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Abstract Many of the most important processes in cells take place on and across
membranes. With the rise of an impressive array of powerful quantitative methods
for characterizing these membranes, it is an opportune time to reflect on the structure
and function of membranes from the point of view of biological numeracy. To
that end, in this chapter, I review the quantitative parameters that characterize
the mechanical, electrical, and transport properties of membranes and carry out a
number of corresponding order-of-magnitude estimates that help us understand the
values of those parameters.

Keywords Membrane properties · Fermi problems · Biological numeracy ·
Membrane shape

1 The Quantitative Membrane Landscape

The pace at which biology is advancing is staggering. Just as there was a short 50
year gap between the invention of manned flight by the Wright Brothers and the
beginning of the space age, in the little more than a half century since the discovery
of the structure of DNA and its interpretation through the genetic code, the life
sciences have entered their own age, sometimes dubbed “the genome age.” But
there is more to living matter than genomes. While the genome age has unfolded, a
second biological revolution has taken place more quietly. This other success story
in the emergence of modern biology is the unprecedented and detailed microscopic
view of cellular structures that have been garnered as a result of the emergence of
new ways to visualize cells. Both electron and optical microscopy have afforded an
incredible view of the cellular interior. In addition, the use of techniques for profiling
the molecular contents of cells has provided a detailed, quantitative view of the
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proteomes and lipidomes of both cells and the viruses that infect them meaning that,
in broad brush strokes, we know both what molecular components the cell is made
of and how the cellular interior looks. A particularly fertile example that serves as
the backdrop for the present chapter is given by our ever-improving understanding
of the membrane organization associated with the organelles and plasma membranes
of cells of many kinds [1].

The goal of this chapter is to develop a feeling for membranes in the form
of biological numeracy. That is, for the many different ways we can think about
membranes whether structurally, mechanically, or electrically, we will try to
formulate those insights in quantitative terms. The strategy used here is to move
back and forth between a data-based presentation in which key quantitative facts
about membranes are examined, and a rule of thumb and simple-estimate mentality,
in which we attempt to reason out why those numbers take the values they do.
For those cases in which we introduce hard data, our device will be to use the so-
called BioNumbers ID (BNID) [2]. Some readers will already be familiar with the
PMID (Pubmed ID) that links the vast biological literature and databases. Similarly,
the BioNumbers database provides a curated source of key numbers from across
biology. By simply typing the relevant BNID into your favorite search engine, you
will be directed to the BioNumbers website where both the value of the parameter
in question will be reported and a detailed description from the primary literature of
how that value was obtained. Unfortunately, my presentation is representative rather
than encyclopedic. There is much more that could have (and should have) been
said about the fascinating question of membrane numeracy. Nevertheless, the hope
is that this gentle introduction will inspire readers to undertake a more scholarly
investigation of those topics they find especially interesting, while still providing
enough quantitative insights to develop intuition about membranes.

There are many conceivable organizational principles for providing biological
numeracy for membranes. The strategy to be adopted here is to organize the numbers
that characterize membranes along several key axes, starting with their sizes and
shapes, turning then to their chemical makeup, followed in turn by some key
themes such as the mechanics of membrane deformations, the transport properties
of various molecular species across and within membranes, and the electrical
properties of membranes. In particular, depending upon the context, there are many
different ways of thinking about membranes (see Fig. 1) and each of these different
pictures of a membrane has its own set of characteristic parameters. Once these
parameters are in hand, we then attempt to make sense of all of these numbers in
a section on membrane Fermi problems with the ambition of this section being to
give an order-of-magnitude feeling for the numbers that characterize membranes
[3, 4]. The notion of a Fermi problem refers to the penchant of Enrico Fermi to find
his way to simple numerical estimates for complex phenomena of all kinds in short
order. The chapter closes with a look to the future that lays out my views of some
of the key challenges that await the next generation of scientists trying to further the
cause of membrane numeracy.
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Fig. 1 The many quantitative faces of a membrane. Depending upon the experiments being
done or the questions being asked, the way we characterize membranes is different. When
thinking about mechanical deformations of a membrane, we will characterize it in terms of elastic
constants. Mass transport across and within membranes is described by permeability and diffusion
coefficients, respectively. When describing changes in the membrane potential, we characterize
the membrane in terms of its conductivity and capacitance. Statistical mechanics teaches us to
think about membranes from the standpoint of their fluctuations which interestingly contribute to
the membrane tension. Each section of the chapter explores one of these ways of characterizing
membranes from the point of view of biological numeracy

2 The Geometrical Membrane: Size and Shape

An inspiring episode from the history of modern science that relates deeply to
biological numeracy was the unfolding of our understanding of lipids and the kinds
of extended structures they make both in the laboratory and in living cells. In his
book “Ben Franklin Stilled the Waves,” Charles Tanford gives a charming and
insightful tour of this development starting with the efforts of Franklin who was
intrigued by the capacity of lipids when spread on water to “still the waves.” Indeed,
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this fascination led Franklin to a famous experiment in which a spoonful of oil was
seen to cover nearly half an acre of Clapham Common near London, giving a first
indication of the molecular dimensions of lipids.

Franklin’s insights into the structural significance of thin films of lipids led a
century later to the emergence of more formal laboratory methods for studying lipid
monolayers. In a short 1890 paper on the subject, Lord Rayleigh notes “In view,
however, of the great interest which attaches to the determination of molecular
magnitudes, the matter seemed well worthy of investigation.” To that end, he
performed a table-top version of the Franklin experiment concluding that for a film
of olive oil he could actually compute the thickness of a monolayer, reporting a
lipid length of 1.63 nm [5]. Agnes Pockels in a letter to Lord Rayleigh published
in Nature only a year later described her efforts with a trough and force measuring
balance to explore surface tension of films on water surfaces [6]. But above all, the
study of the “determination of molecular magnitudes” entered a new stage as a result
of a tour de force investigation by Irving Langmuir that really gave a first detailed
molecular view of lipid molecules and the kinds of collective structures they can
form.

Langmuir walks us through his experiments and deep musings about the shape of
lipids in his paper entitled “The Constitution and Fundamental Properties of Solids
and Liquids. II. Liquids.” Here I reproduce a lengthy but interesting series of quotes
from that paper, where Langmuir says: “In order to determine the cross-sections
and lengths of molecules in oil films, experiments similar to those of Marcelin were
undertaken. The oil, or solid fat, was dissolved in freshly distilled benzene, and,
by means of a calibrated dropping pipet, one or two drops of the solutions were
placed upon a clean water surface in photographic tray. The maximum area covered
by the film was measured. Dividing this area by the number of molecules of oil on
the surface, the area of water covered by each molecule is readily obtained. The
results are given in the first column of Table I.” Langmuir’s Table I is reproduced
here as our own Fig. 2 and shows the impressive outcome of his work, providing
not only key numbers but also a much-needed object lesson in the power of indirect
experimental methods. He then goes on to tell the reader how he found the lengths
of these same molecules noting, “The volume of each molecule is found by dividing
the “molecular volume” of the oil (M/ρ) by the Avogadro constant N. By dividing
this volume by the cross-section of each molecule, the length of the molecule in a
direction perpendicular to the surface can be obtained.”

Langmuir then goes on to say: “It is interesting to compare these lengths with
the cross-sections. As a rough approximation we may assume that the dimensions
of the molecule in directions parallel to the surface can be found by taking the
square root of cross-section. This is equivalent to assuming that each molecule in the
surface film occupies a volume represented by a square prism with its axis vertical.
The length of the square side, which we shall refer to as the average diameter, is
given in the second column of Table I, while the height of the prism (or the length
of the molecule) is given in the third column.” Again, the reader is encouraged to
refer to Fig. 2 to see Langmuir’s results. He then proceeds telling us “It is seen at
once that the molecules are very much elongated. Thus the length of the palmitic
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Substance Formula

Preliminary Measurements of Cross-Sections and Lengths of Molecules.
TABLE I.

