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Abstract Intracellular compartments continually exchange material transported
by small vesicles or tubules, which are formed in the membrane of the donor
compartments and eventually fuse with the membrane of the receptor compartments.
The formation and fission of a membrane bud giving rise to a new object and the
fusion are controlled to some extent by the mechanical properties of the membranes,
in particular their tension. In this chapter, we review the different mechanisms of
vesicle and tubule budding and analyze the influence of the membrane tension
on these processes using basic considerations of thermodynamics and mechanics.
In any case, vesicle and tubule production can be impaired at high enough
tension. Next, we discuss the influence of tension on membrane fusion, which
is a less understood problem. Finally, since the release/absorption of vesicles or
tubules should affect the tension of the donor/receptor, we speculate about the
possible regulatory role of the membrane tension on intracellular trafficking and
compartments stability.

Keywords Intracellular trafficking · Biological membrane · Budding · Fusion ·
Tension

1 Introduction

Eukaryotic cells comprise several intracellular compartments, also named
organelles, bound by a fluid membrane made of lipids and proteins. The
biochemical composition of the membrane defines the nature and the functions
of the compartment. Examples of organelles are the endoplasmic reticulum, the
Golgi apparatus, the different types of endosomes, and the lysosomes. These
compartments continually exchange material with each other and with the plasma
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membrane. The material is carried from one compartment to another by very
small membrane-bound objects: transport vesicles and tubules. The genesis of a
transport vesicle or tubule takes place in the membrane of the donor compartment.
A local membrane deformation emerges, a process called “budding,” and eventually
undergoes fission giving rise to a new membrane-bound object. The vesicle or
tubule released by this mean moves in the cell, pulled by molecular motors along
filaments, and eventually fuses with the membrane of the target compartment where
the transported material should be delivered [2, 6, 9]. All these processes, such as
budding, fission, motion, and fusion are mediated by energy consuming protein
machineries. The diameter of transport vesicles is of the order of 100 nm or smaller.
Tubules diameter is of the order of few tens of nm and their length up to several
hundred nm.

Membrane budding, fission, and fusion involve significant modifications of the
membrane shape. These processes should thus be sensitive on the mechanical
properties of the membrane. Depending on the membrane elasticity and tension,
budding, fusion, and fission can be either facilitated or prevented. The morphology
of the budding structures and released objects depends also on the mechani-
cal parameters characterizing the donor membrane. Living cells might use this
mechanosensitivity to mechanically regulate the intracellular traffic.

For large-scale deformations with respect to membrane thickness, a membrane
can be described as an unstretchable bi-dimensional fluid, which elastically opposes
bending [85]. The elastic modulus, or bending rigidity κ , of a biological membrane
is of the order of 10−19 J. The membranes of the cell and of the intracellular
compartments are under tension, with σ of the order of 10−5 N/m. This parameter in
particular can play an important role in traffic regulation by its influence on budding
and fusion processes.

The outline of this chapter is as follows. Section 2 presents some generality on
the membrane budding process. Sections 3 and 4 are devoted to the mechanics of
vesicle budding and tubule budding, respectively. The two main questions that are
addressed are “how tension and rigidity affects the shape of the budding protrusions”
and “under which conditions on tension and rigidity is budding possible.” The
theoretical predictions are compared with experimental observations. In particular,
in vitro experiments on reconstituted systems, in which the mechanical parameters
can be measured and sometime tuned, have provided much insights on these
questions. In Sect. 5, the influence of the membrane tension on fusion is discussed.
The first question that is addressed is the dependence of the fusion barrier on the
tension. Despite the insights provided by molecular simulations this last decade, this
question remains not well understood. The second question is the effect of tension
gradient for the transport between fusing objects. Section 6 is a more speculative
discussion on the possible regulatory role of membrane tension on intracellular
trafficking. Tension affects budding, fission, and fusion but on the other hand, all
these processes can potentially affect compartments tension by adding and removing
membrane area. This mutual interaction could allow to coordinate the entry and
secretion of vesicles and tubules in a compartment.
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2 Membrane Budding: Generality

The first step in the genesis of a tubule or a vesicle is the gradual deformation
of an initially nearly flat membrane. This is the budding process that precedes
the eventual fission of the narrow membrane tubes that connects the vesicular or
tubular protrusion to the rest of the membrane. The rigidity of the membrane against
bending and the membrane tension oppose to membrane deformation and thus
oppose to budding. Using the thin elastic fluid membrane model, the free energy
of a membrane is

Fm =
∫

A

[
κ

2
(C1 + C2 − C0)

2 + κGC1C2 + σ

]
dA (1)

where A is the membrane area, C1 and C2 are the principal local curvatures, κ

the bending rigidity, κG the Gaussian bending rigidity, σ the tension, and C0 the
spontaneous curvature. The integral over the Gaussian curvature C1C2 is constant
in budding processes [90]. The Gaussian bending rigidity κG thus plays no role in
membrane budding and this term is omitted in the following. The energetic cost
associated with the formation of a vesicle is roughly, Fm = 8πκ + 4πR2σ ∼
1000 kBT for a vesicle radius R = 50 nm. Therefore, budding cannot occur
spontaneously. It requires the action of proteins able to shape the membrane. A
short review of the different mechanisms used by the cell to bend membrane and
generate transport carriers is provided in the following Sect. 2.1. Whether vesicle
or tubule can or cannot bud from a flat membrane, and the morphology of the
budding structure, results from the competition between, on one hand the action of
the proteins inducing membrane deformation, and on the other hand the membrane
tension and rigidity, which oppose deformation. This issue is addressed in Sects. 3
and 4, in the case of vesicle and tubule, respectively, using simple mechanical
and thermodynamical considerations. Section 2.2 presents the basics of elasticity
for axisymmetrical membrane that are used to compute membrane bud shape and
energy.

2.1 Mechanisms of Membrane Curvature Generation

Several reviews on this topic have been written, see [46, 52, 69, 93, 101, 125]. Here,
only a brief overview of the different mechanisms is given.

• Rigid coat formation. Specialized peripheral proteins polymerize to form a
rigid structure, which imposes its own curved shape to the membrane on which
it adheres. The word coat is usually restricted to spherical protein assembly
responsible for vesicle budding. Here we shall use it in a more general way,
including rigid tubular structures formed by Dynamin or F-BAR proteins, for
example.
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• Protein crowding. The lateral pressure arising from the steric repulsion between
peripheral proteins bound on one side of the membrane promotes membrane
bending. Curvature increases the area accessible to the proteins, which is
entropically favorable [99, 100].

• Curved shape proteins. Peripheral proteins with a curved membrane-binding
side, such as those with a BAR (Bin-Amphiphysin-Rvs) domain [34], impose
locally their curved shape, driving membrane deformation. Integral proteins with
an asymmetrical shape should behave in an analogous way.

• Wedge effect. Peripheral proteins with amphipathic helices, such as ENTH
(Epsin N-Terminal Homology) domain, or loop, inserted in the lipid bilayer act
as wedge able to locally bend the membrane [10, 54].

• External force. Membrane deformation can also be driven by normal forces
produced by actin filaments and molecular motors pushing or pulling the
membrane [58].

• Lipid asymmetry. Finally, curvature can be induced by composition asymmetry
between the two lipid layers, generated and maintained by enzymes that modify
lipid tail or head [69, 125].

2.2 Elasticity of Axisymmetrical Membrane

Vesicle or tubule budding driven by protein machineries is a slow process (typically
few tens of second for spherical coat assembling) as compared to membrane
shape relaxation. The membrane is always at mechanical equilibrium and its shape
minimizes the energy (1).

