018.
https://doi.org/10.1007/978-3-030-00671-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_34&domain=pdf

584 A. Madkour et al.

enhance the performance of RDF queries. In particular, WORQ addresses three
main issues: (1) how to efficiently partition the RDF data in an online fashion,
(2) how to reduce the intermediate join results of an RDF query in an online
fashion, and (3) how to cache reusable intermediate join results instead of the
final results of an RDF query.

Workload-Driven Partitioning: Data partitioning is common in distributed
data management systems. The RDF data is typically divided into several par-
titions, and then is distributed across the cluster machines. The objective of
partitioning is to reduce the query execution time by leveraging parallelism.
Data partitioning incurs a preprocessing overhead as it needs to be performed
over the whole data. However, for a real workload, only a small fraction of the
data is accessed (e.g., see [25]). WORQ adopts a workload-driven approach when
partitioning the data. For each query, WORQ identifies each query triple (i.e.,
an entry consisting of bound and unbound subject, property, and an object) as
a subquery. Then, WORQ partitions the data triples by the join attribute of
each subquery. The join attribute represents the variable that connects two or
more query triples. The join can be between subjects, properties, objects, or a
combination of the three attributes. WORQ partitions the data only once for
every new query join pattern that is identified.

Join Reductions: Tables are one way of storing RDF data triples. When a
single query involves joins between multiple tables that correspond to different
query patterns, every binary join operation generates intermediate join results
(or intermediate results, for short). The intermediate results represent the data
that satisfies the binary join and eventually contributes to the final result of the
query. However, intermediate results may contain redundant data triples that
do not match all the query joins. WORQ minimizes the intermediate results by
precomputing join reductions through Bloom-joins [8,16].

Caching: To boost query performance, caching can be employed to improve
query response time and increase the throughput of execution. One caching app-
roach is to cache the results of each query. However, caching the unique query
results incurs significant memory storage overhead. In contrast, WORQ caches
(in main memory) the join reductions that correspond to the frequent join pat-
terns. These reductions can be reused by other queries that share the same query
patterns.

Queries with Unbound Properties: Some query workloads may have query
triples with unbound (i.e., unspecified) properties. For example, the query triple
:John ?x :Mary queries all data triples that have a subject :John and an object
:Mary, where ?x specifies an unbound property. Answering unbound property
queries is challenging for RDF systems that adopt a specific RDF partition-
ing scheme. Assuming that the data is vertically partitioned [1,13] (VP, for
short), the data triples are split into separate files denoted by the property (i.e.,
predicate) name, where each file contains the subject and object representing
the property. Using VP, answering unbound property is challenging because all
property files need to be accessed or an index needs to be built on top of each

WORQ: Workload-Driven RDF Query Processing 585

file. In contrast, WORQ utilizes Bloom filters as indexes to efficiently answer
unbound property queries.

WORQ is implemented as part of the Knowledge Cubes (KC) proposal [17].
The source code1 for a Spark-based implementation of WORQ is publicly avail-
able for download. Our experimental setup includes two synthetic benchmarks,
namely WatDiv [4] and LUBM [10], and a real dataset, namely YAGO2s [7,12].
The purpose of the experiments is to demonstrate three aspects of WORQ :
(1) the preprocessing time required given an RDF dataset, (2) the storage over-
head incurred to create the RDF database, and (3) the query processing time
when answering RDF queries with respect to partitioning and caching. The
results illustrate how the presented optimizations provide at least an order of
magnitude better results on the three aforementioned aspects when compared
to the Hadoop-based state-of-the-art solution.

The contributions of this paper can be summarized as follows:

– We present workload-driven partitioning of RDF triples that can join together
in order to minimize the network shuffling overhead based on the query work-
load.

– We present the use of Bloom filters for computing RDF join reductions online.
– Rather than caching the results of an RDF query, we show that caching the

RDF join reductions can boost the query performance while keeping the cache
size minimal.

– We study an efficient technique for answering RDF queries with unbound
properties using Bloom filters.

The rest of this paper proceeds as follows. Section 2 presents the online reduc-
tion of RDF data. Section 3 presents workload-driven partitioning in WORQ .
Section 4 presents how WORQ answers unbound-property queries. Section 5
presents the experiments performed over the WatDiv, LUBM, and YAGO
datasets. Section 6 presents the related work. Finally, Sect. 7 presents concluding
remarks.

2 Online Reduction of RDF Data

WORQ employs Bloom-join [8,16] to compute the reductions between verti-
cal partitions. Many cloud-based systems [13] use vertical partitioning (VP) [1]
including the state-of-the-art [27]. VPs can be realized over any relational
database system and stored in cloud data sources (e.g. Parquet, ORC2). Bloom-
join determines if an entry in one partition qualifies a join condition with another
partition. The reductions can be computed in an online fashion using Bloom-join
instead of precomputing all possible reductions in an offline fashion (i.e., during
the preprocessing phase [27]). Bloom-join utilizes a probabilistic data structure,
termed Bloom filter [8]. A Bloom filter does not physically store items, but rather
hashes the input against different hash functions. The main functionality of a

1 http://github.com/amgadmadkour/knowledgecubes.

http://github.com/amgadmadkour/knowledgecubes

586 A. Madkour et al.

Bloom filter is to determine the existence of an item. Bloom filters can have
false-positives, but no false-negatives. Bloom filters are fast to create, fast to
probe, and small to store. Also, the false-positives introduce a small percentage
of irrelevant rows that eventually are not joined in a Bloom-join. During the
evaluation of a join, WORQ uses Bloom filters to probe the join attributes of
the query join-patterns. The Bloom filters representing the join attributes filter
the rows in both partitions involved in the join, and the results are materialized
as a reduction for a specific join pattern, or reductions, for short.

Fig. 1. Evaluating a SPARQL query using Bloom-join between :mention and :tweet

Figure 1 gives an example of using Bloom filters to compute a join reduc-
tion. The query has a BGP join between :mention and :tweet on the Subject
attribute. WORQ uses the Bloom filter of BloomFiltersub(:tweet) to compute
a reduction for the :mention property on the subject column. :tweet’s Bloom
filter consists of the elements :John, :Mike, and :Alex. Each element in the sub-
ject column of the :mention partition is probed against the :tweet Bloom filter.
The reduction for :mention represents all the rows that qualify a join between
the vertical partitions :mention and :tweet on the subject attribute. Figure 1
illustrates the entries that qualify the join between :mention and :tweet, where
the vertical partition of :mention is reduced from five entries to only three qual-
ifying entries. Similarly, the vertical partition of :tweet is reduced from four
entries to only two qualifying entries. The reductions for both properties are
cached by WORQ in order to be reused by other queries that share the same
join patterns. In other words, the :mention reduction can be reused by the
:mention property if it joins with :tweet on the subject attribute. Also, the
:tweet reduction can be reused by the :tweet property if :tweet joins with the
:mention property on the subject attribute.

WORQ does not apply selection (i.e., filtering) operations on the original
data triples (i.e., VP). Instead, selections are applied on the reductions after the

WORQ: Workload-Driven RDF Query Processing 587

reductions are computed. For example, the reduction for :mention contains a
selection on the object, namely :Mary. However, the selection has been delayed
until the reductions have been computed from the original data triples. The
advantage of delaying the selection is that the reductions can be reused by other
queries that share the same join patterns. However, if selections are pushed
early on the original data triples, then the reductions will not be representative
of the join operation between the query triples. Finally, the resulting reductions
(including the ones that have been filtered) are joined together based on the
join attribute indicated by the query triples. WORQ does not require a specific
join algorithm to be used. Distributed join algorithms, e.g., broadcast hash join
or sort-merge join that are employed by distributed computational frameworks,
e.g., Spark, can be used [3]. Figure 1 illustrates the final result of the query after
joining both the query triples representing :mention (after the selection) and
:tweet properties, where two entries qualify the join result.

N-ary Join Reductions

WORQ computes the reductions online instead of pre-computing the reductions
offline [27]. In addition, WORQ computes the reductions between all the possible
(n-ary) query-triples instead of computing the reductions in binary form [27].

Fig. 2. N-ary join between the reductions of three query triples involving the :mention,
:tweet, and :like VPs

Figure 2 illustrates a SPARQL query with three query-triples that share
the same join attribute (i.e., variable ?x). When the join is computed between
the :mention, :tweet, and :like VPs, only the data triples that are common
amongst the three VPs will qualify as a result. WORQ utilizes Bloom join to
reduce the number of data triples in every VP involved in the join operation,

588 A. Madkour et al.

and hence reduces the intermediate results between the three join operations.
WORQ uses the Bloom filters representing the join columns of the three query
triples (the subject Bloom filters, in this instance) to reduce the VP entries to
the ones that would qualify the join operation. For example, the :mention VP
is reduced from five data triples to two triples that have :John as the subject
because :John is the only resource that qualifies the :tweet Bloom filter on
the subject and the :like Bloom filter on the subject. The same applies to
the :tweet VP, where :John is the only resource that qualifies the :mention
Bloom filter on the subject and the :like Bloom filter on the subject. Finally,
WORQ uses the computed reductions instead of the VPs to evaluate the query.
The result of the query includes two rows corresponding to the only resource
common across the three property-VPs. The computed reductions are cached to
be reused by any other query that contains a join between the three properties
on the subject attribute.

Caching of Reductions

Rather than caching portions of the original RDF data or the final query results,
WORQ caches (in main-memory) the reductions that correspond to the join pat-
terns that are discovered during query processing. Caching intermediate results
(i.e., reductions) is suitable in situations where the query workload consists of a
high number of unique queries that share similar patterns. In contrast, caching
the results is suitable in situations where the query workload consists of a high
number of frequent queries that do not necessarily share the same query pattern.
WORQ is suitable for the former case where many unique queries can utilize the
reductions without the need to cache all their results. WORQ does not assume
a specific cache-eviction policy, i.e., any eviction policy. WORQ employs least
recently used (LRU) strategy where evicted reductions can be saved to disk and
be reused if the pattern they represent reoccurs. Also, the advantage of saving
to disk is that filtering will not be performed again. The cache-eviction policy is
beyond the scope of this paper.

3 Workload-Driven Partitioning

Rather than relying on a predefined partitioning criteria (e.g., using the sub-
ject only), WORQ partitions the RDF data according to the join patterns in
the queries received so far. WORQ aims at placing the partitions of the reduc-
tions that share the same join attribute on the same machine, which minimizes
the shuffling overhead, and more importantly, reduces the query response time.
Instead of partitioning the VP, WORQ partitions the reduction rows across the
machines. After a query is parsed, WORQ identifies the join attributes in the
query. Based on the join attributes, the reductions that need to be partitioned
are determined. Reduction partitioning is performed only once, and the resulting
partitions are reused by any query that has the join pattern that corresponds to
the reduction.

WORQ: Workload-Driven RDF Query Processing 589

Fig. 3. Workflow for workload-driven partitioning

Figure 3 illustrates a set of query join patterns and their corresponding reduc-
tions. The join pattern representing the :tweet property uses the reduction
denoted by R1 on the subject. The join pattern representing the :like property
uses the reduction denoted by R3 on the subject as well. WORQ partitions the
rows of every reduction based on the join attribute (i.e., the subject or object).
In Fig. 3, the reductions representing R1, R2, R3 are partitioned using the sub-
ject (as the reductions are based on the subject attribute). The reduction rows
are hash-distributed across the machines using the join attribute (i.e., subject
or object). This partitioning scheme guarantees that all the data triples that are
related to the join attributes of the query are co-located on the same machine,
and thus allowing the reductions to be computed locally.

4 Queries with Unbound Properties

The performance of unbound-property queries depends on the adopted RDF
partitioning scheme. If the data is vertically partitioned, answering unbound-
property queries becomes challenging because all the VPs need to be iterated.
A straightforward approach to query the unbound properties in a distributed
setting is to store the RDF data triples in a single file (i.e., triples file). Dis-
tributed file systems, e.g., HDFS, split the files into a set of blocks and distribute
the blocks across machines. In this case, RDF query processors can evaluate
unbound-property RDF queries in parallel [26], where each machine processes a
set of blocks. We refer to this baseline approach as RDF-Table. We implement
this baseline for evaluation purposes.

WORQ utilizes Bloom filters as cheap indexes to efficiently answer unbound-
property queries over data that has been vertically partitioned. WORQ performs
two steps to determine the matching properties. The first step is called the
identification step, where a set of candidate properties are identified. The second
step is called the verification step, where the candidate properties are verified
to eliminate the possibility of false-positives. Given a query, WORQ uses the

590 A. Madkour et al.

existing Bloom filters to discover the unbound property. WORQ relies on the
bound attributes (i.e., subject and object) to discover the matching properties.

Fig. 4. The identification and verification steps to answer unbound-property queries

Figure 4 illustrates the identification step for answering unbound-property
queries. First, the unbound and bound attributes are identified. Then, the bound
attributes are used to probe the Bloom filters to determine if the bound values
exist for a specific property. If a value exists, the corresponding property is added
as a candidate for answering the query. For instance, in Fig. 4, :Mary exists in the
:mention property, and is found using a MATCH in the corresponding Bloom
filter. However, :Mary does not exist in the :tweet property, and hence the
Bloom filter returns DOES NOT MATCH. Although :Mary does not exist in
:like, the Bloom filter returns a MATCH, which is a false positive.

Given that Bloom filters can incur false positives, a verification step is needed
to ensure the correctness of query evaluation. WORQ verifies the candidate prop-
erties by issuing a filter based on the bound attributes with the value indicated
in the query triple (i.e., the value that made the candidate property match).
If the result-set includes at least one match, then WORQ determines that the
candidate property was identified correctly. Otherwise, the candidate property
is discarded. Disqualifying data will not happen frequently based on the false-
positive rate of the constructed Bloom filters.

5 Experiments

WORQ is compared against S2RDF [27], a Spark-based system that runs over
Hadoop. S2RDF [27] proposes an extension to VP, namely ExtVP, where reduc-
tions of entries are computed for every vertical partition. S2RDF utilizes semi-
join reductions [6] to reduce the number of rows in a partition. The reduc-
tions represent all RDF query combinations that appear in SPARQL queries

WORQ: Workload-Driven RDF Query Processing 591

(i.e., Subject-Subject, Subject-Object, Object-Subject, Object-Object). How-
ever, S2RDF exhibits a substantial preprocessing overhead. Semi-joins are expen-
sive to compute, and generate large network-traffic. In addition, S2RDF gener-
ates a large number of files to represent the reductions of the original data.
S2RDF translates SPARQL queries to SQL and runs them on Spark SQL.
S2RDF has outperformed Hadoop-based systems such as H2RDF+, Sempala,
PigSPARQL, SHARD, and other systems such as Virtuoso, where S2RDF has
achieved (on average) the best query execution performance [27]. Accordingly,
this paper presents a comparison with S2RDF only as S2RDF represents the
state-of-the-art Hadoop-based RDF query processing system. WORQ is imple-
mented over Spark (v2.1) where it utilizes Spark DataFrames to represent the
reductions. WORQ does not translate the query to SQL. Instead, WORQ imple-
ments joins as a series of Spark DataFrame joins. To guarantee a fair setup, all
Spark-related parameters are unified for both WORQ and S2RDF. The data for
both systems is stored using Parquet2 columnar-store format. Vertical partition-
ing has been implemented as a baseline.

5.1 Experimental Setup

The experimental setup datasets and queries proposed by Abdelaziz et al. [2]
are used. Our experiments are conducted using a real dataset (YAGO2s [7,12])
as well as two synthetic benchmarks (WatDiv [4] and LUBM [10]) that provide
widely-adopted query workload generators:

1. WatDiv provides a stress-test query workload that allows generating several
queries per-pattern. One Billion triples have been generated to demonstrate
the query execution performance and preprocessing performance (i.e., the
number of files generated, disk space utilization, and loading time). A pre-
generated workload provided by WatDiv [4] contains 5000 queries that cover
100 diverse SPARQL patterns, each having 50 variations. A variation repre-
sents different bound values for the same query pattern. The variations allow
measuring the performance of specific patterns under different selectivities.
For the unbound-property queries, we use the query workload provided by
Alvarez-Garcia et al. [5] that represents 500 queries covering three combi-
nations namely, unbound subject with bound object, unbound object with
bound subject, and bound subject and object.

2. LUBM provides a query-workload generator, where 1000 queries are gener-
ated. Unlike WatDiv, LUBM does not specify the number of patterns.

3. YAGO2s consists of 245 million real RDF triples. YAGO2s benchmark
queries are used to compare the query execution time [19,27]. There is no pub-
licly available real query workload for YAGO. Generating synthetic queries
for YAGO is similar to what WatDiv and LUBM provide while they guarantee
generating all possible query shapes.

2 parquet.apache.org.

http://parquet.apache.org/

592 A. Madkour et al.

Our experiments are conducted using an HP DL360G9 cluster with Intel
Xeon E5-2660 realized over 5 nodes. The cluster uses Cloudera 5.9 consisting
of Spark 2 as a computational framework and Hadoop HDFS as a distributed
file-system. Each node consists of 32 GB of RAM, and 52 cores. The total HDFS
size is 1 Terabyte. The experiments measure various aspects of WORQ includ-
ing (1) the number of generated files, (2) the filesystem size, (3) the load-
ing time, (4) the workload query execution performance, (5) the overhead of
caching results instead of caching reductions, and (6) the execution performance
of unbound properties queries. The data for the 3 benchmarks is loaded into
memory before execution.

Fig. 5. Disk space utilization Fig. 6. Preprocessing time

5.2 Experimental Results

Preprocessing Performance. Figure 5 gives the disk storage overhead
incurred by the three systems over the LUBM, WatDiv, and YAGO2s datasets.
VP introduces minimal space overhead across all three systems. The reason is
that VP only needs to partition the original triple file based on the property
name. Storage in WORQ is composed of the VP and the Bloom filters. S2RDF
precomputes all the possible reductions for binary joins (O(n2), where n is the
number of VPs), and stores them on disk along with the original data. Thus,
S2RDF introduces the highest disk storage overhead.

Figure 6 gives the preprocessing time for all three systems over the LUBM,
WatDiv, and YAGO2s datasets. VP has the smallest loading time due to its
simplicity, followed by WORQ, and then S2RDF. The majority of time spent
by S2RDF in the preprocessing time involves creating the proposed partitions
called ExtVP. The computation involves performing semi-joins between binary
partitions in a distributed fashion causing high network shuffling overhead.
WORQ incurs a minor overhead compared to VP due to the computation of
the Bloom filters.

Query Workload Awareness. For the remaining experiments, the results
of VP are omitted due to its low performance. The following experiments
demonstrate the query performance of both WORQ and S2RDF across differ-
ent aspects, e.g., the total execution time, the mean execution time per query
pattern, and the mean execution time given the number of join-triples in a

WORQ: Workload-Driven RDF Query Processing 593

query. WatDiv and LUBM are used due to the availability of workload genera-
tors while YAGO2s is omitted as a real query workload is unavailable. However,
a set of benchmark queries [27] are used to measure the performance against
the YAGO2s dataset. In S2RDF, the partitioning is done for every query and
takes place while the queries are being evaluated. S2RDF reports the overall
execution time which includes both the partitioning and the actual execution
time. WORQ follows the same procedure when reporting the overall execution
time.

Fig. 7. Mean query execution time Fig. 8. Total query execution time

Figures 7 and 8 give the mean and total execution times based on executing
5000 queries over WatDiv (1 Billion triples) and 1000 queries over LUBM (1
Billion triples). WORQ is consistently better across the two benchmarks. The
difference in performance is attributed to the combination of efficient partition-
ing and the caching of reduction employed by WORQ as illustrated in later
experiments. WORQ reduces the relations to be joined by computing light-
weight reductions that can fully represent the original data in answering the
RDF queries. Rather than scanning the original (large) data for each query, the
light-weight reductions are used instead.

The difference in performance between LUBM and WatDiv is attributed to
the characteristics of both benchmarks in terms of the number of properties and
the query workload representing each dataset. LUBM consists of 18 properties
while WatDiv consists of 86 properties. The 1 Billion triples for LUBM and
WatDiv are distributed across 18 and 86 properties, respectively. WORQ per-
forms well with the increase in the number of properties. In real datasets, e.g.,
YAGO2s [7,12], the number of properties are in hundreds, making WORQ more
appropriate to use than S2RDF.

Fig. 9. Mean execution time per query
pattern over WatDiv 1 Billion dataset

Fig. 10. Mean execution time per query
pattern over LUBM 1 Billion dataset

Figure 9 gives a break-down of the query execution of 5000 queries over Wat-
Div (1 Billion triples) per query pattern. The x-axis represents the query numbers

594 A. Madkour et al.

and the y-axis represents the execution time. A query pattern represents a set
of one or more query triples (i.e., BGP triples) that vary based on the bound
and unbound attributes, e.g., one pattern can have two query triples joined by
the subject attribute while another pattern would be based on two query triples
joined on the object attribute. For every pattern, the mean execution time is
recorded for the two systems. Figure 9 shows that WORQ executes each pattern
nearly an order of magnitude faster than S2RDF.

Figure 10 gives a break-down of executing 1000 queries over LUBM (1 Bil-
lion triples per query pattern). Similar to WatDiv, the mean execution time is
recorded per pattern for the two systems. The number of patterns included in the
LUBM query workload is 20. Figure 10 shows that all the patterns are executed
faster by WORQ than S2RDF.

Fig. 11. Execution timeline for two
query pattern over WatDiv 1 Billion
dataset

Fig. 12. Execution timeline for two
query pattern over LUBM 1 Billion
dataset

Figure 11 gives the performance when executing only two patterns over the
WatDiv benchmark. The x-axis represents the timeline, where we execute one
query pattern first, and then execute another pattern. There are two major spikes
in the performance of WORQ that reflect the first time each query pattern was
executed. For each pattern, a high query execution overhead is exhibited at the
beginning, followed by near-linear performance for the rest of the queries that
share the same join pattern.

Figure 12 repeats the same experiment for two patterns over the LUBM
benchmark. Similar to Fig. 11, the first time a join pattern is executed, a spike in
execution time is exhibited followed by a near-linear performance for the remain-
ing queries. Unlike WatDiv, the computation of the query patterns for the first
time over LUBM consumes more time than S2RDF. However, the overall exe-
cution time of WORQ outperforms S2RDF as Fig. 8 illustrates.

We analyze the effect of query triples on the query execution. The WatDiv
query workload contains a set of 100 representative patterns and is used for the
analysis. LUBM benchmark is discarded for this experiment as WatDiv provides
a workload with more diverse shapes than LUBM.

Figure 13 gives a break-down of executing 5000 queries over WatDiv (1 Billion
triples) given the number of triples per query. From the figure, the number of
triples affects the overall query performance, where the query execution time
increases as more triples are processed.

Figure 14 gives a break-down of the mean query execution time for 5000
queries over WatDiv (1 Billion triples) based on the number of joins between

WORQ: Workload-Driven RDF Query Processing 595

Fig. 13. Mean execution time - number
of triples per query over WatDiv 1 Bil-
lion

Fig. 14. Mean execution time for joins
per pattern over WatDiv 1 Billion

query triples. This is different from the number of query triples experiment,
where the number of joins experiment measures the maximum number of joins
identified per query, e.g., a query may contain five query triples, but contains
a join between two query triples only. To create the experimental setup, every
query is first placed in a join group based on the maximum number of joins
that it has. Then, the mean execution time is measured for queries within a join
group. WORQ achieves nearly an order of magnitude better performance than
S2RDF.

Fig. 15. Mean query execution time
using workload-driven and static parti-
tioning

Fig. 16. Execution time of 14 query
patterns over YAGO2s dataset

Figure 15 gives a break-down of the mean execution time using workload-
driven partitioning and static partitioning of WORQ to illustrate the effect of
using the workload-driven component only. Static partitioning is based on sub-
ject. In workload-driven partitioning, every query is partitioned based on the
join patterns of the query. In contrast, static partitioning is performed based
on a pre-specified criteria, e.g., partitioning by subject. Static partitioning was
performed on the subject column. Figure 15 demonstrates that workload-driven
partitioning contributes positively towards the overall query execution perfor-
mance over the two datasets. The partitioning time is dependent on where data
is originally stored on the cluster and generally incurs a minor cost. The query
evaluation time given where data is partitioned dominates the execution time.

Figure 16 gives a break-down of the query execution over 14 benchmark
YAGO2s queries [27]. The x-axis represents the query numbers and the y-axis
represents the execution time. The queries were designed to take into consider-
ation various query shapes, e.g., star-shaped, and resources selectivities. Each

596 A. Madkour et al.

query was executed 5 times using different selective predicates and the aver-
age time was reported. For every query, the corresponding reductions for both
WORQ and S2RDF were loaded into memory in advance. WORQ achieves better
query execution performance over all queries.

Fig. 17. Mean query execution
time given warm and cold cache
for WORQ over WatDiv and LUBM

Fig. 18. Memory usage based on
caching results and caching reductions

Caching of Reductions. Figure 17 demonstrates the effect of caching on the
query performance. Cold queries are those with patterns that have not been
executed before, i.e., that have no corresponding reductions in the cache. Warm
queries are those that share the same pattern as queries that executed before,
i.e., that have corresponding reductions in the cache. The figure gives the mean
execution time of 5000 queries from the WatDiv benchmark and 1000 queries
from the LUBM benchmark. The figure demonstrate how utilizing cached pat-
terns (i.e., reductions) achieves better query execution performance. The reason
LUBM cold cache is worse is because while both datasets are of the same over-
all size (1B triples), one contains 18 files/predicates (LUBM) in contrast to 87
files/predicates in WatDiv so the filtering time is higher for LUBM queries. Also,
WORQ pays a price only once when a query pattern is seen for the first time.
However, the cold-start cost is minor.

Figure 18 gives a break-down of the memory usage over 5000 unique queries
covering 100 patterns. Using a workload of 5000 unique queries, the figure demon-
strates how the size of the cached queries grows over time and surpasses the size
of cached reductions. The memory usage for caching the query results can reach
more than 10 GB over 5000 queries while caching reductions exhibits a slower
memory usage curve. The conclusion is that caching the reductions is more suit-
able than caching the query results in situations where there are many unique
queries that share common patterns.

Performance of Unbound-Property Queries. Schatzle et al. [27] do not
evaluate the performance of S2RDF for unbound-property queries as it is out of
the scope of their current work. In addition, S2RDF adopts a VP structure to
answer queries, leading to degraded query performance over unbound-property
queries. Therefore, we use the RDF-Table approach described in Sect. 4 as a
baseline. We evaluate three query patterns based on the attributes of an RDF
triple, namely a bound subject and object, a bound subject, and a bound object.

WORQ: Workload-Driven RDF Query Processing 597

Table 1. Unbound property results - (BSO) Bound Subject and Object, (BS) Bound
Subject, (BO) Bound Object

System BSO-Mean BSO-Sum BS-Mean BS-Sum BO-Mean BO-Sum

WORQ 1.25 ms 10.49min 4.18 ms 34.84min 3.52 ms 29.34min

RDF-Table 5.3 ms 44.44min 3.80 ms 31.67min 4.35 ms 36.26min

Table 1 gives the result of processing 500 queries with bound subject and
object (BSO), bound subject (BS), and bound object (BO) over WatDiv (1 Bil-
lion triples). For bound subject and object (BSO), the mean execution time per
query is nearly five times better than the baseline. This is attributed to the
Bloom filter usage, where the number of false-positives is reduced by evaluating
the properties against two bound values instead of one bound value, e.g., queries
with bound subject only or a bound object only. For bound subject (BS), the
mean execution time of WORQ is comparable to that of RDF-Table. This per-
formance is due to two main reasons. The first is the efficiency of RDF-Table
within Spark as RDF-Table performs predicate pushdown filtering in parallel
and the result is aggregated back to the driver (i.e., master node). The sec-
ond is that the data of the RDF-Table is sorted by the subject, allowing the
predicate-pushdown to work efficiently. For bound object, the mean execution
time is also comparable to that of RDF-Table. The overall execution time of
WORQ is better than RDF-Table. The reason for the better result is attributed
to the lack of sorting on the object column for the RDF dataset. This gives
WORQ performance advantage when executing bound object queries.

6 Related Work

Graph-based partitioning is an NP-complete problem [14], and hence hash par-
titioning heuristics [21,31] are employed instead of graph-based partitioning in
order to partition RDF data efficiently. However, sophisticated partitioning tech-
niques [11,15,22,28] cannot guarantee that no data will be shuffled when pro-
cessing complex queries with multiple joins. Several techniques [23,29] utilize
the query workload to enhance the partitioning of RDF data. In addition, one
study [4] demonstrates the need to continuously adapt to workloads in order
to guarantee consistent performance. Characteristic sets [18] capture the set of
properties that occur together for a given subject. However, characteristic sets
are data-driven and are tied to star-shaped queries only. Castilo et al. [9] perform
evaluation of SPARQL queries using (offline) materialized results coined RDF-
MatView indexes. In contrast to materialized views, WORQ does not materialize
results but instead identifies reductions that can be reused across queries that
share the same join patterns. H2RDF+ [20] provides a result-based workload-
aware RDF caching engine that manages to dynamically index frequent workload
subgraphs in real time. However, caching the final results of RDF queries incurs
significant storage overhead and cannot generalize to a broader query work-
loads. Yang et al. [30] propose caching the intermediate results of basic graph

598 A. Madkour et al.

patterns in SPARQL queries. However, the proposed approach is tied to the join
orders that would result in different intermediate results. Alvarez-Garcia et al. [5]
introduce a compressed index called k2-triples for answering unbound-property
queries. However, the proposed index is not applicable in a distributed setting.
Ravindra et al. [24] uses a non-relational algebra based on a TripleGroup data
model to answer unbound-property queries.

7 Concluding Remarks

This paper presents several optimizations for RDF query processing over ver-
tically partitioned triples. First, we present how to use Bloom join to compute
reduced sets of intermediate results (or reductions, for short) that are common
for certain join pattern(s) in an online fashion. Second, we study the effect of
caching these reductions instead of caching the final results of each query. Third,
we present how to partition the RDF data triples using the join attributes of the
query instead of using a predefined partitioning criteria. Fourth, we present how
to efficiently answer queries with unbound properties using Bloom filters. Exten-
sive experimentation using the WatDiv, LUBM, and YAGO2s demonstrate how
a realization of these optimizations can lead to an order of magnitude enhance-
ment in terms of preprocessing time, storage, and query performance. Bloom
filters/join is one case study. N-ary filtering can utilize any set membership
structure (e.g., Bloom, Cuckoo, Roaring Bitmaps) so long as we can add and
check elements in a set. The novelty is in how membership structures (e.g., Bloom
Filter) are used to filter data and answer unbound property queries efficiently in
a distributed setting. For future work, we will investigate further query process-
ing enhancements including load-balanced partitioning of reductions, generalized
filtering (exact vs. approximate structures), and spatio-temporal RDF filtering.

References

1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic web
data management using vertical partitioning. In: VLDB (2007)

2. Abdelaziz, I., Harbi, R., Khayyat, Z., Kalnis, P.: A survey and experimental com-
parison of distributed SPARQL engines for very large RDF data. PVLDB 10(13),
2049–2060 (2017). Article no. 9

3. Agathangelos, G., Troullinou, G., Kondylakis, H., Stefanidis, K., Plexousakis, D.:
RDF query answering using apache spark : review and assessment. In: DESWEB
(2018)

4. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of RDF
data management systems. In: ISWC, pp. 197–212 (2014)

5. Álvarez-Garćıa, S., Brisaboa, N., Fernández, J.D., Mart́ınez-Prieto, M.A., Navarro,
G.: Compressed vertical partitioning for efficient RDF management. Knowl. Inf.
Syst. 44(2), 439–474 (2015)

6. Bernstein, P.A., Chiu, D.-M.W.: Using semi-joins to solve relational queries. J.
ACM 28, 25–40 (1981)

WORQ: Workload-Driven RDF Query Processing 599

7. Biega, J., Kuzey, E., Suchanek, F.M.: Inside YAGO2s. In: WWW, pp. 325–328.
ACM Press, New York (2013)

8. Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

9. Castillo, R., Leser, U.: Selecting materialized views for RDF data. In: ICWE (2010)
10. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems.