Cross-section. Cross. sec. Length. Length per
carbon atom.Cm. Cm.Sq. cm.

21 × 10–16 4.6 × 10–8 24.0 × 10–8 1.5   × 10–8

1.39 × 10–8

1.20 × 10–8

1.32 × 10–8

0.62 × 10–8

0.69 × 10–8

0.72 × 10–8

2.56 × 10–8

2.37 × 10–8

25.0 × 10–8

31.0 × 10–8

25.0 × 10–8

11.2 × 10–8

13.0 × 10–8

13.6 × 10–8

41.0 × 10–8

41.0 × 10–8

4.7 × 10–8

5.0 × 10–8

8.1 × 10–8

6.8 × 10–8

11.2 × 10–8

11.0 × 10–8

4.8 × 10–8

5.2 × 10–8

22 × 10–16

25 × 10–16

66 × 10–16

46 × 10–16

126 × 10–16

120 × 10–16

23 × 10–16

27 × 10–16

I. II. III. IV.
√

Palmitic acid C15H31COOH
C17H35COOH
C25H51COOH

C17H33COOH
(C18H35O2)3C3H5

(C18H33O2)3C3H5
(C18H33O2)3C3H5
C15H31COOC16H33
C30H61OH

Stearic acid
Cerotic acid
Tristearin
Oleic acid
Triolein
Trielaidin
Cetyl palmitate
Myricyl alcohol

Fig. 2 Lipid sizes as obtained by Langmuir [7]. This table shows that already a century ago,
indirect methods had yielded a quite modern picture of lipid geometry

acid molecule is about 5.2 times the average diameter. The results prove that the
molecules arrange themselves on the surface with their long dimension vertical as
is required by the theory.” [7]. Langmuir went much farther commenting on the
significances of the different lengths and areas emboldening him even to think
about the role of unsaturated bonds in determining molecular shape. Indeed, one
of my favorite aspects of these experiments from Langmuir is that they led him to
understand both the number of tails and their degree of saturation truly providing a
detailed molecular picture of these molecules. This work went even farther in the
hands of Gorter and Grendel who used similar trough experiments to hypothesize
that biological membranes are lipid bilayers, a subject we will take up again in the
section on “The Electrical Membrane,” though I note that there are subtleties about
the Gorter and Grendel approach that continue to escape me since in their analysis,
they did not account in any way for the fraction of the membrane that is taken up by
membrane proteins [8].

What we see from this short historical interlude is that already at the beginning
of the twentieth century, long before tools such as X-ray diffraction and nuclear
magnetic resonance had made their way onto the scene of modern biological
science, scientists had already gleaned a detailed view of the makeup of lipids and
started to synthesize a view of how they assemble in cell membranes. The same
story already told by experiments using Langmuir troughs has been retold much
more accurately on the basis of X-ray and electron microscopy experiments [9, 10].
Indeed, an assessment of the current state of the art for the same kinds of questions
originally broached by Langmuir can be seen in Table 1.

The rules of thumb that emerge from a century of study of these molecules is
that we should think of lipid masses as being in the range of many hundreds of
Daltons up to thousands of Daltons for the largest lipids. The lengths of these lipids
vary with tail lengths of ≈2–2.5nm. The tail-length rule of thumb can be articulated
more precisely in terms of the number of carbons in the tail (nc) as lc = nclcc,
where the length of a carbon–carbon bond is approximately lcc ≈ 0.13 nm [11]. The
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Table 1 Summary of
modern version of measured
lipid geometric parameters to
be compared to those from
Langmuir shown in Fig. 2

Lipid Area/lipid (nm2) Thickness (nm)

DLPE 0.51 ± 0.005 2.58

DOPS 0.65 ± 0.005 3.04

DMPC 0.61 ± 0.005 2.54

DLPC 0.63 ± 0.005 2.09

POPC 0.68 ± 0.015 2.71

diC22:1PC 0.69 ± 0.0005 3.44

DOPC 0.72 ± 0.005 2.68

All values taken from [9]

cross-sectional areas of lipids can be captured by a rule of thumb that the area per
lipid is ≈0.25–0.75nm2. Note that the use of a single cross-sectional area is overly
facile because lipids can have much richer shapes than the “square prism with its
axis vertical” described by Langmuir. Indeed, because lipids can have shapes more
like wedges, this can lead to spontaneous curvature, a topic that we will not delve
into more deeply here, but that is critical to understanding the relation between
membrane shape and lipid geometry. These rules of thumb are based upon a host of
different measurements, with the thickness and area per molecule found here (BNID
101276, 104911, 105298, 105810, 105812).We have traveled a very long way since
the days of Langmuir, since we can now order designer lipids with specific chemical
properties and even with special groups attached making these lipids fluorescently
labeled.

A higher-level view of the structure of cell membranes has been developing on
the basis of electron cryo-microscopy which offers an unprecedented view of the
very same structural features already explored a century ago using the kinds of
indirect methods described above. Figure 3 provides a collage of electron cryo-
microscopy images of bacterial cell membranes. We see that in most of these
cases, the inner and outer membranes are easily resolved and that they have a
thickness of roughly 5 nm (BNID 104911). To be more precise, we should bear
in mind that in quoting numbers such as a membrane thickness of 5 nm, of course,
we are talking about a characteristic dimension since the interaction of the lipids
with the surrounding proteins can induce thickness variations due to the effect
of hydrophobic matching of the proteins and lipids [12–14]. Since the bacteria
themselves are several microns in length and a bit less than a micron in diameter,
we can make a simple estimate of the overall membrane area of the inner and outer
membranes by thinking of the bacterium as a spherocylinder with a characteristic
volume of 1 μm3 ≈ 1 fL and a corresponding surface area of 5–10μm2.

The membranes of eukaryotic organisms are typically more heterogeneous and
complex than those shown in Fig. 3. Figure 4 gives several examples coming from
electron microscopy to make that point. First, such cells, like their prokaryotic
counterparts, have an external plasma membrane that separates them from the rest of
the world. But as seen in Fig. 4a, even the cell surface can adopt extremely complex
geometries as exemplified by the microvilli. One of my favorite examples in all of
biology is shown in Fig. 4b where we see the outer segment of a photoreceptor
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Caulobacter crescentus Myxococcus xanthus

Vibrio cholerae Shewanella oneidensis

5 nm

4.1 nm

4 nm

200 nm

Fig. 3 Electron cryo-microscopy images of bacterial cell walls. The Caulobacter crescentus cell
gives an impression of overall cell dimensions while the higher-resolution images of other bacteria
zoom in on their membranes. Note that these are gram-negative bacteria meaning that their external
membrane architecture consists of an inner membrane, a cell wall, and an outer membrane (images
courtesy of Grant Jensen and his laboratory members)

with its dense and regular array of membrane stacks. However, it is perhaps
the spectacular organellar membranes (see Fig. 4c) that give a sense of the great
challenges that remain in understanding membrane shape in cells [15]. Structural
complexity similar to that found in the mitochondria abounds in other organelles
such as the endoplasmic reticulum [16, 17].