Tubular and vesicular are axisymmetrical structures. The membrane shape can be
parametrized by the cylindrical coordinates r(s) and z(s), where s is the arc length
along the shape contour, and by the angle ψ(s), Fig. 1. These three quantities are
not independent but obey,

ṙ = cos ψ , ż = − sin ψ , (2)

where the dot denotes the derivative with respect to s. The two principal curvatures
of the membrane are C1 = ψ̇ and C2 = sin ψ/r , and the area differential

Fig. 1 Shape parametrization
for an axisymmetric
membrane. The red line is the
contour of the membrane
shape
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dA = 2πrds. The membrane free energy (1) then reads,

Fm = 2π

∫ s1

0

[
κ

2

(
ψ̇ + sin ψ

r
− C0

)2

+ σ

]
r ds . (3)

The equations satisfied by r(s), z(s), and ψ(s) at equilibrium are obtained by
minimizing (3). Inserting the equilibrium r(s), z(s), and ψ(s) in (3) then gives
the energy of the membrane deformation. The minimization procedure is detailed
in [49, 90] and summarized in Appendix 1. Accounting for the possible pressure
difference p across the membrane and punctual normal force f applied at the
membrane center r = 0, the equation derived from energy minimization reads,

ψ̈ cos ψ + ψ̇ cos2 ψ

r
+ ψ̇2 sin ψ

2
− sin ψ

2r2

(
2 cos2 ψ + (sin ψ − C0r)

2
)

−σ

κ
sin ψ + p

2κ
r + f

2πκr
= 0 , (4)

which together with Eq. (2) form a complete set of equations satisfied by r(s), z(s),
and ψ(s) at equilibrium.

3 Vesicle Budding Driven by Rigid Coat Assembling

In living cell, rigid coat assembling on membrane is the main mechanism driving
vesicle budding. Various proteins polymerize on the membrane, forming a rigid
shell, or “coat,” with spherical cap shape that covers the membrane. The coat
grows until the formation of a nearly complete sphere [51]. The three main
types of coat, clathrin coat [68], COPI [5, 44], and COPII [122] are made of
different components and assemble on the membrane of different organelles (plasma
membrane and endosome, Golgi apparatus, endoplasmic reticulum, respectively)
but they share strong similarities regarding their structure and function [24, 70].
Coat assembling is passive, only driven by the free energy gain associated with
components polymerization, and can be reconstituted in vitro with minimal sets of
proteins. Vesicle formation results from the competition between the energy gain
due to coat polymerization and the cost due to membrane deformation.

In the simplest model, a protein coat is a continuous spherical cap with curvature
radius R. The degree of completion is characterized either by the angle 0 ≤ α ≤ π

defined on Fig. 2, or by the ratio 0 ≤ x ≤ 1 of the coat area to the complete sphere
area,

x = Ac

4πR2 = 1

2
(1 − cos α), (5)
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Fig. 2 The spherical cap
model. The blue line is the
membrane area covered by a
coat. The red line is the
membrane neck R

α

A coat imposes its spherical cap shape on the membrane in the area where it adheres.
The deformation propagates around the coat in a region that we call membrane neck,
Fig. 2.

The spherical cap assumption for the coat shape is used in the following to study
theoretically the shape of the membrane neck (Sect. 3.1) and its energy (Sect. 3.2)
at different stages of vesicle budding and for different tension and rigidity. Then,
using energetic considerations, the conditions required for vesicle budding to occur
are analyzed in Sects. 3.3 and 3.4.

3.1 Shape of the Membrane Neck

The shape of the membrane around the coat might play an important role in the
coordination of the budding and fission machinery [3, 84]. Several proteins involved
in vesicle formation are curvature sensor, they bind and concentrate preferentially
in regions with particular curvature [74, 98].

Under the spherical cap approximation, the neck is axisymmetric and its shape
can be calculated using Eqs. (2), (4). We assume that the pressure difference across
the membrane, the spontaneous curvature of the membrane, and the pulling force
are zero (C0 = p = f = 0). The deformation is imposed by the rigid coat through
the boundary conditions. Equations (2), (4) contain a single parameter, the length

λ =
√

κ

σ
, (6)

which sets the typical extension of the membrane deformation around the coat. At
the coat boundary, the radius and the angle are fixed and depend on the completion
level of the coat, r(0) = R sin α and ψ(0) = α. Far from the coat, the membrane
should recover its planar shape, ψ(∞) = ψ̇(∞) = z(∞) = 0. The shape of the
membrane neck then depends on two dimensionless parameters: α and (R sin α)/λ.

Figure 3 shows the membrane contour, computed numerically, at different stages
of the coat growth, i.e., for different values of α, and for different values of R/λ. The
morphology strongly depends on the tension. At high tension, the deformation is
concentrated in a very narrow and highly curved region near the coat. At low tension,
the curvature is low and the deformation propagates far from the coat. Approximate
analytical expressions for the membrane shape can be derived in different limit cases
[28].
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Fig. 3 Top panels: shape of the membrane neck during coat growth, i.e., for different values of α:
0.15π , 0.28π , 0.42π , 0.57π , 0.71π , 0.85π from the left to the right, and different values of R/λ =
R

√
σ/κ, see the values on the graph. The unit length in the graphs is λ/2. Bottom panels: energy

of the membrane neck Fneck outside the coat as a function of x, the coat completion parameter,
for different values of R/λ (see graph). The dash black line corresponds to the approximations,
Eq. (16), in the low tension limit (left) and large tension limit (right)

3.1.1 Weak Deformation

When α is small, or far from the coat, the membrane deformation is weak, ψ � 1.
In this limit, the shape equations (4), (2) can be linearized,

ψ̈r2 + ψ̇r − (1 + (σ/κ)r2)ψ = 0 , ṙ = 1 , ż = −ψ (7)
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and solved analytically,

r = s + a, ψ = βK1(r/λ), z = βλK0(r/λ) . (8)

The Bessel functions K0 and K1 decrease exponentially at s � λ. The tension
imposes a flat shape at a distance larger than λ. When α is small, the integration
constants a and β are given by the boundary conditions at the coat border, a =
R sin α and β = α/K1(R sin α/λ); when α is not small, the solution of the linearized
equation is valid only at large enough distance from the coat, a and β depend on the
shape near the coat.

3.1.2 Low Tension or Near Full Completion

In the limit R sin α � λ, the tension has a negligible effect near the coat at r � λ.
At zero tension, the free energy (1) is minimum when the mean curvature is zero at
each point of the membrane, C1 + C2 = 0 or using Eq. (3),

ψ̇ + sin ψ

r
= 0 . (9)

The solution of this equation combined with Eq. (2) is the catenoid,

r =
√

(s − s0)2 + r2
0 , ψ = arcsin (± r0/r) , z = ∓ r0 arcosh(r0/r) + z0 ,

with s0 = R cos α sin α and r0 = R sin2 α . (10)

The sign in the second equation (resp. third equation) is + if s > s0 (resp. −), and
reciprocally if s < s0. The integration constants s0 and r0 are determined using the
boundary conditions; r0 is the neck radius at the narrowest position when α > π/2.
The principal curvatures are in general C1 = −C2 = r0/r2 and take their maximum
absolute value 1/r0 where the neck is the narrowest.

Equation (10) provides a good approximation of the membrane shape near the
coat, for r � λ. On the other hand, at large distance from the coat, the deformation
is weak and the shape obeys (8). According to (10), the weak deformation condition
holds for r � r0. Thus, the ranges of validity of the two approximations, weak
deformation at r � r0 and catenoid at r � λ, overlap. Matching the two
approximations gives the integration constants: β = r0/λ in (8) and, z0/r0 =
−γe + ln(4λ/r0) in (10) with γe 	 5.77 the Euler constant.