Web Semant. 3, 158–182 (2005)
11. Gurajada, S., Seufert, S., Miliaraki, I., Theobald, M.: TriAD: a distributed shared-

nothing RDF engine based on asynchronous message passing. In: SIGMOD, pp.
289–300 (2014)

12. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and
temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61
(2013)

13. Kaoudi, Z., Manolescu, I.: RDF in the clouds: a survey. VLDB J. 42, 67–91 (2015)
14. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM 20, 359–392 (1998)
15. Lee, K., Liu, L.: Scaling queries over big RDF graphs with semantic hash parti-

tioning. VLDB 6, 1894–1905 (2013)
16. Mackert, L.F., Lohman, G.M.: R* optimizer validation and performance evaluation

for local queries. ACM SIGMOD Record 15(2), 84–95 (1986)
17. Madkour, A., Aref, W.G., Basalamah, S.: Knowledge cubes - a proposal for scalable

and semantically-guided management of Big Data. In: BigData, pp. 1–7. IEEE,
October 2013

18. Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation
for RDF queries with multiple joins. In: ICDE, pp. 984–994 (2011)

19. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF
data. VLDB 19, 91–113 (2010)

20. Papailiou, N., Tsoumakos, D., Karras, P., Koziris, N.: Graph-aware, workload-
adaptive SPARQL query caching. In: SIGMOD, pp. 1777–1792 (2015)

21. Papailiou, N., Konstantinou, I., Tsoumakos, D., Karras, P., Koziris, N.: H2RDF+ :
high-performance distributed joins over large-scale RDF graphs. In: BigData (2013)

22. Peng, P., Zou, L., Chen, L., Zhao, D.: Query workload-based RDF graph fragmen-
tation and allocation. In: EDBT, pp. 377–388 (2016)

23. Rabl, T., Jacobsen, H.-A.: Query centric partitioning and allocation for partially
replicated database systems. In: Proceedings of the 2017 ACM International Con-
ference on Management of Data - SIGMOD 2017 (2017)

24. Ravindra, P., Anyanwu, K.: Scaling unbound-property queries on big RDF data
warehouses using MapReduce. In: EDBT, pp. 169–180 (2015)

25. Rietveld, L., Hoekstra, R., Schlobach, S.: Structural properties as proxy for seman-
tic relevance in RDF graph sampling. ISWC 8797, 81–96 (2014)

26. Rohloff, K., Schantz, R.E.: High-performance, massively scalable distributed sys-
tems using the MapReduce software framework. In: PSIEtA, pp. 1–5 (2010)

27. Schätzle, A., Przyjaciel-Zablocki, M., Skilevic, S., Lausen, G.: S2RDF: RDF query-
ing with SPARQL on spark. In: VLDB, vol. 9, pp. 804–815 (2016)

28. Wu, B., Zhou, Y., Yuan, P., Liu, L., Jin, H.: Scalable SPARQL querying using
path partitioning. In: ICDE, pp. 795–806 (2015)

29. Yan, D., et al.: Quegel: a general-purpose query-centric framework for querying big
graphs. In: VLDB (2016)

30. Yang, M., Wu, G.: Caching intermediate result of SPARQL queries. In: WWW
(2011)

31. Zeng, K., Yang, J., Wang, H., Shao, B., Wang, Z.: A distributed graph engine for
web scale RDF data. In: VLDB, pp. 265–276, February 2013

Canonicalisation of Monotone SPARQL
Queries

Jaime Salas and Aidan Hogan(B)

IMFD Chile and Department of Computer Science,
University of Chile, Santiago, Chile

jsalas@dcc.uchile.cl, aidhog@gmail.com

Abstract. Caching in the context of expressive query languages such as
SPARQL is complicated by the difficulty of detecting equivalent queries:
deciding if two conjunctive queries are equivalent is NP-complete, where
adding further query features makes the problem undecidable. Despite
this complexity, in this paper we propose an algorithm that performs syn-
tactic canonicalisation of SPARQL queries such that the answers for the
canonicalised query will not change versus the original. We can guar-
antee that the canonicalisation of two queries within a core fragment
of SPARQL (monotone queries with select, project, join and union) is
equal if and only if the two queries are equivalent; we also support other
SPARQL features but with a weaker soundness guarantee: that the (par-
tially) canonicalised query is equivalent to the input query. Despite the
fact that canonicalisation must be harder than the equivalence problem,
we show the algorithm to be practical for real-world queries taken from
SPARQL endpoint logs, and further show that it detects more equiv-
alent queries than when compared with purely syntactic methods. We
also present the results of experiments over synthetic queries designed to
stress-test the canonicalisation method, highlighting difficult cases.

1 Introduction

SPARQL endpoints often encounter performance problems in practice: in a sur-
vey of hundreds of public SPARQL endpoints, Buil-Aranda et al. [2] found
that many such services have mixed reliability and performance, often return-
ing errors, timeouts or partial results. This is not surprising: SPARQL is an
expressive query language that encapsulates and extends the relational algebra,
where even the simplified decision problem of verifying if a given solution is con-
tained in the answers of a given SPARQL query for a given database is known
to be PSpace-complete [17] (combined complexity). Furthermore, evaluating
SPARQL queries may involve an exponential number of (intermediate) results.
Hence, rather than aiming to efficiently support all queries over all database
instances for all users, the goal is rather to continuously improve performance:
to increase the throughput of the most common types of queries answered.

An obvious means by which to increase throughput of query processing is to
re-use work done for previous queries when answering future queries by caching
c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 600–616, 2018.
https://doi.org/10.1007/978-3-030-00671-6_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_35&domain=pdf

Canonicalisation of Monotone SPARQL Queries 601

results. In the context of caching for SPARQL, however, there are some signif-
icant complications. While many engines may apply low-level caches to avoid,
e.g., repeated index accesses, generating answers from such data can still require
a lot of higher-level query processing. On the other hand, caching at the level
of queries or subqueries is greatly complicated by the fact that a given abstract
query can be expressed in myriad equivalent ways in SPARQL.

Addressing the latter challenge, in this paper we propose a method by which
SPARQL queries can be canonicalised, where the canonicalised version of two
queries Q1 and Q2 will be (syntactically) identical if Q1 and Q2 are equivalent :
having the same results for any dataset. Furthermore, we say that two queries Q1

and Q2 are congruent if and only if they are equivalent modulo variable names,
meaning we can rewrite the variables of Q2 in a one-to-one manner to generate a
query equivalent to Q1; our proposed canonicalisation method then aims to give
the same output for queries Q1 and Q2 if and only if they are congruent, which
will allow us to find additional queries useful for applications such as caching.

Example 1. Consider two queries QA and QB asking for names of aunts:
SELECT DISTINCT ?z WHERE {
?x :sister ?y . ?y :name ?z .
{ ?w :mother ?x . }
UNION { ?w :father ?x. } }

SELECT DISTINCT ?n WHERE {
{ ?a :name ?n . ?c :mother ?p . ?p :sister ?a . }
UNION

{ ?a :name ?n . ?c :father ?p . ?p :sister ?a . } }

Both queries are congruent: if we rewrite the variable ?n to ?z in QB , then both
queries are equivalent and will return the same results for any RDF dataset.
Canonicalisation aims to rewrite both queries to the same syntactic form. ��

Our main use-case for canonicalisation is to improve caching for SPARQL
endpoints: by capturing knowledge about query congruence, canonicalisation can
increase the hit rate for a cache of (sub-)queries [16]. Furthermore, canonicali-
sation may be useful for analysis of SPARQL logs: finding repeated/congruent
queries without pair-wise equivalence checks; query processing : where optimisa-
tions can be applied over canonical/normal forms; and so forth.

A fundamental challenge for canonicalising SPARQL queries is the high com-
putational complexity that it entails. More specifically, the query equivalence

problem takes two queries Q1 and Q2 and returns true if and only if they return
the same answers for any database instance. In the case of SPARQL, this prob-
lem is NP-complete even when simply permitting joins (conjunctive queries).
Even worse, the problem becomes undecidable when features such as projection
and optional matches are combined [18]. Canonicalisation is then at least as
hard as the equivalence problem, meaning it will likewise be intractable for even
simple fragments and undecidable when considering the full SPARQL language.

We thus propose a canonicalisation procedure that does not change the
semantics of an input query (i.e., is correct) but may miss congruent queries
(i.e., is incomplete) for certain features. We deem such guarantees to be suffi-
cient for use-cases where completeness is not a strong requirement, as in the case
of caching where missing a congruent query will require re-executing the query
(which would have to be done in any case). For monotone queries [19] in a core
SPARQL fragment, we provide both correctness and completeness guarantees.

602 J. Salas and A. Hogan

The procedure we propose is based on first converting SPARQL queries to a
graph-based (RDF) algebraic representation. We then initially apply canonical
labelling to the graph to consistently name variables, thereafter converting the
graph back to a SPARQL query following a fixed syntactic ordering. The result-
ing query then represents the output of a baseline canonicalisation procedure
for SPARQL. To support further SPARQL features such as UNION, we extend
this procedure by applying normal forms and minimisation over the intermediate
algebraic graph prior to its canonicalisation. Currently we focus on canonicalis-
ing SELECT queries from SPARQL 1.0. However, our canonicalisation techniques
can be extended to other types of queries (ASK, CONSTRUCT, DESCRIBE) as well
as the extended features of SPARQL 1.1 (including aggregation, property paths,
etc.) while maintaining correctness guarantees; this is left to future work.

Extended Version: An online version of this paper provides additional definitions,
proofs, and experimental results [20].

2 Preliminaries

RDF: We first introduce the RDF data model, as well as notions of isomorphism
and equivalence relevant to the canonicalisation procedure discussed later.

Terms and Graphs. RDF assumes three pairwise disjoint sets of terms: IRIs: I,
literals L and blank nodes B. An RDF triple (s, p, o) is composed of three terms
– called subject, predicate and object – where s ∈ IB, p ∈ I and o ∈ ILB.1 A
finite set of RDF triples is called an RDF graph G ⊆ IB × I × IBL.

Isomorphism. Blank nodes are defined as existential variables [10] where two
RDF graphs differing only in blank node labels are thus considered isomor-
phic [7]. Formally, let μ : IBL → IBL denote a mapping of RDF terms to RDF
terms such that μ is the identity on IL (μ(x) = x for all x ∈ IL); we call μ
a blank node mapping ; if μ maps blank nodes to blank nodes in a one-to-one
manner, we call it a blank node bijection. Let μ(G) denote the image of an RDF
graph G under μ (applying μ to each term in G). Two RDF graphs G1 and G2

are defined as isomorphic – denoted G1
∼= G2 – if and only if there exists a blank

node bijection μ such that μ(G1) = G2. Given two RDF graphs, the problem of
determining if they are isomorphic is GI-complete [11], meaning the problem is
in the same complexity class as the standard graph isomorphism problem.

Equivalence. The equivalence relation captures the idea that two RDF graphs
entail each other [10]. Two RDF graphs G1 and G2 are equivalent – denoted
G1 ≡ G2 – if and only if there exists two blank node mappings μ1 and μ2

such that μ1(G1) ⊆ G2 and μ2(G2) ⊆ G1 [8]. A graph may be equivalent to
a smaller graph (due to redundancy). We thus say that an RDF graph G is
lean if it does not have a proper subset G′ ⊂ G such that G ≡ G′; otherwise
1 We use, e.g., IBL as a shortcut for I ∪ B ∪ L.

Canonicalisation of Monotone SPARQL Queries 603

we can say that it is non-lean. Furthermore, we can define the core of a graph
G as a lean graph G′ such that G ≡ G′; the core of a graph is known to be
unique modulo isomorphism [8]. Determining equivalence between RDF graphs
is known to be NP-complete [8]. Determining if a graph G is lean is known to
be coNP-complete [8]. Finally, determining if a graph G′ is the core of a second
graph G is known to be DP-complete [8].

Graph Canonicalisation. Our method for canonicalising SPARQL queries
involves representing the query as an RDF graph, applying canonicalisation tech-
niques over that graph, and mapping the canonical graph back to a SPARQL
query. As such, our query canonicalisation method relies on an existing graph
canonicalisation framework for RDF graphs called Blabel [12]; this framework
offers a sound and complete method to canonicalise graphs with respect to iso-
morphism (iCan(G)) or equivalence (eCan(G)). Both methods have exponential
worst-case behaviour; as discussed, the underlying problems are intractable.

SPARQL. We now provide preliminaries for the SPARQL query language [9].
For brevity, our definitions focus on SPARQL monotone queries (mqs) [19] –
permitting selection (=,∧,∨)2, join, union and projection – for which we can
offer sound and complete canonicalisation.

Syntax. Let V denote a set of query variables disjoint with IBL. We define the
abstract syntax of a SPARQL mq as follows:

1. A triple pattern t is a member of the set VIB × VI × VIBL (i.e., an RDF
triple allowing variables in any position). A triple pattern is a query pattern.

2. If both Q1 and Q2 are query patterns, then [Q1 andQ2], and [Q1 unionQ2]
are also query patterns.

3. If Q is a query pattern and V is a set of variables such that for all v ∈ V , v
appears in some triple pattern contained in Q, then selectV (Q) is a query.3

Blank nodes in SPARQL queries are considered to be non-distinguished
query variables where we will assume they have been replaced with fresh query
variables. Per the final definition, we currently do not support subqueries and
assume, w.l.o.g., that all queries have a projection selectV (Q).

Algebra. We will now define an algebra for such queries. A solution μ is a partial
mapping from variables in V appearing in the query to constants from IBL
appearing in the data. Let dom(μ) denote the variables for which μ is defined.
We say that two mappings μ1 and μ2 are compatible, denoted μ1 ∼ μ2, when
μ1(v) = μ2(v) for every v ∈ dom(μ1) ∩ dom(μ2). Letting M , M1 and M2 denote
sets of solutions, we define the algebra as follows:

M1 �� M2 :={μ1 ∪ μ2 | μ1 ∈ M1, μ2 ∈ M2, μ1 ∼ μ2}
M1 ∪ M2 :={μ | μ ∈ M1 or μ ∈ M2}

πV (M) :={μ′ | ∃μ ∈ M : μ′ ⊆ μ,dom(μ′) = V ∩ dom(μ)}
2 This is expressed by placing constants in triple patterns.
3 Note that SELECT * is equivalent to returning all variables (or omitting the feature).

604 J. Salas and A. Hogan

Union is defined here in the SPARQL fashion as a union of mappings, rather
than relational algebra union: the former can be applied over solution mappings
with different domains, while the latter does not allow this.

Semantics. Letting Q denote an mq pattern in the abstract syntax, we denote
the evaluation of Q over an RDF graph G as Q(G). Before defining Q(G), first let
t denote a triple pattern; then by V(t) we denote the set of variables appearing
in t and by μ(t) we denote the image of t under a solution μ. Finally, we can
define Q(G) recursively as follows:

t(G) := {μ | μ(t) ∈ G,dom(μ) = V(t)}
[Q1 andQ2](G) := Q1(G) �� Q2(G)

[Q1 unionQ2](G) := Q1(G) ∪ Q2(G)
selectV (Q)(G) := πV (Q(G))

Set vs. Bag. The previous definitions assume a set semantics for query answer-
ing, meaning that no duplicate mappings are returned as solutions [17]. However,
the SPARQL standard, by default, considers a bag (aka. multiset) semantics for
query answering [9], where the cardinality of a solution in the results captures
information about how many times the query pattern matched the underlying
dataset [1]. We thus use the extended syntax select

Δ
V (Q), where Δ = true

indicates set semantics and Δ = false indicates bag semantics.

Containment and Equivalence. Query containment asks: given two queries Q1

and Q2, does it hold that Q1(G) ⊆ Q2(G) for all possible RDF graphs G? If so,
we say that Q2 contains Q1, which we denote by the relation Q1 � Q2. On the
other hand, query equivalence asks, given two queries Q1 and Q2, does it hold
that Q1(G) = Q2(G) for all possible RDF graphs G? In other words, Q1 and Q2

are equivalent if and only if Q1 and Q2 contain each other. If so, we say that
Q1 ≡ Q2. In this paper, we relax the equivalence notion to ignore labelling of
variables; more formally, let ν : V → V be a one-to-one mapping of variables
and, slightly abusing notation, let ν(Q) denote the image of Q under ν (rewriting
variables in Q wrt. ν); we say that Q1 and Q2 are congruent (denoted Q1

∼= Q2)
if and only if there exists ν such that Q1 ≡ ν(Q2). An example of such query
congruence was provided in Example 1.

The complexity of query containment and equivalence vary from NP-
complete when just and is allowed (with triple patterns), upwards to undecid-

able once, e.g., projection and optional matches are added [18]. For mqs, con-
tainment and equivalence are NP-complete for the related query class of Unions
of Conjunctive Queries (ucqs) [19], which allow the same features as mqs but
disallow joins over unions. Interestingly, though mqs and ucqs are equivalent
query classes – i.e., for any ucq there is an equivalent mq and vice-versa – con-
tainment and equivalence for mqs jumps to ΠP

2 -complete [19]. Intuitively this
is because mqs are more succinct than ucqs; for example, to find a path of
length n where each node is of type A or B, we can create an mq of size O(n),

Canonicalisation of Monotone SPARQL Queries 605

but it requires a ucq of size O(2n). We consider mqs since real-world SPARQL
queries may arbitrarily nest joins and unions (canonicalisation will rewrite them
to ucqs).

Most of the above results have been developed under set semantics. In terms
of bag semantics, we can consider an analogous containment problem: that the
answers of Q1 are a subbag of the answers of Q2, meaning that the multiplicity of
an answer in Q1 is always less-than-or-equals the multiplicity of the same answer
in Q2. In fact, the decidability of this problem remains an open question [4]; on
the other hand, the equivalence problem is GI-complete [4], and thus in fact
probably easier than the case for set semantics (assuming GI �= NP): under bag
semantics, conjunctive queries cannot have redundancy, so intuitively speaking
we can test a form of isomorphism between the two queries.

3 Related Work

Various works have presented complexity results for query containment and
equivalence of SPARQL [5,13,14,18,23,24]. With respect to implementations,
only one dedicated library has been released to check whether or not two
SPARQL queries are equivalent: SPARQL Algebra [14]. The problem of deter-
mining equivalence of SPARQL queries can, however, be solved by reductions to
related problems, where Chekol et al. [6] have used a μ-calculus solver and an
XPath-equivalence checker to implement SPARQL equivalence checks. Recently
Saleem et al. [22] compared these SPARQL query containment methods using a
benchmark based on real-world query logs; we use these same logs in our evalua-
tion. These works do not deal with canonicalisation; using an equivalence checker
would require quadratic pairwise checks to determine all equivalences in a set or
stream of queries; hence they are impractical for a use-case such as caching.

To the best of our knowledge, little work has been done specifically on canon-
icalisation of SPARQL queries. In analyses of logs, some authors [3,21] have
proposed some syntactic canonicalisation methods – such as normalising whites-
pace or using a SPARQL library to format the query – that do manage to detect
some duplicates, but not more complex cases such as per Example 1. Rather
the most similar work to ours (to the best of our knowledge) is the SPARQL
caching system proposed by Papailiou et al. [16], which uses a canonical labelling
algorithm (specifically Bliss) to assign consistent labels to variables, allowing to
recall isomorphic graph patterns from the cache for SPARQL queries. However,
their work does not consider factoring out redundancy caused by query oper-
ators (aka. minimisation), and hence they would not capture equivalences as
in the case of Example 1. In general, our work focuses on canonicalisation of
queries whereas the work of Papailiou et al. [16] is rather focused on caching;
compared to them we capture a much broader notion of query equivalence than
their approach based solely on canonical labelling of query variables. It is worth
noting that we are not aware of similar methods for canonicalising SQL queries.

606 J. Salas and A. Hogan

4 Query Canonicalisation

Our approach for canonicalising SPARQL mqs involves representing the query
as an RDF graph, performing a canonicalisation of the RDF graph (including
the application of algebraic rewritings, minimisation and canonical labelling),
ultimately mapping the resulting graph back to a final canonical SPARQL ucq.

4.1 Representational Graph for UCQs

The mq class is closed under join and union (see QA, Example 1). As the
first query normalisation step, we will convert mq queries to ucqs of the form
selectΔV (union({and({Q1

1, . . . Q
1
m}), . . . , and({Qk

1 , . . . Q
k
n})})) following a standard

DNF-style expansion (we refer to the extended version for more details [20]).
The output ucq may be exponential in size. Thereafter, given such a ucq, we
define its representational graph (or r-graph for short) as follows.

Definition 1. Let β() denote a function that returns a fresh blank node and β(x)
a function that returns a blank node unique to x. Let ι(·) denote an id function
such that if x ∈ IL, then ι(x) = x; otherwise if x ∈ VB, then ι(x) = β(x).
Finally, let Q be a ucq; we define r(Q), the r-graph of Q, as follows:

– If Q is a triple pattern (s, p, o), then ι(Q) is set as β() and

r(Q) = {(ι(Q), : s, ι(s)), (ι(Q), : p, ι(p)), (ι(Q), : o, ι(o)), (ι(Q), a, : TP)}

– If Q is and({Q1, . . . , Qn}), then ι(Q) is set as β() and

r(Q) = {(ι(Q), : arg, ι(Q1)), . . . , (ι(Q), : arg, ι(Qn)), (ι(Q), a, : And)}
∪r(Q1) ∪ ... ∪ r(Qn)

– If Q is union({Q1, . . . , Qn}), then ι(Q) is set as β() and

r(Q) = {(ι(Q), : arg, ι(Q1)), . . . , (ι(Q), : arg, ι(Qn)), (ι(Q), a, : Union)}
∪r(Q1) ∪ ... ∪ r(Qn)

– If Q is selectΔV (Q1), then ι(Q) is set as β() and

r(Q) = {(ι(Q), : arg, ι(Q1)), (ι(Q), : distinct,Δ), (ι(Q), a, : Select)}
∪ {(ι(Q), : var, ι(v)) | v ∈ V } ∪ r(Q1)

where “a” abbreviates rdf : type and Δ is a boolean datatype literal. ��

Example 2. Here we provide an example of the r-graph for query QA and QB in
Example 1: the r-graph has the same structure for both queries assuming that
a ucq normal form is applied beforehand (to QA in particular). For clarity, we

Canonicalisation of Monotone SPARQL Queries 607

embed the types of nodes into the nodes themselves; e.g., the uppermost node
expands to .

Due to the application of ucq normal forms, we have a projection, over a union,
over a set of joins, where each join involves one or more triple patterns. ��

We also define the inverse r
−(r(Q)), mapping an r-graph back to a ucq

query, such that r
−(r(Q)) is congruent to the Q [20].

4.2 Projection with Union

Unlike the relational algebra, SPARQL mqs allow unions of query patterns whose
sets of variables are not equal. This may give rise to existential variables, which
in turn can lead to further equivalences that must be considered [19].

Example 3. Returning to Example 1, consider a query QC ≡ QB , a minor variant
of QB using different non-projected variables in the union:

SELECT DISTINCT ?n WHERE { { ?a :name ?n . ?c :mother ?m . ?m :sister ?a . }
UNION { ?a :name ?n . ?c :father ?f . ?f :sister ?a . } }

Such unions are permitted in SPARQL. Likewise we could rename both occur-
rences of ?a on the left of the union in QC without changing the solutions since
?a is not projected. Any correspondences between non-projected variables across
a union are thus syntactic and do not affect the semantics of the query. ��

We thus distinguish the blank node representing every non-projected variable
in each cq of the r-graph produced previously. Letting G denote r(Q), we define
the cq roots of G as cq(G) = {y | (y, a, : And) ∈ G}. Given a term r and a
graph G, we define G[r] as the sub-graph of G rooted in r, defined recursively
as G[r]0 = {(s, p, o) ∈ G | s = r}, G[r]i = {(s, p, o) ∈ G | ∃x, y : (x, y, s) ∈
G[r]i−1} ∪ G[r]i−1, with G[r] = G[r]n such that G[r]n = G[r]n+1 (the fixpoint).

We denote the blank nodes representing variables in G by var(G) = {v ∈ B |
∃(s, p) : (s, p, v) ∈ G ∧ p ∈ {: s, : p, : o}}, and we denote the blank nodes repre-
senting unprojected variables in G by uvar(G) = {v ∈ var(G) |� ∃s : (s, : var, v) ∈
G}. Finally we denote the blank nodes representing projected variables in G by
pvar(G) = var(G) \ uvar(G). We can now define how variables are distinguished.

608 J. Salas and A. Hogan

Definition 2. Let G denote r(Q) for a ucq Q. We define the variable distin-
guishing function d(G) as follows. If there does not exist a blank node x such
that (x, a, : Union) ∈ G, then d(G) = G. Otherwise if such a blank node exists,
we define d(G) = {(s, p, δ(o)) | (s, p, o) ∈ G}, where δ(o) = o if o �∈ uvar(G);
otherwise δ(o) = β(r, o) such that r ∈ cq(G) and (s, p, o) ∈ G[r]. ��

In other words, d(G) creates a fresh blank node for each non-projected vari-
able appearing in the representation of a cq in G as previously motivated.

4.3 Minimisation

Under set semantics, ucqs may contain redundancy whereby, for the purposes
of canonicalisation, we will apply minimisation to remove redundant triple pat-
terns while maintaining query equivalence. After applying ucq normalisation,
the r-graph now represents a ucq of the form (Q,V) := (Q1 ∪ . . .∪Qn, V), with
each Q1, . . . , Qn being a cq and V being the set of projected variables. Under set
semantics, we then first remove intra-cq redundancy from the individual cqs;
thereafter we remove inter -cq redundancy from the overall ucq.

Bag Semantics. We briefly note that if projection with bag semantics is selected,
the ucq can only contain one (syntactic) form of redundancy: exact duplicate
triple patterns in the same cq. Any other form of redundancy mentioned pre-
viously – be it intra-cq or inter-cq redundancy – will affect the multiplicity of
results [4]. Hence if bag semantics is selected, we do not apply any redundancy
elimination other than removing duplicate triple patterns in cqs.

Set-Semantics/CQs. We now minimise the individual cqs of the r-graph by com-
puting the core of the sub-graph induced by each cq independently. But before
computing the core, we must ground projected variables to avoid their removal
during minimisation. Along these lines, let G denote an r-graph d(r(Q)) of Q.
We define the grounding of projected variables as follows: L(G) = {(s, p, λ(o)) |
(s, p, o) ∈ G}, where if o denotes a projected variable, λ(o) = : o for : o a fresh
IRI computed for o; otherwise λ(o) = o. We assume for brevity that variable IRIs
created by λ can be distinguished from other IRIs. Finally, let core(G) denote
the core of G. We can then minimise each cq as follows.

Definition 3. Let G denote d(r(Q)). We define the cq-minimisation of G as
c(G) = {core(L(G[x])) | x ∈ cq(G)}. We call C ∈ c(G) a CQ core. ��
Example 4. Consider the following query, QD:

SELECT DISTINCT ?z WHERE {
{ ?w :mother ?x . } UNION { ?w :father ?x. ?x :sister ?y . }

UNION { ?c :mother ?d . ?d :sister ?y . }
?d ?p ?e . ?e :name ?f . ?x :sister ?y . ?y :name ?z }

This query is congruent to the previous queries QA, QB , QC . After applying
ucq normal forms, we end up with the following r-graph for QD:

Canonicalisation of Monotone SPARQL Queries 609

SELECT DISTINCT ?z WHERE {
{ ?w1 :mother ?x1 . ?d1 ?p1 ?e1 . ?e1 :name ?f1 .

?x1 :sister ?y1 . ?y1 :name ?z . }
UNION { ?w2 :father ?x2 . ?x2 :sister ?y2 . ?d2 ?p2 ?e2 .

?e2 :name ?f2 . ?x2 :sister ?y2 . ?y2 :name ?z . }
UNION { ?c3 :mother ?d3 . ?d3 :sister ?y3 . ?d3 ?p3 ?e3 .

?e3 :name ?f3 . ?x3 :sister ?y3 . ?y3 :name ?z . } }

We then replace the blank node for the projected variable ?z with a fresh IRI,
and compute the core of the sub-graph for each cq (the graph induced by
the cq node with type : And and any node reachable from that node in the
directed r-graph). Figure 1 depicts the sub-r-graph representing the third cq

(omitting the : And-typed root node for clarity since it will not affect comput-
ing the core). The dashed sub-graph will be removed from the core per the
map: { :vx3/ :vd3, :t35/ :t32, :t33/ :t32, :vp3/: sister, :ve3/ :vy3,
:t34/ :t36, :vf3/: vz, . . . }, with the other nodes mapped to themselves.
Observe that the projected variable : vz is now an IRI, and hence it cannot
be removed from the graph.

If we consider applying this core computation over all three conjunctive
queries, we would end up with an r-graph corresponding to the following query:

SELECT DISTINCT ?z WHERE {
{ ?w1 :mother ?x1 . ?x1 :sister ?y1 . ?y1 :name ?z }
UNION { ?w2 :father ?x2 . ?x2 :sister ?y2 . ?y2 :name ?z . }
UNION { ?c3 :mother ?d3 . ?d3 :sister ?y3 . ?y3 :name ?z . } }

We see that the projected variable is preserved in all cqs. However, we are still
left with (inter-cq) redundancy between the first and third cqs. ��

Fig. 1. r-graph of a cq showing minimisation by leaning

Set Semantics/UCQs. After minimising individual cqs, we may still be left
with a union containing redundant cqs as highlighted by Example 4. Hence we
must now apply a higher-level minimisation of redundant cqs. While it may be
tempting to simply compute the core of the entire r-graph – as would work for
Example 4 and, indeed, as would also work for unions in the relational algebra –
unfortunately SPARQL union again raises some non-trivial complications [19].

610 J. Salas and A. Hogan

Example 5. Consider the following (unusual) query:

SELECT DISTINCT ?n WHERE { { ?m :cousin ?n . } UNION { ?x ?y ?n . } }

If we were to compute the core over the r-graph for the entire ucq, we would
remove the second cq as follows:

This would leave us with the following query:

SELECT DISTINCT ?n WHERE { ?m :cousin ?n . }

But this has changed the query semantics where we lose non-cousin values. ��
Instead, we must check containment between pairs of cqs [19]. Let (Q,V) :=

(Q1 ∪ . . . ∪ Qn, V) denote the ucq under analysis. We need to remove from Q:

1. all Qi (1 ≤ i ≤ n) such that there exists Qj (1 ≤ j < i ≤ n) such that
selectV (Qi) ≡ selectV (Qj); and

2. all Qi (1 ≤ i ≤ n) where there exists Qj (1 ≤ j ≤ n) such that selectV (Qi) �
selectV (Qj) (i.e., proper containment where selectV (Qi) �≡ selectV (Qj));

The former condition removes all but one cq from each group of equiva-
lent cqs while the latter condition removes all cqs that are properly contained
in another cq. With respect to SPARQL union, note that these definitions
apply to cases where cqs have different variables. More explicitly, let V1, . . . , Vn

denote the projected variables appearing in Q1, . . . , Qn, respectively. Observe
that selectVi

(Qi) � selectVj
(Qj) can only hold if Vi = Vj : assume without loss of

generality that v ∈ Vi \Vj , where v must then generate unbounds in Vj , creating
a mapping μ, v ∈ dom(μ), that can never appear in Vi.4

To implement condition (1), let us first assume that all cqs contain all projec-
tion variables such that no unbounds can be returned. Note that in the previous
step we have computed the cores of cqs in c(G) and hence it is sufficient to
check for isomorphism between them; we can thus take the current r-graph Gi

for each Qi and apply iso-canonicalisation of Gi [12], removing any other Qj

(j > i) whose Gj is isomorphic. Thereafter, to implement condition (2), we can
check if there exists a blank node mapping μ such that μ(Gj) ⊆ Gi, for i �= j
(which is equivalent to checking simple entailment : Gi |= Gj [8]).

4 We assume that cqs without variables may generate an empty mapping ({µ} with
dom(µ) = ∅) if the cq is contained in the data, or no mapping ({}) otherwise. This
means we will not remove such cqs (unless they are precisely equal to another cq)
as they will generate a tuple of unbounds in the results if and only if the data match.

Canonicalisation of Monotone SPARQL Queries 611

Now we drop the assumption that all cqs contain all variables in V , mean-
ing that we can generate unbounds. To resolve such cases, we can partition
{Q1, . . . , Qn} into various sets of cqs based on the projected variables they
contain, and then apply equivalence and containment checks in each part.

Definition 4. Let c(G) = {C1, . . . , Cn} denote the cq cores of G = d(r(Q)). A
cq core Ci is in e(G) iff Ci ∈ c(G) and there does not exist a cq core Cj ∈ c(G)
(i �= j) such that: pvar(Ci) = pvar(Cj); and Ci

∼= Cj with j < i or Cj |= Ci. ��
Definition 5. Let e(G) = {C1, . . . , Cn} denote the minimal cq cores of G =
d(r(Q)). Let P = {(s, p, o) ∈ G | ∃(s, a, : Select) ∈ G} and U = {(s, p, o) ∈
G | ∃(s, a, : Union) ∈ G, and p = : arg implies ∃C ∈ e(G) : {o} = cq(C)}. We
define the minimisation of G as m(G) =

⋃
G′∈e(G) L−(G′)∪P ∪U , where L−(G′)

denotes the replacement of variable IRIs with their original blank nodes. ��
The result is an r-graph representing a redundancy-free ucq.

4.4 Canonical Labelling and Query Generation

We take the minimal r-graph e(G) generated by the previous methods and apply
the iso-canonicalisation method iCan(e(G)) to generate canonical labels for the
blank nodes in e(G); having normalised the ucq algebra and removed redun-
dancy, applying this process will finally abstract away the naming of variables in
the original query from the r-graph. Then we are left to map from the r-graph
back to a query, which we do by applying r

−(iCan(e(G))); in r
−(·), we order

triple patterns in CQs, CQs in UCQs and variables in the projection lexicograph-
ically. The result is the final canonicalised ucq in SPARQL syntax. Soundness
and completeness results for mqs are given in the extended version [20].