Our brief foray into the size and shape of membranes and themolecules that make
them up would of course be woefully incomplete without also commenting briefly
on the role proteins play in our modern view of biological membrane structures.
Though early ideas about cell membranes painted a picture of a sea of lipids dotted
with membrane proteins, the modern view has turned out to be altogether different.
“A picture is emerging in which the membrane resembles a cobblestone pavement,
with the proteins organized in patches that are surrounded by lipidic rims, rather
than icebergs floating in a sea of lipids.” [18]. As a rule of thumb, we can think of
the protein densities in bacterial membranes as being σ ≈ 105 proteins/μm2. This
can be used in turn to estimate the typical center-to-center protein spacing in the

cell membrane as d ≈ σ− 1
2 ≈ 3 nm, a result that is uncomfortably tight given

that typical protein sizes are themselves 3–5 nm as seen in Fig. 5. The question of
mean membrane-protein spacing is also of great interest in the context of organellar
membranes, with a hint at what can be expected in these cases given by a classic
study on synaptic vesicles [18].
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(A) (B) (C)
µm µm 0.5 µm

Fig. 4 Eukaryotic membrane structures. (a) Apical surface of intestinal epithelial cells showing
the dense membrane folds around the microvilli. The sugar chains extending outwards from the
surface of the membrane can also be seen as a fuzzy layer above the microvilli. (b) Stacks of
membranes packed with photoreceptors in the outer segment of a rod cell. (c) Thin section of a
mitochondrion surrounded by rough endoplasmic reticulum from the pancreas of a bat (all figures
adapted from “Physical Biology of the Cell,” Garland Press, 2012)
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Fig. 5 Sizes and shapes of membrane proteins [19]. Top and side views of several notable
membrane proteins. Note the 10 nm scale bar, though the membrane thickness can also be used
as a scale marker as indicated in Fig. 3 (images courtesy of David Goodsell and adopted from
“Cell Biology by the Numbers”, Garland Press, 2015)
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3 The Chemical Membrane

With each passing generation, our understanding of the structures of the cell is
becomingmore and more refined. As shown in the previous section, we have learned
a huge amount about the structures of membranes and the molecules that make
them up. But what about the specific chemistry of these membranes? One of the
ways that our picture of the membranes of living cells has been transformed is
through the ability to count up the molecules of different kinds, both the lipids
making up the plasma membrane and organelles and of the many proteins that
decorate these membranes. In many ways, the development of a census of lipid
composition of membranes is an astonishing achievement and has revealed not only
that these membranes are heterogeneous, but also that the cell “cares” about its lipid
composition [18, 20–28]. Though there is still much left to be understood about
precisely how cells keep track of their membrane composition and why they “care,”
in this section of the chapter we focus on what has been learned thus far about
these chemical effects from a quantitative perspective. For a pedagogical review,
see chapter 4 of Buehler’s interesting book [1].

The same membrane strategy used to separate the interior of cells from the
extracellular medium is also used for separating the cellular interior into a collection
of membrane-bound organelles such as the nucleus, the endoplasmic reticulum, the
Golgi apparatus, and mitochondria. Each of these membrane systems is host to
lipids that come in different shapes, sizes, and concentrations. There are hundreds of
distinct types of lipid molecules found in these membranes and, interestingly, their
composition varies from one organelle to the next. This is highly intriguing since
these distinct membrane systems interact directly through intracellular trafficking by
vesicles. This same heterogeneity applies to the asymmetric plasma membrane, with
different classes of lipids occupying the outer and cytosolic leaflets of the membrane
(i.e., the two faces of the lipid bilayer).

Experimentally, the study of lipid diversity is a thorny problem. Sequencing
a set of single or double bonds along a carbon backbone requires very different
analytic tools than sequencing nucleotides in DNA or amino acids along proteins.
Still, the omics revolution has hit the study of lipids too. The use of careful
purification methods coupled with mass spectrometry has made inroads into the
lipid composition of viral membranes, synaptic vesicles, and organellar and plasma
membranes from a number of different cell types. Indeed, the numbers in this section
owe their existence in no small measure to the maturing field of lipidomics, based
in turn upon impressive advances in mass spectrometry. As noted above, we remain
largely in the fact-collection stage of this endeavor since a conceptual framework
that allows us to understand in detail the whys and wherefores of lipid compositions
and how they change with growth conditions is quite immature.

Perhaps the simplest question we can pose about lipids at the outset is how many
there are in a typical cell membrane. A naive estimate for a bacterial cell can be
obtained by noting that the area of the bacterial cell membrane is roughly 5 μm2,
and recalling further that many bacteria have both an inner and outer membrane. To
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effect the estimate, we take

Nlipids = 4 × membrane area

area per lipid
≈ 20 × 106 nm2

1/4 nm2 ≈ 8 × 107, (1)

where the factor of 4 accounts for the fact that we have two lipid bilayers because of
the presence of both an inner and outer membrane. This estimate is flawed, however,
because we failed to account for the fraction of the membrane area that is taken up
by proteins rather than lipids. As was seen in the previous section on size and shape,
a useful rule of thumb is that 1/4 of the membrane area is taken up by proteins
[20], so our revised estimate of the number of lipids in a cell membrane would be
reduced by 25%. Further, note that we used an area per lipid on the low side and
if we amended that estimate to a value of ≈0.5 nm2 per lipid, this would also bring
our estimate down by a factor of two. Literature values reported for the bacterium
E. coli claim roughly 2 × 107 lipids per E. coli cell, squaring embarrassingly well
with our simple estimate, and leaving us with a useful rule of thumb for the lipid
density of

σ ≈ 2 × 107 lipids

5 μm2 × 4 leaflets
≈ 106

lipids

μm2 leaflet
. (2)

Given our estimate of 2×107 lipids per bacterial cell, we can make a corresponding
estimate of the fraction of the cell’s dry mass that is lipids [29]. As a basis for
comparison, we recall that the number of proteins per bacterial cell is ≈ 3 × 106

[4, 19, 29]. If these proteins have an average mass of 30,000Da, this means the
total protein mass is roughly 1011 Da or 0.15 pg, corresponding to roughly 1/2 of
the dry mass of a bacterial cell. For our 2× 107 lipids, each with a mass of roughly
1000 Da, this means that the lipids contribute an approximate mass of 2× 1010 Da,
corresponding to 20% of the protein mass, or 1/10 of the dry mass of the cell.

What about the composition of membranes? In broad brush strokes, what has
been learned in lipidomic studies is that in most mammalian cells, phospholipids
account for approximately 60% of total lipids by number and sphingolipids make
up another 10%. Non-polar sterol lipids range from 0.1% to 40% depending on
cell type and which subcellular compartment is under consideration. The primary
tool for such measurements is the mass spectrometer. In the mass spectrometer each
molecule is charged and then broken down, such that the masses of its components
can be found and from that its overall structure reassembled. Such experiments
make it possible to infer both the identities and the number of the different lipid
molecules. Absolute quantification is based upon spiking the cellular sample with
known amounts of different kinds of lipid standards. One difficulty following these
kinds of experiments is the challenge of finding a way to present the data such that
it is actually revealing. In particular, in each class of lipids there is wide variety of
tail lengths and bond saturations. Figure 6 makes this point by showing the result of
a recent detailed study of the phospholipids found in budding yeast. In Fig. 6a, we
see the coarse-grained distribution of lipids over the entire class of species of lipids
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Fig. 6 Lipids in yeast. (a) The top panel shows the relative proportions of different types of lipid
as a function of the physiological state of the cells as revealed by the inset in the upper right.
That inset shows the result of cellular growth as measured by spectrophotometry and leading
to the optical density (OD) as a function of time. (b) The lower panel shows the diversity of
different phospholipids. These lipids exhibit both different tail lengths and degree of saturation as
shown by the schematics of the lipids in the lower panel. The abbreviations used in the figure are:
CL cardiolipin; Erg ergosterol; IPC inositolphosphorylceramide; MIPC mannosyl-inositol phos-
phorylceramide; M(IP)2C mannosyl-di-(inositolphosphoryl) ceramide; PA phosphatidic acid; PC
phosphatidylcholine; PE phosphatidyl-ethanolamine; PI phosphatidylinositol; PS phosphatidylser-
ine; TAG triacylglycerols; DAG diacylglycerol; LPC lysophosphatidylcholine. Adapted from “Cell
Biology by the Numbers,” Garland Press, 2015. Data in top panel adapted from [27] and data in
bottom panel adapted from [22]