3.1.3 Large Tension

In the limit (R/λ) sin α � 1, the deformation is localized close to the coat boundary,
in a region of width λ much thinner than the radius of the coat border R sin α. The
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curvature of the coat periphery has a negligible influence on the membrane shape.
Keeping only the higher order terms in r , Eq. (4) reduces to,

ψ̈ cos ψ + ψ̇

2
sin ψ − σ

κ
sin ψ = 0 . (11)

Integrating this equation gives ψ̇ = −2
√

σ/κ sin(ψ/2) and then,

ψ = 4 arctan

[
exp

(
s0 − s

λ

)]
,

r = R sin α + s + 2λ

[
cos

(α

2

)
− tanh

(
s − s0

λ

)]
,

z = 2λ

cosh
(

s−s0
λ

) , with s0 = λ ln(tan(α/4)) . (12)

The second and third relations are obtained from Eq. (2) and s0 is deduced from the
boundary conditions. The membrane curvature C1 = ψ̇ (C2 � C1) is maximum (in
absolute value) at the coat boundary, C1 = (sin α/2)/λ.

3.2 Energy of the Membrane Bud

The membrane energy associated with the formation of a single protrusion from a
flat membrane is obtained by subtracting the energy of the flat membrane to the
energy of the deformed membrane,

Fbud = Fm − σA0 , (13)

where Fm is given by (1) and A0 is the area of the initially flat membrane. The bud
energy can be split into two contributions, the contribution from the membrane area
under the coat and the contribution from the rest of the membrane (the neck),

Fbud = Fcap + Fneck . (14)

In the coat region, using the spherical cap approximation, the principal curvatures
are C1 = C2 = 1/R. The spontaneous curvature of the membrane is assumed to be
zero C0 = 0. Characterizing the coat assembling state by x, the ratio of the cap area
to the complete sphere (5), the cap area is A = 4πR2x and A0 = π(R sin α2) =
4πR2x(1 − x). The energy of the membrane bound to the coat is,

Fcap = 8πκx + 4πσR2x2 . (15)
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The energy of the neck is obtained by inserting the solution of the shape
equations (4), (2) in the free energy (3) and by using A0 = 2π

∫ s1
0 r cos ψ . Using the

approximate expressions for the shape derived in the preceding section, one obtains
(see [28] for detailed calculations),

Fneck 	

⎧⎪⎪⎨
⎪⎪⎩

16πσR2x2(1 − x)2
( − γe + x

2(1−x)
− ln

(
R

√
σ/κ

√
x(1 − x)3/2

))
16π

√
κσR

√
x(1 − x)

(
1 − √

1 − x
)

+4πκ

(
x − 4 + 4

√
1 − x − 2 ln

(
1+√

1−x
2

))
.

(16)

The first line is the limit of low tension (R sin α � λ) with γe 	 5.77 the Euler
constant, and the second line is the limit of large tension (R sin α � λ). Figure 3
shows the energy obtained numerically as a function of x in the large and low tension
limits. It shows the good accuracy of the above approximate expressions.

3.3 Budding or Not Budding? Influence of the Tension and
Rigidity

Vesicle budding is driven by the free energy gained by polymerizing proteins.
The polymerization energy per unit of coat area μ accounts for protein–protein
binding energy, for membrane–protein binding energy, and for the loss of entropy
of the proteins initially dispersed in the cytosol. In the case of clathrin coat, the
polymerization energy has been estimated to be ∼ 20 kBT per clathrin molecules
or μ ∼ 3 kBT/ nm2 [19, 86]. For coat assembling to occur, the polymerization
energy gain must counter-balance the cost associated with membrane deformation.
Depending on the tension σ , the rigidity κ , and the polymerization energy μ, vesicle
budding may or may not be possible.

The energy required to form a coat of spherical cap shape with the completion
degree x reads,

F = 4πτR
√

x(1 − x) − 4πμR2x + Fbud(x) (17)

The last term Fbud, the energy cost of the membrane deformation, is discussed in the
preceding section. The second term is the energy gain due to coat polymerization
μ×Ac. The first term accounts for the loss of binding energy of the coat components
located at the coat edge. It is proportional to the line tension τ ∼ kBT/nm and to
the coat perimeter 2πR sin α = 4πR

√
x(1 − x).

Figure 4 shows a phase diagram obtained by minimizing the free energy (17).
Depending on the value of σR2/κ and μR2/κ , the minimum is found at x = 0
(no coat assembling/no budding), or at x = 1 (complete vesicle budding), or at
an intermediate value 0 < x∗ < 1 corresponding to a state where coat formation is
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Fig. 4 Right: phase diagram obtained by minimizing F(x) given by (17). The minimum is either
at x = 0 (no budding), x = 1 (complete budding), or 0 < x∗ < 1 (incomplete budding). Left:
profile of F(x) for different values of μ at fixed σR2/κ (in the large tension regime)

incomplete. The line separating the complete budding regime from the other regions
of the phase diagram indicates the polymerization energy μ required to make a
complete coat as a function of the tension.

At small tension, Fbud 	 8πκx at the lowest order in σR2/κ . The function F(x)

has a bell shape and the two minimum are at x = 0 and x = 1. The complete
budding state x = 1 is the most energetically favorable if

μ > σ + 2κ

R2 . (18)

At large tension, the energy landscapeF(x) is shown in Fig. 4 for different values
of μ. The membrane energy is approximately Fbud 	 σR2x2 at the lowest order in
κ/(σR2). The balance with the polymerization energy induces an energy well at

x∗ 	 μ/2σ . (19)

At large μ, the well disappears and the energy is minimum at x = 1. At small μ, the
line tension prevents the appearance of the well, F(x) is monotonically increasing
and is thus minimum at x = 0. The range where the intermediate minimum x∗ exists
is approximately,

(3/2)τ 2/3σ 1/3R4/3 < μ < 2σ . (20)

The left side inequality is obtained by calculating the value of μ where the F(x) as
an inflexion point using the approximation Fbud = σR2x2 and x � 1. The right
side inequality is deduced from the condition x∗ > 1 using the approximation (19).

The main prediction of this simple model is that tension and rigidity can either
prevent coat assembling, or arrest coat assembling in an incomplete state. How
does it compare to experimental observations? In vitro reconstitution of COPI
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coat assembling on liposomes, on GUV [64], and on lipid droplets [107, 108]
demonstrates that budding is much favored at low tension and almost inhibited
at large tension. On lipid droplets, the threshold tension was found to be 	
2 × 10−3 N/m, which is located in the high tension regime of the phase diagram
(σR2/κ 	 900 using R = 60 nm for COPI vesicles and κ = 2 kBT for the
monolayer bounding lipid droplets). Reconstitution of clathrin coat assembling
on GUV [86] leads to similar results. Increasing tension and rigidity can impair
clathrin assembling and even more striking, electron microscopy images showed the
existence of stable shallow buds for an intermediate range of tension in agreement
with theoretical predictions.

In living cell, the influence of tension on coat assembling has first been observed
indirectly. Raucher and Sheetz [79] have shown strong correlation between the
tension of the plasma membrane and the endocytosis rate, and thus indirectly on
the rate of clathrin coated vesicle production. They suggested that tension could be
an important regulator of endocytosis, its increase being responsible for the dramatic
inhibition of endocytosis during mitosis. As a second example, a drug responsible
for Golgi swelling, and presumably inducing the increase of its tension, is known to
block COPI assembling, dramatically modifying the Golgi morphology [106].

More recently, Boulant et al. [7] have shown that actin is required for clathrin
coated vesicle formation when the membrane tension is high. Disrupting actin
polymerization, they observed that in membrane with high tension, clathrin coats
remain arrested in an incomplete state, as predicted by the model. By pulling or
pushing on the membrane bud, actin may provide the energy required to counter-
balance the surface energy cost associated with coat growth. The force exerted by
actin has been included in a continuous mechanical model of vesicle budding by
Walani et al. [116]. They showed that this force applied to a partially coated bud
leads to complete vesicle formation. The role of the tension in this actin-assisted
budding case is also investigated.