4.5 Other Features

We can represent other (non-mq) features of SPARQL (e.g., filters, optional,
etc.) as an r-graph in an analogous manner to that presented here; thereafter,
we can apply canonical labelling over that graph without affecting the semantics
of the underlying query. However, we must be cautious with ucq rewriting and
minimisation techniques. Currently in queries with non-ucq features, we detect
subqueries that are ucqs (i.e., use only join and union) and apply normalisation
only on those ucq subqueries considering any variable also used outside the ucq

as a virtual projected variable. Combined with canonical labelling, this provides
a cautious (i.e., sound but incomplete) canonicalisation of non-mq queries.

4.6 Implementation

We implement the described canonicalisation procedure using two main libraries:
Jena for parsing and executing SPARQL queries; and Blabel for computing the
core of RDF graphs and applying canonical labelling. The containment checks

612 J. Salas and A. Hogan

10−4 10−3 10−2 10−1 100

QCan-Full

QCan-Label

Syntactic

Time (s)

Fig. 2. Runtimes for LSQ queries

Table 1. High-level results for canonical-
ising LSQ queries, including the total time
taken and (max) duplicates (D.) found

Algorithm Time (s) D. Max.D. Queries

Syntactic 211 3,960 12 768,618

QCan-Label 28,066 10,722 40 768,618

QCan-Full 77,022 10,722 40 768,618

over cqs are implemented using SPARQL ASK queries (with Jena). In the fol-
lowing, we refer to our system as QCan: Query Canonicalisation. Source code
is available at https://github.com/RittoShadow/QCan, while a simple online
demo can be found at http://qcan.dcc.uchile.cl/.

5 Evaluation

We now evaluate the proposed canonicalisation procedure for monotone
SPARQL queries. In particular, the main research questions to be empirically
assessed are as follows. RQ1: How is the performance of canonicalisation? RQ2:
How many additional duplicate queries can the canonicalisation process expect to
find versus baseline syntactic methods in a real-world setting? To address these
questions, we present two experimental settings. In the first setting, we apply our
canonicalisation method over queries from the Linked SPARQL Queries (LSQ)
dataset [21], which contains queries taken from the logs of four public SPARQL
endpoints. In the second setting, we create a benchmark of more difficult syn-
thetic queries designed to stress-test the process. All experiments were run on
a single machine with two Intel Xeon E5-2609 V3 CPUs and 32 GB of RAM
running Debian v.7.11.

5.1 Real-World Setting

In the first setting, we perform experiments over queries from endpoint logs taken
from the LSQ dataset [21], where we extract the unique strings for SELECT queries
that could be parsed successfully by Jena (i.e., that were syntactically valid),
resulting in 768,618 queries (see the extended version [20] for details). Over these
queries, we then apply three experiments for increasingly complete and expensive
canonicalisation, as follows. Syntactic: We pass the query through the Jena
SPARQL parser and serialiser, parsing the query into an abstract algebra and
then writing the algebraic query back to a SPARQL query. QCan-Label: We
parse the query, applying canonical labelling to the query variables and reorder-
ing triple patterns according to the order of the canonical labels. QCan-Full:
We apply the entire canonicalisation procedure, including parsing, labelling, ucq
rewriting, minimisation, etc. We can now address our research questions.

(RQ1:) Per Table 1, canonicalising with QCan-Label is 127 times slower
than the baseline Syntactic method, while QCan-Full is 365 times slower

https://github.com/RittoShadow/QCan
http://qcan.dcc.uchile.cl/

Canonicalisation of Monotone SPARQL Queries 613

than Syntactic and 2.7 times slower than QCan-Label; however, even for
the slowest method QCan-Full, the mean canonicalisation time per query is a
relatively modest 100 ms. In more detail, Fig. 2 provides boxplots for the runtimes
over the queries; we see that most queries under the Syntactic canonicalisation
generally take around 0.1–0.3 ms, while most queries under QCan-Label and
QCan-Full take 10–100 ms. We did, however, find queries requiring longer:
approximately 2.5 s in isolated worst cases for QCan-Full.

(RQ2:) Canonicalising with QCan-Label finds 2.7 times more duplicates
than the baseline Syntactic method. On the other hand, canonicalising with
QCan-Full finds no more duplicates than QCan-Label: we believe that this
observation can be explained by the relatively low ratio of true mq queries in
the logs [20], and the improbability of finding redundant patterns in real queries.
The largest set of duplicate queries found was 12 in the case of Syntactic and
40 in the case of QCan-Label and QCan-Full.

5.2 Synthetic Setting

Many queries found in the LSQ dataset are quite simple to canonicalise. In
order to see how the proposed canonicalisation methods perform for more com-
plex queries, we propose two categories of synthetic query: the first category is
designed to test the canonicalisation of cqs, particularly the canonical labelling
and intra-cq minimisation steps; the second category is designed to test the
canonicalisation of ucqs, particularly the ucq rewriting and inter-cq minimi-
sation steps. Both aim at testing performance rather than duplicates found.

Synthetic CQ Setting. In order to test the minimisation of cqs, we select diffi-
cult cases for the canonical labelling and core computation of graphs [12]. More
specifically, we select the following three (undirected) graph schemas:

2D grids: For k ≥ 2, the k-2D-grid contains k2 nodes, each with a coordinate
(x, y) ∈ N

2
1...k, where nodes with distance one are connected; the result is a

graph with 2(k2 − k) edges.
3D grids: For k ≥ 2, the k-3D-grid contains k3 nodes, each with a coordinate

(x, y, z) ∈ N
3
1...k, where nodes with distance one are connected; the result is

a graph with 3(k3 − k2) edges.
Miyazaki: This class of graphs was designed by Miyazaki [15] to enforce a worst-

case exponential behaviour in Nauty-style canonical labelling algorithms.
For k, each graph has 20k nodes and 30k edges.

To create cqs from these graphs, we represent each edge in the undirected
graph by a pair of triple patterns (vi, : p, vj), (vj , : p, vi), with vi, vj ∈ V and : p
a fixed IRI for all edges. In order to ensure that the canonicalisation involves
cq minimisation, we enclose the graph pattern in a SELECT DISTINCT v query,
which provides the most challenging case for canonicalisation: applying set
semantics and projecting (and thus “fixing”) a single query variable v. We then
run the Full canonicalisation feature, which for cqs involves computing the core

614 J. Salas and A. Hogan

10 20 30
10−1

101

103

k

T
im

e
(s
)

2D-Grid

2 4 6 8

102
103
104

k

3D-Grid

0 20 40
103.5

104

104.5

k

Miyazaki

Fig. 3. Runtimes for threes types of synthetic cqs

of the r-graph and applying canonical labelling. Note that under minimisation,
2D-Grid and 3D-Grid graphs collapse down to a core with a single undirected
edge, while Miyazaki graphs collapse down to a core with a 3-cycle.

In Fig. 3 we present the runtimes of the canonicalisation procedure, where
we highlight that the y-axis is presented in log scale. We see that instances of
2d-Grid for k ≤ 10 can be canonicalised in under a second. Beyond that, the
performance of canonicalisation lengthens to seconds, minutes and even hours.

Synthetic MQ Setting. We also performed tests creating mqs in CNF (joins of
unions) of the form (t1,1 ∪ . . . ∪ t1,n) �� . . . �� (tm,1 ∪ . . . ∪ tm,n), where m
is the number of joins, n is the number of unions, and ti,j is a triple pattern
sampled (with replacement) from a k-clique of triples with a fixed predicate
(such that k = m + n) to stress-test the performance of the canonicalisation
procedure, where each such query will be rewritten to a query of size O(nm).
Detailed results are available in the extended paper [20]; in summary, QCan-

Full succeeds up to m = 4, n = 8, taking about 7.4 h, or m = 8, n = 2, taking
3 min; for values of m = 8, n = 4 and beyond, canonicalisation fails.

6 Conclusions

This paper describes a method for canonicalising SPARQL (1.0) queries consid-
ering both set and bag semantics. This canonicalisation procedure – which is
sound for all queries and complete for monotone queries – obviates the need to
perform pairwise containment/equivalence checks in a list/stream of queries and
rather allows for using standard indexing techniques to find congruent queries.
The main use-cases we foresee are query caching, optimisation and log analysis.

Our method is based on (1) representing the SPARQL query as an RDF
graph, over which are applied (2) algebraic ucq rewritings, (3 – in the case of
set semantics) intra-cq and inter-cq normalisation, (4) canonical labelling of
variables and ordering of query syntax, before finally (5) converting the graph
back to a canonical SPARQL query. As such, by representing the query as a
graph, our method leverages existing graph canonicalisation frameworks [12].

Canonicalisation of Monotone SPARQL Queries 615

Though the worst-case complexity of the algorithm is doubly-exponential,
experiments show that canonicalisation is feasible for a large collection of real-
world SPARQL queries taken from endpoint logs. Furthermore, we show that the
number of duplicates detected doubles over baseline syntactic methods. In more
challenging experiments involving synthetic settings, however, we quickly start
to encounter doubly-exponential behaviour, where the canonicalisation method
starts to reach its practical limits. Still, our experiments for real-world queries
suggests that such difficult cases do not arise often in practice.

In future work, we plan to extend our methods to consider other query fea-
tures of SPARQL (1.1), such as subqueries, property paths, negation, and so
forth; we also intend to investigate further into the popular OPTIONAL operator.

Acknowledgements. The work was supported by the Millennium Institute for Foun-
dational Research on Data (IMFD) and by Fondecyt Grant No. 1181896.

References

1. Angles, R., Gutierrez, C.: The multiset semantics of SPARQL patterns. In: Groth,
P., et al. (eds.) ISWC 2016. LNCS, vol. 9981, pp. 20–36. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46523-4 2

2. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL web-
querying infrastructure: ready for action? In: Alani, H., et al. (eds.) ISWC 2013.
LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-41338-4 18

3. Arias Gallego, M., Fernández, J.D., Mart́ınez-Prieto, M.A., de la Fuente, P.: An
empirical study of real-world SPARQL queries. In: Usage Analysis and the Web of
Data (USEWOD) (2011)

4. Chaudhuri, S., Vardi, M.Y.: Optimization of real conjunctive queries. In: Principles
of Database Systems (PODS), pp. 59–70. ACM Press (1993)

5. Chekol, M.W., Euzenat, J., Genevès, P., Layäıda, N.: SPARQL query containment
under SHI axioms. In: AAAI Conference on Artificial Intelligence (2012)

6. Wudage Chekol, M., Euzenat, J., Genevès, P., Layäıda, N.: Evaluating and bench-
marking SPARQL query containment solvers. In: Alani, H., et al. (eds.) ISWC
2013. LNCS, vol. 8219, pp. 408–423. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41338-4 26

7. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 Concepts and Abstract Syntax.
W3C Recommendation, February 2014. http://www.w3.org/TR/rdf11-concepts/

8. Gutierrez, C., Hurtado, C.A., Mendelzon, A.O., Pérez, J.: Foundations of semantic
web databases. J. Comput. Syst. Sci. 77(3), 520–541 (2011)

9. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language. W3C
Recommendation, March 2013. http://www.w3.org/TR/sparql11-query/

10. Hayes, P., Patel-Schneider, P.F.: RDF 1.1 Semantics. W3C Recommendation,
February 2014. http://www.w3.org/TR/rdf11-mt/

11. Hogan, A.: Skolemising blank nodes while preserving isomorphism. In: World Wide
Web Conference (WWW), pp. 430–440. ACM (2015)

12. Hogan, A.: Canonical forms for isomorphic and equivalent RDF graphs: algorithms
for leaning and labelling blank nodes. ACM TWeb 11(4), 22:1–22:62 (2017)

https://doi.org/10.1007/978-3-319-46523-4_2
https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1007/978-3-642-41338-4_18
https://doi.org/10.1007/978-3-642-41338-4_26
https://doi.org/10.1007/978-3-642-41338-4_26
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf11-mt/

616 J. Salas and A. Hogan

13. Kaminski, M., Kostylev, E.V.: Beyond well-designed SPARQL. In: International
Conference on Database Theory (ICDT), pp. 5:1–5:18 (2016)

14. Letelier, A., Pérez, J., Pichler, R., Skritek, S.: Static analysis and optimization of
semantic web queries. ACM Trans. Database Syst. 38(4), 25:1–25:45 (2013)

15. Miyazaki, T.: The complexity of McKay’s canonical labeling algorithm. In: Groups
and Computation, II, pp. 239–256 (1997)

16. Papailiou, N., Tsoumakos, D., Karras, P., Koziris, N.: Graph-aware, workload-
adaptive SPARQL query caching. In: ACM SIGMOD International Conference on
Management of Data, pp. 1777–1792. ACM (2015)

17. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (2009)

18. Pichler, R., Skritek, S.: Containment and equivalence of well-designed SPARQL.
In: Principles of Database Systems (PODS), pp. 39–50 (2014)

19. Sagiv, Y., Yannakakis, M.: Equivalences among relational expressions with the
union and difference operators. J. ACM 27(4), 633–655 (1980)

20. Salas, J., Hogan, A.: Canonicalisation of monotone SPARQL queries. Technical
report. http://aidanhogan.com/qcan/extended.pdf

21. Saleem, M., Ali, M.I., Hogan, A., Mehmood, Q., Ngomo, A.-C.N.: LSQ: the linked
SPARQL queries dataset. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367,
pp. 261–269. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-
6 15

22. Saleem, M., Stadler, C., Mehmood, Q., Lehmann, J., Ngomo, A.N.: SQCFrame-
work: SPARQL query containment benchmark generation framework. In: Knowl-
edge Capture Conference (K-CAP), pp. 28:1–28:8 (2017)

23. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization.
In: International Conference on Database Theory (ICDT), pp. 4–33. ACM (2010)

24. Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking database rep-
resentations of RDF/S stores. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A.
(eds.) ISWC 2005. LNCS, vol. 3729, pp. 685–701. Springer, Heidelberg (2005).
https://doi.org/10.1007/11574620 49

http://aidanhogan.com/qcan/extended.pdf
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1007/978-3-319-25010-6_15
https://doi.org/10.1007/11574620_49

Cross-Lingual Classification of Crisis Data

Prashant Khare1(B), Grégoire Burel1(B), Diana Maynard2(B),
and Harith Alani1(B)

1 Knowledge Media Institute, The Open University, Milton Keynes, UK
{prashant.khare,g.burel,h.alani}@open.ac.uk

2 Department of Computer Science, University of Sheffield, Sheffield, UK
d.maynard@sheffield.ac.uk

Abstract. Many citizens nowadays flock to social media during crises to
share or acquire the latest information about the event. Due to the sheer
volume of data typically circulated during such events, it is necessary to
be able to efficiently filter out irrelevant posts, thus focusing attention
on the posts that are truly relevant to the crisis. Current methods for
classifying the relevance of posts to a crisis or set of crises typically
struggle to deal with posts in different languages, and it is not viable
during rapidly evolving crisis situations to train new models for each
language. In this paper we test statistical and semantic classification
approaches on cross-lingual datasets from 30 crisis events, consisting of
posts written mainly in English, Spanish, and Italian. We experiment
with scenarios where the model is trained on one language and tested on
another, and where the data is translated to a single language. We show
that the addition of semantic features extracted from external knowledge
bases improve accuracy over a purely statistical model.

Keywords: Semantics · Cross-lingual · Multilingual
Crisis informatics · Tweet classification

1 Introduction

Social media platforms have become prime sources of information during crises,
particularly concerning rescue and relief requests. During Hurricane Harvey, over
7 million tweets were posted about the disaster in just over a month1, while over
20 million tweets with the words #sandy and #hurricane were posted in just
a few days during the Hurricane Sandy disaster.2 Sharing such vital informa-
tion on social media creates real opportunities for increasing citizens’ situational
awareness of the crisis, and for authorities and relief agencies to target their
efforts more efficiently [23]. However, with such opportunities come real chal-
lenges, such as the handling of such large and rapid volumes of posts, which

1 https://digital.library.unt.edu/ark:/67531/metadc993940/.
2 Mashable: Sandy Sparks 20 Million Tweets http://mashable.com/2012/11/02/

hurricane-sandy-twitter.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 617–633, 2018.
https://doi.org/10.1007/978-3-030-00671-6_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_36&domain=pdf
https://digital.library.unt.edu/ark:/67531/metadc993940/
http://mashable.com/2012/11/02/hurricane-sandy-twitter
http://mashable.com/2012/11/02/hurricane-sandy-twitter

618 P. Khare et al.

renders manual processing highly inadequate [7]. The problem is exacerbated
by the findings that many of these posts bear little relevance to the crisis, even
those that use the dedicated hashtags [11].

Because of these challenges, there is an increasingly desperate need for tools
capable of automatically assessing crisis information relevancy, to filter out irrel-
evant posts quickly during a crisis, and thus reducing the load to only those
posts that matter. Recent research explored various classification methods of cri-
sis data from social media platforms, which aimed at automatically categorising
them into crisis-related or not related using supervised [10,13,21,25] and unsu-
pervised [18] machine learning approaches. Most of these methods use statistical
features, such as n-grams, text length, POS, and hashtags.

One of the problems with such approaches is their bias towards the data on
which they are trained. This means that classification accuracy drops consider-
ably when the data changes, for example when the crisis is of a different type, or
when the posts are in a different language, in comparison to the crisis type and
language the model was trained on. Training the models for all possible crisis
types and languages is infeasible due to time and expense.

In our previous work, we showed that adding semantic features increases the
classification accuracy when training the model on one type of crisis (e.g. floods),
and applying it to another (e.g. bushfires) [11]. In this paper, we tackle the
problem of language, where the model is trained on one language (e.g. English),
but the incoming posts are in another (e.g. Spanish). We explore the role of
adding semantics in increasing the multilingual fitness of supervised models for
classifying the relevancy of crisis information.

The main contributions of this paper can be summarised as follow:

1. We build a statistical-semantic classification model with semantics extracted
from BabelNet and DBpedia.

2. We experiment with classifying relevancy of tweets from 30 crisis events in 3
languages (English, Spanish, and Italian).

3. We run relevancy classifiers with datasets translated into a single language,
as well as with cross-lingual datasets.

4. We show that adding semantics increases cross-lingual classification accuracy
by 8.26%–9.07% in average F1 in comparison to traditional statistical models.

5. We show that when datasets are translated into the same language, only the
model that uses BabelNet semantics outperforms the statistical model, by
3.75%.

The paper is structured as follows: Sect. 2 summarises related work. Sections 3
and 4 describe our approach and experiments on classifying cross-lingual crisis
data using different semantic features. Results are reported in Sects. 4.2 and 4.3.
Discussion and conclusions are in Sects. 5 and 6.

2 Related Work

Classification of social media messages about crises and disasters in terms of their
relevancy has been addressed already by a number of researchers [2,3,9–12,22,

Cross-Lingual Classification of Crisis Data 619

25]. The classification types can differ, however. Some classify simply as relevant
(related) or not; some include a partly relevant category; while others include the
notion of informativeness (where informative is taken to mean providing useful
information about the event). For example, Olteanu et al. [16] use the categories
related and informative, related but not informative, and not related. Others treat
relevance and informativeness as two separate tasks [5].

Methods for this kind of classification use a variety of supervised machine
learning approaches, usually relying on linguistic and statistical features such as
POS tags, user mentions, post length, and hashtags [8–10,19,21]. Approaches
range from traditional classification methods such as Support Vector Machines
(SVM), Naive Bayes, and Conditional Random Fields [9,17,21] to the more
recent use of deep learning and word embeddings [3].

One of the drawbacks to these approaches is their lack of adaptability to
new kinds of data. [9] took early steps in this area by training a model on
messages about the Joplin 2011 tornado and applying it to messages about
Hurricane Sandy, although the two events are still quite similar. [12] took this
further by using semantic information to adapt a relevance classifier to new crisis
events, using 26 different events of varying types, and showed that the addition
of semantics increases the adaptability of the classifier to new, unseen, types
of crisis events. In this paper, we develop that approach further by examining
whether semantic information can help not just with new events, but also with
events in different languages.

In general, adapting classification tools to different languages is a problem
for many NLP tasks., since it is often difficult to acquire sufficient data to train
separate models on each language. This is especially true for tasks such as sen-
timent analysis, where leveraging information from data in different languages
is required. In that field, two main solutions have been explored: either trans-
lating the data into a single language (normally English) and using this single
dataset for training and/or testing [1]; or training a model using weakly-labelled
data without supervision [6]. Severyn et al. [20] improved performance of sen-
timent classification using distant pre-training of a CNN, consisting of infer-
ring weak labels (emoticons) from a large set of multilingual tweets, followed
by additional supervised training on a smaller set of manually annotated labels.
In the other direction, annotation resources (such as sentiment lexicons) can
be transferred from English into the target language to augment the training
resources available [14]. A number of other approaches rely on having a set
of correspondences between English and the target language(s), such as those
which build distributed representations of words in multiple languages, e.g. using
Wikipedia [24].

We test two similar approaches in this paper for the classification of informa-
tion relevancy in crisis situations: (a) translate all datasets into a single language;
(b) make use of high-quality feature information in English (and other languages)
to supplement the training data of our target language(s).

As far as we know, while these kinds of language adaptation methods have
been frequently applied to sentiment analysis, they have not been applied to cri-

620 P. Khare et al.

sis classification methods. Our work extends mainly on the previous work using
hierarchical semantics from knowledge graphs to perform crisis-information clas-
sification through a supervised machine learning approach [11,12], by generating
statistical and semantic features for all relevant languages and then using this
to train the models, regardless of which language is required.

3 Experiment Setup

Our aim is to train and validate a binary classifier that can automatically differ-
entiate between crisis-related and not related tweets in cross-lingual scenarios.
We generate the statistical and semantic features of tweets from different lan-
guages and then train the machine learning models accordingly. In the next
sections we detail: (i) the datasets used in our experiments; (ii) the statistical
and semantic sets of features used; and (iii) the classifier selection process.

3.1 Datasets

For this study, we chose datasets from multiple sources. From the CrisisLex
platform3 we selected 3 datasets: CrisisLexT26, ChileEarthquakeT1, and SOSI-
talyT4. CrisisLexT26 is an annotated dataset of 26 different crisis events that
occurred between 2012 and 2013. Each event has 1000 labeled tweets, with the
labels ‘Related and Informative’, ‘Related but not Informative’, ‘Not Related’
and ‘Not Applicable’. These events occurred around the world and hence cov-
ered a range of languages. ChileEarthquakeT1 is a dataset of 2000 tweets in
Spanish (from the Chilean earthquake of 2010), where all the tweets are labeled
by relatedness (relevant or not relevant). The SOSItalyT4 set is a collection of
tweets spanning 4 different natural disasters which occurred in Italy between
2009 and 2014, with almost 5.6k tweets labeled by the type of information they
convey (“damage”, “no damage”, or “not relevant”). Based on the guidelines of
the labeling, both “damage” and “no damage” indicate relevance.

We chose all the labeled tweets from these 3 collections. Next, we con-
verged some of the labels, since we aim to generate a binary classifier. From
CrisisLexT26, we merged ‘Related and Informative’ and ‘Related but not Infor-
mative’ into the Related category, and merged Not Related abd Not Applicable
into the Not Related category. For SOSItalyT4 we add the tweets labeled as
“damage” and “no damage” to the “Related” category, and the “not relevant”
to the “Not Related” category.

Finally, we removed all duplicate instances from the individual datasets to
reduce content redundancy, by comparing the tweets in pairs after removing the
special characters, URLs, and user-handles (i.e., ‘@’ mentions). This resulted in
21,378 Related and 2965 Not Related documents in the CrisisLexT26 set, 924
Related and 1238 Not Related in the Chile Earthquake set, and 4372 Related and
878 Not Related in the SOSItalyT4 set.

3 crisislex.org/.

http://www.crisislex.org/

Cross-Lingual Classification of Crisis Data 621

Next, we applied 3 different language detection APIs: detectlanguage4,
langdetect5, and TextBlob6. We labeled the language of the tweet where there
was agreement by at least 2 of the APIs. The entire data constituted more
than 30 languages, where English (en), Spanish (es), and Italian (it) comprised
almost 92% of the collection (29,141 out of 31755). Considering this distribu-
tion, we focused our study on these 3 languages. To this end, we first created
an unbalanced set (in terms of language) for training the classifier (see Table 1-
unbalanced). In order to reduce the imbalance between Related and Not Related
tweets, we thus only selected 8,146 tweets in total out of the 29,141 tweets. Next,
we create a balanced version of the corpus where we split the data into a training
and test set for each language, with equal distribution throughout, to remove
any bias (Table 1- balanced).

Table 1. Data size for English(en), Spanish(es), and Italian(it)

Language Unbalanced Balanced

Train Test

Not related Related Not related Related Not related Related

English (en) 2060 2298 612 612 201 200

Italian (it) 813 812 612 612 201 200

Spanish (es) 1039 1124 612 612 201 200

Total 3912 4234 1836 1836 603 600

We also provide, in Table 2, a breakdown of all the original datasets to give
an overview of the language distribution within each crisis event set.

3.2 Feature Engineering

We define two types of feature sets: statistical and semantic. Statistical features
are widely used in various text classification problems [8–10,13,21,25] and so we
consider these as our baseline approach. These capture the quantifiable statistical
properties and the linguistic features of a textual post, whereas semantic features
determine the named entities and associated hierarchical semantic information.

Statistical Features were extracted for each post in the dataset, following
previous work, as follows:

– Number of nouns: nouns refer to entities occurring in the posts, such as people,
locations, or resources involved in the crisis event [8,9,21].

– Number of verbs: these indicate actions occurring in a crisis event [8,9,21].

4 https://detectlanguage.com.
5 https://pypi.python.org/pypi/langdetect.
6 http://textblob.readthedocs.io/en/dev/.

https://detectlanguage.com
https://pypi.python.org/pypi/langdetect
http://textblob.readthedocs.io/en/dev/

622 P. Khare et al.

Table 2. Language distribution (in %) in crisis events data

Event Language (%) Event Language (%)

en it es Other en it es Other

Colorado Wildfire 99.30 0 0.09 0.61 CostaRica Quake 45.67 1.96 44.03 8.33

Guatemala Quake 23.84 1.20 69.56 5.40 Italy Quake 18.53 71.10 9.70 0.77

Philippines Flood 91.31 0 0.98 7.71 Typhoon Pablo 81.22 0.22 4.40 14.17

Venezuela Refinery 8.93 0.22 89.8 1.06 Alberta Flood 99.48 0 0 0.52

Australia Bushfire 98.94 0.0 0.10 0.97 Bohol E’quake 86.5 0.12 0.12 13.25

Boston Bombing 93.22 0.21 2.12 4.34 Brazil Club Fire 31.6 0 1.79 66.61

Colorado Floods 99.67 0 0.11 0.22 Glasgow Helicopter 99.86 0 0.11 0.03

LA Airport Shoot 97.07 0.11 1.30 1.52 LacMegantic Train 52.57 0.21 1.16 46.06

Manila Flood 72.40 0.22 0.22 27.16 NY Train Crash 99.86 0.14 0 0

Queensland Flood 99.56 0.09 0 0.35 Russia Meteor 87.56 0.64 2.56 9.24

Sardinia Flood 10.93 88.49 0.12 0.46 Savar Building 86.90 0.82 5.19 7.09

Singapore Haze 97.47 0.0 0 2.53 Spain Train Crash 43.13 0 54.67 2.20

Typhoon Yolanda 91.59 0.11 1.83 6.47 Texas Explosion 94.99 0 3.00 2.01

L’Aquila Quake 4.89 88.58 1.43 5.10 Emilia Quake 1.02 87.99 0.34 10.65

Genova Flood 2.09 95.12 0 2.79 Chile Quake 10.82 0.19 82.00 6.99

– Number of pronouns: similar to nouns, pronouns include entities such as peo-
ple, locations, or resources.

– Tweet Length: total number of characters in a post. The length of a post
could indicate the amount of information [8,9,19].

– Number of words: similar to Tweet Length, number of words may also be an
indicator of the amount of information [9,10].

– Number of Hashtags: these reflect the themes of a post, and are manually
generated by the authors of the posts [8–10].

– Unigrams: the entire data (text of each post) is tokenised and represented as
unigrams [8–10,13,21,25].

The spaCy library7 is used to extract the Part Of Speech (POS) features (e.g.,
nouns, verbs, pronouns). Unigrams for the data are extracted with the regexp
tokenizer provided in NLTK.8 We removed stop words using a dedicated list.9

Finally, we applied the TF-IDF vector normalisatiton on the unigrams in order
to weight the importance of tokens in the documents according to their relative
importance within the dataset, and represent the entire data as a set of vectors.
This results in a vocabulary size in unigrams (for each language in the balanced
data, combining test and train data) of en-7495, es-7121, and it-4882.

Semantic Features are curated to generalise the information representation
of the crisis situations across various languages. Semantic features are designed
to be broader in context and less crisis-specific, in comparison to the actual text
of the posts, thereby helping to resolve the problem of data sparsity. To this
7 SpaCy Library, https://spacy.io.
8 http://www.nltk.org/ modules/nltk/tokenize/regexp.html.
9 https://raw.githubusercontent.com/6/stopwords-json/master/stopwords-all.json.

https://spacy.io
http://www.nltk.org/_modules/nltk/tokenize/regexp.html
https://raw.githubusercontent.com/6/stopwords-json/master/stopwords-all.json

Cross-Lingual Classification of Crisis Data 623

end, we use the Named Entity Recognition (NER) service Babelfy10, and two
different knowledge bases for creating these features: BabelNet11 and DBpedia12.
Note that the semantics extracted by these tools are in English, and hence they
bring the multilingual datasets a bit closer linguistically. The following semantic
information is extracted:

– Babelfy Entities: Babelfy extracts the entities from each post in different lan-
guages (e.g., news, sadness, terremoto), and disambiguates them with respect
to the BabelNet [15] knowledge base.

– BabelNet Senses (English): for each entity extracted from Babelfy, the
English labels associated with the entities are extracted (e.g. news→news,
sadness→sadness, terremoto→earthquake).

– BabelNet Hypernyms (English): for each entity, the direct hypernyms (at
distance-1) are extracted from BabelNet and the main sense of each hypernym
is retrieved in English. From our original entities, we now get broadcasting,
communication, and emotion).

– DBpedia Properties: for each annotated entity we also get a DBpedia URI
from Babelfy. The following properties associated with the DBpedia URIs
are queried via SPARQL: dct:subject, rdfs:label (only in English),
rdf:type (only of the type http://schema.org and http://dbpedia.org/
ontology), dbo:city, dbp:state, dbo:state, dbp:country and dbo:country
(the location properties fluctuate between dbp and dbo) (e.g., dbc:Grief,
dbc:Emotions, dbr:Sadness).

The inclusion of semantic features such as hypernyms has been shown to
enhance the semantic and contextual representation of a document by correlat-
ing different entities, from different languages, with a similar context [12]. For
example, the entities policeman, polićıa (Spanish for police), fireman, and MP
(Military Police) all have a common hypernym (English): defender. By general-
ising the semantics in one language, English, we avoid the sparsity that often
results from having various morphological forms of entities across different lan-
guages (see Table 3 for an example). Similarly, the English words floods and
earthquake both have natural disaster as a hypernym, as does inondazione in
Italian, ensuring that we know the Italian word is also crisis relevant. Adding
the semantic information, through BabelNet Semantics, results in a vocabulary
size in unigrams of: en-12604, es-11791, and it-8544.

Finally, we extract DBpedia properties of the entities (see Table 3) in the
form of subject, label, and location-specific properties. This semantic expan-
sion of the dataset forms the DBpedia Semantics component, and results in a
vocabulary size in unigrams of: en-21905, es-15388, it-10674. The two types of
semantic features (BabelNet and DBpedia) are used both individually and also
in combination, to develop the binary classifier.

10 http://babelfy.org.
11 http://babelnet.org.
12 http://dbpedia.org.

http://schema.org
http://dbpedia.org/ontology
http://dbpedia.org/ontology
http://babelfy.org
http://babelnet.org
http://dbpedia.org

624 P. Khare et al.

Table 3. Semantic expansion with BabelNet and DBpedia semantics

Feature Post A Post B

‘#WorldNews! 15 feared
dead and 100 people could
be missing in
#Guatemala after quake
http://t.co/uHNST8Dz’

‘Van 48 muertos por
terremoto en Guatemala
http://t.co/nAGG3SUi via
@ejeCentral’

Babelfy entities feared, dead, people,
missing, quake

muertos, terremoto

BabelNet sense
(English)

fear, dead, citizenry,
earthquake

slain, earthquake

BabelNet hypernyms
(English)

geological phenomenon,
natural disaster, group

geological phenomenon,
natural disaster, dead

DBpedia properties dbr:Death,
dbc:Communication,
dbr:News,
dbc:Geological hazards,
dbc:Seismology,
dbr:Earthquake

dbc:Geological hazards,
dbc:Seismology,
dbr:Earthquake, dbr:Death

Google translation To es-‘ #Noticias del
mundo! 15 muertos
temidos y 100 personas
podŕıan estar
desaparecidas en
#Guatemala después
terremoto
http://t.co/uHNST8Dz’

To en-‘48 people killed by
earthquake in Guatemala
http://t.co/nAGG3SUi via
@ejeCentral’

3.3 Classifier Selection

In order to address the binary classification problem, the high dimensionality
resulting from unigrams of tweets and semantic features, and the need to avoid
overfitting, were taken into consideration. The training data instances (which var-
ied between 1200–4500 under different experimental setups) were much smaller in
size than the large dimensionality of the features (ranging between 9000–20000).
We therefore opted for a Support Vector Machine (SVM) with a Linear Kernel
[4] as the classification model. As discussed in [3,11], SVM performs better than
other common approaches such as classification and regression trees (CART)
and Naive Bayes in similar classification problems. The work by [3] also shows
almost identical performance (in terms of accuracy) of SVM and CNN models
in classification of the tweets. In [11], we showed the appropriateness of SVM
Linear kernel over RBF kernel, Polynomial kernel, and Logistic Regression in
such a classification scenario.