found while Fig. 6b gives a more detailed picture of the diversity even within one
class of lipids [22]. Studies like the one presented above for yeast have also been
done in other eukaryotes as shown in Fig. 7 [21, 30]. Data like this shows that the
subject is even more interesting than one might first expect because we see that lipid
composition is different for different organelles. As noted earlier, this is especially
intriguing given the fact that these different organelles are in dynamical contact
as a result of intracellular trafficking, calling for a mechanistic and quantitative
description of how these composition heterogeneities are maintained. All of these
measurements leave us with much left to understand since as noted at the beginning
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Fig. 7 Organellar lipids in mammalian cells. (a) Lipid production is spread across several
organelles. The text associated with each organelle shows the site of synthesis for the major lipids.
The main organelle for lipid biosynthesis is the endoplasmic reticulum (ER), which produces
the bulk of the structural phospholipids and cholesterol. (b) The lipid composition of different
membranes also varies throughout the cell. The graphs show the composition out of the total
phospholipid for each membrane type in a mammalian cell. As a measure of sterol content, the
molar ratio of cholesterol to phospholipid is indicated. SM sphingomyelin; R remaining lipids. For
more detailed notation see caption of Fig. 6 (adapted from [21])

of this section, the question of how cells regulate and control their lipid composition
and why they care remains unanswered.

4 The Mechanical Membrane

Electron microscopy images make it abundantly clear that whether we think of
the stacked membrane discs making up the outer segment of a photoreceptor or
the tortuous folds of the endoplasmic reticulum of a pancreatic cell, biological
membranes are often severely deformed. But as we all know from everyday
experience, changing the shape of materials usually costs energy. As a result of
membrane deformations, energetic costs resulting from both membrane stretching
and bending are incurred. The aim of this part of the chapter is to give a quantitative
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stretch

bend

Fig. 8 The mechanics of membrane deformations. One of the deformation modes is changing
the membrane area by stretching. The second mode of membrane deformation considered here is
membrane bending

view of the energetic cost of these deformations [31]. These two different membrane
deformation mechanisms are indicated schematically in Fig. 8.

A natural mechanical question we might imagine starting with is the energetic
cost associated with bending the membrane. The free energy cost to deform a tiny
patch of membrane is codified in the form of the so-called Helfrich-Canham-Evans
free energy [11]. For a tiny patch of membrane with area �Apatch, the free energy
cost to bend it is given by

energy to bend a membrane patch = κB

2

(
1

R1
+ 1

R2

)2

�Apatch, (3)

where κB is the membrane bending rigidity and R1 and R2 are the principal radii of
curvature of the patch of membrane. Note that the membrane bending rigidity has
units of energy since the unit of the factor in parentheses is 1/area which is cancelled
by �Apatch which has units of area. The values of R1 and R2 characterize the
curvature of the surface at the point of interest. Specifically, if we visit a particular
point on the surface, we can capture the curvature by using two orthogonal circles
whose radii are chosen so that those two circles most closely follow the shape of
the surface at that point. Given the free energy in Eq. (3), we can find the total free
energy of a given deformed membrane configuration by adding up the contribution
from each little patch as

Ebend = κB

2

∫
dA

(
1

R1(x, y)
+ 1

R2(x, y)

)2

, (4)

where now we acknowledge that the curvature (as measured by R1 and R2) is
potentially different at each point on the surface. Of course, the scale of this
energy is dictated by the bending rigidity κB . Our discussion has neglected a
second topological contribution to the membrane deformation energy related to the
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Fig. 9 Elastic moduli characterizing membrane bending and stretching. (a) Values for the
membrane bending rigidity. Each value corresponds to a different lipid with the values showing a
range of tail lengths and tail saturation. (b) Values for the area stretch modulus. All values obtained
using pipette aspiration experiments [32]

Gaussian curvature, though clearly such terms will be of interest in the context of
the topologically rich membrane structures found in cell organelles [11].

A wide range of experiments on a variety of different lipids suggest the rule of
thumb that the bending modulus (κB) for lipid bilayers is in the range 10–25kBT

[32, 33]. Characteristic values of the membrane bending rigidity for phospholipid
bilayers are shown in Fig. 9a. We will freely use kBT for our energy units and note
the conversion factors kBT ≈ 4.1 pN nm ≈ 4.1 × 10−21 J. The presence of sterols
in lipid bilayers can increase those numbers to ≈ 100 kBT [34]. Interestingly, even
measurements on biological membranes derived from the ER and Golgi apparatus
report a membrane rigidity of κB ≈ 3 × 10−19 J ≈ 75 kBT (BNID 110851), only
a factor of three larger than the values for phospholipid bilayers reported in Fig. 9a
[35, 36].

Another important question we can ask about membrane deformations is the
energy cost for changing the area of the membrane as seen in Fig. 8.When we stretch
a membrane away from its equilibrium area, a consequence is the development of
a tension in that membrane. One way to understand the magnitude of membrane
tensions is by appealing to a so-called constitutive equation which loosely speaking
relates force and membrane geometry. In particular, the mechanics of membrane
stretching is often described by the constitutive equation

τ = KA

�A

A0
, (5)
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where KA is the area stretch modulus and �A is the area change. To figure out the
tension, we compute the change in area, normalize by the total unstressed area A0,
and then multiply by the modulus KA. In general, when we change the area of a
patch of membrane by some amount �A, the corresponding free energy cost can be
written as

stretching energy = KA

2

(
�A

A0

)2

Apatch, (6)

where note that the units of the area stretch modulus KA are energy/area. Several
examples of the values adopted by the area stretch modulus are shown in Fig. 9b,
which gives the interesting insight that for a range of tail lengths and degrees of
saturation, the area stretch modulus is nearly constant.

The actual magnitudes of the tensions in the membranes of both vesicles and cells
can vary over a wide range and even the underlying mechanistic origins of these
tensions are different depending upon what regime of tension we are considering.
Interestingly, the energetics of area change is a subtle one in the same way as the
energetics of stretching a polymer like DNA is. Specifically, let’s remind ourselves
of the subtleties associated with DNA stretching as a prelude to thinking about
membrane stretching [4, 11]. In the “force free” state, DNA will be folded up and
compact since such states have lower free energy in part because the entropy of
the compact conformation is higher. To stretch DNA, the free energy cost can be
thought of as being almost entirely entropic, meaning that with increasing stretch,
there are fewer and fewer configurations available to the DNA and hence the entropy
decreases, resulting in a net increase in free energy. It is only when the DNA is
stretched to its full contour length that we enter a different regime that actually
involves molecular bond stretching. Because the mechanisms in these regimes are
different, it should not surprise us that they are actually characterized by different
mechanical stiffnesses. Similar intuition emerges for the membrane case.

By analogy with polymer stretching, we can think of the energetic cost associated
with membrane deformations in much the same way. That is, for a floppy (low
tension) membrane, stretching the membrane has an associated free energy cost that
results from “pulling out the wrinkles,” and is effectively entropic [11]. At higher
tensions, the actual bond stretching effect intervenes. Though very few systematic
insights have been obtained for thinking about the membranes within cells, a series
of rigorous, systematic studies in lipid bilayers have set the standard in the field
[32]. At even higher tensions, lipid bilayer membranes will actually rupture with
the rupture tensions occurring between 5 and 10mN/m depending upon the type of
lipids in question [37].