Note finally that the spherical cap model studied in this section may also apply to
caveola. Caveola are plasma membrane invaginations induced by oligomerization
of caveolin proteins. Stretching the plasma membrane to increase the tension has
been shown to lead to caveola disappearance [95].

3.4 Coat with Finite Rigidity

The vesicles produced by coat assembling can have different radius, allowing to
incorporate cargo of different size [47, 68]. Clathrin coats can even form flat
structures sometime named “plaques” [50]. One may wonder whether membrane
tension or rigidity could influence the size and morphology of the coat. It has been
proposed, for example, that high tension could lead to caveola flattening [91].

To address this issue, the spherical cap model can be generalized by assuming
that the coat is an elastic layer with bending rigidity κc and preferential curvature
radius Rc. For clathrin coat, the rigidity has been measured and is 	 300 kBT
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[48]. The morphology of the coat should then be calculated by solving the shape
equation (4) in the coat and in the neck regions, as in [1, 116]. For simplicity here,
let’s assume that the coat shape is still a spherical cap with a radius R, which is now
a free variable. The polymerization energy per area unit reads,

μ(R) = μ0 − 2κc

(
1

Rc
− 1

R

)2

. (21)

In a thermodynamic approach, the preferential state of a coat is obtained by
minimizing F(x, R) (17), in which μ is given by (21), with respect to the two free
variables x and R (or R and Ac, the coat area (5)). The new phase diagram is shown
in Fig. 5. The three states x = 1, x = 0, and 0 < x < 1 are still present. The
most striking difference as compare to the case with infinite coat rigidity, shown in
Fig. 4, is the vertical line delimiting a new state at high μ0. In this region of the
phase diagram, a coat assembles into a flat structure, which grows without bound.
This prediction can be easily understood by considering the energy of a flat coat
expressed as a function of the coat area Ac,

F = τ
√

4πAc − (μ0 − 2κc/R
2
c )Ac . (22)

It appears that if,

μ0R
2
c > 2κc , (23)

a flat infinite coat is necessarily the energetically most favorable state. At the
opposite, when this condition is not fulfilled, a flat coat cannot exist. Interestingly,
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this analysis reveals that the transition toward the flat coat state is not controlled by
tension.

The influence of the tension on the coat state is shown on the curves on the left
of Fig. 5. At low tension, in the complete budding phase (x = 1), when increasing
the tension, the radius decreases as

R = 2κcRc

(σ − μ0)Rc + 2κc

, (24)

which is derived from the condition, ∂F/∂R(x = 1, R) = 0. Once the boundary
with the partial budding phase is crossed, increasing the tension has almost no effect
on the radius R, while x decreases. As a conclusion, this model predicts that tension
induces coat disassembling rather than flattening.

The elastic sheet model for the coat, Eq. (21), is certainly too simple to
accurately describe important morphology change, which involves modifications of
the internal molecular structure of the coat. Coat proteins can indeed adopt different
arrangements to which correspond different radii [12, 23, 24, 40, 102, 123]. The
polymerization energy μ(R) should thus have a discrete number of maximum,
corresponding to allowed structures. Moreover, to go further on the study of the
influence of the mechanical properties of the membrane on morphology selection,
a kinetic description of coat growth is required [29]. The coat might be unable to
reach the absolute free energy minimum, being kinetically trapped in some regions
of the phase space. The membrane tension could not only affect the free energy of
the different structures but also the height of the energy barriers separating them,
allowing or not the coat to evolve toward a given structure.

4 Tubule Budding

Membrane tubules, with a radius of a few tens of nanometers and of several
hundred nanometers long, are the second major type of transport carriers between
the different cell compartments. Tubule budding is observed in the endoplasmic
reticulum for transport toward the Golgi apparatus, in the Golgi for transport
between the stacks of the Golgi and toward the endosomes or the plasma membrane,
and in early and late endosomes for transport toward the plasma membrane or the
Golgi, for a review see [75]. Three mechanisms can lead to tubule nucleation and
growth from an initially flat membrane.

1. Application of a localized force normal to the membrane. This force can be
generated by molecular motors bound to the membrane and walking along a
microtubule, or by filaments pushing the membrane [21].

2. Polymerization on the membrane of proteins into a cylindrical rigid coat. Several
proteins such as Dynamin, ESCRT III, Amphiphysin 1, and F-BAR domain have
been found to form such cylindrical coats able to drive tubule formation [33,
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41, 84, 98, 105]. The vesicle-generating coats COPI and COPII are also able to
assemble into tubes [121, 123]. In vivo this mechanism could be involved for
tubule formation in endosomes [16, 17] and for endoplasmic reticulum tubules
stabilization [45].

3. High concentration of proteins inducing spontaneous curvature. Proteins that
favor membrane bending, either by insertion of amphipathic helix [25, 57, 60], or
by the binding of curved shape domains [11, 98], or by steric repulsion [99, 100],
have all been observed to generate tubules.

In vivo several of the aforementioned basic mechanisms may come into play at the
same time.

For the three mechanisms, the conditions required for the nucleation and growth
of a single membrane tubule connected to a membrane of fixed tension are analyzed
in the following. The shape of a tubule comprises a nearly cylindrical tube, the tip
closing the tubule, and the neck connecting the tube to the rest of the membrane.
The force acting at the tubule tip (defined positive when it opposes elongation) is,

f = ∂F
∂L

(25)

where L is the tubule length and F its free energy. A tubule elongates if f ≤ fext,
where fext is an externally applied force generated by molecular motors or active
rigid filaments, for example, and shrinks and disappears in the opposite case. In
the absence of external force, the stability of a tubule is determined by the sign of
f . For long tubule, the free energy contributions from the tip and from the neck
are independent of the tubule length, and hence do not contribute to the force f .
Long tubule can hence be modeled in a first approximation as cylindrical membrane
connected to a membrane reservoir. Note that in the following the effect of a pressure
difference on each side of the membrane is neglected.

4.1 Tubule Pulled by an External Force

Pulling on a small area of a large membrane leads, at large displacement, to tubule
formation [20, 42, 43, 76, 78]. The free energy of a tubule pulled from a membrane
with no spontaneous curvature (C0 = 0) and connected to a membrane reservoir
of tension σ can be obtained from Eq. (1) by approximating the tubule shape as a
cylinder of length L and radius R (the principal curvatures are thus C1 = 0 and
C2 = 1/R),

F =
(

κ

2R2 + σ

)
2πRL . (26)
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The radius is not fixed a priori but minimizes F ,

R =
√

κ

2σ
. (27)

The force opposing tube elongation, defined by (25), is then,

f = 2π
√

2κσ . (28)

This is the force that has to be applied at the tip to stabilize the tubule. When the
externally applied force is larger, fext > 2π

√
2σκ, the tube elongates; for smaller

force the tubule shrinks and collapses. The larger the tension, the thinner is the
tubule and the larger is f . Taking κ = 10−19 J and 10−6 < σ < 10−3 N/m, the
radius and force are in the range 8 < R < 200 nm and 5 < f < 100 pN.