Cross-Lingual Classification of Crisis Data 625

4 Cross-Lingual Classification of Crisis-Information

We demonstrate and validate our classification models through multiple experi-
ments designed to test various criteria and models. We experiment on the mod-
els created with the following combinations of statistical and semantic features,
thereby enabling us to assess the impact of each classification approach:

– SF : uses only the statistical features; this model is our baseline.
– SF+SemBN : combines statistical features with semantic features from Babel-
Net (entity sense, and their hypernyms in English, as explained in Sect. 3.2).

– SF+SemDB : combines statistical features with semantic features from DBpe-
dia (label in English, type, and other DBpedia properties).

– SF+SemBNDB : combines statistical features with semantic features from
BabelNet and DBpedia.

We apply and validate the models above in the following three experiments:

Monolingual Classification with Monolingual Models: In this experiment,
we train the model on one language and test it on data in the same language.
This tests the value of adding semantics to the classifier over the baseline when
the language is the same.

Cross-lingual Classification with Monolingual Models: Here we evaluate
the classifiers on crisis information in languages that were not observed in the
training data. For example, we evaluate the classifier on Italian when the classifier
was trained on English or Spanish.

Cross-lingual Classification with Machine Translation: In the third exper-
iment, we evaluate the classifier when the model is trained on data in a certain
language (e.g. Spanish), and used to classify information that has been automati-
cally translated from other languages (e.g. Italian and English) into the language
of the training data. The translation is performed using the Google Translate
API.13 To perform this experiment, we first translate the data from each of our
three languages in turn into the other two languages.

All experiments are performed on both (i) the unbalanced dataset, to adhere
to the natural distribution of these languages; and (ii) the balanced dataset, to
remove bias towards any particular language which is caused by the uneven
distribution of these languages in our datasets. By default, we refer to results
from the balanced dataset unless we specifically mention the unbalanced one.
Results are reported in terms of Precision (P), Recall (R), F1 score (F1), and
ΔF1 (% change over baseline (semantic model F1−SF F1)∗100

SF F1
, where SF F1 is the

F1 score in SF model).

13 https://cloud.google.com/translate/.

https://cloud.google.com/translate/

626 P. Khare et al.

4.1 Results: Monolingual Classification with Monolingual Models

For the monolingual classification, a 5-fold cross validation approach was adopted
and applied to individual datasets of English, Italian, and Spanish. Results in
Table 4 show that adding semantics has no impact compared with the baseline
(SF model) when the language of training and testing is the same.

Table 4. Monolingual Classification Models – 5-fold cross-validation (best F1 score
is highlighted for each model). en, it, and es refer to English, Italian, and Spanish
respectively.

Unbalanced Data (from Table 1-unbalanced)

SF SF+SemBN SF+SemDB SF+SemBNDB

Test Size P R F1 P R F1 ΔF1 P R F1 ΔF1 P R F ΔF1

en 4358 0.833 0.856 0.844 0.84 0.858 0.849 0.59 0.826 0.844 0.835 -1.07 0.829 0.845 0.836 -0.95

it 1625 0.703 0.721 0.711 0.712 0.714 0.713 0.28 0.696 0.706 0.701 -1.4 0.702 0.715 0.708 -0.42

es 2163 0.801 0.808 0.804 0.812 0.809 0.810 0.75 0.799 0.795 0.797 -0.87 0.798 0.798 0.798 -0.75

Avg. 0.786 0.791 0.54 0.778 -1.1 0.781 -0.71

Balanced Data (from Table 1-balanced)

SF SF+SemBN SF+SemDB SF+SemBNDB

Test Size P R F1 P R F1 ΔF1 P R F1 ΔF1 P R F ΔF1

en 1224 0.832 0.830 0.831 0.835 0.805 0.820 -1.32 0.835 0.799 0.816 -1.80 0.829 0.808 0.818 -1.56

it 1224 0.690 0.729 0.709 0.703 0.722 0.712 0.42 0.689 0.716 0.702 -0.99 0.708 0.718 0.712 0.42

es 1224 0.798 0.765 0.781 0.794 0.783 0.789 1.02 0.779 0.754 0.766 -1.92 0.780 0.773 0.776 -0.64

Avg. 0.774 0.774 0.04 0.761 -1.57 0.769 -0.59

4.2 Results: Cross-Lingual Classification with Monolingual Models

This experiment involves training on data in one language and testing on another.
Results, shown in Table 5, indicate that when using the statistical features alone
(SF - the baseline), average F1 is 0.557. When semantics are included in the
classifier, average classification performance improvement (ΔF1) is by 8.26%–
9.07%, with a standard deviation (SDV) between 10.9%–13.86% across all three
semantic models, for all the test cases. Similarly, when applied to unbalanced
datasets, performance increases by 7.44%–9.78%.

While the highest gains are observed in SF+SemBNDB, the SF+SemBN
seems to exhibit a consistent performance by improving over the SF baseline in
5 out of 6 cross-lingual classification tests, while SF+SemDB and SF+SemBNDB
each show improvement in 4 out of 6 tests.

4.3 Results: Cross-Lingual Crisis Classification with Machine
Translation

The results from cross-lingual classification after language translation are pre-
sented in Table 6. For each training dataset, we translate the test data into the

Cross-Lingual Classification of Crisis Data 627

Table 5. Cross-Lingual Classification Models (best F1 score is highlighted for each
model).

Unbalanced Data (from Table 1- unbalanced)

Size SF SF+SemBN SF+SemDB SF+SemBNDB

Train Test P R F1 P R F1 ΔF1 P R F1 ΔF1 P R F ΔF1

en 4358

it 1625 0.576 0.522 0.417 0.598 0.562 0.518 24.2 0.595 0.576 0.553 32.6 0.609 0.588 0.568 36.2

es 2163 0.674 0.633 0.604 0.663 0.654 0.645 6.79 0.653 0.649 0.643 6.46 0.649 0.641 0.633 4.8

it 1625

en 4358 0.469 0.474 0.449 0.547 0.545 0.538 19.82 0.508 0.508 0.504 12.25 0.516 0.516 0.516 14.9

es 2163 0.635 0.610 0.586 0.643 0.627 0.612 4.43 0.601 0.60 0.596 1.70 0.625 0.620 0.614 4.78

es 2163

en 4358 0.633 0.62 0.604 0.60 0.572 0.532 -11.9 0.623 0.618 0.610 0.99 0.606 0.592 0.571 -5.46

it 1625 0.536 0.533 0.521 0.529 0.529 0.528 1.34 0.526 0.526 0.526 0.96 0.539 0.539 0.539 9.78

Avg. 0.530 0.562 7.44 0.572 9.16 0.573 9.78

SDV 0.082 0.053 13.08 0.053 12.3 0.044 14.47

Balanced Data (from Table 1-balanced)

Size SF SF+SemBN SF+SemDB SF+SemBNDB

Train Test P R F1 P R F1 ΔF1 P R F1 ΔF1 P R F ΔF1

en 1224

it 401 0.539 0.515 0.429 0.588 0.571 0.549 28 0.569 0.568 0.568 32.4 0.578 0.576 0.572 33.3

es 401 0.689 0.688 0.688 0.669 0.668 0.668 -2.9 0.647 0.644 0.641 -6.8 0.666 0.661 0.659 -4.2

it 1224

en 401 0.521 0.521 0.521 0.581 0.581 0.580 11.3 0.558 0.552 0.539 3.5 0.550 0.546 0.538 3.3

es 401 0.655 0.646 0.640 0.672 0.655 0.647 1.1 0.638 0.636 0.635 -0.78 0.637 0.633 0.631 -1.4

es 1224

en 401 0.609 0.593 0.578 0.657 0.620 0.597 3.3 0.667 0.666 0.665 15 0.660 0.653 0.650 12.4

it 401 0.529 0.522 0.489 0.534 0.534 0.532 8.8 0.551 0.546 0.533 9 0.555 0.551 0.543 11

Avg. 0.557 0.596 8.26 0.597 8.71 0.599 9.07

SDV 0.096 0.053 10.94 0.057 13.86 0.054 13.6

language of the training data. For example, when the training data is in English
(en), the Italian data is translated to English, and is represented in the table
as it2en. We aim to analyse two aspects here: (i) how semantics impacts the
classifier on the translated content; and (ii) how the classifiers perform over the
translated data in comparison to cross-lingual classifiers, as seen in Sect. 4.2.

From the results in Table 6, we see that based on average % change ΔF1 of
all translated test cases (en2it,es2it, etc.), SF+SemBN outperforms the statis-
tical classifier (SF) by 3.75% (balanced data) with a standard deviation (SDV)
of 4.57%. However, the other two semantic feature models (SF+SemDB and
SF+SemBNDB) do not improve over the statistical features when the test and
training data are both in the same language (after translation). The SF+SemBN
shows improvement in 4 out of 6 translated test cases, except when trained on
Spanish (es).

Comparing the best performing model from translated data, i.e. SF+SemBN,
and overall baseline (SF model from cross-lingual classification Table 5-balanced),
the SF+SemBN (translation) has an average F1 gain (ΔF) across each translated
test case over the baseline of 15.23% (with a SDV 12.6%). For example, compare

628 P. Khare et al.

Table 6. Cross-Lingual Crisis Classification with Machine Translation (best F1 score
is highlighted for each event).

Unbalanced Data (from Table 1- unbalanced)

Size SF SF+SemBN SF+SemDB SF+SemBNDB

Train Test P R F1 P R F1 ΔF1 P R F1 ΔF1 P R F ΔF1

en 4358

it2en 1625 0.644 0.613 0.591 0.635 0.611 0.593 0.34 0.582 0.568 0.548 -7.27 0.597 0.580 0.561 -5.0

es2en 2163 0.681 0.681 0.681 0.667 0.667 0.667 -2.0 0.669 0.661 0.659 -3.2 0.664 0.661 0.660 -3.1

it 1625

en2it 4358 0.609 0.601 0.588 0.636 0.618 0.597 1.53 0.570 0.570 0.569 -3.2 0.575 0.574 0.571 -2.9

es2it 2163 0.647 0.629 0.612 0.675 0.636 0.607 -0.81 0.609 0.595 0.578 -5.5 0.620 0.603 0.583 -4.7

es 2163

en2es 4358 0.643 0.626 0.609 0.661 0.634 0.610 0.16 0.654 0.654 0.653 7.2 0.649 0.648 0.646 6.07

it2es 1625 0.585 0.584 0.583 0.590 0.590 0.589 1.03 0.581 0.580 0.580 -0.51 0.586 0.585 0.584 0.17

Avg. 0.611 0.611 0.03 0.598 -2.1 0.60 -1.6

SDV 0.036 0.029 1.3 0.046 5.1 0.04 4.2

Balanced Data (from Table 1-balanced)

Size SF SF+SemBN SF+SemDB SF+SemBNDB

Train Test P R F1 P R F1 ΔF1 P R F1 ΔF1 P R F ΔF1

en 1224

it2en 401 0.624 0.583 0.546 0.622 0.598 0.577 5.7 0.561 0.558 0.554 1.46 0.594 0.588 0.581 6.4

es2en 401 0.675 0.671 0.669 0.704 0.696 0.693 3.6 0.701 0.671 0.658 -1.6 0.695 0.674 0.664 -0.74

it 1224

en2it 401 0.583 0.578 0.572 0.639 0.631 0.625 9.3 0.547 0.546 0.545 -4.7 0.551 0.551 0.551 -3.6

es2it 401 0.638 0.621 0.609 0.703 0.668 0.653 7.2 0.619 0.603 0.590 -3.1 0.610 0.596 0.582 -4.4

es 1224

en2es 401 0.686 0.678 0.675 0.691 0.670 0.661 -2.0 0.691 0.691 0.691 2.3 0.683 0.683 0.683 1.2

it2es 401 0.594 0.594 0.593 0.586 0.586 0.586 -1.2 0.580 0.576 0.570 -3.9 0.579 0.576 0.571 -3.7

Avg. 0.610 0.633 3.75 0.601 -1.59 0.605 -0.83

SDV 0.052 0.045 4.57 0.059 2.9 0.054 4.14

ΔF between it-en2it in SF+SemBN in the translated model and it-en in SF
in the cross-lingual model, similarly for the other 5 test cases. Based on an
average of ΔF across all the test cases, the SF+SemBN (from translation) and
SF+SemBN (from cross-lingual models), both perform well over the baseline (SF
from cross-lingual model), by 8.26% and 15.23% respectively.

4.4 Cross-Lingual Ranked Feature Correlation Analysis

To understand the impact of the semantics and the translation on the discrim-
inatory nature of the cross-lingual data from different languages, we analysed
the correlation between ranked features of each dataset under different models.
For this, we considered the balanced datasets across each language and took the
entire data by merging the training and test data for each language. Next, we
calculated Information Gain over each dataset (English (en), Spanish, (es), and
Italian (it)), across all 4 models (SF, SF+SemBN, SF+SemDB, SF+SemBNDB).
We also calculated Information Gain over the translated datasets (en2it, en2es,
es2it, es2en, it2en, and it2es). This provides the ranked list of features, in terms
of their discriminatory powers in the classifiers, in each selected dataset.

Cross-Lingual Classification of Crisis Data 629

Table 7. Spearman’s Rank Order Correlation between ranked informative features
(based on IG) across models and languages

Data/Model SF SF+SemBN SF+SemDB SF+SemBNDB Translation

en − es 0.573 0.385 0.349 0.373 0.515(en-es2en) 0.449(es-en2es)

en − it −0.179 0.402 0.111 0.315 0.266(en-it2en) 0.594(it-en2it)

es − it 0.418 0.222 0.503 0.430 0.678(es-it2es) 0.612(it-es2it)

For each pair of datasets, such as English (en) - Spanish (es), we consider
the common ranked features with IGscore > 0, and calculate the Spearman’s
Rank Order Correlation (ranges between [−1, 1]) across the two ranked lists.
For the translated data, we analysed pairs where one dataset is translated to the
language of another dataset, such as en-it2en and it-en2it.

Table 7 shows how the correlation varies across the data. These variations
can be attributed to a number of aspects. The overlap of crisis events while
sampling the data is a crucial parameter, as the data was sampled based on
language, and the discreteness of the source events (Table 2) was not taken into
consideration. This can particularly be observed in the en-es correlation, where
the highest correlation is without the semantics. This also explains the better
performance of the SF model over the semantic models when trained on en and
evaluated on es (Table 5-balanced). The correlation between en-it is ˜–0.179,
which indicates nearly ‘no correlation’. The increase in discriminative-feature
correlations between datasets once semantics are added is in part due to the
extraction of semantics in English (see Sect. 3.2), thus bringing the terminologies
closer semantically as well as linguistically.

Translating the data to the same language shows an increment in the cor-
relation. This is expected for multiple reasons. Firstly, having the data in the
same language enables the identification of more similar features such as verbs
and adjectives across the datasets. Secondly, given the similarity in the different
types of events covered under the three languages, such as floods and earthquakes,
the nature of the information is likely to have a high contextual overlap.

5 Discussion and Future Work

Our aim is to create hybrid models, by mixing semantic features with the statisti-
cal features, to produce a crisis data classification model that is largely language-
agnostic. The work was limited to English, Spanish, and Italian, due to the lack
of sufficient data annotations in other languages. We are currently designing a
CrowdFlower annotation task to expand our annotations to several other lan-
guages.

We ran our experiments on both balanced and unbalanced datasets. However,
performance over the balanced dataset provides a fairer comparison, since biases
towards the dominant languages are removed. We also experimented with clas-
sifying data in their original languages, as well as automatically translating the
data into the language of the training data. Results show that with balanced

630 P. Khare et al.

datasets, translation improves the performance of all classifiers, and reduces the
benefits of using semantics in comparison to the statistical classifier (SF; the
baseline). One could conclude that if the data is to be translated into the same
language that the model was trained on, then the statistical model (SF) might be
sufficient, whereas if translation is not viable (e.g., data arriving in unpredicted
languages, or where translations are too inaccurate or untrustworthy) then the
model that mixes statistical and semantics features is recommended, since it
produces higher classification accuracies.

In this work, the classifiers were trained and tested on data from various
types of crisis events. It is natural for some nouns to be identical across various
languages, such as names of crises (e.g. Typhoon Yolanda), places, and people.
In future work we will measure the level of terminological overlap between the
datasets of different languages.

We augmented all datasets with semantics in English (Sect. 3.2). This is
mainly because BabelNet (version 3.7) is heavily biased towards English14. Most
existing entity extractors are skewed heavily towards the English language, and
hence as a byproduct of adding their identified semantics, more terms (concepts)
in a single language (English) will be added to the datasets. As a consequence,
this will bring the datasets of different languages closer together linguistically,
thus giving an advantage to semantic models over purely statistical ones in the
context of cross-lingual analysis. We performed a comparison of vocabulary sim-
ilarity between the language datasets, before and after the addition of semantics,
to also comprehend the overlapping of the vocabulary. For instance, the cosine
similarity between (without semantics) en-it is 0.311, en-es is 0.536, and it-es
is 0.32. Adding semantics increased the cosine similarity across all the datasets.
In current experiments, we had 6 test cases in each classification model; despite
the consistency observed across 6 cross-lingual test cases, we would need more
observations to establish that the gain achieved by the semantic models over
the baseline models is statistically significant. Repeating these experiments over
more languages should help in this; alternatively, creating multiple train and test
splits for each test case could also complement such analysis, which was not feasi-
ble in this study due to insufficient data to create multiple splits for each dataset.
However, we did perform a 10 iteration of 5-fold cross validation over the entire
dataset across all the feature sets and found that SF+SemBN(BabelNet Seman-
tics) model outperformed all others (particularly baseline with a statistically
significant value of p = 0.0192, on a two-tailed t-test).

In this work, we experimented with training the model on one language at
a time. Another possibility is to train the model on multiple languages, thus
increasing its ability to classify data in those languages. However, generating
such a multilingual model is not always feasible, since it requires annotated data
in all the languages it is intended to analyse. Furthermore, the need for models
that can handle other languages is likely to remain, since the language of data
shared on social media during crises tends to differ substantially, depending on

14 Almost 17 million word senses in English, next highest is French, with 7 million
senses http://live.babelnet.org/stats.

http://live.babelnet.org/stats

Cross-Lingual Classification of Crisis Data 631

where these crises are taking place. Therefore, the ability of a model to classify
data in a new language will always be a clear advantage. The curated data
(with semantics) and code, in this work, is being made available for research
purposes.15

6 Conclusion

Determining which tweets are relevant to a given crisis situation is important in
order to achieve a more efficient use of social media, and to improve situational
awareness. In this paper, we demonstrated the ability of various models to classify
crisis related information from social media posts in multiple languages. We
tested two approaches: (1) adding semantics (from BabelNet and DBpedia) to
the datasets; and (2) automatically translating the datasets to the language that
the model was trained on. Through multiple experiments, we showed that all our
semantic models outperform statistical ones in the first approach, whereas only
one semantic model (using BabelNet) shows an improvement over the statistical
model in the second approach.

Acknowledgment. This work has received support from the European Union’s Hori-
zon 2020 research and innovation programme under grant agreement No. 687847 (COM-
RADES).

References

1. Araujo, M., Reis, J., Pereira, A., Benevenuto, F.: An evaluation of machine transla-
tion for multilingual sentence-level sentiment analysis. In: Proceedings of the 31st
Annual ACM Symposium on Applied Computing, pp. 1140–1145. ACM (2016)

2. Burel, G., Saif, H., Alani, H.: Semantic wide and deep learning for detecting crisis-
information categories on social media. In: d’Amato, C., et al. (eds.) ISWC 2017.
LNCS, vol. 10587, pp. 138–155. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-68288-4 9

3. Burel, G., Saif, H., Fernandez, M., Alani, H.: On semantics and deep learning
for event detection in crisis situations. In: Workshop on Semantic Deep Learning
(SemDeep) at ESWC (2017)

4. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and
Other Kernel-Based Learning Methods. Cambridge University Press, New York
(2000)

5. Derczynski, L., Meesters, K., Bontcheva, K., Maynard, D.: Helping crisis
responders find the informative needle in the tweet haystack. arXiv preprint
arXiv:1801.09633 (2018)

6. Deriu, J., et al.: Leveraging large amounts of weakly supervised data for multi-
language sentiment classification. In: Proceedings of the 26th International Con-
ference on World Wide Web, International World Wide Web Conferences Steering
Committee, pp. 1045–1052 (2017)

15 https://github.com/pkhare/iswc codebase.

https://doi.org/10.1007/978-3-319-68288-4_9
https://doi.org/10.1007/978-3-319-68288-4_9
http://arxiv.org/abs/1801.09633
https://github.com/pkhare/iswc_codebase

632 P. Khare et al.

7. Gao, H., Barbier, G., Goolsby, R.: Harnessing the crowdsourcing power of social
media for disaster relief. IEEE Intell. Syst. 26(3), 10–14 (2011)

8. Imran, M., Elbassuoni, S., Castillo, C., Diaz, F., Meier, P.: Extracting information
nuggets from disaster-related messages in social media. In: ISCRAM (2013)

9. Imran, M., Elbassuoni, S., Castillo, C., Diaz, F., Meier, P.: Practical extraction
of disaster-relevant information from social media. In: Proceedings of the 22nd
International Conference on World Wide Web, pp. 1021–1024. ACM (2013)

10. Karimi, S., Yin, J., Paris, C.: Classifying microblogs for disasters. In: Proceedings of
the 18th Australasian Document Computing Symposium, pp. 26–33. ACM (2013)

11. Khare, P., Burel, G., Alani, H.: Classifying crises-information relevancy with seman-
tics. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 367–383.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4 24

12. Khare, P., Fernandez, M., Alani, H.: Statistical semantic classification of crisis
information. In: Workshop on HSSUES at ISWC (2017)

13. Li, R., Lei, K.H., Khadiwala, R., Chang, K.C.C.: TEDAS: a twitter-based event
detection and analysis system. In: 2012 IEEE 28th International Conference on
Data Engineering (ICDE), pp. 1273–1276. IEEE (2012)

14. Mihalcea, R., Banea, C., Wiebe, J.: Learning multilingual subjective language via
cross-lingual projections. In: Proceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, pp. 976–983 (2007)

15. Navigli, R., Ponzetto, S.P.: BabelNet: the automatic construction, evaluation and
application of a wide-coverage multilingual semantic network. Artif. Intell. 193,
217–250 (2012)

16. Olteanu, A., Vieweg, S., Castillo, C.: What to expect when the unexpected hap-
pens: social media communications across crises. In: Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work and Social Computing, pp.
994–1009. ACM (2015)

17. Power, R., Robinson, B., Colton, J., Cameron, M.: Emergency situation awareness:
twitter case studies. In: Hanachi, C., Bénaben, F., Charoy, F. (eds.) ISCRAM-med
2014. LNBIP, vol. 196, pp. 218–231. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11818-5 19

18. Rogstadius, J., Vukovic, M., Teixeira, C., Kostakos, V., Karapanos, E., Laredo,
J.A.: CrisisTracker: crowdsourced social media curation for disaster awareness. IBM
J. Res. Dev. 57(5), 4-1–4-13 (2013)

19. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time
event detection by social sensors. In: Proceedings of the 19th International Confer-
ence on World Wide Web, pp. 851–860. ACM (2010)

20. Severyn, A., Moschitti, A.: UNITN: training deep convolutional neural network for
twitter sentiment classification. In: Proceedings of the 9th International Workshop
on Semantic Evaluation (SemEval 2015), pp. 464–469 (2015)

21. Stowe, K., Paul, M.J., Palmer, M., Palen, L., Anderson, K.: Identifying and cate-
gorizing disaster-related tweets. In: Proceedings of The Fourth International Work-
shop on Natural Language Processing for Social Media, pp. 1–6 (2016)

22. Tonon, A., Cudré-Mauroux, P., Blarer, A., Lenders, V., Motik, B.: ArmaTweet:
detecting events by semantic tweet analysis. In: Blomqvist, E., Maynard, D.,
Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol.
10250, pp. 138–153. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
58451-5 10

https://doi.org/10.1007/978-3-319-93417-4_24
https://doi.org/10.1007/978-3-319-11818-5_19
https://doi.org/10.1007/978-3-319-11818-5_19
https://doi.org/10.1007/978-3-319-58451-5_10
https://doi.org/10.1007/978-3-319-58451-5_10

Cross-Lingual Classification of Crisis Data 633

23. Vieweg, S., Hughes, A.L., Starbird, K., Palen, L.: Microblogging during two natural
hazards events: what twitter may contribute to situational awareness. In: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems, pp.
1079–1088. ACM (2010)

24. Wick, M., Kanani, P., Pocock, A.C.: Minimally-constrained multilingual embed-
dings via artificial code-switching. In: AAAI, pp. 2849–2855 (2016)

25. Zhang, S., Vucetic, S.: Semi-supervised discovery of informative tweets during the
emerging disasters. arXiv preprint arXiv:1610.03750 (2016)

http://arxiv.org/abs/1610.03750

Measuring Semantic Coherence
of a Conversation

Svitlana Vakulenko1, Maarten de Rijke2, Michael Cochez3,4,5,
Vadim Savenkov1, and Axel Polleres1,6,7(B)

1 Vienna University of Economics and Business, Vienna, Austria
{svitlana.vakulenko,vadim.savenkov,axel.polleres}@wu.ac.at

2 University of Amsterdam, Amsterdam, The Netherlands
derijke@uva.nl

3 Fraunhofer FIT, 53754 Sankt Augustin, Germany
4 Informatik 5, RWTH University Aachen, Aachen, Germany

5 Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
michael.cochez@fit.fraunhofer.de

6 Complexity Science Hub Vienna, Vienna, Austria
7 Stanford University, Stanford, CA, USA

Abstract. Conversational systems have become increasingly popular
as a way for humans to interact with computers. To be able to pro-
vide intelligent responses, conversational systems must correctly model
the structure and semantics of a conversation. We introduce the task
of measuring semantic (in)coherence in a conversation with respect to
background knowledge, which relies on the identification of semantic
relations between concepts introduced during a conversation. We pro-
pose and evaluate graph-based and machine learning-based approaches
for measuring semantic coherence using knowledge graphs, their vector
space embeddings and word embedding models, as sources of background
knowledge. We demonstrate how these approaches are able to uncover
different coherence patterns in conversations on the Ubuntu Dialogue
Corpus.

1 Introduction

Conversational interfaces are seeing a rapid growth in interest. Conversational
systems need to be able to model the structure and semantics of a human conver-
sation in order to provide intelligent responses. The requirement conversations be
coherent is meant to improve the probability distribution over possible dialogue
states and candidate responses.

A conversation is an information exchange between two or more participants.1

An essential property of a conversation is its coherence; De Beaugrande and
Dressler [9] describe it as a “continuity of senses.” Coherence constitutes the out-
come of a cognitive process, and is, therefore, an inherently subjective measure.
1 We use the terms “dialog” and “conversation” interchangeably, while “dialog” refers

specifically to a two-party conversation.

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 634–651, 2018.
https://doi.org/10.1007/978-3-030-00671-6_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_37&domain=pdf

Measuring Semantic Coherence of a Conversation 635

It is always relative to the background knowledge of participants in the conversa-
tion and depends on their interpretation of utterances. Coherence reflects the abil-
ity of an observer to perceive meaningful relations between the concepts and to be
critical of the new relations being introduced. Meaning emerges through the inter-
action of the knowledge presented in the conversation with the observer’s stored
knowledge of the world [24]. In other words, a conversation has to be assigned an
interpretation, which depends on the knowledge available to the agent.

In this paper we focus on analyzing semantic relations that hold within dia-
logues, i.e., relations that hold between the concepts (entities) mentioned in the
course of the same dialogue. We call this type of relation semantic coherence.
We focus on semantic relations but ignore other linguistic signals that make a
text coherent from a grammatical point of view. A classic example to illustrate
the difference is due to Chomsky [4]: “Colorless green ideas sleep furiously” – a
syntactically well formed English sentence that is semantically incoherent.

Our hypothesis is that, apart from word embeddings, recognizing concepts
in the text of a conversation and determining their semantic closeness in a back-
ground knowledge graph can be used as a measure for coherence. To this end,
we propose and evaluate several approaches to measure semantic coherence in
dialogues using different sources of background knowledge: both text corpora
and knowledge graphs. The contributions that we make in this paper are three-
fold: (1) we introduce a dialogue graph representation, which captures relations
within the dialogue corpus by linking them through the semantic relations avail-
able from the background knowledge; (2) we formulate the semantic coherence
measuring task as a binary classification task, discriminating between real dia-
logues and generated adversary samples,2 and (3) we investigate the performance
of state-of-the-art and novel algorithms on this task: top-k shortest path induced
subgraphs and convolutional neural networks trained using vector embeddings.

The main challenge in applying structural knowledge to natural language
understanding becomes apparent when we do not just try to differentiate between
genuine conversations and completely random ones, but create adversarial exam-
ples as conversations that have similar characteristics compared to the positive
examples from the dataset. Then, the results achieved using word embeddings are
usually best and suggest that knowledge graph (KG) embeddings would poten-
tially be an efficient way to harness the structure of entity relations. However,
KG embedding-based models rely on entity linking being correct and cannot
easily recover from errors made at the entity linking stage compared to other
graph-based approaches that we use in our experiments.

2 Related Work

Several lines of research are relevant to our work: discourse analysis, dialogue
systems and knowledge graphs.

2 As there is no standard corpus available for this task, we test against 5 ways to
generate artificial negative samples.

636 S. Vakulenko et al.

2.1 Discourse Analysis

Previous work on discourse analysis demonstrates good results in recognizing
discourse structure based on lexical cohesion for specific tasks such as topic seg-
mentation in multi-party conversations [12]. Term frequency distribution on its
own already provides a strong signal for topic drift. A more sophisticated app-
roach to assess text coherence is based on the entity grid representation [2], which
represents a text as a matrix that captures occurrences of entities (columns)
across sentences (rows) and indicates the role entity plays in the sentence (sub-
ject, object, or other). This approach relies on a syntactic (dependency) parser
to annotate the entity roles and is, therefore, also targeted at measuring lexical
cohesion rather than semantic relations between concepts. The de facto stan-
dard testbed for discourse coherence models is the information (sentence) order-
ing task [16]; it was recently extended to a convolutional neural network-based
model for coherence scoring [22]. The best results to date were demonstrated
by incorporating a fraction of semantic information from an external knowledge
source (entity types classification) into the original entity grid model [10]. Cui et
al. [7] push the state-of-the-art on the sentence ordering task by incorporating
word embeddings at the input layer of a convolutional neural network instead of
the entity grid.

In summary, background knowledge has been found to be able to provide a
strong signal for measuring coherence in discourse.

2.2 Dialogue Systems

In contrast to previous research focused on measuring coherence in a monologue,
we consider the task of evaluating coherence in a written dialogue setting by
analyzing the largest multi-turn dialogue corpus available to date, the Ubuntu
Dialogue Corpus [17].

Research in dialogue systems focuses on developing models able to generate or
select from candidate utterances, based on previous interactions. Lowe et al. [18]
evaluated several baseline models on the Ubuntu Dialogue Corpus for the next
utterance classification task. Their error analysis suggests that the models can
benefit from an external knowledge of the Ubuntu domain, which could provide
the missing semantic links between the concepts mentioned in the course of the
conversation. This work motivated us to consider evaluating whether relations
accumulated in large knowledge graphs could provide missing semantics to make
sense of a conversation.

2.3 Knowledge Graphs

Knowledge graphs (KGs) were successfully applied for disambiguating natural
language text in a variety of tasks, such as information retrieval [3,13] and textual
entailment [26]. They serve an important role by providing additional relations
that help to bridge the lexical gap and gain a more complete understanding of the
context in comparison with shallow approaches based on lexical features alone.

Measuring Semantic Coherence of a Conversation 637

There was also a recent surge in development of question answering interfaces
to KGs [1,19,28].

Our work is orthogonal to these lines of work, as it seeks to discover the
potential and limitations of KGs to support natural language understanding
beyond single search queries or factoid question answering towards a holistic
interactive experience, which recognizes and supports the natural (coherent)
flow of a conversation.

3 Measuring Semantic Coherence

In this section, we describe several approaches to modeling a conversation and
measuring its coherence. We use dialogues, i.e., a two-party conversation to illus-
trate our approaches. Our approaches could also be applied to multi-party con-
versations.

We propose to measure dialogue coherence with a numeric score that indi-
cates more coherent parts of a conversation and provides a signal for topic drift.
Our approach is based on the assumption that naturally occurring human dia-
logues, on average, exhibit more coherence than their random permutations.

3.1 Dialogue Graph

We model a dialogue as a graph D, which contains 4 types of nodes P,U,W,C
and edges E between them. P refers to the set of conversation participants, U
– the set of utterances, W – the set of words and C – the set of concepts.