Though there are fewer systematic measurements for cellular membranes, some
clever experiments have shed light on this topic as well. The tension measured in
ER membrane networks has a value of 1.3 × 10−2 mN/m while that measured in
the Golgi membrane is given by 0.5 × 10−2 mN/m [38]. These numbers are quite
small as can be seen by comparing them to the membrane rupture tension which
is a thousand times larger with a range of 5–10mN/m as noted above [37]. Note
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also that the subject of membrane tension is a tricky one in the cellular setting
because measured tensions have many contributions including from the underlying
cytoskeleton and the battery of molecular motors associated with it [39]. There is
an excellent review featuring both a clear discussion of the different methods and
the range of measured tensions [40]. Table 1 of that review includes an exhaustive
listing of measured membrane tensions as well as the caveats associated with each
such measurement.

5 The Dynamic Membrane

Perhaps the defining feature of biological membranes is that they serve as barriers
between some compartment of interest (the cytoplasm, the Golgi apparatus, the
nucleus, the endoplasmic reticulum, etc.) and the rest of the world. The very word
“barrier” points toward underlying molecular rules that determine the rate at which
molecules cross through or move within membranes, and thereby regulate how a
cell distinguishes itself from the environment. In this section, we begin by exploring
the permeability of biological membranes to various molecular species. After that,
we then turn to the diffusive properties of molecules within the membrane.

One of the key ways we characterize membrane permeability is to ask the
question of how many molecules cross a given area of membrane each second, a
quantity defined as the flux, j . In particular if we have a difference in concentration
of some species across the membrane given by �c, then in the simplest model the
flux is given by

j = −p�c, (7)

where the parameter p is the permeability of interest here. Note that a more rigorous
treatment of the flux invokes the chemical potential difference across the membrane,
though for our purposes this simple linearization suffices [41, 42]. The units of the
permeability can be deduced by noting first that the units of j are

units of j = number of molecules

L2T
. (8)

Here we adopt the standard strategy when examining units of physical quantities of
using the symbol L to signify units of length and T to signify the units of time [43].
Given these conventions, the units of concentration are

units of c = number of molecules

L3 . (9)
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Fig. 10 Range of membrane permeabilities. Permeability coefficients for a number of different
lipid species showing the huge dynamic range in permeability

The requirement that the units on the two sides of the equation balance implies that
the units of the permeability itself are

units of p =
number of molecules

L2T

number of molecules
L3

= L

T
. (10)

In the remainder of the paper, we will report units of permeability in nm/s, though
often one finds values reported in cm/s as well.

The first and probably most important thing we should say about the numerical
values adopted by membrane permeability is that there is no such thing as the
membrane permeability. That is, the rate at which molecules pass across membranes
is an extremely sensitive function of which molecules we are discussing as well as
the type of molecules making up the membrane itself [10, 37, 44]. Figure 10 makes
this point clear by reporting the range of values for permeability for a number of
different molecular species revealing a more than 10-order-of-magnitude range of
permeabilities, with the membrane being effectively impermeable to ions such as
Na+ and K+, while for water molecules, the permeability is ten orders of magnitude
larger. Though this doesn’t rival the 30 order-of-magnitude range that is found for
electrical conductivities of different materials, these numbers still imply a huge
difference in the transport properties of different molecules across membranes.

How are such permeabilities measured? One approach to measuring these
membrane permeabilities is the use of radioactive tracer molecules. By setting up
a membrane separating two aqueous regions with different compositions, one can
measure the accumulation of the tracer in one region as a result of flux from the
other region over time [44]. A second important set of measurements for water
permeability were performed using giant unilamellar vesicles using the so-called
micropipette aspiration method where an osmotic pressure is applied across the
membrane and the resulting flux of water across the membrane is measured. Here
the idea is that a pipette with a characteristic diameter of several microns is used
to grab onto a vesicle with a diameter of roughly 10μm or larger. By applying a
suction pressure, the tension of the vesicle can be monitored. Further, by using video
microscopy, the volume of the vesicle can be carefully monitored, giving a sense of
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Fig. 11 Range of membrane
permeabilities for water.
Measurements made at 21 ◦C
using the micropipette
aspiration technique in
conjunction with video
microscopy to monitor
vesicle size [37]

the rate at which the vesicle is inflated as a result of mass transport of water across
the membrane. The results of such measurements for a set of different lipid types
are shown in Fig. 11, with values entirely consistent with those shown schematically
in Fig. 10.

The classic work of Hodgkin and Huxley offered many important insights. To
my mind, one of the most interesting arguments that they made is a testament to
the role of clear theoretical (and quantitative) thinking in biology. In particular, they
argued that the membrane permeability to ions such as Na+ and K+ must change
transiently and substantially to permit key ions across the otherwise impermeable
membrane (see Fig. 10 to get a sense of the extremely low permeability of charged
ions). Specifically, they introduced a highly nonlinear permeability response that
suggested that there must be molecules in the membrane of the cell that could
selectively change the permeability in response to changes in driving forces such
as the membrane potential, effectively hypothesizing the existence of ion channels
before they were known.

We now know that biological membranes are littered with batteries of different
channels and pumps whose job it is to transiently alter the permeability of the
membrane or to actively transport molecular species across it. These membrane
proteins are responsible for many physiologically important functions including
the transport of ions and sugars such as glucose and lactose that are critical to
the cellular economy. Ions typically pass across ion channels at rates between 107

and 109 ions per second, though of course this rate depends upon the concentration
difference across the membrane itself (BNID 103163,103164).Glucose transporters
have a much lower characteristic rate of several hundred sugars per second (BNID
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102931, 103160) while bacterial lactose transporters have a characteristic rate of
20–50 sugars per second (BNID 103159). Though here we report on the rates
associated with several well-known membrane proteins, more generally, the rates at
which the various membrane proteins that are responsible for transport operate are
not that well known, with a dearth of modern data spanning the range of different
membrane transporters (BNID 103160) [45].

A second kind of membrane dynamics different from the transport across the
membrane described above is diffusion of molecules laterally within the membrane.
As already noted throughout the chapter, the membrane is a highly heterogeneous
composite of lipids and proteins and when thinking about the diffusive dynamics
within the membrane, we need to do so on a molecule-by-molecule basis. Since
we are thinking about membranes, the first class of molecules we might be
interested in characterizing are the lipids themselves [46–50]. For example, in
eukaryotic cell membranes, by using the clever method of fluorescence-recovery-
after-photobleaching (FRAP), a lipid diffusion constant of 0.9μm2/s was measured
[46]. This diffusion constant is roughly tenfold lower than the values that would be
found in a model lipid bilayer membrane [51]. More recent measurements confirm
these classic numbers (see Figure 4 of Ref. [50], for example).