Under the cylindrical tube approximation and assuming a constant membrane
tension independent of the tube length, the force f is independent of the length.
This prediction is certainly valid at large L but should fail at early stage of tubule
formation. To get more insight on the tubule shape and nucleation process, one
has to solve Eqs. (2), (4) governing the shape of the membrane. The tubule shape
computed numerically for different pulling forces f is shown in Fig. 6. In the neck
region, far from the tube r � R, the rigidity has a negligible influence. The shape
equation (4) reduces to σ sin ψ + f/2πr = 0 and the shape is thus approximately a
catenoid [76],

ψ = arcsin

(
− f

2πσr

)
for r � R . (29)
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Fig. 6 Left: Tubules formed by applying punctual forces of different magnitudes at the center of a
membrane disk connected to a reservoir, f/2π

√
2κσ = 0.1 (blue), 0.3 (dark green), 0.6 (orange),

0.9 (sky blue), 1.1 (red), 1.1 (purple), 0.9965 (grey), 1 (green), 1 (black). The unit length is
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κ/2σ .
Right: force f (in 2π

√
2κσ unit) at the tubule tip as a function of the total tubule length (from the

disk edge to the tip)
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(We remind that ψ and r characterizing the membrane shape are defined in Fig. 1.)
When f is large enough, a tubular shape emerges. The tube is not perfectly
cylindrical but shows small amplitude oscillations of the radius near the tip and
neck. The force required to sustain the tubule as a function of the total tubule length,
shown in Fig. 6, is non-monotonous. The force reaches a plateau f = 2π

√
2κσ at

large length as predicted, but in order to nucleate the tube, a force larger by 13% has
to be applied. See [20] for a more detailed analysis.

In vivo the force can be generated by molecular motors bound to the membrane
and to microtubules or to actin filaments. Formation of tubules at the endoplasmic
reticulum and the Golgi in particular requires molecular motors and microtubules
[18, 26, 114, 117]. Membrane tubules can be produced in minimal artificial system
with GUV containing motors in contact with a microtubule or actin network [53,
58, 83, 120].

Motors are able to pull-out membrane tubules only if the retracting force f due
to tension and rigidity (28) is lower than the maximum force fc that the motors can
exert. The cooperation of several motors is necessary when f exceeds the stall force
of an individual motor. In this case, fc not only depends on the motor stall force,
but also on the density of motors bound to the membrane and on kinetic parameters
characterizing the motor [53, 58, 83, 92, 120]. For example, kinesin motors form
a dynamical cluster at the tubule tip, pulling together the tubule by moving along
microtubule [53, 58]. The form of fc in this case is discussed in Appendix 2. In
the case of myosin 1b, a non-processive motor that binds actin with catch-bond
property (the unbinding rate increases with tension), the behavior is more complex
[120]. At low density of motors, tubule formation is prevented at large f and, more
surprisingly because of the catch-bond effect, also prevented at low f .

4.2 Tubule Formation Driven by Rigid Coat Polymerization

Tubule can be generated by the polymerization of proteins into a cylindrical rigid
coat, which imposes its shape to the membrane. As for spherical coats discussed
in Sect. 3, tubule formation results in this case from the competition between the
polymerization energy driving tubule growth and, tension and rigidity opposing
growth. The free energy of tubule formation reads in this case,

F =
(

κ

2R2 + σ − μ

)
2πRL + F0 , (30)

The first term is the energy of the coated tube, which comprises the membrane
deformation cost and the polymerization energy with μ the free energy gained
(per unit area) by the polymerizing proteins. The second term, F0, accounts for
various energy contributions independent of L due to the coat boundary and to the
membrane deformation outside the coated tube. The radius R is imposed by the
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coat. The force opposing tube elongation (25) reads,

f = −2πRμ + 2πRσ + πκ

R
; (31)

In the absence of an external force, the tubule elongates if f is negative, i.e., if,

μ > σ + κ

2R2 , (32)

and collapses in the opposite case. For a tubule of 20 nm radius, πκ/R 	 10 pN
and 2πσR can vary in between 0.1 and 100 pN for plausible biological membrane
tension. The polymerization energy depends on the coat protein interactions and
on the concentration of proteins in the reservoir. For the protein dynamin, which
assembles into tubes, the polymerization force has been measured in vitro, 2πRμ 	
18 pN at a dynamin concentration of 12 μM [84]. Large tension can thus prevent
dynamin tube growth. In vitro experiments with dynamin also confirmed the linear
dependency of the tubule force f with the tension σ , and that at low dynamin
concentration (i.e., low μ) the coat is not able to sustain the tubule.

In the presence of an external force, produced, for example, by motors, the
growth condition is f < fext. Even if the external force opposes growth (fext < 0),
a tubule can grow provided that the polymerization energy is large enough.

The constant energy term F0 in (30) generates a nucleation barrier: even if the
condition (32) is fulfilled, the initial formation of a short tubule may be energetically
unfavored (F > 0). The nucleation of a coat with short length � (of the order of the
size of the assembling proteins) occurs only if the polymerization energy is large
enough so that the energy f � + F0 is negative or not much larger than kBT . The
free energy F0 includes different contributions,

F0 = Fb + Ftip + Fneck . (33)

The first term is the loss of binding energy of the proteins at the coat boundaries.
The second and third terms arise from the membrane deformation induced by the
coat in the tip and neck region, respectively. In these regions, the membrane shape
is obtained by solving Eqs. (2), (4), with the angle ψ = π/2 imposed by the coat
at its border. For a tubule emerging from an initially flat membrane, Ftip and Fneck
can be estimated, in the small and large tension limits, using the results of Sect. 3.1,

Ftip 	
{

4πκ

4πR
√

2κσ
,Fneck 	

{
πσR2

(
−γe + 1

2 − ln(4R
√

σ/κ)
)

R2σ/κ � 1

4πR
√

2κσ R2σ/κ � 1
(34)

For the neck, the shape and energy are the same as those reported in Sect. 3.1 and 3.2
in the case x = 1/2 or α = π/2. For the tip, neglecting the tension, the equilibrium
membrane shape is a hemisphere of radius R. Its bending energy is thus 4πκ . At
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large tension (R2σ/κ � 1), the membrane is highly curved very near the coat
edges and flat elsewhere. As discussed in Sect. 3.1.3, the deformation is almost uni-
dimensional and the energy should be approximately same in the tip and in the neck.

The nucleation energy is much reduced if the coat nucleates in already deformed
membrane with nearly tubular shape, in particular on the membrane neck connecting
a budding vesicle to the rest of the membrane. If the neck radius matches the
coat radius, Fneck and Ftip vanish. This could explain why, in cell, dynamin or
ESCRT proteins assemble only at the neck of budding vesicles. In other membrane
regions, the nucleation barrier might be too large to be counter-balanced by the
polymerization energy. To support this hypothesis, it has been observed that at
physiological concentration, dynamin tube does not nucleate on flat membrane but
can nucleate on already existing tubular membrane with appropriate radius [84].

4.3 Influence of Curvature-Inducing Proteins on Tubule
Formation

We discuss finally the emergence of tubules on a membrane containing proteins able
to bend the membrane. In the simplest approach, the effect of the proteins is to give
rise to a spontaneous curvature C0 of the membrane. Campelo et al. [10, 54] have
shown theoretically that the spontaneous curvature induced by amphipathic helix
insertion is proportional to the surface fraction φ of proteins bearing such helix,
C0 = cφ with c 	 1 nm−1, in a wide range of density. At low density, proteins
with curved domains adhering on the membrane have the same effect [63] with
c = 0.15nm−1 for N-BAR domain [4]. When the spontaneous curvature is induced
by the lateral pressure arising from the steric repulsion between the membrane-
bound proteins, a simple calculation [99] gives C0 = −ph/κ where p is the lateral
pressure and h the membrane half-thickness.