The words w in a conversation are grouped into utterances ∀w ∈ W,∃(u,w) ∈
E such that u ∈ U ,3 which belong to one of the conversation participants ∀u ∈
U∃(p, u) ∈ E such that p ∈ P . Every utterance can belong to only one of
the participants, while the same words can be re-used in different utterances
by the same or different participants. Words may refer to concepts from the
background knowledge (w, c) ∈ E, where w ∈ W, c ∈ C. Several words may refer
to a single concept, while the same concept may be represented by different sets
of words. The sequence in which words appear in a conversation is given by the
consecutive set of edges T = {(w1, w2), (w2, w3), . . .} such that T ⊂ E, indicating
the dialogue flow.

The first three types of nodes P , U , and W together with their relations
are available from the dialogue transcript itself, while the set of concepts C
and relations between them constitute the semantic representation (meaning)
of a dialogue. The meaning is not directly observable, but is constructed by an
observer (one of the dialogue participants or a third party) based on the available
background knowledge. The background knowledge supplies additional links,
which we refer to as semantic relations. They link words to concepts they may
refer to: (w, c) (see footnote 3) and different concepts to each other (ci, cj). These

3 For simplicity, we ignore the role of word order; it can be re-constructed from the
order within the conversation T if needed, see below.

638 S. Vakulenko et al.

external relations provide the missing links between words, which explain and
justify their co-occurrence. The absence of such links gives an important signal to
the observer, and may indicate a topic switch or discourse incoherence. However,
some of the valid links may also be missing from the background knowledge.

An example dialogue graph is illustrated in Fig. 1. The dialogue consists of
four utterances represented by nodes u1–u4. In the graph we also illustrate a
subgraph extracted from the background knowledge, which links the concepts c1
dbr:Gedit and c4 dbr:Ubuntu(OS) to the concept c∗ dbr:GNOME, which was not
mentioned in the conversation explicitly. This link represents semantic relation
between the dialogue turns: (u1, u2) and (u3, u4), indicating semantic coher-
ence in the dialogue flow. In this example, the semantic relation extracted from
the background knowledge corresponds to the shortest path of length 2, i.e.,
the distance between the concepts mentioned in the dialogue was two relations
introducing one external concept from the background knowledge. c∗ can consist
of more than one entity, but encompass a whole subgraph summarizing various
relations, which hold between entities, and are represented via alternative paths
between them in a knowledge graph. In the next section, we describe our app-
roach to empirically learn semantic relations that are characteristic for human
dialogues, using different sources of background knowledge and different knowl-
edge representation models.

3.2 Semantic Relations

We collect semantic relations between concepts referenced in a dialogue from
our background knowledge. We consider two common sources of background
knowledge: (1) unstructured data: word co-occurrence statistics from text cor-
pora; (2) semi-structured data: entities and relations from knowledge graphs. In
order to be able to use a KG as a source of background knowledge we need to
perform an entity linking step, which maps words to semantic concepts (w, c),
where concepts refer to entities stored in KG. We consider two approaches to
retrieve relations between the entities mentioned in a dialog, namely vector space
embeddings and subgraph induction via the top-k shortest paths algorithm.

Embeddings. Embeddings are generated using the distributional hypothesis
by representing an item via its context, i.e., its position and relations it holds
with respect to other items. Embeddings are multi-dimensional vectors (of a
fixed size), which encode the distributional information of an item (a word in
the a or a node in a graph), i.e., its position and relations to other items in
the same space. This is achieved by computing vector representations towards
an optimality criteria defined with a certain output function, which depends
on the embedding vectors being trained. Thus, embeddings efficiently encode
(compress) an original sparse representation of the relations (e.g., an adjacency
matrix) for each of the items. It provides an easy and fast way to access this
information (relationship structure). Following this approach, every concept ci
in our dialogue graph (Fig. 1) is assigned to an n-dimensional vector, which

Measuring Semantic Coherence of a Conversation 639

Fig. 1. Dialogue graph example along with the annotated dialog. We focus specifically
on the layer of concepts in the middle [c1, . . . , c4] attempting to bridge the semantic gap
in the lexicon of a conversation using available knowledge models: word embeddings
and a knowledge graph.

encodes its location in the semantic space, and loses all the edges, which explicitly
specified its relations to other concepts in the space.

We consider two types of embeddings to represent concepts mentioned in
a dialog, one for each of our background knowledge sources: word embeddings
trained on a text corpus, and entity embeddings trained on a KG. For word
embeddings, we use word2vec [20], in particular the skip-gram variant, which
aims to create embeddings such that they are useful for predicting words which
are in the neighborhood of a given word. GloVe [23] is a word embedding method,
with the explicit goal of embedding analogies between entities. This method does
not work directly on the text corpus, but rather on co-occurrence counts which
are derived from the original corpus.

For graph embeddings, we use two methods that can be scaled to large graphs,
such as DBpedia and Wikidata: biased RDF2Vec [5] (using random walks) and
Global RDF Vector Space Embeddings [6]; we refer to the latter ones as KGlove
embeddings. RDF2Vec is based on word2vec. It works by first generating random
walks on the graph, where the edges have received weights which influence the
probability of following these edges. During the walk, a sentence is generated
consisting of the identifiers occurring on the nodes and edges traversed. For
each entity in the graph, many walks are performed and hence a large text is
generated. This text is then used for training word2vec. KGlove is based on

640 S. Vakulenko et al.

GloVe, but instead of counting the co-occurrence counts from text, they are
computed from the graph using personalized PageRank scores starting from each
node or entity in the graph. These counts (i.e., probabilities) are then used as
the input to an optimization problem that aims to encode analogies by creating
embedding vectors corresponding to the co-occurrences.

Subgraph Induction. An embedding (usually) carries a single representation
for an item (word or entity), which is designed to capture all relations the item
has regardless of the task or the context in which the item occurs. For example,
an embedding representation may neglect some of the infrequent relations, which
can become more relevant than others depending on the situation (context). In
order to contrast the embedding-based approach, we also implement a more
traditional graph-based approach to represent entity relations in a KG. Given
a sequence of entities, as they appear in a dialog, i.e., [c1, c2 . . . cn], we extract
relations, as top-k shortest paths, between every entity ci and all the entities that
were mentioned in the same dialogue before ci, i.e., (c1, ci), (c2, ci), . . . , (ci−1, ci).

For the top-k shortest path computation, we apply an approach based on
bidirectional breadth-first search [25] using the space-efficient binary Header,
Dictionary, Triples (HDT) encoding [11] of the KG. This approach maps entities
discussed in the dialogue to KG concepts, and then interprets paths between
concepts in the KG as semantic relations between the respective entities. Many
such relations are never mentioned in the conversation and only become explicit
through the path enumeration over the KG. By increasing the number of desired
shortest paths k and the maximum path length �, one can discover more rela-
tions, including those that might be omitted or obscured in the entity embedding
representation in the case of a random walk or frequency-based embedding algo-
rithms. An obvious downside of this increase in recall is reduced efficiency.

3.3 Dialogue Classification

We measure semantic coherence by casting the task into a classification problem.
The score produced by the classifier corresponds to our measure of semantic
coherence.

Since human dialogues are expected to exhibit a certain degree of incoherence
due to topic drift and since relations are missing from our background knowledge,
we cannot assume every concept in our dialogue dataset to be coherent with
respect to the other concepts in the same dialog. However, it is reasonable to
assume that on average a reasonably large set of concepts extracted from a
human dialogue exhibits a higher degree of coherence than a randomly generated
one. We build upon this assumption and cast the task of measuring semantic
coherence as a binary classification task, in which real dialogues have to be
distinguished from corrupted (incoherent) dialogues. We consider positive and
negative examples for whole conversations, represented as a sequence of words
or entities, which constitute the input for the binary classifier. Effectively, these
examples provide a supervision signal for measuring and aggregating distances
between words/concepts by learning the weights for the neural network classifier.

Measuring Semantic Coherence of a Conversation 641

Negative Sampling. To produce negative (adversarial) examples for the
binary classification task we propose five sampling strategies:

– RUf: Random uniform. For every positive example we choose a sequence of
entities (or words for training on word embeddings) of the same size from
the vocabulary uniformly at random; so, we double the size of the dataset
effectively by supplementing it with completely randomly generated (i.e., pre-
sumably incoherent) counterexamples.

– SqD: Sequence disorder. Randomly permute the original sequence, which is
similar in spirit to the sentence ordering task for evaluating discourse coher-
ence [16]. The key difference is that we rearrange the order of words (entities),
which may also occur within the same sentence (utterance), rather than per-
muting whole sentences.

– VoD: Vocabulary distribution. For every positive example choose a sequence
of entities of the same length from the vocabulary using the same frequency
distribution as in the original corpus; so, VoD is very similar to RuF, but tries
to emulate “structure” to some extent by choosing similar term frequencies.

– VSp: Vertical split. Create a negative example by permuting two positive
examples replacing utterances of one of the conversation participants with
utterances of a participant from a different conversation.

– HSp: Horizontal split. Create a negative example by permuting two positive
examples merging the first half of one conversation with the second half of a
different conversation.

Convolutional Neural Network. To solve the binary classification task we
train a classifier using a convolutional neural network architecture, which is
applied to sequences of words and entities to distinguish irregular semantic drift,
which was deliberately injected into conversations, from smooth drift which occur
within real conversations.

It is a standard architecture previously employed for a variety of natural lan-
guage tasks, such as text classification [14]. The network consists of (1) an input
layer, which appends the pre-trained embeddings for each of the word (entity)
from the dialogue sequence; (2) a convolutional layer, which consist of filters
(arrays of trainable weights) sliding over and learning predictive local patterns
in the previous layer of the input embeddings; (3) a max pooling layer, which
aggregates the features learned by the neighboring filters; (4) the hidden layer,
a fully connected layer, which allows combining features from all the dimensions
with a non-linear function; and (5) the output layer is a fully connected layer,
which aggregates the scores to make the final prediction. See also Sect. 4.2 for
details.

4 Evaluation Setup

The source code of our implementation and evaluation procedures is publicly
accessible.4 We also release our dataset used in the evaluation, which contains
4 https://github.com/vendi12/semantic coherence.

https://github.com/vendi12/semantic_coherence

642 S. Vakulenko et al.

dialogue annotations with DBpedia entities and shortest paths, for reproducibil-
ity and further references.5

4.1 Dataset

Dialogues. Our experiments were performed on a sample of dialogues from the
Ubuntu Dialogue Corpus6 [17], which contains 1,852,869 dialogues in total, with
one dialogue per file in TSV format, and is the largest conversational dataset to
date. There are multiple challenges related to using this corpus, however. The
dialogues were automatically extracted from a public chat using several heuris-
tics selecting two user handles and segmenting based on the timestamps. The
dialogues cannot be considered as perfectly coherent since some of the related
utterances are missing from the dialogues; there can be several different topics
discussed within the same conversation and the asynchronous nature of on-line
communication often results in semantic mismatch in the dialogue sequence.
While we cannot guarantee local coherence of the real dialogues, we expect
them to be on average more coherent, when comparing to the dialogues ran-
domly generated by sampling entities (words) from the vocabulary or merging
entities (words) from different dialogues, which we refer to as negative samples,
or adversaries, in our binary classification task.

We proceed by annotating a sample of 291,848 dialogues from the Ubuntu
Dialogue Corpus with the DBpedia entities using the DBpedia Spotlight public
web service7 [8]. The input to the entity linking API is the text for each utterance
in a conversation. Next, we considered only the dialogues where both partici-
pants contribute at least 3 new entities each, i.e., every dialogue in our dataset
contains minimum 6 entities shared between the dialogue partners. The thresh-
old for entities per conversation was chosen to ensure there is enough semantic
information for measuring coherence. This way, we end up with a sample of
45,510 dialogues, which we regard as true positive examples of coherent dia-
logue. It contains 17,802 distinct entities and 21,832 distinct words that refer to
these. The maximum size of a dialogue in this dataset is 115 entities or 128 words
referring to them. We shuffled the dialogues and selected 5,000 dialogues for our
test set. While this procedure means we cannot test our approach on short con-
versations, with fewer entities, we consider 45K dialogues to be a representative
dataset for evaluating our approach.

The negative samples for both training and test set were generated using five
different sampling strategies described in Sect. 3.3. Each development set consists
of 81,020 samples (50% positive and 50% negative). We further split it into a
training and validation set: 64,816 and 16,204 (20%) samples, respectively. Our
test set comprises the remaining 5,000 positive examples, and 5,000 generated
negative samples.

5 https://github.com/vendi12/semantic coherence/tree/master/data.
6 https://github.com/rkadlec/ubuntu-ranking-dataset-creator.
7 http://model.dbpedia-spotlight.org/en/annotate.

https://github.com/vendi12/semantic_coherence/tree/master/data
https://github.com/rkadlec/ubuntu-ranking-dataset-creator
http://model.dbpedia-spotlight.org/en/annotate

Measuring Semantic Coherence of a Conversation 643

Knowledge Models. We compared the performance on our task across two
types of embeddings models trained on two different knowledge source types:
GloVe [23] and Word2Vec [20] for the word embeddings, and biased RDF2vec [5]
and KGloVe [6] for the knowledge graph entity embeddings.

We utilise two publicly available word embedding models: GloVe embed-
dings pre-trained on the Common Crawl corpus (2.2M words, 300 dimensions)8

and Word2Vec model trained on the Google News corpus (3M words, 300 dimen-
sions).9 1,578 words from our dialogues (7%) were not found in the GloVe embed-
dings dataset and received a zero vector in our embedding layer. Thus, GloVe
embeddings cover 20,254 words from our vocabulary (93%). Word2Vec embed-
dings cover only 73% of our vocabulary.

For RDF2Vec and KGloVe we used publicly available pre-trained global
embeddings of the DBpedia entities (see [5,6], respectively). For KGlove we
used all different embeddings, while for RDF2Vec we experimented with the
embeddings that gave the best performance in [5]. KGlove embeddings cover
17,258 entities from our vocabulary (97%), while Rdf2Vec provides 62–77% due
to different importance sampling strategies of the embedding approaches.

The shortest paths used were extracted from dumps of DBpedia (April 2016,
1.04 billion triples) and Wikidata (March 2017, 2.26 billion triples).10

4.2 Implementation

Our neural network model is implemented using the Keras library with a Ten-
sorFlow backend. The one-dimensional (temporal) convolutional layer contains
250 filters of size 3 and stride (step) 1. The max pooling layer is global, the
hidden layer is set to 250 dimensions. There are two activation layers with recti-
fied linear unit (ReLU) after the convolutional and the hidden layers to capture
also non-linear dependencies between input and output, and two dropout layers
with rate 0.2 after the embeddings and hidden layers to avoid overfitting. The
last ReLU activation is projected onto a single-unit output layer with a sigmoid
activation function to obtain a coherence score on the interval between 0 and 1.

The network is trained using the Adam optimizer with the default param-
eters [15] to minimize the binary cross-entropy loss between the predicted and
correct value. All models were trained for 10 epochs in batches of 128 samples
and early stopping after 5 epochs if there is no improvement in accuracy on the
validation set.

To compute the shortest paths we merged the dumps of DBpedia and Wiki-
data into a single 36 GB binary file in HDT format [11] (DBpedia+Wikidata
HDT), with an additional 21 GB index on the subject and the object compo-
nents of triples. We set the parameters of the algorithm in our experimental
evaluation as follows: k for the number of shortest paths to be retrieved from
the graph to 5, the maximum length � of a path to 9 edges (relations) and a

8 https://nlp.stanford.edu/projects/glove/.
9 https://code.google.com/archive/p/word2vec/.

10 http://www.rdfhdt.org/datasets/.

https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
http://www.rdfhdt.org/datasets/

644 S. Vakulenko et al.

Fig. 2. k-shortest path query (cf. [25] to extract relevant connections between entities
from the knowledge graph

Table 1. The top 5 most common entities and relations in the Ubuntu Dialogue
dataset: mentioned entities – from linking dialogue utterances to DBpedia entities via
Dbpedia Spotlight Web service; context entities and relations – from the shortest paths
between the mentioned entities in DBpedia.

Top Mentioned entities Context entities Relations

Label Count Label Count Label Count

1 Ubuntu(philosophy) 1605 Ubuntu(OS) 1058 WikiPageWikiLink 51014

2 Sudo 708 Linux 725 Gold/hypernym 319

3 Booting 676 Microsoft Windows 208 Ontology/genre 178

4 APT(Debian) 405 FreeBSD 175 OperatingSystem 140

5 Live CD 314 Smartphone 171 rdf-schema#seeAlso 116

timeout terminating the query after 2 s to cope with the scalability issues of the
algorithm. Our top-k shortest paths algorithm implementation is available via a
SPARQL endpoint11 using the syntax shown in Fig. 2.

The function at.ac.wu.arqext.path.topk is a user defined extension avail-
able as a Jena ARQ extension.12

5 Evaluation Results

Table 1 reports the most common entities and relations, which while not being
mentioned in the course of a dialogue, were on the shortest paths (in the KG)
between other entities that were explicitly mentioned in the dialogue, i.e., which
constitute an implicit dialogue context. While Dbpedia Spotlight dereferenced
“Ubuntu” mentions to the concept related to philosophy rather than to the
popular software distribution, the graph-based approach succeeds in recovering
the correct meaning of the word by extracting this concept from the shortest
paths that lie between the other entities mentioned in dialogues. Almost all rela-
tions obtained from the KG correspond to the links between the corresponding
Wikipedia web pages (wikiPageWikiLink).

11 http://wikidata.communidata.at.
12 https://bitbucket.org/vadim savenkov/topk-pfn.

http://wikidata.communidata.at
https://bitbucket.org/vadim_savenkov/topk-pfn

Measuring Semantic Coherence of a Conversation 645

5.1 Semantic Distance

The length of the shortest path (number of edges, i.e., relations on the path) is a
standard measure used to estimate semantic (dis)similarity between entities in a
knowledge graph [21]. We observe how it correlates with a standard measure to
estimate similarity between vectors in a vector space, cosine distance, defined as:
1 − cos(x, y) = 1 − xyᵀ

||x||||y|| . Figure 3 showcases different perspectives on seman-
tic similarity (coherence) between the entities in real and generated dialogues
as observed in different semantic spaces (w.r.t. the knowledge models), align-
ments and differences between them. The barplots reflect the distributions of
the semantic distances between entities in dialogues. The semantic distances are
measured using cosine distances between vectors in the vector space for word
(Word2Vec and GloVe) and KG (RDF2Vec) embeddings, and in terms of the
shortest path lengths in the DBpedia+Wikidata KG. We observe that the real
dialogues (True positive) tend to have smaller distances between entities: 1–2
hops or at most 0.3 cosine distance, while randomly generated sequences are
skewed further off. Embeddings produce much more fine-grained (continuous)
representation of semantic distances in comparison with the shortest path length
metric. Distributions produced by different word embeddings are very similar in
shape, while the one from KG embeddings is steeper and skewed more to the
center, there are only a few entities further than 0.7, while this is the top for the
random distances in word embeddings.

We also discover the bottleneck of our shortest path algorithm at length
5. Since the set of relevant entities for which the paths are computed grows
proportionally to the dialogue length, depending on the degree of the node the
number of expanded nodes quickly reaches the limit on the memory size. In
our case, the algorithm retrieved the paths of length at most 5 due to the 2-s
timeout, while the parameter for the maximum length of the path � was set to 9.

5.2 Classification Results

Our evaluation results from training a neural network on the task of measuring
(in)coherence in dialogues are listed in Table 2. It summarizes the outcomes
of models trained on different embeddings using different types of adversarial
samples (negative sampling strategies are described in Sect. 3.3). For the KG
embeddings, we report only the approaches that performed best across different
test splits.13

From the results we observe that the easiest task was to distinguish real
dialogues from randomly generated sequences. When the model was trained with
randomly generate dialogues, accuracies often reach close to 100%. However,
this same model performs poorly when used for any other type of non-genuine
messages we created. In the best case (KGloVe Uni), still only 10% of messages
randomly sampled from the vocabulary distribution were correctly detected.

13 The full result table is available on-line: https://github.com/vendi12/
semantic coherence/blob/master/results/results.xls.

https://github.com/vendi12/semantic_coherence/blob/master/results/results.xls
https://github.com/vendi12/semantic_coherence/blob/master/results/results.xls

646 S. Vakulenko et al.

Fig. 3. Distribution of cosine distances for different data splits using Word2Vec and
GloVe word embeddings (left), and RDF2Vec KG embeddings (top right), compared
with the distribution of shortest path lengths in DBpedia+Wikidata KG (bottom
right). Words in real dialogues (True positive) are more related than frequent domain
words (Vocabulary distribution), and much more than a random sample (Random
uniform).

This indicates that there is a need to experiment with the other types as well. We
also observe that the models that are trained with specific adversarial examples
are best in separating that type. However, even when the model is not explicitly
trained to recognize a specific type of dialogue, but instead trained on other types
of adversarial examples, it is sometimes still able to classify messages correctly.
This happens, for example, in the case of KGloVe Uniform where the adversarial
messages are sampled from the Vocabulary distribution and the model is still
able to detect around 70% of randomly generated messages.

The dialogues generated by permuting the sequence of entities (words) in the
original dialogues (the sequence ordering task) were harder to distinguish (The
best performing model resulted in an accuracy of 0.79). Finally, the hardest task
was to discriminate the adversarial examples generated by merging two different
dialogues together (vertical and horizontal splits). This was expected as these
dialogues have short sequences of genuine dialogue inside, making them hard to
classify.

Measuring Semantic Coherence of a Conversation 647

Table 2. Accuracy on the test set across different embedding and sampling approaches.
The table shows for 7 different embedding strategies (4 types), how the embedding
performs when trained with data from different generated adversarial examples. For
example, the underlined value in the table (0.92), means that GloVe word embeddings,
when trained with genuine and Vertical split (VSp) adversarial examples, is able to
correctly find 92% of the Vocabulary distribution (VoD) adversarial examples in the
test set. In the same row, in the TPos column, it can be seen that 60% of the genuine
messages were correctly identified. Hence, this results in an average accuracy of 0.76.
In blue highlight, we indicate the results where the adversarial examples for training
the model where of the same type as for testing the model. In bold, we indicate the
best result for each adversarial example type. Abbreviations: TPos – True Positive,
TNeg – True Negative, RUf – Random uniform, VoD – Vocabulary distribution, SqD
– Sequence disorder, VSp – Vertical split, HSp – Horizontal split, Avg – Average, PRS
– PageRank Split, PR – PageRank, Uni – Uniform, PrO – Predicate Object.

The best performance across all test settings was achieved using the word
embeddings models, especially GloVe performed well. KG embeddings, while
performing reasonably well on the easier tasks (RUf and VoD), fell short to
distinguish more subtle changes in semantic coherence. For the KG embedding

648 S. Vakulenko et al.

weighting approaches, we noticed that the ones which performed well in earlier
work, also worked better in this task. In particular, it was noticed that the
weighting biased by PageRank computed on the Wikipedia links graph results
in better results in machine learning tasks.

As discussed in Sect. 4, RDF2vec has fewer entity embeddings than KGloVe,
when trained from the same original graph (DBpedia). KGloVe will provide an
embedding, even when not much is known about a specific entity. In case of a
node that does not have any edges, KGloVe will assign a random vector to it.
In contrast, RDF2Vec will prune infrequent nodes. Another problem that affects
KG embeddings are incorrectly recognized entities. There is no linking required
for needed word embeddings since it represents different meanings of the word
in a single vector.

Fig. 4. Heatmap of the activations on the output of the word embeddings layer. Notice
the vertical-bar pattern indicating a stronger semantic relation between the words in
a real dialogue (top) in comparison with a random word sequence (middle). The topic
drift effect can be observed when two different dialogues are concatenated (horizontal
split – bottom): the bars at the top are shifted in comparison with the bars in the
second half of the conversation, comparing to the coherence patterns observed in the
real dialogue (top).

Overall, we want to be able not only to tell to which degree a dialogue is
(in)coherent but also to identify the regions in the dialogue where coherence
was disrupted, or to partition the dialogue into coherent segments indicating
the shifts between different topics. Visualization of the activations in the output

Measuring Semantic Coherence of a Conversation 649

of the convolutional layer of the Glove word embeddings-based model exhibits
distinct vertical activation patterns, which can be interpreted as traces of local
coherence the model is able to recognize (See Fig. 4).

6 Conclusion

We considered the task of measuring semantic coherence of a conversation, which
introduces an important and challenging problem that requires operating vast
amounts of heterogeneous knowledge sources to infer implicit relations between
the utterances, i.e., bridging the semantic gap in understanding natural language.
We proposed and evaluated several approaches to this problem using alterna-
tive sources of background knowledge, such as structured (knowledge graph) and
unstructured (text corpora) knowledge representations. These approaches detect
semantic drift in conversations by measuring coherence with respect to the back-
ground knowledge. Our models were trained for dialogs but the approach does
not restrict the number of conversation participants. The model’s performance
depends to a large extent on the choice of background knowledge source, with
respect to the conversation domain. The conversation needs to contain a suf-
ficient number of recognized entities to signal its position within the semantic
space.

Our results indicate promising directions as well as challenges in applying
structural knowledge to analyse natural language. We show that the use of word
embeddings in text classification is superior to some existing knowledge graph
embeddings. This is an important insight, advancing research by uncovering limi-
tations of state-of-the-art knowledge graph embeddings and indicating directions
for improvements.

Knowledge graph embeddings constitute a potentially powerful method to
efficiently harness entity relations for tasks that require estimates of semantic
similarity. However, their use relies on the correctness of the entity linking per-
formance. Errors made at this stage in the pipe-line approach do propagate
into the classification results, but we noticed that they are rather consistent,
which partially mitigates the problem. Our experiments showed that graph-
based approaches are more robust to errors in entity linking than knowledge
graph embeddings, which is an important insight for future work: this effect can
likewise be expected with other existing entity linking approaches.

More research is needed on how to make a knowledge graph embeddings-
based model more robust to uncertainty in entity linking, such as end-to-end
learning on graphs [29]. Also, combining evidence from both structured (knowl-
edge graphs) and unstructured (text) data sources has a great potential to mit-
igate knowledge sparsity, increase support and interpretability of semantic rela-
tions [27]. We provide a test bed for the semantic coherence task, which can be
used to compare word- and entity-based representation approaches, and their
combinations, whereupon others can build.

650 S. Vakulenko et al.

Acknowledgments. This work is supported by the project 855407 “Open Data for
Local Communities” (CommuniData) of the Austrian Federal Ministry of Transport,
Innovation and Technology (BMVIT) under the program “ICT of the Future.” Svit-
lana Vakulenko was supported by the EU H2020 programme under the MSCA-RISE
agreement 645751 (RISE BPM). Axel Polleres was supported under the Distinguished
Visiting Austrian Chair Professors program hosted by The Europe Center of Stan-
ford University. Maarten de Rijke was supported by Ahold Delhaize, Amsterdam Data
Science, the Bloomberg Research Grant program, the China Scholarship Council, the
Criteo Faculty Research Award program, Elsevier, the European Community’s Seventh
Framework Programme (FP7/2007-2013) under grant agreement nr 312827 (VOX-Pol),
the Google Faculty Research Awards program, the Microsoft Research Ph.D. pro-
gram, the Netherlands Institute for Sound and Vision, the Netherlands Organisation
for Scientific Research (NWO) under project nrs CI-14-25, 652.002.001, 612.001.551,
652.001.003, and Yandex. All content represents the opinion of the authors, which is
not necessarily shared or endorsed by their respective employers and/or sponsors.

References

1. Athreya, R.G., Ngonga, A., Usbeck, R.: Enhancing community interactions with
data-driven chatbots - the DBpedia chatbot. In: WWW 2018 Companion. ACM
(2018)

2. Barzilay, R., Lapata, M.: Modeling local coherence: an entity-based approach.
Comput. Linguist. 34(1), 1–34 (2008)

3. Blanco, R., Ottaviano, G., Meij, E.: Fast and space-efficient entity linking for
queries. In: WDSM 2015, pp. 179–188. ACM (2015)

4. Chomsky, N.: Syntactic Structures. Mouton and Co., The Hague (1957)
5. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Biased graph walks for RDF

graph embeddings. In: WIMS 2017, pp. 21:1–21:12 (2017)
6. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Global RDF vector space

embeddings. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 190–
207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4 12

7. Cui, B., Li, Y., Zhang, Y., Zhang, Z.: Text coherence analysis based on deep neural
network. In: CIKM 2017, pp. 2027–2030. ACM (2017)

8. Daiber, J., Jakob, M., Hokamp, C., Mendes, P.N.: Improving efficiency and accu-
racy in multilingual entity extraction. In: I-SEMANTICS 2013, pp. 121–124 (2013)

9. De Beaugrande, R., Dressler, W.: Textlinguistics. Longman, Harlow (1981)
10. Elsner, M., Charniak, E.: Extending the entity grid with entity-specific features.

In: ACL 2011, pp. 125–129. ACL (2011)
11. Fernández, J.D., Mart́ınez-Prieto, M.A., Gutiérrez, C., Polleres, A., Arias, M.:

Binary RDF representation for publication and exchange (HDT). JWS 19, 22–41
(2013)

12. Galley, M., McKeown, K., Fosler-Lussier, E., Jing, H.: Discourse segmentation of
multi-party conversation. In: ACL 2003, pp. 562–569 (2003)

13. Hasibi, F., Balog, K., Garigliotti, D., Zhang, S.: Nordlys: a toolkit for entity-
oriented and semantic search. In: SIGIR 2017, pp. 1289–1292 (2017)

14. Kim, Y.: Convolutional neural networks for sentence classification. CoRR
abs/1408.5882 (2014)

15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR
abs/1412.6980 (2014)

https://doi.org/10.1007/978-3-319-68288-4_12

Measuring Semantic Coherence of a Conversation 651

16. Lapata, M.: Probabilistic text structuring: experiments with sentence ordering. In:
ACL 2003, pp. 545–552 (2003)

17. Lowe, R., Pow, N., Serban, I., Pineau, J.: The ubuntu dialogue corpus: a large
dataset for research in unstructured multi-turn dialogue systems. In: SIGDIAL
2015, pp. 285–294 (2015)

18. Lowe, R.T., Pow, N., Serban, I.V., Charlin, L., Liu, C., Pineau, J.: Training end-
to-end dialogue systems with the ubuntu dialogue corpus. D&D 8(1), 31–65 (2017)

19. Lukovnikov, D., Fischer, A., Lehmann, J., Auer, S.: Neural network-based question
answering over knowledge graphs on word and character level. In: WWW 2017,
pp. 1211–1220. ACM (2017)

20. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: NIPS 2013, pp.
3111–3119 (2013)

21. Mohammad, S., Hirst, G.: Distributional measures as proxies for semantic related-
ness. CoRR abs/1203.1 (2012)

22. Nguyen, D.T., Joty, S.R.: A neural local coherence model. In: ACL 2017, pp. 1320–
1330 (2017)

23. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: EMNLP 2014, pp. 1532–1543. ACL (2014)

24. Petöfi, J.S.: Semantics, pragmatics, text theory. Università di Urbino (1974)
25. Savenkov, V., Mehmood, Q., Umbrich, J., Polleres, A.: Counting to k or how

SPARQL1.1 property paths can be extended to top-k path queries. In: SEMAN-
TICS 2017, pp. 97–103 (2017)

26. Silva, V.S., Freitas, A., Handschuh, S.: Recognizing and justifying text entailment
through distributional navigation on definition graphs. In: AAAI 2018 (2018)

27. Thoma, S., Rettinger, A., Both, F.: Towards holistic concept representations:
embedding relational knowledge, visual attributes, and distributional word seman-
tics. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 694–710.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4 41

28. Usbeck, R., Ngomo, A.N., Haarmann, B., Krithara, A., Röder, M., Napolitano,
G.: 7th open challenge on question answering over linked data (QALD-7). In: 4th
SemWebEval Challenge at ESWC 2017, pp. 59–69 (2017)

29. Wilcke, X., Bloem, P., de Boer, V.: The knowledge graph as the default data model
for learning on heterogeneous knowledge. Data Sci. 1(1–2), 39–57 (2017)

https://doi.org/10.1007/978-3-319-68288-4_41

Combining Truth Discovery and RDF
Knowledge Bases to Their Mutual

Advantage

Valentina Beretta1(B), Sébastien Harispe1, Sylvie Ranwez1,
and Isabelle Mougenot2

1 LGI2P, IMT Mines Ales, Univ Montpellier, Ales, France
valentina.beretta@mines-ales.fr

2 UMR 228 Espace Dev UM, Maison de la Télédétection, Montpellier, France

Abstract. This study exploits knowledge expressed in RDF Knowledge
Bases (KBs) to enhance Truth Discovery (TD) performances. TD aims
to identify facts (true claims) when conflicting claims are made by sev-
eral sources. Based on the assumption that true claims are provided
by reliable sources and reliable sources provide true claims, TD models
iteratively compute value confidence and source trustworthiness in order
to determine which claims are true. We propose a model that exploits
the knowledge extracted from an existing RDF KB in the form of rules.
These rules are used to quantify the evidence given by the RDF KB to
support a claim. This evidence is then integrated into the computation
of the confidence value to improve its estimation. Enhancing TD models
efficiently obtains a larger set of reliable facts that vice versa can pop-
ulate RDF KBs. Empirical experiments on real-world datasets showed
the potential of the proposed approach, which led to an improvement of
up to 18% compared to the model we modified.