It is of great interest to characterize the in-plane diffusion not only of the lipids
themselves, but also of the proteins that populate those membranes. Figure 12
gives examples of membrane diffusion constants for several different membrane

Fig. 12 Range of diffusion coefficients. (a) Diffusion coefficients for different membrane proteins
measured using fluorescence correlation spectroscopy in giant unilamellar vesicles showing
dependence on protein size. The red line is a fit using the Saffman-Delbrück model which
characterizes membrane diffusion as a function of the size of the diffusing molecule [52, 53]. (b)
Diffusion coefficients for different membrane proteins measured using fluorescence recovery after
photobleaching (FRAP) in the E. coli cell membrane. The red line is an empirical fit as a function
of the number of transmembrane helices in the protein. The names refer to particular membrane
proteins used in the experiments. (a) adapted from [54] and (b) adapted from [55]
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proteins. Further, we need to acknowledge the large differences in lateral diffusion
coefficients between model membranes such as are found in giant unilamellar
vesicles where the values of diffusion coefficients for membrane proteins are
1–10μm2/s [54] and those in native membranes where membrane proteins are
characterized by diffusion coefficients that are several of orders of magnitude lower
with values of 0.01–0.1μm2/s [50, 55–57]. However, these measurements are more
nuanced than first meets the eye and the results for several membrane proteins have
been shown to depend upon the timescales over which the diffusion is characterized
[56]. In particular, using the FCS method which probes diffusion on short length
and timescales, both the TAR receptor and TetA (a tetracycline antiporter) were
found to have diffusion constants of 4.2 and 9.1μm2/s, respectively, to be contrasted
with the values of 0.017 and 0.086μm2/s, respectively, found when using the FRAP
measurement. Indeed, as we will note in the final section of the chapter, the question
of how best to move from biological numeracy in model membranes to biological
membranes with their full complexity is one of the key challenges of the coming
years of membrane research.

6 The Electrical Membrane

A membrane has many different properties as shown in Fig. 1. So far, our picture of
membranes has focused on their mechanical and transport properties. However, our
discussion of action potentials and the pathbreaking work of Hodgkin and Huxley
already hinted at the view that membranes can also be thought of as circuit elements.
Specifically, part of this chapter’s very business is to illustrate some of the different
abstract ways of describing membranes and what effective parameters to attribute
to them. We now jettison the view of a membrane as a mechanical object, instead
focusing on it as a collection of resistors and capacitors as shown in one of the
panels of Fig. 1.

The picture already developed under the heading of the “Electrical Membrane”
in Fig. 1 tells us that in the presence of an electric potential, a lipid bilayer behaves
as an array of resistors and capacitors in parallel. One way to measure the electrical
conductance across a membrane patch is to form a lipid bilayer membrane across
a hole separating two solutions. Then, different voltages are applied across the
membrane and the current–voltage characteristics are measured, with the membrane
conductance then determined by using the slope of these current–voltage curves. In
our discussion of the electrical membrane we characterize electrical properties on a
per unit area of membrane basis. For the conductance, a series of measurements like
those described above for a number of different charged species result in a range
of values for the bare membrane conductance of roughly 1–5 nS/cm2 [58, 59]. To
get a sense of how small the membrane conductance is, note that if we consider a
characteristic conductance of 1 nS for an ion channel such as the mechanosensitive
channels found in bacteria [60], if we normalize by the area this means that the



Membranes by the Numbers 93

channel conductance is more than ten orders of magnitude larger than that of the
membrane itself.

But membranes have more electrical properties than their conductance alone
[4]. Capacitance is a measure of the ability of a circuit element to store charge.
A local disruption of charge neutrality is permitted near surfaces. In particular, in
this setting, the capacitance is defined as the ratio of the excess charge on either side
of the membrane and the membrane potential, C = q/Vmem. The capacitance of a
patch of the cell membrane can be approximated by thinking of it as a parallel plate
capacitor. The charge on the capacitor plates is ±σApatch, where σ is the excess
charge per unit area of membrane, and Apatch is the area. The electric field inside a
parallel plate capacitor is uniform and equal to σ/(ε0D), where D is the dielectric
constant of the material between the plates. Therefore the potential drop across
the membrane is Vmem = σd/ε0D, where d is the thickness of the membrane,
or the distance between the plates of the parallel plate capacitor. Dividing the
charge by the membrane voltage leads to the formula, C = ε0DApatch/d , for the
capacitance of a patch of membrane. Since the cell membrane has a thickness of
d ≈ 5 nm and a dielectric constant Dmem = 2, its capacitance is predicted to be
Carea = C/Apatch ≈ 0.4 μF/cm2. The typical measured value for the capacitance
per unit area in cell membranes is Carea = 1 μF/cm2 [61–63].

We have already discussed the century long quest to understand the size of
lipid molecules and the membranes they make up. We learned that one branch of
these investigations passed through the enormously impressive work of Pockels,
Rayleigh, and Langmuir. Amazingly, a completely independent line of enquiry in
the hands of Fricke related to the electrical properties of membranes led to nearly
the same result [61]. Using these ideas, we can recast the measured value of the
membrane capacitance as a result for the membrane thickness as

d = ε

(C/A)
= 2ε0

(C/A)
≈ 2 × 8.8 × 10−12 F/m

0.4 × 10−2 F/m2 ≈ 4 nm, (11)

a beautiful result astonishingly close to the value obtained using the equation of
state of monolayers by Pockels, Rayleigh, and Langmuir. Note that to obtain this
result, we rewrote the conventional membrane capacitance of 0.4 μF/cm2 in the
more appropriate SI units as 0.4×10−2 F/m2. Further, whereas Frick used a relative
dielectric constant of 3, the estimate used here is based upon the value of 2. In light
of the measurement of the membrane capacitance, scientists such as Fricke realized
that this would provide yet another sanity check on the membrane thickness [61].
In this era where many scientists seem almost to have scorn for the idea of figuring
things out without seeing them directly, the determination of the thickness of lipid
bilayers long before the advent of direct techniques such as electron microscopy
should give readers pause before casually dismissing results that come from indirect
measurements.
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7 The Fermi Membrane: Thinking Up Membranes

So far, this chapter has been an ode to biological numeracy in the context of
membranes, showing us the many different ways in which we can quantitatively
describe our hard-earned understanding of these fascinating structures. These
numbers are summarized in Table 2. But in the abstract, such numbers are often
boring and sometimes useless, or worse yet, misleading. To my mind, numbers that
characterize the world around us are only really interesting when put in the context
of some argument or reflection. For example, we know that if we drop an object near
the surface of the Earth, in the first second, it will fall roughly 5m. So what? In the
powerful hands of Newton, this innocuous number became part of his inference of
the law of universal gravitation. There is a direct intellectual line from a knowledge
of the radius of the Earth and the distance to the moon to Newton’s estimate leading
him to further trust the idea that the force of gravity falls off as the square of the
distance. In that case, he realized that the distance to the moon is roughly 60 times
larger than the radius of the Earth, meaning that the acceleration of the moon as it
“falls” toward the center of the Earth should be (60)2 = 3600 times smaller than
that associated with that apocryphal apple falling from Newton’s tree. To finish off
his estimate, he asked the question of how far the moon falls compared to how far
the apple falls when watched for the same time and found them to “answer pretty
nearly,” with the moon falling roughly 1/3600 as much in 1 s as the 5m a falling

Table 2 Membranes by the numbers

Membrane parameter Range of parameter values BNID

Lipid length ≈2.5–3.5 nm See Table 1

Lipid area ≈1/4–3/4 nm2 See Table 1

Number of lipids per cell
(bacterium)

≈2 × 107 100071

Bending rigidity 10–25 kBT 105297

Area stretch modulus 200–250 mN/m (or ≈50 kBT /nm2) 112590, 112659

Membrane tension 10−4 − 1 kBT /nm2 110849,112509, 112519

Rupture tension 1–2 kBT /nm2 112489, 110911

Membrane permeability
(water)

10–50 μm/s 112488

Membrane capacitance ≈1μF/cm2 110759, 109244, 110802

Membrane resistance 0.1–1.5 ×109 	 cm2 110802

Membrane potential 100mV 109775, 107759

Diffusion constant (lipid) ≈1μm2/s 112471, 112472

Diffusion constant
(membrane protein)

≈0.02–0.2 μm2/s 107986

A summary of the key numbers about membranes discussed throughout the chapter for easy
reference. Numbers reported are “typical” values and should be used as a rule of thumb. For a
more detailed description of parameter values, the reader should use the Bionumbers database
through the relevant BNID. Also see Box 1 of [14]
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body at the surface of the Earth falls in that same time interval. But what does this
have to do with our quantitative musings on membranes? To my mind, it illustrates
how powerful simple numerical arguments can sometimes be to help us see whether
our way of thinking is consonant with the known facts about a system.