4.3.1 Tubule Formation on a Membrane with Spontaneous Curvature

Let’s consider first that the membrane is homogeneously covered with a fixed
surface fraction of curvature-inducing proteins that provide a spontaneous curvature
to the membrane. The free energy associated with the formation of cylindrical
membrane tube with curvatures C1 = 0 and C2 = 1/R and length L, budding on
(and connected to) a flat membrane with tension σ , is obtained from (1) [21, 125],

F =
(

κ

2R2 − κC0

R
+ σ

)
2πRL (35)



404 L. Foret

The equilibrium radius and the retracting force (25) are then,

R =
√

κ

2σ
, f = 2πκ

(
1

R
− C0

)
. (36)

Proteins inducing positive spontaneous curvature favor tubule budding. The larger
the spontaneous curvature, the smaller the force f required to sustain the tube. The
force vanishes when RC0 approaches one.

Equation (36) suggests that a tube could spontaneously grow in the absence
of external force if 1/R < C0, i.e., if σ < κC2

0/2. However, in this case a
membrane tube is no longer stable (in the absence of pressure difference on each
side of the membrane). The shape in this case should rather be a necklace of spheres
[8, 21, 63, 89, 111, 112, 124] connected each other by a very thin neck. A cylindrical
tube cannot spontaneously emerge in a membrane with (isotropic) spontaneous
curvature without external force. Yet, the spontaneous curvature can strongly reduce
the intensity of the required force.

4.3.2 Curvature–Concentration Coupling

In general, the density of proteins is not fixed and can be heterogeneous. Curvature-
inducing proteins should concentrate in membrane regions with a curvature match-
ing their preferential curvature, enhancing the local curvature.

The free energy functional of the local mean curvature 2H = C1 + C2 and local
surface concentration of proteins, φ, of a membrane piece of tension σ in contact
with a reservoir of proteins is,

Fm =
∫

A

[
κ(φ)

2

(
2H − C0(φ)

)2 + g(φ) + σ

]
dA , (37)

where g(φ) is the free energy per unit area of the proteins on a flat membrane.
Neglecting protein–protein interaction, this term reads,

g(φ) = kBTρ
[
φ ln φ + (1 − φ) ln(1 − φ)

] − μ0ρφ , (38)

where the first term is the mixing entropy with ρ, the inverse of the area of a
molecule, and μ0 is the difference between the chemical potential of the protein
reservoir and the binding energy of a protein. At equilibrium, the local fraction of
proteins minimizes the free energy, δFm/δφ = 0. The φ-dependence of C0 and κ

couples the equilibrium density to the equilibrium curvature. The density of proteins
depends on the local curvature. In the case of a tubule connected to flat membrane
reservoir, the density on the tube and on the flat membrane is different.

The free energy associated with the formation of a cylindrical membrane tube
with surface fraction φ of proteins, radius R, and length L from a flat membrane
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with surface fraction φ0 of proteins is,

F =
(

κ(φ)

2R2 − κ(φ)C0(φ)

R
+ ḡ(φ) + σ

)
2πRL , (39)

where ḡ(φ) = g(φ)−g(φ0)+κ(φ)C0(φ)2/2−κ(φ0)C0(φ0)
2/2. The surface fraction

in the flat membrane reservoir satisfies ḡ′(φ0) = 0, where the prime denotes the
derivative respect to φ.

If the case of a weak density-curvature coupling, the free energy density in (37)
can be expanded at the quadratic order in H and φ by assuming,

κ(φ) = κ , ḡ(φ) = χ

2
(φ − φ0)

2 , C0(φ) = C0(φ0) + c(φ − φ0) , (40)

where according to (38), χ = kBTρ
φ0(1−φ0)

+ κc2. One then recovers Leibler’s model
[61, 62], which yields, using δFm/δφ = 0, a linear relation between the deviation
of the protein surface fraction and the curvature,

φ − φ0 = 2κc

χ
H . (41)

Inserting (40) and (41) with 2H = 1/R in (39), the free energy of tube formation
is the same as (35) replacing C0 by C0(φ0) and κ by an effective rigidity κ̃ =
κ

(
1 − κc2/χ

)
. Doing the same replacements in (36), one obtains the equilibrium

radius R and force f . The radius scales as ∼ σ−1/2 as in the absence of proteins.
The force is an affine function of

√
σ vanishing at a finite tension. All these features

have been observed experimentally in vitro on membrane tubules pulled from GUV
and covered by amphiphysin proteins [98]. The authors obtained 1/c of the order of
1–5 nm.

Figure 7 shows the tubule shape computed numerically, in the weak coupling
approximation (40) for two different values of RC0(φ0). When RC0(φ0) approaches
1 (right panels), the tube resembles a sphere necklace at small length. At larger L,
the tube is nearly cylindrical at the center but keeps an undulating shape at the
extremities. The force f needed to pull the tube drops when RC0(φ0) → 1, as
predicted. As already discussed, for RC0(φ0) < 1 a tube is no longer stable. Figure 7
shows also the protein density along the tube: φ = φ0 at the basis and φ 	 φ0 +
κc/χR in the tube.

4.3.3 Anisotropic Spontaneous Curvature

Proteins with crescent shape, such as those with a BAR domain, induce anisotropic
deformation of the membrane in their vicinity and their orientation is coupled to
the local curvature of the membrane. For strong coupling, an orientational order
should appear favoring anisotropic bending of the membrane [31, 56]. Simulations
of membrane containing anisotropic curvature-inducing proteins [4, 73, 77] show
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Fig. 7 The color curves show the contour of a tubule at different elongations L obtained by
applying a normal punctual force f to a flat membrane containing curvature-inducing proteins.
The black curves show φ − φ0 function of z. Two sets of parameters have been used. Left:
(κ/κ̃)RC0(φ0) = 0.5 and f/2π

√
σ κ̃ = 0.5. Right: (κ/κ̃)RC0(φ0) = 0.95 and f/2π

√
σ κ̃ = 0.05.

The unit of length is R given by (36) and the unit of φ is κc/χR

that the proteins aggregate because of curvature-mediated interactions, forming
dense nematic phase domains. In these domains, the membrane is strongly curved
and often adopts a tubular shape. Thus, unlike proteins inducing isotropic curvature,
proteins inducing anisotropic curvature are able to drive stable tubule formation in
the absence of external force.

In a nematic ordered phase the elastic free energy of the membrane with the
proteins comprises additional terms, as compared with (1), favoring anisotropic
bending [31, 56]. Different equivalent formulations can be found in the literature
[32, 77, 115]. Using the expression of [77] it reads,

Fm =
∫

A

[
κ

2
(2H)2 + κ‖

2
(C‖ −C0‖)2 + κ⊥

2
(C⊥ −C0⊥)2 +σ

]
dA+Fnematic , (42)

where 2H = C1+C2, C‖ and C0‖ are the curvature and spontaneous curvature in the
direction of the nematic director n, C⊥ and C0⊥ are the curvature and spontaneous
curvature in the direction normal to n, and κ‖ and κ⊥ are bending moduli. The last
term Fnematic accounts for the heterogeneity of the nematic orientation.

The free energy of a cylindrical membrane tube with homogeneous nematic
director orientation characterized by the angle θ with the orthoradial direction
budding from a flat membrane with nematic order is,

F =
[

κ

2R2
+ κ‖ cos4 θ

2R2
− κ‖C0‖ cos2 θ

R
+ κ⊥ sin4 θ

2R2
− κ⊥C0⊥ sin2 θ

R
+ σ

]
2πRL .