Keywords: Truth discovery · RDF KBs · Rule mining
Source trustworthiness · Value confidence

1 Introduction

Several popular initiatives, such as DBpedia [2], Yago [17] and Google Knowl-
edge Vault [5], automatically populate Knowledge Bases (KBs) with Web data.
The performance of this Knowledge Base Population (KBP) process is critical
to ensuring the quality of the KB. In particular, it requires dealing with com-
plex cases in which several conflicting data are extracted from different sources,
e.g. different automatic extractors will provide different birth places for Pablo
Picasso. Approaches based on voting or naive strategies that only consider the
most frequently provided data value are de facto limited. Such approaches are
unable to deal with spam-based attacks or duplicated errors, which are common
on the Web. Dealing with this problem therefore requires distinguishing values

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 652–668, 2018.
https://doi.org/10.1007/978-3-030-00671-6_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_38&domain=pdf

Combining Truth Discovery and RDF Knowledge Bases 653

according to their sources. In this study, we propose an approach that serves
KBP integrating potentially conflicting data provided by multiple sources; it
relies on a general framework that can be used to address conflict resolution
problems by exploiting prior knowledge defined in existing KBs.

Several techniques based on Knowledge Fusion have been proposed in order
to automatically obtain reliable information. Most of them suppose that informa-
tion veracity strictly depends on source reliability. Intuitively, the more reliable a
source is, the more reliable the information it provides. In turn they also assume
that source reliability depends on information veracity, i.e. reliable information
is provided by reliable sources. Truth Discovery (TD) methods are unsupervised
approaches based on these assumptions aimed at identifying the most reliable of
a set of conflicting triples – for functional predicates, i.e. when there is a single
true value for a property of a real-world entity. This study aims to enhance the
TD framework using knowledge extracted from an existing RDF KB to obtain
a larger set of correct facts that could be used to populate RDF KBs. More
precisely, it makes the following contributions:

– A novel approach that can be used to enrich traditional TD models by incor-
porating additional information given by recurrent patterns extracted from a
KB. A state-of-the-art rule mining system is used to extract rules that repre-
sent these patterns. A method is proposed for selecting the most useful rules
to be used to evaluate veracity of triples. Moreover, since each rule contributes
to TD performances according to its quality, a function that aggregates the
existing rule quality metrics is also defined. High-quality rules will have a
higher weight than low-quality rules;

– An extensive evaluation of the proposed approach; interestingly, it shows
that the TD framework can benefit from information derived by rules. As a
consequence, we point out how the creation of high quality RDF KBs may
benefit from the use of highly reliable TD models. The datasets and source
code proposed in this study are open-source and freely accessible online.1

The paper is organized as follows. Section 2 presents an overview of the TD
framework and how it can be applied in the RDF KB context. It also describes
the state-of-the-art rule mining techniques that are used in our work to detect
interesting recurrent patterns. Section 3 explains how additional information
extracted from KBs is integrated into the TD framework. The proposed app-
roach is evaluated and discussed in Sect. 4. Finally, Sect. 5 reports the main
findings and discusses perspectives.

2 Related Work and Preliminaries

In this section we introduce the formal aspect of TD, its goal and the key ele-
ments required to achieve it. We then formally present rules and their quality
metrics. We will then be able to use them to exploit identified recurrent patterns
to increase confidence in certain triples.
1 https://github.com/lgi2p/TDwithRULES.

https://github.com/lgi2p/TDwithRULES

654 V. Beretta et al.

In this study, we assume that sources provide their claims in the form of
RDF triples 〈subject, predicate, object〉 ∈ I × I × (I ∪ L) where I is the set of
Internationalized Resource Identifiers (IRIs) and L the set of literals.

The following definition introduces all TD components (source, data items
and values). Since the TD and Linked Data (LD) fields use different notations,
this definition aims at clarifying the correspondence between terms belonging to
each field.

Definition 1 (Truth Discovery). Let D ⊆ I × I be a set of data items where
each d ∈ D is a pair (subj, pred) that refers to a functional property (pred ∈ I)
of an entity (subj ∈ I). Let V ⊆ I ∪ L be a set of values that can be assigned
to these data items and S be the set of sources. Each source s ∈ S can associate
a value v ∈ V (corresponding to obj ∈ I ∪ L) to a data item d ∈ D, hence
providing a claim vd that corresponds to the RDF triple 〈subj, pred, obj〉. Truth
Discovery associates a value confidence to each claim and a trustworthiness
score to each source. It then iteratively estimates these quantities to identify the
true value v∗

d for each data item.

Several TD approaches have been proposed, as detailed in recent surveys
[4,10]. The models differ from one another in the way they compute the value
confidence of claims and the trustworthiness of sources. Some of them use no
additional information, while others attempt to improve TD performances using
external support such as extractor information (i.e. the confidence associated
with extracted triples), the temporal dimension, hardness of facts, common sense
reasoning or correlations. Models that take correlations into account can be
divided according to the kinds of correlations they consider: source correlations,
value correlations or data item correlations. To the best of our knowledge, no
existing work takes advantage of data item correlations in the form of recurrent
patterns to improve TD results. The idea is that the confidence of a certain
claim can increase when recurrent patterns occur which are associated with the
considered data item. This kind of correlation can be used to enhance existing
TD models. In this study, a rule mining procedure is used to identify patterns
in data. We specify the major aspects of the rule mining below.

2.1 Recurrent Pattern Detection from RDF KBs

Several techniques can be used to identify regularities in data. For instance, link
mining models are often used for that purpose in knowledge base completion
[13]. In this study we prefer to use rule mining techniques because they are easily
interpretable [1]. Rules generalize patterns in order to identify useful suggestions
that can be used to generate new data or correct existing data [6]. We therefore
propose to exploit these suggestions in order to solve conflicts among triples
provided by different sources. Given our problem setting, where rules are used
to reinforce the confidence of a claim, we are particularly interested in Horn rules.
Considering Datalog-style, a Horn rule r : B1∧B2∧· · ·∧Bn → H, i.e. r : ̂B → H,
is an implication from a conjunction of atoms called the body to a single atom

Combining Truth Discovery and RDF Knowledge Bases 655

called the head [12]. An atom is usually denoted pred(subj, obj), where subj and
obj can be variables or constants. Considering that an instantiation of an atom is
a substitution of its variables with IRIs, an atom a holds under an instantiation
σ in a KB K if σ(a) ∈ K. Moreover, a body ̂B holds under σ in K, if each atom
in ̂B holds [7]. Note that in our setting each instantiated atom pred(subj, obj)
can also be represented as an RDF triple 〈subj, pred, obj〉.

Rule extractors rely on the Closed World Assumption (CWA). This means
that when a fact is not known (does not belong to the KB) it is considered to be
false. This assumption is more often appropriate when KBs are complete. On the
contrary, RDF KBs are based on the Open World Assumption (OWA). When
dealing with incomplete information the OWA is preferable. If information is
missing we need to distinguish between false and unknown information. A triple
that does not appear in the KB is not systematically false. In this context,
methods have recently been proposed that mine rules from RDF KBs such as
DBpedia or Yago, taking the OWA into account [15]. An example of a rule
mining system that considers the OWA is AMIE [8]. It is based on the Partial
Completeness Assumption (PCA): if a KB contains some object values for a
given pair (subject, predicate), it is assumed that all object values associated
with it are known. This assumption can generate counter-examples, required
for rule mining models, but do not appear in RDF KBs, which often contain
only positive facts. Alternative assumptions and metrics have been proposed to
extract rules under the OWA [9,13,18]. In this study, we use AMIE because it
is a state-of-the-art system and its source code is freely available online.

2.2 Rule Quality Metrics

Any rule, independently of the system used to extract it, can be evaluated by
several quality metrics; among them the most well-recognized measures are sup-
port and confidence [1,11,19]. Support represents the frequency of a rule in a
KB, while confidence is the percentage of instantiations of a rule in the KB,
compared to the instantiations of its body. Based on the formal definition given
in [8], for the sake of coherence and clarity, we present how these metrics are
computed below. In the rest of the paper we do not make a comparison of the
different quality metrics because it is out of the scope of this study. The primary
aim here is to evaluate the potential of integrating knowledge extracted from an
RDF KB into a TD process. However, since we are aware that robust metrics
could have an impact on TD results, we plan to study such a comparison in
future studies.

Considering a Horn rule r : ̂B → H where H is composed of a single atom
p(x, y), its support is defined by:

supp(̂B → p(x, y)) := #(x, y) : ∃z1, . . . , zn : ̂B ∧ p(x, y) (1)

where z1, . . . , zn are the variables contained in the atoms of the rule body ̂B
apart from x and y, and #(x, y) is the number of different pairs x and y.

656 V. Beretta et al.

Its confidence is computed using the following formula:

conf(̂B → p(x, y)) :=
supp(̂B → p(x, y))

#(x, y) : ∃z1, . . . , zn : ̂B
(2)

This formula was introduced to evaluate the quality of rules using the CWA.
It is too restrictive when dealing with the OWA. For this reason Galarraga et
al. defined a new confidence, called confPCA [8]. It makes a distinction between
false and unknown facts based on PCA. In this setting, if a predicate related to
a particular subject, never appears in the KB, then it can neither be considered
as true nor false. This new confidence based on PCA is evaluated as follows:

confPCA(̂B → p(x, y)) :=
supp(̂B → p(x, y))

∑

j supp(̂B → p(x, j))
(3)

where j’s are all instantiations of the object variable related to predicate p and
having subject x. Using PCA, confPCA normalizes the support by the set of
true and false facts that does not include the unknown ones.

In the next section, we describe how these quality measures are combined
into a single measure. Having a more robust metric is important because it is
the quality of each rule that will determine its contribution to the computation
of the overall evidence that supports a certain claim.

3 Incorporating Rules into the Truth Discovery
Framework

This section presents how extracted rules are integrated into truth discovery
models. To that end, we define the concepts of eligible and approving rules, which
will be used to identify the most useful rules that need to be taken into account
when evaluating the confidence of a claim. Then we describe how information
associated with these rules is quantified to further introduce the new confidence
estimation formulas used by our TD framework.

3.1 Eligible and Approving Rules

It may not be useful to consider the entire set of extracted rules (denoted R) in
order to improve value confidence. For instance, some rules could have a body
that is not related to a given data item. Therefore, given a claim 〈d, v〉, i.e.
vd, where d = (subj, pred), only eligible rules are used as potential evidence to
improve its confidence estimation. They are defined in the following way.

Definition 2 (Eligible Rule). Given a KB K, a set of rules R = {r : ̂B → H}
extracted from K where H = p(x, y) and a claim 〈d, v〉 where d = (subj, pred),
a rule r ∈ R is an eligible rule when its body holds, i.e. all of its body atoms
appear in K when all rule variables are instantiated w.r.t. the data item subject.
Moreover, its head predicate has to correspond to the one in the claim under
examination, i.e. (σ(̂B) ∈ K) ∧ (H = pred(subj, y)).

Combining Truth Discovery and RDF Knowledge Bases 657

In our context, the eligibility of a rule depends on the subject and the predi-
cate that compose a data item d. Thus, all claims related to the same data item
d = (subj, pred) have the same set of eligible rules, denoted Rd = {r ∈ R |
(σ(̂B) ∈ K) ∧ (H = pred(subj, y))}.

Once eligible rules for a claim vd have been collected, the proposed approach
checks how many of these rules endorse (approve) vd, i.e. how many rules support
vd.

Definition 3 (Approving Rule). Given a KB K, a set of eligible rules Rd =
{r : ̂B → H} where H = pred(subj, y) and a claim 〈d, v〉 where d = (subj, pred),
a rule r ∈ Rd is an approving rule when the value predicted by r corresponds
to the claimed value v, i.e. (σ(̂B) ∈ K) ∧ (H = pred(subj, v)).

The set of approving rules for vd is represented by Rv
d ⊆ Rd where d indicates

that the rules are eligible for a certain data item d and v indicates that the rules
predict/support value v. Formally, we obtain Rv

d = {r ∈ Rd | (σ(̂B) ∈ K)∧(H =
pred(subj, v))}.

Example. Given a KB K, reported in Table 1, and the rules:

– r1 : speaks(x, z) ∧ officialLang(y , z) → bornIn(x, y)
– r2 : residentIn(x,w) ∧ cityOf (w , y) → bornIn(x, y)

Given the following claims about the birth location of some painters 〈Picasso,
bornIn, Spain〉, 〈Picasso, bornIn,Málaga〉 and 〈Monet, bornIn, France〉, the
set of eligible rules for data item dA = (Picasso, bornIn) is RdA

= {r1, r2}. The
predicate in the head corresponds to the predicate in the claim and when all
occurrences of variable x are replaced by Picasso in r1’s and r2’s body, they are
both verified. However, when dB = (Monet, bornIn) the set of eligible rules is
RdB

= {r2} because, even though the head and claim predicate are the same
using both rules, if the x variable is substituted by Monet the body of r1 is not
verified.

The set of approving rules for the first, second and third claims are respec-
tively RSpain

dA
= {r1}, RMálaga

dA
= ∅ and RFrance

dB
= {r2}.

Before explaining how additional information related to approving and eligi-
ble rules is quantified and then incorporated into the TD framework, we describe
a function used to integrate the two quality aspects we are interested in, for each
rule. This enables better weighting of each rule’s contribution during the evalu-
ation of a claim.

Table 1. Illustrative set of triples.

predicate subject object predicate subject object
officialLang (Spain, Spanish) residentIn (Picasso, Paris)
speaks (Picasso, Spanish) cityOf (Paris, France)
residentIn (Monet, Vétheuil) cityOf (Vétheuil, France)

658 V. Beretta et al.

3.2 Combining Rule Quality Measures

Support and confPCA represent different aspects of a rule, see Sect. 2.2. We
propose an aggregate function to combine them into a single quality metric since,
in our context, it is important to take both aspects into account. It may happen
that two rules r1 and r2 have the same confidence, but different supports. For
instance, if confPCA(r1) = confPCA(r2) = 0.8, supp(r1) = 5 and supp(r2) =
500, then r2 deserves a higher level of credibility than r1 since r2 has been
observed more often than r1.

To address this issue, a function score : R → [0, 1] is defined. It is based
on Empirical Bayes (EB) methods [16]. EB adjusts estimations resulting from
a limited number of examples that may happen by chance. Estimations are
modified in function of available examples and prior expectations. When many
examples are available, estimation adjustments are small. On the contrary, when
there are only few examples, the adjustments are greater. They are corrected
w.r.t. the average value that is expected by a priori knowledge. Given a family
of the prior distribution of available data, EB is able to directly estimate its hyper
parameters from the data. Then, it updates the prior belief with new evidence.
In other words, the estimation that can be computed from the new examples
is modulated w.r.t. prior expectation. The new estimation corresponds to the
expected value of a random variable following the updated distribution. In our
case, a more robust confPCA, i.e. the proportion of positive examples among all
examples considered, needs to be estimated. The prior expectation on our data
can be modelled using a Beta distribution that is characterized by parameters α
and β. Once the model has estimated them, it uses this distribution as prior to
modulate each individual estimate. This estimation will be equal to the expected
value of the updated distribution Beta(α + X,β + (N − X)), where X is the
number of new positive examples and N is the total number of new examples.
The new expected value is (α + X)/(α + β + N). This value is returned by the
aggregation function. In summary, given the hyper parameters αS and βS , the
value returned by score for a rule r : ̂B → p(x, y) is computed as follows:

score(r) =
αS + supp(r)

αS + βS +
∑

j supp(̂B → p(x, j))
(4)

where supp(r) is the support of r and
∑

j supp(̂B → p(x, j)) is the number of
triples containing data item (x, p). The returned score appears to be similar to
confPCA, but it takes the cardinality of the examples into account.

Once this score has been estimated for each rule, the proposed approach sums
up all this new information and integrates it into the value confidence estimation
formula.

3.3 Assessing a Rule’s Viewpoint on Claim Confidence

All the evidence provided by rules for a claim vd is summarized in a boosting
factor that can be seen as the confidence that is assigned by these rules to

Combining Truth Discovery and RDF Knowledge Bases 659

vd. More precisely, it represents the proportion of eligible rules that confirm a
given claim vd. In other words it evaluates the percentage of approving rules
out of the entire set of eligible rules, i.e. |Rv

d|/|Rd|. It is returned by a function
boost : D × V → [0, 1]. As anticipated, the proposed model weights each rule
differently w.r.t. its quality score. The higher the score of a rule, the stronger its
impact should be on computing the boosting factor. Intuitively, given a claim vd
where d = (subj, pred) and a set of rules R extracted from a KB K, the proposed
model evaluates the boosting factor in the following way:

boost(d, vd) ≈

∑

r∈Rv
d

score(r)

∑

r∈Rd

score(r)
(5)

where Rv
d is the set of approving rules, Rd is the set of eligible rules and score :

R → [0, 1] represents the quality score associated with a rule (as detailed in
Sect. 3.2). Since the boosting factor consists in evaluating a proportion, EB is
used also in this case to obtain a better estimation, less likely to be the result
of chance. As explained in Sect. 3.2, when applying EB, initially the parameters
αb and βb of a Beta distribution are estimated from the available data using
methods of moments. Then this prior is updated based on evidence associated
with a specific vd. Thus, the boosting factor, corresponding to the expected value
of the updated prior, is equal to:

boost(d, vd) =

αb +
∑

r∈Rv
d

score(r)

αb + βb +
∑

r∈Rd

score(r)
(6)

where αb and βb are the hyper parameters of the Beta distribution representing
the available examples. Since AMIE does not consider any a priori knowledge
such as the partial order of values to extract rules, we decided to use it to
further exploit rule information and compute a more refined boosting factor.
More precisely, considering a partial order V = (V,�), when a rule r explicitly
predicts a value v, we assume that it implicitly supports all more general values
v′ such that v � v′. In other words, the evidence provided as support by a rule
to a value is propagated to all its generalizations. Therefore, in this case the
boosting factor boostPO(d, vd) indicates the percentage of approving rules out
of all eligible rules, for both the value under examination and all of its more
specific values. The subscript PO in the name of the boosting factor underlines
the fact that the Partial Order among values is taken into account. The set Rv

d

in Eq. 6 is replaced by the set Rv+
d = {r ∈ Rd | ̂B ∧ H = p(x, v′), v′ � v}.

3.4 Integrating Rules’ Viewpoints into Confidence Computation

All the elements required to integrate information given by recurrent patterns
into TD models have been defined. Since the boosting factor depends on the

660 V. Beretta et al.

claim, only the confidence formula has been updated. As proof of concept, in
this study we modified Sums [14] whose estimation formulas are:

ti(s) =
1

max
s′∈S

∑

v′
d∈V s′

ci−1(v′
d)

∑

vd∈V s

ci−1(vd) (7)

ci(vd) =
1

max
v′
d∈V

∑

s′∈Sv′
d

ti(s′)

∑

s∈Svd

ti(s) (8)

We modified Eq. 8 proposing SumsRULES . This new model integrates the addi-
tional information given by rules into the confidence formulas as follows:

cirules(vd) =
1

normvd

[

(1 − γ)ci(vd) + γ boost(d, vd)
]

(9)

where γ ∈ [0, 1] is a weight that calibrates the influence assigned to sources
and KB for estimating value confidences. For the sake of coherence, when using
boostPO we considered the partial order also for the computation of the con-
fidence formula, as suggested in a previous study [3]. We refer to the model
that uses confidence formula ciPO(vd), taking the partial order into account, as
SumsPO. It computes the confidence of vd considering all the trustworthiness
of sources that provide the value v for the data item d, i.e. the claim vd under
examination, or a more specific value than v. Indeed as highlighted above when
claiming a value, we also consider that a source implicitly supports all its gen-
eralizations. Similarly, the model that integrates both the boostPO and rules is
indicated as SumsRULES&PO and is defined as follows:

ciRULES&PO(vd) =
1

normvd

[

(1 − γ)ciPO(vd) + γ boostPO(d, vd)
]

(10)

Note that, while Sums and SumsRULES return a true value for each data item
selecting the value with the highest confidence, SumsRULES&PO and SumsPO

required a more refined and greedy procedure to select the most informative true
value. Indeed, considering the partial order of values, the highest confidence is
always assigned to the most general value (it is implicitly supported by all the
others). Thus, since systematically returning the most general value each time
is not worthwhile, the selection procedure leverages the partial order to identify
the expected value. Starting from the root, at each step it selects the closest
specialization of the value with the highest confidence. The procedure stops
when there are no more specific values, or when the confidence of the selected
values is lower that a given threshold θ defining the minimal confidence score
required to be consider as a true value. For further details see [3].

4 Experiments and Results

In order to obtain an extended overview of the proposed approach, several exper-
iments were carried out on synthetic and real-world datasets. First of all, exper-
iments were conducted using synthetic datasets to determine the improvement

Combining Truth Discovery and RDF Knowledge Bases 661

obtained by SumsRULES (Eq. 9) and SumsRULES&PO w.r.t. their baseline, i.e.
Sums [14] (Eq. 8) and SumsPO (Eq. 10) considering different scenarios. Note
that, in both cases, the baseline corresponds to set γ = 0 in the new confidence
formula of the proposed models. A second set of experiments was conducted
using a real-world dataset to test the proposed approach in a realistic scenario.
A comparison with existing models is also presented.

The rules used in the experiments, as well as their support and confPCA

were extracted from DBpedia by AMIE. To ensure that the rules considered are
abstractions of a sufficient number of facts, we selected those with the highest
head coverage. We selected 62 rules for the predicate birthPlace. Examples of
these rules are reported in Table 2.

Table 2. Examples of rules extracted by AMIE from DBpedia for birthplace predicate.

@prefix db: <http://dbpedia.org/resource/>.
@prefix db-owl: <http://dbpedia.org/ontology/>.
?a db-owl:deathPlace ?b →?a db-owl:birthPlace ?b
?a db-owl:country ?b →?a db-owl:birthPlace ?b
?a db-owl:deathPlace ?b ∧ →?a db-owl:birthPlace ?b?b db-owl:language db:English language

4.1 Experiments on Synthetic Data

The synthetic datasets were used to evaluate the proposed model on various
scenarios depending on the granularity of the true values provided. Experts usu-
ally provide specific true values. Non-expert users provide general values, which
remain true. To evaluate the performance in these contexts, we measured the
expected value rate/recall (returned values that correspond to expected ones),
the true but more general value rate (returned values that are more general
than the expected ones) and the erroneous value rate (values that are neither
expected nor general) obtained by different model settings.

Generation. The main elements required to generate these datasets are: a
ground truth, a partial order and a set of claims provided by several sources
on different data items [3]. The ground truth was generated by selecting a sub-
set of 10000 DBpedia instances having the birthPlace property, considering the
related value as the true one. Also the partial order of values was constructed
using the DBpedia ontology. Partial order relationships were added between all
classes subsumed, i.e. rdfs:subClassOf, by dbpedia-dbo:Place class and between
those classes and their instances. Moreover, the relationships were added to all
instances for which the property dbpedia-dbo:isPartOf or dbpedia-dbo:country
exists. Since dbpedia-owl:Thing is the most abstract concept in DBpedia, all the
values belonging to the partial order graph were rooted to it. In order to obtain
a partial order of values respecting the properties of a Directed Acyclic Graph,

662 V. Beretta et al.

all cycles induced by incorrectness on the part-of property were removed.2 For
the generation of the claims, 1000 sources and 10000 data items were considered.
Table 3 reports all the features regarding the generation of the claim set. The
main feature is related to the distribution used to select the granularity of the
true values provided. Based on this feature, three types of dataset were gener-
ated: EXP, LOW E and UNI figuring, respectively, the behaviors of experts, a
mix of experts and non-experts, and non-expert users. Considering that Picasso
was born in Málaga, for example, in the case of EXP datasets, the sources tend
to provide true values such as Málaga, Andalusia, Spain, while in the case of UNI
datasets they will also provide general values such as Europe or the Continent.
For each scenario, 20 synthetic datasets were generated.

Table 3. Features of synthetic datasets.

Feature Description

Source coverage Each source provides a number of claims that is
exponentially distributed.

Source trustworthiness The trustworthiness distribution is Gaussian
with average 0.6 and standard deviation 0.4.
This means that the sources are mostly
reliable and only a few of them are always or
never correct.

of true claims
per source

Each source provide a true value w.r.t. its
trustworthiness level.

of distinct true
values per data
item

1..V true
d where V true

d = {v ∈ V : v∗
d � v}

Granularity of the
true value
provided

Each source provides a true value having a
granularity that approaches the
granularity of the expected true value
w.r.t. a high decay-rate exponential
distribution (EXP), a low decay-rate
exponential distribution (LOW E) and a
uniform distribution (UNI).

of distinct false
values per data
item

1..30 values belonging to V false
d = V true

d \ {v|v � v∗
d}

Results. The results, summarized in Fig. 1, show that the proposed approach
enables the definition of TD models that benefit from the use of a priori knowl-
edge given by an external RDF KBs. Indeed, the number of correct facts identi-
fied by the proposed model usually increases w.r.t. the baseline. Intuitively, since
2 We assumed that abstract concepts should have higher out-degree than less abstract

ones. Thus, for each cycle, the edge whose target is the node with the highest out-
degree was removed. Analysing the discarded edges, the heuristic works.

Combining Truth Discovery and RDF Knowledge Bases 663

the number of correct facts increases, a new KB that is populated with the true
claims identified by the improved TD will be of higher quality.

(a) SumsRULES - EXP (b) SumsRULES - LOW (c) SumsRULES - UNI

(d) SumsRULES&PO - EXP (e) SumsRULES&PO - LOW (f) SumsRULES&PO - UNI

Fig. 1. Expected (horizontal line bars), true but more general (diagonal line bars)
and erroneous values (dotted bars) obtained by SumsRULES and SumsRULES&PO on
different datasets with several γ. The letter B indicates the baseline model results.

The improvement obtained by considering both SumsRULES and
SumsRULES&PO was always greater for UNI datasets than for EXP or LOW E
ones. Since identifying true values in UNI settings was harder than in the other
cases (the highest disagreement among sources on the true values was mod-
eled by UNI), the baseline obtained the lowest recall. Using additional informa-
tion tackles the high level of disagreement among sources and thus enables full
exploitation of the higher scope for improvement that was available in the case
of the UNI setting.

Considering SumsRULES the best recall was obtained with different γ values.
For UNI datasets, the optimal configuration was when γ = 1. In such a case, it
was considered that no information provided by sources was useful and that only
rules should be used to solve conflicts among claims (when rules are available).
This was true only for the extreme situation represented by UNI datasets where
disagreement among sources was so high that the recall obtained by baseline
model remained under 10%. Indeed, in the other cases it was advantageous to
take both source trustworthiness and rule information into account. For EXP
datasets, the optimal γ value was 0.1, while for LOW E it was 0.9. Low γ values
were preferred in EXP settings because in this case sources that provide true
values are quite sure about the expected one, and it is thus less useful to consider

664 V. Beretta et al.

the rules’ viewpoints. Moreover, this setting was the only situation where con-
sidering external knowledge was damaging in terms of recall. Nevertheless, the
error rate obtained by SumsRULES when 0 < γ < 1 was always lower than the
error rate achieved when γ = 0. This is explained by the fact that the average
Information Content3 (IC) of values inferred by rules extracted for the birthPlace
predicate is around 0.53. This means that they often infer values that are gen-
eral. Many returned values, selected with the highest value confidence criteria,
were therefore more general than the expected one but not erroneous. In other
words, the rules associated with the birthPlace predicate were more effective for
discovering the country of birth than the expected location. However using rules
were useful, as shown by the results the error rate decreased.

The limitation related to rules that support general values was in part over-
come by considering SumsRULES&PO, which also takes the partial order of values
into account. In this case rules can improve the selection of the correct value dur-
ing the first steps of the selection procedure. They were able to handle and dom-
inate the false general values supported by many sources. The selection process
was then continued with the fine-grained values evaluated based only on source
trustworthiness information since no evidence provided by rules was available.
For SumsRULES&PO tested on EXP datasets, low γ values were preferred, while
on LOW E and UNI datasets high γ values led to the best performance.

The best overall recall was obtained by SumsRULES&PO, which considers
both kinds of a priori knowledge: extracted rules and partial order of values.

4.2 Experiments on Real-World Data

These experiments were conducted to test the proposed model in a realistic
scenario. Since the results of experiments on synthetic data showed that the
most interesting results were obtained by considering both extracted rules and
the partial order of values, we compared the results obtained in this case with
those obtained by existing TD methods4 [20]. The evaluation protocol consisted
in counting the number of values returned by a model that are equal to the
expected values. In this setting, the number of general values returned were not
analyzed since the main aim of TD models is to return the expected value, not
its generalizations.

Generation. We collected a set of claims related to the predicate
dbo:birthPlace, i.e. people’s birth location. As data item subject, we randomly
selected a subset of 480 DBpedia instances of type dbo:Person having the prop-
erty birthPlace and having at least one eligible rule. For each data item we
collected a set of webpages (up to 50) containing at least one occurrence of the

3 Information Content indicates the degree of abstraction/concreteness of a concept
w.r.t. an ontology. It monotonically increases from the most abstract concept (its
IC = 0) to the most concrete ones discriminating the granularity of different values.

4 For these models we used the implementation available at http://www.github.com/
daqcri/DAFNA-EA.

http://www.github.com/daqcri/DAFNA-EA
http://www.github.com/daqcri/DAFNA-EA

Combining Truth Discovery and RDF Knowledge Bases 665

subject’s full name and the words “was born”, i.e. the natural language expres-
sion that is usually used to introduce the birth location of a person. Given a
webpage and its data item, we defined two procedures for extracting the pro-
vided claim. Procedure A selects, as claimed value, the location (identified by
DBpedia-spotlight API) that co-occurs in the same sentence and is nearest to
the word “born”. Procedure B adds a constraint to procedure A: a value can be
selected only if it appears after the first occurrence of the subject’s full name
in the text. Two different datasets were created based on procedures A and
B, respectively DataA and DataB. For building our ground truth, we assumed
that the values defined in DBpedia as birth location for each data item were
the true ones. Since in the collected claims, values that were more specific than
the expected one (contained in the ground truth) were provided, we manually
checked if these specifications were true. For 20 instances that we manually
checked, 10 were found to be true specifications. Note that as partial order we
considered the same one as for the experiments on synthetic data. The proce-
dures, source code and datasets obtained are available online at https://github.
com/lgi2p/TDwithRULES.

Results. We can observe that for both datasets DataA and DataB we improved
the performance by 18% and 14% respectively compared to the baseline, i.e.
Sums – the approach we decided to modify. Table 4 shows the results obtained
by the best configuration of parameters where both extracted rules and partial
order were considered.

When comparing the proposed approach to existing TD models, it did not
outperform the others, see Table 5. Note that our study focused on modifying
Sums which is considered to be one of the most well studied models, but not
necessarily the most effective one. After investigating the errors, we found out
that it was mainly due to a limitation of Sums: it rewards sources having high
coverage and, meanwhile, penalizes those with low coverage. Indeed Sums com-
putes the trustworthiness of a source by summing up all the confidence of the
claims it provides. Thus the higher the number of claims a source provides, the
higher the trustworthiness of the source. The problem is that Sums does not
distinguish between sources always providing true values, but having different
coverage. While Wikipedia.org is correctly considered as a high reliable source,
an actor’s fan club website is incorrectly considered as unreliable. Even if the
information it provides is correct, because it covers only one data item its trust-
worthiness will be lower than the one of Wikipedia.org (source having a high
coverage). In real-world datasets very few sources have high coverage, and most
of them have low coverage – power law phenomenon. In this scenario the sources
having high coverage dominate the specialized ones. Therefore, no extraction
errors from high coverage sources are allowed. Indeed if an incorrect value is
extracted from Wikipedia.org (for instance when the sentence refers to another
person), this will be incorrectly considered as the true one. Since this cannot
be guaranteed (the extraction procedures we defined are voluntarily naive), we
propose a post-processing procedure that alleviates this problem. Before select-
ing the true value, it sets equal to 0 all the confidence of those values that are

https://github.com/lgi2p/TDwithRULES
https://github.com/lgi2p/TDwithRULES
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www.wikipedia.org/

666 V. Beretta et al.

Table 4. Recall obtained using Sums and
its modifications on DataA and DataB.

Model DataA DataB

Sums 0.448 0.473

SumsPO

(γ = 0.0, θ = 0.05)
0.517 0.566

SumsRULES&PO

(γ = 0.3, θ = 0.0)
0.527 0.548

SumsRULES&PO

(γ = 0.3, θ = 0.05)
0.565 0.590

SumsRULES&PO

+post-proc.
(γ = 0.3, θ = 0.1)

0.631 0.614

Table 5. Recall obtained using existing
models on DataA and DataB.