Inspired by the long tradition of simple estimates when faced with numerical
magnitudes to describe the world around us, we now examine the ways in which
the numbers presented throughout the chapter can help us to better understand
membranes and the biological processes that take place at them. Indeed, we are
inspired by the notion of the so-called Fermi problems introduced at the beginning
of the chapter where the goal is to try to develop simple numerical estimates for
various quantities of interest by pure thought. Not only does the Fermi approach
allow us to estimate key magnitudes, but even more importantly, it is one of the
most powerful ways I know to make sure that the stories we tell about our data
actually make sense. In this section, we ask ourselves whether we can understand
some of the numerical values reported throughout this chapter as well as what key
scaling results we should bear in mind when thinking about membranes. We pass
through each of the sections of the chapter in turn, each time taking the opportunity
to reflect on the numbers we have seen.

Size and Shape Redux In the first part of the chapter, we considered different ways
of characterizing the size and shapes of membranes and the molecules that make
them up. This led us to the fascinating experiments of Langmuir that used the
relationship between tension and area as a way of determining the size and shape
of lipids. Here, our aim is to use order-of-magnitude thinking to try and put those
numbers in perspective. As an example from everyday life where a simple numerical
estimate of the Fermi type can help us build intuition by giving us a sense of the
relative sizes of membranes and the cells they envelop, we consider the fuselage of
an airplane. One of the most popular tourist destinations in Seattle is the factory of
Boeing where one can see giant airplanes such as the 747, 777 and 787 in the process
of assembly. As part of that tour one is treated to the view of a cross-section of a
747 fuselage which gives a sense of just how thin the skin of an airplane really is.
For the perceptive flyer, this same observation can be made upon entering the plane
by looking at the fuselage near the door. What one notices is that the exterior shell
of the plane is less than a centimeter thick while the overall diameter of that very
same fuselage is roughly 5m, resulting in an aspect ratio of 1:500. Interestingly, the
aspect ratio of cell membrane width to cell size is quite comparable to those of an
airplane fuselage. For a 2 micron cell size, typical of a bacterium, the 4 nm thickness
of its cell membrane implies a similar aspect ratio of 1:500.

Concentrations The section on concentrations reminded us that cell membranes
are made up of molecules and that even in tiny bacterial cells, there are tens of
millions of such molecules of hundreds of different types. A very simple order-of-
magnitude result that emerges from these numbers is a naive estimate of the rates
of lipid synthesis. Specifically, if the membrane area has to double during the cell
cycle, this tells us that the number of lipids in the cell membrane has to double. For
a bacterium such as E. coli, this means that if a typical bacterium has 2× 107 lipids
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and the cell cycle is roughly 2000 s, then the rate of lipid synthesis is roughly

bacterial lipid synthesis rate = number of lipids

cell cycle time
≈ 2 × 107 lipids

2 × 103 s
≈ 104 lipids/s.

(12)

It is deeply interesting to think of how the many different types of lipids are each
synthesized with the correct rates to maintain the overall concentration distribution.

Another critical concern in our discussion of the chemistry of membranes was
how to think about the relative abundance of lipids and proteins. One of the
interesting ways to broach this question is through reference to the fraction of
genomes that is devoted to membrane proteins. We can examine this question both
from a genomic point of view and from a proteomic point of view. Scientists have
become increasingly adept at reading genomes and as a result, by recognizing
features such as transmembrane alpha helices, it is possible to estimate the fraction
of proteins that are membrane proteins with a rule of thumb being that roughly 1/4 of
the protein coding genes correspond to membrane proteins [64]. From a proteomic
point of view, this question can be addressed by asking what are the copy numbers
of these different membrane proteins. Given that a bacterium such as E. coli has
severalmillion proteins in total, what fraction of those proteins are in the membrane?
To give a feeling for the answer to that question, we ask about the copy numbers
of some key membrane proteins. Specifically, we consider membrane transporters,
components of the ATP synthesis machinery, and the receptors of chemotaxis to give
an idea of the molecular census for some of the most important classes of membrane
proteins. Transport of sugars across the cell membrane is one of the most critical
activities of growing bacteria. Recent ribosome profiling measurements and mass
spectrometry measurements tell us that the number of copies of sugar transporters
for glucose (ptsI proteins, a component of the phosphoenolpyruvate-dependent
sugar phosphotransferase system) has a copy number of between roughly 3000
copies per cell and 15,000 copies per cell depending upon the growth conditions
[65, 66]. We examine the relevance of these numbers in the context of membrane
dynamics below. ATP synthase is one of the most important of membrane protein
components in almost all cell types. In E. coli the ATP synthase complex is built
up of many different subunits. For those subunits that come with a stoichiometry
of one molecule per complex, their copy number ranges between 3000 and 10,000
copies per cell [65, 66]. Knowing these numbers provides a powerful sanity check
on the rate of ATP production per cell since with roughly 3000 such synthases,
each rotating at about 300 turns per second (BNID 104890), this means that over
a cell cycle of 2000 s, on the order of 109 ATPs will be generated, comparable to
the number needed to run the cellular economy [4, 19]. Finally, for the chemotaxis
receptors such as Tar and Tsr, the copy numbers can be as low as several thousand
and as high as nearly 40,000 per cell (BNID 100182) [67, 68]. These numbers give
us a sense that if roughly 1000 of the 4000 or so E. coli proteins are membrane
proteins and each comes with a copy number of roughly 1000, then a first simple
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estimate is that there are a total of 106 membrane proteins distributed across the
inner and outer membranes of these cells.

Membrane Mechanics Our section on membrane mechanics gave us a basis for
thinking about many key processes that take place in cell biology. One such example
that begins to shed light on the free energy demands associated with sculpting
membranes into different shapes is that of membrane vesicles. From the standpoint
of the energetic description given in Eq. (4), we can make a simple estimate of the
free energy cost required to create spherical vesicles such as those found at synapses.
Since for a sphere the two radii of curvature are equal and have a value R and the
total area of each such sphere is 4πR2, Eq. (3) instructs us to sum up

Evesicle = κB

2

(
1

R
+ 1

R

)2

Asphere = κB

2

4

R2 4πR2. (13)

This implies the fascinating and for many people, counterintuitive result, that the
energetic cost for vesicle formation due to membrane bending is Evesicle = 8πκB ≈
250–500 kBT , completely independent of the size of the vesicle.

A second example from membrane mechanics is to try to estimate the strain
suffered by a membrane at the time of rupture. To estimate this magnitude, we can
use

τrupture = KA

�Arupture

A
, (14)

where the subscript rupture indicates the value of the parameter at rupture. If we use
the values provided in Table 2, we can estimate the rupture strain as

�Arupture

A
= τrupture

KA

≈ 5mN/m

200mN/m
≈ 2.5%. (15)

Often people are surprised by how small the rupture strains really are since we
have an impression that lipid bilayers are floppy, squishy, and highly deformable
materials.