(43)
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The analysis of the tube properties can be found in [77]. Here for simplicity, only
the simple case with κ⊥ = 0 is analyzed. Minimizing the energy (43) with respect
to θ and R, and computing the force (25), one obtains,

cos2 θ = C0‖R , R =
√

κ

2σ − κ‖C2
0‖

, f = 2πκ

R
, for RC0‖ ≤ 1 ,

cos2 θ = 1 , R =
√

κ + κ‖
2σ

, f = 2π(κ + κ‖)
(

1

R
− κ‖

κ + κ‖
C0‖

)
,

for RC0‖ ≥ 1 , (44)

At large tension (first line), the tube principal curvature is larger than the sponta-
neous curvature, the proteins can orientate so that the curvature along their direction
matches the spontaneous curvature. Thus interestingly, the orientation depends on
the tension at large tension. When R = 1/C0‖, the proteins orientate perpendicular
to the tube direction. The proteins keep this orientation at lower tension (second
line), when the radius is too large for C‖ to match C0‖. The force vanishes at finite
tension 2σ = κ2‖C2

0‖/(κ‖ + κ), implying the spontaneous growth of tubule at lower
tension. To go further in the study of the shape and stability of tubes formed in
membrane with anisotropic spontaneous curvature requires the analysis of the shape
equations, which have been derived in [115].

5 Membrane Fusion in Intracellular Trafficking

After budding from a donor compartment, transport vesicles and tubules travel in the
cell and eventually fuse with the membrane of the target compartment. The fusion
process is discussed in more detail in chapter “Common Energetic and Mechanical
Features of Membrane Fusion and Fission Machineries.” In this section, we focus
on the influence of the membrane tension in the fusion of intracellular vesicles.

Lipid bilayers are very stable objects that do not fuse spontaneously in general.
Unlike the budding process described before, the fusion of two membranes requires
major rearrangements of the molecules with the formation of several intermediate
structures during the fusion process. These metastable structures are separated by
energetic barriers that have to be overcome for fusion to succeed (a schematic view
of the different barriers deduced from molecular simulations works is proposed in
[65]). In vivo the fusion of intracellular vesicles is ensured by an energy consuming
protein machinery, the SNARE complex, which can alone trigger fusion [118],
possibly assisted by other proteins [13, 71]. Though the exact way by which
SNAREs mediate fusion is still under debate, it is believed that the main role of
the SNARE complex is to act as a pin that pulls on the two membranes to put them
in very close proximity.
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Because fusion involves processes taking place at the molecular level, its study
is rather challenging both theoretically and experimentally. On the theoretical side,
continuum media approaches such as those used in Sects. 3 and 4 to study budding
are of more limited predictive power [55]. Much insights have been gained this
last decade by the use of molecular simulations, see [65] for a review, and see
[81, 82] for discussions, based on simulation results, on the role of SNARE. The
current understanding of the fusion pathways that emerges from simulation studies
is summarized in [87].

5.1 Influence of Membrane Tension on Fusion Barriers

Experimental and numerical studies show that membrane tension facilitates mem-
brane fusion. This was first observed in experiments in which the fusion of
protein-free membranes was induced by rising the membrane tension by the osmotic
swelling of the fusing vesicles [15, 27]. More recently, it has been shown that
vesicles stably adhering on a flat lipid bilayer fuse with the bilayer when an
extensile strain is applied to the bilayer [103]. The spontaneous fusion of lipid
bilayers triggered by high tension has been reproduced in molecular simulations
[94]. Simulations, using dissipative particles dynamics, also showed that the average
duration of the fusion process decreases exponentially with the tension [38, 39].
Some energy barriers encountered in the fusion process are thus lowered when
tension increases.

Tension most probably facilitates the early stage of fusion, from the unfused
membranes to the formation of the metastable intermediate structure named “the
stalk” [39, 81]. In the first step of fusion, the two membranes have to come in
close proximity (a few nm), which is prevented by entropic and hydration repulsion.
According to [59], the energy cost of stalk formation rapidly increases when the
distance between the membrane increases. Increasing the tension by stretching the
membrane and lowering the lipid density should increase the hydrophobicity of the
membranes and then decrease the repulsion between the two membranes, thereby
helping to cross the first barrier. In the next step identified in simulations prior to
stalk formation, few lipids establish bridges between the two facing monolayers
by adopting a splayed conformation with each of their tail inserted in a different
leaflet, [82, 96, 104]. This prestalk configuration involves the transient exposure of
lipid tails to the aqueous solvent and thus the crossing of an energetic barrier. This
barrier should also be lower for membrane with higher tension where the area per
lipid is larger. Dissipative particle simulations confirm this statement and show that
the energy barrier for prestalk formation decreases linearly with tension [38, 39].

Though high tension reduces the height of the fusion barrier, it is still not known
whether tension significantly affects the fusion kinetic in the presence of the SNARE
machinery. Experimental studies in this direction using simple biomimetic systems
would be interesting. In living cells different studies showed that exocytosis (the
fusion of intracellular vesicles with the plasma membrane) is stimulated by high
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tension [35, 72]. For example, during the growth of plant cells the increase of
tension due to cell expansion is believed to trigger the fusion of vesicles in order
to incorporate membrane material [72]. The increase of exocytosis activity may be
linked to the fact that tension facilitates membrane fusion.

5.2 Transport Driven by Tension Gradient

In analogy with fluid flowing from high pressure to low pressure regions, tension
gradients can induce flow inside fluid membranes from low tension toward high
tension regions. Such gradients can appear after the fusion of two membranes with
different tensions, leading to a flow of membrane molecules in the fusion pore
region. The area flux is obtained from the balance of the work produced by the
tension difference �σ per time unit and the dissipated energy. It has been calculated
in [14] for a toroidal pore and in [22] for a long tubular pore,

J = 2πR2�σ

η̃
(45)

where R is the pore radius and η̃ a 2D viscosity which comprises the different
sources of dissipation. For the toroidal pore the dissipation is dominated by the
membrane intrinsic viscosity ηs and the friction between the two monolayers μ,

η̃ = ηsa + ηrb , (46)

where a and b are dimensionless geometrical factors, and ηr = μh2 with h the
membrane thickness. The typical values of biological membrane viscosity are in the
range ηs ∼ 10−8−10−9 kg/s. The viscosity due to inter-layer friction ηr is less well
characterized and usually smaller than ηs. For R = 10 nm and a realistic tension
difference �σ ∼ 10−5 N/m [113], one obtains a flux of the order J ∼ 0.1–1 μm2/s,
i.e., a velocity in the pore v ∼ 10 μm2/s. For a long cylindrical tubule with length
L, the dissipation is mainly due to the viscosity of the surrounding fluid η, and thus,

η̃ = 4ηL

ln(L/R) − 1/2
. (47)

The flow of membrane drags the fluid in the membrane vicinity leading to a
flow of fluid through the pore. Note that the tension gradient also generates a
pressure gradient because of the Laplace law, leading to a (smaller) counter-flow.
The detailed calculation for a long tubule has been done in [22]. It shows that the
net flux of fluid in the tubule is oriented in the same direction as the membrane flux:
toward the high tension region. This mechanism allows membrane molecules of the
lumen to be pumped from one organelle at low tension toward another at higher
tension.
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Tension-induced flow might be a powerful way to transport material between two
organelles, for instance, through tubules bridging the two membranes. It is faster
than diffusion and provides a directionality, crucial in intracellular trafficking. This
phenomenon has first been invoked in living cell to explain the absorption of the
Golgi apparatus by the ER in cells treated with Brefeldin A [88]. The measure of
the difference of the membrane tension between the Golgi and the ER strengthens
this hypothesis and more generally the relevance of the mechanism in intracellular
trafficking [113]. It might be at work in particular for the transport inside the Golgi
[37], where tubular connections between cisterna have been observed [66, 110].