Existing model DataA DataB

Voting 0.640 0.625

TruthFinder 0.646 0.622

2-Estimates 0.631 0.635

3-Estimates 0.008 0.612

Cosine 0.636 0.635

AccuCopy 0.638 0.640

Accu 0.638 0.660

Depen 0.431 0.494

AccuSim 0.413 0.448

SimpleLCA 0.631 0.660

GuessLCA 0.644 0.646

provided by only a single source. We assume that it is highly improbable that
the same extraction error occurs, i.e. the erroneous value should therefore be
provided only once. This solution, indicated as SumsRULES&PO + post-proc.,
obtained performances comparable with existing models for DataA and DataB.
While it enables to avoid some of the extraction errors (occurring more with the
most naive procedure A), it is still not capable of assigning lower trustworthiness
levels to specialized sources.

Given these observations, in real-world settings it is very important to con-
sider the power law phenomenon. The results show that Sums is not efficient in
this kind of situation. Nevertheless, using additional information (partial order
and extracted rules) improved the results w.r.t. the baseline approach, and this
is promising for the principles introduced in this study. As shown in Table 4, the
improvement due to taking this information into account was 18% for DataA and
of 14% for DataB. Moreover, through this study we also show that correctness
and the granularity of values in DBpedia can be improved using TD models.
Claims on data items can easily be collected on the Web. When more specific
values than the one contained in DBpedia are found, they can be verified using
TD model.

5 Conclusion

Solving information conflicts in an automated fashion is critical for the devel-
opment of large RDF KBs populated by heterogeneous information extraction
systems. In this study, we suggest using TD models as unsupervised techniques
to populate RDF KBs. In order to create high quality KBs and exploit cur-
rent ones, we propose improving an existing TD model (Sums) using knowledge

Combining Truth Discovery and RDF Knowledge Bases 667

extracted from an external RDF KB in the form of rules. Several experiments
that show the validity of the proposed model were conducted. The performances
of the proposed model show higher recall than baseline methods (up to 18% of
improvement). The datasets, source code and procedures are all available online.
We plan to apply the rationale of the proposed model to other TD models in
order to outperform them all. In addition, we envisage extending the evaluation
methodology in order to consolidate our results by considering other predicates
and non-functional ones such as those used in ISWC Semantic Web Challenge
2017. Currently, we do not consider as negative evidence the fact that a rule
predicts a different value than the one contained in a claim. In the future, we
envisage studying how to incorporate this information, as well as explicit axioms,
subjectivity information and contextual dependencies (such as diachronicity).

References

1. Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of
items in large databases. In: SIGMOD 1993, vol. 22, pp. 207–216. ACM (1993)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76298-0 52

3. Beretta, V., Harispe, S., Ranwez, S., Mougenot, I.: How can ontologies give you
clue for truth-discovery? An exploratory study. In: WIMS 2016, p. 15. ACM (2016).
https://doi.org/10.1145/2912845.2912848

4. Berti-Équille, L., Borge-Holthoefer, J.: Veracity of Data: From Truth Discovery
Computation Algorithms to Models of Misinformation Dynamics. Synthesis Lec-
tures on Data Management. Morgan & Claypool Publishers (2015). https://doi.
org/10.2200/S00676ED1V01Y201509DTM042

5. Dong, X., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge
fusion. In: KDD 2014, pp. 601–610. ACM (2014). https://doi.org/10.1145/2623330.
2623623

6. Galárraga, L.: Interactive rule mining in knowledge bases. In: Actes des 31e
Conférence sur la Gestion de Données (BDA 2015), Île de Porquerolles (2015)

7. Galárraga, L., Suchanek, F.M.: Towards a numeric rule mining language. In: Pro-
ceedings of Automated Knowledge Base Construction workshop (2014)

8. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in onto-
logical knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015). https://
doi.org/10.1007/s00778-015-0394-1

9. Lehmann, J., Völker, J. (eds.): Perspectives On Ontology Learning, vol. 18. IOS
Press (2014). https://doi.org/10.3233/978-1-61499-379-7-i

10. Li, Y., et al.: A survey on truth discovery. SIGKDD Explor. Newsl. 17(2), 1–16
(2016). https://doi.org/10.1145/2897350.2897352

11. Maimon, O., Rokach, L.: Data Mining and Knowledge Discovery Handbook, vol.
2. Springer, Heidelberg (2005). https://doi.org/10.1007/b107408

12. Nebot, V., Berlanga, R.: Finding association rules in semantic web data. Knowl.-
Based Syst. 25(1), 51–62 (2012)

13. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine
learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)

https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1145/2912845.2912848
https://doi.org/10.2200/S00676ED1V01Y201509DTM042
https://doi.org/10.2200/S00676ED1V01Y201509DTM042
https://doi.org/10.1145/2623330.2623623
https://doi.org/10.1145/2623330.2623623
https://doi.org/10.1007/s00778-015-0394-1
https://doi.org/10.1007/s00778-015-0394-1
https://doi.org/10.3233/978-1-61499-379-7-i
https://doi.org/10.1145/2897350.2897352
https://doi.org/10.1007/b107408

668 V. Beretta et al.

14. Pasternack, J., Roth, D.: Knowing what to believe (when you already know some-
thing). In: COLING 2010, pp. 877–885. Association for Computational Linguistics,
Stroudsburg, PA, USA (2010)

15. Quboa, Q.K., Saraee, M.: A state-of-the-art survey on semantic web mining. Intell.
Inf. Manag. 5(01), 1–10 (2013)

16. Robbins, H.: An empirical Bayes approach to statistics. In: Proceedings of the
Third Berkeley Symposium on Mathematical Statistics and Probability Volume
1: Contributions to the Theory of Statistics, pp. 157–163. University of California
Press, Berkeley, California (1956)

17. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge.
In: WWW 2007, pp. 697–706. ACM (2007). https://doi.org/10.1145/1242572.
1242667

18. Pellissier Tanon, T., Stepanova, D., Razniewski, S., Mirza, P., Weikum, G.:
Completeness-aware rule learning from knowledge graphs. In: d’Amato, C., et al.
(eds.) ISWC 2017. LNCS, vol. 10587, pp. 507–525. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68288-4 30

19. Ventura, S., Luna, J.M.: Quality measures in pattern mining. In: Ventura, S., Luna,
J.M. (eds.) Pattern Mining with Evolutionary Algorithms, pp. 27–44. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-33858-3 2

20. Waguih, D.A., Berti-Equille, L.: Truth discovery algorithms: an experimental eval-
uation. CoRR abs/1409.6428 (2014)

https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.1007/978-3-319-68288-4_30
https://doi.org/10.1007/978-3-319-33858-3_2

Content Based Fake News Detection
Using Knowledge Graphs

Jeff Z. Pan1(B), Siyana Pavlova1, Chenxi Li1,2, Ningxi Li1,2, Yangmei Li1,2,
and Jinshuo Liu2(B)

1 University of Aberdeen, Aberdeen, UK
jeff.z.pan@abdn.ac.uk

2 Wuhan University, Wuhan, China
liujinshuo@whu.edu.cn

Abstract. This paper addresses the problem of fake news detection.
There are many works already in this space; however, most of them
are for social media and not using news content for the decision mak-
ing. In this paper, we propose some novel approaches, including the
B-TransE model, to detecting fake news based on news content using
knowledge graphs. In our solutions, we need to address a few technical
challenges. Firstly, computational-oriented fact checking is not compre-
hensive enough to cover all the relations needed for fake news detection.
Secondly, it is challenging to validate the correctness of the extracted
triples from news articles. Our approaches are evaluated with the Kag-
gle’s ‘Getting Real about Fake News’ dataset and some true articles from
main stream media. The evaluations show that some of our approaches
have over 0.80 F1-scores.

1 Introduction

With the widespread popularization of the Internet, it becomes easier and more
convenient for people to get news from the Internet than other traditional media.
Unfortunately, open Internet fuels the spread of a great many fake news without
effective supervision. Fake news are news articles that are intentionally and
verifiably false, and could mislead readers [AG17a]. With characteristics of low
cost, easy access, and rapid dissemination, fake news can easily mislead public
opinion, also disturb the social order, damage the credibility of social media,
infringe the interests of the parties and cause the crisis of confidence [VRA18,
SCV+17]. We all know how it has occurred and exerted an influence in the past
2016 US presidential elections [AG17a]. Hence, it is important and valuable to
develop methods for detecting fake news.

Most existing works on fake news detection are based on styles, focusing
on capturing the writing style of news content as features to classify news
articles [GM17,Gil17,Wan17,JLY17]. Although they can be effective, these
approaches cannot explain what is fake in the target news article. On the
other hand, knowledge based (or content based) fake news detection, which

c© Springer Nature Switzerland AG 2018
D. Vrandečić et al. (Eds.): ISWC 2018, LNCS 11136, pp. 669–683, 2018.
https://doi.org/10.1007/978-3-030-00671-6_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00671-6_38&domain=pdf

670 J. Z. Pan et al.

is also known as fact checking [SSW+17], is more promising, as the detec-
tion is based on content rather than style. Existing content based approaches
focus on path reachability trying to find a path in an existing knowledge
graph [PVGPW17,PCE+17] for a given triple [LCSR+15,SFMC17,SW16].
However, there are a few limitations of the existing content-based approaches,
which lead to the following research questions:

RQ1: What happens if we do not have a knowledge graph in the first place, but
only have articles? For a fake news topic, it is likely that at the beginning we do
not have the knowledge graph to rely on for fact-checking. Our idea is either to
construct knowledge graphs based on (true and fake) news articles bases, or to
utilize related sub-graphs from open knowledge graphs. In the former case, we
can also construct two knowledge graphs on the same topic: one is based on fake
news articles and the other one based on true news articles. It should be noted
that fake news articles are also available in online fake news web sites, such as
‘the Onion’, which often provide different categories of fake news articles. In the
latter case, we could extract the sub-graph centered on the background topic of
news articles from the open knowledge graph. Hence, we construct an external
knowledge graph for these news articles based on facts related to the background
topic in DBpedia dataset1.

RQ2: Can we use incomplete and imprecise knowledge graphs for fake news detec-
tion? All computational knowledge-based approaches mainly focus on simple
common relations between entities, such as “country”, “child”, “employerOf ”.
And the knowledge graphs they use are too incomplete and imprecise to cover
the complex relations that appeared in fake news articles. For example, the triple
(Anthony Weiner, cooperate with, FBI) extracted from a news article has the
entities of “Anthony Weiner” and “FBI ”, and the relation of “cooperate with”.
The entities are easily found in open knowledge but the relation is not. In this
paper, our idea is to make use of knowledge graph embedding for computing
semantic similarities, so as to accommodate incomplete and imprecise knowl-
edge graphs. As far as we know, this is the first work on this direction. We use
a basic knowledge graph embedding model, namely TransE [BUGD+13] , to
test the potential of knowledge graph embedding methods in content based fake
news detection.

RQ3: How can we use Knowledge Graph Embedding for content based fake news
detection? We firstly propose an approach to utilizing TransE [BUGD+13] to
train a single model on a given knowledge graph, such as a subset of an open
knowledge graph, or one that is constructed based on some news articles. Sec-
ondly, we propose a approach to generating a binary TransE model (B-TransE)
which combines a negative model with a positive single model. Furthermore, in
order to improve the performance, we also propose a hybrid approach to using
a fusion strategy to combine the feature vectors produced by the models above.

Our major contributions of this paper are summarized as follows:

1 http://wiki.dbpedia.org/.

http://wiki.dbpedia.org/

Content Based Fake News Detection Using Knowledge Graphs 671

– To the best of our knowledge, we are the first to propose the approach of
content based fake news detection by making use of incomplete and imprecise
knowledge graphs.

– We proposed a few approaches to exploit knowledge graph embedding to
facilitate content based fake news detection.

– Our experiments show that our binary model approach outperforms our single
model approach, and that our hybrid approach improve the performance of
fake news detection.

– Our experiments show that our approaches outperform the Knowledge Stream
approach in the test datasets.

2 Related Works

2.1 Fake News Detection

An effective approach is of prime importance for the success of fake news detec-
tion that has been a big challenge in recent years. Generally, those approaches
can be categorized as knowledge-based and style-based.

Knowledge-Based. The most straightforward way to detect fake news is to
check the truthfulness of the statements claimed in news content. Knowledge-
based approaches are also known as fact checking. The expert-oriented
approaches, such as Snopes2, mainly rely on human experts working in specific
fields to help decision making. The crowdsourcing-oriented approaches, such as
Fiskkit3 where normal people can annotate the accuracy of news content, uti-
lize the wisdom of crowd to help check the accuracy of the news articles. The
computational-oriented approaches can automatically check whether the given
claims have reachable paths or could be inferred in existing knowledge graphs.
Ciampaglia et al. [LCSR+15] take fact-checking as a problem of finding shortest
paths between concepts in a knowledge graph; they propose a metric to assess
the truth of a statement by analyzing path lengths between the concepts in
question. Shiralkar et al. [SFMC17] propose a novel method called”Knowledge
Stream(KS)” and a fact-checking algorithm called Relational Knowledge Linker
that verifies a claim based on the single shortest, semantically related path in
KG. Shi et al. [SW16] view fake news detection as a link prediction task, and
present a discriminative path-based method that incorporates connectivity, type
information and predicate interactions.

Style-Based. Style-based approaches attempt to capture the writing style of
news content. Mykhailo Granik et al. [GM17] find that there are some similarity
between fake news and spam email, such as they often have a lot of grammati-
cal mistakes, try to affect reader’s opinion on some topics in manipulative way
and use similar limited set of words. So they apply a simple approach for fake
news detection using naive Bayes classifier due to those similarity. Gilda [Gil17]

2 http://www.snopes.com/.
3 http://fiskkit.com.

http://www.snopes.com/
http://fiskkit.com

672 J. Z. Pan et al.

applies term frequency-inverse document frequency (TF-IDF) of bi-grams and
probabilistic context free grammar (PCFG) detection and test the dataset on
multiple classification algorithms. Wange [Wan17] investigates automatic fake
news detection based on surface-level linguistic patterns and design a novel,
hybrid convolutional neural network to integrate speaker related metadata with
text. Jiang et al. [JLY17] find that some key words tend to appear frequently in
the micro-blog rumor. They analyze the text syntactical structure features and
presents a simple way of rumor detection based on LanguageTool.

2.2 Knowledge Graph Embedding

Bordes et al. [BUGD+13] propose a method, named TransE, which models rela-
tionships by interpreting them as translations operating on the low-dimensional
embeddings of the entities. TransE is very efficient while achieving state-of-
the-art predictive performance, but it does not perform well in interpret such
properties as reflexive, one-to-many, many-to-one, and many-to-many. So, Wang
et al. [WZFC14] propose TransH which models a relation as a hyperplane
together with a translation operation on it. Lin et al. [LLS+15] propose TransR
to build entity and relation embeddings in separate entity space and relation
spaces. TransR learns embeddings by first projecting entities from entity space
to corresponding relation space and then building translations between projected
entities. Ji et al. [JHX+15] propose a model named TransD, which uses two vec-
tors to represent a named symbol object (entity and relation), and the first
one represents the meaning of a(n) entity (relation), the other one is used to
construct mapping matrix dynamically.

3 Basic Notions

In this section we introduce some basic notions related to content-based classi-
fication of news articles with external knowledge.

A knowledge graph KG describes entities and the relations between them. It
can be formalised as KG = {E,R, S}, where E denotes the set of entities, R the
set of relations and S the triple set. An article base AB is a set of news articles
for each of which we have a title, a full content text and an annotation of true
or fake. A knowledge graph may be a readily available for fact checking, such as
DBpedia, or one needs to construct one from an article base.

In this paper, we use the knowledge graph embedding (KGE) method TransE
to facilitate fake news detection. Typical knowledge graph completion algorithms
are based on knowledge graph embedding (KGE). The idea of embedding is to
represent an entity as a k-dimensional vector h (or t) and defines a scoring
function fr (h, t) to measure the plausibility of the triplet (h, r, t) in the
embedding space. The representations of entities and relations are obtained by
minimising a global loss function involving all entities and relations. Different
KGE algorithms often differ in their scoring function, transformation and loss

Content Based Fake News Detection Using Knowledge Graphs 673

function. When a knowledge graph is converted into vector space, more semantic
computations can be applied than just reasoning and querying.

The task of fact checking is to check if a target triple (h, r, t) is true based
on a given knowledge graph. The task of content based fake news detection (or
simply fake news detection), is to check if a target news article is true based on
its title and content, as well as some related knowledge graph.

4 Our Approach

4.1 Framework Overview

To detect whether a news article is true or not, and to answer our research
questions as outlined in Sect. 1, we propose a solution which uses, a tool to
produce knowledge graphs (KG), a single B-TransE model, a binary TransE
model and finally hybrid approaches. Firstly, we generate background knowledge
by producing three different KG. This part addresses RQ1 and RQ2. Then we
use a B-TransE model to build entity and relation embedding in low-dimensional
vector space and detect whether the news article is true or not. We test a single
TransE model and a binary TransE model and thus answer RQ3. Finally, we use
some hybrid approaches to improve detection performance.

For the task of background knowledge generation, we consider three types
of KGs: one is based on fake news article base; one is based on open KG, such
as DBpedia, a crowd-sourced community effort to extract structured informa-
tion from Wikipedia; one is based on true news article base from reliable news
agencies.

The external KG extracted from open knowledge graph includes two parts:
KG1 = {E1, R1, S1} based on entities from fake article base and KG2 =
{E2, R2, S2} centered on the topic of news articles. These are further described
in Sect. 5.2.

External KGs such as DBpedia are excellent for general knowledge facts,
such as (Barack Obama, birthPlace, Hawaii). However, they are incomplete
and imprecise as such KGs do not contain enough relations to represent cur-
rent events, as the latter are generated daily. An example of such a relation
is (Anthony Weiner, cooperate with, FBI), which is not contained in DBpedia.
Despite this, in Sect. 5, we show that an incomplete and imprecise external open
KG can perform well on the task of fake news detection.

The entities and the relation from the example above, however, can easily
be extracted from an article on the topic. In order to be able to assess news
items as true or fake, we propose an approach which uses external knowledge
generated from real world news articles. We propose using a set of true and a set
of fake articles to generate two models: M and M′ as described in Sect. 3. We
summarize these articles, as using the full article text causes redundancies and
increases runtime. We further explore the performance of our approach, using
only external knowledge from article bases, in order to answer the question what
happens when we do not have a KG in the first place, but only news articles. In
Fig. 1 we outline the methods used to generate a KG from an article base.

674 J. Z. Pan et al.

Fig. 1. Triple extraction from an article base

To construct KG from news articles, we start with a set of news articles
and use OpenIE4 to extract triples first. However, OpenIE does not perform
well in triple extraction of news, so we propose some methods to improve the
quality of the triples, including Stanford NER5 and others which are further
discussed in Sect. 5.2. We then perform entity alignment and obtain the triples
which constitute our article based KG.

Once we have generated our three external KG, we use TransE to train a
single model on each of them and compare their performance. To the best of our
knowledge, this is the first work to apply knowledge graph embedding for fake
news detection. Thus we use the basic TransE model. Since all the translation-
based models aim to represent entities and relations in a vector space and there
is no great difference between these models on our dataset, we choose the most
basic model TransE. The single model is further described in Sect. 4.2 and an
outline of its usage can be seen in Fig. 2. Our results, presented in Sect. 5, show
that the external open KG has the best performance.

Fig. 2. Single TransE model

Then, we explore what happens when we combine a negative single model
and a positive single model. The binary TransE (B-TransE) model is further
described in Sect. 4.3 and an outline of its usage can be seen in Fig. 3. In Sect. 5
we then show that binary models perform better than single ones.

4 https://nlp.stanford.edu/software/openie.html.
5 https://nlp.stanford.edu/software/CRF-NER.html.

https://nlp.stanford.edu/software/openie.html
https://nlp.stanford.edu/software/CRF-NER.html

Content Based Fake News Detection Using Knowledge Graphs 675

Fig. 3. Binary TransE model

Finally, we use a hybrid approach using an early fusion strategy that combines
the feature vectors produces by the models above in order to improve detection
performance. Further details of this approach are in Sect. 4.4.

4.2 Single TransE Model

To judge whether a given news article is true or fake through a knowledge graph,
we extract triples from the news article and represent the triples in vector space,
so that we can judge whether the news article is true or fake by the vectors.
We use a Knowledge Graph to train a TransE model, which represents triples
as vectors, and we name our method Single TransE Model.

In the Single TransE Model, we define TransE model as M, and a triple
based on M as (h, t, r). We denote the triples extracted from one news item as
TS, so each triple is defined as triplei = (hi, ti, ri), where i means the index of
the triple in TS. We represent one news item as N = {TS,M}.

To classify one news item, we calculate the bias of each triple in TS. The
bias of triplei is defined as

fb(triplei) = ||hi + ri − ti||22 (1)

Then we use these biases to classify the news item through a classifier. There
are two ways we use these biases to do classification.

Avg Bias Classification. For the first one, we use average bias of a triple set to
classify the news item through a classifier and name it Avg Bias Classification.
The average bias of a triple set is defined as

favgB(TS) =
∑n

i=1 fb(triplei)
|TS| (2)

where the |TS| refers to the size of the triple set.

Max Bias Classification. The second one, the Max Bias Classification uses
the max bias of a triple set to judge whether a news item is true or fake. The
max bias of a triple set is defined as

fmaxB(TS) = fb(triplemax) (3)

Where max refers to the index of the triple whose bias is the maximum.

676 J. Z. Pan et al.

4.3 B-TransE Model

The single TransE model sometimes is not good enough, since there are some
true triples whose biases are large on both the true single model and the fake
single model, so that these news items would be incorrectly classified as fake
news if we use just a single true TransE model.

To solve this problem, we propose to train two models, one model is trained
based on the triples extracted from fake news and another is trained based on the
triples extracted from true news, so that we can do classification by comparing
the biases of the true model and the biases on the fake model. We name it
B-TransE model:

– the model based on true news is defined as M, and a triple based on M is
defined as (h, t, r)

– the model based on fake news is defined as M′, and a triple based on M′ is
defined as (h′, t′, r′)

In the B-TransE Model, we represent one news item as N = {TS,TS′,
M,M′}, TS refers to triple set extracted from the news based on M and each
triple is defined as triplei = (hi, ti, ri), and TS′ refers to triple set based on M′

and each triple is triple′
i = (h′

i, t
′
i, r

′
i), where i refers to the index of the triple in

each triple set.
We define the bias of triplei and triple′

i as

fb(triplei) = ||hi + ri − ti||22 (4)

fb(triple′
i) = ||h′

i + r′
i − t′

i||22 (5)

To judge whether a news item is true or fake, we propose two classify functions
and do some experiments to verify the efficiency of each method. Max Bias
Classify The first way, we use max bias on true single model and max bias
on fake single model to do classification. And the Max Bias Classify function is
defined as

fmc(N) = 0, iffb(triplemax) < fb(triple′
max) (6)

fmc(N) = 1, otherwise (7)

where fmc(N) = 0 means the news item is true, and fmc(N) = 1 means it is
fake. Avg Bias Classify The another way, we use average bias on true single
model and average bias on fake single model to do classification. And the Avg
Bias Classify function is defined as

fac(N) = 0, iffavgB(TS) < favgB(TS′) (8)

fac(N) = 1, otherwise (9)

where fac(N) = 0 means the news item is true, and fac(N) = 1 means it is fake.

Content Based Fake News Detection Using Knowledge Graphs 677

4.4 Hybrid Approaches

To improve the detection performance, we need a fusion strategy to combine the
feature vectors from different models. The fusion strategy we use is known as
early (feature-level) fusion, which means integrating different features first and
using those integrated-features do classification.

In this part, we use the bias vector of the triple, whose bias is the maximum,
rather than bias to do classifiction. The bias vector is defined as

vi = hi + ri − ti (10)

The max bias vector is defined as V ecmax. We use two different feature
vectors:

1. max bias vectors from the model based on true news is defined as V ecmax;
2. max bias vectors from the model based on fake news is defined as V ec′

max.

The integrated vector is defined as V , so that:

V = (V ecmax, V ec′
max) (11)

which means we concatenate two different max bias vectors to get an integrated
vector, and we use this vector to do classification.

5 Experiments and Analysis

5.1 Data

Fake and True News Article Bases. We use two article bases for our exper-
iments: one with fake news and one with news that we regard as true. We use
Kaggle’s ‘Getting Real about Fake News’ dataset, which contains news articles
on the 2016 US Election, and we select 1,400 of this dataset as our Fake News
Article Base (FAB). These articles have been manually labeled as Bias, Con-
spiracy, Fake, Bull Shit, which we regard as fake. Our True News Article Base
(TAB) was produced by using the BBC News, Sky News and The Independent
websites to scrape 1,400 news articles, which were on the topic of US Election
and were published between 1st January and 31st December 2016. These articles
have not been manually labeled, however, for the purposes of our experiments,
we regard them as true. The statistics of two article bases are shown in Table 1.
We divide each article base into two parts, 1,000 are for training a model and
400 are for testing.

Knowledge Graphs. We produce three knowledge graphs for our experiments:
one named FKG based on FAB, one named D4 (DBpedia 4-hop) from DBpedia,
and one named NKG based on TAB.

678 J. Z. Pan et al.

Table 1. Statistics of fake and true news article bases.

Article base Label Source Quantity

FAB fake Kaggles Getting Real about Fake News 1,400

TAB true BBC, Sky, Independent news 1,400

FKG. FKG= {E0, R0, S0} is constructed using the training set of FAB. FKG has
the following characteristics: |E0|= 4K entities, |R0|= 1.2K relations, |S0|= 8K
triples.

D4. To build our KG from DBpedia with 4 hops, we use SPARQL query endpoint
interface6 to interview DBpedia dataset online. We selected 4 hops as it provides
a good trade-off between coverage and noise level. There is a public SPARQL
endpoint over the DBpedia dataset7. DB4 includes two parts, they are KG1

and KG2. KG1 = {E1, R1, S1} based on entities from FAB. It has the following
characteristics: |E1|= 215K entities, |S1|= 760K triples. KG2 = {E2, R2, S2}
centered on 2016 US election. We take the entity “United States presidential
election 2016”as h0, extract all triples within four hops. It has the following
characteristics: |E2|= 132K entities, |R2|= 5,211 relations, |S2|= 312K triples.
The reason we extract 4-hop subgraph is that one more hop produces lots of
repetitive triples, and most appear in the 4-hop one. We just need to make sure
that we get triples related to the topic even some are not related tightly, which
also makes the KG construction easier and general.

NKG. We produce NKG= {E3, R3, S3} using the training set of TAB. NKG
has the following characteristics: |E3|= 15K entities, |R3|= 3,751 relations,
|S3|= 19k triples.

5.2 Experiment Setup

Article Summarization. We use the titles and the first two sentences of each
article to produce the summaries. We did some small-scale experiment, and found
that the above summarisation works better than other choices. The intuition
behind is that the main message of a news article is often contained in the title
and the first two sentences.

Knowledge Extraction. We use an extraction model to extract train triples
from 1k fake news, which is used to train FML, and extract train triples from
1k true news, which is used to train FML. Simultaneously, we use an extraction
model to extract test triple sets from 400 fake news and 400 true news, which
means translating each news item into a triple set with a fake or true label. We
use OpenIE to perform triple extraction. However, OpenIE does not perform

6 https://rdflib.github.io/sparqlwrapper/.
7 http://dbpedia.org/sparql.

https://rdflib.github.io/sparqlwrapper/
http://dbpedia.org/sparql

Content Based Fake News Detection Using Knowledge Graphs 679

very well on triple extraction from news articles. Thus, we use the following
four methods to improve the quality of the entities and relations in the triples
extracted:

– We disambiguate pronouns so that a text such as “The man woke up. He
took a shower.” would be transformed to “The man woke up. The man took
a shower”. We use Neuralcoref to do this.

– We use NLTKs WordNetLemmatizer to transform any verbs in the triples to
their present tense.

– We shorten the length of the entities, which is extracted though OpenIE and
is named OpenIEEntity. We find out the word which is real entity in the
entity extracted though OpenIE and remove other words. Such as “western
mainstream media like John Kerry” is shortened to “western mainstream
media”.

– We use Stanford NER to extract entities from news, which is named NER-
Entity. Then align the OpenIEEntities to NEREntities.

To produce the two parts of the external KG from an open knowledge graph,
as outlined in Sect. 4.1, we use the following steps:

1. KG1 = {E1, R1, S1} based on entities from a fake article base. Firstly, to
obtain the set of entities E1 from triples in fake article base. And then, to
extract all triples S1 from the open knowledge graph with these entities as
subjects and objects respectively.

2. KG2 = {E2, R2, S2} centered on the topic of news articles. This sub-KG
reflects true statements about the news topic in the real world. We take the
entity h0 that is the most related to the topic as the center, and extract
all triples S2 within a certain number of hops. As shown in Fig. 4, it is a
simplified three-hop sub-graph example. Supposing the node “0” to be h0,
firstly, to extract all triples denoted as T1 that has the formula as (h0, r, t).
Secondly, to extract all triples denoted as T2 that has the formula as (h1, r, t),
where h1 refers to an entity in T1, also one of the nodes “1” in the figure.
And the rest can be done by analogy.

Fig. 4. A simplified three-hop sub-graph example

Model Generation. We generate three single trained models based on TransE
for our experiments: the first model FML using the negative knowledge graph

680 J. Z. Pan et al.

FKG; the second model TML-D4 using the positive knowledge graph D4; the
third model TML-NKG using the positive knowledge graph NKG.

FML. The TransE model gets the input of S0 and automatically produces the
trained model FML.

TML-D4. The TransE model gets the input of S1 + S2 and automatically pro-
duces the trained model TML-D4.

TML-NKG. The TransE algorithm gets the input of S3 and automatically
produces the trained model TML-D4.

5.3 Fake News Detection

Using Single Models. The results of the single TransE model with differ-
ent bias function are shown in Table 2, which shows that: (1) TML-D4 model
performs the best (in terms of F score) for the fake news detection task. It sug-
gests that using incomplete knowledge graph can still be effective for fake news
detection task. (2) FML and TML-NKG model also perform pretty well, which
suggests that using imprecise knowledge graphs can also be effective for fake
news detection. This also suggests that, if we do not have knowledge graph in
the first place, but only have articles, contracting a knowledge graph from arti-
cles is a effective method. (3) Max Bias significantly outperforms Avg Bias in
terms of F Score. Maybe there are a few true triples in the triple set of one true
news, so that the average bias of the triple set becomes smaller. Since not all the
triples extracted from one fake news is false, max bias is more useful in fake news
detection task. (4) TML-D4 performs a little better than TML-NKG and FML.
The results may correlate with the training data of the TransE model: There
are 1 K training news of TML-NKG and FML, but there are 132 K entities and
312 K triples of the training data set of TML-D4.

Table 2. Performance of single TransE model.

Models Bias function Precision Recall F1 score

FML Max bias 0.75 0.78 0.77

Avg bias 0.80 0.65 0.72

TML-D4 Max bias 0.73 0.86 0.79

Avg bias 0.77 0.68 0.72

TML-NKG Max bias 0.69 0.86 0.77

Avg bias 0.79 0.71 0.75

Using B-TransE Model. The results of B-TransE Model with different bias
function are shown in Table 3, from which we observe that the B-TransE Model is
better than the Single TransE Model. This suggests thates the approach based
on one related knowledge graph is not enough, and that one should combine
related knowledge graph with external knowledge graphs.

Content Based Fake News Detection Using Knowledge Graphs 681

Table 3. Performance of different models.

Models Bias function Precision Recall F1 score

FML + TML-D4 Max bias 0.85 0.80 0.83

Avg bias 0.80 0.78 0.79

FML + TML-NKG Max bias 0.75 0.79 0.77

Avg bias 0.81 0.72 0.76

Hybrid Approaches. In this section, we do experiments on the test sets using
the hybrid approach described in Sect. 4.4. Experimental results of combining
different models are shown in Table 4. We use vectors from a single TransE model
and integrated vectors from a B-TransE Model. The classification we use is SVM
[Joa98,SS02], and we choose ‘poly’, ‘linear’ and ‘rbf’ as kernel functions. From
Table 4, we can draw a conclusion that: the hybrid approach can further improve
the single and binary model approaches.

Table 4. Performance of different models.

Approaches Kernel Precision Recall Accuracy

FML poly 0.22 0.90 0.63

TML-D4 poly 0.82 0.87 0.85

FML + TML-D4 poly 0.83 0.88 0.89

FML linear 0.61 0.91 0.75

TML-D4 linear 0.79 0.88 0.86

FML + TML-D4 linear 0.81 0.92 0.87

FML rbf 0.74 0.79 0.81

TML-D4 rbf 0.94 0.77 0.80

FML + TML-D4 rbf 0.95 0.74 0.81

Knowledge Stream. Finally, we test Knowledge Stream approach [SFMC17]
on the 400 true articles and 400 fake articles required that a file exists for each
article which contains all of the triples extracted from the given article and with
IDs for each entity and relation accordingly. Once these files existed, they were
run in Knowledge Stream to produce scores for each triple in each file. Table 5
shows the results of the comparison of the performance of the TransE FML
(which is not even the best single model from our approach, as discussed above)
and that of Knowledge Stream. From the table we observe that while Knowl-
edge Stream has a very high recall value, TransE outperforms it significantly.
Therefore, we conclude that: Our single TransE model is better than Knowl-
edge Stream on the task of fake news detection when the background knowledge
graph is constructed from real news articles.

682 J. Z. Pan et al.

Table 5. Performance of different models.