Membrane Dynamics In the section on the dynamic membrane, we considered
the permeability of membranes to various molecular species. One simple estimate
that we can do to get a sense of the meaning of the permeability is to ask how
many molecules cross the cell membrane each second given some concentration
difference. Given the concept provided in Eq. (7), we can estimate

dN

dt
= j × A, (16)

Given a typical membrane permeability for water of order p ≈ 100 μm/s and
considering a typical concentration difference of salt across the cell membranewhen
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cells are subjected to an osmotic shock of order 100mM ≈ 108 molecules/μm3,
[69] for example, we can make the simple estimate that

j × A = p�cA ≈ 100 μm/s × 108/μm3 × 5 μm2 ≈ 5 × 1010 s−1. (17)

These numbers are interesting to contrast with the rate of transport of molecules
across ion channels. Specifically, given the conductivity of a channel such as the
mechanosensitive channel of large conductance (MscL), we find that the opening
of a single channel yields a flow rate of several molecules per nanosecond, quite
comparable to the flow rate of water across the membrane itself [60, 70].

One of the most interesting estimates concerning membrane dynamics that we
can consider focuses on the mass and energy economy of a cell. To this day, I still
marvel at the fact that one can take 5mL of liquid containing some salts and sugars,
inoculate that solution with a single bacterium, and 12 h later one will find as many
as 109 cells per mL of solution. Effectively, what has happened is that the molecules
in the medium have been taken up by that bacterium, used to construct building
materials and energetic molecules such as ATP and then used them to construct a
new cell. This process repeats over and over again every 20 or so minutes. These
observations raise an obvious Fermi question: is the rate of membrane transport of
sugar molecules, for example, fast enough to keep up with the needs of the cell to
reproduce [19]. To approach that question, we consider the flux of sugar across the
membrane using the numbers presented above, namely that there are 3000–15,000
sugar transporters per cell, each of which is able to take up sugars at a rate of several
hundred sugars/sec (BNID 102931, 103160, 100736). We can get a feeling for the
number of sugars taken up per cell cycle as

flux of sugar = (104 transporters) × (300 sugars/transporter sec) × (2 × 103 s)

≈ 6 × 109 sugars. (18)

This number is of the right order, though probably on the low side of what is needed
to power the cellular economy and raises interesting questions about possible rate-
limiting steps in cellular growth [4, 19].

Just as we did in the section of the chapter on the dynamic membrane, it is of
interest to focus not only on the dynamics across the membrane, but also on the
dynamics of molecules within the membrane. Specifically, one question of interest
is how long does it take molecules to travel across the cell membrane given the
measured diffusion constants? To answer this question, we appeal to the simple
estimate that the timescale for diffusing a distance L is given by

tdiffusion ≈ L2

D
. (19)
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For a bacterial cell with dimensions of several microns, this means that the diffusion
time to explore the membrane is

tdiffusion ≈ 1 μm2

1 μm2/s
≈ 1 s, (20)

where we have taken a diffusion coefficient for a lipid of 1μm2/s. This character-
istic timescale is confirmed in fluorescence-recovery-after-photobleaching (FRAP)
experiments (see [55], for example).

The Electrical Membrane The electric fields across biological membranes are
surprisingly high as can be estimated by using

E ≈ V

d
≈ 100mV

4 nm
≈ 100 × 10−3 V

4 × 10−9 m
≈ 2.5 × 107

V

m
. (21)

Note that this field is an order of magnitude higher than the electric fields associated
with dielectric breakdown in the atmosphere. And yet, fields five times as high have
been measured in membranes with no evidence for any anomalous behavior [71].

This section had as its ambition to give a sense of how the numbers summarized
in Table 2 can be used to develop intuition [3, 4]. In fact, more than anything, this
brief section is an invitation to others to look for meaning in the hard won outcome
of the recent work to extend membrane numeracy.

8 The Missing Membrane Numbers

As a final send-off of this brief ode to biological numeracy for membranes, we
reflect on the state of our art and how it can be improved. Despite a long list of truly
amazing successes, there are still many things not to like about the current status of
biological numeracy, not only in terms of how well we actually know the numbers,
but also in terms of what those numbers might mean for a deeper understanding
of biological systems. The goal in this final section is to make an attempt at
critiquing both this article and the current state of the art with the aim of suggesting
future directions. Though the “by the numbers” approach has become something
of a cliche, my opinion remains that there is much to be gained by pushing hard
with this approach on each of the many diverse and wonderful facets of biology
[19, 72–77].

One of the first weaknesses of biological numeracy in the membrane setting
(and beyond) is the need to establish measurements of sufficient precision that
we can confidently report on measured values. For example, there is already much
evidence that biological membranes “care” about their lipid composition. It would
be a powerful addition to our ability to ferret out molecular mechanisms to be able
to examine these membrane compositions for all organelles as a function of time
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and for a variety of different environmental conditions. First steps in this direction
have been made in thinking about proteomes with one of my favorites reporting on
the proteome of E. coli in more than 20 distinct conditions [66]. Absent accurate
and reproducible measurements in the membrane setting, we are handcuffed in our
efforts to construct a fruitful dialogue between theory and experiment [78, 79].

A second important challenge for the future of membrane numeracy is the vast
differences between model membranes and the real world of plasma and organellar
membranes. Effectively each and every section of this chapter—size and shape,
composition, mechanics, transport, electrical properties—is bereft of any deep
understanding of how all of the heterogeneities of real membranes might alter the
numbers, and what the significances of such alterations might be. The advent of
mass spectrometry in conjunction with ever more sophisticated microscopies as
a window onto membrane composition has left in their wake a host of mysteries
and challenges. As highlighted in Figs. 6 and 7, and indicated widely in other
literature,[18, 20–28] cells care about their lipid composition. What is lacking is
a conceptual framework that tells us what these numbers really mean in terms of
biological function, what they imply about the regulation of lipid biochemistry and
perhaps most importantly, what they imply about the evolution of life.

Another example that strikes me as an exciting challenge to our current thinking
broadly concerns the question of cellular shape, and the shapes of organelles, more
specifically. The images shown in Fig. 4 make clear the great diversity of membrane
shapes. The study of mitochondria as a concrete example presents challenges at
every turn [15]. My personal favorite remains the intriguing membrane structures
found in the outer segments of photoreceptors (see Fig. 4b). In the context of the
ideas presented in this chapter, one of the ways that people have attacked questions
of shape traditionally has been through the approach of free energy minimization
[11, 80]. But there are interesting, novel alternatives that are now in play. One
approach focuses on the role of dynamics where there is an interplay between
differential growth and the cost of elastic deformations as characterized by the kinds
of mechanical parameters reported here [81, 82].

Thus far our discussion has largely focused on the physical properties of
membranes. But there is another interesting angle on membranes that is more related
to their evolutionary significance. Interestingly, one of the simplest acts of biological
numeracy, namely counting, can provide evolutionary insights. Specifically, the
number of membranes surrounding an organelle is perhaps the best indicator of
its evolutionary origins, with the argument being made that more than one such
membrane means that organelle has an endosymbiotic origin and more than two
such membranes might imply nested symbioses [83–85].

We are in the midst of a biological revolution. The pace of discovery in the
study of living matter is dizzying in all corners of biology. The central thesis of
this article is enlightenment through biological numeracy. That is, as part of our
attempt to make sense of the living world, we can sharpen our questions and be
more rigorous in our demands about what it means to really understand something
[78, 79]. One of the ways of placing those demands is to ask for an interplay between
our experimental data and our theoretical understanding of biological processes. The
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study of biological membranes is one of the most important areas for future work
and in many ways has not kept pace with insights into genomes and the proteins
they code for because of a want of appropriate tools. It is hoped that the chapters in
this book will serve as an inspiration for the development of the tools that will make
membrane numeracy as sophisticated as is our understanding of nucleic acids and
proteins.
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