6 Intracellular Traffic Regulation by Tension

The mechanical properties of the membrane and in particular the tension affect
the elementary processes of intracellular trafficking. Vesicle and tubule budding
is prevented at high tension and high tension favors membrane fusion. On the
other hand, tension is directly related to membrane area change. Fusion of vesicles
brings area to the membrane of the receptor compartment, which should lead to
the decrease of its tension. Reversely, vesicle budding and fission by removing area
from the donor compartment should increase its tension. The influence of fusion
and budding on membrane tension has been observed in in vitro experiments. The
tension of GUV fusing with small vesicles drops eventually leading to the membrane
destabilization [97]. In lipid droplets the secretion of small vesicles (produced by
COPI coat) increases the tension of the droplet until vesicle budding is no longer
possible [108]. In the same manner, the unexpected relationship observed in [99]
between the length and radius of tubules budding on GUV and the initial volume of
GUV revealed that GUV tension increases during tubule growth until the threshold
tension of tubule growth is reached.

The mutual influence between the fusion and production of transport vesicles and
tubules, and the value of the tension of the donor/target compartment suggests that
tension could be a major regulator of intracellular trafficking. It could coordinate
the release and entry of transport vesicles and tubules in a compartment. Successive
fusions by lowering the tension could trigger tubules or vesicle production [97].
At the opposite, successive vesicle or tubule budding could increase the tension
enough to stop further secretion and favor fusion. Such feedback would ensure the
compartment stability.

The coordination of material absorption and release is crucial for the intracellular
compartments named endosomes. They are sorting platforms that collect, sort, and
then send to the proper location of the endocytosed material. For this purpose, they
fuse with small vesicles internalized by the cell and release the sorted molecules in
different tubules and vesicles. Endosomes work in a collective manner frequently
fusing each other [30, 80]. Tension could partly coordinate their activity, allowing
vesicle and tubule release only when enough fusion processes have taken place
(lowering the tension below the budding threshold) and brought material to be sorted
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and released. In order to meet and fuse, endosomes move inside the cell, pulled
by molecular motors along cell filaments. Depending on the endosome membrane
tension, motor pulling on membrane could either induce tubule budding at low
tension, or induce motion when the membrane is stiffer at high tension. It is thus
possible that the succession of motion–fusion–tubule release–motion realized by
endosomes is regulated to some extent by the endosome tension. High tension would
lead to endosome motion until its fusion with another endosome. The resulting drop
of the tension would then favor tubule release until the tension has increased again.

Lipid droplets provide another example of cell compartment where tension may
have a regulatory role. Lipid droplets are in charge of the storage and on-demand
delivery of neutral lipids [67, 109]. COPI coats assemble on their membrane (a
monolayer in this case) leading to vesicle release. It has been proposed that the goal
of this vesicle secretion is to increase the droplet tension in order to put the droplet
in a highly fusogenic state [108, 119]. The membrane of the droplet would then be
able to spontaneously fuse with that of the endoplasmic reticulum and create the
observed bridges between the two organelles. Such bridge could permit the transfer
of enzymes from the endoplasmic reticulum to the lipid droplets, possibly assisted
by the tension gradient.

Tension may also be an important physical regulator of the plasma membrane
dynamics [36]. Exocytosis (fusion of the plasma membrane with intracellular vesi-
cles) and endocytosis (production of intracellular vesicles by the plasma membrane)
are known to be influenced by the membrane tension [35, 72, 79]. They also
participate to membrane area regulation, and thus tension regulation, even if in the
case of the plasma membrane, tension is also controlled to a large extent by the
cytoskeleton and area reservoirs such as caveolae [95]. Tension may also correlate
trafficking to other mechanosensitive processes such as cell adhesion and motility
[36].

Appendix 1: Shape Equations for Axisymmetric Membrane

The shape of a membrane with cylindrical symmetry can be characterized by the
functions r(s), z(s), and ψ(s), where s is the arc length along the shape contour in
a plane at a fixed azimuthal angle. r and z are the usual cylindrical coordinates and
ψ is the angle between the radial and the tangent vectors, see Fig. 2.

In the most general case in which the membrane undergoes a pressure difference
between each side and a force pulling along the z-axis at the contour boundaries,
the shape of the membrane minimizes the free energy,

G = Fm − pV − f L , (48)

The second term is the energy cost associated with the volume change with
V = π

∫ s1
0 r2 sin ψds the volume enclosed by the membrane and p the pressure

difference across the membrane. The last term is included when L = z(0)−z(s1) =
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∫ s1
0 sin ψds is fixed; f is then the force exerted by the membrane at s = 0 and

s = s1 in the z direction.
In order to minimize G with respect to r(s) and ψ(s) accounting for the

constrain (2), one has to introduce a Lagrange multiplier γ (s) and minimize the
functional,

S[r(s), ψ(s)] = G
2πκ

+
∫ s1

0
γ (s)(ṙ − cos ψ)ds =

∫ s1

0
L(ψ, ψ̇, r, ṙ)ds (49)

with,

L = 1

2

(
ψ̇ + sin ψ

r
− C0

)2

r+σ

κ
r− p

2κ
r2 sin ψ− f

2πκ
sin ψ+γ (ṙ−cos ψ) (50)

The condition δS = 0 leads to the Euler–Lagrange equations ∂L
∂r

− d
ds

∂L
∂ṙ

= 0 and
∂L
∂ψ

− d
ds

∂L
∂ψ̇

= 0,

ψ̈ = − ψ̇ cos ψ

r
+ cos ψ sin ψ

r2 − p

2κ
r cos ψ + γ sin ψ

r
− f

2πκ

cos ψ

r
,

γ̇ = 1

2

(
ψ̇ − C0

)2 − 1

2

sin2 ψ

r2 + σ

κ
− p

κ
r sin ψ , (51)

and to the boundary conditions at s = 0 and s = s1,

ψ fixed or
∂L
∂ψ̇

= ψ̇ + sin ψ

r
− C0 = 0 ,

r fixed or
∂L
∂ṙ

= γ = 0. (52)

Equation (51) together with Eq. (2) forms a close set of differential equations of 4th
order complemented by four boundary conditions (52).

In the usual case where the contour length s1 is not fixed, then H = ṙ∂ṙL +
ψ̇∂ψ̇L − L = 0, which gives,

rψ̇2

2
− r

2

(
sin ψ

r
− C0

)2

− σ

κ
r + p

2κ
r2 sin ψ + γ cos ψ + f

2πκ
sin ψ = 0 . (53)

This equation can be combined with (51) to eliminate γ and obtain a lowest order
equation in ψ and r , Eq. (4).
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Appendix 2: Model for Dynamical Cluster of Kinesin at
Tubule Tip

The force f required to pull a tubule is usually larger than the stall force fs ∼
10 pN of a single motor. Several motors, localized at the tip of the tubule, then
work cooperatively to extract a tube [53, 58]. Tubule formation then relies on two
conditions: (1) the formation of a stable cluster of N motors at the tip, and (2)
the load on each motor (f/N assuming that the force created by the membrane
is equally distributed among the motors) should be smaller than the stall force.
Let’s consider the first condition. A cluster of motors at the tubule tip is sustained
by an influx Jb of motors moving along the tube, and looses motors that unbind

the microtubule at a rate dependent of their load, ku exp
(

f a
NkBT

)
, where ku is the

unbinding rate at zero load and a is the typical distance of the motor–microtubule
interaction. The influx Jb depends on the density of motors on the membrane,
and kinetic parameters such as the motor velocity, the binding and unbinding rates
[53, 58]. The flux balance,

kuN exp

(
f a

NkBT

)
= Jb , (54)

determines N , the number of motors in the cluster. A stable cluster can exist only
if JbkBT

ku
f a > e where e 	 2.71 is the base of natural logarithm. In this case, N is

in the range Jb
ku

< N < Jb
ku

e. Then accounting for the second condition, f/N < fs,
tubule extraction by the collective action of molecular motors is possible if the force
f (28) exerted by the membrane is lower than a critical value,

f < fc with , fc =
{

kBT
a

Jb
ku

1
e

if fsa > kBT

fs
Jb
ku

exp
(
− fsa

kBT

)
if fsa < kBT

(55)
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