Method Function Precision Recall F1 score

Knowledge stream Max 0.50 0.99 0.66

Avg 0.47 1.0 0.64

TransE FML Max bias 0.75 0.78 0.77

Avg bias 0.80 0.65 0.72

6 Conclusion and Future Work

In this paper, we tackle the problem of content based fake news detection. We
have proposed some novel approaches of fake news detection based on incom-
plete and imprecise knowledge graphs, based on the existing TransE model and
our B-TransE model. Our findings suggest that even incomplete and imprecise
knowledge graph can help detect fake news.

As for future work, we will explore the following directions: (1) To com-
bine our content based approaches with style-based approaches. (2) To pro-
vide explanations for the results fake news detection, even with incomplete and
imprecise knowledge graphs. (3) To explore the use of the schema of knowl-
edge graphs as well as approximate reasoning [PRZ16] and uncertain reason-
ing [PTRT12,SFP+13,JGC15] in fake news detection.

Acknowledgements. The work is supported by the Aberdeen-Wuhan Joint Research
Institute.

References

[AG17a] Allcott, H., Gentzkow, M.: Social media and fake news in the 2016 elec-
tion. J. Econ. Perspect. 31(2), 211–236 (2017)

[BUGD+13] Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.:
Translating embeddings for modeling multi-relational data. In: Advances
in Neural Information Processing Systems, pp. 2787–2795 (2013)

[Gil17] Gilda, S.: Evaluating machine learning algorithms for fake news detec-
tion. In: 2017 IEEE 15th Student Conference on Research and Develop-
ment (SCOReD), pp. 110–115. IEEE (2017)

[GM17] Granik, M., Mesyura, V.: Fake news detection using Naive Bayes classi-
fier. In: 2017 IEEE First Ukraine Conference on Electrical and Computer
Engineering (UKRCON), pp. 900–903. IEEE (2017)

[JGC15] Fokoue, A., Sycara, K., Tang, Y., Garcia, J., Pan, J.Z., Cerutti, F.: Han-
dling uncertainty: an extension of DL-Lite with subjective logic. In: Pro-
ceedings of 28th International Workshop on Description Logics, DL 2015
(2015)

[JHX+15] Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding
via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing (Volume 1:
Long Papers), vol. 1, pp. 687–696 (2015)

Content Based Fake News Detection Using Knowledge Graphs 683

[JLY17] Jiang, Y., Liu, Y., Yang, Y.: LanguageTool based university rumor detec-
tion on Sina Weibo. In: 2017 IEEE International Conference on Big Data
and Smart Computing (BigComp), pp. 453–454. IEEE (2017)

[Joa98] Joachims, T.: Making large-scale SVM learning practical. Technical
report, SFB 475: Komplexitätsreduktion in Multivariaten Datenstruk-
turen, Universität Dortmund (1998)

[LCSR+15] Ciampaglia, G.L., Shiralkar, P., Rocha, L.M., Bollen, J., Menczer, F.,
Flammini, A.: Computational fact checking from knowledge networks.
PloS one 10, e0128193 (2015)

[LLS+15] Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation
embeddings for knowledge graph completion. In: AAAI, vol. 15, pp. 2181–
2187 (2015)

[PCE+17] Pan, J.Z., et al. (eds.): Reasoning Web 2016. LNISA, vol. 9885. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-49493-7

[PRZ16] Pan, J.Z., Ren, Y., Zhao, Y.: Tractable approximate deduction for OWL.
Artif. Intell. 235, 95–155 (2016)

[PTRT12] Pan, J.Z., Thomas, E., Ren, Y., Taylor, S.: Tractable fuzzy and crisp
reasoning in ontology applications. IEEE Comput. Intell. Mag. 7, 45–53
(2012)

[PVGPW17] Pan, J.Z., Vetere, G., Gomez-Perez, J.M., Wu, H. (eds.): Exploiting
Linked Data and Knowledge Graphs in Large Organisations. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-319-45654-6

[SCV+17] Shao, C., Ciampaglia, G.L., Varol, O., Flammini, A., Menczer, F.: The
spread of fake news by social bots. arXiv preprint arXiv:1707.07592
(2017)

[SFMC17] Shiralkar, P., Flammini, A., Menczer, F., Ciampaglia, G.L.: Finding
streams in knowledge graphs to support fact checking. arXiv preprint
arXiv:1708.07239 (2017)

[SFP+13] Sensoy, M., et al.: Reasoning about uncertain information and conflict
resolution through trust revision. In: Proceedings of the 12th Inter-
national Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2013 (2013)

[SS02] Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, Cam-
bridge (2002)

[SSW+17] Shu, K., Sliva, A., Wang, S., Tang, J., Liu, H.: Fake news detection
on social media: a data mining perspective. ACM SIGKDD Explor.
Newslett. 19(1), 22–36 (2017)

[SW16] Shi, B., Weninger, T.: Fact checking in heterogeneous information net-
works. In: Proceedings of the 25th International Conference Companion
on World Wide Web, pp. 101–102. International World Wide Web Con-
ferences Steering Committee (2016)

[VRA18] Vosoughi, S., Roy, D., Aral, S.: The spread of true and false news online.
Science 359(6380), 1146–1151 (2018)

[Wan17] Wang, W.Y.: “liar, liar pants on fire”: A new benchmark dataset for fake
news detection. arXiv preprint arXiv:1705.00648 (2017)

[WZFC14] Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by
translating on hyperplanes. In: AAAI, vol. 14, pp. 1112–1119 (2014)

https://doi.org/10.1007/978-3-319-49493-7
https://doi.org/10.1007/978-3-319-45654-6
http://arxiv.org/abs/1707.07592
http://arxiv.org/abs/1708.07239
http://arxiv.org/abs/1705.00648

Author Index

Achichi, Manel II-3
Acosta, Maribel II-86
Ahlstrøm, Kim I-547
Alani, Harith I-617
Ali, Muhammad Intizar II-256
Aly, Ahmed I-583
Androutsopoulos, Ion I-162
Appert, Caroline II-137
Aref, Walid I-583
Atzeni, Mattia I-285
Atzori, Maurizio I-285
Auer, Sören II-359

Bailoni, Tania II-53, II-307
Balduini, Marco II-256
Banerjee, Debayan I-108
Barisevičius, Gintaras II-291
Baumgartner, Matthias I-21
Beek, Wouter I-391
Bennett, Kristin II-223
Beretta, Valentina I-652
Bernstein, Abraham I-21
Bhatia, Sumit I-250
Bianchi, Federico I-56
Bielefeldt, Adrian II-376
Birukou, Aliaksandr II-341
Bonifati, Angela I-530
Botoeva, Elena I-354
Bozzon, Alessandro I-127
Burel, Grégoire I-617

Calbimonte, Jean-Paul II-256
Calvanese, Diego I-354
Canale, Lorenzo I-91
Castano, Silvana II-70
Čebirić, Šejla II-137
Celino, Irene II-154
Ceriani, Miguel II-20
Chari, Shruthi II-223
Chaudhuri, Debanjan I-108
Cheatham, Michelle II-273
Chen, Huajun I-21
Chen, Yihe I-513
Chortaras, Alexandros I-441

Cochez, Michael I-634
Cogrel, Benjamin I-354
Collarana, Diego II-359
Constantopoulos, Panos I-162
Corman, Julien I-318
Coste, Martin II-291

Damiano, Rossana II-103
Darari, Fariz I-179
de Rijke, Maarten I-634
Delahousse, Jean II-3
Delanaux, Remy I-530
Dell’Aglio, Daniele I-21, II-256
Della Valle, Emanuele II-256
Destandau, Marie II-137
Di Tommaso, Giorgia II-36
Dragoni, Mauro II-53, II-307
Dubey, Mohnish I-108
Dwivedi, Purusharth I-250

Eccher, Claudio II-53, II-307
Ermilov, Ivan II-206

Faralli, Stefano II-36
Fazekas, György II-20
Ferrara, Alfio II-70
Fiano, Andrea II-154
Fink, Manuel I-3
Flouris, Giorgos I-408
Forssell, Henrik I-477
Fundulaki, Irini I-408

Gad-Elrab, Mohamed H. I-72
Galárraga, Luis I-547
Galkin, Mikhail II-359
Gallinucci, Enrico II-70
Geleta, David I-458, II-291
Gemulla, Rainer I-3
Giacometti, Arnaud I-374
Glass, Michael I-38
Gliozzo, Alfio I-38
Goasdoué, François II-137
Golfarelli, Matteo II-70

Gonsior, Julius II-376
González, Larry II-376
Gözükan, Hande II-137
Gutierrez, Claudio I-337

Harispe, Sébastien I-652
Harth, Andreas I-424
Hassanzadeh, Oktie I-38
Heling, Lars II-86
Hendler, James II-223
Hernández, Daniel I-337
Hitzler, Pascal II-273
Ho, Vinh Thinh I-72
Hogan, Aidan I-301, I-337, I-600, II-170
Hose, Katja I-547
Houben, Geert-Jan I-127
Huurdeman, Hugo I-217

Juric, Damir II-291

Käfer, Tobias I-424
Karlsen, Leif Harald I-477
Kaur, Avneet I-250
Kejriwal, Mayank I-233
Khare, Prashant I-617
Kharlamov, Evgeny I-72
Khodadadi, Mohammad I-458, II-291
Kondylakis, Haridimos I-268
Kontchakov, Roman I-354
Krisnadhi, Adila II-273
Krötzsch, Markus II-376

Lange, Christoph II-359
Le Phuoc, Danh II-256
Lehmann, Jens I-108, II-206
Li, Chenxi I-669
Li, Ningxi I-669
Li, Suoheng I-198
Li, Yangmei I-669
Lisena, Pasquale I-91, II-3
Liu, Jinshuo I-669
Liu, Jun I-513
Lofi, Christoph I-127
Lombardo, Vincenzo II-103
Lupp, Daniel P. I-477

Madkour, Amgad I-583
Maimone, Rosa II-53, II-307

Maleshkova, Maria II-86
Malyshev, Stanislav II-376
Mami, Mohamed Nadjib II-206
Mannocci, Andrea II-187
Manolescu, Ioana II-137
Markhoff, Béatrice I-374
Maynard, Diana I-617
McCusker, James II-223
McGuinness, Deborah II-223
Meilicke, Christian I-3
Mesbah, Sepideh I-127
Mihindukulasooriya, Nandana I-38
Mirza, Paramita I-179
Montanelli, Stefano II-70
Moreno-Vega, José I-301
Mosca, Lorenzo II-70
Motta, Enrico I-495, II-187, II-341
Mougenot, Isabelle I-652

Ngonga Ngomo, Axel-Cyrille I-408
Nozza, Debora I-56

Oldman, Dominic II-325
Osborne, Francesco I-495, II-187, II-341

Palmonari, Matteo I-56
Pan, Jeff Z. I-669
Paudel, Bibek I-21
Pavlova, Siyana I-669
Pedersen, Torben Bach I-547
Pellissier Tanon, Thomas I-566
Peng, Jing I-233
Pernelle, Nathalie I-391
Peroni, Silvio II-119
Pertsas, Vayianos I-162
Pietriga, Emmanuel II-137
Pizzo, Antonio II-103
Plexousakis, Dimitris I-268
Poblete, Barbara II-170
Polleres, Axel I-634

Qi, Guilin I-513
Qian, Lihua I-198
Qiu, Lin I-198
Qu, Yanru I-198

Raad, Joe I-391
Ranwez, Sylvie I-652

686 Author Index

Rashid, Sabbir II-223
Razniewski, Simon I-179
Re Calegari, Gloria II-154
Rebele, Thomas I-566
Reutter, Juan L. I-318
Rizzi, Stefano II-70
Rong, Shu I-198
Rosales-Méndez, Henry II-170
Rospocher, Marco I-144, II-307
Rossiello, Gaetano I-38
Rousset, Marie-Christine I-530
Ru, Dongyu I-198
Ruffinelli, Daniel I-3

Saïs, Fatiha I-391
Salas, Jaime I-600
Salatino, Angelo Antonio II-187
Savenkov, Vadim I-634
Saveta, Tzanina I-408
Savković, Ognjen I-318
Scerri, Simon II-359
Sedira, Yehia Abo II-256
Sejdiu, Gezim II-206
Seneviratne, Oshani II-223
Shamdasani, Jetendr I-458
Shotton, David II-119
Skjæveland, Martin G. I-477
Soulet, Arnaud I-374
Stamou, Giorgos I-441
Stefanidis, Kostas I-268
Stepanova, Daria I-72
Stilo, Giovanni II-36
Stoilos, Giorgos I-458, II-291
Stuckenschmidt, Heiner I-3
Suchanek, Fabian M. I-374
Suchanek, Fabian I-566
Sure-Vetter, York II-86
Szekely, Pedro I-233

Taelman, Ruben II-239
Tanase, Diana II-325
Thanapalasingam, Thiviyan II-187, II-341
Thion, Romuald I-530
Todorov, Konstantin II-3
Tommasini, Riccardo II-256
Troncy, Raphaël I-91, II-3
Troullinou, Georgia I-268
Tu, Kewei I-198

Vaccari, Cristian II-70
Vakulenko, Svitlana I-634
Valle Torre, Manuel I-127
van Erp, Marieke I-217
Van Harmelen, Frank I-391
Van Herwegen, Joachim II-239
Vander Sande, Miel II-239
Velardi, Paola II-36
Verborgh, Ruben II-239
Vidal, Maria-Esther II-359

Wang, Meng I-513
Wang, Ruijie I-513
Wang, Yanjie I-3
Weikum, Gerhard I-72, I-179
Wevers, Melvin I-217

Xiao, Guohui I-354

Yu, Yong I-198

Zaihrayeu, Ilya II-291
Zhang, Haotian I-233
Zhang, Lei I-513
Zhang, Weinan I-198
Zhang, Wen I-21
Zhou, Hao I-198
Zhou, Lu II-273

Author Index 687

	Preface
	Organization
	Tutorials
	ISWC 2018 Workshop and Tutorial Chairs’ Welcome
	Methods and Tools for Modular Ontology Modeling
	Validating RDF Data Tutorial
	Hybrid Techniques for Knowledge-Based NLP - Knowledge Graphs Meet Machine Learning and All Their Friends
	Building Enterprise-Ready Knowledge Graph Applications in the Cloud
	Crowdsourcing with CrowdTruth Harnessing Disagreement in Human Interpretation for Ambiguity-Aware Machine Intelligence
	Challenges and Opportunities with Big Linked Data Visualization
	Contents–Part I
	Contents–Part II
	Research Track
	Fine-Grained Evaluation of Rule- and Embedding-Based Systems for Knowledge Graph Completion
	1 Introduction
	2 Related Work
	3 A Simple Rule-Based Approach
	3.1 Types of Rules
	3.2 Learning Rules
	3.3 Applying Rules

	4 Experimental Results
	4.1 Performance of Rule-Based Approaches
	4.2 Dataset Partitioning
	4.3 Fine-Grained Evaluation
	4.4 Ensemble Learning

	5 Conclusion
	References

	Aligning Knowledge Base and Document Embedding Models Using Regularized Multi-Task Learning
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Aligning Embedding Models
	5 A Regularized Multi-Task Learning Method for Aligning Embedding Models
	6 Experimental Evaluation
	6.1 HP1: KADE Retains the Document Embedding Model
	6.2 HP2: KADE Retains the KB Embedding Model
	6.3 HP3: KADE Aligns KB and Document Embeddings

	7 Conclusion and Future Work
	References

	Inducing Implicit Relations from Text Using Distantly Supervised Deep Nets
	1 Introduction
	2 Related Work
	3 Socrates Architecture
	4 Deep Nets for KBP
	5 Implicit Relations
	5.1 Unary Relations
	5.2 Composite Contexts
	5.3 Final Merger

	6 Evaluation
	6.1 Extending Thompson Reuters PermID with Company Websites
	6.2 Extending Freebase with NYT Articles
	6.3 Extending DBpedia with Web Crawls

	7 Conclusion and Future Work
	References

	Towards Encoding Time in Text-Based Entity Embeddings
	1 Introduction
	2 Typed Entity Embeddings with Time Periods
	2.1 TEEs and Their Generation
	2.2 Encoding Temporal Periods into TEEs
	2.3 Temporal Embeddings Alternative Configurations
	2.4 Time-Aware Similarity Measures

	3 Experimental Evaluation
	3.1 Time Effect and Temporal Representations in Text-Based Entity Embeddings
	3.2 Time-Aware Similarity

	4 Related Work
	5 Conclusions and Future Work
	References

	Rule Learning from Knowledge Graphs Guided by Embedding Models
	1 Introduction
	2 Rule Learning Guided by External Sources
	2.1 Background
	2.2 Problem Statement and Proposal of General Solution
	2.3 Realization of General Solution

	3 Approach Description
	4 Evaluation
	4.1 Experimental Setup
	4.2 Embedding-Based Hybrid Quality Function
	4.3 Horn Rule Learning
	4.4 RuLES for Exception-Aware Rule Learning

	5 Related Work
	6 Conclusion
	References

	A Novel Ensemble Method for Named Entity Recognition and Disambiguation Based on Neural Network
	1 Introduction
	2 State of the Art
	3 Feature Engineering for NERD
	4 Ensemble NERD: ENNTR and ENND
	5 Experiment and Evaluation
	6 Conclusion and Future Work
	References

	EARL: Joint Entity and Relation Linking for Question Answering over Knowledge Graphs
	1 Introduction
	2 Related Work
	3 Overview and Preliminaries
	3.1 Overview and Research Questions
	3.2 Preliminaries

	4 EARL
	4.1 Candidate Generation Steps
	4.2 Using GTSP for Disambiguation
	4.3 Using Connection Density for Disambiguation
	4.4 Adaptive E/R Learning

	5 Evaluation
	5.1 Experiment 1: Comparison of GTSP, LKH and Connection Density
	5.2 Experiment 2: Evaluating Joint Connectivity and Re-ranker
	5.3 Experiment 3: Evaluating Entity Linking
	5.4 Experiment 4: Evaluating Relation Linking

	6 Discussion
	7 Conclusions and Future Work
	References

	TSE-NER: An Iterative Approach for Long-Tail Entity Extraction in Scientific Publications
	1 Introduction
	2 Related Work
	3 Approach
	3.1 Training Data Extraction
	3.2 Expansion
	3.3 Training Data Annotation
	3.4 NER Training
	3.5 Filtering

	4 Evaluation
	4.1 Experimental Setup
	4.2 Results
	4.3 Discussion

	5 Conclusion
	References

	An Ontology-Driven Probabilistic Soft Logic Approach to Improve NLP Entity Annotations
	1 Introduction
	2 Background on Probabilistic Soft Logic
	3 A PSL Model for NERC and EL
	3.1 Classes Implied by NLP Annotations
	3.2 Annotation Coherence via Classes

	4 Evaluation
	4.1 Background Knowledge and Tools
	4.2 Datasets
	4.3 Research Question and Evaluation Measures
	4.4 Evaluation Procedure
	4.5 Results and Discussion

	5 Discussion
	6 Related Work
	7 Conclusions
	References

	Ontology Driven Extraction of Research Processes
	Abstract
	1 Introduction
	2 Related Work
	3 Setup and Methodology
	3.1 Conceptual Framework: The Scholarly Ontology
	3.2 The Dataset
	3.3 Extracting Research Activities
	3.4 Extracting Sequence Relations
	3.5 Background Context Integration and URI Creation

	4 Evaluation
	4.1 Research Activity Extraction Evaluation
	4.2 Sequence Relation Extraction Evaluation

	5 Conclusion
	References

	Enriching Knowledge Bases with Counting Quantifiers
	1 Introduction
	2 Counting Information in Knowledge Bases
	3 System Overview
	4 Counting Quantifier Recognition
	5 Counting Quantifier Consolidation
	6 Experiments
	6.1 Experimental Setup
	6.2 Evaluation
	6.3 KB Enrichment Potential
	6.4 Count Information Across KB Relations

	7 Related Work
	8 Conclusions
	References

	QA4IE: A Question Answering Based Framework for Information Extraction
	1 Introduction and Background
	1.1 Previous IE Systems
	1.2 QA4IE Framework
	1.3 Contributions

	2 QA4IE Benchmark Construction
	3 Question Answering Model
	4 Experiments
	4.1 Experimental Setup
	4.2 Results in QA Settings
	4.3 Results in IE Settings
	4.4 Case Study
	4.5 Human Evaluation on QA4IE Benchmark

	5 Conclusion
	References

	Constructing a Recipe Web from Historical Newspapers
	1 Introduction
	2 Related Work
	3 Data
	4 Constructing the Historical Recipe Web
	4.1 Recipe Identification
	4.2 OCR Quality of the Recipe Dataset
	4.3 Tag Classifier
	4.4 Ingredient and Quantity Extraction
	4.5 Linking Recipe Elements

	5 Dutch Historical Recipe Web
	6 Discussion
	7 Conclusions and Future Work
	References

	Structured Event Entity Resolution in Humanitarian Domains
	1 Introduction
	2 Related Work
	3 Structured Event Entity Resolution (SEER)
	4 Approach
	4.1 Classification and Clustering

	5 Experiments
	5.1 Datasets
	5.2 Preliminaries
	5.3 Baselines
	5.4 Results

	6 Conclusion
	References

	That's Interesting, Tell Me More! Finding Descriptive Support Passages for Knowledge Graph Relationships
	1 Introduction
	2 Related Work
	2.1 Supporting Search Results with Textual Descriptions
	2.2 Explaining Knowledge Graph Relationships

	3 Proposed Approach
	4 Experimental Evaluation
	4.1 Data Description
	4.2 Effectiveness Evaluation
	4.3 Preference Evaluation

	5 Discussions
	6 Conclusions
	References

	Exploring RDFS KBs Using Summaries
	1 Introduction
	2 Preliminaries
	3 Schema Summarization
	3.1 Identifying Important Nodes in RDFDigest+
	3.2 Linking Important Nodes
	3.3 Summary Schema Graph

	4 Exploration Through Summaries
	4.1 The Extend Operator
	4.2 The Zoom Operator

	5 Evaluation and Implementation
	5.1 Quality - Evaluating the Zoom Operator
	5.2 Quality - Evaluating the Extend Operator
	5.3 The RDFDigest+ System

	6 Related Work
	7 Conclusions
	References

	What Is the Cube Root of 27? Question Answering Over CodeOntology
	1 Introduction
	2 Related Work
	3 Coarse-Grained Approach
	3.1 A Natural Language Interface to OpenJDK
	3.2 Method Ranking

	4 Fine-Grained Approach
	4.1 Dependency Graph Unfolding
	4.2 Mapping to a Feasible Execution Tree
	4.3 Greedy Search

	5 Experiments
	5.1 Method Ranking Evaluation
	5.2 Question Answering Evaluation

	6 Conclusion
	References

	GraFa: Scalable Faceted Browsing for RDF Graphs
	1 Introduction
	2 Related Work
	3 Faceted Browsing
	4 Indexing Scheme
	5 Materialisation Strategy
	6 Performance Evaluation
	7 User Evaluation
	8 Conclusion
	References

	Semantics and Validation of Recursive SHACL
	1 Introduction
	2 Validating a Graph Against SHACL Shapes
	2.1 Recursive Constraints with Stratified Negation
	2.2 Non-stratified Constraints

	3 Formal Semantics for SHACL
	3.1 Notation
	3.2 Abstract Syntax and Semantics for SHACL Constraints
	3.3 Validation
	3.4 Properties of Validation
	3.5 Validation and Stratified Negation

	4 Complexity
	5 Approximation
	6 Related Work
	7 Conclusion
	References

	Certain Answers for SPARQL with Blank Nodes
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Approximating Certain Answers
	4.1 Unification
	4.2 Approximations
	4.3 Relation to Certain/Possible Answers

	5 SPARQL Rewriting Strategies
	6 Evaluation
	6.1 Evaluation Setting
	6.2 TPC–H Experiments
	6.3 Wikidata Survey

	7 Conclusions
	References

	Efficient Handling of SPARQL OPTIONAL for OBDA
	1 Introduction
	2 Preliminaries
	2.1 SPARQL
	2.2 Relational Algebra (RA)

	3 Succinct Translation of SPARQL to SQL
	4 Optimisations of Translated SPARQL Queries
	4.1 Compatibility Filter Reduction (CFR)
	4.2 Left Join Naturalisation (LJN)
	4.3 Translation for Well-Designed SPARQL
	4.4 Natural Left Join Reduction (NJR)
	4.5 Join Transfer (JT)
	4.6 Left Join Decomposition (LJD): Left Join Simplification GaRo97 Revisited

	5 Experiments
	6 Discussion and Conclusions
	References

	Representativeness of Knowledge Bases with the Generalized Benford's Law
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Representativeness of Knowledge Bases
	3.2 Problem Statement

	4 Our Approach
	4.1 The Generalized Benford's Law for KBs
	4.2 Transforming Relations into Measures
	4.3 Parameterizing the Generalized Benford's Law
	4.4 Estimating the Number of Missing Facts
	4.5 Limitations of Our Approach

	5 Experiments
	5.1 Verification of the Transferability Assumption
	5.2 Validity of Representativeness
	5.3 Effectiveness of the GBL for a KB

	6 Conclusion
	References

	Detecting Erroneous Identity Links on the Web Using Network Metrics
	1 Introduction
	2 Related Work
	2.1 Identity Error Detection
	2.2 Community Detection
	2.3 Discussion

	3 Approach
	3.1 Identity Network Construction
	3.2 Links Ranking

	4 Experiments
	4.1 Dataset
	4.2 Quantitative Results
	4.3 Community Structure Analysis
	4.4 Links Ranking Evaluation

	5 Conclusion
	References

	SPgen: A Benchmark Generator for Spatial Link Discovery Tools
	1 Introduction
	2 Related Work
	3 Dimensionally Extended Nine-Intersection Model (DE-9IM)
	4 Datasets
	5 SPgen: A Link Discovery Benchmark Generator for Spatial Data
	5.1 Overview
	5.2 SPgen Architecture
	5.3 Test Cases
	5.4 Gold Standard
	5.5 Key Performance Indicators

	6 Experimental Results
	7 Conclusions and Future Work
	References

	Specifying, Monitoring, and Executing Workflows in Linked Data Environments
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Activity, Workflow Model and Instance Ontology
	5 Operational Semantics
	5.1 Overview
	5.2 Condition-Action Rules

	6 Evaluation
	6.1 Mapping to Petri Nets
	6.2 Applicability: The Case of Virtual Aircraft Cockpit Design
	6.3 Empirical Evaluation Using a Synthetic Benchmark

	7 Conclusion
	References

	Mapping Diverse Data to RDF in Practice
	1 Introduction
	2 Related Work, R2RML and RML
	3 Motivating Examples
	4 Model
	5 Retrieving and Interpreting Data
	6 D2RML Specification
	6.1 Triples Maps
	6.2 Logical Tables and Logical Sources
	6.3 Information Sources
	6.4 Transformations and Defined Columns
	6.5 Term Maps and Conditions
	6.6 RDF Terms

	7 Evaluation
	8 Conclusions
	References

	A Novel Approach and Practical Algorithms for Ontology Integration
	1 Introduction
	2 Ontologies and Ontology Matching
	3 An Ontology Integration Framework
	4 Safe Ontology Integration
	5 Practical Algorithms
	6 Evaluation
	7 Related Work and Conclusions
	8 Proofs
	References

	Practical Ontology Pattern Instantiation, Discovery, and Maintenance with Reasonable Ontology Templates
	1 Introduction
	2 Reasonable Ontology Templates Fundamentals
	3 Using Ontology Templates
	4 Maintenance and Optimisation of OTTR Template Libraries
	4.1 OTTR Template Relations
	4.2 Efficient Redundancy Detection

	5 Use Case Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Pragmatic Ontology Evolution: Reconciling User Requirements and Application Performance
	Abstract
	1 Introduction
	2 Motivating Scenario: Evolving Springer Nature Market Codes
	3 Related Work
	4 The POE Framework
	4.1 Overview of POE
	4.2 Topic Ranking
	4.3 Evaluating a Candidate Ontology on a Task
	4.3.1 Instance Tagging
	4.3.2 Similarity Computation
	4.3.3 Generation of Recommendations
	4.3.4 Clustering

	4.4 Parameter Optimization
	4.5 Recursive Concept Elimination

	5 Evaluation
	6 Conclusions
	Acknowledgements
	References

	Towards Empty Answers in SPARQL: Approximating Querying with RDF Embedding
	1 Introduction
	2 The Proposed Framework
	2.1 Learning RDF Embeddings
	2.2 Computing Variable Embeddings
	2.3 Generating Approximate Answers and Alternative Queries

	3 Experimental Evaluation
	3.1 Entity Context Preserving Embedding Validation
	3.2 Quality of Approximate Answers and Alternative Queries
	3.3 Efficiency Evaluation

	4 Related Work
	5 Conclusions and Future Work
	References

	Query-Based Linked Data Anonymization
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Query-Based Policies and Anonymization Operations
	5 Finding Candidate Sets of Anonymization Operations
	5.1 Finding Candidate Sets of Operations for Unitary Privacy Policies
	5.2 Finding Candidate Sets of Operations for General Privacy Policies

	6 Experimental Study
	6.1 Measuring Compatibility Between Privacy and Utility Policies
	6.2 Measuring the Number of Anonymization Alternatives
	6.3 Runtime Performance

	7 Conclusion and Future Work
	References

	Answering Provenance-Aware Queries on RDF Data Cubes Under Memory Budgets
	1 Introduction
	2 Preliminaries
	2.1 RDF Cubes
	2.2 SPARQL Queries
	2.3 Provenance
	2.4 Provenance-Aware Query Answering

	3 The Budgeted Provenance-Enabled Fragment Selection Problem
	3.1 Fragmentation Strategy
	3.2 Cost-Benefit Model
	3.3 Fragment Selection
	3.4 Query Rewriting

	4 Experiments
	4.1 Experimental Setup
	4.2 Evaluation

	5 State of the Art
	6 Conclusions
	References

	Bash Datalog: Answering Datalog Queries with Unix Shell Commands
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Approach
	4.1 Our Datalog Dialect
	4.2 Loading Datalog
	4.3 Producing Bash Commands
	4.4 Recursion
	4.5 Materialization
	4.6 Optimization

	5 Experiments
	5.1 Lehigh University Benchmark
	5.2 Reachability
	5.3 YAGO and Wikidata

	6 Conclusion
	References

	WORQ: Workload-Driven RDF Query Processing
	1 Introduction
	2 Online Reduction of RDF Data
	3 Workload-Driven Partitioning
	4 Queries with Unbound Properties
	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Related Work
	7 Concluding Remarks
	References

	Canonicalisation of Monotone SPARQL Queries
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Query Canonicalisation
	4.1 Representational Graph for UCQs
	4.2 Projection with Union
	4.3 Minimisation
	4.4 Canonical Labelling and Query Generation
	4.5 Other Features
	4.6 Implementation

	5 Evaluation
	5.1 Real-World Setting
	5.2 Synthetic Setting

	6 Conclusions
	References

	Cross-Lingual Classification of Crisis Data
	1 Introduction
	2 Related Work
	3 Experiment Setup
	3.1 Datasets
	3.2 Feature Engineering
	3.3 Classifier Selection

	4 Cross-Lingual Classification of Crisis-Information
	4.1 Results: Monolingual Classification with Monolingual Models
	4.2 Results: Cross-Lingual Classification with Monolingual Models
	4.3 Results: Cross-Lingual Crisis Classification with Machine Translation
	4.4 Cross-Lingual Ranked Feature Correlation Analysis

	5 Discussion and Future Work
	6 Conclusion
	References

	Measuring Semantic Coherence of a Conversation
	1 Introduction
	2 Related Work
	2.1 Discourse Analysis
	2.2 Dialogue Systems
	2.3 Knowledge Graphs

	3 Measuring Semantic Coherence
	3.1 Dialogue Graph
	3.2 Semantic Relations
	3.3 Dialogue Classification

	4 Evaluation Setup
	4.1 Dataset
	4.2 Implementation

	5 Evaluation Results
	5.1 Semantic Distance
	5.2 Classification Results

	6 Conclusion
	References

	Combining Truth Discovery and RDF Knowledge Bases to Their Mutual Advantage
	1 Introduction
	2 Related Work and Preliminaries
	2.1 Recurrent Pattern Detection from RDF KBs
	2.2 Rule Quality Metrics

	3 Incorporating Rules into the Truth Discovery Framework
	3.1 Eligible and Approving Rules
	3.2 Combining Rule Quality Measures
	3.3 Assessing a Rule's Viewpoint on Claim Confidence
	3.4 Integrating Rules' Viewpoints into Confidence Computation

	4 Experiments and Results
	4.1 Experiments on Synthetic Data
	4.2 Experiments on Real-World Data

	5 Conclusion
	References

	Content Based Fake News Detection Using Knowledge Graphs
	1 Introduction
	2 Related Works
	2.1 Fake News Detection
	2.2 Knowledge Graph Embedding

	3 Basic Notions
	4 Our Approach
	4.1 Framework Overview
	4.2 Single TransE Model
	4.3 B-TransE Model
	4.4 Hybrid Approaches

	5 Experiments and Analysis
	5.1 Data
	5.2 Experiment Setup
	5.3 Fake News Detection

	6 Conclusion and Future Work
	References

	Author Index

